1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 33 #include "llvm/CodeGen/LiveStackAnalysis.h" 34 #include "llvm/CodeGen/LiveVariables.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/FileSystem.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetRegisterInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 using namespace llvm; 52 53 namespace { 54 struct MachineVerifier { 55 56 MachineVerifier(Pass *pass, const char *b) : 57 PASS(pass), 58 Banner(b) 59 {} 60 61 bool runOnMachineFunction(MachineFunction &MF); 62 63 Pass *const PASS; 64 const char *Banner; 65 const MachineFunction *MF; 66 const TargetMachine *TM; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 const MachineRegisterInfo *MRI; 70 71 unsigned foundErrors; 72 73 typedef SmallVector<unsigned, 16> RegVector; 74 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 75 typedef DenseSet<unsigned> RegSet; 76 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 77 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 78 79 const MachineInstr *FirstTerminator; 80 BlockSet FunctionBlocks; 81 82 BitVector regsReserved; 83 RegSet regsLive; 84 RegVector regsDefined, regsDead, regsKilled; 85 RegMaskVector regMasks; 86 RegSet regsLiveInButUnused; 87 88 SlotIndex lastIndex; 89 90 // Add Reg and any sub-registers to RV 91 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 92 RV.push_back(Reg); 93 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 94 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 95 RV.push_back(*SubRegs); 96 } 97 98 struct BBInfo { 99 // Is this MBB reachable from the MF entry point? 100 bool reachable; 101 102 // Vregs that must be live in because they are used without being 103 // defined. Map value is the user. 104 RegMap vregsLiveIn; 105 106 // Regs killed in MBB. They may be defined again, and will then be in both 107 // regsKilled and regsLiveOut. 108 RegSet regsKilled; 109 110 // Regs defined in MBB and live out. Note that vregs passing through may 111 // be live out without being mentioned here. 112 RegSet regsLiveOut; 113 114 // Vregs that pass through MBB untouched. This set is disjoint from 115 // regsKilled and regsLiveOut. 116 RegSet vregsPassed; 117 118 // Vregs that must pass through MBB because they are needed by a successor 119 // block. This set is disjoint from regsLiveOut. 120 RegSet vregsRequired; 121 122 // Set versions of block's predecessor and successor lists. 123 BlockSet Preds, Succs; 124 125 BBInfo() : reachable(false) {} 126 127 // Add register to vregsPassed if it belongs there. Return true if 128 // anything changed. 129 bool addPassed(unsigned Reg) { 130 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 131 return false; 132 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 133 return false; 134 return vregsPassed.insert(Reg).second; 135 } 136 137 // Same for a full set. 138 bool addPassed(const RegSet &RS) { 139 bool changed = false; 140 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 141 if (addPassed(*I)) 142 changed = true; 143 return changed; 144 } 145 146 // Add register to vregsRequired if it belongs there. Return true if 147 // anything changed. 148 bool addRequired(unsigned Reg) { 149 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 150 return false; 151 if (regsLiveOut.count(Reg)) 152 return false; 153 return vregsRequired.insert(Reg).second; 154 } 155 156 // Same for a full set. 157 bool addRequired(const RegSet &RS) { 158 bool changed = false; 159 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 160 if (addRequired(*I)) 161 changed = true; 162 return changed; 163 } 164 165 // Same for a full map. 166 bool addRequired(const RegMap &RM) { 167 bool changed = false; 168 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 169 if (addRequired(I->first)) 170 changed = true; 171 return changed; 172 } 173 174 // Live-out registers are either in regsLiveOut or vregsPassed. 175 bool isLiveOut(unsigned Reg) const { 176 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 177 } 178 }; 179 180 // Extra register info per MBB. 181 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 182 183 bool isReserved(unsigned Reg) { 184 return Reg < regsReserved.size() && regsReserved.test(Reg); 185 } 186 187 bool isAllocatable(unsigned Reg) { 188 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg); 189 } 190 191 // Analysis information if available 192 LiveVariables *LiveVars; 193 LiveIntervals *LiveInts; 194 LiveStacks *LiveStks; 195 SlotIndexes *Indexes; 196 197 void visitMachineFunctionBefore(); 198 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 199 void visitMachineBundleBefore(const MachineInstr *MI); 200 void visitMachineInstrBefore(const MachineInstr *MI); 201 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 202 void visitMachineInstrAfter(const MachineInstr *MI); 203 void visitMachineBundleAfter(const MachineInstr *MI); 204 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 205 void visitMachineFunctionAfter(); 206 207 template <typename T> void report(const char *msg, ilist_iterator<T> I) { 208 report(msg, &*I); 209 } 210 void report(const char *msg, const MachineFunction *MF); 211 void report(const char *msg, const MachineBasicBlock *MBB); 212 void report(const char *msg, const MachineInstr *MI); 213 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 214 215 void report_context(const LiveInterval &LI) const; 216 void report_context(const LiveRange &LR, unsigned Reg, 217 LaneBitmask LaneMask) const; 218 void report_context(const LiveRange::Segment &S) const; 219 void report_context(const VNInfo &VNI) const; 220 221 void verifyInlineAsm(const MachineInstr *MI); 222 223 void checkLiveness(const MachineOperand *MO, unsigned MONum); 224 void markReachable(const MachineBasicBlock *MBB); 225 void calcRegsPassed(); 226 void checkPHIOps(const MachineBasicBlock *MBB); 227 228 void calcRegsRequired(); 229 void verifyLiveVariables(); 230 void verifyLiveIntervals(); 231 void verifyLiveInterval(const LiveInterval&); 232 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 233 unsigned); 234 void verifyLiveRangeSegment(const LiveRange&, 235 const LiveRange::const_iterator I, unsigned, 236 unsigned); 237 void verifyLiveRange(const LiveRange&, unsigned, LaneBitmask LaneMask = 0); 238 239 void verifyStackFrame(); 240 241 void verifySlotIndexes() const; 242 }; 243 244 struct MachineVerifierPass : public MachineFunctionPass { 245 static char ID; // Pass ID, replacement for typeid 246 const std::string Banner; 247 248 MachineVerifierPass(const std::string &banner = nullptr) 249 : MachineFunctionPass(ID), Banner(banner) { 250 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 251 } 252 253 void getAnalysisUsage(AnalysisUsage &AU) const override { 254 AU.setPreservesAll(); 255 MachineFunctionPass::getAnalysisUsage(AU); 256 } 257 258 bool runOnMachineFunction(MachineFunction &MF) override { 259 MF.verify(this, Banner.c_str()); 260 return false; 261 } 262 }; 263 264 } 265 266 char MachineVerifierPass::ID = 0; 267 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 268 "Verify generated machine code", false, false) 269 270 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 271 return new MachineVerifierPass(Banner); 272 } 273 274 void MachineFunction::verify(Pass *p, const char *Banner) const { 275 MachineVerifier(p, Banner) 276 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 277 } 278 279 void MachineVerifier::verifySlotIndexes() const { 280 if (Indexes == nullptr) 281 return; 282 283 // Ensure the IdxMBB list is sorted by slot indexes. 284 SlotIndex Last; 285 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 286 E = Indexes->MBBIndexEnd(); I != E; ++I) { 287 assert(!Last.isValid() || I->first > Last); 288 Last = I->first; 289 } 290 } 291 292 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 293 foundErrors = 0; 294 295 this->MF = &MF; 296 TM = &MF.getTarget(); 297 TII = MF.getSubtarget().getInstrInfo(); 298 TRI = MF.getSubtarget().getRegisterInfo(); 299 MRI = &MF.getRegInfo(); 300 301 LiveVars = nullptr; 302 LiveInts = nullptr; 303 LiveStks = nullptr; 304 Indexes = nullptr; 305 if (PASS) { 306 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 307 // We don't want to verify LiveVariables if LiveIntervals is available. 308 if (!LiveInts) 309 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 310 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 311 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 312 } 313 314 verifySlotIndexes(); 315 316 visitMachineFunctionBefore(); 317 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 318 MFI!=MFE; ++MFI) { 319 visitMachineBasicBlockBefore(&*MFI); 320 // Keep track of the current bundle header. 321 const MachineInstr *CurBundle = nullptr; 322 // Do we expect the next instruction to be part of the same bundle? 323 bool InBundle = false; 324 325 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 326 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 327 if (MBBI->getParent() != &*MFI) { 328 report("Bad instruction parent pointer", MFI); 329 errs() << "Instruction: " << *MBBI; 330 continue; 331 } 332 333 // Check for consistent bundle flags. 334 if (InBundle && !MBBI->isBundledWithPred()) 335 report("Missing BundledPred flag, " 336 "BundledSucc was set on predecessor", 337 &*MBBI); 338 if (!InBundle && MBBI->isBundledWithPred()) 339 report("BundledPred flag is set, " 340 "but BundledSucc not set on predecessor", 341 &*MBBI); 342 343 // Is this a bundle header? 344 if (!MBBI->isInsideBundle()) { 345 if (CurBundle) 346 visitMachineBundleAfter(CurBundle); 347 CurBundle = &*MBBI; 348 visitMachineBundleBefore(CurBundle); 349 } else if (!CurBundle) 350 report("No bundle header", MBBI); 351 visitMachineInstrBefore(&*MBBI); 352 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 353 const MachineInstr &MI = *MBBI; 354 const MachineOperand &Op = MI.getOperand(I); 355 if (Op.getParent() != &MI) { 356 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 357 // functions when replacing operands of a MachineInstr. 358 report("Instruction has operand with wrong parent set", &MI); 359 } 360 361 visitMachineOperand(&Op, I); 362 } 363 364 visitMachineInstrAfter(&*MBBI); 365 366 // Was this the last bundled instruction? 367 InBundle = MBBI->isBundledWithSucc(); 368 } 369 if (CurBundle) 370 visitMachineBundleAfter(CurBundle); 371 if (InBundle) 372 report("BundledSucc flag set on last instruction in block", &MFI->back()); 373 visitMachineBasicBlockAfter(&*MFI); 374 } 375 visitMachineFunctionAfter(); 376 377 if (foundErrors) 378 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 379 380 // Clean up. 381 regsLive.clear(); 382 regsDefined.clear(); 383 regsDead.clear(); 384 regsKilled.clear(); 385 regMasks.clear(); 386 regsLiveInButUnused.clear(); 387 MBBInfoMap.clear(); 388 389 return false; // no changes 390 } 391 392 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 393 assert(MF); 394 errs() << '\n'; 395 if (!foundErrors++) { 396 if (Banner) 397 errs() << "# " << Banner << '\n'; 398 if (LiveInts != nullptr) 399 LiveInts->print(errs()); 400 else 401 MF->print(errs(), Indexes); 402 } 403 errs() << "*** Bad machine code: " << msg << " ***\n" 404 << "- function: " << MF->getName() << "\n"; 405 } 406 407 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 408 assert(MBB); 409 report(msg, MBB->getParent()); 410 errs() << "- basic block: BB#" << MBB->getNumber() 411 << ' ' << MBB->getName() 412 << " (" << (const void*)MBB << ')'; 413 if (Indexes) 414 errs() << " [" << Indexes->getMBBStartIdx(MBB) 415 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 416 errs() << '\n'; 417 } 418 419 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 420 assert(MI); 421 report(msg, MI->getParent()); 422 errs() << "- instruction: "; 423 if (Indexes && Indexes->hasIndex(MI)) 424 errs() << Indexes->getInstructionIndex(MI) << '\t'; 425 MI->print(errs(), /*SkipOpers=*/true); 426 errs() << '\n'; 427 } 428 429 void MachineVerifier::report(const char *msg, 430 const MachineOperand *MO, unsigned MONum) { 431 assert(MO); 432 report(msg, MO->getParent()); 433 errs() << "- operand " << MONum << ": "; 434 MO->print(errs(), TRI); 435 errs() << "\n"; 436 } 437 438 void MachineVerifier::report_context(const LiveInterval &LI) const { 439 errs() << "- interval: " << LI << '\n'; 440 } 441 442 void MachineVerifier::report_context(const LiveRange &LR, unsigned Reg, 443 LaneBitmask LaneMask) const { 444 errs() << "- register: " << PrintReg(Reg, TRI) << '\n'; 445 if (LaneMask != 0) 446 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 447 errs() << "- liverange: " << LR << '\n'; 448 } 449 450 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 451 errs() << "- segment: " << S << '\n'; 452 } 453 454 void MachineVerifier::report_context(const VNInfo &VNI) const { 455 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 456 } 457 458 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 459 BBInfo &MInfo = MBBInfoMap[MBB]; 460 if (!MInfo.reachable) { 461 MInfo.reachable = true; 462 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 463 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 464 markReachable(*SuI); 465 } 466 } 467 468 void MachineVerifier::visitMachineFunctionBefore() { 469 lastIndex = SlotIndex(); 470 regsReserved = MRI->getReservedRegs(); 471 472 // A sub-register of a reserved register is also reserved 473 for (int Reg = regsReserved.find_first(); Reg>=0; 474 Reg = regsReserved.find_next(Reg)) { 475 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 476 // FIXME: This should probably be: 477 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register"); 478 regsReserved.set(*SubRegs); 479 } 480 } 481 482 markReachable(&MF->front()); 483 484 // Build a set of the basic blocks in the function. 485 FunctionBlocks.clear(); 486 for (const auto &MBB : *MF) { 487 FunctionBlocks.insert(&MBB); 488 BBInfo &MInfo = MBBInfoMap[&MBB]; 489 490 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 491 if (MInfo.Preds.size() != MBB.pred_size()) 492 report("MBB has duplicate entries in its predecessor list.", &MBB); 493 494 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 495 if (MInfo.Succs.size() != MBB.succ_size()) 496 report("MBB has duplicate entries in its successor list.", &MBB); 497 } 498 499 // Check that the register use lists are sane. 500 MRI->verifyUseLists(); 501 502 verifyStackFrame(); 503 } 504 505 // Does iterator point to a and b as the first two elements? 506 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 507 const MachineBasicBlock *a, const MachineBasicBlock *b) { 508 if (*i == a) 509 return *++i == b; 510 if (*i == b) 511 return *++i == a; 512 return false; 513 } 514 515 void 516 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 517 FirstTerminator = nullptr; 518 519 if (MRI->isSSA()) { 520 // If this block has allocatable physical registers live-in, check that 521 // it is an entry block or landing pad. 522 for (const auto &LI : MBB->liveins()) { 523 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 524 MBB != MBB->getParent()->begin()) { 525 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); 526 } 527 } 528 } 529 530 // Count the number of landing pad successors. 531 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 532 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 533 E = MBB->succ_end(); I != E; ++I) { 534 if ((*I)->isEHPad()) 535 LandingPadSuccs.insert(*I); 536 if (!FunctionBlocks.count(*I)) 537 report("MBB has successor that isn't part of the function.", MBB); 538 if (!MBBInfoMap[*I].Preds.count(MBB)) { 539 report("Inconsistent CFG", MBB); 540 errs() << "MBB is not in the predecessor list of the successor BB#" 541 << (*I)->getNumber() << ".\n"; 542 } 543 } 544 545 // Check the predecessor list. 546 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 547 E = MBB->pred_end(); I != E; ++I) { 548 if (!FunctionBlocks.count(*I)) 549 report("MBB has predecessor that isn't part of the function.", MBB); 550 if (!MBBInfoMap[*I].Succs.count(MBB)) { 551 report("Inconsistent CFG", MBB); 552 errs() << "MBB is not in the successor list of the predecessor BB#" 553 << (*I)->getNumber() << ".\n"; 554 } 555 } 556 557 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 558 const BasicBlock *BB = MBB->getBasicBlock(); 559 const Function *Fn = MF->getFunction(); 560 if (LandingPadSuccs.size() > 1 && 561 !(AsmInfo && 562 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 563 BB && isa<SwitchInst>(BB->getTerminator())) && 564 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 565 report("MBB has more than one landing pad successor", MBB); 566 567 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 568 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 569 SmallVector<MachineOperand, 4> Cond; 570 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 571 TBB, FBB, Cond)) { 572 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 573 // check whether its answers match up with reality. 574 if (!TBB && !FBB) { 575 // Block falls through to its successor. 576 MachineFunction::const_iterator MBBI = MBB->getIterator(); 577 ++MBBI; 578 if (MBBI == MF->end()) { 579 // It's possible that the block legitimately ends with a noreturn 580 // call or an unreachable, in which case it won't actually fall 581 // out the bottom of the function. 582 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 583 // It's possible that the block legitimately ends with a noreturn 584 // call or an unreachable, in which case it won't actuall fall 585 // out of the block. 586 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 587 report("MBB exits via unconditional fall-through but doesn't have " 588 "exactly one CFG successor!", MBB); 589 } else if (!MBB->isSuccessor(&*MBBI)) { 590 report("MBB exits via unconditional fall-through but its successor " 591 "differs from its CFG successor!", MBB); 592 } 593 if (!MBB->empty() && MBB->back().isBarrier() && 594 !TII->isPredicated(&MBB->back())) { 595 report("MBB exits via unconditional fall-through but ends with a " 596 "barrier instruction!", MBB); 597 } 598 if (!Cond.empty()) { 599 report("MBB exits via unconditional fall-through but has a condition!", 600 MBB); 601 } 602 } else if (TBB && !FBB && Cond.empty()) { 603 // Block unconditionally branches somewhere. 604 // If the block has exactly one successor, that happens to be a 605 // landingpad, accept it as valid control flow. 606 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 607 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 608 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 609 report("MBB exits via unconditional branch but doesn't have " 610 "exactly one CFG successor!", MBB); 611 } else if (!MBB->isSuccessor(TBB)) { 612 report("MBB exits via unconditional branch but the CFG " 613 "successor doesn't match the actual successor!", MBB); 614 } 615 if (MBB->empty()) { 616 report("MBB exits via unconditional branch but doesn't contain " 617 "any instructions!", MBB); 618 } else if (!MBB->back().isBarrier()) { 619 report("MBB exits via unconditional branch but doesn't end with a " 620 "barrier instruction!", MBB); 621 } else if (!MBB->back().isTerminator()) { 622 report("MBB exits via unconditional branch but the branch isn't a " 623 "terminator instruction!", MBB); 624 } 625 } else if (TBB && !FBB && !Cond.empty()) { 626 // Block conditionally branches somewhere, otherwise falls through. 627 MachineFunction::const_iterator MBBI = MBB->getIterator(); 628 ++MBBI; 629 if (MBBI == MF->end()) { 630 report("MBB conditionally falls through out of function!", MBB); 631 } else if (MBB->succ_size() == 1) { 632 // A conditional branch with only one successor is weird, but allowed. 633 if (&*MBBI != TBB) 634 report("MBB exits via conditional branch/fall-through but only has " 635 "one CFG successor!", MBB); 636 else if (TBB != *MBB->succ_begin()) 637 report("MBB exits via conditional branch/fall-through but the CFG " 638 "successor don't match the actual successor!", MBB); 639 } else if (MBB->succ_size() != 2) { 640 report("MBB exits via conditional branch/fall-through but doesn't have " 641 "exactly two CFG successors!", MBB); 642 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 643 report("MBB exits via conditional branch/fall-through but the CFG " 644 "successors don't match the actual successors!", MBB); 645 } 646 if (MBB->empty()) { 647 report("MBB exits via conditional branch/fall-through but doesn't " 648 "contain any instructions!", MBB); 649 } else if (MBB->back().isBarrier()) { 650 report("MBB exits via conditional branch/fall-through but ends with a " 651 "barrier instruction!", MBB); 652 } else if (!MBB->back().isTerminator()) { 653 report("MBB exits via conditional branch/fall-through but the branch " 654 "isn't a terminator instruction!", MBB); 655 } 656 } else if (TBB && FBB) { 657 // Block conditionally branches somewhere, otherwise branches 658 // somewhere else. 659 if (MBB->succ_size() == 1) { 660 // A conditional branch with only one successor is weird, but allowed. 661 if (FBB != TBB) 662 report("MBB exits via conditional branch/branch through but only has " 663 "one CFG successor!", MBB); 664 else if (TBB != *MBB->succ_begin()) 665 report("MBB exits via conditional branch/branch through but the CFG " 666 "successor don't match the actual successor!", MBB); 667 } else if (MBB->succ_size() != 2) { 668 report("MBB exits via conditional branch/branch but doesn't have " 669 "exactly two CFG successors!", MBB); 670 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 671 report("MBB exits via conditional branch/branch but the CFG " 672 "successors don't match the actual successors!", MBB); 673 } 674 if (MBB->empty()) { 675 report("MBB exits via conditional branch/branch but doesn't " 676 "contain any instructions!", MBB); 677 } else if (!MBB->back().isBarrier()) { 678 report("MBB exits via conditional branch/branch but doesn't end with a " 679 "barrier instruction!", MBB); 680 } else if (!MBB->back().isTerminator()) { 681 report("MBB exits via conditional branch/branch but the branch " 682 "isn't a terminator instruction!", MBB); 683 } 684 if (Cond.empty()) { 685 report("MBB exits via conditinal branch/branch but there's no " 686 "condition!", MBB); 687 } 688 } else { 689 report("AnalyzeBranch returned invalid data!", MBB); 690 } 691 } 692 693 regsLive.clear(); 694 for (const auto &LI : MBB->liveins()) { 695 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 696 report("MBB live-in list contains non-physical register", MBB); 697 continue; 698 } 699 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 700 SubRegs.isValid(); ++SubRegs) 701 regsLive.insert(*SubRegs); 702 } 703 regsLiveInButUnused = regsLive; 704 705 const MachineFrameInfo *MFI = MF->getFrameInfo(); 706 assert(MFI && "Function has no frame info"); 707 BitVector PR = MFI->getPristineRegs(*MF); 708 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 709 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 710 SubRegs.isValid(); ++SubRegs) 711 regsLive.insert(*SubRegs); 712 } 713 714 regsKilled.clear(); 715 regsDefined.clear(); 716 717 if (Indexes) 718 lastIndex = Indexes->getMBBStartIdx(MBB); 719 } 720 721 // This function gets called for all bundle headers, including normal 722 // stand-alone unbundled instructions. 723 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 724 if (Indexes && Indexes->hasIndex(MI)) { 725 SlotIndex idx = Indexes->getInstructionIndex(MI); 726 if (!(idx > lastIndex)) { 727 report("Instruction index out of order", MI); 728 errs() << "Last instruction was at " << lastIndex << '\n'; 729 } 730 lastIndex = idx; 731 } 732 733 // Ensure non-terminators don't follow terminators. 734 // Ignore predicated terminators formed by if conversion. 735 // FIXME: If conversion shouldn't need to violate this rule. 736 if (MI->isTerminator() && !TII->isPredicated(MI)) { 737 if (!FirstTerminator) 738 FirstTerminator = MI; 739 } else if (FirstTerminator) { 740 report("Non-terminator instruction after the first terminator", MI); 741 errs() << "First terminator was:\t" << *FirstTerminator; 742 } 743 } 744 745 // The operands on an INLINEASM instruction must follow a template. 746 // Verify that the flag operands make sense. 747 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 748 // The first two operands on INLINEASM are the asm string and global flags. 749 if (MI->getNumOperands() < 2) { 750 report("Too few operands on inline asm", MI); 751 return; 752 } 753 if (!MI->getOperand(0).isSymbol()) 754 report("Asm string must be an external symbol", MI); 755 if (!MI->getOperand(1).isImm()) 756 report("Asm flags must be an immediate", MI); 757 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 758 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16. 759 if (!isUInt<5>(MI->getOperand(1).getImm())) 760 report("Unknown asm flags", &MI->getOperand(1), 1); 761 762 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 763 764 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 765 unsigned NumOps; 766 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 767 const MachineOperand &MO = MI->getOperand(OpNo); 768 // There may be implicit ops after the fixed operands. 769 if (!MO.isImm()) 770 break; 771 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 772 } 773 774 if (OpNo > MI->getNumOperands()) 775 report("Missing operands in last group", MI); 776 777 // An optional MDNode follows the groups. 778 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 779 ++OpNo; 780 781 // All trailing operands must be implicit registers. 782 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 783 const MachineOperand &MO = MI->getOperand(OpNo); 784 if (!MO.isReg() || !MO.isImplicit()) 785 report("Expected implicit register after groups", &MO, OpNo); 786 } 787 } 788 789 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 790 const MCInstrDesc &MCID = MI->getDesc(); 791 if (MI->getNumOperands() < MCID.getNumOperands()) { 792 report("Too few operands", MI); 793 errs() << MCID.getNumOperands() << " operands expected, but " 794 << MI->getNumOperands() << " given.\n"; 795 } 796 797 // Check the tied operands. 798 if (MI->isInlineAsm()) 799 verifyInlineAsm(MI); 800 801 // Check the MachineMemOperands for basic consistency. 802 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 803 E = MI->memoperands_end(); I != E; ++I) { 804 if ((*I)->isLoad() && !MI->mayLoad()) 805 report("Missing mayLoad flag", MI); 806 if ((*I)->isStore() && !MI->mayStore()) 807 report("Missing mayStore flag", MI); 808 } 809 810 // Debug values must not have a slot index. 811 // Other instructions must have one, unless they are inside a bundle. 812 if (LiveInts) { 813 bool mapped = !LiveInts->isNotInMIMap(MI); 814 if (MI->isDebugValue()) { 815 if (mapped) 816 report("Debug instruction has a slot index", MI); 817 } else if (MI->isInsideBundle()) { 818 if (mapped) 819 report("Instruction inside bundle has a slot index", MI); 820 } else { 821 if (!mapped) 822 report("Missing slot index", MI); 823 } 824 } 825 826 StringRef ErrorInfo; 827 if (!TII->verifyInstruction(MI, ErrorInfo)) 828 report(ErrorInfo.data(), MI); 829 } 830 831 void 832 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 833 const MachineInstr *MI = MO->getParent(); 834 const MCInstrDesc &MCID = MI->getDesc(); 835 unsigned NumDefs = MCID.getNumDefs(); 836 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 837 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 838 839 // The first MCID.NumDefs operands must be explicit register defines 840 if (MONum < NumDefs) { 841 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 842 if (!MO->isReg()) 843 report("Explicit definition must be a register", MO, MONum); 844 else if (!MO->isDef() && !MCOI.isOptionalDef()) 845 report("Explicit definition marked as use", MO, MONum); 846 else if (MO->isImplicit()) 847 report("Explicit definition marked as implicit", MO, MONum); 848 } else if (MONum < MCID.getNumOperands()) { 849 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 850 // Don't check if it's the last operand in a variadic instruction. See, 851 // e.g., LDM_RET in the arm back end. 852 if (MO->isReg() && 853 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 854 if (MO->isDef() && !MCOI.isOptionalDef()) 855 report("Explicit operand marked as def", MO, MONum); 856 if (MO->isImplicit()) 857 report("Explicit operand marked as implicit", MO, MONum); 858 } 859 860 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 861 if (TiedTo != -1) { 862 if (!MO->isReg()) 863 report("Tied use must be a register", MO, MONum); 864 else if (!MO->isTied()) 865 report("Operand should be tied", MO, MONum); 866 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 867 report("Tied def doesn't match MCInstrDesc", MO, MONum); 868 } else if (MO->isReg() && MO->isTied()) 869 report("Explicit operand should not be tied", MO, MONum); 870 } else { 871 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 872 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 873 report("Extra explicit operand on non-variadic instruction", MO, MONum); 874 } 875 876 switch (MO->getType()) { 877 case MachineOperand::MO_Register: { 878 const unsigned Reg = MO->getReg(); 879 if (!Reg) 880 return; 881 if (MRI->tracksLiveness() && !MI->isDebugValue()) 882 checkLiveness(MO, MONum); 883 884 // Verify the consistency of tied operands. 885 if (MO->isTied()) { 886 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 887 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 888 if (!OtherMO.isReg()) 889 report("Must be tied to a register", MO, MONum); 890 if (!OtherMO.isTied()) 891 report("Missing tie flags on tied operand", MO, MONum); 892 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 893 report("Inconsistent tie links", MO, MONum); 894 if (MONum < MCID.getNumDefs()) { 895 if (OtherIdx < MCID.getNumOperands()) { 896 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 897 report("Explicit def tied to explicit use without tie constraint", 898 MO, MONum); 899 } else { 900 if (!OtherMO.isImplicit()) 901 report("Explicit def should be tied to implicit use", MO, MONum); 902 } 903 } 904 } 905 906 // Verify two-address constraints after leaving SSA form. 907 unsigned DefIdx; 908 if (!MRI->isSSA() && MO->isUse() && 909 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 910 Reg != MI->getOperand(DefIdx).getReg()) 911 report("Two-address instruction operands must be identical", MO, MONum); 912 913 // Check register classes. 914 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 915 unsigned SubIdx = MO->getSubReg(); 916 917 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 918 if (SubIdx) { 919 report("Illegal subregister index for physical register", MO, MONum); 920 return; 921 } 922 if (const TargetRegisterClass *DRC = 923 TII->getRegClass(MCID, MONum, TRI, *MF)) { 924 if (!DRC->contains(Reg)) { 925 report("Illegal physical register for instruction", MO, MONum); 926 errs() << TRI->getName(Reg) << " is not a " 927 << TRI->getRegClassName(DRC) << " register.\n"; 928 } 929 } 930 } else { 931 // Virtual register. 932 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 933 if (SubIdx) { 934 const TargetRegisterClass *SRC = 935 TRI->getSubClassWithSubReg(RC, SubIdx); 936 if (!SRC) { 937 report("Invalid subregister index for virtual register", MO, MONum); 938 errs() << "Register class " << TRI->getRegClassName(RC) 939 << " does not support subreg index " << SubIdx << "\n"; 940 return; 941 } 942 if (RC != SRC) { 943 report("Invalid register class for subregister index", MO, MONum); 944 errs() << "Register class " << TRI->getRegClassName(RC) 945 << " does not fully support subreg index " << SubIdx << "\n"; 946 return; 947 } 948 } 949 if (const TargetRegisterClass *DRC = 950 TII->getRegClass(MCID, MONum, TRI, *MF)) { 951 if (SubIdx) { 952 const TargetRegisterClass *SuperRC = 953 TRI->getLargestLegalSuperClass(RC, *MF); 954 if (!SuperRC) { 955 report("No largest legal super class exists.", MO, MONum); 956 return; 957 } 958 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 959 if (!DRC) { 960 report("No matching super-reg register class.", MO, MONum); 961 return; 962 } 963 } 964 if (!RC->hasSuperClassEq(DRC)) { 965 report("Illegal virtual register for instruction", MO, MONum); 966 errs() << "Expected a " << TRI->getRegClassName(DRC) 967 << " register, but got a " << TRI->getRegClassName(RC) 968 << " register\n"; 969 } 970 } 971 } 972 } 973 break; 974 } 975 976 case MachineOperand::MO_RegisterMask: 977 regMasks.push_back(MO->getRegMask()); 978 break; 979 980 case MachineOperand::MO_MachineBasicBlock: 981 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 982 report("PHI operand is not in the CFG", MO, MONum); 983 break; 984 985 case MachineOperand::MO_FrameIndex: 986 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 987 LiveInts && !LiveInts->isNotInMIMap(MI)) { 988 int FI = MO->getIndex(); 989 LiveInterval &LI = LiveStks->getInterval(FI); 990 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 991 992 bool stores = MI->mayStore(); 993 bool loads = MI->mayLoad(); 994 // For a memory-to-memory move, we need to check if the frame 995 // index is used for storing or loading, by inspecting the 996 // memory operands. 997 if (stores && loads) { 998 for (auto *MMO : MI->memoperands()) { 999 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1000 if (PSV == nullptr) continue; 1001 const FixedStackPseudoSourceValue *Value = 1002 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1003 if (Value == nullptr) continue; 1004 if (Value->getFrameIndex() != FI) continue; 1005 1006 if (MMO->isStore()) 1007 loads = false; 1008 else 1009 stores = false; 1010 break; 1011 } 1012 if (loads == stores) 1013 report("Missing fixed stack memoperand.", MI); 1014 } 1015 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1016 report("Instruction loads from dead spill slot", MO, MONum); 1017 errs() << "Live stack: " << LI << '\n'; 1018 } 1019 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1020 report("Instruction stores to dead spill slot", MO, MONum); 1021 errs() << "Live stack: " << LI << '\n'; 1022 } 1023 } 1024 break; 1025 1026 default: 1027 break; 1028 } 1029 } 1030 1031 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1032 const MachineInstr *MI = MO->getParent(); 1033 const unsigned Reg = MO->getReg(); 1034 1035 // Both use and def operands can read a register. 1036 if (MO->readsReg()) { 1037 regsLiveInButUnused.erase(Reg); 1038 1039 if (MO->isKill()) 1040 addRegWithSubRegs(regsKilled, Reg); 1041 1042 // Check that LiveVars knows this kill. 1043 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1044 MO->isKill()) { 1045 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1046 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) 1047 report("Kill missing from LiveVariables", MO, MONum); 1048 } 1049 1050 // Check LiveInts liveness and kill. 1051 if (LiveInts && !LiveInts->isNotInMIMap(MI)) { 1052 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI); 1053 // Check the cached regunit intervals. 1054 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1055 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1056 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) { 1057 LiveQueryResult LRQ = LR->Query(UseIdx); 1058 if (!LRQ.valueIn()) { 1059 report("No live segment at use", MO, MONum); 1060 errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI) 1061 << ' ' << *LR << '\n'; 1062 } 1063 if (MO->isKill() && !LRQ.isKill()) { 1064 report("Live range continues after kill flag", MO, MONum); 1065 errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n'; 1066 } 1067 } 1068 } 1069 } 1070 1071 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1072 if (LiveInts->hasInterval(Reg)) { 1073 // This is a virtual register interval. 1074 const LiveInterval &LI = LiveInts->getInterval(Reg); 1075 LiveQueryResult LRQ = LI.Query(UseIdx); 1076 if (!LRQ.valueIn()) { 1077 report("No live segment at use", MO, MONum); 1078 errs() << UseIdx << " is not live in " << LI << '\n'; 1079 } 1080 // Check for extra kill flags. 1081 // Note that we allow missing kill flags for now. 1082 if (MO->isKill() && !LRQ.isKill()) { 1083 report("Live range continues after kill flag", MO, MONum); 1084 errs() << "Live range: " << LI << '\n'; 1085 } 1086 } else { 1087 report("Virtual register has no live interval", MO, MONum); 1088 } 1089 } 1090 } 1091 1092 // Use of a dead register. 1093 if (!regsLive.count(Reg)) { 1094 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1095 // Reserved registers may be used even when 'dead'. 1096 bool Bad = !isReserved(Reg); 1097 // We are fine if just any subregister has a defined value. 1098 if (Bad) { 1099 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1100 ++SubRegs) { 1101 if (regsLive.count(*SubRegs)) { 1102 Bad = false; 1103 break; 1104 } 1105 } 1106 } 1107 // If there is an additional implicit-use of a super register we stop 1108 // here. By definition we are fine if the super register is not 1109 // (completely) dead, if the complete super register is dead we will 1110 // get a report for its operand. 1111 if (Bad) { 1112 for (const MachineOperand &MOP : MI->uses()) { 1113 if (!MOP.isReg()) 1114 continue; 1115 if (!MOP.isImplicit()) 1116 continue; 1117 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1118 ++SubRegs) { 1119 if (*SubRegs == Reg) { 1120 Bad = false; 1121 break; 1122 } 1123 } 1124 } 1125 } 1126 if (Bad) 1127 report("Using an undefined physical register", MO, MONum); 1128 } else if (MRI->def_empty(Reg)) { 1129 report("Reading virtual register without a def", MO, MONum); 1130 } else { 1131 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1132 // We don't know which virtual registers are live in, so only complain 1133 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1134 // must be live in. PHI instructions are handled separately. 1135 if (MInfo.regsKilled.count(Reg)) 1136 report("Using a killed virtual register", MO, MONum); 1137 else if (!MI->isPHI()) 1138 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1139 } 1140 } 1141 } 1142 1143 if (MO->isDef()) { 1144 // Register defined. 1145 // TODO: verify that earlyclobber ops are not used. 1146 if (MO->isDead()) 1147 addRegWithSubRegs(regsDead, Reg); 1148 else 1149 addRegWithSubRegs(regsDefined, Reg); 1150 1151 // Verify SSA form. 1152 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1153 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1154 report("Multiple virtual register defs in SSA form", MO, MONum); 1155 1156 // Check LiveInts for a live segment, but only for virtual registers. 1157 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 1158 !LiveInts->isNotInMIMap(MI)) { 1159 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI); 1160 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1161 if (LiveInts->hasInterval(Reg)) { 1162 const LiveInterval &LI = LiveInts->getInterval(Reg); 1163 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 1164 assert(VNI && "NULL valno is not allowed"); 1165 if (VNI->def != DefIdx) { 1166 report("Inconsistent valno->def", MO, MONum); 1167 errs() << "Valno " << VNI->id << " is not defined at " 1168 << DefIdx << " in " << LI << '\n'; 1169 } 1170 } else { 1171 report("No live segment at def", MO, MONum); 1172 errs() << DefIdx << " is not live in " << LI << '\n'; 1173 } 1174 // Check that, if the dead def flag is present, LiveInts agree. 1175 if (MO->isDead()) { 1176 LiveQueryResult LRQ = LI.Query(DefIdx); 1177 if (!LRQ.isDeadDef()) { 1178 report("Live range continues after dead def flag", MO, MONum); 1179 errs() << "Live range: " << LI << '\n'; 1180 } 1181 } 1182 } else { 1183 report("Virtual register has no Live interval", MO, MONum); 1184 } 1185 } 1186 } 1187 } 1188 1189 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1190 } 1191 1192 // This function gets called after visiting all instructions in a bundle. The 1193 // argument points to the bundle header. 1194 // Normal stand-alone instructions are also considered 'bundles', and this 1195 // function is called for all of them. 1196 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1197 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1198 set_union(MInfo.regsKilled, regsKilled); 1199 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1200 // Kill any masked registers. 1201 while (!regMasks.empty()) { 1202 const uint32_t *Mask = regMasks.pop_back_val(); 1203 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1204 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1205 MachineOperand::clobbersPhysReg(Mask, *I)) 1206 regsDead.push_back(*I); 1207 } 1208 set_subtract(regsLive, regsDead); regsDead.clear(); 1209 set_union(regsLive, regsDefined); regsDefined.clear(); 1210 } 1211 1212 void 1213 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1214 MBBInfoMap[MBB].regsLiveOut = regsLive; 1215 regsLive.clear(); 1216 1217 if (Indexes) { 1218 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1219 if (!(stop > lastIndex)) { 1220 report("Block ends before last instruction index", MBB); 1221 errs() << "Block ends at " << stop 1222 << " last instruction was at " << lastIndex << '\n'; 1223 } 1224 lastIndex = stop; 1225 } 1226 } 1227 1228 // Calculate the largest possible vregsPassed sets. These are the registers that 1229 // can pass through an MBB live, but may not be live every time. It is assumed 1230 // that all vregsPassed sets are empty before the call. 1231 void MachineVerifier::calcRegsPassed() { 1232 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1233 // have any vregsPassed. 1234 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1235 for (const auto &MBB : *MF) { 1236 BBInfo &MInfo = MBBInfoMap[&MBB]; 1237 if (!MInfo.reachable) 1238 continue; 1239 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1240 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1241 BBInfo &SInfo = MBBInfoMap[*SuI]; 1242 if (SInfo.addPassed(MInfo.regsLiveOut)) 1243 todo.insert(*SuI); 1244 } 1245 } 1246 1247 // Iteratively push vregsPassed to successors. This will converge to the same 1248 // final state regardless of DenseSet iteration order. 1249 while (!todo.empty()) { 1250 const MachineBasicBlock *MBB = *todo.begin(); 1251 todo.erase(MBB); 1252 BBInfo &MInfo = MBBInfoMap[MBB]; 1253 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1254 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1255 if (*SuI == MBB) 1256 continue; 1257 BBInfo &SInfo = MBBInfoMap[*SuI]; 1258 if (SInfo.addPassed(MInfo.vregsPassed)) 1259 todo.insert(*SuI); 1260 } 1261 } 1262 } 1263 1264 // Calculate the set of virtual registers that must be passed through each basic 1265 // block in order to satisfy the requirements of successor blocks. This is very 1266 // similar to calcRegsPassed, only backwards. 1267 void MachineVerifier::calcRegsRequired() { 1268 // First push live-in regs to predecessors' vregsRequired. 1269 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1270 for (const auto &MBB : *MF) { 1271 BBInfo &MInfo = MBBInfoMap[&MBB]; 1272 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1273 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1274 BBInfo &PInfo = MBBInfoMap[*PrI]; 1275 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1276 todo.insert(*PrI); 1277 } 1278 } 1279 1280 // Iteratively push vregsRequired to predecessors. This will converge to the 1281 // same final state regardless of DenseSet iteration order. 1282 while (!todo.empty()) { 1283 const MachineBasicBlock *MBB = *todo.begin(); 1284 todo.erase(MBB); 1285 BBInfo &MInfo = MBBInfoMap[MBB]; 1286 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1287 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1288 if (*PrI == MBB) 1289 continue; 1290 BBInfo &SInfo = MBBInfoMap[*PrI]; 1291 if (SInfo.addRequired(MInfo.vregsRequired)) 1292 todo.insert(*PrI); 1293 } 1294 } 1295 } 1296 1297 // Check PHI instructions at the beginning of MBB. It is assumed that 1298 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1299 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1300 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1301 for (const auto &BBI : *MBB) { 1302 if (!BBI.isPHI()) 1303 break; 1304 seen.clear(); 1305 1306 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1307 unsigned Reg = BBI.getOperand(i).getReg(); 1308 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1309 if (!Pre->isSuccessor(MBB)) 1310 continue; 1311 seen.insert(Pre); 1312 BBInfo &PrInfo = MBBInfoMap[Pre]; 1313 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1314 report("PHI operand is not live-out from predecessor", 1315 &BBI.getOperand(i), i); 1316 } 1317 1318 // Did we see all predecessors? 1319 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1320 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1321 if (!seen.count(*PrI)) { 1322 report("Missing PHI operand", &BBI); 1323 errs() << "BB#" << (*PrI)->getNumber() 1324 << " is a predecessor according to the CFG.\n"; 1325 } 1326 } 1327 } 1328 } 1329 1330 void MachineVerifier::visitMachineFunctionAfter() { 1331 calcRegsPassed(); 1332 1333 for (const auto &MBB : *MF) { 1334 BBInfo &MInfo = MBBInfoMap[&MBB]; 1335 1336 // Skip unreachable MBBs. 1337 if (!MInfo.reachable) 1338 continue; 1339 1340 checkPHIOps(&MBB); 1341 } 1342 1343 // Now check liveness info if available 1344 calcRegsRequired(); 1345 1346 // Check for killed virtual registers that should be live out. 1347 for (const auto &MBB : *MF) { 1348 BBInfo &MInfo = MBBInfoMap[&MBB]; 1349 for (RegSet::iterator 1350 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1351 ++I) 1352 if (MInfo.regsKilled.count(*I)) { 1353 report("Virtual register killed in block, but needed live out.", &MBB); 1354 errs() << "Virtual register " << PrintReg(*I) 1355 << " is used after the block.\n"; 1356 } 1357 } 1358 1359 if (!MF->empty()) { 1360 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1361 for (RegSet::iterator 1362 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1363 ++I) 1364 report("Virtual register def doesn't dominate all uses.", 1365 MRI->getVRegDef(*I)); 1366 } 1367 1368 if (LiveVars) 1369 verifyLiveVariables(); 1370 if (LiveInts) 1371 verifyLiveIntervals(); 1372 } 1373 1374 void MachineVerifier::verifyLiveVariables() { 1375 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1376 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1377 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1378 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1379 for (const auto &MBB : *MF) { 1380 BBInfo &MInfo = MBBInfoMap[&MBB]; 1381 1382 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1383 if (MInfo.vregsRequired.count(Reg)) { 1384 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1385 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1386 errs() << "Virtual register " << PrintReg(Reg) 1387 << " must be live through the block.\n"; 1388 } 1389 } else { 1390 if (VI.AliveBlocks.test(MBB.getNumber())) { 1391 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1392 errs() << "Virtual register " << PrintReg(Reg) 1393 << " is not needed live through the block.\n"; 1394 } 1395 } 1396 } 1397 } 1398 } 1399 1400 void MachineVerifier::verifyLiveIntervals() { 1401 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1402 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1403 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1404 1405 // Spilling and splitting may leave unused registers around. Skip them. 1406 if (MRI->reg_nodbg_empty(Reg)) 1407 continue; 1408 1409 if (!LiveInts->hasInterval(Reg)) { 1410 report("Missing live interval for virtual register", MF); 1411 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1412 continue; 1413 } 1414 1415 const LiveInterval &LI = LiveInts->getInterval(Reg); 1416 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1417 verifyLiveInterval(LI); 1418 } 1419 1420 // Verify all the cached regunit intervals. 1421 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1422 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1423 verifyLiveRange(*LR, i); 1424 } 1425 1426 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1427 const VNInfo *VNI, unsigned Reg, 1428 LaneBitmask LaneMask) { 1429 if (VNI->isUnused()) 1430 return; 1431 1432 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1433 1434 if (!DefVNI) { 1435 report("Value not live at VNInfo def and not marked unused", MF); 1436 report_context(LR, Reg, LaneMask); 1437 report_context(*VNI); 1438 return; 1439 } 1440 1441 if (DefVNI != VNI) { 1442 report("Live segment at def has different VNInfo", MF); 1443 report_context(LR, Reg, LaneMask); 1444 report_context(*VNI); 1445 return; 1446 } 1447 1448 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1449 if (!MBB) { 1450 report("Invalid VNInfo definition index", MF); 1451 report_context(LR, Reg, LaneMask); 1452 report_context(*VNI); 1453 return; 1454 } 1455 1456 if (VNI->isPHIDef()) { 1457 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1458 report("PHIDef VNInfo is not defined at MBB start", MBB); 1459 report_context(LR, Reg, LaneMask); 1460 report_context(*VNI); 1461 } 1462 return; 1463 } 1464 1465 // Non-PHI def. 1466 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1467 if (!MI) { 1468 report("No instruction at VNInfo def index", MBB); 1469 report_context(LR, Reg, LaneMask); 1470 report_context(*VNI); 1471 return; 1472 } 1473 1474 if (Reg != 0) { 1475 bool hasDef = false; 1476 bool isEarlyClobber = false; 1477 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1478 if (!MOI->isReg() || !MOI->isDef()) 1479 continue; 1480 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1481 if (MOI->getReg() != Reg) 1482 continue; 1483 } else { 1484 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1485 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1486 continue; 1487 } 1488 if (LaneMask != 0 && 1489 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0) 1490 continue; 1491 hasDef = true; 1492 if (MOI->isEarlyClobber()) 1493 isEarlyClobber = true; 1494 } 1495 1496 if (!hasDef) { 1497 report("Defining instruction does not modify register", MI); 1498 report_context(LR, Reg, LaneMask); 1499 report_context(*VNI); 1500 } 1501 1502 // Early clobber defs begin at USE slots, but other defs must begin at 1503 // DEF slots. 1504 if (isEarlyClobber) { 1505 if (!VNI->def.isEarlyClobber()) { 1506 report("Early clobber def must be at an early-clobber slot", MBB); 1507 report_context(LR, Reg, LaneMask); 1508 report_context(*VNI); 1509 } 1510 } else if (!VNI->def.isRegister()) { 1511 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1512 report_context(LR, Reg, LaneMask); 1513 report_context(*VNI); 1514 } 1515 } 1516 } 1517 1518 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1519 const LiveRange::const_iterator I, 1520 unsigned Reg, LaneBitmask LaneMask) 1521 { 1522 const LiveRange::Segment &S = *I; 1523 const VNInfo *VNI = S.valno; 1524 assert(VNI && "Live segment has no valno"); 1525 1526 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1527 report("Foreign valno in live segment", MF); 1528 report_context(LR, Reg, LaneMask); 1529 report_context(S); 1530 report_context(*VNI); 1531 } 1532 1533 if (VNI->isUnused()) { 1534 report("Live segment valno is marked unused", MF); 1535 report_context(LR, Reg, LaneMask); 1536 report_context(S); 1537 } 1538 1539 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1540 if (!MBB) { 1541 report("Bad start of live segment, no basic block", MF); 1542 report_context(LR, Reg, LaneMask); 1543 report_context(S); 1544 return; 1545 } 1546 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1547 if (S.start != MBBStartIdx && S.start != VNI->def) { 1548 report("Live segment must begin at MBB entry or valno def", MBB); 1549 report_context(LR, Reg, LaneMask); 1550 report_context(S); 1551 } 1552 1553 const MachineBasicBlock *EndMBB = 1554 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1555 if (!EndMBB) { 1556 report("Bad end of live segment, no basic block", MF); 1557 report_context(LR, Reg, LaneMask); 1558 report_context(S); 1559 return; 1560 } 1561 1562 // No more checks for live-out segments. 1563 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1564 return; 1565 1566 // RegUnit intervals are allowed dead phis. 1567 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1568 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1569 return; 1570 1571 // The live segment is ending inside EndMBB 1572 const MachineInstr *MI = 1573 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1574 if (!MI) { 1575 report("Live segment doesn't end at a valid instruction", EndMBB); 1576 report_context(LR, Reg, LaneMask); 1577 report_context(S); 1578 return; 1579 } 1580 1581 // The block slot must refer to a basic block boundary. 1582 if (S.end.isBlock()) { 1583 report("Live segment ends at B slot of an instruction", EndMBB); 1584 report_context(LR, Reg, LaneMask); 1585 report_context(S); 1586 } 1587 1588 if (S.end.isDead()) { 1589 // Segment ends on the dead slot. 1590 // That means there must be a dead def. 1591 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1592 report("Live segment ending at dead slot spans instructions", EndMBB); 1593 report_context(LR, Reg, LaneMask); 1594 report_context(S); 1595 } 1596 } 1597 1598 // A live segment can only end at an early-clobber slot if it is being 1599 // redefined by an early-clobber def. 1600 if (S.end.isEarlyClobber()) { 1601 if (I+1 == LR.end() || (I+1)->start != S.end) { 1602 report("Live segment ending at early clobber slot must be " 1603 "redefined by an EC def in the same instruction", EndMBB); 1604 report_context(LR, Reg, LaneMask); 1605 report_context(S); 1606 } 1607 } 1608 1609 // The following checks only apply to virtual registers. Physreg liveness 1610 // is too weird to check. 1611 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1612 // A live segment can end with either a redefinition, a kill flag on a 1613 // use, or a dead flag on a def. 1614 bool hasRead = false; 1615 bool hasSubRegDef = false; 1616 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { 1617 if (!MOI->isReg() || MOI->getReg() != Reg) 1618 continue; 1619 if (LaneMask != 0 && 1620 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0) 1621 continue; 1622 if (MOI->isDef() && MOI->getSubReg() != 0) 1623 hasSubRegDef = true; 1624 if (MOI->readsReg()) 1625 hasRead = true; 1626 } 1627 if (!S.end.isDead()) { 1628 if (!hasRead) { 1629 // When tracking subregister liveness, the main range must start new 1630 // values on partial register writes, even if there is no read. 1631 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 || 1632 !hasSubRegDef) { 1633 report("Instruction ending live segment doesn't read the register", 1634 MI); 1635 report_context(LR, Reg, LaneMask); 1636 report_context(S); 1637 } 1638 } 1639 } 1640 } 1641 1642 // Now check all the basic blocks in this live segment. 1643 MachineFunction::const_iterator MFI = MBB->getIterator(); 1644 // Is this live segment the beginning of a non-PHIDef VN? 1645 if (S.start == VNI->def && !VNI->isPHIDef()) { 1646 // Not live-in to any blocks. 1647 if (MBB == EndMBB) 1648 return; 1649 // Skip this block. 1650 ++MFI; 1651 } 1652 for (;;) { 1653 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1654 // We don't know how to track physregs into a landing pad. 1655 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1656 MFI->isEHPad()) { 1657 if (&*MFI == EndMBB) 1658 break; 1659 ++MFI; 1660 continue; 1661 } 1662 1663 // Is VNI a PHI-def in the current block? 1664 bool IsPHI = VNI->isPHIDef() && 1665 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1666 1667 // Check that VNI is live-out of all predecessors. 1668 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1669 PE = MFI->pred_end(); PI != PE; ++PI) { 1670 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1671 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1672 1673 // All predecessors must have a live-out value. 1674 if (!PVNI) { 1675 report("Register not marked live out of predecessor", *PI); 1676 report_context(LR, Reg, LaneMask); 1677 report_context(*VNI); 1678 errs() << " live into BB#" << MFI->getNumber() 1679 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1680 << PEnd << '\n'; 1681 continue; 1682 } 1683 1684 // Only PHI-defs can take different predecessor values. 1685 if (!IsPHI && PVNI != VNI) { 1686 report("Different value live out of predecessor", *PI); 1687 report_context(LR, Reg, LaneMask); 1688 errs() << "Valno #" << PVNI->id << " live out of BB#" 1689 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1690 << " live into BB#" << MFI->getNumber() << '@' 1691 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1692 } 1693 } 1694 if (&*MFI == EndMBB) 1695 break; 1696 ++MFI; 1697 } 1698 } 1699 1700 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1701 LaneBitmask LaneMask) { 1702 for (const VNInfo *VNI : LR.valnos) 1703 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1704 1705 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1706 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1707 } 1708 1709 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1710 unsigned Reg = LI.reg; 1711 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1712 verifyLiveRange(LI, Reg); 1713 1714 LaneBitmask Mask = 0; 1715 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 1716 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1717 if ((Mask & SR.LaneMask) != 0) { 1718 report("Lane masks of sub ranges overlap in live interval", MF); 1719 report_context(LI); 1720 } 1721 if ((SR.LaneMask & ~MaxMask) != 0) { 1722 report("Subrange lanemask is invalid", MF); 1723 report_context(LI); 1724 } 1725 if (SR.empty()) { 1726 report("Subrange must not be empty", MF); 1727 report_context(SR, LI.reg, SR.LaneMask); 1728 } 1729 Mask |= SR.LaneMask; 1730 verifyLiveRange(SR, LI.reg, SR.LaneMask); 1731 if (!LI.covers(SR)) { 1732 report("A Subrange is not covered by the main range", MF); 1733 report_context(LI); 1734 } 1735 } 1736 1737 // Check the LI only has one connected component. 1738 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1739 unsigned NumComp = ConEQ.Classify(&LI); 1740 if (NumComp > 1) { 1741 report("Multiple connected components in live interval", MF); 1742 report_context(LI); 1743 for (unsigned comp = 0; comp != NumComp; ++comp) { 1744 errs() << comp << ": valnos"; 1745 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1746 E = LI.vni_end(); I!=E; ++I) 1747 if (comp == ConEQ.getEqClass(*I)) 1748 errs() << ' ' << (*I)->id; 1749 errs() << '\n'; 1750 } 1751 } 1752 } 1753 1754 namespace { 1755 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 1756 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 1757 // value is zero. 1758 // We use a bool plus an integer to capture the stack state. 1759 struct StackStateOfBB { 1760 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 1761 ExitIsSetup(false) { } 1762 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 1763 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 1764 ExitIsSetup(ExitSetup) { } 1765 // Can be negative, which means we are setting up a frame. 1766 int EntryValue; 1767 int ExitValue; 1768 bool EntryIsSetup; 1769 bool ExitIsSetup; 1770 }; 1771 } 1772 1773 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 1774 /// by a FrameDestroy <n>, stack adjustments are identical on all 1775 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 1776 void MachineVerifier::verifyStackFrame() { 1777 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 1778 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 1779 1780 SmallVector<StackStateOfBB, 8> SPState; 1781 SPState.resize(MF->getNumBlockIDs()); 1782 SmallPtrSet<const MachineBasicBlock*, 8> Reachable; 1783 1784 // Visit the MBBs in DFS order. 1785 for (df_ext_iterator<const MachineFunction*, 1786 SmallPtrSet<const MachineBasicBlock*, 8> > 1787 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 1788 DFI != DFE; ++DFI) { 1789 const MachineBasicBlock *MBB = *DFI; 1790 1791 StackStateOfBB BBState; 1792 // Check the exit state of the DFS stack predecessor. 1793 if (DFI.getPathLength() >= 2) { 1794 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 1795 assert(Reachable.count(StackPred) && 1796 "DFS stack predecessor is already visited.\n"); 1797 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 1798 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 1799 BBState.ExitValue = BBState.EntryValue; 1800 BBState.ExitIsSetup = BBState.EntryIsSetup; 1801 } 1802 1803 // Update stack state by checking contents of MBB. 1804 for (const auto &I : *MBB) { 1805 if (I.getOpcode() == FrameSetupOpcode) { 1806 // The first operand of a FrameOpcode should be i32. 1807 int Size = I.getOperand(0).getImm(); 1808 assert(Size >= 0 && 1809 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1810 1811 if (BBState.ExitIsSetup) 1812 report("FrameSetup is after another FrameSetup", &I); 1813 BBState.ExitValue -= Size; 1814 BBState.ExitIsSetup = true; 1815 } 1816 1817 if (I.getOpcode() == FrameDestroyOpcode) { 1818 // The first operand of a FrameOpcode should be i32. 1819 int Size = I.getOperand(0).getImm(); 1820 assert(Size >= 0 && 1821 "Value should be non-negative in FrameSetup and FrameDestroy.\n"); 1822 1823 if (!BBState.ExitIsSetup) 1824 report("FrameDestroy is not after a FrameSetup", &I); 1825 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 1826 BBState.ExitValue; 1827 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 1828 report("FrameDestroy <n> is after FrameSetup <m>", &I); 1829 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 1830 << AbsSPAdj << ">.\n"; 1831 } 1832 BBState.ExitValue += Size; 1833 BBState.ExitIsSetup = false; 1834 } 1835 } 1836 SPState[MBB->getNumber()] = BBState; 1837 1838 // Make sure the exit state of any predecessor is consistent with the entry 1839 // state. 1840 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 1841 E = MBB->pred_end(); I != E; ++I) { 1842 if (Reachable.count(*I) && 1843 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 1844 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 1845 report("The exit stack state of a predecessor is inconsistent.", MBB); 1846 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 1847 << SPState[(*I)->getNumber()].ExitValue << ", " 1848 << SPState[(*I)->getNumber()].ExitIsSetup 1849 << "), while BB#" << MBB->getNumber() << " has entry state (" 1850 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 1851 } 1852 } 1853 1854 // Make sure the entry state of any successor is consistent with the exit 1855 // state. 1856 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 1857 E = MBB->succ_end(); I != E; ++I) { 1858 if (Reachable.count(*I) && 1859 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 1860 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 1861 report("The entry stack state of a successor is inconsistent.", MBB); 1862 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 1863 << SPState[(*I)->getNumber()].EntryValue << ", " 1864 << SPState[(*I)->getNumber()].EntryIsSetup 1865 << "), while BB#" << MBB->getNumber() << " has exit state (" 1866 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 1867 } 1868 } 1869 1870 // Make sure a basic block with return ends with zero stack adjustment. 1871 if (!MBB->empty() && MBB->back().isReturn()) { 1872 if (BBState.ExitIsSetup) 1873 report("A return block ends with a FrameSetup.", MBB); 1874 if (BBState.ExitValue) 1875 report("A return block ends with a nonzero stack adjustment.", MBB); 1876 } 1877 } 1878 } 1879