Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global common subexpression elimination on machine
     11 // instructions using a scoped hash table based value numbering scheme. It
     12 // must be run while the machine function is still in SSA form.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/ScopedHashTable.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/CodeGen/MachineDominators.h"
     23 #include "llvm/CodeGen/MachineInstr.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/RecyclingAllocator.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Target/TargetInstrInfo.h"
     29 #include "llvm/Target/TargetSubtargetInfo.h"
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "machine-cse"
     33 
     34 STATISTIC(NumCoalesces, "Number of copies coalesced");
     35 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
     36 STATISTIC(NumPhysCSEs,
     37           "Number of physreg referencing common subexpr eliminated");
     38 STATISTIC(NumCrossBBCSEs,
     39           "Number of cross-MBB physreg referencing CS eliminated");
     40 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
     41 
     42 namespace {
     43   class MachineCSE : public MachineFunctionPass {
     44     const TargetInstrInfo *TII;
     45     const TargetRegisterInfo *TRI;
     46     AliasAnalysis *AA;
     47     MachineDominatorTree *DT;
     48     MachineRegisterInfo *MRI;
     49   public:
     50     static char ID; // Pass identification
     51     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(0), CurrVN(0) {
     52       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
     53     }
     54 
     55     bool runOnMachineFunction(MachineFunction &MF) override;
     56 
     57     void getAnalysisUsage(AnalysisUsage &AU) const override {
     58       AU.setPreservesCFG();
     59       MachineFunctionPass::getAnalysisUsage(AU);
     60       AU.addRequired<AAResultsWrapperPass>();
     61       AU.addPreservedID(MachineLoopInfoID);
     62       AU.addRequired<MachineDominatorTree>();
     63       AU.addPreserved<MachineDominatorTree>();
     64     }
     65 
     66     void releaseMemory() override {
     67       ScopeMap.clear();
     68       Exps.clear();
     69     }
     70 
     71   private:
     72     unsigned LookAheadLimit;
     73     typedef RecyclingAllocator<BumpPtrAllocator,
     74         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
     75     typedef ScopedHashTable<MachineInstr*, unsigned,
     76         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
     77     typedef ScopedHTType::ScopeTy ScopeType;
     78     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
     79     ScopedHTType VNT;
     80     SmallVector<MachineInstr*, 64> Exps;
     81     unsigned CurrVN;
     82 
     83     bool PerformTrivialCopyPropagation(MachineInstr *MI,
     84                                        MachineBasicBlock *MBB);
     85     bool isPhysDefTriviallyDead(unsigned Reg,
     86                                 MachineBasicBlock::const_iterator I,
     87                                 MachineBasicBlock::const_iterator E) const;
     88     bool hasLivePhysRegDefUses(const MachineInstr *MI,
     89                                const MachineBasicBlock *MBB,
     90                                SmallSet<unsigned,8> &PhysRefs,
     91                                SmallVectorImpl<unsigned> &PhysDefs,
     92                                bool &PhysUseDef) const;
     93     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
     94                           SmallSet<unsigned,8> &PhysRefs,
     95                           SmallVectorImpl<unsigned> &PhysDefs,
     96                           bool &NonLocal) const;
     97     bool isCSECandidate(MachineInstr *MI);
     98     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
     99                            MachineInstr *CSMI, MachineInstr *MI);
    100     void EnterScope(MachineBasicBlock *MBB);
    101     void ExitScope(MachineBasicBlock *MBB);
    102     bool ProcessBlock(MachineBasicBlock *MBB);
    103     void ExitScopeIfDone(MachineDomTreeNode *Node,
    104                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
    105     bool PerformCSE(MachineDomTreeNode *Node);
    106   };
    107 } // end anonymous namespace
    108 
    109 char MachineCSE::ID = 0;
    110 char &llvm::MachineCSEID = MachineCSE::ID;
    111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
    112                 "Machine Common Subexpression Elimination", false, false)
    113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    115 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
    116                 "Machine Common Subexpression Elimination", false, false)
    117 
    118 /// The source register of a COPY machine instruction can be propagated to all
    119 /// its users, and this propagation could increase the probability of finding
    120 /// common subexpressions. If the COPY has only one user, the COPY itself can
    121 /// be removed.
    122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
    123                                                MachineBasicBlock *MBB) {
    124   bool Changed = false;
    125   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    126     MachineOperand &MO = MI->getOperand(i);
    127     if (!MO.isReg() || !MO.isUse())
    128       continue;
    129     unsigned Reg = MO.getReg();
    130     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    131       continue;
    132     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
    133     MachineInstr *DefMI = MRI->getVRegDef(Reg);
    134     if (!DefMI->isCopy())
    135       continue;
    136     unsigned SrcReg = DefMI->getOperand(1).getReg();
    137     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
    138       continue;
    139     if (DefMI->getOperand(0).getSubReg())
    140       continue;
    141     // FIXME: We should trivially coalesce subregister copies to expose CSE
    142     // opportunities on instructions with truncated operands (see
    143     // cse-add-with-overflow.ll). This can be done here as follows:
    144     // if (SrcSubReg)
    145     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
    146     //                                     SrcSubReg);
    147     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
    148     //
    149     // The 2-addr pass has been updated to handle coalesced subregs. However,
    150     // some machine-specific code still can't handle it.
    151     // To handle it properly we also need a way find a constrained subregister
    152     // class given a super-reg class and subreg index.
    153     if (DefMI->getOperand(1).getSubReg())
    154       continue;
    155     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    156     if (!MRI->constrainRegClass(SrcReg, RC))
    157       continue;
    158     DEBUG(dbgs() << "Coalescing: " << *DefMI);
    159     DEBUG(dbgs() << "***     to: " << *MI);
    160     // Propagate SrcReg of copies to MI.
    161     MO.setReg(SrcReg);
    162     MRI->clearKillFlags(SrcReg);
    163     // Coalesce single use copies.
    164     if (OnlyOneUse) {
    165       DefMI->eraseFromParent();
    166       ++NumCoalesces;
    167     }
    168     Changed = true;
    169   }
    170 
    171   return Changed;
    172 }
    173 
    174 bool
    175 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
    176                                    MachineBasicBlock::const_iterator I,
    177                                    MachineBasicBlock::const_iterator E) const {
    178   unsigned LookAheadLeft = LookAheadLimit;
    179   while (LookAheadLeft) {
    180     // Skip over dbg_value's.
    181     while (I != E && I->isDebugValue())
    182       ++I;
    183 
    184     if (I == E)
    185       // Reached end of block, register is obviously dead.
    186       return true;
    187 
    188     bool SeenDef = false;
    189     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    190       const MachineOperand &MO = I->getOperand(i);
    191       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
    192         SeenDef = true;
    193       if (!MO.isReg() || !MO.getReg())
    194         continue;
    195       if (!TRI->regsOverlap(MO.getReg(), Reg))
    196         continue;
    197       if (MO.isUse())
    198         // Found a use!
    199         return false;
    200       SeenDef = true;
    201     }
    202     if (SeenDef)
    203       // See a def of Reg (or an alias) before encountering any use, it's
    204       // trivially dead.
    205       return true;
    206 
    207     --LookAheadLeft;
    208     ++I;
    209   }
    210   return false;
    211 }
    212 
    213 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
    214 /// physical registers (except for dead defs of physical registers). It also
    215 /// returns the physical register def by reference if it's the only one and the
    216 /// instruction does not uses a physical register.
    217 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
    218                                        const MachineBasicBlock *MBB,
    219                                        SmallSet<unsigned,8> &PhysRefs,
    220                                        SmallVectorImpl<unsigned> &PhysDefs,
    221                                        bool &PhysUseDef) const{
    222   // First, add all uses to PhysRefs.
    223   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    224     const MachineOperand &MO = MI->getOperand(i);
    225     if (!MO.isReg() || MO.isDef())
    226       continue;
    227     unsigned Reg = MO.getReg();
    228     if (!Reg)
    229       continue;
    230     if (TargetRegisterInfo::isVirtualRegister(Reg))
    231       continue;
    232     // Reading constant physregs is ok.
    233     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
    234       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    235         PhysRefs.insert(*AI);
    236   }
    237 
    238   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
    239   // (which currently contains only uses), set the PhysUseDef flag.
    240   PhysUseDef = false;
    241   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
    242   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    243     const MachineOperand &MO = MI->getOperand(i);
    244     if (!MO.isReg() || !MO.isDef())
    245       continue;
    246     unsigned Reg = MO.getReg();
    247     if (!Reg)
    248       continue;
    249     if (TargetRegisterInfo::isVirtualRegister(Reg))
    250       continue;
    251     // Check against PhysRefs even if the def is "dead".
    252     if (PhysRefs.count(Reg))
    253       PhysUseDef = true;
    254     // If the def is dead, it's ok. But the def may not marked "dead". That's
    255     // common since this pass is run before livevariables. We can scan
    256     // forward a few instructions and check if it is obviously dead.
    257     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
    258       PhysDefs.push_back(Reg);
    259   }
    260 
    261   // Finally, add all defs to PhysRefs as well.
    262   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
    263     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
    264       PhysRefs.insert(*AI);
    265 
    266   return !PhysRefs.empty();
    267 }
    268 
    269 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
    270                                   SmallSet<unsigned,8> &PhysRefs,
    271                                   SmallVectorImpl<unsigned> &PhysDefs,
    272                                   bool &NonLocal) const {
    273   // For now conservatively returns false if the common subexpression is
    274   // not in the same basic block as the given instruction. The only exception
    275   // is if the common subexpression is in the sole predecessor block.
    276   const MachineBasicBlock *MBB = MI->getParent();
    277   const MachineBasicBlock *CSMBB = CSMI->getParent();
    278 
    279   bool CrossMBB = false;
    280   if (CSMBB != MBB) {
    281     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
    282       return false;
    283 
    284     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
    285       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
    286         // Avoid extending live range of physical registers if they are
    287         //allocatable or reserved.
    288         return false;
    289     }
    290     CrossMBB = true;
    291   }
    292   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
    293   MachineBasicBlock::const_iterator E = MI;
    294   MachineBasicBlock::const_iterator EE = CSMBB->end();
    295   unsigned LookAheadLeft = LookAheadLimit;
    296   while (LookAheadLeft) {
    297     // Skip over dbg_value's.
    298     while (I != E && I != EE && I->isDebugValue())
    299       ++I;
    300 
    301     if (I == EE) {
    302       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
    303       (void)CrossMBB;
    304       CrossMBB = false;
    305       NonLocal = true;
    306       I = MBB->begin();
    307       EE = MBB->end();
    308       continue;
    309     }
    310 
    311     if (I == E)
    312       return true;
    313 
    314     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    315       const MachineOperand &MO = I->getOperand(i);
    316       // RegMasks go on instructions like calls that clobber lots of physregs.
    317       // Don't attempt to CSE across such an instruction.
    318       if (MO.isRegMask())
    319         return false;
    320       if (!MO.isReg() || !MO.isDef())
    321         continue;
    322       unsigned MOReg = MO.getReg();
    323       if (TargetRegisterInfo::isVirtualRegister(MOReg))
    324         continue;
    325       if (PhysRefs.count(MOReg))
    326         return false;
    327     }
    328 
    329     --LookAheadLeft;
    330     ++I;
    331   }
    332 
    333   return false;
    334 }
    335 
    336 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
    337   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
    338       MI->isInlineAsm() || MI->isDebugValue())
    339     return false;
    340 
    341   // Ignore copies.
    342   if (MI->isCopyLike())
    343     return false;
    344 
    345   // Ignore stuff that we obviously can't move.
    346   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
    347       MI->hasUnmodeledSideEffects())
    348     return false;
    349 
    350   if (MI->mayLoad()) {
    351     // Okay, this instruction does a load. As a refinement, we allow the target
    352     // to decide whether the loaded value is actually a constant. If so, we can
    353     // actually use it as a load.
    354     if (!MI->isInvariantLoad(AA))
    355       // FIXME: we should be able to hoist loads with no other side effects if
    356       // there are no other instructions which can change memory in this loop.
    357       // This is a trivial form of alias analysis.
    358       return false;
    359   }
    360   return true;
    361 }
    362 
    363 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
    364 /// common expression that defines Reg.
    365 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
    366                                    MachineInstr *CSMI, MachineInstr *MI) {
    367   // FIXME: Heuristics that works around the lack the live range splitting.
    368 
    369   // If CSReg is used at all uses of Reg, CSE should not increase register
    370   // pressure of CSReg.
    371   bool MayIncreasePressure = true;
    372   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
    373       TargetRegisterInfo::isVirtualRegister(Reg)) {
    374     MayIncreasePressure = false;
    375     SmallPtrSet<MachineInstr*, 8> CSUses;
    376     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
    377       CSUses.insert(&MI);
    378     }
    379     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
    380       if (!CSUses.count(&MI)) {
    381         MayIncreasePressure = true;
    382         break;
    383       }
    384     }
    385   }
    386   if (!MayIncreasePressure) return true;
    387 
    388   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
    389   // an immediate predecessor. We don't want to increase register pressure and
    390   // end up causing other computation to be spilled.
    391   if (TII->isAsCheapAsAMove(MI)) {
    392     MachineBasicBlock *CSBB = CSMI->getParent();
    393     MachineBasicBlock *BB = MI->getParent();
    394     if (CSBB != BB && !CSBB->isSuccessor(BB))
    395       return false;
    396   }
    397 
    398   // Heuristics #2: If the expression doesn't not use a vr and the only use
    399   // of the redundant computation are copies, do not cse.
    400   bool HasVRegUse = false;
    401   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    402     const MachineOperand &MO = MI->getOperand(i);
    403     if (MO.isReg() && MO.isUse() &&
    404         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    405       HasVRegUse = true;
    406       break;
    407     }
    408   }
    409   if (!HasVRegUse) {
    410     bool HasNonCopyUse = false;
    411     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
    412       // Ignore copies.
    413       if (!MI.isCopyLike()) {
    414         HasNonCopyUse = true;
    415         break;
    416       }
    417     }
    418     if (!HasNonCopyUse)
    419       return false;
    420   }
    421 
    422   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
    423   // it unless the defined value is already used in the BB of the new use.
    424   bool HasPHI = false;
    425   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
    426   for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
    427     HasPHI |= MI.isPHI();
    428     CSBBs.insert(MI.getParent());
    429   }
    430 
    431   if (!HasPHI)
    432     return true;
    433   return CSBBs.count(MI->getParent());
    434 }
    435 
    436 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
    437   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
    438   ScopeType *Scope = new ScopeType(VNT);
    439   ScopeMap[MBB] = Scope;
    440 }
    441 
    442 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
    443   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
    444   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
    445   assert(SI != ScopeMap.end());
    446   delete SI->second;
    447   ScopeMap.erase(SI);
    448 }
    449 
    450 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
    451   bool Changed = false;
    452 
    453   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
    454   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
    455   SmallVector<unsigned, 2> ImplicitDefs;
    456   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    457     MachineInstr *MI = &*I;
    458     ++I;
    459 
    460     if (!isCSECandidate(MI))
    461       continue;
    462 
    463     bool FoundCSE = VNT.count(MI);
    464     if (!FoundCSE) {
    465       // Using trivial copy propagation to find more CSE opportunities.
    466       if (PerformTrivialCopyPropagation(MI, MBB)) {
    467         Changed = true;
    468 
    469         // After coalescing MI itself may become a copy.
    470         if (MI->isCopyLike())
    471           continue;
    472 
    473         // Try again to see if CSE is possible.
    474         FoundCSE = VNT.count(MI);
    475       }
    476     }
    477 
    478     // Commute commutable instructions.
    479     bool Commuted = false;
    480     if (!FoundCSE && MI->isCommutable()) {
    481       MachineInstr *NewMI = TII->commuteInstruction(MI);
    482       if (NewMI) {
    483         Commuted = true;
    484         FoundCSE = VNT.count(NewMI);
    485         if (NewMI != MI) {
    486           // New instruction. It doesn't need to be kept.
    487           NewMI->eraseFromParent();
    488           Changed = true;
    489         } else if (!FoundCSE)
    490           // MI was changed but it didn't help, commute it back!
    491           (void)TII->commuteInstruction(MI);
    492       }
    493     }
    494 
    495     // If the instruction defines physical registers and the values *may* be
    496     // used, then it's not safe to replace it with a common subexpression.
    497     // It's also not safe if the instruction uses physical registers.
    498     bool CrossMBBPhysDef = false;
    499     SmallSet<unsigned, 8> PhysRefs;
    500     SmallVector<unsigned, 2> PhysDefs;
    501     bool PhysUseDef = false;
    502     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
    503                                           PhysDefs, PhysUseDef)) {
    504       FoundCSE = false;
    505 
    506       // ... Unless the CS is local or is in the sole predecessor block
    507       // and it also defines the physical register which is not clobbered
    508       // in between and the physical register uses were not clobbered.
    509       // This can never be the case if the instruction both uses and
    510       // defines the same physical register, which was detected above.
    511       if (!PhysUseDef) {
    512         unsigned CSVN = VNT.lookup(MI);
    513         MachineInstr *CSMI = Exps[CSVN];
    514         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
    515           FoundCSE = true;
    516       }
    517     }
    518 
    519     if (!FoundCSE) {
    520       VNT.insert(MI, CurrVN++);
    521       Exps.push_back(MI);
    522       continue;
    523     }
    524 
    525     // Found a common subexpression, eliminate it.
    526     unsigned CSVN = VNT.lookup(MI);
    527     MachineInstr *CSMI = Exps[CSVN];
    528     DEBUG(dbgs() << "Examining: " << *MI);
    529     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
    530 
    531     // Check if it's profitable to perform this CSE.
    532     bool DoCSE = true;
    533     unsigned NumDefs = MI->getDesc().getNumDefs() +
    534                        MI->getDesc().getNumImplicitDefs();
    535 
    536     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
    537       MachineOperand &MO = MI->getOperand(i);
    538       if (!MO.isReg() || !MO.isDef())
    539         continue;
    540       unsigned OldReg = MO.getReg();
    541       unsigned NewReg = CSMI->getOperand(i).getReg();
    542 
    543       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    544       // we should make sure it is not dead at CSMI.
    545       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
    546         ImplicitDefsToUpdate.push_back(i);
    547 
    548       // Keep track of implicit defs of CSMI and MI, to clear possibly
    549       // made-redundant kill flags.
    550       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
    551         ImplicitDefs.push_back(OldReg);
    552 
    553       if (OldReg == NewReg) {
    554         --NumDefs;
    555         continue;
    556       }
    557 
    558       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
    559              TargetRegisterInfo::isVirtualRegister(NewReg) &&
    560              "Do not CSE physical register defs!");
    561 
    562       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
    563         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
    564         DoCSE = false;
    565         break;
    566       }
    567 
    568       // Don't perform CSE if the result of the old instruction cannot exist
    569       // within the register class of the new instruction.
    570       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
    571       if (!MRI->constrainRegClass(NewReg, OldRC)) {
    572         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
    573         DoCSE = false;
    574         break;
    575       }
    576 
    577       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
    578       --NumDefs;
    579     }
    580 
    581     // Actually perform the elimination.
    582     if (DoCSE) {
    583       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
    584         unsigned OldReg = CSEPairs[i].first;
    585         unsigned NewReg = CSEPairs[i].second;
    586         // OldReg may have been unused but is used now, clear the Dead flag
    587         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
    588         assert(Def != nullptr && "CSEd register has no unique definition?");
    589         Def->clearRegisterDeads(NewReg);
    590         // Replace with NewReg and clear kill flags which may be wrong now.
    591         MRI->replaceRegWith(OldReg, NewReg);
    592         MRI->clearKillFlags(NewReg);
    593       }
    594 
    595       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    596       // we should make sure it is not dead at CSMI.
    597       for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
    598         CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
    599 
    600       // Go through implicit defs of CSMI and MI, and clear the kill flags on
    601       // their uses in all the instructions between CSMI and MI.
    602       // We might have made some of the kill flags redundant, consider:
    603       //   subs  ... %NZCV<imp-def>        <- CSMI
    604       //   csinc ... %NZCV<imp-use,kill>   <- this kill flag isn't valid anymore
    605       //   subs  ... %NZCV<imp-def>        <- MI, to be eliminated
    606       //   csinc ... %NZCV<imp-use,kill>
    607       // Since we eliminated MI, and reused a register imp-def'd by CSMI
    608       // (here %NZCV), that register, if it was killed before MI, should have
    609       // that kill flag removed, because it's lifetime was extended.
    610       if (CSMI->getParent() == MI->getParent()) {
    611         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
    612           for (auto ImplicitDef : ImplicitDefs)
    613             if (MachineOperand *MO = II->findRegisterUseOperand(
    614                     ImplicitDef, /*isKill=*/true, TRI))
    615               MO->setIsKill(false);
    616       } else {
    617         // If the instructions aren't in the same BB, bail out and clear the
    618         // kill flag on all uses of the imp-def'd register.
    619         for (auto ImplicitDef : ImplicitDefs)
    620           MRI->clearKillFlags(ImplicitDef);
    621       }
    622 
    623       if (CrossMBBPhysDef) {
    624         // Add physical register defs now coming in from a predecessor to MBB
    625         // livein list.
    626         while (!PhysDefs.empty()) {
    627           unsigned LiveIn = PhysDefs.pop_back_val();
    628           if (!MBB->isLiveIn(LiveIn))
    629             MBB->addLiveIn(LiveIn);
    630         }
    631         ++NumCrossBBCSEs;
    632       }
    633 
    634       MI->eraseFromParent();
    635       ++NumCSEs;
    636       if (!PhysRefs.empty())
    637         ++NumPhysCSEs;
    638       if (Commuted)
    639         ++NumCommutes;
    640       Changed = true;
    641     } else {
    642       VNT.insert(MI, CurrVN++);
    643       Exps.push_back(MI);
    644     }
    645     CSEPairs.clear();
    646     ImplicitDefsToUpdate.clear();
    647     ImplicitDefs.clear();
    648   }
    649 
    650   return Changed;
    651 }
    652 
    653 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
    654 /// dominator tree node if its a leaf or all of its children are done. Walk
    655 /// up the dominator tree to destroy ancestors which are now done.
    656 void
    657 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
    658                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
    659   if (OpenChildren[Node])
    660     return;
    661 
    662   // Pop scope.
    663   ExitScope(Node->getBlock());
    664 
    665   // Now traverse upwards to pop ancestors whose offsprings are all done.
    666   while (MachineDomTreeNode *Parent = Node->getIDom()) {
    667     unsigned Left = --OpenChildren[Parent];
    668     if (Left != 0)
    669       break;
    670     ExitScope(Parent->getBlock());
    671     Node = Parent;
    672   }
    673 }
    674 
    675 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
    676   SmallVector<MachineDomTreeNode*, 32> Scopes;
    677   SmallVector<MachineDomTreeNode*, 8> WorkList;
    678   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
    679 
    680   CurrVN = 0;
    681 
    682   // Perform a DFS walk to determine the order of visit.
    683   WorkList.push_back(Node);
    684   do {
    685     Node = WorkList.pop_back_val();
    686     Scopes.push_back(Node);
    687     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    688     unsigned NumChildren = Children.size();
    689     OpenChildren[Node] = NumChildren;
    690     for (unsigned i = 0; i != NumChildren; ++i) {
    691       MachineDomTreeNode *Child = Children[i];
    692       WorkList.push_back(Child);
    693     }
    694   } while (!WorkList.empty());
    695 
    696   // Now perform CSE.
    697   bool Changed = false;
    698   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
    699     MachineDomTreeNode *Node = Scopes[i];
    700     MachineBasicBlock *MBB = Node->getBlock();
    701     EnterScope(MBB);
    702     Changed |= ProcessBlock(MBB);
    703     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    704     ExitScopeIfDone(Node, OpenChildren);
    705   }
    706 
    707   return Changed;
    708 }
    709 
    710 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
    711   if (skipOptnoneFunction(*MF.getFunction()))
    712     return false;
    713 
    714   TII = MF.getSubtarget().getInstrInfo();
    715   TRI = MF.getSubtarget().getRegisterInfo();
    716   MRI = &MF.getRegInfo();
    717   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    718   DT = &getAnalysis<MachineDominatorTree>();
    719   LookAheadLimit = TII->getMachineCSELookAheadLimit();
    720   return PerformCSE(DT->getRootNode());
    721 }
    722