1 /* 2 Bullet Continuous Collision Detection and Physics Library 3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ 4 5 This software is provided 'as-is', without any express or implied warranty. 6 In no event will the authors be held liable for any damages arising from the use of this software. 7 Permission is granted to anyone to use this software for any purpose, 8 including commercial applications, and to alter it and redistribute it freely, 9 subject to the following restrictions: 10 11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 13 3. This notice may not be removed or altered from any source distribution. 14 */ 15 16 #ifndef BT_SOLVER_BODY_H 17 #define BT_SOLVER_BODY_H 18 19 class btRigidBody; 20 #include "LinearMath/btVector3.h" 21 #include "LinearMath/btMatrix3x3.h" 22 23 #include "LinearMath/btAlignedAllocator.h" 24 #include "LinearMath/btTransformUtil.h" 25 26 ///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision 27 #ifdef BT_USE_SSE 28 #define USE_SIMD 1 29 #endif // 30 31 32 #ifdef USE_SIMD 33 34 struct btSimdScalar 35 { 36 SIMD_FORCE_INLINE btSimdScalar() 37 { 38 39 } 40 41 SIMD_FORCE_INLINE btSimdScalar(float fl) 42 :m_vec128 (_mm_set1_ps(fl)) 43 { 44 } 45 46 SIMD_FORCE_INLINE btSimdScalar(__m128 v128) 47 :m_vec128(v128) 48 { 49 } 50 union 51 { 52 __m128 m_vec128; 53 float m_floats[4]; 54 int m_ints[4]; 55 btScalar m_unusedPadding; 56 }; 57 SIMD_FORCE_INLINE __m128 get128() 58 { 59 return m_vec128; 60 } 61 62 SIMD_FORCE_INLINE const __m128 get128() const 63 { 64 return m_vec128; 65 } 66 67 SIMD_FORCE_INLINE void set128(__m128 v128) 68 { 69 m_vec128 = v128; 70 } 71 72 SIMD_FORCE_INLINE operator __m128() 73 { 74 return m_vec128; 75 } 76 SIMD_FORCE_INLINE operator const __m128() const 77 { 78 return m_vec128; 79 } 80 81 SIMD_FORCE_INLINE operator float() const 82 { 83 return m_floats[0]; 84 } 85 86 }; 87 88 ///@brief Return the elementwise product of two btSimdScalar 89 SIMD_FORCE_INLINE btSimdScalar 90 operator*(const btSimdScalar& v1, const btSimdScalar& v2) 91 { 92 return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128())); 93 } 94 95 ///@brief Return the elementwise product of two btSimdScalar 96 SIMD_FORCE_INLINE btSimdScalar 97 operator+(const btSimdScalar& v1, const btSimdScalar& v2) 98 { 99 return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128())); 100 } 101 102 103 #else 104 #define btSimdScalar btScalar 105 #endif 106 107 ///The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance. 108 ATTRIBUTE_ALIGNED16 (struct) btSolverBody 109 { 110 BT_DECLARE_ALIGNED_ALLOCATOR(); 111 btTransform m_worldTransform; 112 btVector3 m_deltaLinearVelocity; 113 btVector3 m_deltaAngularVelocity; 114 btVector3 m_angularFactor; 115 btVector3 m_linearFactor; 116 btVector3 m_invMass; 117 btVector3 m_pushVelocity; 118 btVector3 m_turnVelocity; 119 btVector3 m_linearVelocity; 120 btVector3 m_angularVelocity; 121 btVector3 m_externalForceImpulse; 122 btVector3 m_externalTorqueImpulse; 123 124 btRigidBody* m_originalBody; 125 void setWorldTransform(const btTransform& worldTransform) 126 { 127 m_worldTransform = worldTransform; 128 } 129 130 const btTransform& getWorldTransform() const 131 { 132 return m_worldTransform; 133 } 134 135 136 137 SIMD_FORCE_INLINE void getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity ) const 138 { 139 if (m_originalBody) 140 velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos); 141 else 142 velocity.setValue(0,0,0); 143 } 144 145 146 SIMD_FORCE_INLINE void getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const 147 { 148 if (m_originalBody) 149 velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos); 150 else 151 velocity.setValue(0,0,0); 152 } 153 154 SIMD_FORCE_INLINE void getAngularVelocity(btVector3& angVel) const 155 { 156 if (m_originalBody) 157 angVel =m_angularVelocity+m_deltaAngularVelocity; 158 else 159 angVel.setValue(0,0,0); 160 } 161 162 163 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position 164 SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude) 165 { 166 if (m_originalBody) 167 { 168 m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor; 169 m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor); 170 } 171 } 172 173 SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude) 174 { 175 if (m_originalBody) 176 { 177 m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor; 178 m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor); 179 } 180 } 181 182 183 184 const btVector3& getDeltaLinearVelocity() const 185 { 186 return m_deltaLinearVelocity; 187 } 188 189 const btVector3& getDeltaAngularVelocity() const 190 { 191 return m_deltaAngularVelocity; 192 } 193 194 const btVector3& getPushVelocity() const 195 { 196 return m_pushVelocity; 197 } 198 199 const btVector3& getTurnVelocity() const 200 { 201 return m_turnVelocity; 202 } 203 204 205 //////////////////////////////////////////////// 206 ///some internal methods, don't use them 207 208 btVector3& internalGetDeltaLinearVelocity() 209 { 210 return m_deltaLinearVelocity; 211 } 212 213 btVector3& internalGetDeltaAngularVelocity() 214 { 215 return m_deltaAngularVelocity; 216 } 217 218 const btVector3& internalGetAngularFactor() const 219 { 220 return m_angularFactor; 221 } 222 223 const btVector3& internalGetInvMass() const 224 { 225 return m_invMass; 226 } 227 228 void internalSetInvMass(const btVector3& invMass) 229 { 230 m_invMass = invMass; 231 } 232 233 btVector3& internalGetPushVelocity() 234 { 235 return m_pushVelocity; 236 } 237 238 btVector3& internalGetTurnVelocity() 239 { 240 return m_turnVelocity; 241 } 242 243 SIMD_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const 244 { 245 velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos); 246 } 247 248 SIMD_FORCE_INLINE void internalGetAngularVelocity(btVector3& angVel) const 249 { 250 angVel = m_angularVelocity+m_deltaAngularVelocity; 251 } 252 253 254 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position 255 SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude) 256 { 257 if (m_originalBody) 258 { 259 m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor; 260 m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor); 261 } 262 } 263 264 265 266 267 void writebackVelocity() 268 { 269 if (m_originalBody) 270 { 271 m_linearVelocity +=m_deltaLinearVelocity; 272 m_angularVelocity += m_deltaAngularVelocity; 273 274 //m_originalBody->setCompanionId(-1); 275 } 276 } 277 278 279 void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp) 280 { 281 (void) timeStep; 282 if (m_originalBody) 283 { 284 m_linearVelocity += m_deltaLinearVelocity; 285 m_angularVelocity += m_deltaAngularVelocity; 286 287 //correct the position/orientation based on push/turn recovery 288 btTransform newTransform; 289 if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0) 290 { 291 // btQuaternion orn = m_worldTransform.getRotation(); 292 btTransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform); 293 m_worldTransform = newTransform; 294 } 295 //m_worldTransform.setRotation(orn); 296 //m_originalBody->setCompanionId(-1); 297 } 298 } 299 300 301 302 }; 303 304 #endif //BT_SOLVER_BODY_H 305 306 307