Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "code_generator_arm64.h"
     18 
     19 #include "arch/arm64/instruction_set_features_arm64.h"
     20 #include "art_method.h"
     21 #include "code_generator_utils.h"
     22 #include "compiled_method.h"
     23 #include "entrypoints/quick/quick_entrypoints.h"
     24 #include "entrypoints/quick/quick_entrypoints_enum.h"
     25 #include "gc/accounting/card_table.h"
     26 #include "intrinsics.h"
     27 #include "intrinsics_arm64.h"
     28 #include "mirror/array-inl.h"
     29 #include "mirror/class-inl.h"
     30 #include "offsets.h"
     31 #include "thread.h"
     32 #include "utils/arm64/assembler_arm64.h"
     33 #include "utils/assembler.h"
     34 #include "utils/stack_checks.h"
     35 
     36 
     37 using namespace vixl;   // NOLINT(build/namespaces)
     38 
     39 #ifdef __
     40 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
     41 #endif
     42 
     43 namespace art {
     44 
     45 template<class MirrorType>
     46 class GcRoot;
     47 
     48 namespace arm64 {
     49 
     50 using helpers::CPURegisterFrom;
     51 using helpers::DRegisterFrom;
     52 using helpers::FPRegisterFrom;
     53 using helpers::HeapOperand;
     54 using helpers::HeapOperandFrom;
     55 using helpers::InputCPURegisterAt;
     56 using helpers::InputFPRegisterAt;
     57 using helpers::InputRegisterAt;
     58 using helpers::InputOperandAt;
     59 using helpers::Int64ConstantFrom;
     60 using helpers::LocationFrom;
     61 using helpers::OperandFromMemOperand;
     62 using helpers::OutputCPURegister;
     63 using helpers::OutputFPRegister;
     64 using helpers::OutputRegister;
     65 using helpers::RegisterFrom;
     66 using helpers::StackOperandFrom;
     67 using helpers::VIXLRegCodeFromART;
     68 using helpers::WRegisterFrom;
     69 using helpers::XRegisterFrom;
     70 using helpers::ARM64EncodableConstantOrRegister;
     71 using helpers::ArtVixlRegCodeCoherentForRegSet;
     72 
     73 static constexpr int kCurrentMethodStackOffset = 0;
     74 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
     75 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
     76 // generates less code/data with a small num_entries.
     77 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
     78 
     79 inline Condition ARM64Condition(IfCondition cond) {
     80   switch (cond) {
     81     case kCondEQ: return eq;
     82     case kCondNE: return ne;
     83     case kCondLT: return lt;
     84     case kCondLE: return le;
     85     case kCondGT: return gt;
     86     case kCondGE: return ge;
     87     case kCondB:  return lo;
     88     case kCondBE: return ls;
     89     case kCondA:  return hi;
     90     case kCondAE: return hs;
     91   }
     92   LOG(FATAL) << "Unreachable";
     93   UNREACHABLE();
     94 }
     95 
     96 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
     97   // The ARM64 condition codes can express all the necessary branches, see the
     98   // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
     99   // There is no dex instruction or HIR that would need the missing conditions
    100   // "equal or unordered" or "not equal".
    101   switch (cond) {
    102     case kCondEQ: return eq;
    103     case kCondNE: return ne /* unordered */;
    104     case kCondLT: return gt_bias ? cc : lt /* unordered */;
    105     case kCondLE: return gt_bias ? ls : le /* unordered */;
    106     case kCondGT: return gt_bias ? hi /* unordered */ : gt;
    107     case kCondGE: return gt_bias ? cs /* unordered */ : ge;
    108     default:
    109       LOG(FATAL) << "UNREACHABLE";
    110       UNREACHABLE();
    111   }
    112 }
    113 
    114 Location ARM64ReturnLocation(Primitive::Type return_type) {
    115   // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
    116   // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
    117   // but we use the exact registers for clarity.
    118   if (return_type == Primitive::kPrimFloat) {
    119     return LocationFrom(s0);
    120   } else if (return_type == Primitive::kPrimDouble) {
    121     return LocationFrom(d0);
    122   } else if (return_type == Primitive::kPrimLong) {
    123     return LocationFrom(x0);
    124   } else if (return_type == Primitive::kPrimVoid) {
    125     return Location::NoLocation();
    126   } else {
    127     return LocationFrom(w0);
    128   }
    129 }
    130 
    131 Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) {
    132   return ARM64ReturnLocation(return_type);
    133 }
    134 
    135 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->
    136 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64WordSize, x).Int32Value()
    137 
    138 // Calculate memory accessing operand for save/restore live registers.
    139 static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
    140                                            RegisterSet* register_set,
    141                                            int64_t spill_offset,
    142                                            bool is_save) {
    143   DCHECK(ArtVixlRegCodeCoherentForRegSet(register_set->GetCoreRegisters(),
    144                                          codegen->GetNumberOfCoreRegisters(),
    145                                          register_set->GetFloatingPointRegisters(),
    146                                          codegen->GetNumberOfFloatingPointRegisters()));
    147 
    148   CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize,
    149       register_set->GetCoreRegisters() & (~callee_saved_core_registers.list()));
    150   CPURegList fp_list = CPURegList(CPURegister::kFPRegister, kDRegSize,
    151       register_set->GetFloatingPointRegisters() & (~callee_saved_fp_registers.list()));
    152 
    153   MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
    154   UseScratchRegisterScope temps(masm);
    155 
    156   Register base = masm->StackPointer();
    157   int64_t core_spill_size = core_list.TotalSizeInBytes();
    158   int64_t fp_spill_size = fp_list.TotalSizeInBytes();
    159   int64_t reg_size = kXRegSizeInBytes;
    160   int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
    161   uint32_t ls_access_size = WhichPowerOf2(reg_size);
    162   if (((core_list.Count() > 1) || (fp_list.Count() > 1)) &&
    163       !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
    164     // If the offset does not fit in the instruction's immediate field, use an alternate register
    165     // to compute the base address(float point registers spill base address).
    166     Register new_base = temps.AcquireSameSizeAs(base);
    167     __ Add(new_base, base, Operand(spill_offset + core_spill_size));
    168     base = new_base;
    169     spill_offset = -core_spill_size;
    170     int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
    171     DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
    172     DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
    173   }
    174 
    175   if (is_save) {
    176     __ StoreCPURegList(core_list, MemOperand(base, spill_offset));
    177     __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
    178   } else {
    179     __ LoadCPURegList(core_list, MemOperand(base, spill_offset));
    180     __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
    181   }
    182 }
    183 
    184 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
    185   RegisterSet* register_set = locations->GetLiveRegisters();
    186   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
    187   for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
    188     if (!codegen->IsCoreCalleeSaveRegister(i) && register_set->ContainsCoreRegister(i)) {
    189       // If the register holds an object, update the stack mask.
    190       if (locations->RegisterContainsObject(i)) {
    191         locations->SetStackBit(stack_offset / kVRegSize);
    192       }
    193       DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    194       DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    195       saved_core_stack_offsets_[i] = stack_offset;
    196       stack_offset += kXRegSizeInBytes;
    197     }
    198   }
    199 
    200   for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
    201     if (!codegen->IsFloatingPointCalleeSaveRegister(i) &&
    202         register_set->ContainsFloatingPointRegister(i)) {
    203       DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    204       DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    205       saved_fpu_stack_offsets_[i] = stack_offset;
    206       stack_offset += kDRegSizeInBytes;
    207     }
    208   }
    209 
    210   SaveRestoreLiveRegistersHelper(codegen, register_set,
    211                                  codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */);
    212 }
    213 
    214 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
    215   RegisterSet* register_set = locations->GetLiveRegisters();
    216   SaveRestoreLiveRegistersHelper(codegen, register_set,
    217                                  codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */);
    218 }
    219 
    220 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
    221  public:
    222   explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
    223 
    224   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    225     LocationSummary* locations = instruction_->GetLocations();
    226     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    227 
    228     __ Bind(GetEntryLabel());
    229     if (instruction_->CanThrowIntoCatchBlock()) {
    230       // Live registers will be restored in the catch block if caught.
    231       SaveLiveRegisters(codegen, instruction_->GetLocations());
    232     }
    233     // We're moving two locations to locations that could overlap, so we need a parallel
    234     // move resolver.
    235     InvokeRuntimeCallingConvention calling_convention;
    236     codegen->EmitParallelMoves(
    237         locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt,
    238         locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt);
    239     arm64_codegen->InvokeRuntime(
    240         QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
    241     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
    242   }
    243 
    244   bool IsFatal() const OVERRIDE { return true; }
    245 
    246   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; }
    247 
    248  private:
    249   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
    250 };
    251 
    252 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
    253  public:
    254   explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
    255 
    256   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    257     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    258     __ Bind(GetEntryLabel());
    259     if (instruction_->CanThrowIntoCatchBlock()) {
    260       // Live registers will be restored in the catch block if caught.
    261       SaveLiveRegisters(codegen, instruction_->GetLocations());
    262     }
    263     arm64_codegen->InvokeRuntime(
    264         QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
    265     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
    266   }
    267 
    268   bool IsFatal() const OVERRIDE { return true; }
    269 
    270   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; }
    271 
    272  private:
    273   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
    274 };
    275 
    276 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
    277  public:
    278   LoadClassSlowPathARM64(HLoadClass* cls,
    279                          HInstruction* at,
    280                          uint32_t dex_pc,
    281                          bool do_clinit)
    282       : SlowPathCodeARM64(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
    283     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
    284   }
    285 
    286   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    287     LocationSummary* locations = at_->GetLocations();
    288     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    289 
    290     __ Bind(GetEntryLabel());
    291     SaveLiveRegisters(codegen, locations);
    292 
    293     InvokeRuntimeCallingConvention calling_convention;
    294     __ Mov(calling_convention.GetRegisterAt(0).W(), cls_->GetTypeIndex());
    295     int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
    296                                             : QUICK_ENTRY_POINT(pInitializeType);
    297     arm64_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
    298     if (do_clinit_) {
    299       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
    300     } else {
    301       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
    302     }
    303 
    304     // Move the class to the desired location.
    305     Location out = locations->Out();
    306     if (out.IsValid()) {
    307       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
    308       Primitive::Type type = at_->GetType();
    309       arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
    310     }
    311 
    312     RestoreLiveRegisters(codegen, locations);
    313     __ B(GetExitLabel());
    314   }
    315 
    316   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; }
    317 
    318  private:
    319   // The class this slow path will load.
    320   HLoadClass* const cls_;
    321 
    322   // The instruction where this slow path is happening.
    323   // (Might be the load class or an initialization check).
    324   HInstruction* const at_;
    325 
    326   // The dex PC of `at_`.
    327   const uint32_t dex_pc_;
    328 
    329   // Whether to initialize the class.
    330   const bool do_clinit_;
    331 
    332   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
    333 };
    334 
    335 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
    336  public:
    337   explicit LoadStringSlowPathARM64(HLoadString* instruction) : SlowPathCodeARM64(instruction) {}
    338 
    339   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    340     LocationSummary* locations = instruction_->GetLocations();
    341     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    342     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    343 
    344     __ Bind(GetEntryLabel());
    345     SaveLiveRegisters(codegen, locations);
    346 
    347     InvokeRuntimeCallingConvention calling_convention;
    348     const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
    349     __ Mov(calling_convention.GetRegisterAt(0).W(), string_index);
    350     arm64_codegen->InvokeRuntime(
    351         QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
    352     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
    353     Primitive::Type type = instruction_->GetType();
    354     arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
    355 
    356     RestoreLiveRegisters(codegen, locations);
    357     __ B(GetExitLabel());
    358   }
    359 
    360   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; }
    361 
    362  private:
    363   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
    364 };
    365 
    366 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
    367  public:
    368   explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
    369 
    370   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    371     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    372     __ Bind(GetEntryLabel());
    373     if (instruction_->CanThrowIntoCatchBlock()) {
    374       // Live registers will be restored in the catch block if caught.
    375       SaveLiveRegisters(codegen, instruction_->GetLocations());
    376     }
    377     arm64_codegen->InvokeRuntime(
    378         QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
    379     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
    380   }
    381 
    382   bool IsFatal() const OVERRIDE { return true; }
    383 
    384   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; }
    385 
    386  private:
    387   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
    388 };
    389 
    390 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
    391  public:
    392   SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
    393       : SlowPathCodeARM64(instruction), successor_(successor) {}
    394 
    395   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    396     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    397     __ Bind(GetEntryLabel());
    398     SaveLiveRegisters(codegen, instruction_->GetLocations());
    399     arm64_codegen->InvokeRuntime(
    400         QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
    401     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
    402     RestoreLiveRegisters(codegen, instruction_->GetLocations());
    403     if (successor_ == nullptr) {
    404       __ B(GetReturnLabel());
    405     } else {
    406       __ B(arm64_codegen->GetLabelOf(successor_));
    407     }
    408   }
    409 
    410   vixl::Label* GetReturnLabel() {
    411     DCHECK(successor_ == nullptr);
    412     return &return_label_;
    413   }
    414 
    415   HBasicBlock* GetSuccessor() const {
    416     return successor_;
    417   }
    418 
    419   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; }
    420 
    421  private:
    422   // If not null, the block to branch to after the suspend check.
    423   HBasicBlock* const successor_;
    424 
    425   // If `successor_` is null, the label to branch to after the suspend check.
    426   vixl::Label return_label_;
    427 
    428   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
    429 };
    430 
    431 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
    432  public:
    433   TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
    434       : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
    435 
    436   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    437     LocationSummary* locations = instruction_->GetLocations();
    438     Location class_to_check = locations->InAt(1);
    439     Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
    440                                                         : locations->Out();
    441     DCHECK(instruction_->IsCheckCast()
    442            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    443     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    444     uint32_t dex_pc = instruction_->GetDexPc();
    445 
    446     __ Bind(GetEntryLabel());
    447 
    448     if (!is_fatal_) {
    449       SaveLiveRegisters(codegen, locations);
    450     }
    451 
    452     // We're moving two locations to locations that could overlap, so we need a parallel
    453     // move resolver.
    454     InvokeRuntimeCallingConvention calling_convention;
    455     codegen->EmitParallelMoves(
    456         class_to_check, LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot,
    457         object_class, LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot);
    458 
    459     if (instruction_->IsInstanceOf()) {
    460       arm64_codegen->InvokeRuntime(
    461           QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc, this);
    462       CheckEntrypointTypes<kQuickInstanceofNonTrivial, uint32_t,
    463                            const mirror::Class*, const mirror::Class*>();
    464       Primitive::Type ret_type = instruction_->GetType();
    465       Location ret_loc = calling_convention.GetReturnLocation(ret_type);
    466       arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
    467     } else {
    468       DCHECK(instruction_->IsCheckCast());
    469       arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc, this);
    470       CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
    471     }
    472 
    473     if (!is_fatal_) {
    474       RestoreLiveRegisters(codegen, locations);
    475       __ B(GetExitLabel());
    476     }
    477   }
    478 
    479   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; }
    480   bool IsFatal() const { return is_fatal_; }
    481 
    482  private:
    483   const bool is_fatal_;
    484 
    485   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
    486 };
    487 
    488 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
    489  public:
    490   explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
    491       : SlowPathCodeARM64(instruction) {}
    492 
    493   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    494     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    495     __ Bind(GetEntryLabel());
    496     SaveLiveRegisters(codegen, instruction_->GetLocations());
    497     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
    498                                  instruction_,
    499                                  instruction_->GetDexPc(),
    500                                  this);
    501     CheckEntrypointTypes<kQuickDeoptimize, void, void>();
    502   }
    503 
    504   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; }
    505 
    506  private:
    507   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
    508 };
    509 
    510 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
    511  public:
    512   explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
    513 
    514   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    515     LocationSummary* locations = instruction_->GetLocations();
    516     __ Bind(GetEntryLabel());
    517     SaveLiveRegisters(codegen, locations);
    518 
    519     InvokeRuntimeCallingConvention calling_convention;
    520     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
    521     parallel_move.AddMove(
    522         locations->InAt(0),
    523         LocationFrom(calling_convention.GetRegisterAt(0)),
    524         Primitive::kPrimNot,
    525         nullptr);
    526     parallel_move.AddMove(
    527         locations->InAt(1),
    528         LocationFrom(calling_convention.GetRegisterAt(1)),
    529         Primitive::kPrimInt,
    530         nullptr);
    531     parallel_move.AddMove(
    532         locations->InAt(2),
    533         LocationFrom(calling_convention.GetRegisterAt(2)),
    534         Primitive::kPrimNot,
    535         nullptr);
    536     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    537 
    538     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    539     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
    540                                  instruction_,
    541                                  instruction_->GetDexPc(),
    542                                  this);
    543     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
    544     RestoreLiveRegisters(codegen, locations);
    545     __ B(GetExitLabel());
    546   }
    547 
    548   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; }
    549 
    550  private:
    551   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
    552 };
    553 
    554 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
    555   uint32_t num_entries = switch_instr_->GetNumEntries();
    556   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
    557 
    558   // We are about to use the assembler to place literals directly. Make sure we have enough
    559   // underlying code buffer and we have generated the jump table with right size.
    560   CodeBufferCheckScope scope(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t),
    561                              CodeBufferCheckScope::kCheck, CodeBufferCheckScope::kExactSize);
    562 
    563   __ Bind(&table_start_);
    564   const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
    565   for (uint32_t i = 0; i < num_entries; i++) {
    566     vixl::Label* target_label = codegen->GetLabelOf(successors[i]);
    567     DCHECK(target_label->IsBound());
    568     ptrdiff_t jump_offset = target_label->location() - table_start_.location();
    569     DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
    570     DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
    571     Literal<int32_t> literal(jump_offset);
    572     __ place(&literal);
    573   }
    574 }
    575 
    576 // Slow path marking an object during a read barrier.
    577 class ReadBarrierMarkSlowPathARM64 : public SlowPathCodeARM64 {
    578  public:
    579   ReadBarrierMarkSlowPathARM64(HInstruction* instruction, Location out, Location obj)
    580       : SlowPathCodeARM64(instruction), out_(out), obj_(obj) {
    581     DCHECK(kEmitCompilerReadBarrier);
    582   }
    583 
    584   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; }
    585 
    586   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    587     LocationSummary* locations = instruction_->GetLocations();
    588     Primitive::Type type = Primitive::kPrimNot;
    589     DCHECK(locations->CanCall());
    590     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
    591     DCHECK(instruction_->IsInstanceFieldGet() ||
    592            instruction_->IsStaticFieldGet() ||
    593            instruction_->IsArrayGet() ||
    594            instruction_->IsLoadClass() ||
    595            instruction_->IsLoadString() ||
    596            instruction_->IsInstanceOf() ||
    597            instruction_->IsCheckCast())
    598         << "Unexpected instruction in read barrier marking slow path: "
    599         << instruction_->DebugName();
    600 
    601     __ Bind(GetEntryLabel());
    602     SaveLiveRegisters(codegen, locations);
    603 
    604     InvokeRuntimeCallingConvention calling_convention;
    605     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    606     arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), obj_, type);
    607     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
    608                                  instruction_,
    609                                  instruction_->GetDexPc(),
    610                                  this);
    611     CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
    612     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
    613 
    614     RestoreLiveRegisters(codegen, locations);
    615     __ B(GetExitLabel());
    616   }
    617 
    618  private:
    619   const Location out_;
    620   const Location obj_;
    621 
    622   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64);
    623 };
    624 
    625 // Slow path generating a read barrier for a heap reference.
    626 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
    627  public:
    628   ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
    629                                            Location out,
    630                                            Location ref,
    631                                            Location obj,
    632                                            uint32_t offset,
    633                                            Location index)
    634       : SlowPathCodeARM64(instruction),
    635         out_(out),
    636         ref_(ref),
    637         obj_(obj),
    638         offset_(offset),
    639         index_(index) {
    640     DCHECK(kEmitCompilerReadBarrier);
    641     // If `obj` is equal to `out` or `ref`, it means the initial object
    642     // has been overwritten by (or after) the heap object reference load
    643     // to be instrumented, e.g.:
    644     //
    645     //   __ Ldr(out, HeapOperand(out, class_offset);
    646     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
    647     //
    648     // In that case, we have lost the information about the original
    649     // object, and the emitted read barrier cannot work properly.
    650     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
    651     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
    652   }
    653 
    654   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    655     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    656     LocationSummary* locations = instruction_->GetLocations();
    657     Primitive::Type type = Primitive::kPrimNot;
    658     DCHECK(locations->CanCall());
    659     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
    660     DCHECK(!instruction_->IsInvoke() ||
    661            (instruction_->IsInvokeStaticOrDirect() &&
    662             instruction_->GetLocations()->Intrinsified()))
    663         << "Unexpected instruction in read barrier for heap reference slow path: "
    664         << instruction_->DebugName();
    665     // The read barrier instrumentation does not support the
    666     // HArm64IntermediateAddress instruction yet.
    667     DCHECK(!(instruction_->IsArrayGet() &&
    668              instruction_->AsArrayGet()->GetArray()->IsArm64IntermediateAddress()));
    669 
    670     __ Bind(GetEntryLabel());
    671 
    672     SaveLiveRegisters(codegen, locations);
    673 
    674     // We may have to change the index's value, but as `index_` is a
    675     // constant member (like other "inputs" of this slow path),
    676     // introduce a copy of it, `index`.
    677     Location index = index_;
    678     if (index_.IsValid()) {
    679       // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
    680       if (instruction_->IsArrayGet()) {
    681         // Compute the actual memory offset and store it in `index`.
    682         Register index_reg = RegisterFrom(index_, Primitive::kPrimInt);
    683         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
    684         if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
    685           // We are about to change the value of `index_reg` (see the
    686           // calls to vixl::MacroAssembler::Lsl and
    687           // vixl::MacroAssembler::Mov below), but it has
    688           // not been saved by the previous call to
    689           // art::SlowPathCode::SaveLiveRegisters, as it is a
    690           // callee-save register --
    691           // art::SlowPathCode::SaveLiveRegisters does not consider
    692           // callee-save registers, as it has been designed with the
    693           // assumption that callee-save registers are supposed to be
    694           // handled by the called function.  So, as a callee-save
    695           // register, `index_reg` _would_ eventually be saved onto
    696           // the stack, but it would be too late: we would have
    697           // changed its value earlier.  Therefore, we manually save
    698           // it here into another freely available register,
    699           // `free_reg`, chosen of course among the caller-save
    700           // registers (as a callee-save `free_reg` register would
    701           // exhibit the same problem).
    702           //
    703           // Note we could have requested a temporary register from
    704           // the register allocator instead; but we prefer not to, as
    705           // this is a slow path, and we know we can find a
    706           // caller-save register that is available.
    707           Register free_reg = FindAvailableCallerSaveRegister(codegen);
    708           __ Mov(free_reg.W(), index_reg);
    709           index_reg = free_reg;
    710           index = LocationFrom(index_reg);
    711         } else {
    712           // The initial register stored in `index_` has already been
    713           // saved in the call to art::SlowPathCode::SaveLiveRegisters
    714           // (as it is not a callee-save register), so we can freely
    715           // use it.
    716         }
    717         // Shifting the index value contained in `index_reg` by the scale
    718         // factor (2) cannot overflow in practice, as the runtime is
    719         // unable to allocate object arrays with a size larger than
    720         // 2^26 - 1 (that is, 2^28 - 4 bytes).
    721         __ Lsl(index_reg, index_reg, Primitive::ComponentSizeShift(type));
    722         static_assert(
    723             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
    724             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
    725         __ Add(index_reg, index_reg, Operand(offset_));
    726       } else {
    727         DCHECK(instruction_->IsInvoke());
    728         DCHECK(instruction_->GetLocations()->Intrinsified());
    729         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
    730                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
    731             << instruction_->AsInvoke()->GetIntrinsic();
    732         DCHECK_EQ(offset_, 0U);
    733         DCHECK(index_.IsRegisterPair());
    734         // UnsafeGet's offset location is a register pair, the low
    735         // part contains the correct offset.
    736         index = index_.ToLow();
    737       }
    738     }
    739 
    740     // We're moving two or three locations to locations that could
    741     // overlap, so we need a parallel move resolver.
    742     InvokeRuntimeCallingConvention calling_convention;
    743     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
    744     parallel_move.AddMove(ref_,
    745                           LocationFrom(calling_convention.GetRegisterAt(0)),
    746                           type,
    747                           nullptr);
    748     parallel_move.AddMove(obj_,
    749                           LocationFrom(calling_convention.GetRegisterAt(1)),
    750                           type,
    751                           nullptr);
    752     if (index.IsValid()) {
    753       parallel_move.AddMove(index,
    754                             LocationFrom(calling_convention.GetRegisterAt(2)),
    755                             Primitive::kPrimInt,
    756                             nullptr);
    757       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    758     } else {
    759       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    760       arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
    761     }
    762     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
    763                                  instruction_,
    764                                  instruction_->GetDexPc(),
    765                                  this);
    766     CheckEntrypointTypes<
    767         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
    768     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
    769 
    770     RestoreLiveRegisters(codegen, locations);
    771 
    772     __ B(GetExitLabel());
    773   }
    774 
    775   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
    776 
    777  private:
    778   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
    779     size_t ref = static_cast<int>(XRegisterFrom(ref_).code());
    780     size_t obj = static_cast<int>(XRegisterFrom(obj_).code());
    781     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
    782       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
    783         return Register(VIXLRegCodeFromART(i), kXRegSize);
    784       }
    785     }
    786     // We shall never fail to find a free caller-save register, as
    787     // there are more than two core caller-save registers on ARM64
    788     // (meaning it is possible to find one which is different from
    789     // `ref` and `obj`).
    790     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
    791     LOG(FATAL) << "Could not find a free register";
    792     UNREACHABLE();
    793   }
    794 
    795   const Location out_;
    796   const Location ref_;
    797   const Location obj_;
    798   const uint32_t offset_;
    799   // An additional location containing an index to an array.
    800   // Only used for HArrayGet and the UnsafeGetObject &
    801   // UnsafeGetObjectVolatile intrinsics.
    802   const Location index_;
    803 
    804   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
    805 };
    806 
    807 // Slow path generating a read barrier for a GC root.
    808 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
    809  public:
    810   ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
    811       : SlowPathCodeARM64(instruction), out_(out), root_(root) {
    812     DCHECK(kEmitCompilerReadBarrier);
    813   }
    814 
    815   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    816     LocationSummary* locations = instruction_->GetLocations();
    817     Primitive::Type type = Primitive::kPrimNot;
    818     DCHECK(locations->CanCall());
    819     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
    820     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
    821         << "Unexpected instruction in read barrier for GC root slow path: "
    822         << instruction_->DebugName();
    823 
    824     __ Bind(GetEntryLabel());
    825     SaveLiveRegisters(codegen, locations);
    826 
    827     InvokeRuntimeCallingConvention calling_convention;
    828     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    829     // The argument of the ReadBarrierForRootSlow is not a managed
    830     // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
    831     // thus we need a 64-bit move here, and we cannot use
    832     //
    833     //   arm64_codegen->MoveLocation(
    834     //       LocationFrom(calling_convention.GetRegisterAt(0)),
    835     //       root_,
    836     //       type);
    837     //
    838     // which would emit a 32-bit move, as `type` is a (32-bit wide)
    839     // reference type (`Primitive::kPrimNot`).
    840     __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
    841     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
    842                                  instruction_,
    843                                  instruction_->GetDexPc(),
    844                                  this);
    845     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
    846     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
    847 
    848     RestoreLiveRegisters(codegen, locations);
    849     __ B(GetExitLabel());
    850   }
    851 
    852   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; }
    853 
    854  private:
    855   const Location out_;
    856   const Location root_;
    857 
    858   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
    859 };
    860 
    861 #undef __
    862 
    863 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(Primitive::Type type) {
    864   Location next_location;
    865   if (type == Primitive::kPrimVoid) {
    866     LOG(FATAL) << "Unreachable type " << type;
    867   }
    868 
    869   if (Primitive::IsFloatingPointType(type) &&
    870       (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
    871     next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
    872   } else if (!Primitive::IsFloatingPointType(type) &&
    873              (gp_index_ < calling_convention.GetNumberOfRegisters())) {
    874     next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
    875   } else {
    876     size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
    877     next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
    878                                                  : Location::StackSlot(stack_offset);
    879   }
    880 
    881   // Space on the stack is reserved for all arguments.
    882   stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
    883   return next_location;
    884 }
    885 
    886 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
    887   return LocationFrom(kArtMethodRegister);
    888 }
    889 
    890 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
    891                                        const Arm64InstructionSetFeatures& isa_features,
    892                                        const CompilerOptions& compiler_options,
    893                                        OptimizingCompilerStats* stats)
    894     : CodeGenerator(graph,
    895                     kNumberOfAllocatableRegisters,
    896                     kNumberOfAllocatableFPRegisters,
    897                     kNumberOfAllocatableRegisterPairs,
    898                     callee_saved_core_registers.list(),
    899                     callee_saved_fp_registers.list(),
    900                     compiler_options,
    901                     stats),
    902       block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    903       jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    904       location_builder_(graph, this),
    905       instruction_visitor_(graph, this),
    906       move_resolver_(graph->GetArena(), this),
    907       assembler_(graph->GetArena()),
    908       isa_features_(isa_features),
    909       uint32_literals_(std::less<uint32_t>(),
    910                        graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    911       uint64_literals_(std::less<uint64_t>(),
    912                        graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    913       method_patches_(MethodReferenceComparator(),
    914                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    915       call_patches_(MethodReferenceComparator(),
    916                     graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    917       relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    918       pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    919       boot_image_string_patches_(StringReferenceValueComparator(),
    920                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    921       pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
    922       boot_image_address_patches_(std::less<uint32_t>(),
    923                                   graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
    924   // Save the link register (containing the return address) to mimic Quick.
    925   AddAllocatedRegister(LocationFrom(lr));
    926 }
    927 
    928 #define __ GetVIXLAssembler()->
    929 
    930 void CodeGeneratorARM64::EmitJumpTables() {
    931   for (auto&& jump_table : jump_tables_) {
    932     jump_table->EmitTable(this);
    933   }
    934 }
    935 
    936 void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
    937   EmitJumpTables();
    938   // Ensure we emit the literal pool.
    939   __ FinalizeCode();
    940 
    941   CodeGenerator::Finalize(allocator);
    942 }
    943 
    944 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
    945   // Note: There are 6 kinds of moves:
    946   // 1. constant -> GPR/FPR (non-cycle)
    947   // 2. constant -> stack (non-cycle)
    948   // 3. GPR/FPR -> GPR/FPR
    949   // 4. GPR/FPR -> stack
    950   // 5. stack -> GPR/FPR
    951   // 6. stack -> stack (non-cycle)
    952   // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
    953   // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
    954   // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
    955   // dependency.
    956   vixl_temps_.Open(GetVIXLAssembler());
    957 }
    958 
    959 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
    960   vixl_temps_.Close();
    961 }
    962 
    963 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
    964   DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister ||
    965          kind == Location::kStackSlot || kind == Location::kDoubleStackSlot);
    966   kind = (kind == Location::kFpuRegister) ? Location::kFpuRegister : Location::kRegister;
    967   Location scratch = GetScratchLocation(kind);
    968   if (!scratch.Equals(Location::NoLocation())) {
    969     return scratch;
    970   }
    971   // Allocate from VIXL temp registers.
    972   if (kind == Location::kRegister) {
    973     scratch = LocationFrom(vixl_temps_.AcquireX());
    974   } else {
    975     DCHECK(kind == Location::kFpuRegister);
    976     scratch = LocationFrom(vixl_temps_.AcquireD());
    977   }
    978   AddScratchLocation(scratch);
    979   return scratch;
    980 }
    981 
    982 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
    983   if (loc.IsRegister()) {
    984     vixl_temps_.Release(XRegisterFrom(loc));
    985   } else {
    986     DCHECK(loc.IsFpuRegister());
    987     vixl_temps_.Release(DRegisterFrom(loc));
    988   }
    989   RemoveScratchLocation(loc);
    990 }
    991 
    992 void ParallelMoveResolverARM64::EmitMove(size_t index) {
    993   MoveOperands* move = moves_[index];
    994   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), Primitive::kPrimVoid);
    995 }
    996 
    997 void CodeGeneratorARM64::GenerateFrameEntry() {
    998   MacroAssembler* masm = GetVIXLAssembler();
    999   BlockPoolsScope block_pools(masm);
   1000   __ Bind(&frame_entry_label_);
   1001 
   1002   bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod();
   1003   if (do_overflow_check) {
   1004     UseScratchRegisterScope temps(masm);
   1005     Register temp = temps.AcquireX();
   1006     DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
   1007     __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64)));
   1008     __ Ldr(wzr, MemOperand(temp, 0));
   1009     RecordPcInfo(nullptr, 0);
   1010   }
   1011 
   1012   if (!HasEmptyFrame()) {
   1013     int frame_size = GetFrameSize();
   1014     // Stack layout:
   1015     //      sp[frame_size - 8]        : lr.
   1016     //      ...                       : other preserved core registers.
   1017     //      ...                       : other preserved fp registers.
   1018     //      ...                       : reserved frame space.
   1019     //      sp[0]                     : current method.
   1020     __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
   1021     GetAssembler()->cfi().AdjustCFAOffset(frame_size);
   1022     GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(),
   1023         frame_size - GetCoreSpillSize());
   1024     GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(),
   1025         frame_size - FrameEntrySpillSize());
   1026   }
   1027 }
   1028 
   1029 void CodeGeneratorARM64::GenerateFrameExit() {
   1030   BlockPoolsScope block_pools(GetVIXLAssembler());
   1031   GetAssembler()->cfi().RememberState();
   1032   if (!HasEmptyFrame()) {
   1033     int frame_size = GetFrameSize();
   1034     GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(),
   1035         frame_size - FrameEntrySpillSize());
   1036     GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(),
   1037         frame_size - GetCoreSpillSize());
   1038     __ Drop(frame_size);
   1039     GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
   1040   }
   1041   __ Ret();
   1042   GetAssembler()->cfi().RestoreState();
   1043   GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
   1044 }
   1045 
   1046 vixl::CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
   1047   DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
   1048   return vixl::CPURegList(vixl::CPURegister::kRegister, vixl::kXRegSize,
   1049                           core_spill_mask_);
   1050 }
   1051 
   1052 vixl::CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
   1053   DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
   1054                                          GetNumberOfFloatingPointRegisters()));
   1055   return vixl::CPURegList(vixl::CPURegister::kFPRegister, vixl::kDRegSize,
   1056                           fpu_spill_mask_);
   1057 }
   1058 
   1059 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
   1060   __ Bind(GetLabelOf(block));
   1061 }
   1062 
   1063 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
   1064   DCHECK(location.IsRegister());
   1065   __ Mov(RegisterFrom(location, Primitive::kPrimInt), value);
   1066 }
   1067 
   1068 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
   1069   if (location.IsRegister()) {
   1070     locations->AddTemp(location);
   1071   } else {
   1072     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
   1073   }
   1074 }
   1075 
   1076 void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
   1077   UseScratchRegisterScope temps(GetVIXLAssembler());
   1078   Register card = temps.AcquireX();
   1079   Register temp = temps.AcquireW();   // Index within the CardTable - 32bit.
   1080   vixl::Label done;
   1081   if (value_can_be_null) {
   1082     __ Cbz(value, &done);
   1083   }
   1084   __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64WordSize>().Int32Value()));
   1085   __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
   1086   __ Strb(card, MemOperand(card, temp.X()));
   1087   if (value_can_be_null) {
   1088     __ Bind(&done);
   1089   }
   1090 }
   1091 
   1092 void CodeGeneratorARM64::SetupBlockedRegisters() const {
   1093   // Blocked core registers:
   1094   //      lr        : Runtime reserved.
   1095   //      tr        : Runtime reserved.
   1096   //      xSuspend  : Runtime reserved. TODO: Unblock this when the runtime stops using it.
   1097   //      ip1       : VIXL core temp.
   1098   //      ip0       : VIXL core temp.
   1099   //
   1100   // Blocked fp registers:
   1101   //      d31       : VIXL fp temp.
   1102   CPURegList reserved_core_registers = vixl_reserved_core_registers;
   1103   reserved_core_registers.Combine(runtime_reserved_core_registers);
   1104   while (!reserved_core_registers.IsEmpty()) {
   1105     blocked_core_registers_[reserved_core_registers.PopLowestIndex().code()] = true;
   1106   }
   1107 
   1108   CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
   1109   while (!reserved_fp_registers.IsEmpty()) {
   1110     blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().code()] = true;
   1111   }
   1112 
   1113   if (GetGraph()->IsDebuggable()) {
   1114     // Stubs do not save callee-save floating point registers. If the graph
   1115     // is debuggable, we need to deal with these registers differently. For
   1116     // now, just block them.
   1117     CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
   1118     while (!reserved_fp_registers_debuggable.IsEmpty()) {
   1119       blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().code()] = true;
   1120     }
   1121   }
   1122 }
   1123 
   1124 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
   1125   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
   1126   __ Str(reg, MemOperand(sp, stack_index));
   1127   return kArm64WordSize;
   1128 }
   1129 
   1130 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
   1131   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
   1132   __ Ldr(reg, MemOperand(sp, stack_index));
   1133   return kArm64WordSize;
   1134 }
   1135 
   1136 size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1137   FPRegister reg = FPRegister(reg_id, kDRegSize);
   1138   __ Str(reg, MemOperand(sp, stack_index));
   1139   return kArm64WordSize;
   1140 }
   1141 
   1142 size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1143   FPRegister reg = FPRegister(reg_id, kDRegSize);
   1144   __ Ldr(reg, MemOperand(sp, stack_index));
   1145   return kArm64WordSize;
   1146 }
   1147 
   1148 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
   1149   stream << XRegister(reg);
   1150 }
   1151 
   1152 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
   1153   stream << DRegister(reg);
   1154 }
   1155 
   1156 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
   1157   if (constant->IsIntConstant()) {
   1158     __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
   1159   } else if (constant->IsLongConstant()) {
   1160     __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
   1161   } else if (constant->IsNullConstant()) {
   1162     __ Mov(Register(destination), 0);
   1163   } else if (constant->IsFloatConstant()) {
   1164     __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue());
   1165   } else {
   1166     DCHECK(constant->IsDoubleConstant());
   1167     __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue());
   1168   }
   1169 }
   1170 
   1171 
   1172 static bool CoherentConstantAndType(Location constant, Primitive::Type type) {
   1173   DCHECK(constant.IsConstant());
   1174   HConstant* cst = constant.GetConstant();
   1175   return (cst->IsIntConstant() && type == Primitive::kPrimInt) ||
   1176          // Null is mapped to a core W register, which we associate with kPrimInt.
   1177          (cst->IsNullConstant() && type == Primitive::kPrimInt) ||
   1178          (cst->IsLongConstant() && type == Primitive::kPrimLong) ||
   1179          (cst->IsFloatConstant() && type == Primitive::kPrimFloat) ||
   1180          (cst->IsDoubleConstant() && type == Primitive::kPrimDouble);
   1181 }
   1182 
   1183 void CodeGeneratorARM64::MoveLocation(Location destination,
   1184                                       Location source,
   1185                                       Primitive::Type dst_type) {
   1186   if (source.Equals(destination)) {
   1187     return;
   1188   }
   1189 
   1190   // A valid move can always be inferred from the destination and source
   1191   // locations. When moving from and to a register, the argument type can be
   1192   // used to generate 32bit instead of 64bit moves. In debug mode we also
   1193   // checks the coherency of the locations and the type.
   1194   bool unspecified_type = (dst_type == Primitive::kPrimVoid);
   1195 
   1196   if (destination.IsRegister() || destination.IsFpuRegister()) {
   1197     if (unspecified_type) {
   1198       HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
   1199       if (source.IsStackSlot() ||
   1200           (src_cst != nullptr && (src_cst->IsIntConstant()
   1201                                   || src_cst->IsFloatConstant()
   1202                                   || src_cst->IsNullConstant()))) {
   1203         // For stack slots and 32bit constants, a 64bit type is appropriate.
   1204         dst_type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat;
   1205       } else {
   1206         // If the source is a double stack slot or a 64bit constant, a 64bit
   1207         // type is appropriate. Else the source is a register, and since the
   1208         // type has not been specified, we chose a 64bit type to force a 64bit
   1209         // move.
   1210         dst_type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble;
   1211       }
   1212     }
   1213     DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(dst_type)) ||
   1214            (destination.IsRegister() && !Primitive::IsFloatingPointType(dst_type)));
   1215     CPURegister dst = CPURegisterFrom(destination, dst_type);
   1216     if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
   1217       DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
   1218       __ Ldr(dst, StackOperandFrom(source));
   1219     } else if (source.IsConstant()) {
   1220       DCHECK(CoherentConstantAndType(source, dst_type));
   1221       MoveConstant(dst, source.GetConstant());
   1222     } else if (source.IsRegister()) {
   1223       if (destination.IsRegister()) {
   1224         __ Mov(Register(dst), RegisterFrom(source, dst_type));
   1225       } else {
   1226         DCHECK(destination.IsFpuRegister());
   1227         Primitive::Type source_type = Primitive::Is64BitType(dst_type)
   1228             ? Primitive::kPrimLong
   1229             : Primitive::kPrimInt;
   1230         __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
   1231       }
   1232     } else {
   1233       DCHECK(source.IsFpuRegister());
   1234       if (destination.IsRegister()) {
   1235         Primitive::Type source_type = Primitive::Is64BitType(dst_type)
   1236             ? Primitive::kPrimDouble
   1237             : Primitive::kPrimFloat;
   1238         __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
   1239       } else {
   1240         DCHECK(destination.IsFpuRegister());
   1241         __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type));
   1242       }
   1243     }
   1244   } else {  // The destination is not a register. It must be a stack slot.
   1245     DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
   1246     if (source.IsRegister() || source.IsFpuRegister()) {
   1247       if (unspecified_type) {
   1248         if (source.IsRegister()) {
   1249           dst_type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong;
   1250         } else {
   1251           dst_type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble;
   1252         }
   1253       }
   1254       DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(dst_type)) &&
   1255              (source.IsFpuRegister() == Primitive::IsFloatingPointType(dst_type)));
   1256       __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
   1257     } else if (source.IsConstant()) {
   1258       DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
   1259           << source << " " << dst_type;
   1260       UseScratchRegisterScope temps(GetVIXLAssembler());
   1261       HConstant* src_cst = source.GetConstant();
   1262       CPURegister temp;
   1263       if (src_cst->IsIntConstant() || src_cst->IsNullConstant()) {
   1264         temp = temps.AcquireW();
   1265       } else if (src_cst->IsLongConstant()) {
   1266         temp = temps.AcquireX();
   1267       } else if (src_cst->IsFloatConstant()) {
   1268         temp = temps.AcquireS();
   1269       } else {
   1270         DCHECK(src_cst->IsDoubleConstant());
   1271         temp = temps.AcquireD();
   1272       }
   1273       MoveConstant(temp, src_cst);
   1274       __ Str(temp, StackOperandFrom(destination));
   1275     } else {
   1276       DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
   1277       DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
   1278       UseScratchRegisterScope temps(GetVIXLAssembler());
   1279       // There is generally less pressure on FP registers.
   1280       FPRegister temp = destination.IsDoubleStackSlot() ? temps.AcquireD() : temps.AcquireS();
   1281       __ Ldr(temp, StackOperandFrom(source));
   1282       __ Str(temp, StackOperandFrom(destination));
   1283     }
   1284   }
   1285 }
   1286 
   1287 void CodeGeneratorARM64::Load(Primitive::Type type,
   1288                               CPURegister dst,
   1289                               const MemOperand& src) {
   1290   switch (type) {
   1291     case Primitive::kPrimBoolean:
   1292       __ Ldrb(Register(dst), src);
   1293       break;
   1294     case Primitive::kPrimByte:
   1295       __ Ldrsb(Register(dst), src);
   1296       break;
   1297     case Primitive::kPrimShort:
   1298       __ Ldrsh(Register(dst), src);
   1299       break;
   1300     case Primitive::kPrimChar:
   1301       __ Ldrh(Register(dst), src);
   1302       break;
   1303     case Primitive::kPrimInt:
   1304     case Primitive::kPrimNot:
   1305     case Primitive::kPrimLong:
   1306     case Primitive::kPrimFloat:
   1307     case Primitive::kPrimDouble:
   1308       DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
   1309       __ Ldr(dst, src);
   1310       break;
   1311     case Primitive::kPrimVoid:
   1312       LOG(FATAL) << "Unreachable type " << type;
   1313   }
   1314 }
   1315 
   1316 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
   1317                                      CPURegister dst,
   1318                                      const MemOperand& src,
   1319                                      bool needs_null_check) {
   1320   MacroAssembler* masm = GetVIXLAssembler();
   1321   BlockPoolsScope block_pools(masm);
   1322   UseScratchRegisterScope temps(masm);
   1323   Register temp_base = temps.AcquireX();
   1324   Primitive::Type type = instruction->GetType();
   1325 
   1326   DCHECK(!src.IsPreIndex());
   1327   DCHECK(!src.IsPostIndex());
   1328 
   1329   // TODO(vixl): Let the MacroAssembler handle MemOperand.
   1330   __ Add(temp_base, src.base(), OperandFromMemOperand(src));
   1331   MemOperand base = MemOperand(temp_base);
   1332   switch (type) {
   1333     case Primitive::kPrimBoolean:
   1334       __ Ldarb(Register(dst), base);
   1335       if (needs_null_check) {
   1336         MaybeRecordImplicitNullCheck(instruction);
   1337       }
   1338       break;
   1339     case Primitive::kPrimByte:
   1340       __ Ldarb(Register(dst), base);
   1341       if (needs_null_check) {
   1342         MaybeRecordImplicitNullCheck(instruction);
   1343       }
   1344       __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
   1345       break;
   1346     case Primitive::kPrimChar:
   1347       __ Ldarh(Register(dst), base);
   1348       if (needs_null_check) {
   1349         MaybeRecordImplicitNullCheck(instruction);
   1350       }
   1351       break;
   1352     case Primitive::kPrimShort:
   1353       __ Ldarh(Register(dst), base);
   1354       if (needs_null_check) {
   1355         MaybeRecordImplicitNullCheck(instruction);
   1356       }
   1357       __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
   1358       break;
   1359     case Primitive::kPrimInt:
   1360     case Primitive::kPrimNot:
   1361     case Primitive::kPrimLong:
   1362       DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
   1363       __ Ldar(Register(dst), base);
   1364       if (needs_null_check) {
   1365         MaybeRecordImplicitNullCheck(instruction);
   1366       }
   1367       break;
   1368     case Primitive::kPrimFloat:
   1369     case Primitive::kPrimDouble: {
   1370       DCHECK(dst.IsFPRegister());
   1371       DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
   1372 
   1373       Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
   1374       __ Ldar(temp, base);
   1375       if (needs_null_check) {
   1376         MaybeRecordImplicitNullCheck(instruction);
   1377       }
   1378       __ Fmov(FPRegister(dst), temp);
   1379       break;
   1380     }
   1381     case Primitive::kPrimVoid:
   1382       LOG(FATAL) << "Unreachable type " << type;
   1383   }
   1384 }
   1385 
   1386 void CodeGeneratorARM64::Store(Primitive::Type type,
   1387                                CPURegister src,
   1388                                const MemOperand& dst) {
   1389   switch (type) {
   1390     case Primitive::kPrimBoolean:
   1391     case Primitive::kPrimByte:
   1392       __ Strb(Register(src), dst);
   1393       break;
   1394     case Primitive::kPrimChar:
   1395     case Primitive::kPrimShort:
   1396       __ Strh(Register(src), dst);
   1397       break;
   1398     case Primitive::kPrimInt:
   1399     case Primitive::kPrimNot:
   1400     case Primitive::kPrimLong:
   1401     case Primitive::kPrimFloat:
   1402     case Primitive::kPrimDouble:
   1403       DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
   1404       __ Str(src, dst);
   1405       break;
   1406     case Primitive::kPrimVoid:
   1407       LOG(FATAL) << "Unreachable type " << type;
   1408   }
   1409 }
   1410 
   1411 void CodeGeneratorARM64::StoreRelease(Primitive::Type type,
   1412                                       CPURegister src,
   1413                                       const MemOperand& dst) {
   1414   UseScratchRegisterScope temps(GetVIXLAssembler());
   1415   Register temp_base = temps.AcquireX();
   1416 
   1417   DCHECK(!dst.IsPreIndex());
   1418   DCHECK(!dst.IsPostIndex());
   1419 
   1420   // TODO(vixl): Let the MacroAssembler handle this.
   1421   Operand op = OperandFromMemOperand(dst);
   1422   __ Add(temp_base, dst.base(), op);
   1423   MemOperand base = MemOperand(temp_base);
   1424   switch (type) {
   1425     case Primitive::kPrimBoolean:
   1426     case Primitive::kPrimByte:
   1427       __ Stlrb(Register(src), base);
   1428       break;
   1429     case Primitive::kPrimChar:
   1430     case Primitive::kPrimShort:
   1431       __ Stlrh(Register(src), base);
   1432       break;
   1433     case Primitive::kPrimInt:
   1434     case Primitive::kPrimNot:
   1435     case Primitive::kPrimLong:
   1436       DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
   1437       __ Stlr(Register(src), base);
   1438       break;
   1439     case Primitive::kPrimFloat:
   1440     case Primitive::kPrimDouble: {
   1441       DCHECK(src.IsFPRegister());
   1442       DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
   1443 
   1444       Register temp = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
   1445       __ Fmov(temp, FPRegister(src));
   1446       __ Stlr(temp, base);
   1447       break;
   1448     }
   1449     case Primitive::kPrimVoid:
   1450       LOG(FATAL) << "Unreachable type " << type;
   1451   }
   1452 }
   1453 
   1454 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
   1455                                        HInstruction* instruction,
   1456                                        uint32_t dex_pc,
   1457                                        SlowPathCode* slow_path) {
   1458   InvokeRuntime(GetThreadOffset<kArm64WordSize>(entrypoint).Int32Value(),
   1459                 instruction,
   1460                 dex_pc,
   1461                 slow_path);
   1462 }
   1463 
   1464 void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset,
   1465                                        HInstruction* instruction,
   1466                                        uint32_t dex_pc,
   1467                                        SlowPathCode* slow_path) {
   1468   ValidateInvokeRuntime(instruction, slow_path);
   1469   BlockPoolsScope block_pools(GetVIXLAssembler());
   1470   __ Ldr(lr, MemOperand(tr, entry_point_offset));
   1471   __ Blr(lr);
   1472   RecordPcInfo(instruction, dex_pc, slow_path);
   1473 }
   1474 
   1475 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
   1476                                                                      vixl::Register class_reg) {
   1477   UseScratchRegisterScope temps(GetVIXLAssembler());
   1478   Register temp = temps.AcquireW();
   1479   size_t status_offset = mirror::Class::StatusOffset().SizeValue();
   1480 
   1481   // Even if the initialized flag is set, we need to ensure consistent memory ordering.
   1482   // TODO(vixl): Let the MacroAssembler handle MemOperand.
   1483   __ Add(temp, class_reg, status_offset);
   1484   __ Ldar(temp, HeapOperand(temp));
   1485   __ Cmp(temp, mirror::Class::kStatusInitialized);
   1486   __ B(lt, slow_path->GetEntryLabel());
   1487   __ Bind(slow_path->GetExitLabel());
   1488 }
   1489 
   1490 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
   1491   BarrierType type = BarrierAll;
   1492 
   1493   switch (kind) {
   1494     case MemBarrierKind::kAnyAny:
   1495     case MemBarrierKind::kAnyStore: {
   1496       type = BarrierAll;
   1497       break;
   1498     }
   1499     case MemBarrierKind::kLoadAny: {
   1500       type = BarrierReads;
   1501       break;
   1502     }
   1503     case MemBarrierKind::kStoreStore: {
   1504       type = BarrierWrites;
   1505       break;
   1506     }
   1507     default:
   1508       LOG(FATAL) << "Unexpected memory barrier " << kind;
   1509   }
   1510   __ Dmb(InnerShareable, type);
   1511 }
   1512 
   1513 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
   1514                                                          HBasicBlock* successor) {
   1515   SuspendCheckSlowPathARM64* slow_path =
   1516       down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
   1517   if (slow_path == nullptr) {
   1518     slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor);
   1519     instruction->SetSlowPath(slow_path);
   1520     codegen_->AddSlowPath(slow_path);
   1521     if (successor != nullptr) {
   1522       DCHECK(successor->IsLoopHeader());
   1523       codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
   1524     }
   1525   } else {
   1526     DCHECK_EQ(slow_path->GetSuccessor(), successor);
   1527   }
   1528 
   1529   UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
   1530   Register temp = temps.AcquireW();
   1531 
   1532   __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64WordSize>().SizeValue()));
   1533   if (successor == nullptr) {
   1534     __ Cbnz(temp, slow_path->GetEntryLabel());
   1535     __ Bind(slow_path->GetReturnLabel());
   1536   } else {
   1537     __ Cbz(temp, codegen_->GetLabelOf(successor));
   1538     __ B(slow_path->GetEntryLabel());
   1539     // slow_path will return to GetLabelOf(successor).
   1540   }
   1541 }
   1542 
   1543 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
   1544                                                              CodeGeneratorARM64* codegen)
   1545       : InstructionCodeGenerator(graph, codegen),
   1546         assembler_(codegen->GetAssembler()),
   1547         codegen_(codegen) {}
   1548 
   1549 #define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M)              \
   1550   /* No unimplemented IR. */
   1551 
   1552 #define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode
   1553 
   1554 enum UnimplementedInstructionBreakCode {
   1555   // Using a base helps identify when we hit such breakpoints.
   1556   UnimplementedInstructionBreakCodeBaseCode = 0x900,
   1557 #define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name),
   1558   FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION)
   1559 #undef ENUM_UNIMPLEMENTED_INSTRUCTION
   1560 };
   1561 
   1562 #define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name)                               \
   1563   void InstructionCodeGeneratorARM64::Visit##name(H##name* instr ATTRIBUTE_UNUSED) {  \
   1564     __ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name));                               \
   1565   }                                                                                   \
   1566   void LocationsBuilderARM64::Visit##name(H##name* instr) {                           \
   1567     LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \
   1568     locations->SetOut(Location::Any());                                               \
   1569   }
   1570   FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS)
   1571 #undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS
   1572 
   1573 #undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE
   1574 #undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION
   1575 
   1576 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
   1577   DCHECK_EQ(instr->InputCount(), 2U);
   1578   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
   1579   Primitive::Type type = instr->GetResultType();
   1580   switch (type) {
   1581     case Primitive::kPrimInt:
   1582     case Primitive::kPrimLong:
   1583       locations->SetInAt(0, Location::RequiresRegister());
   1584       locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
   1585       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1586       break;
   1587 
   1588     case Primitive::kPrimFloat:
   1589     case Primitive::kPrimDouble:
   1590       locations->SetInAt(0, Location::RequiresFpuRegister());
   1591       locations->SetInAt(1, Location::RequiresFpuRegister());
   1592       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   1593       break;
   1594 
   1595     default:
   1596       LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
   1597   }
   1598 }
   1599 
   1600 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction) {
   1601   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
   1602 
   1603   bool object_field_get_with_read_barrier =
   1604       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
   1605   LocationSummary* locations =
   1606       new (GetGraph()->GetArena()) LocationSummary(instruction,
   1607                                                    object_field_get_with_read_barrier ?
   1608                                                        LocationSummary::kCallOnSlowPath :
   1609                                                        LocationSummary::kNoCall);
   1610   locations->SetInAt(0, Location::RequiresRegister());
   1611   if (Primitive::IsFloatingPointType(instruction->GetType())) {
   1612     locations->SetOut(Location::RequiresFpuRegister());
   1613   } else {
   1614     // The output overlaps for an object field get when read barriers
   1615     // are enabled: we do not want the load to overwrite the object's
   1616     // location, as we need it to emit the read barrier.
   1617     locations->SetOut(
   1618         Location::RequiresRegister(),
   1619         object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
   1620   }
   1621 }
   1622 
   1623 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
   1624                                                    const FieldInfo& field_info) {
   1625   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
   1626   LocationSummary* locations = instruction->GetLocations();
   1627   Location base_loc = locations->InAt(0);
   1628   Location out = locations->Out();
   1629   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   1630   Primitive::Type field_type = field_info.GetFieldType();
   1631   BlockPoolsScope block_pools(GetVIXLAssembler());
   1632   MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
   1633 
   1634   if (field_type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   1635     // Object FieldGet with Baker's read barrier case.
   1636     MacroAssembler* masm = GetVIXLAssembler();
   1637     UseScratchRegisterScope temps(masm);
   1638     // /* HeapReference<Object> */ out = *(base + offset)
   1639     Register base = RegisterFrom(base_loc, Primitive::kPrimNot);
   1640     Register temp = temps.AcquireW();
   1641     // Note that potential implicit null checks are handled in this
   1642     // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
   1643     codegen_->GenerateFieldLoadWithBakerReadBarrier(
   1644         instruction,
   1645         out,
   1646         base,
   1647         offset,
   1648         temp,
   1649         /* needs_null_check */ true,
   1650         field_info.IsVolatile());
   1651   } else {
   1652     // General case.
   1653     if (field_info.IsVolatile()) {
   1654       // Note that a potential implicit null check is handled in this
   1655       // CodeGeneratorARM64::LoadAcquire call.
   1656       // NB: LoadAcquire will record the pc info if needed.
   1657       codegen_->LoadAcquire(
   1658           instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true);
   1659     } else {
   1660       codegen_->Load(field_type, OutputCPURegister(instruction), field);
   1661       codegen_->MaybeRecordImplicitNullCheck(instruction);
   1662     }
   1663     if (field_type == Primitive::kPrimNot) {
   1664       // If read barriers are enabled, emit read barriers other than
   1665       // Baker's using a slow path (and also unpoison the loaded
   1666       // reference, if heap poisoning is enabled).
   1667       codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
   1668     }
   1669   }
   1670 }
   1671 
   1672 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
   1673   LocationSummary* locations =
   1674       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   1675   locations->SetInAt(0, Location::RequiresRegister());
   1676   if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
   1677     locations->SetInAt(1, Location::RequiresFpuRegister());
   1678   } else {
   1679     locations->SetInAt(1, Location::RequiresRegister());
   1680   }
   1681 }
   1682 
   1683 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
   1684                                                    const FieldInfo& field_info,
   1685                                                    bool value_can_be_null) {
   1686   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
   1687   BlockPoolsScope block_pools(GetVIXLAssembler());
   1688 
   1689   Register obj = InputRegisterAt(instruction, 0);
   1690   CPURegister value = InputCPURegisterAt(instruction, 1);
   1691   CPURegister source = value;
   1692   Offset offset = field_info.GetFieldOffset();
   1693   Primitive::Type field_type = field_info.GetFieldType();
   1694 
   1695   {
   1696     // We use a block to end the scratch scope before the write barrier, thus
   1697     // freeing the temporary registers so they can be used in `MarkGCCard`.
   1698     UseScratchRegisterScope temps(GetVIXLAssembler());
   1699 
   1700     if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) {
   1701       DCHECK(value.IsW());
   1702       Register temp = temps.AcquireW();
   1703       __ Mov(temp, value.W());
   1704       GetAssembler()->PoisonHeapReference(temp.W());
   1705       source = temp;
   1706     }
   1707 
   1708     if (field_info.IsVolatile()) {
   1709       codegen_->StoreRelease(field_type, source, HeapOperand(obj, offset));
   1710       codegen_->MaybeRecordImplicitNullCheck(instruction);
   1711     } else {
   1712       codegen_->Store(field_type, source, HeapOperand(obj, offset));
   1713       codegen_->MaybeRecordImplicitNullCheck(instruction);
   1714     }
   1715   }
   1716 
   1717   if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
   1718     codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
   1719   }
   1720 }
   1721 
   1722 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
   1723   Primitive::Type type = instr->GetType();
   1724 
   1725   switch (type) {
   1726     case Primitive::kPrimInt:
   1727     case Primitive::kPrimLong: {
   1728       Register dst = OutputRegister(instr);
   1729       Register lhs = InputRegisterAt(instr, 0);
   1730       Operand rhs = InputOperandAt(instr, 1);
   1731       if (instr->IsAdd()) {
   1732         __ Add(dst, lhs, rhs);
   1733       } else if (instr->IsAnd()) {
   1734         __ And(dst, lhs, rhs);
   1735       } else if (instr->IsOr()) {
   1736         __ Orr(dst, lhs, rhs);
   1737       } else if (instr->IsSub()) {
   1738         __ Sub(dst, lhs, rhs);
   1739       } else if (instr->IsRor()) {
   1740         if (rhs.IsImmediate()) {
   1741           uint32_t shift = rhs.immediate() & (lhs.SizeInBits() - 1);
   1742           __ Ror(dst, lhs, shift);
   1743         } else {
   1744           // Ensure shift distance is in the same size register as the result. If
   1745           // we are rotating a long and the shift comes in a w register originally,
   1746           // we don't need to sxtw for use as an x since the shift distances are
   1747           // all & reg_bits - 1.
   1748           __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
   1749         }
   1750       } else {
   1751         DCHECK(instr->IsXor());
   1752         __ Eor(dst, lhs, rhs);
   1753       }
   1754       break;
   1755     }
   1756     case Primitive::kPrimFloat:
   1757     case Primitive::kPrimDouble: {
   1758       FPRegister dst = OutputFPRegister(instr);
   1759       FPRegister lhs = InputFPRegisterAt(instr, 0);
   1760       FPRegister rhs = InputFPRegisterAt(instr, 1);
   1761       if (instr->IsAdd()) {
   1762         __ Fadd(dst, lhs, rhs);
   1763       } else if (instr->IsSub()) {
   1764         __ Fsub(dst, lhs, rhs);
   1765       } else {
   1766         LOG(FATAL) << "Unexpected floating-point binary operation";
   1767       }
   1768       break;
   1769     }
   1770     default:
   1771       LOG(FATAL) << "Unexpected binary operation type " << type;
   1772   }
   1773 }
   1774 
   1775 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
   1776   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
   1777 
   1778   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
   1779   Primitive::Type type = instr->GetResultType();
   1780   switch (type) {
   1781     case Primitive::kPrimInt:
   1782     case Primitive::kPrimLong: {
   1783       locations->SetInAt(0, Location::RequiresRegister());
   1784       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
   1785       locations->SetOut(Location::RequiresRegister());
   1786       break;
   1787     }
   1788     default:
   1789       LOG(FATAL) << "Unexpected shift type " << type;
   1790   }
   1791 }
   1792 
   1793 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
   1794   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
   1795 
   1796   Primitive::Type type = instr->GetType();
   1797   switch (type) {
   1798     case Primitive::kPrimInt:
   1799     case Primitive::kPrimLong: {
   1800       Register dst = OutputRegister(instr);
   1801       Register lhs = InputRegisterAt(instr, 0);
   1802       Operand rhs = InputOperandAt(instr, 1);
   1803       if (rhs.IsImmediate()) {
   1804         uint32_t shift_value = rhs.immediate() &
   1805             (type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance);
   1806         if (instr->IsShl()) {
   1807           __ Lsl(dst, lhs, shift_value);
   1808         } else if (instr->IsShr()) {
   1809           __ Asr(dst, lhs, shift_value);
   1810         } else {
   1811           __ Lsr(dst, lhs, shift_value);
   1812         }
   1813       } else {
   1814         Register rhs_reg = dst.IsX() ? rhs.reg().X() : rhs.reg().W();
   1815 
   1816         if (instr->IsShl()) {
   1817           __ Lsl(dst, lhs, rhs_reg);
   1818         } else if (instr->IsShr()) {
   1819           __ Asr(dst, lhs, rhs_reg);
   1820         } else {
   1821           __ Lsr(dst, lhs, rhs_reg);
   1822         }
   1823       }
   1824       break;
   1825     }
   1826     default:
   1827       LOG(FATAL) << "Unexpected shift operation type " << type;
   1828   }
   1829 }
   1830 
   1831 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
   1832   HandleBinaryOp(instruction);
   1833 }
   1834 
   1835 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
   1836   HandleBinaryOp(instruction);
   1837 }
   1838 
   1839 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
   1840   HandleBinaryOp(instruction);
   1841 }
   1842 
   1843 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
   1844   HandleBinaryOp(instruction);
   1845 }
   1846 
   1847 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
   1848   DCHECK(Primitive::IsIntegralType(instr->GetType())) << instr->GetType();
   1849   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
   1850   locations->SetInAt(0, Location::RequiresRegister());
   1851   // There is no immediate variant of negated bitwise instructions in AArch64.
   1852   locations->SetInAt(1, Location::RequiresRegister());
   1853   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1854 }
   1855 
   1856 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
   1857   Register dst = OutputRegister(instr);
   1858   Register lhs = InputRegisterAt(instr, 0);
   1859   Register rhs = InputRegisterAt(instr, 1);
   1860 
   1861   switch (instr->GetOpKind()) {
   1862     case HInstruction::kAnd:
   1863       __ Bic(dst, lhs, rhs);
   1864       break;
   1865     case HInstruction::kOr:
   1866       __ Orn(dst, lhs, rhs);
   1867       break;
   1868     case HInstruction::kXor:
   1869       __ Eon(dst, lhs, rhs);
   1870       break;
   1871     default:
   1872       LOG(FATAL) << "Unreachable";
   1873   }
   1874 }
   1875 
   1876 void LocationsBuilderARM64::VisitArm64DataProcWithShifterOp(
   1877     HArm64DataProcWithShifterOp* instruction) {
   1878   DCHECK(instruction->GetType() == Primitive::kPrimInt ||
   1879          instruction->GetType() == Primitive::kPrimLong);
   1880   LocationSummary* locations =
   1881       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   1882   if (instruction->GetInstrKind() == HInstruction::kNeg) {
   1883     locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
   1884   } else {
   1885     locations->SetInAt(0, Location::RequiresRegister());
   1886   }
   1887   locations->SetInAt(1, Location::RequiresRegister());
   1888   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1889 }
   1890 
   1891 void InstructionCodeGeneratorARM64::VisitArm64DataProcWithShifterOp(
   1892     HArm64DataProcWithShifterOp* instruction) {
   1893   Primitive::Type type = instruction->GetType();
   1894   HInstruction::InstructionKind kind = instruction->GetInstrKind();
   1895   DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
   1896   Register out = OutputRegister(instruction);
   1897   Register left;
   1898   if (kind != HInstruction::kNeg) {
   1899     left = InputRegisterAt(instruction, 0);
   1900   }
   1901   // If this `HArm64DataProcWithShifterOp` was created by merging a type conversion as the
   1902   // shifter operand operation, the IR generating `right_reg` (input to the type
   1903   // conversion) can have a different type from the current instruction's type,
   1904   // so we manually indicate the type.
   1905   Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
   1906   int64_t shift_amount = instruction->GetShiftAmount() &
   1907       (type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance);
   1908 
   1909   Operand right_operand(0);
   1910 
   1911   HArm64DataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
   1912   if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind)) {
   1913     right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
   1914   } else {
   1915     right_operand = Operand(right_reg, helpers::ShiftFromOpKind(op_kind), shift_amount);
   1916   }
   1917 
   1918   // Logical binary operations do not support extension operations in the
   1919   // operand. Note that VIXL would still manage if it was passed by generating
   1920   // the extension as a separate instruction.
   1921   // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
   1922   DCHECK(!right_operand.IsExtendedRegister() ||
   1923          (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
   1924           kind != HInstruction::kNeg));
   1925   switch (kind) {
   1926     case HInstruction::kAdd:
   1927       __ Add(out, left, right_operand);
   1928       break;
   1929     case HInstruction::kAnd:
   1930       __ And(out, left, right_operand);
   1931       break;
   1932     case HInstruction::kNeg:
   1933       DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
   1934       __ Neg(out, right_operand);
   1935       break;
   1936     case HInstruction::kOr:
   1937       __ Orr(out, left, right_operand);
   1938       break;
   1939     case HInstruction::kSub:
   1940       __ Sub(out, left, right_operand);
   1941       break;
   1942     case HInstruction::kXor:
   1943       __ Eor(out, left, right_operand);
   1944       break;
   1945     default:
   1946       LOG(FATAL) << "Unexpected operation kind: " << kind;
   1947       UNREACHABLE();
   1948   }
   1949 }
   1950 
   1951 void LocationsBuilderARM64::VisitArm64IntermediateAddress(HArm64IntermediateAddress* instruction) {
   1952   // The read barrier instrumentation does not support the
   1953   // HArm64IntermediateAddress instruction yet.
   1954   DCHECK(!kEmitCompilerReadBarrier);
   1955   LocationSummary* locations =
   1956       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   1957   locations->SetInAt(0, Location::RequiresRegister());
   1958   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
   1959   locations->SetOut(Location::RequiresRegister());
   1960 }
   1961 
   1962 void InstructionCodeGeneratorARM64::VisitArm64IntermediateAddress(
   1963     HArm64IntermediateAddress* instruction) {
   1964   // The read barrier instrumentation does not support the
   1965   // HArm64IntermediateAddress instruction yet.
   1966   DCHECK(!kEmitCompilerReadBarrier);
   1967   __ Add(OutputRegister(instruction),
   1968          InputRegisterAt(instruction, 0),
   1969          Operand(InputOperandAt(instruction, 1)));
   1970 }
   1971 
   1972 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
   1973   LocationSummary* locations =
   1974       new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
   1975   HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
   1976   if (instr->GetOpKind() == HInstruction::kSub &&
   1977       accumulator->IsConstant() &&
   1978       accumulator->AsConstant()->IsArithmeticZero()) {
   1979     // Don't allocate register for Mneg instruction.
   1980   } else {
   1981     locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
   1982                        Location::RequiresRegister());
   1983   }
   1984   locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
   1985   locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
   1986   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1987 }
   1988 
   1989 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
   1990   Register res = OutputRegister(instr);
   1991   Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
   1992   Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
   1993 
   1994   // Avoid emitting code that could trigger Cortex A53's erratum 835769.
   1995   // This fixup should be carried out for all multiply-accumulate instructions:
   1996   // madd, msub, smaddl, smsubl, umaddl and umsubl.
   1997   if (instr->GetType() == Primitive::kPrimLong &&
   1998       codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
   1999     MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
   2000     vixl::Instruction* prev = masm->GetCursorAddress<vixl::Instruction*>() - vixl::kInstructionSize;
   2001     if (prev->IsLoadOrStore()) {
   2002       // Make sure we emit only exactly one nop.
   2003       vixl::CodeBufferCheckScope scope(masm,
   2004                                        vixl::kInstructionSize,
   2005                                        vixl::CodeBufferCheckScope::kCheck,
   2006                                        vixl::CodeBufferCheckScope::kExactSize);
   2007       __ nop();
   2008     }
   2009   }
   2010 
   2011   if (instr->GetOpKind() == HInstruction::kAdd) {
   2012     Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
   2013     __ Madd(res, mul_left, mul_right, accumulator);
   2014   } else {
   2015     DCHECK(instr->GetOpKind() == HInstruction::kSub);
   2016     HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
   2017     if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
   2018       __ Mneg(res, mul_left, mul_right);
   2019     } else {
   2020       Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
   2021       __ Msub(res, mul_left, mul_right, accumulator);
   2022     }
   2023   }
   2024 }
   2025 
   2026 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
   2027   bool object_array_get_with_read_barrier =
   2028       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
   2029   LocationSummary* locations =
   2030       new (GetGraph()->GetArena()) LocationSummary(instruction,
   2031                                                    object_array_get_with_read_barrier ?
   2032                                                        LocationSummary::kCallOnSlowPath :
   2033                                                        LocationSummary::kNoCall);
   2034   locations->SetInAt(0, Location::RequiresRegister());
   2035   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   2036   if (Primitive::IsFloatingPointType(instruction->GetType())) {
   2037     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   2038   } else {
   2039     // The output overlaps in the case of an object array get with
   2040     // read barriers enabled: we do not want the move to overwrite the
   2041     // array's location, as we need it to emit the read barrier.
   2042     locations->SetOut(
   2043         Location::RequiresRegister(),
   2044         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
   2045   }
   2046 }
   2047 
   2048 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
   2049   Primitive::Type type = instruction->GetType();
   2050   Register obj = InputRegisterAt(instruction, 0);
   2051   LocationSummary* locations = instruction->GetLocations();
   2052   Location index = locations->InAt(1);
   2053   uint32_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(type)).Uint32Value();
   2054   Location out = locations->Out();
   2055 
   2056   MacroAssembler* masm = GetVIXLAssembler();
   2057   UseScratchRegisterScope temps(masm);
   2058   // Block pools between `Load` and `MaybeRecordImplicitNullCheck`.
   2059   BlockPoolsScope block_pools(masm);
   2060 
   2061   if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   2062     // Object ArrayGet with Baker's read barrier case.
   2063     Register temp = temps.AcquireW();
   2064     // The read barrier instrumentation does not support the
   2065     // HArm64IntermediateAddress instruction yet.
   2066     DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
   2067     // Note that a potential implicit null check is handled in the
   2068     // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
   2069     codegen_->GenerateArrayLoadWithBakerReadBarrier(
   2070         instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ true);
   2071   } else {
   2072     // General case.
   2073     MemOperand source = HeapOperand(obj);
   2074     if (index.IsConstant()) {
   2075       offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type);
   2076       source = HeapOperand(obj, offset);
   2077     } else {
   2078       Register temp = temps.AcquireSameSizeAs(obj);
   2079       if (instruction->GetArray()->IsArm64IntermediateAddress()) {
   2080         // The read barrier instrumentation does not support the
   2081         // HArm64IntermediateAddress instruction yet.
   2082         DCHECK(!kEmitCompilerReadBarrier);
   2083         // We do not need to compute the intermediate address from the array: the
   2084         // input instruction has done it already. See the comment in
   2085         // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
   2086         if (kIsDebugBuild) {
   2087           HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
   2088           DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
   2089         }
   2090         temp = obj;
   2091       } else {
   2092         __ Add(temp, obj, offset);
   2093       }
   2094       source = HeapOperand(temp, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type));
   2095     }
   2096 
   2097     codegen_->Load(type, OutputCPURegister(instruction), source);
   2098     codegen_->MaybeRecordImplicitNullCheck(instruction);
   2099 
   2100     if (type == Primitive::kPrimNot) {
   2101       static_assert(
   2102           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   2103           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   2104       Location obj_loc = locations->InAt(0);
   2105       if (index.IsConstant()) {
   2106         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
   2107       } else {
   2108         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
   2109       }
   2110     }
   2111   }
   2112 }
   2113 
   2114 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
   2115   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   2116   locations->SetInAt(0, Location::RequiresRegister());
   2117   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2118 }
   2119 
   2120 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
   2121   BlockPoolsScope block_pools(GetVIXLAssembler());
   2122   __ Ldr(OutputRegister(instruction),
   2123          HeapOperand(InputRegisterAt(instruction, 0), mirror::Array::LengthOffset()));
   2124   codegen_->MaybeRecordImplicitNullCheck(instruction);
   2125 }
   2126 
   2127 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
   2128   Primitive::Type value_type = instruction->GetComponentType();
   2129 
   2130   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   2131   bool object_array_set_with_read_barrier =
   2132       kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
   2133   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   2134       instruction,
   2135       (may_need_runtime_call_for_type_check  || object_array_set_with_read_barrier) ?
   2136           LocationSummary::kCallOnSlowPath :
   2137           LocationSummary::kNoCall);
   2138   locations->SetInAt(0, Location::RequiresRegister());
   2139   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   2140   if (Primitive::IsFloatingPointType(value_type)) {
   2141     locations->SetInAt(2, Location::RequiresFpuRegister());
   2142   } else {
   2143     locations->SetInAt(2, Location::RequiresRegister());
   2144   }
   2145 }
   2146 
   2147 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
   2148   Primitive::Type value_type = instruction->GetComponentType();
   2149   LocationSummary* locations = instruction->GetLocations();
   2150   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   2151   bool needs_write_barrier =
   2152       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
   2153 
   2154   Register array = InputRegisterAt(instruction, 0);
   2155   CPURegister value = InputCPURegisterAt(instruction, 2);
   2156   CPURegister source = value;
   2157   Location index = locations->InAt(1);
   2158   size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
   2159   MemOperand destination = HeapOperand(array);
   2160   MacroAssembler* masm = GetVIXLAssembler();
   2161   BlockPoolsScope block_pools(masm);
   2162 
   2163   if (!needs_write_barrier) {
   2164     DCHECK(!may_need_runtime_call_for_type_check);
   2165     if (index.IsConstant()) {
   2166       offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
   2167       destination = HeapOperand(array, offset);
   2168     } else {
   2169       UseScratchRegisterScope temps(masm);
   2170       Register temp = temps.AcquireSameSizeAs(array);
   2171       if (instruction->GetArray()->IsArm64IntermediateAddress()) {
   2172         // The read barrier instrumentation does not support the
   2173         // HArm64IntermediateAddress instruction yet.
   2174         DCHECK(!kEmitCompilerReadBarrier);
   2175         // We do not need to compute the intermediate address from the array: the
   2176         // input instruction has done it already. See the comment in
   2177         // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
   2178         if (kIsDebugBuild) {
   2179           HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
   2180           DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
   2181         }
   2182         temp = array;
   2183       } else {
   2184         __ Add(temp, array, offset);
   2185       }
   2186       destination = HeapOperand(temp,
   2187                                 XRegisterFrom(index),
   2188                                 LSL,
   2189                                 Primitive::ComponentSizeShift(value_type));
   2190     }
   2191     codegen_->Store(value_type, value, destination);
   2192     codegen_->MaybeRecordImplicitNullCheck(instruction);
   2193   } else {
   2194     DCHECK(needs_write_barrier);
   2195     DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
   2196     vixl::Label done;
   2197     SlowPathCodeARM64* slow_path = nullptr;
   2198     {
   2199       // We use a block to end the scratch scope before the write barrier, thus
   2200       // freeing the temporary registers so they can be used in `MarkGCCard`.
   2201       UseScratchRegisterScope temps(masm);
   2202       Register temp = temps.AcquireSameSizeAs(array);
   2203       if (index.IsConstant()) {
   2204         offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
   2205         destination = HeapOperand(array, offset);
   2206       } else {
   2207         destination = HeapOperand(temp,
   2208                                   XRegisterFrom(index),
   2209                                   LSL,
   2210                                   Primitive::ComponentSizeShift(value_type));
   2211       }
   2212 
   2213       uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   2214       uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   2215       uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   2216 
   2217       if (may_need_runtime_call_for_type_check) {
   2218         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM64(instruction);
   2219         codegen_->AddSlowPath(slow_path);
   2220         if (instruction->GetValueCanBeNull()) {
   2221           vixl::Label non_zero;
   2222           __ Cbnz(Register(value), &non_zero);
   2223           if (!index.IsConstant()) {
   2224             __ Add(temp, array, offset);
   2225           }
   2226           __ Str(wzr, destination);
   2227           codegen_->MaybeRecordImplicitNullCheck(instruction);
   2228           __ B(&done);
   2229           __ Bind(&non_zero);
   2230         }
   2231 
   2232         if (kEmitCompilerReadBarrier) {
   2233           // When read barriers are enabled, the type checking
   2234           // instrumentation requires two read barriers:
   2235           //
   2236           //   __ Mov(temp2, temp);
   2237           //   // /* HeapReference<Class> */ temp = temp->component_type_
   2238           //   __ Ldr(temp, HeapOperand(temp, component_offset));
   2239           //   codegen_->GenerateReadBarrierSlow(
   2240           //       instruction, temp_loc, temp_loc, temp2_loc, component_offset);
   2241           //
   2242           //   // /* HeapReference<Class> */ temp2 = value->klass_
   2243           //   __ Ldr(temp2, HeapOperand(Register(value), class_offset));
   2244           //   codegen_->GenerateReadBarrierSlow(
   2245           //       instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp_loc);
   2246           //
   2247           //   __ Cmp(temp, temp2);
   2248           //
   2249           // However, the second read barrier may trash `temp`, as it
   2250           // is a temporary register, and as such would not be saved
   2251           // along with live registers before calling the runtime (nor
   2252           // restored afterwards).  So in this case, we bail out and
   2253           // delegate the work to the array set slow path.
   2254           //
   2255           // TODO: Extend the register allocator to support a new
   2256           // "(locally) live temp" location so as to avoid always
   2257           // going into the slow path when read barriers are enabled.
   2258           __ B(slow_path->GetEntryLabel());
   2259         } else {
   2260           Register temp2 = temps.AcquireSameSizeAs(array);
   2261           // /* HeapReference<Class> */ temp = array->klass_
   2262           __ Ldr(temp, HeapOperand(array, class_offset));
   2263           codegen_->MaybeRecordImplicitNullCheck(instruction);
   2264           GetAssembler()->MaybeUnpoisonHeapReference(temp);
   2265 
   2266           // /* HeapReference<Class> */ temp = temp->component_type_
   2267           __ Ldr(temp, HeapOperand(temp, component_offset));
   2268           // /* HeapReference<Class> */ temp2 = value->klass_
   2269           __ Ldr(temp2, HeapOperand(Register(value), class_offset));
   2270           // If heap poisoning is enabled, no need to unpoison `temp`
   2271           // nor `temp2`, as we are comparing two poisoned references.
   2272           __ Cmp(temp, temp2);
   2273 
   2274           if (instruction->StaticTypeOfArrayIsObjectArray()) {
   2275             vixl::Label do_put;
   2276             __ B(eq, &do_put);
   2277             // If heap poisoning is enabled, the `temp` reference has
   2278             // not been unpoisoned yet; unpoison it now.
   2279             GetAssembler()->MaybeUnpoisonHeapReference(temp);
   2280 
   2281             // /* HeapReference<Class> */ temp = temp->super_class_
   2282             __ Ldr(temp, HeapOperand(temp, super_offset));
   2283             // If heap poisoning is enabled, no need to unpoison
   2284             // `temp`, as we are comparing against null below.
   2285             __ Cbnz(temp, slow_path->GetEntryLabel());
   2286             __ Bind(&do_put);
   2287           } else {
   2288             __ B(ne, slow_path->GetEntryLabel());
   2289           }
   2290           temps.Release(temp2);
   2291         }
   2292       }
   2293 
   2294       if (kPoisonHeapReferences) {
   2295         Register temp2 = temps.AcquireSameSizeAs(array);
   2296           DCHECK(value.IsW());
   2297         __ Mov(temp2, value.W());
   2298         GetAssembler()->PoisonHeapReference(temp2);
   2299         source = temp2;
   2300       }
   2301 
   2302       if (!index.IsConstant()) {
   2303         __ Add(temp, array, offset);
   2304       }
   2305       __ Str(source, destination);
   2306 
   2307       if (!may_need_runtime_call_for_type_check) {
   2308         codegen_->MaybeRecordImplicitNullCheck(instruction);
   2309       }
   2310     }
   2311 
   2312     codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull());
   2313 
   2314     if (done.IsLinked()) {
   2315       __ Bind(&done);
   2316     }
   2317 
   2318     if (slow_path != nullptr) {
   2319       __ Bind(slow_path->GetExitLabel());
   2320     }
   2321   }
   2322 }
   2323 
   2324 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
   2325   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
   2326       ? LocationSummary::kCallOnSlowPath
   2327       : LocationSummary::kNoCall;
   2328   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   2329   locations->SetInAt(0, Location::RequiresRegister());
   2330   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
   2331   if (instruction->HasUses()) {
   2332     locations->SetOut(Location::SameAsFirstInput());
   2333   }
   2334 }
   2335 
   2336 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
   2337   BoundsCheckSlowPathARM64* slow_path =
   2338       new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(instruction);
   2339   codegen_->AddSlowPath(slow_path);
   2340 
   2341   __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1));
   2342   __ B(slow_path->GetEntryLabel(), hs);
   2343 }
   2344 
   2345 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
   2346   LocationSummary* locations =
   2347       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
   2348   locations->SetInAt(0, Location::RequiresRegister());
   2349   if (check->HasUses()) {
   2350     locations->SetOut(Location::SameAsFirstInput());
   2351   }
   2352 }
   2353 
   2354 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
   2355   // We assume the class is not null.
   2356   SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
   2357       check->GetLoadClass(), check, check->GetDexPc(), true);
   2358   codegen_->AddSlowPath(slow_path);
   2359   GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
   2360 }
   2361 
   2362 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
   2363   return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
   2364       || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
   2365 }
   2366 
   2367 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
   2368   FPRegister lhs_reg = InputFPRegisterAt(instruction, 0);
   2369   Location rhs_loc = instruction->GetLocations()->InAt(1);
   2370   if (rhs_loc.IsConstant()) {
   2371     // 0.0 is the only immediate that can be encoded directly in
   2372     // an FCMP instruction.
   2373     //
   2374     // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
   2375     // specify that in a floating-point comparison, positive zero
   2376     // and negative zero are considered equal, so we can use the
   2377     // literal 0.0 for both cases here.
   2378     //
   2379     // Note however that some methods (Float.equal, Float.compare,
   2380     // Float.compareTo, Double.equal, Double.compare,
   2381     // Double.compareTo, Math.max, Math.min, StrictMath.max,
   2382     // StrictMath.min) consider 0.0 to be (strictly) greater than
   2383     // -0.0. So if we ever translate calls to these methods into a
   2384     // HCompare instruction, we must handle the -0.0 case with
   2385     // care here.
   2386     DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
   2387     __ Fcmp(lhs_reg, 0.0);
   2388   } else {
   2389     __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
   2390   }
   2391 }
   2392 
   2393 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
   2394   LocationSummary* locations =
   2395       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
   2396   Primitive::Type in_type = compare->InputAt(0)->GetType();
   2397   switch (in_type) {
   2398     case Primitive::kPrimBoolean:
   2399     case Primitive::kPrimByte:
   2400     case Primitive::kPrimShort:
   2401     case Primitive::kPrimChar:
   2402     case Primitive::kPrimInt:
   2403     case Primitive::kPrimLong: {
   2404       locations->SetInAt(0, Location::RequiresRegister());
   2405       locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
   2406       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2407       break;
   2408     }
   2409     case Primitive::kPrimFloat:
   2410     case Primitive::kPrimDouble: {
   2411       locations->SetInAt(0, Location::RequiresFpuRegister());
   2412       locations->SetInAt(1,
   2413                          IsFloatingPointZeroConstant(compare->InputAt(1))
   2414                              ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
   2415                              : Location::RequiresFpuRegister());
   2416       locations->SetOut(Location::RequiresRegister());
   2417       break;
   2418     }
   2419     default:
   2420       LOG(FATAL) << "Unexpected type for compare operation " << in_type;
   2421   }
   2422 }
   2423 
   2424 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
   2425   Primitive::Type in_type = compare->InputAt(0)->GetType();
   2426 
   2427   //  0 if: left == right
   2428   //  1 if: left  > right
   2429   // -1 if: left  < right
   2430   switch (in_type) {
   2431     case Primitive::kPrimBoolean:
   2432     case Primitive::kPrimByte:
   2433     case Primitive::kPrimShort:
   2434     case Primitive::kPrimChar:
   2435     case Primitive::kPrimInt:
   2436     case Primitive::kPrimLong: {
   2437       Register result = OutputRegister(compare);
   2438       Register left = InputRegisterAt(compare, 0);
   2439       Operand right = InputOperandAt(compare, 1);
   2440       __ Cmp(left, right);
   2441       __ Cset(result, ne);          // result == +1 if NE or 0 otherwise
   2442       __ Cneg(result, result, lt);  // result == -1 if LT or unchanged otherwise
   2443       break;
   2444     }
   2445     case Primitive::kPrimFloat:
   2446     case Primitive::kPrimDouble: {
   2447       Register result = OutputRegister(compare);
   2448       GenerateFcmp(compare);
   2449       __ Cset(result, ne);
   2450       __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
   2451       break;
   2452     }
   2453     default:
   2454       LOG(FATAL) << "Unimplemented compare type " << in_type;
   2455   }
   2456 }
   2457 
   2458 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
   2459   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   2460 
   2461   if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
   2462     locations->SetInAt(0, Location::RequiresFpuRegister());
   2463     locations->SetInAt(1,
   2464                        IsFloatingPointZeroConstant(instruction->InputAt(1))
   2465                            ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
   2466                            : Location::RequiresFpuRegister());
   2467   } else {
   2468     // Integer cases.
   2469     locations->SetInAt(0, Location::RequiresRegister());
   2470     locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
   2471   }
   2472 
   2473   if (!instruction->IsEmittedAtUseSite()) {
   2474     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2475   }
   2476 }
   2477 
   2478 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
   2479   if (instruction->IsEmittedAtUseSite()) {
   2480     return;
   2481   }
   2482 
   2483   LocationSummary* locations = instruction->GetLocations();
   2484   Register res = RegisterFrom(locations->Out(), instruction->GetType());
   2485   IfCondition if_cond = instruction->GetCondition();
   2486 
   2487   if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
   2488     GenerateFcmp(instruction);
   2489     __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
   2490   } else {
   2491     // Integer cases.
   2492     Register lhs = InputRegisterAt(instruction, 0);
   2493     Operand rhs = InputOperandAt(instruction, 1);
   2494     __ Cmp(lhs, rhs);
   2495     __ Cset(res, ARM64Condition(if_cond));
   2496   }
   2497 }
   2498 
   2499 #define FOR_EACH_CONDITION_INSTRUCTION(M)                                                \
   2500   M(Equal)                                                                               \
   2501   M(NotEqual)                                                                            \
   2502   M(LessThan)                                                                            \
   2503   M(LessThanOrEqual)                                                                     \
   2504   M(GreaterThan)                                                                         \
   2505   M(GreaterThanOrEqual)                                                                  \
   2506   M(Below)                                                                               \
   2507   M(BelowOrEqual)                                                                        \
   2508   M(Above)                                                                               \
   2509   M(AboveOrEqual)
   2510 #define DEFINE_CONDITION_VISITORS(Name)                                                  \
   2511 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }         \
   2512 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
   2513 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
   2514 #undef DEFINE_CONDITION_VISITORS
   2515 #undef FOR_EACH_CONDITION_INSTRUCTION
   2516 
   2517 void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
   2518   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2519 
   2520   LocationSummary* locations = instruction->GetLocations();
   2521   Location second = locations->InAt(1);
   2522   DCHECK(second.IsConstant());
   2523 
   2524   Register out = OutputRegister(instruction);
   2525   Register dividend = InputRegisterAt(instruction, 0);
   2526   int64_t imm = Int64FromConstant(second.GetConstant());
   2527   DCHECK(imm == 1 || imm == -1);
   2528 
   2529   if (instruction->IsRem()) {
   2530     __ Mov(out, 0);
   2531   } else {
   2532     if (imm == 1) {
   2533       __ Mov(out, dividend);
   2534     } else {
   2535       __ Neg(out, dividend);
   2536     }
   2537   }
   2538 }
   2539 
   2540 void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
   2541   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2542 
   2543   LocationSummary* locations = instruction->GetLocations();
   2544   Location second = locations->InAt(1);
   2545   DCHECK(second.IsConstant());
   2546 
   2547   Register out = OutputRegister(instruction);
   2548   Register dividend = InputRegisterAt(instruction, 0);
   2549   int64_t imm = Int64FromConstant(second.GetConstant());
   2550   uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
   2551   int ctz_imm = CTZ(abs_imm);
   2552 
   2553   UseScratchRegisterScope temps(GetVIXLAssembler());
   2554   Register temp = temps.AcquireSameSizeAs(out);
   2555 
   2556   if (instruction->IsDiv()) {
   2557     __ Add(temp, dividend, abs_imm - 1);
   2558     __ Cmp(dividend, 0);
   2559     __ Csel(out, temp, dividend, lt);
   2560     if (imm > 0) {
   2561       __ Asr(out, out, ctz_imm);
   2562     } else {
   2563       __ Neg(out, Operand(out, ASR, ctz_imm));
   2564     }
   2565   } else {
   2566     int bits = instruction->GetResultType() == Primitive::kPrimInt ? 32 : 64;
   2567     __ Asr(temp, dividend, bits - 1);
   2568     __ Lsr(temp, temp, bits - ctz_imm);
   2569     __ Add(out, dividend, temp);
   2570     __ And(out, out, abs_imm - 1);
   2571     __ Sub(out, out, temp);
   2572   }
   2573 }
   2574 
   2575 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
   2576   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2577 
   2578   LocationSummary* locations = instruction->GetLocations();
   2579   Location second = locations->InAt(1);
   2580   DCHECK(second.IsConstant());
   2581 
   2582   Register out = OutputRegister(instruction);
   2583   Register dividend = InputRegisterAt(instruction, 0);
   2584   int64_t imm = Int64FromConstant(second.GetConstant());
   2585 
   2586   Primitive::Type type = instruction->GetResultType();
   2587   DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
   2588 
   2589   int64_t magic;
   2590   int shift;
   2591   CalculateMagicAndShiftForDivRem(imm, type == Primitive::kPrimLong /* is_long */, &magic, &shift);
   2592 
   2593   UseScratchRegisterScope temps(GetVIXLAssembler());
   2594   Register temp = temps.AcquireSameSizeAs(out);
   2595 
   2596   // temp = get_high(dividend * magic)
   2597   __ Mov(temp, magic);
   2598   if (type == Primitive::kPrimLong) {
   2599     __ Smulh(temp, dividend, temp);
   2600   } else {
   2601     __ Smull(temp.X(), dividend, temp);
   2602     __ Lsr(temp.X(), temp.X(), 32);
   2603   }
   2604 
   2605   if (imm > 0 && magic < 0) {
   2606     __ Add(temp, temp, dividend);
   2607   } else if (imm < 0 && magic > 0) {
   2608     __ Sub(temp, temp, dividend);
   2609   }
   2610 
   2611   if (shift != 0) {
   2612     __ Asr(temp, temp, shift);
   2613   }
   2614 
   2615   if (instruction->IsDiv()) {
   2616     __ Sub(out, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
   2617   } else {
   2618     __ Sub(temp, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
   2619     // TODO: Strength reduction for msub.
   2620     Register temp_imm = temps.AcquireSameSizeAs(out);
   2621     __ Mov(temp_imm, imm);
   2622     __ Msub(out, temp, temp_imm, dividend);
   2623   }
   2624 }
   2625 
   2626 void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
   2627   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2628   Primitive::Type type = instruction->GetResultType();
   2629   DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong);
   2630 
   2631   LocationSummary* locations = instruction->GetLocations();
   2632   Register out = OutputRegister(instruction);
   2633   Location second = locations->InAt(1);
   2634 
   2635   if (second.IsConstant()) {
   2636     int64_t imm = Int64FromConstant(second.GetConstant());
   2637 
   2638     if (imm == 0) {
   2639       // Do not generate anything. DivZeroCheck would prevent any code to be executed.
   2640     } else if (imm == 1 || imm == -1) {
   2641       DivRemOneOrMinusOne(instruction);
   2642     } else if (IsPowerOfTwo(AbsOrMin(imm))) {
   2643       DivRemByPowerOfTwo(instruction);
   2644     } else {
   2645       DCHECK(imm <= -2 || imm >= 2);
   2646       GenerateDivRemWithAnyConstant(instruction);
   2647     }
   2648   } else {
   2649     Register dividend = InputRegisterAt(instruction, 0);
   2650     Register divisor = InputRegisterAt(instruction, 1);
   2651     if (instruction->IsDiv()) {
   2652       __ Sdiv(out, dividend, divisor);
   2653     } else {
   2654       UseScratchRegisterScope temps(GetVIXLAssembler());
   2655       Register temp = temps.AcquireSameSizeAs(out);
   2656       __ Sdiv(temp, dividend, divisor);
   2657       __ Msub(out, temp, divisor, dividend);
   2658     }
   2659   }
   2660 }
   2661 
   2662 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
   2663   LocationSummary* locations =
   2664       new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall);
   2665   switch (div->GetResultType()) {
   2666     case Primitive::kPrimInt:
   2667     case Primitive::kPrimLong:
   2668       locations->SetInAt(0, Location::RequiresRegister());
   2669       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
   2670       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2671       break;
   2672 
   2673     case Primitive::kPrimFloat:
   2674     case Primitive::kPrimDouble:
   2675       locations->SetInAt(0, Location::RequiresFpuRegister());
   2676       locations->SetInAt(1, Location::RequiresFpuRegister());
   2677       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   2678       break;
   2679 
   2680     default:
   2681       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
   2682   }
   2683 }
   2684 
   2685 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
   2686   Primitive::Type type = div->GetResultType();
   2687   switch (type) {
   2688     case Primitive::kPrimInt:
   2689     case Primitive::kPrimLong:
   2690       GenerateDivRemIntegral(div);
   2691       break;
   2692 
   2693     case Primitive::kPrimFloat:
   2694     case Primitive::kPrimDouble:
   2695       __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
   2696       break;
   2697 
   2698     default:
   2699       LOG(FATAL) << "Unexpected div type " << type;
   2700   }
   2701 }
   2702 
   2703 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   2704   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
   2705       ? LocationSummary::kCallOnSlowPath
   2706       : LocationSummary::kNoCall;
   2707   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   2708   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
   2709   if (instruction->HasUses()) {
   2710     locations->SetOut(Location::SameAsFirstInput());
   2711   }
   2712 }
   2713 
   2714 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   2715   SlowPathCodeARM64* slow_path =
   2716       new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction);
   2717   codegen_->AddSlowPath(slow_path);
   2718   Location value = instruction->GetLocations()->InAt(0);
   2719 
   2720   Primitive::Type type = instruction->GetType();
   2721 
   2722   if (!Primitive::IsIntegralType(type)) {
   2723     LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
   2724     return;
   2725   }
   2726 
   2727   if (value.IsConstant()) {
   2728     int64_t divisor = Int64ConstantFrom(value);
   2729     if (divisor == 0) {
   2730       __ B(slow_path->GetEntryLabel());
   2731     } else {
   2732       // A division by a non-null constant is valid. We don't need to perform
   2733       // any check, so simply fall through.
   2734     }
   2735   } else {
   2736     __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
   2737   }
   2738 }
   2739 
   2740 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
   2741   LocationSummary* locations =
   2742       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   2743   locations->SetOut(Location::ConstantLocation(constant));
   2744 }
   2745 
   2746 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
   2747     HDoubleConstant* constant ATTRIBUTE_UNUSED) {
   2748   // Will be generated at use site.
   2749 }
   2750 
   2751 void LocationsBuilderARM64::VisitExit(HExit* exit) {
   2752   exit->SetLocations(nullptr);
   2753 }
   2754 
   2755 void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
   2756 }
   2757 
   2758 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
   2759   LocationSummary* locations =
   2760       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   2761   locations->SetOut(Location::ConstantLocation(constant));
   2762 }
   2763 
   2764 void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
   2765   // Will be generated at use site.
   2766 }
   2767 
   2768 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
   2769   DCHECK(!successor->IsExitBlock());
   2770   HBasicBlock* block = got->GetBlock();
   2771   HInstruction* previous = got->GetPrevious();
   2772   HLoopInformation* info = block->GetLoopInformation();
   2773 
   2774   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
   2775     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
   2776     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
   2777     return;
   2778   }
   2779   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
   2780     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
   2781   }
   2782   if (!codegen_->GoesToNextBlock(block, successor)) {
   2783     __ B(codegen_->GetLabelOf(successor));
   2784   }
   2785 }
   2786 
   2787 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
   2788   got->SetLocations(nullptr);
   2789 }
   2790 
   2791 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
   2792   HandleGoto(got, got->GetSuccessor());
   2793 }
   2794 
   2795 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
   2796   try_boundary->SetLocations(nullptr);
   2797 }
   2798 
   2799 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
   2800   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
   2801   if (!successor->IsExitBlock()) {
   2802     HandleGoto(try_boundary, successor);
   2803   }
   2804 }
   2805 
   2806 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
   2807                                                           size_t condition_input_index,
   2808                                                           vixl::Label* true_target,
   2809                                                           vixl::Label* false_target) {
   2810   // FP branching requires both targets to be explicit. If either of the targets
   2811   // is nullptr (fallthrough) use and bind `fallthrough_target` instead.
   2812   vixl::Label fallthrough_target;
   2813   HInstruction* cond = instruction->InputAt(condition_input_index);
   2814 
   2815   if (true_target == nullptr && false_target == nullptr) {
   2816     // Nothing to do. The code always falls through.
   2817     return;
   2818   } else if (cond->IsIntConstant()) {
   2819     // Constant condition, statically compared against "true" (integer value 1).
   2820     if (cond->AsIntConstant()->IsTrue()) {
   2821       if (true_target != nullptr) {
   2822         __ B(true_target);
   2823       }
   2824     } else {
   2825       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
   2826       if (false_target != nullptr) {
   2827         __ B(false_target);
   2828       }
   2829     }
   2830     return;
   2831   }
   2832 
   2833   // The following code generates these patterns:
   2834   //  (1) true_target == nullptr && false_target != nullptr
   2835   //        - opposite condition true => branch to false_target
   2836   //  (2) true_target != nullptr && false_target == nullptr
   2837   //        - condition true => branch to true_target
   2838   //  (3) true_target != nullptr && false_target != nullptr
   2839   //        - condition true => branch to true_target
   2840   //        - branch to false_target
   2841   if (IsBooleanValueOrMaterializedCondition(cond)) {
   2842     // The condition instruction has been materialized, compare the output to 0.
   2843     Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
   2844     DCHECK(cond_val.IsRegister());
   2845       if (true_target == nullptr) {
   2846       __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
   2847     } else {
   2848       __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
   2849     }
   2850   } else {
   2851     // The condition instruction has not been materialized, use its inputs as
   2852     // the comparison and its condition as the branch condition.
   2853     HCondition* condition = cond->AsCondition();
   2854 
   2855     Primitive::Type type = condition->InputAt(0)->GetType();
   2856     if (Primitive::IsFloatingPointType(type)) {
   2857       GenerateFcmp(condition);
   2858       if (true_target == nullptr) {
   2859         IfCondition opposite_condition = condition->GetOppositeCondition();
   2860         __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
   2861       } else {
   2862         __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
   2863       }
   2864     } else {
   2865       // Integer cases.
   2866       Register lhs = InputRegisterAt(condition, 0);
   2867       Operand rhs = InputOperandAt(condition, 1);
   2868 
   2869       Condition arm64_cond;
   2870       vixl::Label* non_fallthrough_target;
   2871       if (true_target == nullptr) {
   2872         arm64_cond = ARM64Condition(condition->GetOppositeCondition());
   2873         non_fallthrough_target = false_target;
   2874       } else {
   2875         arm64_cond = ARM64Condition(condition->GetCondition());
   2876         non_fallthrough_target = true_target;
   2877       }
   2878 
   2879       if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
   2880           rhs.IsImmediate() && (rhs.immediate() == 0)) {
   2881         switch (arm64_cond) {
   2882           case eq:
   2883             __ Cbz(lhs, non_fallthrough_target);
   2884             break;
   2885           case ne:
   2886             __ Cbnz(lhs, non_fallthrough_target);
   2887             break;
   2888           case lt:
   2889             // Test the sign bit and branch accordingly.
   2890             __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
   2891             break;
   2892           case ge:
   2893             // Test the sign bit and branch accordingly.
   2894             __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
   2895             break;
   2896           default:
   2897             // Without the `static_cast` the compiler throws an error for
   2898             // `-Werror=sign-promo`.
   2899             LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
   2900         }
   2901       } else {
   2902         __ Cmp(lhs, rhs);
   2903         __ B(arm64_cond, non_fallthrough_target);
   2904       }
   2905     }
   2906   }
   2907 
   2908   // If neither branch falls through (case 3), the conditional branch to `true_target`
   2909   // was already emitted (case 2) and we need to emit a jump to `false_target`.
   2910   if (true_target != nullptr && false_target != nullptr) {
   2911     __ B(false_target);
   2912   }
   2913 
   2914   if (fallthrough_target.IsLinked()) {
   2915     __ Bind(&fallthrough_target);
   2916   }
   2917 }
   2918 
   2919 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
   2920   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
   2921   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
   2922     locations->SetInAt(0, Location::RequiresRegister());
   2923   }
   2924 }
   2925 
   2926 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
   2927   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
   2928   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
   2929   vixl::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
   2930       nullptr : codegen_->GetLabelOf(true_successor);
   2931   vixl::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
   2932       nullptr : codegen_->GetLabelOf(false_successor);
   2933   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
   2934 }
   2935 
   2936 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
   2937   LocationSummary* locations = new (GetGraph()->GetArena())
   2938       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
   2939   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
   2940     locations->SetInAt(0, Location::RequiresRegister());
   2941   }
   2942 }
   2943 
   2944 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
   2945   SlowPathCodeARM64* slow_path =
   2946       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
   2947   GenerateTestAndBranch(deoptimize,
   2948                         /* condition_input_index */ 0,
   2949                         slow_path->GetEntryLabel(),
   2950                         /* false_target */ nullptr);
   2951 }
   2952 
   2953 enum SelectVariant {
   2954   kCsel,
   2955   kCselFalseConst,
   2956   kCselTrueConst,
   2957   kFcsel,
   2958 };
   2959 
   2960 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
   2961   return condition->IsCondition() &&
   2962          Primitive::IsFloatingPointType(condition->InputAt(0)->GetType());
   2963 }
   2964 
   2965 static inline bool IsRecognizedCselConstant(HInstruction* constant) {
   2966   if (constant->IsConstant()) {
   2967     int64_t value = Int64FromConstant(constant->AsConstant());
   2968     if ((value == -1) || (value == 0) || (value == 1)) {
   2969       return true;
   2970     }
   2971   }
   2972   return false;
   2973 }
   2974 
   2975 static inline SelectVariant GetSelectVariant(HSelect* select) {
   2976   if (Primitive::IsFloatingPointType(select->GetType())) {
   2977     return kFcsel;
   2978   } else if (IsRecognizedCselConstant(select->GetFalseValue())) {
   2979     return kCselFalseConst;
   2980   } else if (IsRecognizedCselConstant(select->GetTrueValue())) {
   2981     return kCselTrueConst;
   2982   } else {
   2983     return kCsel;
   2984   }
   2985 }
   2986 
   2987 static inline bool HasSwappedInputs(SelectVariant variant) {
   2988   return variant == kCselTrueConst;
   2989 }
   2990 
   2991 static inline Condition GetConditionForSelect(HCondition* condition, SelectVariant variant) {
   2992   IfCondition cond = HasSwappedInputs(variant) ? condition->GetOppositeCondition()
   2993                                                : condition->GetCondition();
   2994   return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
   2995                                                      : ARM64Condition(cond);
   2996 }
   2997 
   2998 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
   2999   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
   3000   switch (GetSelectVariant(select)) {
   3001     case kCsel:
   3002       locations->SetInAt(0, Location::RequiresRegister());
   3003       locations->SetInAt(1, Location::RequiresRegister());
   3004       locations->SetOut(Location::RequiresRegister());
   3005       break;
   3006     case kCselFalseConst:
   3007       locations->SetInAt(0, Location::ConstantLocation(select->InputAt(0)->AsConstant()));
   3008       locations->SetInAt(1, Location::RequiresRegister());
   3009       locations->SetOut(Location::RequiresRegister());
   3010       break;
   3011     case kCselTrueConst:
   3012       locations->SetInAt(0, Location::RequiresRegister());
   3013       locations->SetInAt(1, Location::ConstantLocation(select->InputAt(1)->AsConstant()));
   3014       locations->SetOut(Location::RequiresRegister());
   3015       break;
   3016     case kFcsel:
   3017       locations->SetInAt(0, Location::RequiresFpuRegister());
   3018       locations->SetInAt(1, Location::RequiresFpuRegister());
   3019       locations->SetOut(Location::RequiresFpuRegister());
   3020       break;
   3021   }
   3022   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
   3023     locations->SetInAt(2, Location::RequiresRegister());
   3024   }
   3025 }
   3026 
   3027 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
   3028   HInstruction* cond = select->GetCondition();
   3029   SelectVariant variant = GetSelectVariant(select);
   3030   Condition csel_cond;
   3031 
   3032   if (IsBooleanValueOrMaterializedCondition(cond)) {
   3033     if (cond->IsCondition() && cond->GetNext() == select) {
   3034       // Condition codes set from previous instruction.
   3035       csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
   3036     } else {
   3037       __ Cmp(InputRegisterAt(select, 2), 0);
   3038       csel_cond = HasSwappedInputs(variant) ? eq : ne;
   3039     }
   3040   } else if (IsConditionOnFloatingPointValues(cond)) {
   3041     GenerateFcmp(cond);
   3042     csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
   3043   } else {
   3044     __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
   3045     csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
   3046   }
   3047 
   3048   switch (variant) {
   3049     case kCsel:
   3050     case kCselFalseConst:
   3051       __ Csel(OutputRegister(select),
   3052               InputRegisterAt(select, 1),
   3053               InputOperandAt(select, 0),
   3054               csel_cond);
   3055       break;
   3056     case kCselTrueConst:
   3057       __ Csel(OutputRegister(select),
   3058               InputRegisterAt(select, 0),
   3059               InputOperandAt(select, 1),
   3060               csel_cond);
   3061       break;
   3062     case kFcsel:
   3063       __ Fcsel(OutputFPRegister(select),
   3064                InputFPRegisterAt(select, 1),
   3065                InputFPRegisterAt(select, 0),
   3066                csel_cond);
   3067       break;
   3068   }
   3069 }
   3070 
   3071 void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
   3072   new (GetGraph()->GetArena()) LocationSummary(info);
   3073 }
   3074 
   3075 void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) {
   3076   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
   3077 }
   3078 
   3079 void CodeGeneratorARM64::GenerateNop() {
   3080   __ Nop();
   3081 }
   3082 
   3083 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   3084   HandleFieldGet(instruction);
   3085 }
   3086 
   3087 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   3088   HandleFieldGet(instruction, instruction->GetFieldInfo());
   3089 }
   3090 
   3091 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   3092   HandleFieldSet(instruction);
   3093 }
   3094 
   3095 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   3096   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
   3097 }
   3098 
   3099 static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
   3100   return kEmitCompilerReadBarrier &&
   3101       (kUseBakerReadBarrier ||
   3102        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
   3103        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
   3104        type_check_kind == TypeCheckKind::kArrayObjectCheck);
   3105 }
   3106 
   3107 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
   3108   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   3109   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3110   switch (type_check_kind) {
   3111     case TypeCheckKind::kExactCheck:
   3112     case TypeCheckKind::kAbstractClassCheck:
   3113     case TypeCheckKind::kClassHierarchyCheck:
   3114     case TypeCheckKind::kArrayObjectCheck:
   3115       call_kind =
   3116           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
   3117       break;
   3118     case TypeCheckKind::kArrayCheck:
   3119     case TypeCheckKind::kUnresolvedCheck:
   3120     case TypeCheckKind::kInterfaceCheck:
   3121       call_kind = LocationSummary::kCallOnSlowPath;
   3122       break;
   3123   }
   3124 
   3125   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   3126   locations->SetInAt(0, Location::RequiresRegister());
   3127   locations->SetInAt(1, Location::RequiresRegister());
   3128   // The "out" register is used as a temporary, so it overlaps with the inputs.
   3129   // Note that TypeCheckSlowPathARM64 uses this register too.
   3130   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   3131   // When read barriers are enabled, we need a temporary register for
   3132   // some cases.
   3133   if (TypeCheckNeedsATemporary(type_check_kind)) {
   3134     locations->AddTemp(Location::RequiresRegister());
   3135   }
   3136 }
   3137 
   3138 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
   3139   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3140   LocationSummary* locations = instruction->GetLocations();
   3141   Location obj_loc = locations->InAt(0);
   3142   Register obj = InputRegisterAt(instruction, 0);
   3143   Register cls = InputRegisterAt(instruction, 1);
   3144   Location out_loc = locations->Out();
   3145   Register out = OutputRegister(instruction);
   3146   Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
   3147       locations->GetTemp(0) :
   3148       Location::NoLocation();
   3149   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   3150   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   3151   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   3152   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   3153 
   3154   vixl::Label done, zero;
   3155   SlowPathCodeARM64* slow_path = nullptr;
   3156 
   3157   // Return 0 if `obj` is null.
   3158   // Avoid null check if we know `obj` is not null.
   3159   if (instruction->MustDoNullCheck()) {
   3160     __ Cbz(obj, &zero);
   3161   }
   3162 
   3163   // /* HeapReference<Class> */ out = obj->klass_
   3164   GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
   3165 
   3166   switch (type_check_kind) {
   3167     case TypeCheckKind::kExactCheck: {
   3168       __ Cmp(out, cls);
   3169       __ Cset(out, eq);
   3170       if (zero.IsLinked()) {
   3171         __ B(&done);
   3172       }
   3173       break;
   3174     }
   3175 
   3176     case TypeCheckKind::kAbstractClassCheck: {
   3177       // If the class is abstract, we eagerly fetch the super class of the
   3178       // object to avoid doing a comparison we know will fail.
   3179       vixl::Label loop, success;
   3180       __ Bind(&loop);
   3181       // /* HeapReference<Class> */ out = out->super_class_
   3182       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
   3183       // If `out` is null, we use it for the result, and jump to `done`.
   3184       __ Cbz(out, &done);
   3185       __ Cmp(out, cls);
   3186       __ B(ne, &loop);
   3187       __ Mov(out, 1);
   3188       if (zero.IsLinked()) {
   3189         __ B(&done);
   3190       }
   3191       break;
   3192     }
   3193 
   3194     case TypeCheckKind::kClassHierarchyCheck: {
   3195       // Walk over the class hierarchy to find a match.
   3196       vixl::Label loop, success;
   3197       __ Bind(&loop);
   3198       __ Cmp(out, cls);
   3199       __ B(eq, &success);
   3200       // /* HeapReference<Class> */ out = out->super_class_
   3201       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
   3202       __ Cbnz(out, &loop);
   3203       // If `out` is null, we use it for the result, and jump to `done`.
   3204       __ B(&done);
   3205       __ Bind(&success);
   3206       __ Mov(out, 1);
   3207       if (zero.IsLinked()) {
   3208         __ B(&done);
   3209       }
   3210       break;
   3211     }
   3212 
   3213     case TypeCheckKind::kArrayObjectCheck: {
   3214       // Do an exact check.
   3215       vixl::Label exact_check;
   3216       __ Cmp(out, cls);
   3217       __ B(eq, &exact_check);
   3218       // Otherwise, we need to check that the object's class is a non-primitive array.
   3219       // /* HeapReference<Class> */ out = out->component_type_
   3220       GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
   3221       // If `out` is null, we use it for the result, and jump to `done`.
   3222       __ Cbz(out, &done);
   3223       __ Ldrh(out, HeapOperand(out, primitive_offset));
   3224       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
   3225       __ Cbnz(out, &zero);
   3226       __ Bind(&exact_check);
   3227       __ Mov(out, 1);
   3228       __ B(&done);
   3229       break;
   3230     }
   3231 
   3232     case TypeCheckKind::kArrayCheck: {
   3233       __ Cmp(out, cls);
   3234       DCHECK(locations->OnlyCallsOnSlowPath());
   3235       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
   3236                                                                       /* is_fatal */ false);
   3237       codegen_->AddSlowPath(slow_path);
   3238       __ B(ne, slow_path->GetEntryLabel());
   3239       __ Mov(out, 1);
   3240       if (zero.IsLinked()) {
   3241         __ B(&done);
   3242       }
   3243       break;
   3244     }
   3245 
   3246     case TypeCheckKind::kUnresolvedCheck:
   3247     case TypeCheckKind::kInterfaceCheck: {
   3248       // Note that we indeed only call on slow path, but we always go
   3249       // into the slow path for the unresolved and interface check
   3250       // cases.
   3251       //
   3252       // We cannot directly call the InstanceofNonTrivial runtime
   3253       // entry point without resorting to a type checking slow path
   3254       // here (i.e. by calling InvokeRuntime directly), as it would
   3255       // require to assign fixed registers for the inputs of this
   3256       // HInstanceOf instruction (following the runtime calling
   3257       // convention), which might be cluttered by the potential first
   3258       // read barrier emission at the beginning of this method.
   3259       //
   3260       // TODO: Introduce a new runtime entry point taking the object
   3261       // to test (instead of its class) as argument, and let it deal
   3262       // with the read barrier issues. This will let us refactor this
   3263       // case of the `switch` code as it was previously (with a direct
   3264       // call to the runtime not using a type checking slow path).
   3265       // This should also be beneficial for the other cases above.
   3266       DCHECK(locations->OnlyCallsOnSlowPath());
   3267       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
   3268                                                                       /* is_fatal */ false);
   3269       codegen_->AddSlowPath(slow_path);
   3270       __ B(slow_path->GetEntryLabel());
   3271       if (zero.IsLinked()) {
   3272         __ B(&done);
   3273       }
   3274       break;
   3275     }
   3276   }
   3277 
   3278   if (zero.IsLinked()) {
   3279     __ Bind(&zero);
   3280     __ Mov(out, 0);
   3281   }
   3282 
   3283   if (done.IsLinked()) {
   3284     __ Bind(&done);
   3285   }
   3286 
   3287   if (slow_path != nullptr) {
   3288     __ Bind(slow_path->GetExitLabel());
   3289   }
   3290 }
   3291 
   3292 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
   3293   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   3294   bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
   3295 
   3296   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3297   switch (type_check_kind) {
   3298     case TypeCheckKind::kExactCheck:
   3299     case TypeCheckKind::kAbstractClassCheck:
   3300     case TypeCheckKind::kClassHierarchyCheck:
   3301     case TypeCheckKind::kArrayObjectCheck:
   3302       call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
   3303           LocationSummary::kCallOnSlowPath :
   3304           LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
   3305       break;
   3306     case TypeCheckKind::kArrayCheck:
   3307     case TypeCheckKind::kUnresolvedCheck:
   3308     case TypeCheckKind::kInterfaceCheck:
   3309       call_kind = LocationSummary::kCallOnSlowPath;
   3310       break;
   3311   }
   3312 
   3313   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   3314   locations->SetInAt(0, Location::RequiresRegister());
   3315   locations->SetInAt(1, Location::RequiresRegister());
   3316   // Note that TypeCheckSlowPathARM64 uses this "temp" register too.
   3317   locations->AddTemp(Location::RequiresRegister());
   3318   // When read barriers are enabled, we need an additional temporary
   3319   // register for some cases.
   3320   if (TypeCheckNeedsATemporary(type_check_kind)) {
   3321     locations->AddTemp(Location::RequiresRegister());
   3322   }
   3323 }
   3324 
   3325 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
   3326   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3327   LocationSummary* locations = instruction->GetLocations();
   3328   Location obj_loc = locations->InAt(0);
   3329   Register obj = InputRegisterAt(instruction, 0);
   3330   Register cls = InputRegisterAt(instruction, 1);
   3331   Location temp_loc = locations->GetTemp(0);
   3332   Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
   3333       locations->GetTemp(1) :
   3334       Location::NoLocation();
   3335   Register temp = WRegisterFrom(temp_loc);
   3336   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   3337   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   3338   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   3339   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   3340 
   3341   bool is_type_check_slow_path_fatal =
   3342       (type_check_kind == TypeCheckKind::kExactCheck ||
   3343        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
   3344        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
   3345        type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
   3346       !instruction->CanThrowIntoCatchBlock();
   3347   SlowPathCodeARM64* type_check_slow_path =
   3348       new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
   3349                                                           is_type_check_slow_path_fatal);
   3350   codegen_->AddSlowPath(type_check_slow_path);
   3351 
   3352   vixl::Label done;
   3353   // Avoid null check if we know obj is not null.
   3354   if (instruction->MustDoNullCheck()) {
   3355     __ Cbz(obj, &done);
   3356   }
   3357 
   3358   // /* HeapReference<Class> */ temp = obj->klass_
   3359   GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
   3360 
   3361   switch (type_check_kind) {
   3362     case TypeCheckKind::kExactCheck:
   3363     case TypeCheckKind::kArrayCheck: {
   3364       __ Cmp(temp, cls);
   3365       // Jump to slow path for throwing the exception or doing a
   3366       // more involved array check.
   3367       __ B(ne, type_check_slow_path->GetEntryLabel());
   3368       break;
   3369     }
   3370 
   3371     case TypeCheckKind::kAbstractClassCheck: {
   3372       // If the class is abstract, we eagerly fetch the super class of the
   3373       // object to avoid doing a comparison we know will fail.
   3374       vixl::Label loop, compare_classes;
   3375       __ Bind(&loop);
   3376       // /* HeapReference<Class> */ temp = temp->super_class_
   3377       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
   3378 
   3379       // If the class reference currently in `temp` is not null, jump
   3380       // to the `compare_classes` label to compare it with the checked
   3381       // class.
   3382       __ Cbnz(temp, &compare_classes);
   3383       // Otherwise, jump to the slow path to throw the exception.
   3384       //
   3385       // But before, move back the object's class into `temp` before
   3386       // going into the slow path, as it has been overwritten in the
   3387       // meantime.
   3388       // /* HeapReference<Class> */ temp = obj->klass_
   3389       GenerateReferenceLoadTwoRegisters(
   3390           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
   3391       __ B(type_check_slow_path->GetEntryLabel());
   3392 
   3393       __ Bind(&compare_classes);
   3394       __ Cmp(temp, cls);
   3395       __ B(ne, &loop);
   3396       break;
   3397     }
   3398 
   3399     case TypeCheckKind::kClassHierarchyCheck: {
   3400       // Walk over the class hierarchy to find a match.
   3401       vixl::Label loop;
   3402       __ Bind(&loop);
   3403       __ Cmp(temp, cls);
   3404       __ B(eq, &done);
   3405 
   3406       // /* HeapReference<Class> */ temp = temp->super_class_
   3407       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
   3408 
   3409       // If the class reference currently in `temp` is not null, jump
   3410       // back at the beginning of the loop.
   3411       __ Cbnz(temp, &loop);
   3412       // Otherwise, jump to the slow path to throw the exception.
   3413       //
   3414       // But before, move back the object's class into `temp` before
   3415       // going into the slow path, as it has been overwritten in the
   3416       // meantime.
   3417       // /* HeapReference<Class> */ temp = obj->klass_
   3418       GenerateReferenceLoadTwoRegisters(
   3419           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
   3420       __ B(type_check_slow_path->GetEntryLabel());
   3421       break;
   3422     }
   3423 
   3424     case TypeCheckKind::kArrayObjectCheck: {
   3425       // Do an exact check.
   3426       vixl::Label check_non_primitive_component_type;
   3427       __ Cmp(temp, cls);
   3428       __ B(eq, &done);
   3429 
   3430       // Otherwise, we need to check that the object's class is a non-primitive array.
   3431       // /* HeapReference<Class> */ temp = temp->component_type_
   3432       GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
   3433 
   3434       // If the component type is not null (i.e. the object is indeed
   3435       // an array), jump to label `check_non_primitive_component_type`
   3436       // to further check that this component type is not a primitive
   3437       // type.
   3438       __ Cbnz(temp, &check_non_primitive_component_type);
   3439       // Otherwise, jump to the slow path to throw the exception.
   3440       //
   3441       // But before, move back the object's class into `temp` before
   3442       // going into the slow path, as it has been overwritten in the
   3443       // meantime.
   3444       // /* HeapReference<Class> */ temp = obj->klass_
   3445       GenerateReferenceLoadTwoRegisters(
   3446           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
   3447       __ B(type_check_slow_path->GetEntryLabel());
   3448 
   3449       __ Bind(&check_non_primitive_component_type);
   3450       __ Ldrh(temp, HeapOperand(temp, primitive_offset));
   3451       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
   3452       __ Cbz(temp, &done);
   3453       // Same comment as above regarding `temp` and the slow path.
   3454       // /* HeapReference<Class> */ temp = obj->klass_
   3455       GenerateReferenceLoadTwoRegisters(
   3456           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
   3457       __ B(type_check_slow_path->GetEntryLabel());
   3458       break;
   3459     }
   3460 
   3461     case TypeCheckKind::kUnresolvedCheck:
   3462     case TypeCheckKind::kInterfaceCheck:
   3463       // We always go into the type check slow path for the unresolved
   3464       // and interface check cases.
   3465       //
   3466       // We cannot directly call the CheckCast runtime entry point
   3467       // without resorting to a type checking slow path here (i.e. by
   3468       // calling InvokeRuntime directly), as it would require to
   3469       // assign fixed registers for the inputs of this HInstanceOf
   3470       // instruction (following the runtime calling convention), which
   3471       // might be cluttered by the potential first read barrier
   3472       // emission at the beginning of this method.
   3473       //
   3474       // TODO: Introduce a new runtime entry point taking the object
   3475       // to test (instead of its class) as argument, and let it deal
   3476       // with the read barrier issues. This will let us refactor this
   3477       // case of the `switch` code as it was previously (with a direct
   3478       // call to the runtime not using a type checking slow path).
   3479       // This should also be beneficial for the other cases above.
   3480       __ B(type_check_slow_path->GetEntryLabel());
   3481       break;
   3482   }
   3483   __ Bind(&done);
   3484 
   3485   __ Bind(type_check_slow_path->GetExitLabel());
   3486 }
   3487 
   3488 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
   3489   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   3490   locations->SetOut(Location::ConstantLocation(constant));
   3491 }
   3492 
   3493 void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
   3494   // Will be generated at use site.
   3495 }
   3496 
   3497 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
   3498   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   3499   locations->SetOut(Location::ConstantLocation(constant));
   3500 }
   3501 
   3502 void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
   3503   // Will be generated at use site.
   3504 }
   3505 
   3506 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   3507   // The trampoline uses the same calling convention as dex calling conventions,
   3508   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
   3509   // the method_idx.
   3510   HandleInvoke(invoke);
   3511 }
   3512 
   3513 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   3514   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
   3515 }
   3516 
   3517 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
   3518   InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
   3519   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
   3520 }
   3521 
   3522 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
   3523   HandleInvoke(invoke);
   3524 }
   3525 
   3526 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
   3527   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
   3528   LocationSummary* locations = invoke->GetLocations();
   3529   Register temp = XRegisterFrom(locations->GetTemp(0));
   3530   Location receiver = locations->InAt(0);
   3531   Offset class_offset = mirror::Object::ClassOffset();
   3532   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
   3533 
   3534   // The register ip1 is required to be used for the hidden argument in
   3535   // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
   3536   MacroAssembler* masm = GetVIXLAssembler();
   3537   UseScratchRegisterScope scratch_scope(masm);
   3538   BlockPoolsScope block_pools(masm);
   3539   scratch_scope.Exclude(ip1);
   3540   __ Mov(ip1, invoke->GetDexMethodIndex());
   3541 
   3542   if (receiver.IsStackSlot()) {
   3543     __ Ldr(temp.W(), StackOperandFrom(receiver));
   3544     // /* HeapReference<Class> */ temp = temp->klass_
   3545     __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
   3546   } else {
   3547     // /* HeapReference<Class> */ temp = receiver->klass_
   3548     __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
   3549   }
   3550   codegen_->MaybeRecordImplicitNullCheck(invoke);
   3551   // Instead of simply (possibly) unpoisoning `temp` here, we should
   3552   // emit a read barrier for the previous class reference load.
   3553   // However this is not required in practice, as this is an
   3554   // intermediate/temporary reference and because the current
   3555   // concurrent copying collector keeps the from-space memory
   3556   // intact/accessible until the end of the marking phase (the
   3557   // concurrent copying collector may not in the future).
   3558   GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
   3559   __ Ldr(temp,
   3560       MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
   3561   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   3562       invoke->GetImtIndex() % ImTable::kSize, kArm64PointerSize));
   3563   // temp = temp->GetImtEntryAt(method_offset);
   3564   __ Ldr(temp, MemOperand(temp, method_offset));
   3565   // lr = temp->GetEntryPoint();
   3566   __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
   3567   // lr();
   3568   __ Blr(lr);
   3569   DCHECK(!codegen_->IsLeafMethod());
   3570   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   3571 }
   3572 
   3573 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   3574   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
   3575   if (intrinsic.TryDispatch(invoke)) {
   3576     return;
   3577   }
   3578 
   3579   HandleInvoke(invoke);
   3580 }
   3581 
   3582 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   3583   // Explicit clinit checks triggered by static invokes must have been pruned by
   3584   // art::PrepareForRegisterAllocation.
   3585   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   3586 
   3587   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
   3588   if (intrinsic.TryDispatch(invoke)) {
   3589     return;
   3590   }
   3591 
   3592   HandleInvoke(invoke);
   3593 }
   3594 
   3595 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
   3596   if (invoke->GetLocations()->Intrinsified()) {
   3597     IntrinsicCodeGeneratorARM64 intrinsic(codegen);
   3598     intrinsic.Dispatch(invoke);
   3599     return true;
   3600   }
   3601   return false;
   3602 }
   3603 
   3604 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
   3605       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
   3606       MethodReference target_method ATTRIBUTE_UNUSED) {
   3607   // On ARM64 we support all dispatch types.
   3608   return desired_dispatch_info;
   3609 }
   3610 
   3611 void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
   3612   // For better instruction scheduling we load the direct code pointer before the method pointer.
   3613   bool direct_code_loaded = false;
   3614   switch (invoke->GetCodePtrLocation()) {
   3615     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
   3616       // LR = code address from literal pool with link-time patch.
   3617       __ Ldr(lr, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
   3618       direct_code_loaded = true;
   3619       break;
   3620     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
   3621       // LR = invoke->GetDirectCodePtr();
   3622       __ Ldr(lr, DeduplicateUint64Literal(invoke->GetDirectCodePtr()));
   3623       direct_code_loaded = true;
   3624       break;
   3625     default:
   3626       break;
   3627   }
   3628 
   3629   // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
   3630   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
   3631   switch (invoke->GetMethodLoadKind()) {
   3632     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
   3633       // temp = thread->string_init_entrypoint
   3634       __ Ldr(XRegisterFrom(temp), MemOperand(tr, invoke->GetStringInitOffset()));
   3635       break;
   3636     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
   3637       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   3638       break;
   3639     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
   3640       // Load method address from literal pool.
   3641       __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
   3642       break;
   3643     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
   3644       // Load method address from literal pool with a link-time patch.
   3645       __ Ldr(XRegisterFrom(temp),
   3646              DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
   3647       break;
   3648     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
   3649       // Add ADRP with its PC-relative DexCache access patch.
   3650       const DexFile& dex_file = *invoke->GetTargetMethod().dex_file;
   3651       uint32_t element_offset = invoke->GetDexCacheArrayOffset();
   3652       vixl::Label* adrp_label = NewPcRelativeDexCacheArrayPatch(dex_file, element_offset);
   3653       {
   3654         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   3655         __ Bind(adrp_label);
   3656         __ adrp(XRegisterFrom(temp), /* offset placeholder */ 0);
   3657       }
   3658       // Add LDR with its PC-relative DexCache access patch.
   3659       vixl::Label* ldr_label =
   3660           NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label);
   3661       {
   3662         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   3663         __ Bind(ldr_label);
   3664         __ ldr(XRegisterFrom(temp), MemOperand(XRegisterFrom(temp), /* offset placeholder */ 0));
   3665       }
   3666       break;
   3667     }
   3668     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
   3669       Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   3670       Register reg = XRegisterFrom(temp);
   3671       Register method_reg;
   3672       if (current_method.IsRegister()) {
   3673         method_reg = XRegisterFrom(current_method);
   3674       } else {
   3675         DCHECK(invoke->GetLocations()->Intrinsified());
   3676         DCHECK(!current_method.IsValid());
   3677         method_reg = reg;
   3678         __ Ldr(reg.X(), MemOperand(sp, kCurrentMethodStackOffset));
   3679       }
   3680 
   3681       // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
   3682       __ Ldr(reg.X(),
   3683              MemOperand(method_reg.X(),
   3684                         ArtMethod::DexCacheResolvedMethodsOffset(kArm64WordSize).Int32Value()));
   3685       // temp = temp[index_in_cache];
   3686       // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
   3687       uint32_t index_in_cache = invoke->GetDexMethodIndex();
   3688     __ Ldr(reg.X(), MemOperand(reg.X(), GetCachePointerOffset(index_in_cache)));
   3689       break;
   3690     }
   3691   }
   3692 
   3693   switch (invoke->GetCodePtrLocation()) {
   3694     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
   3695       __ Bl(&frame_entry_label_);
   3696       break;
   3697     case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
   3698       relative_call_patches_.emplace_back(invoke->GetTargetMethod());
   3699       vixl::Label* label = &relative_call_patches_.back().label;
   3700       vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   3701       __ Bind(label);
   3702       __ bl(0);  // Branch and link to itself. This will be overriden at link time.
   3703       break;
   3704     }
   3705     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
   3706     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
   3707       // LR prepared above for better instruction scheduling.
   3708       DCHECK(direct_code_loaded);
   3709       // lr()
   3710       __ Blr(lr);
   3711       break;
   3712     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
   3713       // LR = callee_method->entry_point_from_quick_compiled_code_;
   3714       __ Ldr(lr, MemOperand(
   3715           XRegisterFrom(callee_method),
   3716           ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value()));
   3717       // lr()
   3718       __ Blr(lr);
   3719       break;
   3720   }
   3721 
   3722   DCHECK(!IsLeafMethod());
   3723 }
   3724 
   3725 void CodeGeneratorARM64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
   3726   // Use the calling convention instead of the location of the receiver, as
   3727   // intrinsics may have put the receiver in a different register. In the intrinsics
   3728   // slow path, the arguments have been moved to the right place, so here we are
   3729   // guaranteed that the receiver is the first register of the calling convention.
   3730   InvokeDexCallingConvention calling_convention;
   3731   Register receiver = calling_convention.GetRegisterAt(0);
   3732   Register temp = XRegisterFrom(temp_in);
   3733   size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   3734       invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
   3735   Offset class_offset = mirror::Object::ClassOffset();
   3736   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
   3737 
   3738   BlockPoolsScope block_pools(GetVIXLAssembler());
   3739 
   3740   DCHECK(receiver.IsRegister());
   3741   // /* HeapReference<Class> */ temp = receiver->klass_
   3742   __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
   3743   MaybeRecordImplicitNullCheck(invoke);
   3744   // Instead of simply (possibly) unpoisoning `temp` here, we should
   3745   // emit a read barrier for the previous class reference load.
   3746   // intermediate/temporary reference and because the current
   3747   // concurrent copying collector keeps the from-space memory
   3748   // intact/accessible until the end of the marking phase (the
   3749   // concurrent copying collector may not in the future).
   3750   GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
   3751   // temp = temp->GetMethodAt(method_offset);
   3752   __ Ldr(temp, MemOperand(temp, method_offset));
   3753   // lr = temp->GetEntryPoint();
   3754   __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
   3755   // lr();
   3756   __ Blr(lr);
   3757 }
   3758 
   3759 vixl::Label* CodeGeneratorARM64::NewPcRelativeStringPatch(const DexFile& dex_file,
   3760                                                           uint32_t string_index,
   3761                                                           vixl::Label* adrp_label) {
   3762   return NewPcRelativePatch(dex_file, string_index, adrp_label, &pc_relative_string_patches_);
   3763 }
   3764 
   3765 vixl::Label* CodeGeneratorARM64::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file,
   3766                                                                  uint32_t element_offset,
   3767                                                                  vixl::Label* adrp_label) {
   3768   return NewPcRelativePatch(dex_file, element_offset, adrp_label, &pc_relative_dex_cache_patches_);
   3769 }
   3770 
   3771 vixl::Label* CodeGeneratorARM64::NewPcRelativePatch(const DexFile& dex_file,
   3772                                                     uint32_t offset_or_index,
   3773                                                     vixl::Label* adrp_label,
   3774                                                     ArenaDeque<PcRelativePatchInfo>* patches) {
   3775   // Add a patch entry and return the label.
   3776   patches->emplace_back(dex_file, offset_or_index);
   3777   PcRelativePatchInfo* info = &patches->back();
   3778   vixl::Label* label = &info->label;
   3779   // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
   3780   info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
   3781   return label;
   3782 }
   3783 
   3784 vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageStringLiteral(
   3785     const DexFile& dex_file, uint32_t string_index) {
   3786   return boot_image_string_patches_.GetOrCreate(
   3787       StringReference(&dex_file, string_index),
   3788       [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); });
   3789 }
   3790 
   3791 vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(uint64_t address) {
   3792   bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
   3793   Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
   3794   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
   3795 }
   3796 
   3797 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateDexCacheAddressLiteral(uint64_t address) {
   3798   return DeduplicateUint64Literal(address);
   3799 }
   3800 
   3801 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
   3802   DCHECK(linker_patches->empty());
   3803   size_t size =
   3804       method_patches_.size() +
   3805       call_patches_.size() +
   3806       relative_call_patches_.size() +
   3807       pc_relative_dex_cache_patches_.size() +
   3808       boot_image_string_patches_.size() +
   3809       pc_relative_string_patches_.size() +
   3810       boot_image_address_patches_.size();
   3811   linker_patches->reserve(size);
   3812   for (const auto& entry : method_patches_) {
   3813     const MethodReference& target_method = entry.first;
   3814     vixl::Literal<uint64_t>* literal = entry.second;
   3815     linker_patches->push_back(LinkerPatch::MethodPatch(literal->offset(),
   3816                                                        target_method.dex_file,
   3817                                                        target_method.dex_method_index));
   3818   }
   3819   for (const auto& entry : call_patches_) {
   3820     const MethodReference& target_method = entry.first;
   3821     vixl::Literal<uint64_t>* literal = entry.second;
   3822     linker_patches->push_back(LinkerPatch::CodePatch(literal->offset(),
   3823                                                      target_method.dex_file,
   3824                                                      target_method.dex_method_index));
   3825   }
   3826   for (const MethodPatchInfo<vixl::Label>& info : relative_call_patches_) {
   3827     linker_patches->push_back(LinkerPatch::RelativeCodePatch(info.label.location(),
   3828                                                              info.target_method.dex_file,
   3829                                                              info.target_method.dex_method_index));
   3830   }
   3831   for (const PcRelativePatchInfo& info : pc_relative_dex_cache_patches_) {
   3832     linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(info.label.location(),
   3833                                                               &info.target_dex_file,
   3834                                                               info.pc_insn_label->location(),
   3835                                                               info.offset_or_index));
   3836   }
   3837   for (const auto& entry : boot_image_string_patches_) {
   3838     const StringReference& target_string = entry.first;
   3839     vixl::Literal<uint32_t>* literal = entry.second;
   3840     linker_patches->push_back(LinkerPatch::StringPatch(literal->offset(),
   3841                                                        target_string.dex_file,
   3842                                                        target_string.string_index));
   3843   }
   3844   for (const PcRelativePatchInfo& info : pc_relative_string_patches_) {
   3845     linker_patches->push_back(LinkerPatch::RelativeStringPatch(info.label.location(),
   3846                                                                &info.target_dex_file,
   3847                                                                info.pc_insn_label->location(),
   3848                                                                info.offset_or_index));
   3849   }
   3850   for (const auto& entry : boot_image_address_patches_) {
   3851     DCHECK(GetCompilerOptions().GetIncludePatchInformation());
   3852     vixl::Literal<uint32_t>* literal = entry.second;
   3853     linker_patches->push_back(LinkerPatch::RecordPosition(literal->offset()));
   3854   }
   3855 }
   3856 
   3857 vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value,
   3858                                                                       Uint32ToLiteralMap* map) {
   3859   return map->GetOrCreate(
   3860       value,
   3861       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
   3862 }
   3863 
   3864 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
   3865   return uint64_literals_.GetOrCreate(
   3866       value,
   3867       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
   3868 }
   3869 
   3870 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodLiteral(
   3871     MethodReference target_method,
   3872     MethodToLiteralMap* map) {
   3873   return map->GetOrCreate(
   3874       target_method,
   3875       [this]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(/* placeholder */ 0u); });
   3876 }
   3877 
   3878 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodAddressLiteral(
   3879     MethodReference target_method) {
   3880   return DeduplicateMethodLiteral(target_method, &method_patches_);
   3881 }
   3882 
   3883 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodCodeLiteral(
   3884     MethodReference target_method) {
   3885   return DeduplicateMethodLiteral(target_method, &call_patches_);
   3886 }
   3887 
   3888 
   3889 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   3890   // Explicit clinit checks triggered by static invokes must have been pruned by
   3891   // art::PrepareForRegisterAllocation.
   3892   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   3893 
   3894   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   3895     return;
   3896   }
   3897 
   3898   BlockPoolsScope block_pools(GetVIXLAssembler());
   3899   LocationSummary* locations = invoke->GetLocations();
   3900   codegen_->GenerateStaticOrDirectCall(
   3901       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
   3902   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   3903 }
   3904 
   3905 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   3906   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   3907     return;
   3908   }
   3909 
   3910   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
   3911   DCHECK(!codegen_->IsLeafMethod());
   3912   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   3913 }
   3914 
   3915 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
   3916   InvokeRuntimeCallingConvention calling_convention;
   3917   CodeGenerator::CreateLoadClassLocationSummary(
   3918       cls,
   3919       LocationFrom(calling_convention.GetRegisterAt(0)),
   3920       LocationFrom(vixl::x0),
   3921       /* code_generator_supports_read_barrier */ true);
   3922 }
   3923 
   3924 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) {
   3925   if (cls->NeedsAccessCheck()) {
   3926     codegen_->MoveConstant(cls->GetLocations()->GetTemp(0), cls->GetTypeIndex());
   3927     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
   3928                             cls,
   3929                             cls->GetDexPc(),
   3930                             nullptr);
   3931     CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
   3932     return;
   3933   }
   3934 
   3935   Location out_loc = cls->GetLocations()->Out();
   3936   Register out = OutputRegister(cls);
   3937   Register current_method = InputRegisterAt(cls, 0);
   3938   if (cls->IsReferrersClass()) {
   3939     DCHECK(!cls->CanCallRuntime());
   3940     DCHECK(!cls->MustGenerateClinitCheck());
   3941     // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
   3942     GenerateGcRootFieldLoad(
   3943         cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
   3944   } else {
   3945     MemberOffset resolved_types_offset = ArtMethod::DexCacheResolvedTypesOffset(kArm64PointerSize);
   3946     // /* GcRoot<mirror::Class>[] */ out =
   3947     //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
   3948     __ Ldr(out.X(), MemOperand(current_method, resolved_types_offset.Int32Value()));
   3949     // /* GcRoot<mirror::Class> */ out = out[type_index]
   3950     GenerateGcRootFieldLoad(
   3951         cls, out_loc, out.X(), CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
   3952 
   3953     if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
   3954       DCHECK(cls->CanCallRuntime());
   3955       SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
   3956           cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
   3957       codegen_->AddSlowPath(slow_path);
   3958       if (!cls->IsInDexCache()) {
   3959         __ Cbz(out, slow_path->GetEntryLabel());
   3960       }
   3961       if (cls->MustGenerateClinitCheck()) {
   3962         GenerateClassInitializationCheck(slow_path, out);
   3963       } else {
   3964         __ Bind(slow_path->GetExitLabel());
   3965       }
   3966     }
   3967   }
   3968 }
   3969 
   3970 static MemOperand GetExceptionTlsAddress() {
   3971   return MemOperand(tr, Thread::ExceptionOffset<kArm64WordSize>().Int32Value());
   3972 }
   3973 
   3974 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
   3975   LocationSummary* locations =
   3976       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
   3977   locations->SetOut(Location::RequiresRegister());
   3978 }
   3979 
   3980 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
   3981   __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
   3982 }
   3983 
   3984 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
   3985   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
   3986 }
   3987 
   3988 void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
   3989   __ Str(wzr, GetExceptionTlsAddress());
   3990 }
   3991 
   3992 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
   3993     HLoadString::LoadKind desired_string_load_kind) {
   3994   if (kEmitCompilerReadBarrier) {
   3995     switch (desired_string_load_kind) {
   3996       case HLoadString::LoadKind::kBootImageLinkTimeAddress:
   3997       case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   3998       case HLoadString::LoadKind::kBootImageAddress:
   3999         // TODO: Implement for read barrier.
   4000         return HLoadString::LoadKind::kDexCacheViaMethod;
   4001       default:
   4002         break;
   4003     }
   4004   }
   4005   switch (desired_string_load_kind) {
   4006     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
   4007       DCHECK(!GetCompilerOptions().GetCompilePic());
   4008       break;
   4009     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   4010       DCHECK(GetCompilerOptions().GetCompilePic());
   4011       break;
   4012     case HLoadString::LoadKind::kBootImageAddress:
   4013       break;
   4014     case HLoadString::LoadKind::kDexCacheAddress:
   4015       DCHECK(Runtime::Current()->UseJitCompilation());
   4016       break;
   4017     case HLoadString::LoadKind::kDexCachePcRelative:
   4018       DCHECK(!Runtime::Current()->UseJitCompilation());
   4019       break;
   4020     case HLoadString::LoadKind::kDexCacheViaMethod:
   4021       break;
   4022   }
   4023   return desired_string_load_kind;
   4024 }
   4025 
   4026 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
   4027   LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
   4028       ? LocationSummary::kCallOnSlowPath
   4029       : LocationSummary::kNoCall;
   4030   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
   4031   if (load->GetLoadKind() == HLoadString::LoadKind::kDexCacheViaMethod) {
   4032     locations->SetInAt(0, Location::RequiresRegister());
   4033   }
   4034   locations->SetOut(Location::RequiresRegister());
   4035 }
   4036 
   4037 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) {
   4038   Location out_loc = load->GetLocations()->Out();
   4039   Register out = OutputRegister(load);
   4040 
   4041   switch (load->GetLoadKind()) {
   4042     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
   4043       DCHECK(!kEmitCompilerReadBarrier);
   4044       __ Ldr(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
   4045                                                               load->GetStringIndex()));
   4046       return;  // No dex cache slow path.
   4047     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
   4048       DCHECK(!kEmitCompilerReadBarrier);
   4049       // Add ADRP with its PC-relative String patch.
   4050       const DexFile& dex_file = load->GetDexFile();
   4051       uint32_t string_index = load->GetStringIndex();
   4052       vixl::Label* adrp_label = codegen_->NewPcRelativeStringPatch(dex_file, string_index);
   4053       {
   4054         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   4055         __ Bind(adrp_label);
   4056         __ adrp(out.X(), /* offset placeholder */ 0);
   4057       }
   4058       // Add ADD with its PC-relative String patch.
   4059       vixl::Label* add_label =
   4060           codegen_->NewPcRelativeStringPatch(dex_file, string_index, adrp_label);
   4061       {
   4062         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   4063         __ Bind(add_label);
   4064         __ add(out.X(), out.X(), Operand(/* offset placeholder */ 0));
   4065       }
   4066       return;  // No dex cache slow path.
   4067     }
   4068     case HLoadString::LoadKind::kBootImageAddress: {
   4069       DCHECK(!kEmitCompilerReadBarrier);
   4070       DCHECK(load->GetAddress() != 0u && IsUint<32>(load->GetAddress()));
   4071       __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(load->GetAddress()));
   4072       return;  // No dex cache slow path.
   4073     }
   4074     case HLoadString::LoadKind::kDexCacheAddress: {
   4075       DCHECK_NE(load->GetAddress(), 0u);
   4076       // LDR immediate has a 12-bit offset multiplied by the size and for 32-bit loads
   4077       // that gives a 16KiB range. To try and reduce the number of literals if we load
   4078       // multiple strings, simply split the dex cache address to a 16KiB aligned base
   4079       // loaded from a literal and the remaining offset embedded in the load.
   4080       static_assert(sizeof(GcRoot<mirror::String>) == 4u, "Expected GC root to be 4 bytes.");
   4081       DCHECK_ALIGNED(load->GetAddress(), 4u);
   4082       constexpr size_t offset_bits = /* encoded bits */ 12 + /* scale */ 2;
   4083       uint64_t base_address = load->GetAddress() & ~MaxInt<uint64_t>(offset_bits);
   4084       uint32_t offset = load->GetAddress() & MaxInt<uint64_t>(offset_bits);
   4085       __ Ldr(out.X(), codegen_->DeduplicateDexCacheAddressLiteral(base_address));
   4086       GenerateGcRootFieldLoad(load, out_loc, out.X(), offset);
   4087       break;
   4088     }
   4089     case HLoadString::LoadKind::kDexCachePcRelative: {
   4090       // Add ADRP with its PC-relative DexCache access patch.
   4091       const DexFile& dex_file = load->GetDexFile();
   4092       uint32_t element_offset = load->GetDexCacheElementOffset();
   4093       vixl::Label* adrp_label = codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset);
   4094       {
   4095         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   4096         __ Bind(adrp_label);
   4097         __ adrp(out.X(), /* offset placeholder */ 0);
   4098       }
   4099       // Add LDR with its PC-relative DexCache access patch.
   4100       vixl::Label* ldr_label =
   4101           codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label);
   4102       GenerateGcRootFieldLoad(load, out_loc, out.X(), /* offset placeholder */ 0, ldr_label);
   4103       break;
   4104     }
   4105     case HLoadString::LoadKind::kDexCacheViaMethod: {
   4106       Register current_method = InputRegisterAt(load, 0);
   4107       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
   4108       GenerateGcRootFieldLoad(
   4109           load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
   4110       // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
   4111       __ Ldr(out.X(), HeapOperand(out, mirror::Class::DexCacheStringsOffset().Uint32Value()));
   4112       // /* GcRoot<mirror::String> */ out = out[string_index]
   4113       GenerateGcRootFieldLoad(
   4114           load, out_loc, out.X(), CodeGenerator::GetCacheOffset(load->GetStringIndex()));
   4115       break;
   4116     }
   4117     default:
   4118       LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
   4119       UNREACHABLE();
   4120   }
   4121 
   4122   if (!load->IsInDexCache()) {
   4123     SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load);
   4124     codegen_->AddSlowPath(slow_path);
   4125     __ Cbz(out, slow_path->GetEntryLabel());
   4126     __ Bind(slow_path->GetExitLabel());
   4127   }
   4128 }
   4129 
   4130 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
   4131   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   4132   locations->SetOut(Location::ConstantLocation(constant));
   4133 }
   4134 
   4135 void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
   4136   // Will be generated at use site.
   4137 }
   4138 
   4139 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
   4140   LocationSummary* locations =
   4141       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4142   InvokeRuntimeCallingConvention calling_convention;
   4143   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   4144 }
   4145 
   4146 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
   4147   codegen_->InvokeRuntime(instruction->IsEnter()
   4148         ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
   4149       instruction,
   4150       instruction->GetDexPc(),
   4151       nullptr);
   4152   if (instruction->IsEnter()) {
   4153     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
   4154   } else {
   4155     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
   4156   }
   4157 }
   4158 
   4159 void LocationsBuilderARM64::VisitMul(HMul* mul) {
   4160   LocationSummary* locations =
   4161       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
   4162   switch (mul->GetResultType()) {
   4163     case Primitive::kPrimInt:
   4164     case Primitive::kPrimLong:
   4165       locations->SetInAt(0, Location::RequiresRegister());
   4166       locations->SetInAt(1, Location::RequiresRegister());
   4167       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4168       break;
   4169 
   4170     case Primitive::kPrimFloat:
   4171     case Primitive::kPrimDouble:
   4172       locations->SetInAt(0, Location::RequiresFpuRegister());
   4173       locations->SetInAt(1, Location::RequiresFpuRegister());
   4174       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4175       break;
   4176 
   4177     default:
   4178       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   4179   }
   4180 }
   4181 
   4182 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
   4183   switch (mul->GetResultType()) {
   4184     case Primitive::kPrimInt:
   4185     case Primitive::kPrimLong:
   4186       __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
   4187       break;
   4188 
   4189     case Primitive::kPrimFloat:
   4190     case Primitive::kPrimDouble:
   4191       __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
   4192       break;
   4193 
   4194     default:
   4195       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   4196   }
   4197 }
   4198 
   4199 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
   4200   LocationSummary* locations =
   4201       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
   4202   switch (neg->GetResultType()) {
   4203     case Primitive::kPrimInt:
   4204     case Primitive::kPrimLong:
   4205       locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
   4206       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4207       break;
   4208 
   4209     case Primitive::kPrimFloat:
   4210     case Primitive::kPrimDouble:
   4211       locations->SetInAt(0, Location::RequiresFpuRegister());
   4212       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4213       break;
   4214 
   4215     default:
   4216       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   4217   }
   4218 }
   4219 
   4220 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
   4221   switch (neg->GetResultType()) {
   4222     case Primitive::kPrimInt:
   4223     case Primitive::kPrimLong:
   4224       __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
   4225       break;
   4226 
   4227     case Primitive::kPrimFloat:
   4228     case Primitive::kPrimDouble:
   4229       __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
   4230       break;
   4231 
   4232     default:
   4233       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   4234   }
   4235 }
   4236 
   4237 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
   4238   LocationSummary* locations =
   4239       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4240   InvokeRuntimeCallingConvention calling_convention;
   4241   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
   4242   locations->SetOut(LocationFrom(x0));
   4243   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(1)));
   4244   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(2)));
   4245 }
   4246 
   4247 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
   4248   LocationSummary* locations = instruction->GetLocations();
   4249   InvokeRuntimeCallingConvention calling_convention;
   4250   Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt);
   4251   DCHECK(type_index.Is(w0));
   4252   __ Mov(type_index, instruction->GetTypeIndex());
   4253   // Note: if heap poisoning is enabled, the entry point takes cares
   4254   // of poisoning the reference.
   4255   codegen_->InvokeRuntime(instruction->GetEntrypoint(),
   4256                           instruction,
   4257                           instruction->GetDexPc(),
   4258                           nullptr);
   4259   CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
   4260 }
   4261 
   4262 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
   4263   LocationSummary* locations =
   4264       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4265   InvokeRuntimeCallingConvention calling_convention;
   4266   if (instruction->IsStringAlloc()) {
   4267     locations->AddTemp(LocationFrom(kArtMethodRegister));
   4268   } else {
   4269     locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   4270     locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
   4271   }
   4272   locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
   4273 }
   4274 
   4275 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
   4276   // Note: if heap poisoning is enabled, the entry point takes cares
   4277   // of poisoning the reference.
   4278   if (instruction->IsStringAlloc()) {
   4279     // String is allocated through StringFactory. Call NewEmptyString entry point.
   4280     Location temp = instruction->GetLocations()->GetTemp(0);
   4281     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
   4282     __ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString)));
   4283     __ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value()));
   4284     __ Blr(lr);
   4285     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   4286   } else {
   4287     codegen_->InvokeRuntime(instruction->GetEntrypoint(),
   4288                             instruction,
   4289                             instruction->GetDexPc(),
   4290                             nullptr);
   4291     CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
   4292   }
   4293 }
   4294 
   4295 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
   4296   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4297   locations->SetInAt(0, Location::RequiresRegister());
   4298   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4299 }
   4300 
   4301 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
   4302   switch (instruction->GetResultType()) {
   4303     case Primitive::kPrimInt:
   4304     case Primitive::kPrimLong:
   4305       __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
   4306       break;
   4307 
   4308     default:
   4309       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
   4310   }
   4311 }
   4312 
   4313 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
   4314   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4315   locations->SetInAt(0, Location::RequiresRegister());
   4316   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4317 }
   4318 
   4319 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
   4320   __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::Operand(1));
   4321 }
   4322 
   4323 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
   4324   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
   4325       ? LocationSummary::kCallOnSlowPath
   4326       : LocationSummary::kNoCall;
   4327   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   4328   locations->SetInAt(0, Location::RequiresRegister());
   4329   if (instruction->HasUses()) {
   4330     locations->SetOut(Location::SameAsFirstInput());
   4331   }
   4332 }
   4333 
   4334 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
   4335   if (CanMoveNullCheckToUser(instruction)) {
   4336     return;
   4337   }
   4338 
   4339   BlockPoolsScope block_pools(GetVIXLAssembler());
   4340   Location obj = instruction->GetLocations()->InAt(0);
   4341   __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
   4342   RecordPcInfo(instruction, instruction->GetDexPc());
   4343 }
   4344 
   4345 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
   4346   SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction);
   4347   AddSlowPath(slow_path);
   4348 
   4349   LocationSummary* locations = instruction->GetLocations();
   4350   Location obj = locations->InAt(0);
   4351 
   4352   __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
   4353 }
   4354 
   4355 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
   4356   codegen_->GenerateNullCheck(instruction);
   4357 }
   4358 
   4359 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
   4360   HandleBinaryOp(instruction);
   4361 }
   4362 
   4363 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
   4364   HandleBinaryOp(instruction);
   4365 }
   4366 
   4367 void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
   4368   LOG(FATAL) << "Unreachable";
   4369 }
   4370 
   4371 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
   4372   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
   4373 }
   4374 
   4375 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
   4376   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4377   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
   4378   if (location.IsStackSlot()) {
   4379     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   4380   } else if (location.IsDoubleStackSlot()) {
   4381     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   4382   }
   4383   locations->SetOut(location);
   4384 }
   4385 
   4386 void InstructionCodeGeneratorARM64::VisitParameterValue(
   4387     HParameterValue* instruction ATTRIBUTE_UNUSED) {
   4388   // Nothing to do, the parameter is already at its location.
   4389 }
   4390 
   4391 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
   4392   LocationSummary* locations =
   4393       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   4394   locations->SetOut(LocationFrom(kArtMethodRegister));
   4395 }
   4396 
   4397 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
   4398     HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
   4399   // Nothing to do, the method is already at its location.
   4400 }
   4401 
   4402 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
   4403   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4404   for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
   4405     locations->SetInAt(i, Location::Any());
   4406   }
   4407   locations->SetOut(Location::Any());
   4408 }
   4409 
   4410 void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
   4411   LOG(FATAL) << "Unreachable";
   4412 }
   4413 
   4414 void LocationsBuilderARM64::VisitRem(HRem* rem) {
   4415   Primitive::Type type = rem->GetResultType();
   4416   LocationSummary::CallKind call_kind =
   4417       Primitive::IsFloatingPointType(type) ? LocationSummary::kCall : LocationSummary::kNoCall;
   4418   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
   4419 
   4420   switch (type) {
   4421     case Primitive::kPrimInt:
   4422     case Primitive::kPrimLong:
   4423       locations->SetInAt(0, Location::RequiresRegister());
   4424       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
   4425       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4426       break;
   4427 
   4428     case Primitive::kPrimFloat:
   4429     case Primitive::kPrimDouble: {
   4430       InvokeRuntimeCallingConvention calling_convention;
   4431       locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
   4432       locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
   4433       locations->SetOut(calling_convention.GetReturnLocation(type));
   4434 
   4435       break;
   4436     }
   4437 
   4438     default:
   4439       LOG(FATAL) << "Unexpected rem type " << type;
   4440   }
   4441 }
   4442 
   4443 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
   4444   Primitive::Type type = rem->GetResultType();
   4445 
   4446   switch (type) {
   4447     case Primitive::kPrimInt:
   4448     case Primitive::kPrimLong: {
   4449       GenerateDivRemIntegral(rem);
   4450       break;
   4451     }
   4452 
   4453     case Primitive::kPrimFloat:
   4454     case Primitive::kPrimDouble: {
   4455       int32_t entry_offset = (type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pFmodf)
   4456                                                              : QUICK_ENTRY_POINT(pFmod);
   4457       codegen_->InvokeRuntime(entry_offset, rem, rem->GetDexPc(), nullptr);
   4458       if (type == Primitive::kPrimFloat) {
   4459         CheckEntrypointTypes<kQuickFmodf, float, float, float>();
   4460       } else {
   4461         CheckEntrypointTypes<kQuickFmod, double, double, double>();
   4462       }
   4463       break;
   4464     }
   4465 
   4466     default:
   4467       LOG(FATAL) << "Unexpected rem type " << type;
   4468       UNREACHABLE();
   4469   }
   4470 }
   4471 
   4472 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   4473   memory_barrier->SetLocations(nullptr);
   4474 }
   4475 
   4476 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   4477   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
   4478 }
   4479 
   4480 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
   4481   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4482   Primitive::Type return_type = instruction->InputAt(0)->GetType();
   4483   locations->SetInAt(0, ARM64ReturnLocation(return_type));
   4484 }
   4485 
   4486 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) {
   4487   codegen_->GenerateFrameExit();
   4488 }
   4489 
   4490 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
   4491   instruction->SetLocations(nullptr);
   4492 }
   4493 
   4494 void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
   4495   codegen_->GenerateFrameExit();
   4496 }
   4497 
   4498 void LocationsBuilderARM64::VisitRor(HRor* ror) {
   4499   HandleBinaryOp(ror);
   4500 }
   4501 
   4502 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
   4503   HandleBinaryOp(ror);
   4504 }
   4505 
   4506 void LocationsBuilderARM64::VisitShl(HShl* shl) {
   4507   HandleShift(shl);
   4508 }
   4509 
   4510 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
   4511   HandleShift(shl);
   4512 }
   4513 
   4514 void LocationsBuilderARM64::VisitShr(HShr* shr) {
   4515   HandleShift(shr);
   4516 }
   4517 
   4518 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
   4519   HandleShift(shr);
   4520 }
   4521 
   4522 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
   4523   HandleBinaryOp(instruction);
   4524 }
   4525 
   4526 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
   4527   HandleBinaryOp(instruction);
   4528 }
   4529 
   4530 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   4531   HandleFieldGet(instruction);
   4532 }
   4533 
   4534 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   4535   HandleFieldGet(instruction, instruction->GetFieldInfo());
   4536 }
   4537 
   4538 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   4539   HandleFieldSet(instruction);
   4540 }
   4541 
   4542 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   4543   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
   4544 }
   4545 
   4546 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
   4547     HUnresolvedInstanceFieldGet* instruction) {
   4548   FieldAccessCallingConventionARM64 calling_convention;
   4549   codegen_->CreateUnresolvedFieldLocationSummary(
   4550       instruction, instruction->GetFieldType(), calling_convention);
   4551 }
   4552 
   4553 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
   4554     HUnresolvedInstanceFieldGet* instruction) {
   4555   FieldAccessCallingConventionARM64 calling_convention;
   4556   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4557                                           instruction->GetFieldType(),
   4558                                           instruction->GetFieldIndex(),
   4559                                           instruction->GetDexPc(),
   4560                                           calling_convention);
   4561 }
   4562 
   4563 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
   4564     HUnresolvedInstanceFieldSet* instruction) {
   4565   FieldAccessCallingConventionARM64 calling_convention;
   4566   codegen_->CreateUnresolvedFieldLocationSummary(
   4567       instruction, instruction->GetFieldType(), calling_convention);
   4568 }
   4569 
   4570 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
   4571     HUnresolvedInstanceFieldSet* instruction) {
   4572   FieldAccessCallingConventionARM64 calling_convention;
   4573   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4574                                           instruction->GetFieldType(),
   4575                                           instruction->GetFieldIndex(),
   4576                                           instruction->GetDexPc(),
   4577                                           calling_convention);
   4578 }
   4579 
   4580 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
   4581     HUnresolvedStaticFieldGet* instruction) {
   4582   FieldAccessCallingConventionARM64 calling_convention;
   4583   codegen_->CreateUnresolvedFieldLocationSummary(
   4584       instruction, instruction->GetFieldType(), calling_convention);
   4585 }
   4586 
   4587 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
   4588     HUnresolvedStaticFieldGet* instruction) {
   4589   FieldAccessCallingConventionARM64 calling_convention;
   4590   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4591                                           instruction->GetFieldType(),
   4592                                           instruction->GetFieldIndex(),
   4593                                           instruction->GetDexPc(),
   4594                                           calling_convention);
   4595 }
   4596 
   4597 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
   4598     HUnresolvedStaticFieldSet* instruction) {
   4599   FieldAccessCallingConventionARM64 calling_convention;
   4600   codegen_->CreateUnresolvedFieldLocationSummary(
   4601       instruction, instruction->GetFieldType(), calling_convention);
   4602 }
   4603 
   4604 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
   4605     HUnresolvedStaticFieldSet* instruction) {
   4606   FieldAccessCallingConventionARM64 calling_convention;
   4607   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4608                                           instruction->GetFieldType(),
   4609                                           instruction->GetFieldIndex(),
   4610                                           instruction->GetDexPc(),
   4611                                           calling_convention);
   4612 }
   4613 
   4614 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
   4615   new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
   4616 }
   4617 
   4618 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
   4619   HBasicBlock* block = instruction->GetBlock();
   4620   if (block->GetLoopInformation() != nullptr) {
   4621     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
   4622     // The back edge will generate the suspend check.
   4623     return;
   4624   }
   4625   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
   4626     // The goto will generate the suspend check.
   4627     return;
   4628   }
   4629   GenerateSuspendCheck(instruction, nullptr);
   4630 }
   4631 
   4632 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
   4633   LocationSummary* locations =
   4634       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4635   InvokeRuntimeCallingConvention calling_convention;
   4636   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   4637 }
   4638 
   4639 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
   4640   codegen_->InvokeRuntime(
   4641       QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
   4642   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
   4643 }
   4644 
   4645 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
   4646   LocationSummary* locations =
   4647       new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall);
   4648   Primitive::Type input_type = conversion->GetInputType();
   4649   Primitive::Type result_type = conversion->GetResultType();
   4650   DCHECK_NE(input_type, result_type);
   4651   if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
   4652       (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
   4653     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
   4654   }
   4655 
   4656   if (Primitive::IsFloatingPointType(input_type)) {
   4657     locations->SetInAt(0, Location::RequiresFpuRegister());
   4658   } else {
   4659     locations->SetInAt(0, Location::RequiresRegister());
   4660   }
   4661 
   4662   if (Primitive::IsFloatingPointType(result_type)) {
   4663     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4664   } else {
   4665     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4666   }
   4667 }
   4668 
   4669 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
   4670   Primitive::Type result_type = conversion->GetResultType();
   4671   Primitive::Type input_type = conversion->GetInputType();
   4672 
   4673   DCHECK_NE(input_type, result_type);
   4674 
   4675   if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
   4676     int result_size = Primitive::ComponentSize(result_type);
   4677     int input_size = Primitive::ComponentSize(input_type);
   4678     int min_size = std::min(result_size, input_size);
   4679     Register output = OutputRegister(conversion);
   4680     Register source = InputRegisterAt(conversion, 0);
   4681     if (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimLong) {
   4682       // 'int' values are used directly as W registers, discarding the top
   4683       // bits, so we don't need to sign-extend and can just perform a move.
   4684       // We do not pass the `kDiscardForSameWReg` argument to force clearing the
   4685       // top 32 bits of the target register. We theoretically could leave those
   4686       // bits unchanged, but we would have to make sure that no code uses a
   4687       // 32bit input value as a 64bit value assuming that the top 32 bits are
   4688       // zero.
   4689       __ Mov(output.W(), source.W());
   4690     } else if (result_type == Primitive::kPrimChar ||
   4691                (input_type == Primitive::kPrimChar && input_size < result_size)) {
   4692       __ Ubfx(output,
   4693               output.IsX() ? source.X() : source.W(),
   4694               0, Primitive::ComponentSize(Primitive::kPrimChar) * kBitsPerByte);
   4695     } else {
   4696       __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
   4697     }
   4698   } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
   4699     __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
   4700   } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
   4701     CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
   4702     __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
   4703   } else if (Primitive::IsFloatingPointType(result_type) &&
   4704              Primitive::IsFloatingPointType(input_type)) {
   4705     __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
   4706   } else {
   4707     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
   4708                 << " to " << result_type;
   4709   }
   4710 }
   4711 
   4712 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
   4713   HandleShift(ushr);
   4714 }
   4715 
   4716 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
   4717   HandleShift(ushr);
   4718 }
   4719 
   4720 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
   4721   HandleBinaryOp(instruction);
   4722 }
   4723 
   4724 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
   4725   HandleBinaryOp(instruction);
   4726 }
   4727 
   4728 void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   4729   // Nothing to do, this should be removed during prepare for register allocator.
   4730   LOG(FATAL) << "Unreachable";
   4731 }
   4732 
   4733 void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   4734   // Nothing to do, this should be removed during prepare for register allocator.
   4735   LOG(FATAL) << "Unreachable";
   4736 }
   4737 
   4738 // Simple implementation of packed switch - generate cascaded compare/jumps.
   4739 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   4740   LocationSummary* locations =
   4741       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
   4742   locations->SetInAt(0, Location::RequiresRegister());
   4743 }
   4744 
   4745 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   4746   int32_t lower_bound = switch_instr->GetStartValue();
   4747   uint32_t num_entries = switch_instr->GetNumEntries();
   4748   Register value_reg = InputRegisterAt(switch_instr, 0);
   4749   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
   4750 
   4751   // Roughly set 16 as max average assemblies generated per HIR in a graph.
   4752   static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * vixl::kInstructionSize;
   4753   // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
   4754   // make sure we don't emit it if the target may run out of range.
   4755   // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
   4756   // ranges and emit the tables only as required.
   4757   static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
   4758 
   4759   if (num_entries <= kPackedSwitchCompareJumpThreshold ||
   4760       // Current instruction id is an upper bound of the number of HIRs in the graph.
   4761       GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
   4762     // Create a series of compare/jumps.
   4763     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
   4764     Register temp = temps.AcquireW();
   4765     __ Subs(temp, value_reg, Operand(lower_bound));
   4766 
   4767     const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
   4768     // Jump to successors[0] if value == lower_bound.
   4769     __ B(eq, codegen_->GetLabelOf(successors[0]));
   4770     int32_t last_index = 0;
   4771     for (; num_entries - last_index > 2; last_index += 2) {
   4772       __ Subs(temp, temp, Operand(2));
   4773       // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
   4774       __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
   4775       // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
   4776       __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
   4777     }
   4778     if (num_entries - last_index == 2) {
   4779       // The last missing case_value.
   4780       __ Cmp(temp, Operand(1));
   4781       __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
   4782     }
   4783 
   4784     // And the default for any other value.
   4785     if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
   4786       __ B(codegen_->GetLabelOf(default_block));
   4787     }
   4788   } else {
   4789     JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
   4790 
   4791     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
   4792 
   4793     // Below instructions should use at most one blocked register. Since there are two blocked
   4794     // registers, we are free to block one.
   4795     Register temp_w = temps.AcquireW();
   4796     Register index;
   4797     // Remove the bias.
   4798     if (lower_bound != 0) {
   4799       index = temp_w;
   4800       __ Sub(index, value_reg, Operand(lower_bound));
   4801     } else {
   4802       index = value_reg;
   4803     }
   4804 
   4805     // Jump to default block if index is out of the range.
   4806     __ Cmp(index, Operand(num_entries));
   4807     __ B(hs, codegen_->GetLabelOf(default_block));
   4808 
   4809     // In current VIXL implementation, it won't require any blocked registers to encode the
   4810     // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
   4811     // register pressure.
   4812     Register table_base = temps.AcquireX();
   4813     // Load jump offset from the table.
   4814     __ Adr(table_base, jump_table->GetTableStartLabel());
   4815     Register jump_offset = temp_w;
   4816     __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
   4817 
   4818     // Jump to target block by branching to table_base(pc related) + offset.
   4819     Register target_address = table_base;
   4820     __ Add(target_address, table_base, Operand(jump_offset, SXTW));
   4821     __ Br(target_address);
   4822   }
   4823 }
   4824 
   4825 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(HInstruction* instruction,
   4826                                                                      Location out,
   4827                                                                      uint32_t offset,
   4828                                                                      Location maybe_temp) {
   4829   Primitive::Type type = Primitive::kPrimNot;
   4830   Register out_reg = RegisterFrom(out, type);
   4831   if (kEmitCompilerReadBarrier) {
   4832     Register temp_reg = RegisterFrom(maybe_temp, type);
   4833     if (kUseBakerReadBarrier) {
   4834       // Load with fast path based Baker's read barrier.
   4835       // /* HeapReference<Object> */ out = *(out + offset)
   4836       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   4837                                                       out,
   4838                                                       out_reg,
   4839                                                       offset,
   4840                                                       temp_reg,
   4841                                                       /* needs_null_check */ false,
   4842                                                       /* use_load_acquire */ false);
   4843     } else {
   4844       // Load with slow path based read barrier.
   4845       // Save the value of `out` into `maybe_temp` before overwriting it
   4846       // in the following move operation, as we will need it for the
   4847       // read barrier below.
   4848       __ Mov(temp_reg, out_reg);
   4849       // /* HeapReference<Object> */ out = *(out + offset)
   4850       __ Ldr(out_reg, HeapOperand(out_reg, offset));
   4851       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
   4852     }
   4853   } else {
   4854     // Plain load with no read barrier.
   4855     // /* HeapReference<Object> */ out = *(out + offset)
   4856     __ Ldr(out_reg, HeapOperand(out_reg, offset));
   4857     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
   4858   }
   4859 }
   4860 
   4861 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
   4862                                                                       Location out,
   4863                                                                       Location obj,
   4864                                                                       uint32_t offset,
   4865                                                                       Location maybe_temp) {
   4866   Primitive::Type type = Primitive::kPrimNot;
   4867   Register out_reg = RegisterFrom(out, type);
   4868   Register obj_reg = RegisterFrom(obj, type);
   4869   if (kEmitCompilerReadBarrier) {
   4870     if (kUseBakerReadBarrier) {
   4871       // Load with fast path based Baker's read barrier.
   4872       Register temp_reg = RegisterFrom(maybe_temp, type);
   4873       // /* HeapReference<Object> */ out = *(obj + offset)
   4874       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   4875                                                       out,
   4876                                                       obj_reg,
   4877                                                       offset,
   4878                                                       temp_reg,
   4879                                                       /* needs_null_check */ false,
   4880                                                       /* use_load_acquire */ false);
   4881     } else {
   4882       // Load with slow path based read barrier.
   4883       // /* HeapReference<Object> */ out = *(obj + offset)
   4884       __ Ldr(out_reg, HeapOperand(obj_reg, offset));
   4885       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
   4886     }
   4887   } else {
   4888     // Plain load with no read barrier.
   4889     // /* HeapReference<Object> */ out = *(obj + offset)
   4890     __ Ldr(out_reg, HeapOperand(obj_reg, offset));
   4891     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
   4892   }
   4893 }
   4894 
   4895 void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad(HInstruction* instruction,
   4896                                                             Location root,
   4897                                                             vixl::Register obj,
   4898                                                             uint32_t offset,
   4899                                                             vixl::Label* fixup_label) {
   4900   Register root_reg = RegisterFrom(root, Primitive::kPrimNot);
   4901   if (kEmitCompilerReadBarrier) {
   4902     if (kUseBakerReadBarrier) {
   4903       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
   4904       // Baker's read barrier are used:
   4905       //
   4906       //   root = obj.field;
   4907       //   if (Thread::Current()->GetIsGcMarking()) {
   4908       //     root = ReadBarrier::Mark(root)
   4909       //   }
   4910 
   4911       // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   4912       if (fixup_label == nullptr) {
   4913         __ Ldr(root_reg, MemOperand(obj, offset));
   4914       } else {
   4915         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   4916         __ Bind(fixup_label);
   4917         __ ldr(root_reg, MemOperand(obj, offset));
   4918       }
   4919       static_assert(
   4920           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
   4921           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
   4922           "have different sizes.");
   4923       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
   4924                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
   4925                     "have different sizes.");
   4926 
   4927       // Slow path used to mark the GC root `root`.
   4928       SlowPathCodeARM64* slow_path =
   4929           new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, root, root);
   4930       codegen_->AddSlowPath(slow_path);
   4931 
   4932       MacroAssembler* masm = GetVIXLAssembler();
   4933       UseScratchRegisterScope temps(masm);
   4934       Register temp = temps.AcquireW();
   4935       // temp = Thread::Current()->GetIsGcMarking()
   4936       __ Ldr(temp, MemOperand(tr, Thread::IsGcMarkingOffset<kArm64WordSize>().Int32Value()));
   4937       __ Cbnz(temp, slow_path->GetEntryLabel());
   4938       __ Bind(slow_path->GetExitLabel());
   4939     } else {
   4940       // GC root loaded through a slow path for read barriers other
   4941       // than Baker's.
   4942       // /* GcRoot<mirror::Object>* */ root = obj + offset
   4943       if (fixup_label == nullptr) {
   4944         __ Add(root_reg.X(), obj.X(), offset);
   4945       } else {
   4946         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   4947         __ Bind(fixup_label);
   4948         __ add(root_reg.X(), obj.X(), offset);
   4949       }
   4950       // /* mirror::Object* */ root = root->Read()
   4951       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
   4952     }
   4953   } else {
   4954     // Plain GC root load with no read barrier.
   4955     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   4956     if (fixup_label == nullptr) {
   4957       __ Ldr(root_reg, MemOperand(obj, offset));
   4958     } else {
   4959       vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
   4960       __ Bind(fixup_label);
   4961       __ ldr(root_reg, MemOperand(obj, offset));
   4962     }
   4963     // Note that GC roots are not affected by heap poisoning, thus we
   4964     // do not have to unpoison `root_reg` here.
   4965   }
   4966 }
   4967 
   4968 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
   4969                                                                Location ref,
   4970                                                                vixl::Register obj,
   4971                                                                uint32_t offset,
   4972                                                                Register temp,
   4973                                                                bool needs_null_check,
   4974                                                                bool use_load_acquire) {
   4975   DCHECK(kEmitCompilerReadBarrier);
   4976   DCHECK(kUseBakerReadBarrier);
   4977 
   4978   // /* HeapReference<Object> */ ref = *(obj + offset)
   4979   Location no_index = Location::NoLocation();
   4980   GenerateReferenceLoadWithBakerReadBarrier(
   4981       instruction, ref, obj, offset, no_index, temp, needs_null_check, use_load_acquire);
   4982 }
   4983 
   4984 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
   4985                                                                Location ref,
   4986                                                                vixl::Register obj,
   4987                                                                uint32_t data_offset,
   4988                                                                Location index,
   4989                                                                Register temp,
   4990                                                                bool needs_null_check) {
   4991   DCHECK(kEmitCompilerReadBarrier);
   4992   DCHECK(kUseBakerReadBarrier);
   4993 
   4994   // Array cells are never volatile variables, therefore array loads
   4995   // never use Load-Acquire instructions on ARM64.
   4996   const bool use_load_acquire = false;
   4997 
   4998   // /* HeapReference<Object> */ ref =
   4999   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
   5000   GenerateReferenceLoadWithBakerReadBarrier(
   5001       instruction, ref, obj, data_offset, index, temp, needs_null_check, use_load_acquire);
   5002 }
   5003 
   5004 void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
   5005                                                                    Location ref,
   5006                                                                    vixl::Register obj,
   5007                                                                    uint32_t offset,
   5008                                                                    Location index,
   5009                                                                    Register temp,
   5010                                                                    bool needs_null_check,
   5011                                                                    bool use_load_acquire) {
   5012   DCHECK(kEmitCompilerReadBarrier);
   5013   DCHECK(kUseBakerReadBarrier);
   5014   // If `index` is a valid location, then we are emitting an array
   5015   // load, so we shouldn't be using a Load Acquire instruction.
   5016   // In other words: `index.IsValid()` => `!use_load_acquire`.
   5017   DCHECK(!index.IsValid() || !use_load_acquire);
   5018 
   5019   MacroAssembler* masm = GetVIXLAssembler();
   5020   UseScratchRegisterScope temps(masm);
   5021 
   5022   // In slow path based read barriers, the read barrier call is
   5023   // inserted after the original load. However, in fast path based
   5024   // Baker's read barriers, we need to perform the load of
   5025   // mirror::Object::monitor_ *before* the original reference load.
   5026   // This load-load ordering is required by the read barrier.
   5027   // The fast path/slow path (for Baker's algorithm) should look like:
   5028   //
   5029   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
   5030   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
   5031   //   HeapReference<Object> ref = *src;  // Original reference load.
   5032   //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
   5033   //   if (is_gray) {
   5034   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
   5035   //   }
   5036   //
   5037   // Note: the original implementation in ReadBarrier::Barrier is
   5038   // slightly more complex as it performs additional checks that we do
   5039   // not do here for performance reasons.
   5040 
   5041   Primitive::Type type = Primitive::kPrimNot;
   5042   Register ref_reg = RegisterFrom(ref, type);
   5043   DCHECK(obj.IsW());
   5044   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
   5045 
   5046   // /* int32_t */ monitor = obj->monitor_
   5047   __ Ldr(temp, HeapOperand(obj, monitor_offset));
   5048   if (needs_null_check) {
   5049     MaybeRecordImplicitNullCheck(instruction);
   5050   }
   5051   // /* LockWord */ lock_word = LockWord(monitor)
   5052   static_assert(sizeof(LockWord) == sizeof(int32_t),
   5053                 "art::LockWord and int32_t have different sizes.");
   5054   // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
   5055   __ Lsr(temp, temp, LockWord::kReadBarrierStateShift);
   5056   __ And(temp, temp, Operand(LockWord::kReadBarrierStateMask));
   5057   static_assert(
   5058       LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
   5059       "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
   5060 
   5061   // Introduce a dependency on the high bits of rb_state, which shall
   5062   // be all zeroes, to prevent load-load reordering, and without using
   5063   // a memory barrier (which would be more expensive).
   5064   // temp2 = rb_state & ~LockWord::kReadBarrierStateMask = 0
   5065   Register temp2 = temps.AcquireW();
   5066   __ Bic(temp2, temp, Operand(LockWord::kReadBarrierStateMask));
   5067   // obj is unchanged by this operation, but its value now depends on
   5068   // temp2, which depends on temp.
   5069   __ Add(obj, obj, Operand(temp2));
   5070   temps.Release(temp2);
   5071 
   5072   // The actual reference load.
   5073   if (index.IsValid()) {
   5074     static_assert(
   5075         sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   5076         "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   5077     // /* HeapReference<Object> */ ref =
   5078     //     *(obj + offset + index * sizeof(HeapReference<Object>))
   5079     const size_t shift_amount = Primitive::ComponentSizeShift(type);
   5080     if (index.IsConstant()) {
   5081       uint32_t computed_offset = offset + (Int64ConstantFrom(index) << shift_amount);
   5082       Load(type, ref_reg, HeapOperand(obj, computed_offset));
   5083     } else {
   5084       temp2 = temps.AcquireW();
   5085       __ Add(temp2, obj, offset);
   5086       Load(type, ref_reg, HeapOperand(temp2, XRegisterFrom(index), LSL, shift_amount));
   5087       temps.Release(temp2);
   5088     }
   5089   } else {
   5090     // /* HeapReference<Object> */ ref = *(obj + offset)
   5091     MemOperand field = HeapOperand(obj, offset);
   5092     if (use_load_acquire) {
   5093       LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false);
   5094     } else {
   5095       Load(type, ref_reg, field);
   5096     }
   5097   }
   5098 
   5099   // Object* ref = ref_addr->AsMirrorPtr()
   5100   GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
   5101 
   5102   // Slow path used to mark the object `ref` when it is gray.
   5103   SlowPathCodeARM64* slow_path =
   5104       new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, ref, ref);
   5105   AddSlowPath(slow_path);
   5106 
   5107   // if (rb_state == ReadBarrier::gray_ptr_)
   5108   //   ref = ReadBarrier::Mark(ref);
   5109   __ Cmp(temp, ReadBarrier::gray_ptr_);
   5110   __ B(eq, slow_path->GetEntryLabel());
   5111   __ Bind(slow_path->GetExitLabel());
   5112 }
   5113 
   5114 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
   5115                                                  Location out,
   5116                                                  Location ref,
   5117                                                  Location obj,
   5118                                                  uint32_t offset,
   5119                                                  Location index) {
   5120   DCHECK(kEmitCompilerReadBarrier);
   5121 
   5122   // Insert a slow path based read barrier *after* the reference load.
   5123   //
   5124   // If heap poisoning is enabled, the unpoisoning of the loaded
   5125   // reference will be carried out by the runtime within the slow
   5126   // path.
   5127   //
   5128   // Note that `ref` currently does not get unpoisoned (when heap
   5129   // poisoning is enabled), which is alright as the `ref` argument is
   5130   // not used by the artReadBarrierSlow entry point.
   5131   //
   5132   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
   5133   SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena())
   5134       ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
   5135   AddSlowPath(slow_path);
   5136 
   5137   __ B(slow_path->GetEntryLabel());
   5138   __ Bind(slow_path->GetExitLabel());
   5139 }
   5140 
   5141 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
   5142                                                       Location out,
   5143                                                       Location ref,
   5144                                                       Location obj,
   5145                                                       uint32_t offset,
   5146                                                       Location index) {
   5147   if (kEmitCompilerReadBarrier) {
   5148     // Baker's read barriers shall be handled by the fast path
   5149     // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
   5150     DCHECK(!kUseBakerReadBarrier);
   5151     // If heap poisoning is enabled, unpoisoning will be taken care of
   5152     // by the runtime within the slow path.
   5153     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
   5154   } else if (kPoisonHeapReferences) {
   5155     GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
   5156   }
   5157 }
   5158 
   5159 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
   5160                                                         Location out,
   5161                                                         Location root) {
   5162   DCHECK(kEmitCompilerReadBarrier);
   5163 
   5164   // Insert a slow path based read barrier *after* the GC root load.
   5165   //
   5166   // Note that GC roots are not affected by heap poisoning, so we do
   5167   // not need to do anything special for this here.
   5168   SlowPathCodeARM64* slow_path =
   5169       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
   5170   AddSlowPath(slow_path);
   5171 
   5172   __ B(slow_path->GetEntryLabel());
   5173   __ Bind(slow_path->GetExitLabel());
   5174 }
   5175 
   5176 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
   5177   LocationSummary* locations =
   5178       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   5179   locations->SetInAt(0, Location::RequiresRegister());
   5180   locations->SetOut(Location::RequiresRegister());
   5181 }
   5182 
   5183 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
   5184   LocationSummary* locations = instruction->GetLocations();
   5185   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
   5186     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   5187         instruction->GetIndex(), kArm64PointerSize).SizeValue();
   5188     __ Ldr(XRegisterFrom(locations->Out()),
   5189            MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
   5190   } else {
   5191     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   5192         instruction->GetIndex() % ImTable::kSize, kArm64PointerSize));
   5193     __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
   5194         mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
   5195     __ Ldr(XRegisterFrom(locations->Out()),
   5196            MemOperand(XRegisterFrom(locations->Out()), method_offset));
   5197   }
   5198 }
   5199 
   5200 
   5201 
   5202 #undef __
   5203 #undef QUICK_ENTRY_POINT
   5204 
   5205 }  // namespace arm64
   5206 }  // namespace art
   5207