1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier (at) cea.fr> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #include "main.h" 12 #include <Eigen/Geometry> 13 #include <Eigen/LU> 14 #include <Eigen/SVD> 15 16 template<typename T> T bounded_acos(T v) 17 { 18 using std::acos; 19 using std::min; 20 using std::max; 21 return acos((max)(T(-1),(min)(v,T(1)))); 22 } 23 24 template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) 25 { 26 using std::abs; 27 typedef typename QuatType::Scalar Scalar; 28 typedef AngleAxis<Scalar> AA; 29 30 Scalar largeEps = test_precision<Scalar>(); 31 32 Scalar theta_tot = AA(q1*q0.inverse()).angle(); 33 if(theta_tot>M_PI) 34 theta_tot = Scalar(2.*M_PI)-theta_tot; 35 for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) 36 { 37 QuatType q = q0.slerp(t,q1); 38 Scalar theta = AA(q*q0.inverse()).angle(); 39 VERIFY(abs(q.norm() - 1) < largeEps); 40 if(theta_tot==0) VERIFY(theta_tot==0); 41 else VERIFY(abs(theta - t * theta_tot) < largeEps); 42 } 43 } 44 45 template<typename Scalar, int Options> void quaternion(void) 46 { 47 /* this test covers the following files: 48 Quaternion.h 49 */ 50 using std::abs; 51 typedef Matrix<Scalar,3,1> Vector3; 52 typedef Matrix<Scalar,4,1> Vector4; 53 typedef Quaternion<Scalar,Options> Quaternionx; 54 typedef AngleAxis<Scalar> AngleAxisx; 55 56 Scalar largeEps = test_precision<Scalar>(); 57 if (internal::is_same<Scalar,float>::value) 58 largeEps = 1e-3f; 59 60 Scalar eps = internal::random<Scalar>() * Scalar(1e-2); 61 62 Vector3 v0 = Vector3::Random(), 63 v1 = Vector3::Random(), 64 v2 = Vector3::Random(), 65 v3 = Vector3::Random(); 66 67 Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)), 68 b = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); 69 70 // Quaternion: Identity(), setIdentity(); 71 Quaternionx q1, q2; 72 q2.setIdentity(); 73 VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); 74 q1.coeffs().setRandom(); 75 VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); 76 77 // concatenation 78 q1 *= q2; 79 80 q1 = AngleAxisx(a, v0.normalized()); 81 q2 = AngleAxisx(a, v1.normalized()); 82 83 // angular distance 84 Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); 85 if (refangle>Scalar(M_PI)) 86 refangle = Scalar(2)*Scalar(M_PI) - refangle; 87 88 if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) 89 { 90 VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); 91 } 92 93 // rotation matrix conversion 94 VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); 95 VERIFY_IS_APPROX(q1 * q2 * v2, 96 q1.toRotationMatrix() * q2.toRotationMatrix() * v2); 97 98 VERIFY( (q2*q1).isApprox(q1*q2, largeEps) 99 || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); 100 101 q2 = q1.toRotationMatrix(); 102 VERIFY_IS_APPROX(q1*v1,q2*v1); 103 104 105 // angle-axis conversion 106 AngleAxisx aa = AngleAxisx(q1); 107 VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); 108 109 // Do not execute the test if the rotation angle is almost zero, or 110 // the rotation axis and v1 are almost parallel. 111 if (abs(aa.angle()) > 5*test_precision<Scalar>() 112 && (aa.axis() - v1.normalized()).norm() < 1.99 113 && (aa.axis() + v1.normalized()).norm() < 1.99) 114 { 115 VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); 116 } 117 118 // from two vector creation 119 VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); 120 VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); 121 VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); 122 if (internal::is_same<Scalar,double>::value) 123 { 124 v3 = (v1.array()+eps).matrix(); 125 VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); 126 VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); 127 } 128 129 // from two vector creation static function 130 VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); 131 VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); 132 VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); 133 if (internal::is_same<Scalar,double>::value) 134 { 135 v3 = (v1.array()+eps).matrix(); 136 VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); 137 VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); 138 } 139 140 // inverse and conjugate 141 VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); 142 VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); 143 144 // test casting 145 Quaternion<float> q1f = q1.template cast<float>(); 146 VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); 147 Quaternion<double> q1d = q1.template cast<double>(); 148 VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); 149 150 // test bug 369 - improper alignment. 151 Quaternionx *q = new Quaternionx; 152 delete q; 153 154 q1 = AngleAxisx(a, v0.normalized()); 155 q2 = AngleAxisx(b, v1.normalized()); 156 check_slerp(q1,q2); 157 158 q1 = AngleAxisx(b, v1.normalized()); 159 q2 = AngleAxisx(b+Scalar(M_PI), v1.normalized()); 160 check_slerp(q1,q2); 161 162 q1 = AngleAxisx(b, v1.normalized()); 163 q2 = AngleAxisx(-b, -v1.normalized()); 164 check_slerp(q1,q2); 165 166 q1.coeffs() = Vector4::Random().normalized(); 167 q2.coeffs() = -q1.coeffs(); 168 check_slerp(q1,q2); 169 } 170 171 template<typename Scalar> void mapQuaternion(void){ 172 typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; 173 typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; 174 typedef Map<Quaternion<Scalar> > MQuaternionUA; 175 typedef Map<const Quaternion<Scalar> > MCQuaternionUA; 176 typedef Quaternion<Scalar> Quaternionx; 177 typedef Matrix<Scalar,3,1> Vector3; 178 typedef AngleAxis<Scalar> AngleAxisx; 179 180 Vector3 v0 = Vector3::Random(), 181 v1 = Vector3::Random(); 182 Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); 183 184 EIGEN_ALIGN16 Scalar array1[4]; 185 EIGEN_ALIGN16 Scalar array2[4]; 186 EIGEN_ALIGN16 Scalar array3[4+1]; 187 Scalar* array3unaligned = array3+1; 188 189 MQuaternionA mq1(array1); 190 MCQuaternionA mcq1(array1); 191 MQuaternionA mq2(array2); 192 MQuaternionUA mq3(array3unaligned); 193 MCQuaternionUA mcq3(array3unaligned); 194 195 // std::cerr << array1 << " " << array2 << " " << array3 << "\n"; 196 mq1 = AngleAxisx(a, v0.normalized()); 197 mq2 = mq1; 198 mq3 = mq1; 199 200 Quaternionx q1 = mq1; 201 Quaternionx q2 = mq2; 202 Quaternionx q3 = mq3; 203 Quaternionx q4 = MCQuaternionUA(array3unaligned); 204 205 VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); 206 VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); 207 VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); 208 #ifdef EIGEN_VECTORIZE 209 if(internal::packet_traits<Scalar>::Vectorizable) 210 VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); 211 #endif 212 213 VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); 214 VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); 215 216 VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); 217 VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); 218 219 VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); 220 VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); 221 222 VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); 223 VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); 224 225 VERIFY_IS_APPROX(mq1*mq2, q1*q2); 226 VERIFY_IS_APPROX(mq3*mq2, q3*q2); 227 VERIFY_IS_APPROX(mcq1*mq2, q1*q2); 228 VERIFY_IS_APPROX(mcq3*mq2, q3*q2); 229 } 230 231 template<typename Scalar> void quaternionAlignment(void){ 232 typedef Quaternion<Scalar,AutoAlign> QuaternionA; 233 typedef Quaternion<Scalar,DontAlign> QuaternionUA; 234 235 EIGEN_ALIGN16 Scalar array1[4]; 236 EIGEN_ALIGN16 Scalar array2[4]; 237 EIGEN_ALIGN16 Scalar array3[4+1]; 238 Scalar* arrayunaligned = array3+1; 239 240 QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; 241 QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; 242 QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; 243 244 q1->coeffs().setRandom(); 245 *q2 = *q1; 246 *q3 = *q1; 247 248 VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); 249 VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); 250 #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY 251 if(internal::packet_traits<Scalar>::Vectorizable) 252 VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); 253 #endif 254 } 255 256 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) 257 { 258 // there's a lot that we can't test here while still having this test compile! 259 // the only possible approach would be to run a script trying to compile stuff and checking that it fails. 260 // CMake can help with that. 261 262 // verify that map-to-const don't have LvalueBit 263 typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; 264 VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); 265 VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); 266 VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); 267 VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); 268 } 269 270 void test_geo_quaternion() 271 { 272 for(int i = 0; i < g_repeat; i++) { 273 CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); 274 CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); 275 CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); 276 CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); 277 CALL_SUBTEST_3(( quaternion<float,DontAlign>() )); 278 CALL_SUBTEST_4(( quaternion<double,DontAlign>() )); 279 CALL_SUBTEST_5(( quaternionAlignment<float>() )); 280 CALL_SUBTEST_6(( quaternionAlignment<double>() )); 281 CALL_SUBTEST_1( mapQuaternion<float>() ); 282 CALL_SUBTEST_2( mapQuaternion<double>() ); 283 } 284 } 285