1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 const DataLayout &AsmPrinter::getDataLayout() const { 139 return MMI->getModule()->getDataLayout(); 140 } 141 142 // Do not use the cached DataLayout because some client use it without a Module 143 // (llmv-dsymutil, llvm-dwarfdump). 144 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple().str(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer->getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 178 // Initialize TargetLoweringObjectFile. 179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 180 .Initialize(OutContext, TM); 181 182 OutStreamer->InitSections(false); 183 184 Mang = new Mangler(); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 Triple TT(getTargetTriple()); 195 if (TT.isOSDarwin()) { 196 unsigned Major, Minor, Update; 197 TT.getOSVersion(Major, Minor, Update); 198 // If there is a version specified, Major will be non-zero. 199 if (Major) { 200 MCVersionMinType VersionType; 201 if (TT.isWatchOS()) 202 VersionType = MCVM_WatchOSVersionMin; 203 else if (TT.isTvOS()) 204 VersionType = MCVM_TvOSVersionMin; 205 else if (TT.isMacOSX()) 206 VersionType = MCVM_OSXVersionMin; 207 else 208 VersionType = MCVM_IOSVersionMin; 209 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 210 } 211 } 212 213 // Allow the target to emit any magic that it wants at the start of the file. 214 EmitStartOfAsmFile(M); 215 216 // Very minimal debug info. It is ignored if we emit actual debug info. If we 217 // don't, this at least helps the user find where a global came from. 218 if (MAI->hasSingleParameterDotFile()) { 219 // .file "foo.c" 220 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 221 } 222 223 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 224 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 225 for (auto &I : *MI) 226 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 227 MP->beginAssembly(M, *MI, *this); 228 229 // Emit module-level inline asm if it exists. 230 if (!M.getModuleInlineAsm().empty()) { 231 // We're at the module level. Construct MCSubtarget from the default CPU 232 // and target triple. 233 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 234 TM.getTargetTriple().str(), TM.getTargetCPU(), 235 TM.getTargetFeatureString())); 236 OutStreamer->AddComment("Start of file scope inline assembly"); 237 OutStreamer->AddBlankLine(); 238 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 239 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 240 OutStreamer->AddComment("End of file scope inline assembly"); 241 OutStreamer->AddBlankLine(); 242 } 243 244 if (MAI->doesSupportDebugInformation()) { 245 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 246 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 247 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 248 DbgTimerName, 249 CodeViewLineTablesGroupName)); 250 } 251 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 252 DD = new DwarfDebug(this, &M); 253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 254 } 255 } 256 257 EHStreamer *ES = nullptr; 258 switch (MAI->getExceptionHandlingType()) { 259 case ExceptionHandling::None: 260 break; 261 case ExceptionHandling::SjLj: 262 case ExceptionHandling::DwarfCFI: 263 ES = new DwarfCFIException(this); 264 break; 265 case ExceptionHandling::ARM: 266 ES = new ARMException(this); 267 break; 268 case ExceptionHandling::WinEH: 269 switch (MAI->getWinEHEncodingType()) { 270 default: llvm_unreachable("unsupported unwinding information encoding"); 271 case WinEH::EncodingType::Invalid: 272 break; 273 case WinEH::EncodingType::X86: 274 case WinEH::EncodingType::Itanium: 275 ES = new WinException(this); 276 break; 277 } 278 break; 279 } 280 if (ES) 281 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 282 return false; 283 } 284 285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 286 if (!MAI.hasWeakDefCanBeHiddenDirective()) 287 return false; 288 289 return canBeOmittedFromSymbolTable(GV); 290 } 291 292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 293 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 294 switch (Linkage) { 295 case GlobalValue::CommonLinkage: 296 case GlobalValue::LinkOnceAnyLinkage: 297 case GlobalValue::LinkOnceODRLinkage: 298 case GlobalValue::WeakAnyLinkage: 299 case GlobalValue::WeakODRLinkage: 300 if (MAI->hasWeakDefDirective()) { 301 // .globl _foo 302 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 303 304 if (!canBeHidden(GV, *MAI)) 305 // .weak_definition _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 307 else 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 309 } else if (MAI->hasLinkOnceDirective()) { 310 // .globl _foo 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 312 //NOTE: linkonce is handled by the section the symbol was assigned to. 313 } else { 314 // .weak _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 316 } 317 return; 318 case GlobalValue::AppendingLinkage: 319 // FIXME: appending linkage variables should go into a section of 320 // their name or something. For now, just emit them as external. 321 case GlobalValue::ExternalLinkage: 322 // If external or appending, declare as a global symbol. 323 // .globl _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 325 return; 326 case GlobalValue::PrivateLinkage: 327 case GlobalValue::InternalLinkage: 328 return; 329 case GlobalValue::AvailableExternallyLinkage: 330 llvm_unreachable("Should never emit this"); 331 case GlobalValue::ExternalWeakLinkage: 332 llvm_unreachable("Don't know how to emit these"); 333 } 334 llvm_unreachable("Unknown linkage type!"); 335 } 336 337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 338 const GlobalValue *GV) const { 339 TM.getNameWithPrefix(Name, GV, *Mang); 340 } 341 342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 343 return TM.getSymbol(GV, *Mang); 344 } 345 346 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 347 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 348 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 349 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 350 "No emulated TLS variables in the common section"); 351 352 // Never emit TLS variable xyz in emulated TLS model. 353 // The initialization value is in __emutls_t.xyz instead of xyz. 354 if (IsEmuTLSVar) 355 return; 356 357 if (GV->hasInitializer()) { 358 // Check to see if this is a special global used by LLVM, if so, emit it. 359 if (EmitSpecialLLVMGlobal(GV)) 360 return; 361 362 // Skip the emission of global equivalents. The symbol can be emitted later 363 // on by emitGlobalGOTEquivs in case it turns out to be needed. 364 if (GlobalGOTEquivs.count(getSymbol(GV))) 365 return; 366 367 if (isVerbose()) { 368 // When printing the control variable __emutls_v.*, 369 // we don't need to print the original TLS variable name. 370 GV->printAsOperand(OutStreamer->GetCommentOS(), 371 /*PrintType=*/false, GV->getParent()); 372 OutStreamer->GetCommentOS() << '\n'; 373 } 374 } 375 376 MCSymbol *GVSym = getSymbol(GV); 377 MCSymbol *EmittedSym = GVSym; 378 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 379 // GV's or GVSym's attributes will be used for the EmittedSym. 380 381 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 382 383 if (!GV->hasInitializer()) // External globals require no extra code. 384 return; 385 386 GVSym->redefineIfPossible(); 387 if (GVSym->isDefined() || GVSym->isVariable()) 388 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 389 "' is already defined"); 390 391 if (MAI->hasDotTypeDotSizeDirective()) 392 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 393 394 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 395 396 const DataLayout &DL = GV->getParent()->getDataLayout(); 397 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 398 399 // If the alignment is specified, we *must* obey it. Overaligning a global 400 // with a specified alignment is a prompt way to break globals emitted to 401 // sections and expected to be contiguous (e.g. ObjC metadata). 402 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 403 404 for (const HandlerInfo &HI : Handlers) { 405 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 406 HI.Handler->setSymbolSize(GVSym, Size); 407 } 408 409 // Handle common and BSS local symbols (.lcomm). 410 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 411 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 412 unsigned Align = 1 << AlignLog; 413 414 // Handle common symbols. 415 if (GVKind.isCommon()) { 416 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 417 Align = 0; 418 419 // .comm _foo, 42, 4 420 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 421 return; 422 } 423 424 // Handle local BSS symbols. 425 if (MAI->hasMachoZeroFillDirective()) { 426 MCSection *TheSection = 427 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 428 // .zerofill __DATA, __bss, _foo, 400, 5 429 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 430 return; 431 } 432 433 // Use .lcomm only if it supports user-specified alignment. 434 // Otherwise, while it would still be correct to use .lcomm in some 435 // cases (e.g. when Align == 1), the external assembler might enfore 436 // some -unknown- default alignment behavior, which could cause 437 // spurious differences between external and integrated assembler. 438 // Prefer to simply fall back to .local / .comm in this case. 439 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 440 // .lcomm _foo, 42 441 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 442 return; 443 } 444 445 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 446 Align = 0; 447 448 // .local _foo 449 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 450 // .comm _foo, 42, 4 451 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 452 return; 453 } 454 455 MCSymbol *EmittedInitSym = GVSym; 456 457 MCSection *TheSection = 458 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 459 460 // Handle the zerofill directive on darwin, which is a special form of BSS 461 // emission. 462 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 463 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 464 465 // .globl _foo 466 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 467 // .zerofill __DATA, __common, _foo, 400, 5 468 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 469 return; 470 } 471 472 // Handle thread local data for mach-o which requires us to output an 473 // additional structure of data and mangle the original symbol so that we 474 // can reference it later. 475 // 476 // TODO: This should become an "emit thread local global" method on TLOF. 477 // All of this macho specific stuff should be sunk down into TLOFMachO and 478 // stuff like "TLSExtraDataSection" should no longer be part of the parent 479 // TLOF class. This will also make it more obvious that stuff like 480 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 481 // specific code. 482 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 483 // Emit the .tbss symbol 484 MCSymbol *MangSym = 485 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 486 487 if (GVKind.isThreadBSS()) { 488 TheSection = getObjFileLowering().getTLSBSSSection(); 489 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 490 } else if (GVKind.isThreadData()) { 491 OutStreamer->SwitchSection(TheSection); 492 493 EmitAlignment(AlignLog, GV); 494 OutStreamer->EmitLabel(MangSym); 495 496 EmitGlobalConstant(GV->getParent()->getDataLayout(), 497 GV->getInitializer()); 498 } 499 500 OutStreamer->AddBlankLine(); 501 502 // Emit the variable struct for the runtime. 503 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 504 505 OutStreamer->SwitchSection(TLVSect); 506 // Emit the linkage here. 507 EmitLinkage(GV, GVSym); 508 OutStreamer->EmitLabel(GVSym); 509 510 // Three pointers in size: 511 // - __tlv_bootstrap - used to make sure support exists 512 // - spare pointer, used when mapped by the runtime 513 // - pointer to mangled symbol above with initializer 514 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 515 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 516 PtrSize); 517 OutStreamer->EmitIntValue(0, PtrSize); 518 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 519 520 OutStreamer->AddBlankLine(); 521 return; 522 } 523 524 OutStreamer->SwitchSection(TheSection); 525 526 EmitLinkage(GV, EmittedInitSym); 527 EmitAlignment(AlignLog, GV); 528 529 OutStreamer->EmitLabel(EmittedInitSym); 530 531 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 532 533 if (MAI->hasDotTypeDotSizeDirective()) 534 // .size foo, 42 535 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 536 MCConstantExpr::create(Size, OutContext)); 537 538 OutStreamer->AddBlankLine(); 539 } 540 541 /// EmitFunctionHeader - This method emits the header for the current 542 /// function. 543 void AsmPrinter::EmitFunctionHeader() { 544 // Print out constants referenced by the function 545 EmitConstantPool(); 546 547 // Print the 'header' of function. 548 const Function *F = MF->getFunction(); 549 550 OutStreamer->SwitchSection( 551 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 552 EmitVisibility(CurrentFnSym, F->getVisibility()); 553 554 EmitLinkage(F, CurrentFnSym); 555 if (MAI->hasFunctionAlignment()) 556 EmitAlignment(MF->getAlignment(), F); 557 558 if (MAI->hasDotTypeDotSizeDirective()) 559 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 560 561 if (isVerbose()) { 562 F->printAsOperand(OutStreamer->GetCommentOS(), 563 /*PrintType=*/false, F->getParent()); 564 OutStreamer->GetCommentOS() << '\n'; 565 } 566 567 // Emit the prefix data. 568 if (F->hasPrefixData()) 569 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 570 571 // Emit the CurrentFnSym. This is a virtual function to allow targets to 572 // do their wild and crazy things as required. 573 EmitFunctionEntryLabel(); 574 575 // If the function had address-taken blocks that got deleted, then we have 576 // references to the dangling symbols. Emit them at the start of the function 577 // so that we don't get references to undefined symbols. 578 std::vector<MCSymbol*> DeadBlockSyms; 579 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 580 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 581 OutStreamer->AddComment("Address taken block that was later removed"); 582 OutStreamer->EmitLabel(DeadBlockSyms[i]); 583 } 584 585 if (CurrentFnBegin) { 586 if (MAI->useAssignmentForEHBegin()) { 587 MCSymbol *CurPos = OutContext.createTempSymbol(); 588 OutStreamer->EmitLabel(CurPos); 589 OutStreamer->EmitAssignment(CurrentFnBegin, 590 MCSymbolRefExpr::create(CurPos, OutContext)); 591 } else { 592 OutStreamer->EmitLabel(CurrentFnBegin); 593 } 594 } 595 596 // Emit pre-function debug and/or EH information. 597 for (const HandlerInfo &HI : Handlers) { 598 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 599 HI.Handler->beginFunction(MF); 600 } 601 602 // Emit the prologue data. 603 if (F->hasPrologueData()) 604 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 605 } 606 607 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 608 /// function. This can be overridden by targets as required to do custom stuff. 609 void AsmPrinter::EmitFunctionEntryLabel() { 610 CurrentFnSym->redefineIfPossible(); 611 612 // The function label could have already been emitted if two symbols end up 613 // conflicting due to asm renaming. Detect this and emit an error. 614 if (CurrentFnSym->isVariable()) 615 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 616 "' is a protected alias"); 617 if (CurrentFnSym->isDefined()) 618 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 619 "' label emitted multiple times to assembly file"); 620 621 return OutStreamer->EmitLabel(CurrentFnSym); 622 } 623 624 /// emitComments - Pretty-print comments for instructions. 625 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 626 const MachineFunction *MF = MI.getParent()->getParent(); 627 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 628 629 // Check for spills and reloads 630 int FI; 631 632 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 633 634 // We assume a single instruction only has a spill or reload, not 635 // both. 636 const MachineMemOperand *MMO; 637 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 638 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 639 MMO = *MI.memoperands_begin(); 640 CommentOS << MMO->getSize() << "-byte Reload\n"; 641 } 642 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 643 if (FrameInfo->isSpillSlotObjectIndex(FI)) 644 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 645 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 646 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 647 MMO = *MI.memoperands_begin(); 648 CommentOS << MMO->getSize() << "-byte Spill\n"; 649 } 650 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 651 if (FrameInfo->isSpillSlotObjectIndex(FI)) 652 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 653 } 654 655 // Check for spill-induced copies 656 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 657 CommentOS << " Reload Reuse\n"; 658 } 659 660 /// emitImplicitDef - This method emits the specified machine instruction 661 /// that is an implicit def. 662 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 663 unsigned RegNo = MI->getOperand(0).getReg(); 664 665 SmallString<128> Str; 666 raw_svector_ostream OS(Str); 667 OS << "implicit-def: " 668 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 669 670 OutStreamer->AddComment(OS.str()); 671 OutStreamer->AddBlankLine(); 672 } 673 674 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 675 std::string Str; 676 raw_string_ostream OS(Str); 677 OS << "kill:"; 678 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 679 const MachineOperand &Op = MI->getOperand(i); 680 assert(Op.isReg() && "KILL instruction must have only register operands"); 681 OS << ' ' 682 << PrintReg(Op.getReg(), 683 AP.MF->getSubtarget().getRegisterInfo()) 684 << (Op.isDef() ? "<def>" : "<kill>"); 685 } 686 AP.OutStreamer->AddComment(Str); 687 AP.OutStreamer->AddBlankLine(); 688 } 689 690 /// emitDebugValueComment - This method handles the target-independent form 691 /// of DBG_VALUE, returning true if it was able to do so. A false return 692 /// means the target will need to handle MI in EmitInstruction. 693 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 694 // This code handles only the 4-operand target-independent form. 695 if (MI->getNumOperands() != 4) 696 return false; 697 698 SmallString<128> Str; 699 raw_svector_ostream OS(Str); 700 OS << "DEBUG_VALUE: "; 701 702 const DILocalVariable *V = MI->getDebugVariable(); 703 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 704 StringRef Name = SP->getDisplayName(); 705 if (!Name.empty()) 706 OS << Name << ":"; 707 } 708 OS << V->getName(); 709 710 const DIExpression *Expr = MI->getDebugExpression(); 711 if (Expr->isBitPiece()) 712 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 713 << " size=" << Expr->getBitPieceSize() << "]"; 714 OS << " <- "; 715 716 // The second operand is only an offset if it's an immediate. 717 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 718 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 719 720 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 721 if (Deref) { 722 // We currently don't support extra Offsets or derefs after the first 723 // one. Bail out early instead of emitting an incorrect comment 724 OS << " [complex expression]"; 725 AP.OutStreamer->emitRawComment(OS.str()); 726 return true; 727 } 728 uint64_t Op = Expr->getElement(i); 729 if (Op == dwarf::DW_OP_deref) { 730 Deref = true; 731 continue; 732 } 733 uint64_t ExtraOffset = Expr->getElement(i++); 734 if (Op == dwarf::DW_OP_plus) 735 Offset += ExtraOffset; 736 else { 737 assert(Op == dwarf::DW_OP_minus); 738 Offset -= ExtraOffset; 739 } 740 } 741 742 // Register or immediate value. Register 0 means undef. 743 if (MI->getOperand(0).isFPImm()) { 744 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 745 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 746 OS << (double)APF.convertToFloat(); 747 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 748 OS << APF.convertToDouble(); 749 } else { 750 // There is no good way to print long double. Convert a copy to 751 // double. Ah well, it's only a comment. 752 bool ignored; 753 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 754 &ignored); 755 OS << "(long double) " << APF.convertToDouble(); 756 } 757 } else if (MI->getOperand(0).isImm()) { 758 OS << MI->getOperand(0).getImm(); 759 } else if (MI->getOperand(0).isCImm()) { 760 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 761 } else { 762 unsigned Reg; 763 if (MI->getOperand(0).isReg()) { 764 Reg = MI->getOperand(0).getReg(); 765 } else { 766 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 767 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 768 Offset += TFI->getFrameIndexReference(*AP.MF, 769 MI->getOperand(0).getIndex(), Reg); 770 Deref = true; 771 } 772 if (Reg == 0) { 773 // Suppress offset, it is not meaningful here. 774 OS << "undef"; 775 // NOTE: Want this comment at start of line, don't emit with AddComment. 776 AP.OutStreamer->emitRawComment(OS.str()); 777 return true; 778 } 779 if (Deref) 780 OS << '['; 781 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 782 } 783 784 if (Deref) 785 OS << '+' << Offset << ']'; 786 787 // NOTE: Want this comment at start of line, don't emit with AddComment. 788 AP.OutStreamer->emitRawComment(OS.str()); 789 return true; 790 } 791 792 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 793 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 794 MF->getFunction()->needsUnwindTableEntry()) 795 return CFI_M_EH; 796 797 if (MMI->hasDebugInfo()) 798 return CFI_M_Debug; 799 800 return CFI_M_None; 801 } 802 803 bool AsmPrinter::needsSEHMoves() { 804 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 805 } 806 807 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 808 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 809 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 810 ExceptionHandlingType != ExceptionHandling::ARM) 811 return; 812 813 if (needsCFIMoves() == CFI_M_None) 814 return; 815 816 const MachineModuleInfo &MMI = MF->getMMI(); 817 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 818 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 819 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 820 emitCFIInstruction(CFI); 821 } 822 823 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 824 // The operands are the MCSymbol and the frame offset of the allocation. 825 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 826 int FrameOffset = MI.getOperand(1).getImm(); 827 828 // Emit a symbol assignment. 829 OutStreamer->EmitAssignment(FrameAllocSym, 830 MCConstantExpr::create(FrameOffset, OutContext)); 831 } 832 833 /// EmitFunctionBody - This method emits the body and trailer for a 834 /// function. 835 void AsmPrinter::EmitFunctionBody() { 836 EmitFunctionHeader(); 837 838 // Emit target-specific gunk before the function body. 839 EmitFunctionBodyStart(); 840 841 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 842 843 // Print out code for the function. 844 bool HasAnyRealCode = false; 845 for (auto &MBB : *MF) { 846 // Print a label for the basic block. 847 EmitBasicBlockStart(MBB); 848 for (auto &MI : MBB) { 849 850 // Print the assembly for the instruction. 851 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 852 !MI.isDebugValue()) { 853 HasAnyRealCode = true; 854 ++EmittedInsts; 855 } 856 857 if (ShouldPrintDebugScopes) { 858 for (const HandlerInfo &HI : Handlers) { 859 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 860 TimePassesIsEnabled); 861 HI.Handler->beginInstruction(&MI); 862 } 863 } 864 865 if (isVerbose()) 866 emitComments(MI, OutStreamer->GetCommentOS()); 867 868 switch (MI.getOpcode()) { 869 case TargetOpcode::CFI_INSTRUCTION: 870 emitCFIInstruction(MI); 871 break; 872 873 case TargetOpcode::LOCAL_ESCAPE: 874 emitFrameAlloc(MI); 875 break; 876 877 case TargetOpcode::EH_LABEL: 878 case TargetOpcode::GC_LABEL: 879 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 880 break; 881 case TargetOpcode::INLINEASM: 882 EmitInlineAsm(&MI); 883 break; 884 case TargetOpcode::DBG_VALUE: 885 if (isVerbose()) { 886 if (!emitDebugValueComment(&MI, *this)) 887 EmitInstruction(&MI); 888 } 889 break; 890 case TargetOpcode::IMPLICIT_DEF: 891 if (isVerbose()) emitImplicitDef(&MI); 892 break; 893 case TargetOpcode::KILL: 894 if (isVerbose()) emitKill(&MI, *this); 895 break; 896 default: 897 EmitInstruction(&MI); 898 break; 899 } 900 901 if (ShouldPrintDebugScopes) { 902 for (const HandlerInfo &HI : Handlers) { 903 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 904 TimePassesIsEnabled); 905 HI.Handler->endInstruction(); 906 } 907 } 908 } 909 910 EmitBasicBlockEnd(MBB); 911 } 912 913 // If the function is empty and the object file uses .subsections_via_symbols, 914 // then we need to emit *something* to the function body to prevent the 915 // labels from collapsing together. Just emit a noop. 916 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 917 MCInst Noop; 918 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 919 OutStreamer->AddComment("avoids zero-length function"); 920 921 // Targets can opt-out of emitting the noop here by leaving the opcode 922 // unspecified. 923 if (Noop.getOpcode()) 924 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 925 } 926 927 const Function *F = MF->getFunction(); 928 for (const auto &BB : *F) { 929 if (!BB.hasAddressTaken()) 930 continue; 931 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 932 if (Sym->isDefined()) 933 continue; 934 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 935 OutStreamer->EmitLabel(Sym); 936 } 937 938 // Emit target-specific gunk after the function body. 939 EmitFunctionBodyEnd(); 940 941 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 942 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 943 // Create a symbol for the end of function. 944 CurrentFnEnd = createTempSymbol("func_end"); 945 OutStreamer->EmitLabel(CurrentFnEnd); 946 } 947 948 // If the target wants a .size directive for the size of the function, emit 949 // it. 950 if (MAI->hasDotTypeDotSizeDirective()) { 951 // We can get the size as difference between the function label and the 952 // temp label. 953 const MCExpr *SizeExp = MCBinaryExpr::createSub( 954 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 955 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 956 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 957 OutStreamer->emitELFSize(Sym, SizeExp); 958 } 959 960 for (const HandlerInfo &HI : Handlers) { 961 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 962 HI.Handler->markFunctionEnd(); 963 } 964 965 // Print out jump tables referenced by the function. 966 EmitJumpTableInfo(); 967 968 // Emit post-function debug and/or EH information. 969 for (const HandlerInfo &HI : Handlers) { 970 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 971 HI.Handler->endFunction(MF); 972 } 973 MMI->EndFunction(); 974 975 OutStreamer->AddBlankLine(); 976 } 977 978 /// \brief Compute the number of Global Variables that uses a Constant. 979 static unsigned getNumGlobalVariableUses(const Constant *C) { 980 if (!C) 981 return 0; 982 983 if (isa<GlobalVariable>(C)) 984 return 1; 985 986 unsigned NumUses = 0; 987 for (auto *CU : C->users()) 988 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 989 990 return NumUses; 991 } 992 993 /// \brief Only consider global GOT equivalents if at least one user is a 994 /// cstexpr inside an initializer of another global variables. Also, don't 995 /// handle cstexpr inside instructions. During global variable emission, 996 /// candidates are skipped and are emitted later in case at least one cstexpr 997 /// isn't replaced by a PC relative GOT entry access. 998 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 999 unsigned &NumGOTEquivUsers) { 1000 // Global GOT equivalents are unnamed private globals with a constant 1001 // pointer initializer to another global symbol. They must point to a 1002 // GlobalVariable or Function, i.e., as GlobalValue. 1003 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1004 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1005 return false; 1006 1007 // To be a got equivalent, at least one of its users need to be a constant 1008 // expression used by another global variable. 1009 for (auto *U : GV->users()) 1010 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1011 1012 return NumGOTEquivUsers > 0; 1013 } 1014 1015 /// \brief Unnamed constant global variables solely contaning a pointer to 1016 /// another globals variable is equivalent to a GOT table entry; it contains the 1017 /// the address of another symbol. Optimize it and replace accesses to these 1018 /// "GOT equivalents" by using the GOT entry for the final global instead. 1019 /// Compute GOT equivalent candidates among all global variables to avoid 1020 /// emitting them if possible later on, after it use is replaced by a GOT entry 1021 /// access. 1022 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1023 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1024 return; 1025 1026 for (const auto &G : M.globals()) { 1027 unsigned NumGOTEquivUsers = 0; 1028 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1029 continue; 1030 1031 const MCSymbol *GOTEquivSym = getSymbol(&G); 1032 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1033 } 1034 } 1035 1036 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1037 /// for PC relative GOT entry conversion, in such cases we need to emit such 1038 /// globals we previously omitted in EmitGlobalVariable. 1039 void AsmPrinter::emitGlobalGOTEquivs() { 1040 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1041 return; 1042 1043 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1044 for (auto &I : GlobalGOTEquivs) { 1045 const GlobalVariable *GV = I.second.first; 1046 unsigned Cnt = I.second.second; 1047 if (Cnt) 1048 FailedCandidates.push_back(GV); 1049 } 1050 GlobalGOTEquivs.clear(); 1051 1052 for (auto *GV : FailedCandidates) 1053 EmitGlobalVariable(GV); 1054 } 1055 1056 bool AsmPrinter::doFinalization(Module &M) { 1057 // Set the MachineFunction to nullptr so that we can catch attempted 1058 // accesses to MF specific features at the module level and so that 1059 // we can conditionalize accesses based on whether or not it is nullptr. 1060 MF = nullptr; 1061 1062 // Gather all GOT equivalent globals in the module. We really need two 1063 // passes over the globals: one to compute and another to avoid its emission 1064 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1065 // where the got equivalent shows up before its use. 1066 computeGlobalGOTEquivs(M); 1067 1068 // Emit global variables. 1069 for (const auto &G : M.globals()) 1070 EmitGlobalVariable(&G); 1071 1072 // Emit remaining GOT equivalent globals. 1073 emitGlobalGOTEquivs(); 1074 1075 // Emit visibility info for declarations 1076 for (const Function &F : M) { 1077 if (!F.isDeclarationForLinker()) 1078 continue; 1079 GlobalValue::VisibilityTypes V = F.getVisibility(); 1080 if (V == GlobalValue::DefaultVisibility) 1081 continue; 1082 1083 MCSymbol *Name = getSymbol(&F); 1084 EmitVisibility(Name, V, false); 1085 } 1086 1087 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1088 1089 // Emit module flags. 1090 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1091 M.getModuleFlagsMetadata(ModuleFlags); 1092 if (!ModuleFlags.empty()) 1093 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1094 1095 if (TM.getTargetTriple().isOSBinFormatELF()) { 1096 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1097 1098 // Output stubs for external and common global variables. 1099 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1100 if (!Stubs.empty()) { 1101 OutStreamer->SwitchSection(TLOF.getDataSection()); 1102 const DataLayout &DL = M.getDataLayout(); 1103 1104 for (const auto &Stub : Stubs) { 1105 OutStreamer->EmitLabel(Stub.first); 1106 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1107 DL.getPointerSize()); 1108 } 1109 } 1110 } 1111 1112 // Finalize debug and EH information. 1113 for (const HandlerInfo &HI : Handlers) { 1114 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1115 TimePassesIsEnabled); 1116 HI.Handler->endModule(); 1117 delete HI.Handler; 1118 } 1119 Handlers.clear(); 1120 DD = nullptr; 1121 1122 // If the target wants to know about weak references, print them all. 1123 if (MAI->getWeakRefDirective()) { 1124 // FIXME: This is not lazy, it would be nice to only print weak references 1125 // to stuff that is actually used. Note that doing so would require targets 1126 // to notice uses in operands (due to constant exprs etc). This should 1127 // happen with the MC stuff eventually. 1128 1129 // Print out module-level global variables here. 1130 for (const auto &G : M.globals()) { 1131 if (!G.hasExternalWeakLinkage()) 1132 continue; 1133 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1134 } 1135 1136 for (const auto &F : M) { 1137 if (!F.hasExternalWeakLinkage()) 1138 continue; 1139 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1140 } 1141 } 1142 1143 OutStreamer->AddBlankLine(); 1144 for (const auto &Alias : M.aliases()) { 1145 MCSymbol *Name = getSymbol(&Alias); 1146 1147 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1148 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1149 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1150 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1151 else 1152 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1153 1154 // Set the symbol type to function if the alias has a function type. 1155 // This affects codegen when the aliasee is not a function. 1156 if (Alias.getType()->getPointerElementType()->isFunctionTy()) 1157 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1158 1159 EmitVisibility(Name, Alias.getVisibility()); 1160 1161 // Emit the directives as assignments aka .set: 1162 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1163 1164 // If the aliasee does not correspond to a symbol in the output, i.e. the 1165 // alias is not of an object or the aliased object is private, then set the 1166 // size of the alias symbol from the type of the alias. We don't do this in 1167 // other situations as the alias and aliasee having differing types but same 1168 // size may be intentional. 1169 const GlobalObject *BaseObject = Alias.getBaseObject(); 1170 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized() && 1171 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1172 const DataLayout &DL = M.getDataLayout(); 1173 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType()); 1174 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1175 MCConstantExpr::create(Size, OutContext)); 1176 } 1177 } 1178 1179 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1180 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1181 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1182 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1183 MP->finishAssembly(M, *MI, *this); 1184 1185 // Emit llvm.ident metadata in an '.ident' directive. 1186 EmitModuleIdents(M); 1187 1188 // Emit __morestack address if needed for indirect calls. 1189 if (MMI->usesMorestackAddr()) { 1190 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1191 getDataLayout(), SectionKind::getReadOnly(), 1192 /*C=*/nullptr); 1193 OutStreamer->SwitchSection(ReadOnlySection); 1194 1195 MCSymbol *AddrSymbol = 1196 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1197 OutStreamer->EmitLabel(AddrSymbol); 1198 1199 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1200 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1201 PtrSize); 1202 } 1203 1204 // If we don't have any trampolines, then we don't require stack memory 1205 // to be executable. Some targets have a directive to declare this. 1206 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1207 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1208 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1209 OutStreamer->SwitchSection(S); 1210 1211 // Allow the target to emit any magic that it wants at the end of the file, 1212 // after everything else has gone out. 1213 EmitEndOfAsmFile(M); 1214 1215 delete Mang; Mang = nullptr; 1216 MMI = nullptr; 1217 1218 OutStreamer->Finish(); 1219 OutStreamer->reset(); 1220 1221 return false; 1222 } 1223 1224 MCSymbol *AsmPrinter::getCurExceptionSym() { 1225 if (!CurExceptionSym) 1226 CurExceptionSym = createTempSymbol("exception"); 1227 return CurExceptionSym; 1228 } 1229 1230 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1231 this->MF = &MF; 1232 // Get the function symbol. 1233 CurrentFnSym = getSymbol(MF.getFunction()); 1234 CurrentFnSymForSize = CurrentFnSym; 1235 CurrentFnBegin = nullptr; 1236 CurExceptionSym = nullptr; 1237 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1238 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1239 MMI->hasEHFunclets() || NeedsLocalForSize) { 1240 CurrentFnBegin = createTempSymbol("func_begin"); 1241 if (NeedsLocalForSize) 1242 CurrentFnSymForSize = CurrentFnBegin; 1243 } 1244 1245 if (isVerbose()) 1246 LI = &getAnalysis<MachineLoopInfo>(); 1247 } 1248 1249 namespace { 1250 // Keep track the alignment, constpool entries per Section. 1251 struct SectionCPs { 1252 MCSection *S; 1253 unsigned Alignment; 1254 SmallVector<unsigned, 4> CPEs; 1255 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1256 }; 1257 } 1258 1259 /// EmitConstantPool - Print to the current output stream assembly 1260 /// representations of the constants in the constant pool MCP. This is 1261 /// used to print out constants which have been "spilled to memory" by 1262 /// the code generator. 1263 /// 1264 void AsmPrinter::EmitConstantPool() { 1265 const MachineConstantPool *MCP = MF->getConstantPool(); 1266 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1267 if (CP.empty()) return; 1268 1269 // Calculate sections for constant pool entries. We collect entries to go into 1270 // the same section together to reduce amount of section switch statements. 1271 SmallVector<SectionCPs, 4> CPSections; 1272 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1273 const MachineConstantPoolEntry &CPE = CP[i]; 1274 unsigned Align = CPE.getAlignment(); 1275 1276 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1277 1278 const Constant *C = nullptr; 1279 if (!CPE.isMachineConstantPoolEntry()) 1280 C = CPE.Val.ConstVal; 1281 1282 MCSection *S = 1283 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C); 1284 1285 // The number of sections are small, just do a linear search from the 1286 // last section to the first. 1287 bool Found = false; 1288 unsigned SecIdx = CPSections.size(); 1289 while (SecIdx != 0) { 1290 if (CPSections[--SecIdx].S == S) { 1291 Found = true; 1292 break; 1293 } 1294 } 1295 if (!Found) { 1296 SecIdx = CPSections.size(); 1297 CPSections.push_back(SectionCPs(S, Align)); 1298 } 1299 1300 if (Align > CPSections[SecIdx].Alignment) 1301 CPSections[SecIdx].Alignment = Align; 1302 CPSections[SecIdx].CPEs.push_back(i); 1303 } 1304 1305 // Now print stuff into the calculated sections. 1306 const MCSection *CurSection = nullptr; 1307 unsigned Offset = 0; 1308 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1309 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1310 unsigned CPI = CPSections[i].CPEs[j]; 1311 MCSymbol *Sym = GetCPISymbol(CPI); 1312 if (!Sym->isUndefined()) 1313 continue; 1314 1315 if (CurSection != CPSections[i].S) { 1316 OutStreamer->SwitchSection(CPSections[i].S); 1317 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1318 CurSection = CPSections[i].S; 1319 Offset = 0; 1320 } 1321 1322 MachineConstantPoolEntry CPE = CP[CPI]; 1323 1324 // Emit inter-object padding for alignment. 1325 unsigned AlignMask = CPE.getAlignment() - 1; 1326 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1327 OutStreamer->EmitZeros(NewOffset - Offset); 1328 1329 Type *Ty = CPE.getType(); 1330 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1331 1332 OutStreamer->EmitLabel(Sym); 1333 if (CPE.isMachineConstantPoolEntry()) 1334 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1335 else 1336 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1337 } 1338 } 1339 } 1340 1341 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1342 /// by the current function to the current output stream. 1343 /// 1344 void AsmPrinter::EmitJumpTableInfo() { 1345 const DataLayout &DL = MF->getDataLayout(); 1346 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1347 if (!MJTI) return; 1348 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1349 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1350 if (JT.empty()) return; 1351 1352 // Pick the directive to use to print the jump table entries, and switch to 1353 // the appropriate section. 1354 const Function *F = MF->getFunction(); 1355 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1356 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1357 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1358 *F); 1359 if (JTInDiffSection) { 1360 // Drop it in the readonly section. 1361 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1362 OutStreamer->SwitchSection(ReadOnlySection); 1363 } 1364 1365 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1366 1367 // Jump tables in code sections are marked with a data_region directive 1368 // where that's supported. 1369 if (!JTInDiffSection) 1370 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1371 1372 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1373 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1374 1375 // If this jump table was deleted, ignore it. 1376 if (JTBBs.empty()) continue; 1377 1378 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1379 /// emit a .set directive for each unique entry. 1380 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1381 MAI->doesSetDirectiveSuppressesReloc()) { 1382 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1383 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1384 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1385 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1386 const MachineBasicBlock *MBB = JTBBs[ii]; 1387 if (!EmittedSets.insert(MBB).second) 1388 continue; 1389 1390 // .set LJTSet, LBB32-base 1391 const MCExpr *LHS = 1392 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1393 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1394 MCBinaryExpr::createSub(LHS, Base, 1395 OutContext)); 1396 } 1397 } 1398 1399 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1400 // before each jump table. The first label is never referenced, but tells 1401 // the assembler and linker the extents of the jump table object. The 1402 // second label is actually referenced by the code. 1403 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1404 // FIXME: This doesn't have to have any specific name, just any randomly 1405 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1406 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1407 1408 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1409 1410 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1411 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1412 } 1413 if (!JTInDiffSection) 1414 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1415 } 1416 1417 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1418 /// current stream. 1419 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1420 const MachineBasicBlock *MBB, 1421 unsigned UID) const { 1422 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1423 const MCExpr *Value = nullptr; 1424 switch (MJTI->getEntryKind()) { 1425 case MachineJumpTableInfo::EK_Inline: 1426 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1427 case MachineJumpTableInfo::EK_Custom32: 1428 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1429 MJTI, MBB, UID, OutContext); 1430 break; 1431 case MachineJumpTableInfo::EK_BlockAddress: 1432 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1433 // .word LBB123 1434 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1435 break; 1436 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1437 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1438 // with a relocation as gp-relative, e.g.: 1439 // .gprel32 LBB123 1440 MCSymbol *MBBSym = MBB->getSymbol(); 1441 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1442 return; 1443 } 1444 1445 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1446 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1447 // with a relocation as gp-relative, e.g.: 1448 // .gpdword LBB123 1449 MCSymbol *MBBSym = MBB->getSymbol(); 1450 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1451 return; 1452 } 1453 1454 case MachineJumpTableInfo::EK_LabelDifference32: { 1455 // Each entry is the address of the block minus the address of the jump 1456 // table. This is used for PIC jump tables where gprel32 is not supported. 1457 // e.g.: 1458 // .word LBB123 - LJTI1_2 1459 // If the .set directive avoids relocations, this is emitted as: 1460 // .set L4_5_set_123, LBB123 - LJTI1_2 1461 // .word L4_5_set_123 1462 if (MAI->doesSetDirectiveSuppressesReloc()) { 1463 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1464 OutContext); 1465 break; 1466 } 1467 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1468 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1469 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1470 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1471 break; 1472 } 1473 } 1474 1475 assert(Value && "Unknown entry kind!"); 1476 1477 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1478 OutStreamer->EmitValue(Value, EntrySize); 1479 } 1480 1481 1482 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1483 /// special global used by LLVM. If so, emit it and return true, otherwise 1484 /// do nothing and return false. 1485 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1486 if (GV->getName() == "llvm.used") { 1487 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1488 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1489 return true; 1490 } 1491 1492 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1493 if (StringRef(GV->getSection()) == "llvm.metadata" || 1494 GV->hasAvailableExternallyLinkage()) 1495 return true; 1496 1497 if (!GV->hasAppendingLinkage()) return false; 1498 1499 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1500 1501 if (GV->getName() == "llvm.global_ctors") { 1502 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1503 /* isCtor */ true); 1504 1505 if (TM.getRelocationModel() == Reloc::Static && 1506 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1507 StringRef Sym(".constructors_used"); 1508 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1509 MCSA_Reference); 1510 } 1511 return true; 1512 } 1513 1514 if (GV->getName() == "llvm.global_dtors") { 1515 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1516 /* isCtor */ false); 1517 1518 if (TM.getRelocationModel() == Reloc::Static && 1519 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1520 StringRef Sym(".destructors_used"); 1521 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1522 MCSA_Reference); 1523 } 1524 return true; 1525 } 1526 1527 return false; 1528 } 1529 1530 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1531 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1532 /// is true, as being used with this directive. 1533 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1534 // Should be an array of 'i8*'. 1535 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1536 const GlobalValue *GV = 1537 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1538 if (GV) 1539 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1540 } 1541 } 1542 1543 namespace { 1544 struct Structor { 1545 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1546 int Priority; 1547 llvm::Constant *Func; 1548 llvm::GlobalValue *ComdatKey; 1549 }; 1550 } // end namespace 1551 1552 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1553 /// priority. 1554 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1555 bool isCtor) { 1556 // Should be an array of '{ int, void ()* }' structs. The first value is the 1557 // init priority. 1558 if (!isa<ConstantArray>(List)) return; 1559 1560 // Sanity check the structors list. 1561 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1562 if (!InitList) return; // Not an array! 1563 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1564 // FIXME: Only allow the 3-field form in LLVM 4.0. 1565 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1566 return; // Not an array of two or three elements! 1567 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1568 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1569 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1570 return; // Not (int, ptr, ptr). 1571 1572 // Gather the structors in a form that's convenient for sorting by priority. 1573 SmallVector<Structor, 8> Structors; 1574 for (Value *O : InitList->operands()) { 1575 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1576 if (!CS) continue; // Malformed. 1577 if (CS->getOperand(1)->isNullValue()) 1578 break; // Found a null terminator, skip the rest. 1579 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1580 if (!Priority) continue; // Malformed. 1581 Structors.push_back(Structor()); 1582 Structor &S = Structors.back(); 1583 S.Priority = Priority->getLimitedValue(65535); 1584 S.Func = CS->getOperand(1); 1585 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1586 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1587 } 1588 1589 // Emit the function pointers in the target-specific order 1590 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1591 std::stable_sort(Structors.begin(), Structors.end(), 1592 [](const Structor &L, 1593 const Structor &R) { return L.Priority < R.Priority; }); 1594 for (Structor &S : Structors) { 1595 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1596 const MCSymbol *KeySym = nullptr; 1597 if (GlobalValue *GV = S.ComdatKey) { 1598 if (GV->hasAvailableExternallyLinkage()) 1599 // If the associated variable is available_externally, some other TU 1600 // will provide its dynamic initializer. 1601 continue; 1602 1603 KeySym = getSymbol(GV); 1604 } 1605 MCSection *OutputSection = 1606 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1607 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1608 OutStreamer->SwitchSection(OutputSection); 1609 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1610 EmitAlignment(Align); 1611 EmitXXStructor(DL, S.Func); 1612 } 1613 } 1614 1615 void AsmPrinter::EmitModuleIdents(Module &M) { 1616 if (!MAI->hasIdentDirective()) 1617 return; 1618 1619 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1620 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1621 const MDNode *N = NMD->getOperand(i); 1622 assert(N->getNumOperands() == 1 && 1623 "llvm.ident metadata entry can have only one operand"); 1624 const MDString *S = cast<MDString>(N->getOperand(0)); 1625 OutStreamer->EmitIdent(S->getString()); 1626 } 1627 } 1628 } 1629 1630 //===--------------------------------------------------------------------===// 1631 // Emission and print routines 1632 // 1633 1634 /// EmitInt8 - Emit a byte directive and value. 1635 /// 1636 void AsmPrinter::EmitInt8(int Value) const { 1637 OutStreamer->EmitIntValue(Value, 1); 1638 } 1639 1640 /// EmitInt16 - Emit a short directive and value. 1641 /// 1642 void AsmPrinter::EmitInt16(int Value) const { 1643 OutStreamer->EmitIntValue(Value, 2); 1644 } 1645 1646 /// EmitInt32 - Emit a long directive and value. 1647 /// 1648 void AsmPrinter::EmitInt32(int Value) const { 1649 OutStreamer->EmitIntValue(Value, 4); 1650 } 1651 1652 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1653 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1654 /// .set if it avoids relocations. 1655 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1656 unsigned Size) const { 1657 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1658 } 1659 1660 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1661 /// where the size in bytes of the directive is specified by Size and Label 1662 /// specifies the label. This implicitly uses .set if it is available. 1663 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1664 unsigned Size, 1665 bool IsSectionRelative) const { 1666 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1667 OutStreamer->EmitCOFFSecRel32(Label); 1668 return; 1669 } 1670 1671 // Emit Label+Offset (or just Label if Offset is zero) 1672 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1673 if (Offset) 1674 Expr = MCBinaryExpr::createAdd( 1675 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1676 1677 OutStreamer->EmitValue(Expr, Size); 1678 } 1679 1680 //===----------------------------------------------------------------------===// 1681 1682 // EmitAlignment - Emit an alignment directive to the specified power of 1683 // two boundary. For example, if you pass in 3 here, you will get an 8 1684 // byte alignment. If a global value is specified, and if that global has 1685 // an explicit alignment requested, it will override the alignment request 1686 // if required for correctness. 1687 // 1688 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1689 if (GV) 1690 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1691 1692 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1693 1694 assert(NumBits < 1695 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1696 "undefined behavior"); 1697 if (getCurrentSection()->getKind().isText()) 1698 OutStreamer->EmitCodeAlignment(1u << NumBits); 1699 else 1700 OutStreamer->EmitValueToAlignment(1u << NumBits); 1701 } 1702 1703 //===----------------------------------------------------------------------===// 1704 // Constant emission. 1705 //===----------------------------------------------------------------------===// 1706 1707 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1708 MCContext &Ctx = OutContext; 1709 1710 if (CV->isNullValue() || isa<UndefValue>(CV)) 1711 return MCConstantExpr::create(0, Ctx); 1712 1713 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1714 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1715 1716 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1717 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1718 1719 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1720 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1721 1722 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1723 if (!CE) { 1724 llvm_unreachable("Unknown constant value to lower!"); 1725 } 1726 1727 if (const MCExpr *RelocExpr 1728 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1729 return RelocExpr; 1730 1731 switch (CE->getOpcode()) { 1732 default: 1733 // If the code isn't optimized, there may be outstanding folding 1734 // opportunities. Attempt to fold the expression using DataLayout as a 1735 // last resort before giving up. 1736 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1737 if (C != CE) 1738 return lowerConstant(C); 1739 1740 // Otherwise report the problem to the user. 1741 { 1742 std::string S; 1743 raw_string_ostream OS(S); 1744 OS << "Unsupported expression in static initializer: "; 1745 CE->printAsOperand(OS, /*PrintType=*/false, 1746 !MF ? nullptr : MF->getFunction()->getParent()); 1747 report_fatal_error(OS.str()); 1748 } 1749 case Instruction::GetElementPtr: { 1750 // Generate a symbolic expression for the byte address 1751 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1752 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1753 1754 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1755 if (!OffsetAI) 1756 return Base; 1757 1758 int64_t Offset = OffsetAI.getSExtValue(); 1759 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1760 Ctx); 1761 } 1762 1763 case Instruction::Trunc: 1764 // We emit the value and depend on the assembler to truncate the generated 1765 // expression properly. This is important for differences between 1766 // blockaddress labels. Since the two labels are in the same function, it 1767 // is reasonable to treat their delta as a 32-bit value. 1768 // FALL THROUGH. 1769 case Instruction::BitCast: 1770 return lowerConstant(CE->getOperand(0)); 1771 1772 case Instruction::IntToPtr: { 1773 const DataLayout &DL = getDataLayout(); 1774 1775 // Handle casts to pointers by changing them into casts to the appropriate 1776 // integer type. This promotes constant folding and simplifies this code. 1777 Constant *Op = CE->getOperand(0); 1778 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1779 false/*ZExt*/); 1780 return lowerConstant(Op); 1781 } 1782 1783 case Instruction::PtrToInt: { 1784 const DataLayout &DL = getDataLayout(); 1785 1786 // Support only foldable casts to/from pointers that can be eliminated by 1787 // changing the pointer to the appropriately sized integer type. 1788 Constant *Op = CE->getOperand(0); 1789 Type *Ty = CE->getType(); 1790 1791 const MCExpr *OpExpr = lowerConstant(Op); 1792 1793 // We can emit the pointer value into this slot if the slot is an 1794 // integer slot equal to the size of the pointer. 1795 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1796 return OpExpr; 1797 1798 // Otherwise the pointer is smaller than the resultant integer, mask off 1799 // the high bits so we are sure to get a proper truncation if the input is 1800 // a constant expr. 1801 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1802 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1803 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1804 } 1805 1806 // The MC library also has a right-shift operator, but it isn't consistently 1807 // signed or unsigned between different targets. 1808 case Instruction::Add: 1809 case Instruction::Sub: 1810 case Instruction::Mul: 1811 case Instruction::SDiv: 1812 case Instruction::SRem: 1813 case Instruction::Shl: 1814 case Instruction::And: 1815 case Instruction::Or: 1816 case Instruction::Xor: { 1817 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1818 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1819 switch (CE->getOpcode()) { 1820 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1821 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1822 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1823 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1824 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1825 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1826 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1827 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1828 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1829 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1830 } 1831 } 1832 } 1833 } 1834 1835 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1836 AsmPrinter &AP, 1837 const Constant *BaseCV = nullptr, 1838 uint64_t Offset = 0); 1839 1840 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1841 1842 /// isRepeatedByteSequence - Determine whether the given value is 1843 /// composed of a repeated sequence of identical bytes and return the 1844 /// byte value. If it is not a repeated sequence, return -1. 1845 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1846 StringRef Data = V->getRawDataValues(); 1847 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1848 char C = Data[0]; 1849 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1850 if (Data[i] != C) return -1; 1851 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1852 } 1853 1854 1855 /// isRepeatedByteSequence - Determine whether the given value is 1856 /// composed of a repeated sequence of identical bytes and return the 1857 /// byte value. If it is not a repeated sequence, return -1. 1858 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1859 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1860 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1861 assert(Size % 8 == 0); 1862 1863 // Extend the element to take zero padding into account. 1864 APInt Value = CI->getValue().zextOrSelf(Size); 1865 if (!Value.isSplat(8)) 1866 return -1; 1867 1868 return Value.zextOrTrunc(8).getZExtValue(); 1869 } 1870 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1871 // Make sure all array elements are sequences of the same repeated 1872 // byte. 1873 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1874 Constant *Op0 = CA->getOperand(0); 1875 int Byte = isRepeatedByteSequence(Op0, DL); 1876 if (Byte == -1) 1877 return -1; 1878 1879 // All array elements must be equal. 1880 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1881 if (CA->getOperand(i) != Op0) 1882 return -1; 1883 return Byte; 1884 } 1885 1886 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1887 return isRepeatedByteSequence(CDS); 1888 1889 return -1; 1890 } 1891 1892 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1893 const ConstantDataSequential *CDS, 1894 AsmPrinter &AP) { 1895 1896 // See if we can aggregate this into a .fill, if so, emit it as such. 1897 int Value = isRepeatedByteSequence(CDS, DL); 1898 if (Value != -1) { 1899 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1900 // Don't emit a 1-byte object as a .fill. 1901 if (Bytes > 1) 1902 return AP.OutStreamer->EmitFill(Bytes, Value); 1903 } 1904 1905 // If this can be emitted with .ascii/.asciz, emit it as such. 1906 if (CDS->isString()) 1907 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1908 1909 // Otherwise, emit the values in successive locations. 1910 unsigned ElementByteSize = CDS->getElementByteSize(); 1911 if (isa<IntegerType>(CDS->getElementType())) { 1912 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1913 if (AP.isVerbose()) 1914 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1915 CDS->getElementAsInteger(i)); 1916 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1917 ElementByteSize); 1918 } 1919 } else { 1920 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1921 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1922 } 1923 1924 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1925 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1926 CDS->getNumElements(); 1927 if (unsigned Padding = Size - EmittedSize) 1928 AP.OutStreamer->EmitZeros(Padding); 1929 1930 } 1931 1932 static void emitGlobalConstantArray(const DataLayout &DL, 1933 const ConstantArray *CA, AsmPrinter &AP, 1934 const Constant *BaseCV, uint64_t Offset) { 1935 // See if we can aggregate some values. Make sure it can be 1936 // represented as a series of bytes of the constant value. 1937 int Value = isRepeatedByteSequence(CA, DL); 1938 1939 if (Value != -1) { 1940 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1941 AP.OutStreamer->EmitFill(Bytes, Value); 1942 } 1943 else { 1944 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1945 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1946 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1947 } 1948 } 1949 } 1950 1951 static void emitGlobalConstantVector(const DataLayout &DL, 1952 const ConstantVector *CV, AsmPrinter &AP) { 1953 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1954 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 1955 1956 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1957 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1958 CV->getType()->getNumElements(); 1959 if (unsigned Padding = Size - EmittedSize) 1960 AP.OutStreamer->EmitZeros(Padding); 1961 } 1962 1963 static void emitGlobalConstantStruct(const DataLayout &DL, 1964 const ConstantStruct *CS, AsmPrinter &AP, 1965 const Constant *BaseCV, uint64_t Offset) { 1966 // Print the fields in successive locations. Pad to align if needed! 1967 unsigned Size = DL.getTypeAllocSize(CS->getType()); 1968 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 1969 uint64_t SizeSoFar = 0; 1970 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1971 const Constant *Field = CS->getOperand(i); 1972 1973 // Print the actual field value. 1974 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 1975 1976 // Check if padding is needed and insert one or more 0s. 1977 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 1978 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1979 - Layout->getElementOffset(i)) - FieldSize; 1980 SizeSoFar += FieldSize + PadSize; 1981 1982 // Insert padding - this may include padding to increase the size of the 1983 // current field up to the ABI size (if the struct is not packed) as well 1984 // as padding to ensure that the next field starts at the right offset. 1985 AP.OutStreamer->EmitZeros(PadSize); 1986 } 1987 assert(SizeSoFar == Layout->getSizeInBytes() && 1988 "Layout of constant struct may be incorrect!"); 1989 } 1990 1991 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1992 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1993 1994 // First print a comment with what we think the original floating-point value 1995 // should have been. 1996 if (AP.isVerbose()) { 1997 SmallString<8> StrVal; 1998 CFP->getValueAPF().toString(StrVal); 1999 2000 if (CFP->getType()) 2001 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2002 else 2003 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2004 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2005 } 2006 2007 // Now iterate through the APInt chunks, emitting them in endian-correct 2008 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2009 // floats). 2010 unsigned NumBytes = API.getBitWidth() / 8; 2011 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2012 const uint64_t *p = API.getRawData(); 2013 2014 // PPC's long double has odd notions of endianness compared to how LLVM 2015 // handles it: p[0] goes first for *big* endian on PPC. 2016 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2017 int Chunk = API.getNumWords() - 1; 2018 2019 if (TrailingBytes) 2020 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2021 2022 for (; Chunk >= 0; --Chunk) 2023 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2024 } else { 2025 unsigned Chunk; 2026 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2027 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2028 2029 if (TrailingBytes) 2030 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2031 } 2032 2033 // Emit the tail padding for the long double. 2034 const DataLayout &DL = AP.getDataLayout(); 2035 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2036 DL.getTypeStoreSize(CFP->getType())); 2037 } 2038 2039 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2040 const DataLayout &DL = AP.getDataLayout(); 2041 unsigned BitWidth = CI->getBitWidth(); 2042 2043 // Copy the value as we may massage the layout for constants whose bit width 2044 // is not a multiple of 64-bits. 2045 APInt Realigned(CI->getValue()); 2046 uint64_t ExtraBits = 0; 2047 unsigned ExtraBitsSize = BitWidth & 63; 2048 2049 if (ExtraBitsSize) { 2050 // The bit width of the data is not a multiple of 64-bits. 2051 // The extra bits are expected to be at the end of the chunk of the memory. 2052 // Little endian: 2053 // * Nothing to be done, just record the extra bits to emit. 2054 // Big endian: 2055 // * Record the extra bits to emit. 2056 // * Realign the raw data to emit the chunks of 64-bits. 2057 if (DL.isBigEndian()) { 2058 // Basically the structure of the raw data is a chunk of 64-bits cells: 2059 // 0 1 BitWidth / 64 2060 // [chunk1][chunk2] ... [chunkN]. 2061 // The most significant chunk is chunkN and it should be emitted first. 2062 // However, due to the alignment issue chunkN contains useless bits. 2063 // Realign the chunks so that they contain only useless information: 2064 // ExtraBits 0 1 (BitWidth / 64) - 1 2065 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2066 ExtraBits = Realigned.getRawData()[0] & 2067 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2068 Realigned = Realigned.lshr(ExtraBitsSize); 2069 } else 2070 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2071 } 2072 2073 // We don't expect assemblers to support integer data directives 2074 // for more than 64 bits, so we emit the data in at most 64-bit 2075 // quantities at a time. 2076 const uint64_t *RawData = Realigned.getRawData(); 2077 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2078 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2079 AP.OutStreamer->EmitIntValue(Val, 8); 2080 } 2081 2082 if (ExtraBitsSize) { 2083 // Emit the extra bits after the 64-bits chunks. 2084 2085 // Emit a directive that fills the expected size. 2086 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2087 Size -= (BitWidth / 64) * 8; 2088 assert(Size && Size * 8 >= ExtraBitsSize && 2089 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2090 == ExtraBits && "Directive too small for extra bits."); 2091 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2092 } 2093 } 2094 2095 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2096 /// equivalent global, by a target specific GOT pc relative access to the 2097 /// final symbol. 2098 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2099 const Constant *BaseCst, 2100 uint64_t Offset) { 2101 // The global @foo below illustrates a global that uses a got equivalent. 2102 // 2103 // @bar = global i32 42 2104 // @gotequiv = private unnamed_addr constant i32* @bar 2105 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2106 // i64 ptrtoint (i32* @foo to i64)) 2107 // to i32) 2108 // 2109 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2110 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2111 // form: 2112 // 2113 // foo = cstexpr, where 2114 // cstexpr := <gotequiv> - "." + <cst> 2115 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2116 // 2117 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2118 // 2119 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2120 // gotpcrelcst := <offset from @foo base> + <cst> 2121 // 2122 MCValue MV; 2123 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2124 return; 2125 const MCSymbolRefExpr *SymA = MV.getSymA(); 2126 if (!SymA) 2127 return; 2128 2129 // Check that GOT equivalent symbol is cached. 2130 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2131 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2132 return; 2133 2134 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2135 if (!BaseGV) 2136 return; 2137 2138 // Check for a valid base symbol 2139 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2140 const MCSymbolRefExpr *SymB = MV.getSymB(); 2141 2142 if (!SymB || BaseSym != &SymB->getSymbol()) 2143 return; 2144 2145 // Make sure to match: 2146 // 2147 // gotpcrelcst := <offset from @foo base> + <cst> 2148 // 2149 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2150 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2151 // if the target knows how to encode it. 2152 // 2153 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2154 if (GOTPCRelCst < 0) 2155 return; 2156 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2157 return; 2158 2159 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2160 // 2161 // bar: 2162 // .long 42 2163 // gotequiv: 2164 // .quad bar 2165 // foo: 2166 // .long gotequiv - "." + <cst> 2167 // 2168 // is replaced by the target specific equivalent to: 2169 // 2170 // bar: 2171 // .long 42 2172 // foo: 2173 // .long bar@GOTPCREL+<gotpcrelcst> 2174 // 2175 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2176 const GlobalVariable *GV = Result.first; 2177 int NumUses = (int)Result.second; 2178 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2179 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2180 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2181 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2182 2183 // Update GOT equivalent usage information 2184 --NumUses; 2185 if (NumUses >= 0) 2186 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2187 } 2188 2189 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2190 AsmPrinter &AP, const Constant *BaseCV, 2191 uint64_t Offset) { 2192 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2193 2194 // Globals with sub-elements such as combinations of arrays and structs 2195 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2196 // constant symbol base and the current position with BaseCV and Offset. 2197 if (!BaseCV && CV->hasOneUse()) 2198 BaseCV = dyn_cast<Constant>(CV->user_back()); 2199 2200 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2201 return AP.OutStreamer->EmitZeros(Size); 2202 2203 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2204 switch (Size) { 2205 case 1: 2206 case 2: 2207 case 4: 2208 case 8: 2209 if (AP.isVerbose()) 2210 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2211 CI->getZExtValue()); 2212 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2213 return; 2214 default: 2215 emitGlobalConstantLargeInt(CI, AP); 2216 return; 2217 } 2218 } 2219 2220 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2221 return emitGlobalConstantFP(CFP, AP); 2222 2223 if (isa<ConstantPointerNull>(CV)) { 2224 AP.OutStreamer->EmitIntValue(0, Size); 2225 return; 2226 } 2227 2228 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2229 return emitGlobalConstantDataSequential(DL, CDS, AP); 2230 2231 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2232 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2233 2234 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2235 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2236 2237 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2238 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2239 // vectors). 2240 if (CE->getOpcode() == Instruction::BitCast) 2241 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2242 2243 if (Size > 8) { 2244 // If the constant expression's size is greater than 64-bits, then we have 2245 // to emit the value in chunks. Try to constant fold the value and emit it 2246 // that way. 2247 Constant *New = ConstantFoldConstantExpression(CE, DL); 2248 if (New && New != CE) 2249 return emitGlobalConstantImpl(DL, New, AP); 2250 } 2251 } 2252 2253 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2254 return emitGlobalConstantVector(DL, V, AP); 2255 2256 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2257 // thread the streamer with EmitValue. 2258 const MCExpr *ME = AP.lowerConstant(CV); 2259 2260 // Since lowerConstant already folded and got rid of all IR pointer and 2261 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2262 // directly. 2263 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2264 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2265 2266 AP.OutStreamer->EmitValue(ME, Size); 2267 } 2268 2269 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2270 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2271 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2272 if (Size) 2273 emitGlobalConstantImpl(DL, CV, *this); 2274 else if (MAI->hasSubsectionsViaSymbols()) { 2275 // If the global has zero size, emit a single byte so that two labels don't 2276 // look like they are at the same location. 2277 OutStreamer->EmitIntValue(0, 1); 2278 } 2279 } 2280 2281 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2282 // Target doesn't support this yet! 2283 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2284 } 2285 2286 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2287 if (Offset > 0) 2288 OS << '+' << Offset; 2289 else if (Offset < 0) 2290 OS << Offset; 2291 } 2292 2293 //===----------------------------------------------------------------------===// 2294 // Symbol Lowering Routines. 2295 //===----------------------------------------------------------------------===// 2296 2297 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2298 return OutContext.createTempSymbol(Name, true); 2299 } 2300 2301 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2302 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2303 } 2304 2305 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2306 return MMI->getAddrLabelSymbol(BB); 2307 } 2308 2309 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2310 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2311 const DataLayout &DL = getDataLayout(); 2312 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2313 "CPI" + Twine(getFunctionNumber()) + "_" + 2314 Twine(CPID)); 2315 } 2316 2317 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2318 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2319 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2320 } 2321 2322 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2323 /// FIXME: privatize to AsmPrinter. 2324 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2325 const DataLayout &DL = getDataLayout(); 2326 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2327 Twine(getFunctionNumber()) + "_" + 2328 Twine(UID) + "_set_" + Twine(MBBID)); 2329 } 2330 2331 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2332 StringRef Suffix) const { 2333 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2334 TM); 2335 } 2336 2337 /// Return the MCSymbol for the specified ExternalSymbol. 2338 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2339 SmallString<60> NameStr; 2340 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2341 return OutContext.getOrCreateSymbol(NameStr); 2342 } 2343 2344 2345 2346 /// PrintParentLoopComment - Print comments about parent loops of this one. 2347 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2348 unsigned FunctionNumber) { 2349 if (!Loop) return; 2350 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2351 OS.indent(Loop->getLoopDepth()*2) 2352 << "Parent Loop BB" << FunctionNumber << "_" 2353 << Loop->getHeader()->getNumber() 2354 << " Depth=" << Loop->getLoopDepth() << '\n'; 2355 } 2356 2357 2358 /// PrintChildLoopComment - Print comments about child loops within 2359 /// the loop for this basic block, with nesting. 2360 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2361 unsigned FunctionNumber) { 2362 // Add child loop information 2363 for (const MachineLoop *CL : *Loop) { 2364 OS.indent(CL->getLoopDepth()*2) 2365 << "Child Loop BB" << FunctionNumber << "_" 2366 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2367 << '\n'; 2368 PrintChildLoopComment(OS, CL, FunctionNumber); 2369 } 2370 } 2371 2372 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2373 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2374 const MachineLoopInfo *LI, 2375 const AsmPrinter &AP) { 2376 // Add loop depth information 2377 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2378 if (!Loop) return; 2379 2380 MachineBasicBlock *Header = Loop->getHeader(); 2381 assert(Header && "No header for loop"); 2382 2383 // If this block is not a loop header, just print out what is the loop header 2384 // and return. 2385 if (Header != &MBB) { 2386 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2387 Twine(AP.getFunctionNumber())+"_" + 2388 Twine(Loop->getHeader()->getNumber())+ 2389 " Depth="+Twine(Loop->getLoopDepth())); 2390 return; 2391 } 2392 2393 // Otherwise, it is a loop header. Print out information about child and 2394 // parent loops. 2395 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2396 2397 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2398 2399 OS << "=>"; 2400 OS.indent(Loop->getLoopDepth()*2-2); 2401 2402 OS << "This "; 2403 if (Loop->empty()) 2404 OS << "Inner "; 2405 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2406 2407 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2408 } 2409 2410 2411 /// EmitBasicBlockStart - This method prints the label for the specified 2412 /// MachineBasicBlock, an alignment (if present) and a comment describing 2413 /// it if appropriate. 2414 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2415 // End the previous funclet and start a new one. 2416 if (MBB.isEHFuncletEntry()) { 2417 for (const HandlerInfo &HI : Handlers) { 2418 HI.Handler->endFunclet(); 2419 HI.Handler->beginFunclet(MBB); 2420 } 2421 } 2422 2423 // Emit an alignment directive for this block, if needed. 2424 if (unsigned Align = MBB.getAlignment()) 2425 EmitAlignment(Align); 2426 2427 // If the block has its address taken, emit any labels that were used to 2428 // reference the block. It is possible that there is more than one label 2429 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2430 // the references were generated. 2431 if (MBB.hasAddressTaken()) { 2432 const BasicBlock *BB = MBB.getBasicBlock(); 2433 if (isVerbose()) 2434 OutStreamer->AddComment("Block address taken"); 2435 2436 // MBBs can have their address taken as part of CodeGen without having 2437 // their corresponding BB's address taken in IR 2438 if (BB->hasAddressTaken()) 2439 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2440 OutStreamer->EmitLabel(Sym); 2441 } 2442 2443 // Print some verbose block comments. 2444 if (isVerbose()) { 2445 if (const BasicBlock *BB = MBB.getBasicBlock()) 2446 if (BB->hasName()) 2447 OutStreamer->AddComment("%" + BB->getName()); 2448 emitBasicBlockLoopComments(MBB, LI, *this); 2449 } 2450 2451 // Print the main label for the block. 2452 if (MBB.pred_empty() || 2453 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2454 if (isVerbose()) { 2455 // NOTE: Want this comment at start of line, don't emit with AddComment. 2456 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2457 } 2458 } else { 2459 OutStreamer->EmitLabel(MBB.getSymbol()); 2460 } 2461 } 2462 2463 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2464 bool IsDefinition) const { 2465 MCSymbolAttr Attr = MCSA_Invalid; 2466 2467 switch (Visibility) { 2468 default: break; 2469 case GlobalValue::HiddenVisibility: 2470 if (IsDefinition) 2471 Attr = MAI->getHiddenVisibilityAttr(); 2472 else 2473 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2474 break; 2475 case GlobalValue::ProtectedVisibility: 2476 Attr = MAI->getProtectedVisibilityAttr(); 2477 break; 2478 } 2479 2480 if (Attr != MCSA_Invalid) 2481 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2482 } 2483 2484 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2485 /// exactly one predecessor and the control transfer mechanism between 2486 /// the predecessor and this block is a fall-through. 2487 bool AsmPrinter:: 2488 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2489 // If this is a landing pad, it isn't a fall through. If it has no preds, 2490 // then nothing falls through to it. 2491 if (MBB->isEHPad() || MBB->pred_empty()) 2492 return false; 2493 2494 // If there isn't exactly one predecessor, it can't be a fall through. 2495 if (MBB->pred_size() > 1) 2496 return false; 2497 2498 // The predecessor has to be immediately before this block. 2499 MachineBasicBlock *Pred = *MBB->pred_begin(); 2500 if (!Pred->isLayoutSuccessor(MBB)) 2501 return false; 2502 2503 // If the block is completely empty, then it definitely does fall through. 2504 if (Pred->empty()) 2505 return true; 2506 2507 // Check the terminators in the previous blocks 2508 for (const auto &MI : Pred->terminators()) { 2509 // If it is not a simple branch, we are in a table somewhere. 2510 if (!MI.isBranch() || MI.isIndirectBranch()) 2511 return false; 2512 2513 // If we are the operands of one of the branches, this is not a fall 2514 // through. Note that targets with delay slots will usually bundle 2515 // terminators with the delay slot instruction. 2516 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2517 if (OP->isJTI()) 2518 return false; 2519 if (OP->isMBB() && OP->getMBB() == MBB) 2520 return false; 2521 } 2522 } 2523 2524 return true; 2525 } 2526 2527 2528 2529 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2530 if (!S.usesMetadata()) 2531 return nullptr; 2532 2533 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2534 " stackmap formats, please see the documentation for a description of" 2535 " the default format. If you really need a custom serialized format," 2536 " please file a bug"); 2537 2538 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2539 gcp_map_type::iterator GCPI = GCMap.find(&S); 2540 if (GCPI != GCMap.end()) 2541 return GCPI->second.get(); 2542 2543 const char *Name = S.getName().c_str(); 2544 2545 for (GCMetadataPrinterRegistry::iterator 2546 I = GCMetadataPrinterRegistry::begin(), 2547 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2548 if (strcmp(Name, I->getName()) == 0) { 2549 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2550 GMP->S = &S; 2551 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2552 return IterBool.first->second.get(); 2553 } 2554 2555 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2556 } 2557 2558 /// Pin vtable to this file. 2559 AsmPrinterHandler::~AsmPrinterHandler() {} 2560 2561 void AsmPrinterHandler::markFunctionEnd() {} 2562