Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "code_generator_mips.h"
     18 
     19 #include "arch/mips/entrypoints_direct_mips.h"
     20 #include "arch/mips/instruction_set_features_mips.h"
     21 #include "art_method.h"
     22 #include "code_generator_utils.h"
     23 #include "entrypoints/quick/quick_entrypoints.h"
     24 #include "entrypoints/quick/quick_entrypoints_enum.h"
     25 #include "gc/accounting/card_table.h"
     26 #include "intrinsics.h"
     27 #include "intrinsics_mips.h"
     28 #include "mirror/array-inl.h"
     29 #include "mirror/class-inl.h"
     30 #include "offsets.h"
     31 #include "thread.h"
     32 #include "utils/assembler.h"
     33 #include "utils/mips/assembler_mips.h"
     34 #include "utils/stack_checks.h"
     35 
     36 namespace art {
     37 namespace mips {
     38 
     39 static constexpr int kCurrentMethodStackOffset = 0;
     40 static constexpr Register kMethodRegisterArgument = A0;
     41 
     42 Location MipsReturnLocation(Primitive::Type return_type) {
     43   switch (return_type) {
     44     case Primitive::kPrimBoolean:
     45     case Primitive::kPrimByte:
     46     case Primitive::kPrimChar:
     47     case Primitive::kPrimShort:
     48     case Primitive::kPrimInt:
     49     case Primitive::kPrimNot:
     50       return Location::RegisterLocation(V0);
     51 
     52     case Primitive::kPrimLong:
     53       return Location::RegisterPairLocation(V0, V1);
     54 
     55     case Primitive::kPrimFloat:
     56     case Primitive::kPrimDouble:
     57       return Location::FpuRegisterLocation(F0);
     58 
     59     case Primitive::kPrimVoid:
     60       return Location();
     61   }
     62   UNREACHABLE();
     63 }
     64 
     65 Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(Primitive::Type type) const {
     66   return MipsReturnLocation(type);
     67 }
     68 
     69 Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const {
     70   return Location::RegisterLocation(kMethodRegisterArgument);
     71 }
     72 
     73 Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(Primitive::Type type) {
     74   Location next_location;
     75 
     76   switch (type) {
     77     case Primitive::kPrimBoolean:
     78     case Primitive::kPrimByte:
     79     case Primitive::kPrimChar:
     80     case Primitive::kPrimShort:
     81     case Primitive::kPrimInt:
     82     case Primitive::kPrimNot: {
     83       uint32_t gp_index = gp_index_++;
     84       if (gp_index < calling_convention.GetNumberOfRegisters()) {
     85         next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index));
     86       } else {
     87         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
     88         next_location = Location::StackSlot(stack_offset);
     89       }
     90       break;
     91     }
     92 
     93     case Primitive::kPrimLong: {
     94       uint32_t gp_index = gp_index_;
     95       gp_index_ += 2;
     96       if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) {
     97         if (calling_convention.GetRegisterAt(gp_index) == A1) {
     98           gp_index_++;  // Skip A1, and use A2_A3 instead.
     99           gp_index++;
    100         }
    101         Register low_even = calling_convention.GetRegisterAt(gp_index);
    102         Register high_odd = calling_convention.GetRegisterAt(gp_index + 1);
    103         DCHECK_EQ(low_even + 1, high_odd);
    104         next_location = Location::RegisterPairLocation(low_even, high_odd);
    105       } else {
    106         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
    107         next_location = Location::DoubleStackSlot(stack_offset);
    108       }
    109       break;
    110     }
    111 
    112     // Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double
    113     // will take up the even/odd pair, while floats are stored in even regs only.
    114     // On 64 bit FPU, both double and float are stored in even registers only.
    115     case Primitive::kPrimFloat:
    116     case Primitive::kPrimDouble: {
    117       uint32_t float_index = float_index_++;
    118       if (float_index < calling_convention.GetNumberOfFpuRegisters()) {
    119         next_location = Location::FpuRegisterLocation(
    120             calling_convention.GetFpuRegisterAt(float_index));
    121       } else {
    122         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
    123         next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
    124                                                      : Location::StackSlot(stack_offset);
    125       }
    126       break;
    127     }
    128 
    129     case Primitive::kPrimVoid:
    130       LOG(FATAL) << "Unexpected parameter type " << type;
    131       break;
    132   }
    133 
    134   // Space on the stack is reserved for all arguments.
    135   stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
    136 
    137   return next_location;
    138 }
    139 
    140 Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type type) {
    141   return MipsReturnLocation(type);
    142 }
    143 
    144 #define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()->
    145 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsWordSize, x).Int32Value()
    146 
    147 class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS {
    148  public:
    149   explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {}
    150 
    151   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    152     LocationSummary* locations = instruction_->GetLocations();
    153     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    154     __ Bind(GetEntryLabel());
    155     if (instruction_->CanThrowIntoCatchBlock()) {
    156       // Live registers will be restored in the catch block if caught.
    157       SaveLiveRegisters(codegen, instruction_->GetLocations());
    158     }
    159     // We're moving two locations to locations that could overlap, so we need a parallel
    160     // move resolver.
    161     InvokeRuntimeCallingConvention calling_convention;
    162     codegen->EmitParallelMoves(locations->InAt(0),
    163                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
    164                                Primitive::kPrimInt,
    165                                locations->InAt(1),
    166                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
    167                                Primitive::kPrimInt);
    168     mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds),
    169                                 instruction_,
    170                                 instruction_->GetDexPc(),
    171                                 this,
    172                                 IsDirectEntrypoint(kQuickThrowArrayBounds));
    173     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
    174   }
    175 
    176   bool IsFatal() const OVERRIDE { return true; }
    177 
    178   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; }
    179 
    180  private:
    181   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS);
    182 };
    183 
    184 class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS {
    185  public:
    186   explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {}
    187 
    188   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    189     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    190     __ Bind(GetEntryLabel());
    191     if (instruction_->CanThrowIntoCatchBlock()) {
    192       // Live registers will be restored in the catch block if caught.
    193       SaveLiveRegisters(codegen, instruction_->GetLocations());
    194     }
    195     mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero),
    196                                 instruction_,
    197                                 instruction_->GetDexPc(),
    198                                 this,
    199                                 IsDirectEntrypoint(kQuickThrowDivZero));
    200     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
    201   }
    202 
    203   bool IsFatal() const OVERRIDE { return true; }
    204 
    205   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; }
    206 
    207  private:
    208   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS);
    209 };
    210 
    211 class LoadClassSlowPathMIPS : public SlowPathCodeMIPS {
    212  public:
    213   LoadClassSlowPathMIPS(HLoadClass* cls,
    214                         HInstruction* at,
    215                         uint32_t dex_pc,
    216                         bool do_clinit)
    217       : SlowPathCodeMIPS(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
    218     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
    219   }
    220 
    221   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    222     LocationSummary* locations = at_->GetLocations();
    223     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    224 
    225     __ Bind(GetEntryLabel());
    226     SaveLiveRegisters(codegen, locations);
    227 
    228     InvokeRuntimeCallingConvention calling_convention;
    229     __ LoadConst32(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
    230 
    231     int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
    232                                             : QUICK_ENTRY_POINT(pInitializeType);
    233     bool direct = do_clinit_ ? IsDirectEntrypoint(kQuickInitializeStaticStorage)
    234                              : IsDirectEntrypoint(kQuickInitializeType);
    235 
    236     mips_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this, direct);
    237     if (do_clinit_) {
    238       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
    239     } else {
    240       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
    241     }
    242 
    243     // Move the class to the desired location.
    244     Location out = locations->Out();
    245     if (out.IsValid()) {
    246       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
    247       Primitive::Type type = at_->GetType();
    248       mips_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
    249     }
    250 
    251     RestoreLiveRegisters(codegen, locations);
    252     __ B(GetExitLabel());
    253   }
    254 
    255   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; }
    256 
    257  private:
    258   // The class this slow path will load.
    259   HLoadClass* const cls_;
    260 
    261   // The instruction where this slow path is happening.
    262   // (Might be the load class or an initialization check).
    263   HInstruction* const at_;
    264 
    265   // The dex PC of `at_`.
    266   const uint32_t dex_pc_;
    267 
    268   // Whether to initialize the class.
    269   const bool do_clinit_;
    270 
    271   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS);
    272 };
    273 
    274 class LoadStringSlowPathMIPS : public SlowPathCodeMIPS {
    275  public:
    276   explicit LoadStringSlowPathMIPS(HLoadString* instruction) : SlowPathCodeMIPS(instruction) {}
    277 
    278   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    279     LocationSummary* locations = instruction_->GetLocations();
    280     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    281     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    282 
    283     __ Bind(GetEntryLabel());
    284     SaveLiveRegisters(codegen, locations);
    285 
    286     InvokeRuntimeCallingConvention calling_convention;
    287     const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
    288     __ LoadConst32(calling_convention.GetRegisterAt(0), string_index);
    289     mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString),
    290                                 instruction_,
    291                                 instruction_->GetDexPc(),
    292                                 this,
    293                                 IsDirectEntrypoint(kQuickResolveString));
    294     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
    295     Primitive::Type type = instruction_->GetType();
    296     mips_codegen->MoveLocation(locations->Out(),
    297                                calling_convention.GetReturnLocation(type),
    298                                type);
    299 
    300     RestoreLiveRegisters(codegen, locations);
    301     __ B(GetExitLabel());
    302   }
    303 
    304   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; }
    305 
    306  private:
    307   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS);
    308 };
    309 
    310 class NullCheckSlowPathMIPS : public SlowPathCodeMIPS {
    311  public:
    312   explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {}
    313 
    314   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    315     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    316     __ Bind(GetEntryLabel());
    317     if (instruction_->CanThrowIntoCatchBlock()) {
    318       // Live registers will be restored in the catch block if caught.
    319       SaveLiveRegisters(codegen, instruction_->GetLocations());
    320     }
    321     mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer),
    322                                 instruction_,
    323                                 instruction_->GetDexPc(),
    324                                 this,
    325                                 IsDirectEntrypoint(kQuickThrowNullPointer));
    326     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
    327   }
    328 
    329   bool IsFatal() const OVERRIDE { return true; }
    330 
    331   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; }
    332 
    333  private:
    334   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS);
    335 };
    336 
    337 class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS {
    338  public:
    339   SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor)
    340       : SlowPathCodeMIPS(instruction), successor_(successor) {}
    341 
    342   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    343     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    344     __ Bind(GetEntryLabel());
    345     SaveLiveRegisters(codegen, instruction_->GetLocations());
    346     mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend),
    347                                 instruction_,
    348                                 instruction_->GetDexPc(),
    349                                 this,
    350                                 IsDirectEntrypoint(kQuickTestSuspend));
    351     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
    352     RestoreLiveRegisters(codegen, instruction_->GetLocations());
    353     if (successor_ == nullptr) {
    354       __ B(GetReturnLabel());
    355     } else {
    356       __ B(mips_codegen->GetLabelOf(successor_));
    357     }
    358   }
    359 
    360   MipsLabel* GetReturnLabel() {
    361     DCHECK(successor_ == nullptr);
    362     return &return_label_;
    363   }
    364 
    365   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; }
    366 
    367  private:
    368   // If not null, the block to branch to after the suspend check.
    369   HBasicBlock* const successor_;
    370 
    371   // If `successor_` is null, the label to branch to after the suspend check.
    372   MipsLabel return_label_;
    373 
    374   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS);
    375 };
    376 
    377 class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS {
    378  public:
    379   explicit TypeCheckSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {}
    380 
    381   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    382     LocationSummary* locations = instruction_->GetLocations();
    383     Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) : locations->Out();
    384     uint32_t dex_pc = instruction_->GetDexPc();
    385     DCHECK(instruction_->IsCheckCast()
    386            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    387     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    388 
    389     __ Bind(GetEntryLabel());
    390     SaveLiveRegisters(codegen, locations);
    391 
    392     // We're moving two locations to locations that could overlap, so we need a parallel
    393     // move resolver.
    394     InvokeRuntimeCallingConvention calling_convention;
    395     codegen->EmitParallelMoves(locations->InAt(1),
    396                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
    397                                Primitive::kPrimNot,
    398                                object_class,
    399                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
    400                                Primitive::kPrimNot);
    401 
    402     if (instruction_->IsInstanceOf()) {
    403       mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
    404                                   instruction_,
    405                                   dex_pc,
    406                                   this,
    407                                   IsDirectEntrypoint(kQuickInstanceofNonTrivial));
    408       CheckEntrypointTypes<
    409           kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
    410       Primitive::Type ret_type = instruction_->GetType();
    411       Location ret_loc = calling_convention.GetReturnLocation(ret_type);
    412       mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
    413     } else {
    414       DCHECK(instruction_->IsCheckCast());
    415       mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
    416                                   instruction_,
    417                                   dex_pc,
    418                                   this,
    419                                   IsDirectEntrypoint(kQuickCheckCast));
    420       CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
    421     }
    422 
    423     RestoreLiveRegisters(codegen, locations);
    424     __ B(GetExitLabel());
    425   }
    426 
    427   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; }
    428 
    429  private:
    430   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS);
    431 };
    432 
    433 class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS {
    434  public:
    435   explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction)
    436     : SlowPathCodeMIPS(instruction) {}
    437 
    438   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    439     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
    440     __ Bind(GetEntryLabel());
    441     SaveLiveRegisters(codegen, instruction_->GetLocations());
    442     mips_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
    443                                 instruction_,
    444                                 instruction_->GetDexPc(),
    445                                 this,
    446                                 IsDirectEntrypoint(kQuickDeoptimize));
    447     CheckEntrypointTypes<kQuickDeoptimize, void, void>();
    448   }
    449 
    450   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; }
    451 
    452  private:
    453   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS);
    454 };
    455 
    456 CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph,
    457                                      const MipsInstructionSetFeatures& isa_features,
    458                                      const CompilerOptions& compiler_options,
    459                                      OptimizingCompilerStats* stats)
    460     : CodeGenerator(graph,
    461                     kNumberOfCoreRegisters,
    462                     kNumberOfFRegisters,
    463                     kNumberOfRegisterPairs,
    464                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
    465                                         arraysize(kCoreCalleeSaves)),
    466                     ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
    467                                         arraysize(kFpuCalleeSaves)),
    468                     compiler_options,
    469                     stats),
    470       block_labels_(nullptr),
    471       location_builder_(graph, this),
    472       instruction_visitor_(graph, this),
    473       move_resolver_(graph->GetArena(), this),
    474       assembler_(graph->GetArena(), &isa_features),
    475       isa_features_(isa_features) {
    476   // Save RA (containing the return address) to mimic Quick.
    477   AddAllocatedRegister(Location::RegisterLocation(RA));
    478 }
    479 
    480 #undef __
    481 #define __ down_cast<MipsAssembler*>(GetAssembler())->
    482 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsWordSize, x).Int32Value()
    483 
    484 void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) {
    485   // Ensure that we fix up branches.
    486   __ FinalizeCode();
    487 
    488   // Adjust native pc offsets in stack maps.
    489   for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
    490     uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
    491     uint32_t new_position = __ GetAdjustedPosition(old_position);
    492     DCHECK_GE(new_position, old_position);
    493     stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
    494   }
    495 
    496   // Adjust pc offsets for the disassembly information.
    497   if (disasm_info_ != nullptr) {
    498     GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
    499     frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
    500     frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
    501     for (auto& it : *disasm_info_->GetInstructionIntervals()) {
    502       it.second.start = __ GetAdjustedPosition(it.second.start);
    503       it.second.end = __ GetAdjustedPosition(it.second.end);
    504     }
    505     for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
    506       it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
    507       it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
    508     }
    509   }
    510 
    511   CodeGenerator::Finalize(allocator);
    512 }
    513 
    514 MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const {
    515   return codegen_->GetAssembler();
    516 }
    517 
    518 void ParallelMoveResolverMIPS::EmitMove(size_t index) {
    519   DCHECK_LT(index, moves_.size());
    520   MoveOperands* move = moves_[index];
    521   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
    522 }
    523 
    524 void ParallelMoveResolverMIPS::EmitSwap(size_t index) {
    525   DCHECK_LT(index, moves_.size());
    526   MoveOperands* move = moves_[index];
    527   Primitive::Type type = move->GetType();
    528   Location loc1 = move->GetDestination();
    529   Location loc2 = move->GetSource();
    530 
    531   DCHECK(!loc1.IsConstant());
    532   DCHECK(!loc2.IsConstant());
    533 
    534   if (loc1.Equals(loc2)) {
    535     return;
    536   }
    537 
    538   if (loc1.IsRegister() && loc2.IsRegister()) {
    539     // Swap 2 GPRs.
    540     Register r1 = loc1.AsRegister<Register>();
    541     Register r2 = loc2.AsRegister<Register>();
    542     __ Move(TMP, r2);
    543     __ Move(r2, r1);
    544     __ Move(r1, TMP);
    545   } else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) {
    546     FRegister f1 = loc1.AsFpuRegister<FRegister>();
    547     FRegister f2 = loc2.AsFpuRegister<FRegister>();
    548     if (type == Primitive::kPrimFloat) {
    549       __ MovS(FTMP, f2);
    550       __ MovS(f2, f1);
    551       __ MovS(f1, FTMP);
    552     } else {
    553       DCHECK_EQ(type, Primitive::kPrimDouble);
    554       __ MovD(FTMP, f2);
    555       __ MovD(f2, f1);
    556       __ MovD(f1, FTMP);
    557     }
    558   } else if ((loc1.IsRegister() && loc2.IsFpuRegister()) ||
    559              (loc1.IsFpuRegister() && loc2.IsRegister())) {
    560     // Swap FPR and GPR.
    561     DCHECK_EQ(type, Primitive::kPrimFloat);  // Can only swap a float.
    562     FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
    563                                         : loc2.AsFpuRegister<FRegister>();
    564     Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>()
    565                                     : loc2.AsRegister<Register>();
    566     __ Move(TMP, r2);
    567     __ Mfc1(r2, f1);
    568     __ Mtc1(TMP, f1);
    569   } else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) {
    570     // Swap 2 GPR register pairs.
    571     Register r1 = loc1.AsRegisterPairLow<Register>();
    572     Register r2 = loc2.AsRegisterPairLow<Register>();
    573     __ Move(TMP, r2);
    574     __ Move(r2, r1);
    575     __ Move(r1, TMP);
    576     r1 = loc1.AsRegisterPairHigh<Register>();
    577     r2 = loc2.AsRegisterPairHigh<Register>();
    578     __ Move(TMP, r2);
    579     __ Move(r2, r1);
    580     __ Move(r1, TMP);
    581   } else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) ||
    582              (loc1.IsFpuRegister() && loc2.IsRegisterPair())) {
    583     // Swap FPR and GPR register pair.
    584     DCHECK_EQ(type, Primitive::kPrimDouble);
    585     FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
    586                                         : loc2.AsFpuRegister<FRegister>();
    587     Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
    588                                           : loc2.AsRegisterPairLow<Register>();
    589     Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
    590                                           : loc2.AsRegisterPairHigh<Register>();
    591     // Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and
    592     // then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR
    593     // unpredictable and the following mfch1 will fail.
    594     __ Mfc1(TMP, f1);
    595     __ MoveFromFpuHigh(AT, f1);
    596     __ Mtc1(r2_l, f1);
    597     __ MoveToFpuHigh(r2_h, f1);
    598     __ Move(r2_l, TMP);
    599     __ Move(r2_h, AT);
    600   } else if (loc1.IsStackSlot() && loc2.IsStackSlot()) {
    601     Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false);
    602   } else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) {
    603     Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true);
    604   } else if ((loc1.IsRegister() && loc2.IsStackSlot()) ||
    605              (loc1.IsStackSlot() && loc2.IsRegister())) {
    606     Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>()
    607                                      : loc2.AsRegister<Register>();
    608     intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex()
    609                                          : loc2.GetStackIndex();
    610     __ Move(TMP, reg);
    611     __ LoadFromOffset(kLoadWord, reg, SP, offset);
    612     __ StoreToOffset(kStoreWord, TMP, SP, offset);
    613   } else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) ||
    614              (loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) {
    615     Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
    616                                            : loc2.AsRegisterPairLow<Register>();
    617     Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
    618                                            : loc2.AsRegisterPairHigh<Register>();
    619     intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex()
    620                                                  : loc2.GetStackIndex();
    621     intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize)
    622                                                  : loc2.GetHighStackIndex(kMipsWordSize);
    623     __ Move(TMP, reg_l);
    624     __ LoadFromOffset(kLoadWord, reg_l, SP, offset_l);
    625     __ StoreToOffset(kStoreWord, TMP, SP, offset_l);
    626     __ Move(TMP, reg_h);
    627     __ LoadFromOffset(kLoadWord, reg_h, SP, offset_h);
    628     __ StoreToOffset(kStoreWord, TMP, SP, offset_h);
    629   } else {
    630     LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported";
    631   }
    632 }
    633 
    634 void ParallelMoveResolverMIPS::RestoreScratch(int reg) {
    635   __ Pop(static_cast<Register>(reg));
    636 }
    637 
    638 void ParallelMoveResolverMIPS::SpillScratch(int reg) {
    639   __ Push(static_cast<Register>(reg));
    640 }
    641 
    642 void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) {
    643   // Allocate a scratch register other than TMP, if available.
    644   // Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be
    645   // automatically unspilled when the scratch scope object is destroyed).
    646   ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters());
    647   // If V0 spills onto the stack, SP-relative offsets need to be adjusted.
    648   int stack_offset = ensure_scratch.IsSpilled() ? kMipsWordSize : 0;
    649   for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) {
    650     __ LoadFromOffset(kLoadWord,
    651                       Register(ensure_scratch.GetRegister()),
    652                       SP,
    653                       index1 + stack_offset);
    654     __ LoadFromOffset(kLoadWord,
    655                       TMP,
    656                       SP,
    657                       index2 + stack_offset);
    658     __ StoreToOffset(kStoreWord,
    659                      Register(ensure_scratch.GetRegister()),
    660                      SP,
    661                      index2 + stack_offset);
    662     __ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset);
    663   }
    664 }
    665 
    666 static dwarf::Reg DWARFReg(Register reg) {
    667   return dwarf::Reg::MipsCore(static_cast<int>(reg));
    668 }
    669 
    670 // TODO: mapping of floating-point registers to DWARF.
    671 
    672 void CodeGeneratorMIPS::GenerateFrameEntry() {
    673   __ Bind(&frame_entry_label_);
    674 
    675   bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kMips) || !IsLeafMethod();
    676 
    677   if (do_overflow_check) {
    678     __ LoadFromOffset(kLoadWord,
    679                       ZERO,
    680                       SP,
    681                       -static_cast<int32_t>(GetStackOverflowReservedBytes(kMips)));
    682     RecordPcInfo(nullptr, 0);
    683   }
    684 
    685   if (HasEmptyFrame()) {
    686     return;
    687   }
    688 
    689   // Make sure the frame size isn't unreasonably large.
    690   if (GetFrameSize() > GetStackOverflowReservedBytes(kMips)) {
    691     LOG(FATAL) << "Stack frame larger than " << GetStackOverflowReservedBytes(kMips) << " bytes";
    692   }
    693 
    694   // Spill callee-saved registers.
    695   // Note that their cumulative size is small and they can be indexed using
    696   // 16-bit offsets.
    697 
    698   // TODO: increment/decrement SP in one step instead of two or remove this comment.
    699 
    700   uint32_t ofs = FrameEntrySpillSize();
    701   bool unaligned_float = ofs & 0x7;
    702   bool fpu_32bit = isa_features_.Is32BitFloatingPoint();
    703   __ IncreaseFrameSize(ofs);
    704 
    705   for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
    706     Register reg = kCoreCalleeSaves[i];
    707     if (allocated_registers_.ContainsCoreRegister(reg)) {
    708       ofs -= kMipsWordSize;
    709       __ Sw(reg, SP, ofs);
    710       __ cfi().RelOffset(DWARFReg(reg), ofs);
    711     }
    712   }
    713 
    714   for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) {
    715     FRegister reg = kFpuCalleeSaves[i];
    716     if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
    717       ofs -= kMipsDoublewordSize;
    718       // TODO: Change the frame to avoid unaligned accesses for fpu registers.
    719       if (unaligned_float) {
    720         if (fpu_32bit) {
    721           __ Swc1(reg, SP, ofs);
    722           __ Swc1(static_cast<FRegister>(reg + 1), SP, ofs + 4);
    723         } else {
    724           __ Mfhc1(TMP, reg);
    725           __ Swc1(reg, SP, ofs);
    726           __ Sw(TMP, SP, ofs + 4);
    727         }
    728       } else {
    729         __ Sdc1(reg, SP, ofs);
    730       }
    731       // TODO: __ cfi().RelOffset(DWARFReg(reg), ofs);
    732     }
    733   }
    734 
    735   // Allocate the rest of the frame and store the current method pointer
    736   // at its end.
    737 
    738   __ IncreaseFrameSize(GetFrameSize() - FrameEntrySpillSize());
    739 
    740   static_assert(IsInt<16>(kCurrentMethodStackOffset),
    741                 "kCurrentMethodStackOffset must fit into int16_t");
    742   __ Sw(kMethodRegisterArgument, SP, kCurrentMethodStackOffset);
    743 }
    744 
    745 void CodeGeneratorMIPS::GenerateFrameExit() {
    746   __ cfi().RememberState();
    747 
    748   if (!HasEmptyFrame()) {
    749     // Deallocate the rest of the frame.
    750 
    751     __ DecreaseFrameSize(GetFrameSize() - FrameEntrySpillSize());
    752 
    753     // Restore callee-saved registers.
    754     // Note that their cumulative size is small and they can be indexed using
    755     // 16-bit offsets.
    756 
    757     // TODO: increment/decrement SP in one step instead of two or remove this comment.
    758 
    759     uint32_t ofs = 0;
    760     bool unaligned_float = FrameEntrySpillSize() & 0x7;
    761     bool fpu_32bit = isa_features_.Is32BitFloatingPoint();
    762 
    763     for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
    764       FRegister reg = kFpuCalleeSaves[i];
    765       if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
    766         if (unaligned_float) {
    767           if (fpu_32bit) {
    768             __ Lwc1(reg, SP, ofs);
    769             __ Lwc1(static_cast<FRegister>(reg + 1), SP, ofs + 4);
    770           } else {
    771             __ Lwc1(reg, SP, ofs);
    772             __ Lw(TMP, SP, ofs + 4);
    773             __ Mthc1(TMP, reg);
    774           }
    775         } else {
    776           __ Ldc1(reg, SP, ofs);
    777         }
    778         ofs += kMipsDoublewordSize;
    779         // TODO: __ cfi().Restore(DWARFReg(reg));
    780       }
    781     }
    782 
    783     for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
    784       Register reg = kCoreCalleeSaves[i];
    785       if (allocated_registers_.ContainsCoreRegister(reg)) {
    786         __ Lw(reg, SP, ofs);
    787         ofs += kMipsWordSize;
    788         __ cfi().Restore(DWARFReg(reg));
    789       }
    790     }
    791 
    792     DCHECK_EQ(ofs, FrameEntrySpillSize());
    793     __ DecreaseFrameSize(ofs);
    794   }
    795 
    796   __ Jr(RA);
    797   __ Nop();
    798 
    799   __ cfi().RestoreState();
    800   __ cfi().DefCFAOffset(GetFrameSize());
    801 }
    802 
    803 void CodeGeneratorMIPS::Bind(HBasicBlock* block) {
    804   __ Bind(GetLabelOf(block));
    805 }
    806 
    807 void CodeGeneratorMIPS::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
    808   if (src.Equals(dst)) {
    809     return;
    810   }
    811 
    812   if (src.IsConstant()) {
    813     MoveConstant(dst, src.GetConstant());
    814   } else {
    815     if (Primitive::Is64BitType(dst_type)) {
    816       Move64(dst, src);
    817     } else {
    818       Move32(dst, src);
    819     }
    820   }
    821 }
    822 
    823 void CodeGeneratorMIPS::Move32(Location destination, Location source) {
    824   if (source.Equals(destination)) {
    825     return;
    826   }
    827 
    828   if (destination.IsRegister()) {
    829     if (source.IsRegister()) {
    830       __ Move(destination.AsRegister<Register>(), source.AsRegister<Register>());
    831     } else if (source.IsFpuRegister()) {
    832       __ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>());
    833     } else {
    834       DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
    835       __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
    836     }
    837   } else if (destination.IsFpuRegister()) {
    838     if (source.IsRegister()) {
    839       __ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>());
    840     } else if (source.IsFpuRegister()) {
    841       __ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
    842     } else {
    843       DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
    844       __ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
    845     }
    846   } else {
    847     DCHECK(destination.IsStackSlot()) << destination;
    848     if (source.IsRegister()) {
    849       __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
    850     } else if (source.IsFpuRegister()) {
    851       __ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
    852     } else {
    853       DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
    854       __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
    855       __ StoreToOffset(kStoreWord, TMP, SP, destination.GetStackIndex());
    856     }
    857   }
    858 }
    859 
    860 void CodeGeneratorMIPS::Move64(Location destination, Location source) {
    861   if (source.Equals(destination)) {
    862     return;
    863   }
    864 
    865   if (destination.IsRegisterPair()) {
    866     if (source.IsRegisterPair()) {
    867       __ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
    868       __ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
    869     } else if (source.IsFpuRegister()) {
    870       Register dst_high = destination.AsRegisterPairHigh<Register>();
    871       Register dst_low =  destination.AsRegisterPairLow<Register>();
    872       FRegister src = source.AsFpuRegister<FRegister>();
    873       __ Mfc1(dst_low, src);
    874       __ MoveFromFpuHigh(dst_high, src);
    875     } else {
    876       DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
    877       int32_t off = source.GetStackIndex();
    878       Register r = destination.AsRegisterPairLow<Register>();
    879       __ LoadFromOffset(kLoadDoubleword, r, SP, off);
    880     }
    881   } else if (destination.IsFpuRegister()) {
    882     if (source.IsRegisterPair()) {
    883       FRegister dst = destination.AsFpuRegister<FRegister>();
    884       Register src_high = source.AsRegisterPairHigh<Register>();
    885       Register src_low = source.AsRegisterPairLow<Register>();
    886       __ Mtc1(src_low, dst);
    887       __ MoveToFpuHigh(src_high, dst);
    888     } else if (source.IsFpuRegister()) {
    889       __ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
    890     } else {
    891       DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
    892       __ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
    893     }
    894   } else {
    895     DCHECK(destination.IsDoubleStackSlot()) << destination;
    896     int32_t off = destination.GetStackIndex();
    897     if (source.IsRegisterPair()) {
    898       __ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, off);
    899     } else if (source.IsFpuRegister()) {
    900       __ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, off);
    901     } else {
    902       DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
    903       __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
    904       __ StoreToOffset(kStoreWord, TMP, SP, off);
    905       __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4);
    906       __ StoreToOffset(kStoreWord, TMP, SP, off + 4);
    907     }
    908   }
    909 }
    910 
    911 void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) {
    912   if (c->IsIntConstant() || c->IsNullConstant()) {
    913     // Move 32 bit constant.
    914     int32_t value = GetInt32ValueOf(c);
    915     if (destination.IsRegister()) {
    916       Register dst = destination.AsRegister<Register>();
    917       __ LoadConst32(dst, value);
    918     } else {
    919       DCHECK(destination.IsStackSlot())
    920           << "Cannot move " << c->DebugName() << " to " << destination;
    921       __ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP);
    922     }
    923   } else if (c->IsLongConstant()) {
    924     // Move 64 bit constant.
    925     int64_t value = GetInt64ValueOf(c);
    926     if (destination.IsRegisterPair()) {
    927       Register r_h = destination.AsRegisterPairHigh<Register>();
    928       Register r_l = destination.AsRegisterPairLow<Register>();
    929       __ LoadConst64(r_h, r_l, value);
    930     } else {
    931       DCHECK(destination.IsDoubleStackSlot())
    932           << "Cannot move " << c->DebugName() << " to " << destination;
    933       __ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP);
    934     }
    935   } else if (c->IsFloatConstant()) {
    936     // Move 32 bit float constant.
    937     int32_t value = GetInt32ValueOf(c);
    938     if (destination.IsFpuRegister()) {
    939       __ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP);
    940     } else {
    941       DCHECK(destination.IsStackSlot())
    942           << "Cannot move " << c->DebugName() << " to " << destination;
    943       __ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP);
    944     }
    945   } else {
    946     // Move 64 bit double constant.
    947     DCHECK(c->IsDoubleConstant()) << c->DebugName();
    948     int64_t value = GetInt64ValueOf(c);
    949     if (destination.IsFpuRegister()) {
    950       FRegister fd = destination.AsFpuRegister<FRegister>();
    951       __ LoadDConst64(fd, value, TMP);
    952     } else {
    953       DCHECK(destination.IsDoubleStackSlot())
    954           << "Cannot move " << c->DebugName() << " to " << destination;
    955       __ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP);
    956     }
    957   }
    958 }
    959 
    960 void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) {
    961   DCHECK(destination.IsRegister());
    962   Register dst = destination.AsRegister<Register>();
    963   __ LoadConst32(dst, value);
    964 }
    965 
    966 void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) {
    967   if (location.IsRegister()) {
    968     locations->AddTemp(location);
    969   } else if (location.IsRegisterPair()) {
    970     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
    971     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
    972   } else {
    973     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
    974   }
    975 }
    976 
    977 void CodeGeneratorMIPS::MarkGCCard(Register object, Register value) {
    978   MipsLabel done;
    979   Register card = AT;
    980   Register temp = TMP;
    981   __ Beqz(value, &done);
    982   __ LoadFromOffset(kLoadWord,
    983                     card,
    984                     TR,
    985                     Thread::CardTableOffset<kMipsWordSize>().Int32Value());
    986   __ Srl(temp, object, gc::accounting::CardTable::kCardShift);
    987   __ Addu(temp, card, temp);
    988   __ Sb(card, temp, 0);
    989   __ Bind(&done);
    990 }
    991 
    992 void CodeGeneratorMIPS::SetupBlockedRegisters() const {
    993   // Don't allocate the dalvik style register pair passing.
    994   blocked_register_pairs_[A1_A2] = true;
    995 
    996   // ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated.
    997   blocked_core_registers_[ZERO] = true;
    998   blocked_core_registers_[K0] = true;
    999   blocked_core_registers_[K1] = true;
   1000   blocked_core_registers_[GP] = true;
   1001   blocked_core_registers_[SP] = true;
   1002   blocked_core_registers_[RA] = true;
   1003 
   1004   // AT and TMP(T8) are used as temporary/scratch registers
   1005   // (similar to how AT is used by MIPS assemblers).
   1006   blocked_core_registers_[AT] = true;
   1007   blocked_core_registers_[TMP] = true;
   1008   blocked_fpu_registers_[FTMP] = true;
   1009 
   1010   // Reserve suspend and thread registers.
   1011   blocked_core_registers_[S0] = true;
   1012   blocked_core_registers_[TR] = true;
   1013 
   1014   // Reserve T9 for function calls
   1015   blocked_core_registers_[T9] = true;
   1016 
   1017   // Reserve odd-numbered FPU registers.
   1018   for (size_t i = 1; i < kNumberOfFRegisters; i += 2) {
   1019     blocked_fpu_registers_[i] = true;
   1020   }
   1021 
   1022   UpdateBlockedPairRegisters();
   1023 }
   1024 
   1025 void CodeGeneratorMIPS::UpdateBlockedPairRegisters() const {
   1026   for (int i = 0; i < kNumberOfRegisterPairs; i++) {
   1027     MipsManagedRegister current =
   1028         MipsManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
   1029     if (blocked_core_registers_[current.AsRegisterPairLow()]
   1030         || blocked_core_registers_[current.AsRegisterPairHigh()]) {
   1031       blocked_register_pairs_[i] = true;
   1032     }
   1033   }
   1034 }
   1035 
   1036 size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
   1037   __ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index);
   1038   return kMipsWordSize;
   1039 }
   1040 
   1041 size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
   1042   __ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index);
   1043   return kMipsWordSize;
   1044 }
   1045 
   1046 size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1047   __ StoreDToOffset(FRegister(reg_id), SP, stack_index);
   1048   return kMipsDoublewordSize;
   1049 }
   1050 
   1051 size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1052   __ LoadDFromOffset(FRegister(reg_id), SP, stack_index);
   1053   return kMipsDoublewordSize;
   1054 }
   1055 
   1056 void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const {
   1057   stream << Register(reg);
   1058 }
   1059 
   1060 void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
   1061   stream << FRegister(reg);
   1062 }
   1063 
   1064 void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint,
   1065                                       HInstruction* instruction,
   1066                                       uint32_t dex_pc,
   1067                                       SlowPathCode* slow_path) {
   1068   InvokeRuntime(GetThreadOffset<kMipsWordSize>(entrypoint).Int32Value(),
   1069                 instruction,
   1070                 dex_pc,
   1071                 slow_path,
   1072                 IsDirectEntrypoint(entrypoint));
   1073 }
   1074 
   1075 constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16;
   1076 
   1077 void CodeGeneratorMIPS::InvokeRuntime(int32_t entry_point_offset,
   1078                                       HInstruction* instruction,
   1079                                       uint32_t dex_pc,
   1080                                       SlowPathCode* slow_path,
   1081                                       bool is_direct_entrypoint) {
   1082   __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
   1083   __ Jalr(T9);
   1084   if (is_direct_entrypoint) {
   1085     // Reserve argument space on stack (for $a0-$a3) for
   1086     // entrypoints that directly reference native implementations.
   1087     // Called function may use this space to store $a0-$a3 regs.
   1088     __ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);  // Single instruction in delay slot.
   1089     __ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
   1090   } else {
   1091     __ Nop();  // In delay slot.
   1092   }
   1093   RecordPcInfo(instruction, dex_pc, slow_path);
   1094 }
   1095 
   1096 void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path,
   1097                                                                     Register class_reg) {
   1098   __ LoadFromOffset(kLoadWord, TMP, class_reg, mirror::Class::StatusOffset().Int32Value());
   1099   __ LoadConst32(AT, mirror::Class::kStatusInitialized);
   1100   __ Blt(TMP, AT, slow_path->GetEntryLabel());
   1101   // Even if the initialized flag is set, we need to ensure consistent memory ordering.
   1102   __ Sync(0);
   1103   __ Bind(slow_path->GetExitLabel());
   1104 }
   1105 
   1106 void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) {
   1107   __ Sync(0);  // Only stype 0 is supported.
   1108 }
   1109 
   1110 void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction,
   1111                                                         HBasicBlock* successor) {
   1112   SuspendCheckSlowPathMIPS* slow_path =
   1113     new (GetGraph()->GetArena()) SuspendCheckSlowPathMIPS(instruction, successor);
   1114   codegen_->AddSlowPath(slow_path);
   1115 
   1116   __ LoadFromOffset(kLoadUnsignedHalfword,
   1117                     TMP,
   1118                     TR,
   1119                     Thread::ThreadFlagsOffset<kMipsWordSize>().Int32Value());
   1120   if (successor == nullptr) {
   1121     __ Bnez(TMP, slow_path->GetEntryLabel());
   1122     __ Bind(slow_path->GetReturnLabel());
   1123   } else {
   1124     __ Beqz(TMP, codegen_->GetLabelOf(successor));
   1125     __ B(slow_path->GetEntryLabel());
   1126     // slow_path will return to GetLabelOf(successor).
   1127   }
   1128 }
   1129 
   1130 InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph,
   1131                                                            CodeGeneratorMIPS* codegen)
   1132       : InstructionCodeGenerator(graph, codegen),
   1133         assembler_(codegen->GetAssembler()),
   1134         codegen_(codegen) {}
   1135 
   1136 void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
   1137   DCHECK_EQ(instruction->InputCount(), 2U);
   1138   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   1139   Primitive::Type type = instruction->GetResultType();
   1140   switch (type) {
   1141     case Primitive::kPrimInt: {
   1142       locations->SetInAt(0, Location::RequiresRegister());
   1143       HInstruction* right = instruction->InputAt(1);
   1144       bool can_use_imm = false;
   1145       if (right->IsConstant()) {
   1146         int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant());
   1147         if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
   1148           can_use_imm = IsUint<16>(imm);
   1149         } else if (instruction->IsAdd()) {
   1150           can_use_imm = IsInt<16>(imm);
   1151         } else {
   1152           DCHECK(instruction->IsSub());
   1153           can_use_imm = IsInt<16>(-imm);
   1154         }
   1155       }
   1156       if (can_use_imm)
   1157         locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
   1158       else
   1159         locations->SetInAt(1, Location::RequiresRegister());
   1160       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1161       break;
   1162     }
   1163 
   1164     case Primitive::kPrimLong: {
   1165       locations->SetInAt(0, Location::RequiresRegister());
   1166       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   1167       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1168       break;
   1169     }
   1170 
   1171     case Primitive::kPrimFloat:
   1172     case Primitive::kPrimDouble:
   1173       DCHECK(instruction->IsAdd() || instruction->IsSub());
   1174       locations->SetInAt(0, Location::RequiresFpuRegister());
   1175       locations->SetInAt(1, Location::RequiresFpuRegister());
   1176       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   1177       break;
   1178 
   1179     default:
   1180       LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
   1181   }
   1182 }
   1183 
   1184 void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
   1185   Primitive::Type type = instruction->GetType();
   1186   LocationSummary* locations = instruction->GetLocations();
   1187 
   1188   switch (type) {
   1189     case Primitive::kPrimInt: {
   1190       Register dst = locations->Out().AsRegister<Register>();
   1191       Register lhs = locations->InAt(0).AsRegister<Register>();
   1192       Location rhs_location = locations->InAt(1);
   1193 
   1194       Register rhs_reg = ZERO;
   1195       int32_t rhs_imm = 0;
   1196       bool use_imm = rhs_location.IsConstant();
   1197       if (use_imm) {
   1198         rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
   1199       } else {
   1200         rhs_reg = rhs_location.AsRegister<Register>();
   1201       }
   1202 
   1203       if (instruction->IsAnd()) {
   1204         if (use_imm)
   1205           __ Andi(dst, lhs, rhs_imm);
   1206         else
   1207           __ And(dst, lhs, rhs_reg);
   1208       } else if (instruction->IsOr()) {
   1209         if (use_imm)
   1210           __ Ori(dst, lhs, rhs_imm);
   1211         else
   1212           __ Or(dst, lhs, rhs_reg);
   1213       } else if (instruction->IsXor()) {
   1214         if (use_imm)
   1215           __ Xori(dst, lhs, rhs_imm);
   1216         else
   1217           __ Xor(dst, lhs, rhs_reg);
   1218       } else if (instruction->IsAdd()) {
   1219         if (use_imm)
   1220           __ Addiu(dst, lhs, rhs_imm);
   1221         else
   1222           __ Addu(dst, lhs, rhs_reg);
   1223       } else {
   1224         DCHECK(instruction->IsSub());
   1225         if (use_imm)
   1226           __ Addiu(dst, lhs, -rhs_imm);
   1227         else
   1228           __ Subu(dst, lhs, rhs_reg);
   1229       }
   1230       break;
   1231     }
   1232 
   1233     case Primitive::kPrimLong: {
   1234       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   1235       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   1236       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   1237       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   1238       Location rhs_location = locations->InAt(1);
   1239       bool use_imm = rhs_location.IsConstant();
   1240       if (!use_imm) {
   1241         Register rhs_high = rhs_location.AsRegisterPairHigh<Register>();
   1242         Register rhs_low = rhs_location.AsRegisterPairLow<Register>();
   1243         if (instruction->IsAnd()) {
   1244           __ And(dst_low, lhs_low, rhs_low);
   1245           __ And(dst_high, lhs_high, rhs_high);
   1246         } else if (instruction->IsOr()) {
   1247           __ Or(dst_low, lhs_low, rhs_low);
   1248           __ Or(dst_high, lhs_high, rhs_high);
   1249         } else if (instruction->IsXor()) {
   1250           __ Xor(dst_low, lhs_low, rhs_low);
   1251           __ Xor(dst_high, lhs_high, rhs_high);
   1252         } else if (instruction->IsAdd()) {
   1253           if (lhs_low == rhs_low) {
   1254             // Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs.
   1255             __ Slt(TMP, lhs_low, ZERO);
   1256             __ Addu(dst_low, lhs_low, rhs_low);
   1257           } else {
   1258             __ Addu(dst_low, lhs_low, rhs_low);
   1259             // If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged.
   1260             __ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low);
   1261           }
   1262           __ Addu(dst_high, lhs_high, rhs_high);
   1263           __ Addu(dst_high, dst_high, TMP);
   1264         } else {
   1265           DCHECK(instruction->IsSub());
   1266           __ Sltu(TMP, lhs_low, rhs_low);
   1267           __ Subu(dst_low, lhs_low, rhs_low);
   1268           __ Subu(dst_high, lhs_high, rhs_high);
   1269           __ Subu(dst_high, dst_high, TMP);
   1270         }
   1271       } else {
   1272         int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant());
   1273         if (instruction->IsOr()) {
   1274           uint32_t low = Low32Bits(value);
   1275           uint32_t high = High32Bits(value);
   1276           if (IsUint<16>(low)) {
   1277             if (dst_low != lhs_low || low != 0) {
   1278               __ Ori(dst_low, lhs_low, low);
   1279             }
   1280           } else {
   1281             __ LoadConst32(TMP, low);
   1282             __ Or(dst_low, lhs_low, TMP);
   1283           }
   1284           if (IsUint<16>(high)) {
   1285             if (dst_high != lhs_high || high != 0) {
   1286               __ Ori(dst_high, lhs_high, high);
   1287             }
   1288           } else {
   1289             if (high != low) {
   1290               __ LoadConst32(TMP, high);
   1291             }
   1292             __ Or(dst_high, lhs_high, TMP);
   1293           }
   1294         } else if (instruction->IsXor()) {
   1295           uint32_t low = Low32Bits(value);
   1296           uint32_t high = High32Bits(value);
   1297           if (IsUint<16>(low)) {
   1298             if (dst_low != lhs_low || low != 0) {
   1299               __ Xori(dst_low, lhs_low, low);
   1300             }
   1301           } else {
   1302             __ LoadConst32(TMP, low);
   1303             __ Xor(dst_low, lhs_low, TMP);
   1304           }
   1305           if (IsUint<16>(high)) {
   1306             if (dst_high != lhs_high || high != 0) {
   1307               __ Xori(dst_high, lhs_high, high);
   1308             }
   1309           } else {
   1310             if (high != low) {
   1311               __ LoadConst32(TMP, high);
   1312             }
   1313             __ Xor(dst_high, lhs_high, TMP);
   1314           }
   1315         } else if (instruction->IsAnd()) {
   1316           uint32_t low = Low32Bits(value);
   1317           uint32_t high = High32Bits(value);
   1318           if (IsUint<16>(low)) {
   1319             __ Andi(dst_low, lhs_low, low);
   1320           } else if (low != 0xFFFFFFFF) {
   1321             __ LoadConst32(TMP, low);
   1322             __ And(dst_low, lhs_low, TMP);
   1323           } else if (dst_low != lhs_low) {
   1324             __ Move(dst_low, lhs_low);
   1325           }
   1326           if (IsUint<16>(high)) {
   1327             __ Andi(dst_high, lhs_high, high);
   1328           } else if (high != 0xFFFFFFFF) {
   1329             if (high != low) {
   1330               __ LoadConst32(TMP, high);
   1331             }
   1332             __ And(dst_high, lhs_high, TMP);
   1333           } else if (dst_high != lhs_high) {
   1334             __ Move(dst_high, lhs_high);
   1335           }
   1336         } else {
   1337           if (instruction->IsSub()) {
   1338             value = -value;
   1339           } else {
   1340             DCHECK(instruction->IsAdd());
   1341           }
   1342           int32_t low = Low32Bits(value);
   1343           int32_t high = High32Bits(value);
   1344           if (IsInt<16>(low)) {
   1345             if (dst_low != lhs_low || low != 0) {
   1346               __ Addiu(dst_low, lhs_low, low);
   1347             }
   1348             if (low != 0) {
   1349               __ Sltiu(AT, dst_low, low);
   1350             }
   1351           } else {
   1352             __ LoadConst32(TMP, low);
   1353             __ Addu(dst_low, lhs_low, TMP);
   1354             __ Sltu(AT, dst_low, TMP);
   1355           }
   1356           if (IsInt<16>(high)) {
   1357             if (dst_high != lhs_high || high != 0) {
   1358               __ Addiu(dst_high, lhs_high, high);
   1359             }
   1360           } else {
   1361             if (high != low) {
   1362               __ LoadConst32(TMP, high);
   1363             }
   1364             __ Addu(dst_high, lhs_high, TMP);
   1365           }
   1366           if (low != 0) {
   1367             __ Addu(dst_high, dst_high, AT);
   1368           }
   1369         }
   1370       }
   1371       break;
   1372     }
   1373 
   1374     case Primitive::kPrimFloat:
   1375     case Primitive::kPrimDouble: {
   1376       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   1377       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   1378       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   1379       if (instruction->IsAdd()) {
   1380         if (type == Primitive::kPrimFloat) {
   1381           __ AddS(dst, lhs, rhs);
   1382         } else {
   1383           __ AddD(dst, lhs, rhs);
   1384         }
   1385       } else {
   1386         DCHECK(instruction->IsSub());
   1387         if (type == Primitive::kPrimFloat) {
   1388           __ SubS(dst, lhs, rhs);
   1389         } else {
   1390           __ SubD(dst, lhs, rhs);
   1391         }
   1392       }
   1393       break;
   1394     }
   1395 
   1396     default:
   1397       LOG(FATAL) << "Unexpected binary operation type " << type;
   1398   }
   1399 }
   1400 
   1401 void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) {
   1402   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
   1403 
   1404   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
   1405   Primitive::Type type = instr->GetResultType();
   1406   switch (type) {
   1407     case Primitive::kPrimInt:
   1408       locations->SetInAt(0, Location::RequiresRegister());
   1409       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
   1410       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1411       break;
   1412     case Primitive::kPrimLong:
   1413       locations->SetInAt(0, Location::RequiresRegister());
   1414       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
   1415       locations->SetOut(Location::RequiresRegister());
   1416       break;
   1417     default:
   1418       LOG(FATAL) << "Unexpected shift type " << type;
   1419   }
   1420 }
   1421 
   1422 static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte;
   1423 
   1424 void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) {
   1425   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
   1426   LocationSummary* locations = instr->GetLocations();
   1427   Primitive::Type type = instr->GetType();
   1428 
   1429   Location rhs_location = locations->InAt(1);
   1430   bool use_imm = rhs_location.IsConstant();
   1431   Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>();
   1432   int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0;
   1433   const uint32_t shift_mask =
   1434       (type == Primitive::kPrimInt) ? kMaxIntShiftDistance : kMaxLongShiftDistance;
   1435   const uint32_t shift_value = rhs_imm & shift_mask;
   1436   // Are the INS (Insert Bit Field) and ROTR instructions supported?
   1437   bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
   1438 
   1439   switch (type) {
   1440     case Primitive::kPrimInt: {
   1441       Register dst = locations->Out().AsRegister<Register>();
   1442       Register lhs = locations->InAt(0).AsRegister<Register>();
   1443       if (use_imm) {
   1444         if (shift_value == 0) {
   1445           if (dst != lhs) {
   1446             __ Move(dst, lhs);
   1447           }
   1448         } else if (instr->IsShl()) {
   1449           __ Sll(dst, lhs, shift_value);
   1450         } else if (instr->IsShr()) {
   1451           __ Sra(dst, lhs, shift_value);
   1452         } else if (instr->IsUShr()) {
   1453           __ Srl(dst, lhs, shift_value);
   1454         } else {
   1455           if (has_ins_rotr) {
   1456             __ Rotr(dst, lhs, shift_value);
   1457           } else {
   1458             __ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask);
   1459             __ Srl(dst, lhs, shift_value);
   1460             __ Or(dst, dst, TMP);
   1461           }
   1462         }
   1463       } else {
   1464         if (instr->IsShl()) {
   1465           __ Sllv(dst, lhs, rhs_reg);
   1466         } else if (instr->IsShr()) {
   1467           __ Srav(dst, lhs, rhs_reg);
   1468         } else if (instr->IsUShr()) {
   1469           __ Srlv(dst, lhs, rhs_reg);
   1470         } else {
   1471           if (has_ins_rotr) {
   1472             __ Rotrv(dst, lhs, rhs_reg);
   1473           } else {
   1474             __ Subu(TMP, ZERO, rhs_reg);
   1475             // 32-bit shift instructions use the 5 least significant bits of the shift count, so
   1476             // shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case
   1477             // when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out
   1478             // by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`,
   1479             // IOW, the OR'd values are equal.
   1480             __ Sllv(TMP, lhs, TMP);
   1481             __ Srlv(dst, lhs, rhs_reg);
   1482             __ Or(dst, dst, TMP);
   1483           }
   1484         }
   1485       }
   1486       break;
   1487     }
   1488 
   1489     case Primitive::kPrimLong: {
   1490       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   1491       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   1492       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   1493       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   1494       if (use_imm) {
   1495           if (shift_value == 0) {
   1496             codegen_->Move64(locations->Out(), locations->InAt(0));
   1497           } else if (shift_value < kMipsBitsPerWord) {
   1498             if (has_ins_rotr) {
   1499               if (instr->IsShl()) {
   1500                 __ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
   1501                 __ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value);
   1502                 __ Sll(dst_low, lhs_low, shift_value);
   1503               } else if (instr->IsShr()) {
   1504                 __ Srl(dst_low, lhs_low, shift_value);
   1505                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
   1506                 __ Sra(dst_high, lhs_high, shift_value);
   1507               } else if (instr->IsUShr()) {
   1508                 __ Srl(dst_low, lhs_low, shift_value);
   1509                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
   1510                 __ Srl(dst_high, lhs_high, shift_value);
   1511               } else {
   1512                 __ Srl(dst_low, lhs_low, shift_value);
   1513                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
   1514                 __ Srl(dst_high, lhs_high, shift_value);
   1515                 __ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value);
   1516               }
   1517             } else {
   1518               if (instr->IsShl()) {
   1519                 __ Sll(dst_low, lhs_low, shift_value);
   1520                 __ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value);
   1521                 __ Sll(dst_high, lhs_high, shift_value);
   1522                 __ Or(dst_high, dst_high, TMP);
   1523               } else if (instr->IsShr()) {
   1524                 __ Sra(dst_high, lhs_high, shift_value);
   1525                 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
   1526                 __ Srl(dst_low, lhs_low, shift_value);
   1527                 __ Or(dst_low, dst_low, TMP);
   1528               } else if (instr->IsUShr()) {
   1529                 __ Srl(dst_high, lhs_high, shift_value);
   1530                 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
   1531                 __ Srl(dst_low, lhs_low, shift_value);
   1532                 __ Or(dst_low, dst_low, TMP);
   1533               } else {
   1534                 __ Srl(TMP, lhs_low, shift_value);
   1535                 __ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value);
   1536                 __ Or(dst_low, dst_low, TMP);
   1537                 __ Srl(TMP, lhs_high, shift_value);
   1538                 __ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
   1539                 __ Or(dst_high, dst_high, TMP);
   1540               }
   1541             }
   1542           } else {
   1543             const uint32_t shift_value_high = shift_value - kMipsBitsPerWord;
   1544             if (instr->IsShl()) {
   1545               __ Sll(dst_high, lhs_low, shift_value_high);
   1546               __ Move(dst_low, ZERO);
   1547             } else if (instr->IsShr()) {
   1548               __ Sra(dst_low, lhs_high, shift_value_high);
   1549               __ Sra(dst_high, dst_low, kMipsBitsPerWord - 1);
   1550             } else if (instr->IsUShr()) {
   1551               __ Srl(dst_low, lhs_high, shift_value_high);
   1552               __ Move(dst_high, ZERO);
   1553             } else {
   1554               if (shift_value == kMipsBitsPerWord) {
   1555                 // 64-bit rotation by 32 is just a swap.
   1556                 __ Move(dst_low, lhs_high);
   1557                 __ Move(dst_high, lhs_low);
   1558               } else {
   1559                 if (has_ins_rotr) {
   1560                   __ Srl(dst_low, lhs_high, shift_value_high);
   1561                   __ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high);
   1562                   __ Srl(dst_high, lhs_low, shift_value_high);
   1563                   __ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high);
   1564                 } else {
   1565                   __ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high);
   1566                   __ Srl(dst_low, lhs_high, shift_value_high);
   1567                   __ Or(dst_low, dst_low, TMP);
   1568                   __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high);
   1569                   __ Srl(dst_high, lhs_low, shift_value_high);
   1570                   __ Or(dst_high, dst_high, TMP);
   1571                 }
   1572               }
   1573             }
   1574           }
   1575       } else {
   1576         MipsLabel done;
   1577         if (instr->IsShl()) {
   1578           __ Sllv(dst_low, lhs_low, rhs_reg);
   1579           __ Nor(AT, ZERO, rhs_reg);
   1580           __ Srl(TMP, lhs_low, 1);
   1581           __ Srlv(TMP, TMP, AT);
   1582           __ Sllv(dst_high, lhs_high, rhs_reg);
   1583           __ Or(dst_high, dst_high, TMP);
   1584           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   1585           __ Beqz(TMP, &done);
   1586           __ Move(dst_high, dst_low);
   1587           __ Move(dst_low, ZERO);
   1588         } else if (instr->IsShr()) {
   1589           __ Srav(dst_high, lhs_high, rhs_reg);
   1590           __ Nor(AT, ZERO, rhs_reg);
   1591           __ Sll(TMP, lhs_high, 1);
   1592           __ Sllv(TMP, TMP, AT);
   1593           __ Srlv(dst_low, lhs_low, rhs_reg);
   1594           __ Or(dst_low, dst_low, TMP);
   1595           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   1596           __ Beqz(TMP, &done);
   1597           __ Move(dst_low, dst_high);
   1598           __ Sra(dst_high, dst_high, 31);
   1599         } else if (instr->IsUShr()) {
   1600           __ Srlv(dst_high, lhs_high, rhs_reg);
   1601           __ Nor(AT, ZERO, rhs_reg);
   1602           __ Sll(TMP, lhs_high, 1);
   1603           __ Sllv(TMP, TMP, AT);
   1604           __ Srlv(dst_low, lhs_low, rhs_reg);
   1605           __ Or(dst_low, dst_low, TMP);
   1606           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   1607           __ Beqz(TMP, &done);
   1608           __ Move(dst_low, dst_high);
   1609           __ Move(dst_high, ZERO);
   1610         } else {
   1611           __ Nor(AT, ZERO, rhs_reg);
   1612           __ Srlv(TMP, lhs_low, rhs_reg);
   1613           __ Sll(dst_low, lhs_high, 1);
   1614           __ Sllv(dst_low, dst_low, AT);
   1615           __ Or(dst_low, dst_low, TMP);
   1616           __ Srlv(TMP, lhs_high, rhs_reg);
   1617           __ Sll(dst_high, lhs_low, 1);
   1618           __ Sllv(dst_high, dst_high, AT);
   1619           __ Or(dst_high, dst_high, TMP);
   1620           __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
   1621           __ Beqz(TMP, &done);
   1622           __ Move(TMP, dst_high);
   1623           __ Move(dst_high, dst_low);
   1624           __ Move(dst_low, TMP);
   1625         }
   1626         __ Bind(&done);
   1627       }
   1628       break;
   1629     }
   1630 
   1631     default:
   1632       LOG(FATAL) << "Unexpected shift operation type " << type;
   1633   }
   1634 }
   1635 
   1636 void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) {
   1637   HandleBinaryOp(instruction);
   1638 }
   1639 
   1640 void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) {
   1641   HandleBinaryOp(instruction);
   1642 }
   1643 
   1644 void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) {
   1645   HandleBinaryOp(instruction);
   1646 }
   1647 
   1648 void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) {
   1649   HandleBinaryOp(instruction);
   1650 }
   1651 
   1652 void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) {
   1653   LocationSummary* locations =
   1654       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   1655   locations->SetInAt(0, Location::RequiresRegister());
   1656   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   1657   if (Primitive::IsFloatingPointType(instruction->GetType())) {
   1658     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   1659   } else {
   1660     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1661   }
   1662 }
   1663 
   1664 void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) {
   1665   LocationSummary* locations = instruction->GetLocations();
   1666   Register obj = locations->InAt(0).AsRegister<Register>();
   1667   Location index = locations->InAt(1);
   1668   Primitive::Type type = instruction->GetType();
   1669 
   1670   switch (type) {
   1671     case Primitive::kPrimBoolean: {
   1672       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
   1673       Register out = locations->Out().AsRegister<Register>();
   1674       if (index.IsConstant()) {
   1675         size_t offset =
   1676             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
   1677         __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset);
   1678       } else {
   1679         __ Addu(TMP, obj, index.AsRegister<Register>());
   1680         __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset);
   1681       }
   1682       break;
   1683     }
   1684 
   1685     case Primitive::kPrimByte: {
   1686       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
   1687       Register out = locations->Out().AsRegister<Register>();
   1688       if (index.IsConstant()) {
   1689         size_t offset =
   1690             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
   1691         __ LoadFromOffset(kLoadSignedByte, out, obj, offset);
   1692       } else {
   1693         __ Addu(TMP, obj, index.AsRegister<Register>());
   1694         __ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset);
   1695       }
   1696       break;
   1697     }
   1698 
   1699     case Primitive::kPrimShort: {
   1700       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
   1701       Register out = locations->Out().AsRegister<Register>();
   1702       if (index.IsConstant()) {
   1703         size_t offset =
   1704             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
   1705         __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset);
   1706       } else {
   1707         __ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
   1708         __ Addu(TMP, obj, TMP);
   1709         __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset);
   1710       }
   1711       break;
   1712     }
   1713 
   1714     case Primitive::kPrimChar: {
   1715       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
   1716       Register out = locations->Out().AsRegister<Register>();
   1717       if (index.IsConstant()) {
   1718         size_t offset =
   1719             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
   1720         __ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset);
   1721       } else {
   1722         __ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
   1723         __ Addu(TMP, obj, TMP);
   1724         __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset);
   1725       }
   1726       break;
   1727     }
   1728 
   1729     case Primitive::kPrimInt:
   1730     case Primitive::kPrimNot: {
   1731       DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
   1732       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
   1733       Register out = locations->Out().AsRegister<Register>();
   1734       if (index.IsConstant()) {
   1735         size_t offset =
   1736             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
   1737         __ LoadFromOffset(kLoadWord, out, obj, offset);
   1738       } else {
   1739         __ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
   1740         __ Addu(TMP, obj, TMP);
   1741         __ LoadFromOffset(kLoadWord, out, TMP, data_offset);
   1742       }
   1743       break;
   1744     }
   1745 
   1746     case Primitive::kPrimLong: {
   1747       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
   1748       Register out = locations->Out().AsRegisterPairLow<Register>();
   1749       if (index.IsConstant()) {
   1750         size_t offset =
   1751             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
   1752         __ LoadFromOffset(kLoadDoubleword, out, obj, offset);
   1753       } else {
   1754         __ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
   1755         __ Addu(TMP, obj, TMP);
   1756         __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset);
   1757       }
   1758       break;
   1759     }
   1760 
   1761     case Primitive::kPrimFloat: {
   1762       uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
   1763       FRegister out = locations->Out().AsFpuRegister<FRegister>();
   1764       if (index.IsConstant()) {
   1765         size_t offset =
   1766             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
   1767         __ LoadSFromOffset(out, obj, offset);
   1768       } else {
   1769         __ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
   1770         __ Addu(TMP, obj, TMP);
   1771         __ LoadSFromOffset(out, TMP, data_offset);
   1772       }
   1773       break;
   1774     }
   1775 
   1776     case Primitive::kPrimDouble: {
   1777       uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
   1778       FRegister out = locations->Out().AsFpuRegister<FRegister>();
   1779       if (index.IsConstant()) {
   1780         size_t offset =
   1781             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
   1782         __ LoadDFromOffset(out, obj, offset);
   1783       } else {
   1784         __ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
   1785         __ Addu(TMP, obj, TMP);
   1786         __ LoadDFromOffset(out, TMP, data_offset);
   1787       }
   1788       break;
   1789     }
   1790 
   1791     case Primitive::kPrimVoid:
   1792       LOG(FATAL) << "Unreachable type " << instruction->GetType();
   1793       UNREACHABLE();
   1794   }
   1795   codegen_->MaybeRecordImplicitNullCheck(instruction);
   1796 }
   1797 
   1798 void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) {
   1799   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   1800   locations->SetInAt(0, Location::RequiresRegister());
   1801   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   1802 }
   1803 
   1804 void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) {
   1805   LocationSummary* locations = instruction->GetLocations();
   1806   uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
   1807   Register obj = locations->InAt(0).AsRegister<Register>();
   1808   Register out = locations->Out().AsRegister<Register>();
   1809   __ LoadFromOffset(kLoadWord, out, obj, offset);
   1810   codegen_->MaybeRecordImplicitNullCheck(instruction);
   1811 }
   1812 
   1813 void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) {
   1814   bool needs_runtime_call = instruction->NeedsTypeCheck();
   1815   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   1816       instruction,
   1817       needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall);
   1818   if (needs_runtime_call) {
   1819     InvokeRuntimeCallingConvention calling_convention;
   1820     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   1821     locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   1822     locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
   1823   } else {
   1824     locations->SetInAt(0, Location::RequiresRegister());
   1825     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   1826     if (Primitive::IsFloatingPointType(instruction->InputAt(2)->GetType())) {
   1827       locations->SetInAt(2, Location::RequiresFpuRegister());
   1828     } else {
   1829       locations->SetInAt(2, Location::RequiresRegister());
   1830     }
   1831   }
   1832 }
   1833 
   1834 void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) {
   1835   LocationSummary* locations = instruction->GetLocations();
   1836   Register obj = locations->InAt(0).AsRegister<Register>();
   1837   Location index = locations->InAt(1);
   1838   Primitive::Type value_type = instruction->GetComponentType();
   1839   bool needs_runtime_call = locations->WillCall();
   1840   bool needs_write_barrier =
   1841       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
   1842 
   1843   switch (value_type) {
   1844     case Primitive::kPrimBoolean:
   1845     case Primitive::kPrimByte: {
   1846       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
   1847       Register value = locations->InAt(2).AsRegister<Register>();
   1848       if (index.IsConstant()) {
   1849         size_t offset =
   1850             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
   1851         __ StoreToOffset(kStoreByte, value, obj, offset);
   1852       } else {
   1853         __ Addu(TMP, obj, index.AsRegister<Register>());
   1854         __ StoreToOffset(kStoreByte, value, TMP, data_offset);
   1855       }
   1856       break;
   1857     }
   1858 
   1859     case Primitive::kPrimShort:
   1860     case Primitive::kPrimChar: {
   1861       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
   1862       Register value = locations->InAt(2).AsRegister<Register>();
   1863       if (index.IsConstant()) {
   1864         size_t offset =
   1865             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
   1866         __ StoreToOffset(kStoreHalfword, value, obj, offset);
   1867       } else {
   1868         __ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
   1869         __ Addu(TMP, obj, TMP);
   1870         __ StoreToOffset(kStoreHalfword, value, TMP, data_offset);
   1871       }
   1872       break;
   1873     }
   1874 
   1875     case Primitive::kPrimInt:
   1876     case Primitive::kPrimNot: {
   1877       if (!needs_runtime_call) {
   1878         uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
   1879         Register value = locations->InAt(2).AsRegister<Register>();
   1880         if (index.IsConstant()) {
   1881           size_t offset =
   1882               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
   1883           __ StoreToOffset(kStoreWord, value, obj, offset);
   1884         } else {
   1885           DCHECK(index.IsRegister()) << index;
   1886           __ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
   1887           __ Addu(TMP, obj, TMP);
   1888           __ StoreToOffset(kStoreWord, value, TMP, data_offset);
   1889         }
   1890         codegen_->MaybeRecordImplicitNullCheck(instruction);
   1891         if (needs_write_barrier) {
   1892           DCHECK_EQ(value_type, Primitive::kPrimNot);
   1893           codegen_->MarkGCCard(obj, value);
   1894         }
   1895       } else {
   1896         DCHECK_EQ(value_type, Primitive::kPrimNot);
   1897         codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
   1898                                 instruction,
   1899                                 instruction->GetDexPc(),
   1900                                 nullptr,
   1901                                 IsDirectEntrypoint(kQuickAputObject));
   1902         CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
   1903       }
   1904       break;
   1905     }
   1906 
   1907     case Primitive::kPrimLong: {
   1908       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
   1909       Register value = locations->InAt(2).AsRegisterPairLow<Register>();
   1910       if (index.IsConstant()) {
   1911         size_t offset =
   1912             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
   1913         __ StoreToOffset(kStoreDoubleword, value, obj, offset);
   1914       } else {
   1915         __ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
   1916         __ Addu(TMP, obj, TMP);
   1917         __ StoreToOffset(kStoreDoubleword, value, TMP, data_offset);
   1918       }
   1919       break;
   1920     }
   1921 
   1922     case Primitive::kPrimFloat: {
   1923       uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
   1924       FRegister value = locations->InAt(2).AsFpuRegister<FRegister>();
   1925       DCHECK(locations->InAt(2).IsFpuRegister());
   1926       if (index.IsConstant()) {
   1927         size_t offset =
   1928             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
   1929         __ StoreSToOffset(value, obj, offset);
   1930       } else {
   1931         __ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
   1932         __ Addu(TMP, obj, TMP);
   1933         __ StoreSToOffset(value, TMP, data_offset);
   1934       }
   1935       break;
   1936     }
   1937 
   1938     case Primitive::kPrimDouble: {
   1939       uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
   1940       FRegister value = locations->InAt(2).AsFpuRegister<FRegister>();
   1941       DCHECK(locations->InAt(2).IsFpuRegister());
   1942       if (index.IsConstant()) {
   1943         size_t offset =
   1944             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
   1945         __ StoreDToOffset(value, obj, offset);
   1946       } else {
   1947         __ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
   1948         __ Addu(TMP, obj, TMP);
   1949         __ StoreDToOffset(value, TMP, data_offset);
   1950       }
   1951       break;
   1952     }
   1953 
   1954     case Primitive::kPrimVoid:
   1955       LOG(FATAL) << "Unreachable type " << instruction->GetType();
   1956       UNREACHABLE();
   1957   }
   1958 
   1959   // Ints and objects are handled in the switch.
   1960   if (value_type != Primitive::kPrimInt && value_type != Primitive::kPrimNot) {
   1961     codegen_->MaybeRecordImplicitNullCheck(instruction);
   1962   }
   1963 }
   1964 
   1965 void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
   1966   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
   1967       ? LocationSummary::kCallOnSlowPath
   1968       : LocationSummary::kNoCall;
   1969   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   1970   locations->SetInAt(0, Location::RequiresRegister());
   1971   locations->SetInAt(1, Location::RequiresRegister());
   1972   if (instruction->HasUses()) {
   1973     locations->SetOut(Location::SameAsFirstInput());
   1974   }
   1975 }
   1976 
   1977 void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
   1978   LocationSummary* locations = instruction->GetLocations();
   1979   BoundsCheckSlowPathMIPS* slow_path =
   1980       new (GetGraph()->GetArena()) BoundsCheckSlowPathMIPS(instruction);
   1981   codegen_->AddSlowPath(slow_path);
   1982 
   1983   Register index = locations->InAt(0).AsRegister<Register>();
   1984   Register length = locations->InAt(1).AsRegister<Register>();
   1985 
   1986   // length is limited by the maximum positive signed 32-bit integer.
   1987   // Unsigned comparison of length and index checks for index < 0
   1988   // and for length <= index simultaneously.
   1989   __ Bgeu(index, length, slow_path->GetEntryLabel());
   1990 }
   1991 
   1992 void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) {
   1993   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   1994       instruction,
   1995       LocationSummary::kCallOnSlowPath);
   1996   locations->SetInAt(0, Location::RequiresRegister());
   1997   locations->SetInAt(1, Location::RequiresRegister());
   1998   // Note that TypeCheckSlowPathMIPS uses this register too.
   1999   locations->AddTemp(Location::RequiresRegister());
   2000 }
   2001 
   2002 void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) {
   2003   LocationSummary* locations = instruction->GetLocations();
   2004   Register obj = locations->InAt(0).AsRegister<Register>();
   2005   Register cls = locations->InAt(1).AsRegister<Register>();
   2006   Register obj_cls = locations->GetTemp(0).AsRegister<Register>();
   2007 
   2008   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction);
   2009   codegen_->AddSlowPath(slow_path);
   2010 
   2011   // TODO: avoid this check if we know obj is not null.
   2012   __ Beqz(obj, slow_path->GetExitLabel());
   2013   // Compare the class of `obj` with `cls`.
   2014   __ LoadFromOffset(kLoadWord, obj_cls, obj, mirror::Object::ClassOffset().Int32Value());
   2015   __ Bne(obj_cls, cls, slow_path->GetEntryLabel());
   2016   __ Bind(slow_path->GetExitLabel());
   2017 }
   2018 
   2019 void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) {
   2020   LocationSummary* locations =
   2021       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
   2022   locations->SetInAt(0, Location::RequiresRegister());
   2023   if (check->HasUses()) {
   2024     locations->SetOut(Location::SameAsFirstInput());
   2025   }
   2026 }
   2027 
   2028 void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) {
   2029   // We assume the class is not null.
   2030   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
   2031       check->GetLoadClass(),
   2032       check,
   2033       check->GetDexPc(),
   2034       true);
   2035   codegen_->AddSlowPath(slow_path);
   2036   GenerateClassInitializationCheck(slow_path,
   2037                                    check->GetLocations()->InAt(0).AsRegister<Register>());
   2038 }
   2039 
   2040 void LocationsBuilderMIPS::VisitCompare(HCompare* compare) {
   2041   Primitive::Type in_type = compare->InputAt(0)->GetType();
   2042 
   2043   LocationSummary* locations =
   2044       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
   2045 
   2046   switch (in_type) {
   2047     case Primitive::kPrimBoolean:
   2048     case Primitive::kPrimByte:
   2049     case Primitive::kPrimShort:
   2050     case Primitive::kPrimChar:
   2051     case Primitive::kPrimInt:
   2052     case Primitive::kPrimLong:
   2053       locations->SetInAt(0, Location::RequiresRegister());
   2054       locations->SetInAt(1, Location::RequiresRegister());
   2055       // Output overlaps because it is written before doing the low comparison.
   2056       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   2057       break;
   2058 
   2059     case Primitive::kPrimFloat:
   2060     case Primitive::kPrimDouble:
   2061       locations->SetInAt(0, Location::RequiresFpuRegister());
   2062       locations->SetInAt(1, Location::RequiresFpuRegister());
   2063       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2064       break;
   2065 
   2066     default:
   2067       LOG(FATAL) << "Unexpected type for compare operation " << in_type;
   2068   }
   2069 }
   2070 
   2071 void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) {
   2072   LocationSummary* locations = instruction->GetLocations();
   2073   Register res = locations->Out().AsRegister<Register>();
   2074   Primitive::Type in_type = instruction->InputAt(0)->GetType();
   2075   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   2076 
   2077   //  0 if: left == right
   2078   //  1 if: left  > right
   2079   // -1 if: left  < right
   2080   switch (in_type) {
   2081     case Primitive::kPrimBoolean:
   2082     case Primitive::kPrimByte:
   2083     case Primitive::kPrimShort:
   2084     case Primitive::kPrimChar:
   2085     case Primitive::kPrimInt: {
   2086       Register lhs = locations->InAt(0).AsRegister<Register>();
   2087       Register rhs = locations->InAt(1).AsRegister<Register>();
   2088       __ Slt(TMP, lhs, rhs);
   2089       __ Slt(res, rhs, lhs);
   2090       __ Subu(res, res, TMP);
   2091       break;
   2092     }
   2093     case Primitive::kPrimLong: {
   2094       MipsLabel done;
   2095       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   2096       Register lhs_low  = locations->InAt(0).AsRegisterPairLow<Register>();
   2097       Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
   2098       Register rhs_low  = locations->InAt(1).AsRegisterPairLow<Register>();
   2099       // TODO: more efficient (direct) comparison with a constant.
   2100       __ Slt(TMP, lhs_high, rhs_high);
   2101       __ Slt(AT, rhs_high, lhs_high);  // Inverted: is actually gt.
   2102       __ Subu(res, AT, TMP);           // Result -1:1:0 for [ <, >, == ].
   2103       __ Bnez(res, &done);             // If we compared ==, check if lower bits are also equal.
   2104       __ Sltu(TMP, lhs_low, rhs_low);
   2105       __ Sltu(AT, rhs_low, lhs_low);   // Inverted: is actually gt.
   2106       __ Subu(res, AT, TMP);           // Result -1:1:0 for [ <, >, == ].
   2107       __ Bind(&done);
   2108       break;
   2109     }
   2110 
   2111     case Primitive::kPrimFloat: {
   2112       bool gt_bias = instruction->IsGtBias();
   2113       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   2114       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   2115       MipsLabel done;
   2116       if (isR6) {
   2117         __ CmpEqS(FTMP, lhs, rhs);
   2118         __ LoadConst32(res, 0);
   2119         __ Bc1nez(FTMP, &done);
   2120         if (gt_bias) {
   2121           __ CmpLtS(FTMP, lhs, rhs);
   2122           __ LoadConst32(res, -1);
   2123           __ Bc1nez(FTMP, &done);
   2124           __ LoadConst32(res, 1);
   2125         } else {
   2126           __ CmpLtS(FTMP, rhs, lhs);
   2127           __ LoadConst32(res, 1);
   2128           __ Bc1nez(FTMP, &done);
   2129           __ LoadConst32(res, -1);
   2130         }
   2131       } else {
   2132         if (gt_bias) {
   2133           __ ColtS(0, lhs, rhs);
   2134           __ LoadConst32(res, -1);
   2135           __ Bc1t(0, &done);
   2136           __ CeqS(0, lhs, rhs);
   2137           __ LoadConst32(res, 1);
   2138           __ Movt(res, ZERO, 0);
   2139         } else {
   2140           __ ColtS(0, rhs, lhs);
   2141           __ LoadConst32(res, 1);
   2142           __ Bc1t(0, &done);
   2143           __ CeqS(0, lhs, rhs);
   2144           __ LoadConst32(res, -1);
   2145           __ Movt(res, ZERO, 0);
   2146         }
   2147       }
   2148       __ Bind(&done);
   2149       break;
   2150     }
   2151     case Primitive::kPrimDouble: {
   2152       bool gt_bias = instruction->IsGtBias();
   2153       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   2154       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   2155       MipsLabel done;
   2156       if (isR6) {
   2157         __ CmpEqD(FTMP, lhs, rhs);
   2158         __ LoadConst32(res, 0);
   2159         __ Bc1nez(FTMP, &done);
   2160         if (gt_bias) {
   2161           __ CmpLtD(FTMP, lhs, rhs);
   2162           __ LoadConst32(res, -1);
   2163           __ Bc1nez(FTMP, &done);
   2164           __ LoadConst32(res, 1);
   2165         } else {
   2166           __ CmpLtD(FTMP, rhs, lhs);
   2167           __ LoadConst32(res, 1);
   2168           __ Bc1nez(FTMP, &done);
   2169           __ LoadConst32(res, -1);
   2170         }
   2171       } else {
   2172         if (gt_bias) {
   2173           __ ColtD(0, lhs, rhs);
   2174           __ LoadConst32(res, -1);
   2175           __ Bc1t(0, &done);
   2176           __ CeqD(0, lhs, rhs);
   2177           __ LoadConst32(res, 1);
   2178           __ Movt(res, ZERO, 0);
   2179         } else {
   2180           __ ColtD(0, rhs, lhs);
   2181           __ LoadConst32(res, 1);
   2182           __ Bc1t(0, &done);
   2183           __ CeqD(0, lhs, rhs);
   2184           __ LoadConst32(res, -1);
   2185           __ Movt(res, ZERO, 0);
   2186         }
   2187       }
   2188       __ Bind(&done);
   2189       break;
   2190     }
   2191 
   2192     default:
   2193       LOG(FATAL) << "Unimplemented compare type " << in_type;
   2194   }
   2195 }
   2196 
   2197 void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) {
   2198   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   2199   switch (instruction->InputAt(0)->GetType()) {
   2200     default:
   2201     case Primitive::kPrimLong:
   2202       locations->SetInAt(0, Location::RequiresRegister());
   2203       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   2204       break;
   2205 
   2206     case Primitive::kPrimFloat:
   2207     case Primitive::kPrimDouble:
   2208       locations->SetInAt(0, Location::RequiresFpuRegister());
   2209       locations->SetInAt(1, Location::RequiresFpuRegister());
   2210       break;
   2211   }
   2212   if (!instruction->IsEmittedAtUseSite()) {
   2213     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2214   }
   2215 }
   2216 
   2217 void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) {
   2218   if (instruction->IsEmittedAtUseSite()) {
   2219     return;
   2220   }
   2221 
   2222   Primitive::Type type = instruction->InputAt(0)->GetType();
   2223   LocationSummary* locations = instruction->GetLocations();
   2224   Register dst = locations->Out().AsRegister<Register>();
   2225   MipsLabel true_label;
   2226 
   2227   switch (type) {
   2228     default:
   2229       // Integer case.
   2230       GenerateIntCompare(instruction->GetCondition(), locations);
   2231       return;
   2232 
   2233     case Primitive::kPrimLong:
   2234       // TODO: don't use branches.
   2235       GenerateLongCompareAndBranch(instruction->GetCondition(), locations, &true_label);
   2236       break;
   2237 
   2238     case Primitive::kPrimFloat:
   2239     case Primitive::kPrimDouble:
   2240       // TODO: don't use branches.
   2241       GenerateFpCompareAndBranch(instruction->GetCondition(),
   2242                                  instruction->IsGtBias(),
   2243                                  type,
   2244                                  locations,
   2245                                  &true_label);
   2246       break;
   2247   }
   2248 
   2249   // Convert the branches into the result.
   2250   MipsLabel done;
   2251 
   2252   // False case: result = 0.
   2253   __ LoadConst32(dst, 0);
   2254   __ B(&done);
   2255 
   2256   // True case: result = 1.
   2257   __ Bind(&true_label);
   2258   __ LoadConst32(dst, 1);
   2259   __ Bind(&done);
   2260 }
   2261 
   2262 void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
   2263   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2264   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   2265 
   2266   LocationSummary* locations = instruction->GetLocations();
   2267   Location second = locations->InAt(1);
   2268   DCHECK(second.IsConstant());
   2269 
   2270   Register out = locations->Out().AsRegister<Register>();
   2271   Register dividend = locations->InAt(0).AsRegister<Register>();
   2272   int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   2273   DCHECK(imm == 1 || imm == -1);
   2274 
   2275   if (instruction->IsRem()) {
   2276     __ Move(out, ZERO);
   2277   } else {
   2278     if (imm == -1) {
   2279       __ Subu(out, ZERO, dividend);
   2280     } else if (out != dividend) {
   2281       __ Move(out, dividend);
   2282     }
   2283   }
   2284 }
   2285 
   2286 void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
   2287   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2288   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   2289 
   2290   LocationSummary* locations = instruction->GetLocations();
   2291   Location second = locations->InAt(1);
   2292   DCHECK(second.IsConstant());
   2293 
   2294   Register out = locations->Out().AsRegister<Register>();
   2295   Register dividend = locations->InAt(0).AsRegister<Register>();
   2296   int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   2297   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
   2298   int ctz_imm = CTZ(abs_imm);
   2299 
   2300   if (instruction->IsDiv()) {
   2301     if (ctz_imm == 1) {
   2302       // Fast path for division by +/-2, which is very common.
   2303       __ Srl(TMP, dividend, 31);
   2304     } else {
   2305       __ Sra(TMP, dividend, 31);
   2306       __ Srl(TMP, TMP, 32 - ctz_imm);
   2307     }
   2308     __ Addu(out, dividend, TMP);
   2309     __ Sra(out, out, ctz_imm);
   2310     if (imm < 0) {
   2311       __ Subu(out, ZERO, out);
   2312     }
   2313   } else {
   2314     if (ctz_imm == 1) {
   2315       // Fast path for modulo +/-2, which is very common.
   2316       __ Sra(TMP, dividend, 31);
   2317       __ Subu(out, dividend, TMP);
   2318       __ Andi(out, out, 1);
   2319       __ Addu(out, out, TMP);
   2320     } else {
   2321       __ Sra(TMP, dividend, 31);
   2322       __ Srl(TMP, TMP, 32 - ctz_imm);
   2323       __ Addu(out, dividend, TMP);
   2324       if (IsUint<16>(abs_imm - 1)) {
   2325         __ Andi(out, out, abs_imm - 1);
   2326       } else {
   2327         __ Sll(out, out, 32 - ctz_imm);
   2328         __ Srl(out, out, 32 - ctz_imm);
   2329       }
   2330       __ Subu(out, out, TMP);
   2331     }
   2332   }
   2333 }
   2334 
   2335 void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
   2336   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2337   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   2338 
   2339   LocationSummary* locations = instruction->GetLocations();
   2340   Location second = locations->InAt(1);
   2341   DCHECK(second.IsConstant());
   2342 
   2343   Register out = locations->Out().AsRegister<Register>();
   2344   Register dividend = locations->InAt(0).AsRegister<Register>();
   2345   int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   2346 
   2347   int64_t magic;
   2348   int shift;
   2349   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
   2350 
   2351   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   2352 
   2353   __ LoadConst32(TMP, magic);
   2354   if (isR6) {
   2355     __ MuhR6(TMP, dividend, TMP);
   2356   } else {
   2357     __ MultR2(dividend, TMP);
   2358     __ Mfhi(TMP);
   2359   }
   2360   if (imm > 0 && magic < 0) {
   2361     __ Addu(TMP, TMP, dividend);
   2362   } else if (imm < 0 && magic > 0) {
   2363     __ Subu(TMP, TMP, dividend);
   2364   }
   2365 
   2366   if (shift != 0) {
   2367     __ Sra(TMP, TMP, shift);
   2368   }
   2369 
   2370   if (instruction->IsDiv()) {
   2371     __ Sra(out, TMP, 31);
   2372     __ Subu(out, TMP, out);
   2373   } else {
   2374     __ Sra(AT, TMP, 31);
   2375     __ Subu(AT, TMP, AT);
   2376     __ LoadConst32(TMP, imm);
   2377     if (isR6) {
   2378       __ MulR6(TMP, AT, TMP);
   2379     } else {
   2380       __ MulR2(TMP, AT, TMP);
   2381     }
   2382     __ Subu(out, dividend, TMP);
   2383   }
   2384 }
   2385 
   2386 void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) {
   2387   DCHECK(instruction->IsDiv() || instruction->IsRem());
   2388   DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
   2389 
   2390   LocationSummary* locations = instruction->GetLocations();
   2391   Register out = locations->Out().AsRegister<Register>();
   2392   Location second = locations->InAt(1);
   2393 
   2394   if (second.IsConstant()) {
   2395     int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
   2396     if (imm == 0) {
   2397       // Do not generate anything. DivZeroCheck would prevent any code to be executed.
   2398     } else if (imm == 1 || imm == -1) {
   2399       DivRemOneOrMinusOne(instruction);
   2400     } else if (IsPowerOfTwo(AbsOrMin(imm))) {
   2401       DivRemByPowerOfTwo(instruction);
   2402     } else {
   2403       DCHECK(imm <= -2 || imm >= 2);
   2404       GenerateDivRemWithAnyConstant(instruction);
   2405     }
   2406   } else {
   2407     Register dividend = locations->InAt(0).AsRegister<Register>();
   2408     Register divisor = second.AsRegister<Register>();
   2409     bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   2410     if (instruction->IsDiv()) {
   2411       if (isR6) {
   2412         __ DivR6(out, dividend, divisor);
   2413       } else {
   2414         __ DivR2(out, dividend, divisor);
   2415       }
   2416     } else {
   2417       if (isR6) {
   2418         __ ModR6(out, dividend, divisor);
   2419       } else {
   2420         __ ModR2(out, dividend, divisor);
   2421       }
   2422     }
   2423   }
   2424 }
   2425 
   2426 void LocationsBuilderMIPS::VisitDiv(HDiv* div) {
   2427   Primitive::Type type = div->GetResultType();
   2428   LocationSummary::CallKind call_kind = (type == Primitive::kPrimLong)
   2429       ? LocationSummary::kCall
   2430       : LocationSummary::kNoCall;
   2431 
   2432   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
   2433 
   2434   switch (type) {
   2435     case Primitive::kPrimInt:
   2436       locations->SetInAt(0, Location::RequiresRegister());
   2437       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
   2438       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2439       break;
   2440 
   2441     case Primitive::kPrimLong: {
   2442       InvokeRuntimeCallingConvention calling_convention;
   2443       locations->SetInAt(0, Location::RegisterPairLocation(
   2444           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   2445       locations->SetInAt(1, Location::RegisterPairLocation(
   2446           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   2447       locations->SetOut(calling_convention.GetReturnLocation(type));
   2448       break;
   2449     }
   2450 
   2451     case Primitive::kPrimFloat:
   2452     case Primitive::kPrimDouble:
   2453       locations->SetInAt(0, Location::RequiresFpuRegister());
   2454       locations->SetInAt(1, Location::RequiresFpuRegister());
   2455       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   2456       break;
   2457 
   2458     default:
   2459       LOG(FATAL) << "Unexpected div type " << type;
   2460   }
   2461 }
   2462 
   2463 void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) {
   2464   Primitive::Type type = instruction->GetType();
   2465   LocationSummary* locations = instruction->GetLocations();
   2466 
   2467   switch (type) {
   2468     case Primitive::kPrimInt:
   2469       GenerateDivRemIntegral(instruction);
   2470       break;
   2471     case Primitive::kPrimLong: {
   2472       codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv),
   2473                               instruction,
   2474                               instruction->GetDexPc(),
   2475                               nullptr,
   2476                               IsDirectEntrypoint(kQuickLdiv));
   2477       CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
   2478       break;
   2479     }
   2480     case Primitive::kPrimFloat:
   2481     case Primitive::kPrimDouble: {
   2482       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   2483       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   2484       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   2485       if (type == Primitive::kPrimFloat) {
   2486         __ DivS(dst, lhs, rhs);
   2487       } else {
   2488         __ DivD(dst, lhs, rhs);
   2489       }
   2490       break;
   2491     }
   2492     default:
   2493       LOG(FATAL) << "Unexpected div type " << type;
   2494   }
   2495 }
   2496 
   2497 void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   2498   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
   2499       ? LocationSummary::kCallOnSlowPath
   2500       : LocationSummary::kNoCall;
   2501   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   2502   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
   2503   if (instruction->HasUses()) {
   2504     locations->SetOut(Location::SameAsFirstInput());
   2505   }
   2506 }
   2507 
   2508 void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   2509   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathMIPS(instruction);
   2510   codegen_->AddSlowPath(slow_path);
   2511   Location value = instruction->GetLocations()->InAt(0);
   2512   Primitive::Type type = instruction->GetType();
   2513 
   2514   switch (type) {
   2515     case Primitive::kPrimBoolean:
   2516     case Primitive::kPrimByte:
   2517     case Primitive::kPrimChar:
   2518     case Primitive::kPrimShort:
   2519     case Primitive::kPrimInt: {
   2520       if (value.IsConstant()) {
   2521         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
   2522           __ B(slow_path->GetEntryLabel());
   2523         } else {
   2524           // A division by a non-null constant is valid. We don't need to perform
   2525           // any check, so simply fall through.
   2526         }
   2527       } else {
   2528         DCHECK(value.IsRegister()) << value;
   2529         __ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel());
   2530       }
   2531       break;
   2532     }
   2533     case Primitive::kPrimLong: {
   2534       if (value.IsConstant()) {
   2535         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
   2536           __ B(slow_path->GetEntryLabel());
   2537         } else {
   2538           // A division by a non-null constant is valid. We don't need to perform
   2539           // any check, so simply fall through.
   2540         }
   2541       } else {
   2542         DCHECK(value.IsRegisterPair()) << value;
   2543         __ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>());
   2544         __ Beqz(TMP, slow_path->GetEntryLabel());
   2545       }
   2546       break;
   2547     }
   2548     default:
   2549       LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
   2550   }
   2551 }
   2552 
   2553 void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) {
   2554   LocationSummary* locations =
   2555       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   2556   locations->SetOut(Location::ConstantLocation(constant));
   2557 }
   2558 
   2559 void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) {
   2560   // Will be generated at use site.
   2561 }
   2562 
   2563 void LocationsBuilderMIPS::VisitExit(HExit* exit) {
   2564   exit->SetLocations(nullptr);
   2565 }
   2566 
   2567 void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
   2568 }
   2569 
   2570 void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) {
   2571   LocationSummary* locations =
   2572       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
   2573   locations->SetOut(Location::ConstantLocation(constant));
   2574 }
   2575 
   2576 void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
   2577   // Will be generated at use site.
   2578 }
   2579 
   2580 void LocationsBuilderMIPS::VisitGoto(HGoto* got) {
   2581   got->SetLocations(nullptr);
   2582 }
   2583 
   2584 void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) {
   2585   DCHECK(!successor->IsExitBlock());
   2586   HBasicBlock* block = got->GetBlock();
   2587   HInstruction* previous = got->GetPrevious();
   2588   HLoopInformation* info = block->GetLoopInformation();
   2589 
   2590   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
   2591     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
   2592     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
   2593     return;
   2594   }
   2595   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
   2596     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
   2597   }
   2598   if (!codegen_->GoesToNextBlock(block, successor)) {
   2599     __ B(codegen_->GetLabelOf(successor));
   2600   }
   2601 }
   2602 
   2603 void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) {
   2604   HandleGoto(got, got->GetSuccessor());
   2605 }
   2606 
   2607 void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
   2608   try_boundary->SetLocations(nullptr);
   2609 }
   2610 
   2611 void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
   2612   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
   2613   if (!successor->IsExitBlock()) {
   2614     HandleGoto(try_boundary, successor);
   2615   }
   2616 }
   2617 
   2618 void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond,
   2619                                                       LocationSummary* locations) {
   2620   Register dst = locations->Out().AsRegister<Register>();
   2621   Register lhs = locations->InAt(0).AsRegister<Register>();
   2622   Location rhs_location = locations->InAt(1);
   2623   Register rhs_reg = ZERO;
   2624   int64_t rhs_imm = 0;
   2625   bool use_imm = rhs_location.IsConstant();
   2626   if (use_imm) {
   2627     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
   2628   } else {
   2629     rhs_reg = rhs_location.AsRegister<Register>();
   2630   }
   2631 
   2632   switch (cond) {
   2633     case kCondEQ:
   2634     case kCondNE:
   2635       if (use_imm && IsUint<16>(rhs_imm)) {
   2636         __ Xori(dst, lhs, rhs_imm);
   2637       } else {
   2638         if (use_imm) {
   2639           rhs_reg = TMP;
   2640           __ LoadConst32(rhs_reg, rhs_imm);
   2641         }
   2642         __ Xor(dst, lhs, rhs_reg);
   2643       }
   2644       if (cond == kCondEQ) {
   2645         __ Sltiu(dst, dst, 1);
   2646       } else {
   2647         __ Sltu(dst, ZERO, dst);
   2648       }
   2649       break;
   2650 
   2651     case kCondLT:
   2652     case kCondGE:
   2653       if (use_imm && IsInt<16>(rhs_imm)) {
   2654         __ Slti(dst, lhs, rhs_imm);
   2655       } else {
   2656         if (use_imm) {
   2657           rhs_reg = TMP;
   2658           __ LoadConst32(rhs_reg, rhs_imm);
   2659         }
   2660         __ Slt(dst, lhs, rhs_reg);
   2661       }
   2662       if (cond == kCondGE) {
   2663         // Simulate lhs >= rhs via !(lhs < rhs) since there's
   2664         // only the slt instruction but no sge.
   2665         __ Xori(dst, dst, 1);
   2666       }
   2667       break;
   2668 
   2669     case kCondLE:
   2670     case kCondGT:
   2671       if (use_imm && IsInt<16>(rhs_imm + 1)) {
   2672         // Simulate lhs <= rhs via lhs < rhs + 1.
   2673         __ Slti(dst, lhs, rhs_imm + 1);
   2674         if (cond == kCondGT) {
   2675           // Simulate lhs > rhs via !(lhs <= rhs) since there's
   2676           // only the slti instruction but no sgti.
   2677           __ Xori(dst, dst, 1);
   2678         }
   2679       } else {
   2680         if (use_imm) {
   2681           rhs_reg = TMP;
   2682           __ LoadConst32(rhs_reg, rhs_imm);
   2683         }
   2684         __ Slt(dst, rhs_reg, lhs);
   2685         if (cond == kCondLE) {
   2686           // Simulate lhs <= rhs via !(rhs < lhs) since there's
   2687           // only the slt instruction but no sle.
   2688           __ Xori(dst, dst, 1);
   2689         }
   2690       }
   2691       break;
   2692 
   2693     case kCondB:
   2694     case kCondAE:
   2695       if (use_imm && IsInt<16>(rhs_imm)) {
   2696         // Sltiu sign-extends its 16-bit immediate operand before
   2697         // the comparison and thus lets us compare directly with
   2698         // unsigned values in the ranges [0, 0x7fff] and
   2699         // [0xffff8000, 0xffffffff].
   2700         __ Sltiu(dst, lhs, rhs_imm);
   2701       } else {
   2702         if (use_imm) {
   2703           rhs_reg = TMP;
   2704           __ LoadConst32(rhs_reg, rhs_imm);
   2705         }
   2706         __ Sltu(dst, lhs, rhs_reg);
   2707       }
   2708       if (cond == kCondAE) {
   2709         // Simulate lhs >= rhs via !(lhs < rhs) since there's
   2710         // only the sltu instruction but no sgeu.
   2711         __ Xori(dst, dst, 1);
   2712       }
   2713       break;
   2714 
   2715     case kCondBE:
   2716     case kCondA:
   2717       if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
   2718         // Simulate lhs <= rhs via lhs < rhs + 1.
   2719         // Note that this only works if rhs + 1 does not overflow
   2720         // to 0, hence the check above.
   2721         // Sltiu sign-extends its 16-bit immediate operand before
   2722         // the comparison and thus lets us compare directly with
   2723         // unsigned values in the ranges [0, 0x7fff] and
   2724         // [0xffff8000, 0xffffffff].
   2725         __ Sltiu(dst, lhs, rhs_imm + 1);
   2726         if (cond == kCondA) {
   2727           // Simulate lhs > rhs via !(lhs <= rhs) since there's
   2728           // only the sltiu instruction but no sgtiu.
   2729           __ Xori(dst, dst, 1);
   2730         }
   2731       } else {
   2732         if (use_imm) {
   2733           rhs_reg = TMP;
   2734           __ LoadConst32(rhs_reg, rhs_imm);
   2735         }
   2736         __ Sltu(dst, rhs_reg, lhs);
   2737         if (cond == kCondBE) {
   2738           // Simulate lhs <= rhs via !(rhs < lhs) since there's
   2739           // only the sltu instruction but no sleu.
   2740           __ Xori(dst, dst, 1);
   2741         }
   2742       }
   2743       break;
   2744   }
   2745 }
   2746 
   2747 void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond,
   2748                                                                LocationSummary* locations,
   2749                                                                MipsLabel* label) {
   2750   Register lhs = locations->InAt(0).AsRegister<Register>();
   2751   Location rhs_location = locations->InAt(1);
   2752   Register rhs_reg = ZERO;
   2753   int32_t rhs_imm = 0;
   2754   bool use_imm = rhs_location.IsConstant();
   2755   if (use_imm) {
   2756     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
   2757   } else {
   2758     rhs_reg = rhs_location.AsRegister<Register>();
   2759   }
   2760 
   2761   if (use_imm && rhs_imm == 0) {
   2762     switch (cond) {
   2763       case kCondEQ:
   2764       case kCondBE:  // <= 0 if zero
   2765         __ Beqz(lhs, label);
   2766         break;
   2767       case kCondNE:
   2768       case kCondA:  // > 0 if non-zero
   2769         __ Bnez(lhs, label);
   2770         break;
   2771       case kCondLT:
   2772         __ Bltz(lhs, label);
   2773         break;
   2774       case kCondGE:
   2775         __ Bgez(lhs, label);
   2776         break;
   2777       case kCondLE:
   2778         __ Blez(lhs, label);
   2779         break;
   2780       case kCondGT:
   2781         __ Bgtz(lhs, label);
   2782         break;
   2783       case kCondB:  // always false
   2784         break;
   2785       case kCondAE:  // always true
   2786         __ B(label);
   2787         break;
   2788     }
   2789   } else {
   2790     if (use_imm) {
   2791       // TODO: more efficient comparison with 16-bit constants without loading them into TMP.
   2792       rhs_reg = TMP;
   2793       __ LoadConst32(rhs_reg, rhs_imm);
   2794     }
   2795     switch (cond) {
   2796       case kCondEQ:
   2797         __ Beq(lhs, rhs_reg, label);
   2798         break;
   2799       case kCondNE:
   2800         __ Bne(lhs, rhs_reg, label);
   2801         break;
   2802       case kCondLT:
   2803         __ Blt(lhs, rhs_reg, label);
   2804         break;
   2805       case kCondGE:
   2806         __ Bge(lhs, rhs_reg, label);
   2807         break;
   2808       case kCondLE:
   2809         __ Bge(rhs_reg, lhs, label);
   2810         break;
   2811       case kCondGT:
   2812         __ Blt(rhs_reg, lhs, label);
   2813         break;
   2814       case kCondB:
   2815         __ Bltu(lhs, rhs_reg, label);
   2816         break;
   2817       case kCondAE:
   2818         __ Bgeu(lhs, rhs_reg, label);
   2819         break;
   2820       case kCondBE:
   2821         __ Bgeu(rhs_reg, lhs, label);
   2822         break;
   2823       case kCondA:
   2824         __ Bltu(rhs_reg, lhs, label);
   2825         break;
   2826     }
   2827   }
   2828 }
   2829 
   2830 void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond,
   2831                                                                 LocationSummary* locations,
   2832                                                                 MipsLabel* label) {
   2833   Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   2834   Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   2835   Location rhs_location = locations->InAt(1);
   2836   Register rhs_high = ZERO;
   2837   Register rhs_low = ZERO;
   2838   int64_t imm = 0;
   2839   uint32_t imm_high = 0;
   2840   uint32_t imm_low = 0;
   2841   bool use_imm = rhs_location.IsConstant();
   2842   if (use_imm) {
   2843     imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
   2844     imm_high = High32Bits(imm);
   2845     imm_low = Low32Bits(imm);
   2846   } else {
   2847     rhs_high = rhs_location.AsRegisterPairHigh<Register>();
   2848     rhs_low = rhs_location.AsRegisterPairLow<Register>();
   2849   }
   2850 
   2851   if (use_imm && imm == 0) {
   2852     switch (cond) {
   2853       case kCondEQ:
   2854       case kCondBE:  // <= 0 if zero
   2855         __ Or(TMP, lhs_high, lhs_low);
   2856         __ Beqz(TMP, label);
   2857         break;
   2858       case kCondNE:
   2859       case kCondA:  // > 0 if non-zero
   2860         __ Or(TMP, lhs_high, lhs_low);
   2861         __ Bnez(TMP, label);
   2862         break;
   2863       case kCondLT:
   2864         __ Bltz(lhs_high, label);
   2865         break;
   2866       case kCondGE:
   2867         __ Bgez(lhs_high, label);
   2868         break;
   2869       case kCondLE:
   2870         __ Or(TMP, lhs_high, lhs_low);
   2871         __ Sra(AT, lhs_high, 31);
   2872         __ Bgeu(AT, TMP, label);
   2873         break;
   2874       case kCondGT:
   2875         __ Or(TMP, lhs_high, lhs_low);
   2876         __ Sra(AT, lhs_high, 31);
   2877         __ Bltu(AT, TMP, label);
   2878         break;
   2879       case kCondB:  // always false
   2880         break;
   2881       case kCondAE:  // always true
   2882         __ B(label);
   2883         break;
   2884     }
   2885   } else if (use_imm) {
   2886     // TODO: more efficient comparison with constants without loading them into TMP/AT.
   2887     switch (cond) {
   2888       case kCondEQ:
   2889         __ LoadConst32(TMP, imm_high);
   2890         __ Xor(TMP, TMP, lhs_high);
   2891         __ LoadConst32(AT, imm_low);
   2892         __ Xor(AT, AT, lhs_low);
   2893         __ Or(TMP, TMP, AT);
   2894         __ Beqz(TMP, label);
   2895         break;
   2896       case kCondNE:
   2897         __ LoadConst32(TMP, imm_high);
   2898         __ Xor(TMP, TMP, lhs_high);
   2899         __ LoadConst32(AT, imm_low);
   2900         __ Xor(AT, AT, lhs_low);
   2901         __ Or(TMP, TMP, AT);
   2902         __ Bnez(TMP, label);
   2903         break;
   2904       case kCondLT:
   2905         __ LoadConst32(TMP, imm_high);
   2906         __ Blt(lhs_high, TMP, label);
   2907         __ Slt(TMP, TMP, lhs_high);
   2908         __ LoadConst32(AT, imm_low);
   2909         __ Sltu(AT, lhs_low, AT);
   2910         __ Blt(TMP, AT, label);
   2911         break;
   2912       case kCondGE:
   2913         __ LoadConst32(TMP, imm_high);
   2914         __ Blt(TMP, lhs_high, label);
   2915         __ Slt(TMP, lhs_high, TMP);
   2916         __ LoadConst32(AT, imm_low);
   2917         __ Sltu(AT, lhs_low, AT);
   2918         __ Or(TMP, TMP, AT);
   2919         __ Beqz(TMP, label);
   2920         break;
   2921       case kCondLE:
   2922         __ LoadConst32(TMP, imm_high);
   2923         __ Blt(lhs_high, TMP, label);
   2924         __ Slt(TMP, TMP, lhs_high);
   2925         __ LoadConst32(AT, imm_low);
   2926         __ Sltu(AT, AT, lhs_low);
   2927         __ Or(TMP, TMP, AT);
   2928         __ Beqz(TMP, label);
   2929         break;
   2930       case kCondGT:
   2931         __ LoadConst32(TMP, imm_high);
   2932         __ Blt(TMP, lhs_high, label);
   2933         __ Slt(TMP, lhs_high, TMP);
   2934         __ LoadConst32(AT, imm_low);
   2935         __ Sltu(AT, AT, lhs_low);
   2936         __ Blt(TMP, AT, label);
   2937         break;
   2938       case kCondB:
   2939         __ LoadConst32(TMP, imm_high);
   2940         __ Bltu(lhs_high, TMP, label);
   2941         __ Sltu(TMP, TMP, lhs_high);
   2942         __ LoadConst32(AT, imm_low);
   2943         __ Sltu(AT, lhs_low, AT);
   2944         __ Blt(TMP, AT, label);
   2945         break;
   2946       case kCondAE:
   2947         __ LoadConst32(TMP, imm_high);
   2948         __ Bltu(TMP, lhs_high, label);
   2949         __ Sltu(TMP, lhs_high, TMP);
   2950         __ LoadConst32(AT, imm_low);
   2951         __ Sltu(AT, lhs_low, AT);
   2952         __ Or(TMP, TMP, AT);
   2953         __ Beqz(TMP, label);
   2954         break;
   2955       case kCondBE:
   2956         __ LoadConst32(TMP, imm_high);
   2957         __ Bltu(lhs_high, TMP, label);
   2958         __ Sltu(TMP, TMP, lhs_high);
   2959         __ LoadConst32(AT, imm_low);
   2960         __ Sltu(AT, AT, lhs_low);
   2961         __ Or(TMP, TMP, AT);
   2962         __ Beqz(TMP, label);
   2963         break;
   2964       case kCondA:
   2965         __ LoadConst32(TMP, imm_high);
   2966         __ Bltu(TMP, lhs_high, label);
   2967         __ Sltu(TMP, lhs_high, TMP);
   2968         __ LoadConst32(AT, imm_low);
   2969         __ Sltu(AT, AT, lhs_low);
   2970         __ Blt(TMP, AT, label);
   2971         break;
   2972     }
   2973   } else {
   2974     switch (cond) {
   2975       case kCondEQ:
   2976         __ Xor(TMP, lhs_high, rhs_high);
   2977         __ Xor(AT, lhs_low, rhs_low);
   2978         __ Or(TMP, TMP, AT);
   2979         __ Beqz(TMP, label);
   2980         break;
   2981       case kCondNE:
   2982         __ Xor(TMP, lhs_high, rhs_high);
   2983         __ Xor(AT, lhs_low, rhs_low);
   2984         __ Or(TMP, TMP, AT);
   2985         __ Bnez(TMP, label);
   2986         break;
   2987       case kCondLT:
   2988         __ Blt(lhs_high, rhs_high, label);
   2989         __ Slt(TMP, rhs_high, lhs_high);
   2990         __ Sltu(AT, lhs_low, rhs_low);
   2991         __ Blt(TMP, AT, label);
   2992         break;
   2993       case kCondGE:
   2994         __ Blt(rhs_high, lhs_high, label);
   2995         __ Slt(TMP, lhs_high, rhs_high);
   2996         __ Sltu(AT, lhs_low, rhs_low);
   2997         __ Or(TMP, TMP, AT);
   2998         __ Beqz(TMP, label);
   2999         break;
   3000       case kCondLE:
   3001         __ Blt(lhs_high, rhs_high, label);
   3002         __ Slt(TMP, rhs_high, lhs_high);
   3003         __ Sltu(AT, rhs_low, lhs_low);
   3004         __ Or(TMP, TMP, AT);
   3005         __ Beqz(TMP, label);
   3006         break;
   3007       case kCondGT:
   3008         __ Blt(rhs_high, lhs_high, label);
   3009         __ Slt(TMP, lhs_high, rhs_high);
   3010         __ Sltu(AT, rhs_low, lhs_low);
   3011         __ Blt(TMP, AT, label);
   3012         break;
   3013       case kCondB:
   3014         __ Bltu(lhs_high, rhs_high, label);
   3015         __ Sltu(TMP, rhs_high, lhs_high);
   3016         __ Sltu(AT, lhs_low, rhs_low);
   3017         __ Blt(TMP, AT, label);
   3018         break;
   3019       case kCondAE:
   3020         __ Bltu(rhs_high, lhs_high, label);
   3021         __ Sltu(TMP, lhs_high, rhs_high);
   3022         __ Sltu(AT, lhs_low, rhs_low);
   3023         __ Or(TMP, TMP, AT);
   3024         __ Beqz(TMP, label);
   3025         break;
   3026       case kCondBE:
   3027         __ Bltu(lhs_high, rhs_high, label);
   3028         __ Sltu(TMP, rhs_high, lhs_high);
   3029         __ Sltu(AT, rhs_low, lhs_low);
   3030         __ Or(TMP, TMP, AT);
   3031         __ Beqz(TMP, label);
   3032         break;
   3033       case kCondA:
   3034         __ Bltu(rhs_high, lhs_high, label);
   3035         __ Sltu(TMP, lhs_high, rhs_high);
   3036         __ Sltu(AT, rhs_low, lhs_low);
   3037         __ Blt(TMP, AT, label);
   3038         break;
   3039     }
   3040   }
   3041 }
   3042 
   3043 void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond,
   3044                                                               bool gt_bias,
   3045                                                               Primitive::Type type,
   3046                                                               LocationSummary* locations,
   3047                                                               MipsLabel* label) {
   3048   FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   3049   FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   3050   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   3051   if (type == Primitive::kPrimFloat) {
   3052     if (isR6) {
   3053       switch (cond) {
   3054         case kCondEQ:
   3055           __ CmpEqS(FTMP, lhs, rhs);
   3056           __ Bc1nez(FTMP, label);
   3057           break;
   3058         case kCondNE:
   3059           __ CmpEqS(FTMP, lhs, rhs);
   3060           __ Bc1eqz(FTMP, label);
   3061           break;
   3062         case kCondLT:
   3063           if (gt_bias) {
   3064             __ CmpLtS(FTMP, lhs, rhs);
   3065           } else {
   3066             __ CmpUltS(FTMP, lhs, rhs);
   3067           }
   3068           __ Bc1nez(FTMP, label);
   3069           break;
   3070         case kCondLE:
   3071           if (gt_bias) {
   3072             __ CmpLeS(FTMP, lhs, rhs);
   3073           } else {
   3074             __ CmpUleS(FTMP, lhs, rhs);
   3075           }
   3076           __ Bc1nez(FTMP, label);
   3077           break;
   3078         case kCondGT:
   3079           if (gt_bias) {
   3080             __ CmpUltS(FTMP, rhs, lhs);
   3081           } else {
   3082             __ CmpLtS(FTMP, rhs, lhs);
   3083           }
   3084           __ Bc1nez(FTMP, label);
   3085           break;
   3086         case kCondGE:
   3087           if (gt_bias) {
   3088             __ CmpUleS(FTMP, rhs, lhs);
   3089           } else {
   3090             __ CmpLeS(FTMP, rhs, lhs);
   3091           }
   3092           __ Bc1nez(FTMP, label);
   3093           break;
   3094         default:
   3095           LOG(FATAL) << "Unexpected non-floating-point condition";
   3096       }
   3097     } else {
   3098       switch (cond) {
   3099         case kCondEQ:
   3100           __ CeqS(0, lhs, rhs);
   3101           __ Bc1t(0, label);
   3102           break;
   3103         case kCondNE:
   3104           __ CeqS(0, lhs, rhs);
   3105           __ Bc1f(0, label);
   3106           break;
   3107         case kCondLT:
   3108           if (gt_bias) {
   3109             __ ColtS(0, lhs, rhs);
   3110           } else {
   3111             __ CultS(0, lhs, rhs);
   3112           }
   3113           __ Bc1t(0, label);
   3114           break;
   3115         case kCondLE:
   3116           if (gt_bias) {
   3117             __ ColeS(0, lhs, rhs);
   3118           } else {
   3119             __ CuleS(0, lhs, rhs);
   3120           }
   3121           __ Bc1t(0, label);
   3122           break;
   3123         case kCondGT:
   3124           if (gt_bias) {
   3125             __ CultS(0, rhs, lhs);
   3126           } else {
   3127             __ ColtS(0, rhs, lhs);
   3128           }
   3129           __ Bc1t(0, label);
   3130           break;
   3131         case kCondGE:
   3132           if (gt_bias) {
   3133             __ CuleS(0, rhs, lhs);
   3134           } else {
   3135             __ ColeS(0, rhs, lhs);
   3136           }
   3137           __ Bc1t(0, label);
   3138           break;
   3139         default:
   3140           LOG(FATAL) << "Unexpected non-floating-point condition";
   3141       }
   3142     }
   3143   } else {
   3144     DCHECK_EQ(type, Primitive::kPrimDouble);
   3145     if (isR6) {
   3146       switch (cond) {
   3147         case kCondEQ:
   3148           __ CmpEqD(FTMP, lhs, rhs);
   3149           __ Bc1nez(FTMP, label);
   3150           break;
   3151         case kCondNE:
   3152           __ CmpEqD(FTMP, lhs, rhs);
   3153           __ Bc1eqz(FTMP, label);
   3154           break;
   3155         case kCondLT:
   3156           if (gt_bias) {
   3157             __ CmpLtD(FTMP, lhs, rhs);
   3158           } else {
   3159             __ CmpUltD(FTMP, lhs, rhs);
   3160           }
   3161           __ Bc1nez(FTMP, label);
   3162           break;
   3163         case kCondLE:
   3164           if (gt_bias) {
   3165             __ CmpLeD(FTMP, lhs, rhs);
   3166           } else {
   3167             __ CmpUleD(FTMP, lhs, rhs);
   3168           }
   3169           __ Bc1nez(FTMP, label);
   3170           break;
   3171         case kCondGT:
   3172           if (gt_bias) {
   3173             __ CmpUltD(FTMP, rhs, lhs);
   3174           } else {
   3175             __ CmpLtD(FTMP, rhs, lhs);
   3176           }
   3177           __ Bc1nez(FTMP, label);
   3178           break;
   3179         case kCondGE:
   3180           if (gt_bias) {
   3181             __ CmpUleD(FTMP, rhs, lhs);
   3182           } else {
   3183             __ CmpLeD(FTMP, rhs, lhs);
   3184           }
   3185           __ Bc1nez(FTMP, label);
   3186           break;
   3187         default:
   3188           LOG(FATAL) << "Unexpected non-floating-point condition";
   3189       }
   3190     } else {
   3191       switch (cond) {
   3192         case kCondEQ:
   3193           __ CeqD(0, lhs, rhs);
   3194           __ Bc1t(0, label);
   3195           break;
   3196         case kCondNE:
   3197           __ CeqD(0, lhs, rhs);
   3198           __ Bc1f(0, label);
   3199           break;
   3200         case kCondLT:
   3201           if (gt_bias) {
   3202             __ ColtD(0, lhs, rhs);
   3203           } else {
   3204             __ CultD(0, lhs, rhs);
   3205           }
   3206           __ Bc1t(0, label);
   3207           break;
   3208         case kCondLE:
   3209           if (gt_bias) {
   3210             __ ColeD(0, lhs, rhs);
   3211           } else {
   3212             __ CuleD(0, lhs, rhs);
   3213           }
   3214           __ Bc1t(0, label);
   3215           break;
   3216         case kCondGT:
   3217           if (gt_bias) {
   3218             __ CultD(0, rhs, lhs);
   3219           } else {
   3220             __ ColtD(0, rhs, lhs);
   3221           }
   3222           __ Bc1t(0, label);
   3223           break;
   3224         case kCondGE:
   3225           if (gt_bias) {
   3226             __ CuleD(0, rhs, lhs);
   3227           } else {
   3228             __ ColeD(0, rhs, lhs);
   3229           }
   3230           __ Bc1t(0, label);
   3231           break;
   3232         default:
   3233           LOG(FATAL) << "Unexpected non-floating-point condition";
   3234       }
   3235     }
   3236   }
   3237 }
   3238 
   3239 void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction,
   3240                                                          size_t condition_input_index,
   3241                                                          MipsLabel* true_target,
   3242                                                          MipsLabel* false_target) {
   3243   HInstruction* cond = instruction->InputAt(condition_input_index);
   3244 
   3245   if (true_target == nullptr && false_target == nullptr) {
   3246     // Nothing to do. The code always falls through.
   3247     return;
   3248   } else if (cond->IsIntConstant()) {
   3249     // Constant condition, statically compared against "true" (integer value 1).
   3250     if (cond->AsIntConstant()->IsTrue()) {
   3251       if (true_target != nullptr) {
   3252         __ B(true_target);
   3253       }
   3254     } else {
   3255       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
   3256       if (false_target != nullptr) {
   3257         __ B(false_target);
   3258       }
   3259     }
   3260     return;
   3261   }
   3262 
   3263   // The following code generates these patterns:
   3264   //  (1) true_target == nullptr && false_target != nullptr
   3265   //        - opposite condition true => branch to false_target
   3266   //  (2) true_target != nullptr && false_target == nullptr
   3267   //        - condition true => branch to true_target
   3268   //  (3) true_target != nullptr && false_target != nullptr
   3269   //        - condition true => branch to true_target
   3270   //        - branch to false_target
   3271   if (IsBooleanValueOrMaterializedCondition(cond)) {
   3272     // The condition instruction has been materialized, compare the output to 0.
   3273     Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
   3274     DCHECK(cond_val.IsRegister());
   3275     if (true_target == nullptr) {
   3276       __ Beqz(cond_val.AsRegister<Register>(), false_target);
   3277     } else {
   3278       __ Bnez(cond_val.AsRegister<Register>(), true_target);
   3279     }
   3280   } else {
   3281     // The condition instruction has not been materialized, use its inputs as
   3282     // the comparison and its condition as the branch condition.
   3283     HCondition* condition = cond->AsCondition();
   3284     Primitive::Type type = condition->InputAt(0)->GetType();
   3285     LocationSummary* locations = cond->GetLocations();
   3286     IfCondition if_cond = condition->GetCondition();
   3287     MipsLabel* branch_target = true_target;
   3288 
   3289     if (true_target == nullptr) {
   3290       if_cond = condition->GetOppositeCondition();
   3291       branch_target = false_target;
   3292     }
   3293 
   3294     switch (type) {
   3295       default:
   3296         GenerateIntCompareAndBranch(if_cond, locations, branch_target);
   3297         break;
   3298       case Primitive::kPrimLong:
   3299         GenerateLongCompareAndBranch(if_cond, locations, branch_target);
   3300         break;
   3301       case Primitive::kPrimFloat:
   3302       case Primitive::kPrimDouble:
   3303         GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target);
   3304         break;
   3305     }
   3306   }
   3307 
   3308   // If neither branch falls through (case 3), the conditional branch to `true_target`
   3309   // was already emitted (case 2) and we need to emit a jump to `false_target`.
   3310   if (true_target != nullptr && false_target != nullptr) {
   3311     __ B(false_target);
   3312   }
   3313 }
   3314 
   3315 void LocationsBuilderMIPS::VisitIf(HIf* if_instr) {
   3316   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
   3317   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
   3318     locations->SetInAt(0, Location::RequiresRegister());
   3319   }
   3320 }
   3321 
   3322 void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) {
   3323   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
   3324   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
   3325   MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
   3326       nullptr : codegen_->GetLabelOf(true_successor);
   3327   MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
   3328       nullptr : codegen_->GetLabelOf(false_successor);
   3329   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
   3330 }
   3331 
   3332 void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
   3333   LocationSummary* locations = new (GetGraph()->GetArena())
   3334       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
   3335   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
   3336     locations->SetInAt(0, Location::RequiresRegister());
   3337   }
   3338 }
   3339 
   3340 void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
   3341   SlowPathCodeMIPS* slow_path =
   3342       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize);
   3343   GenerateTestAndBranch(deoptimize,
   3344                         /* condition_input_index */ 0,
   3345                         slow_path->GetEntryLabel(),
   3346                         /* false_target */ nullptr);
   3347 }
   3348 
   3349 void LocationsBuilderMIPS::VisitSelect(HSelect* select) {
   3350   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
   3351   if (Primitive::IsFloatingPointType(select->GetType())) {
   3352     locations->SetInAt(0, Location::RequiresFpuRegister());
   3353     locations->SetInAt(1, Location::RequiresFpuRegister());
   3354   } else {
   3355     locations->SetInAt(0, Location::RequiresRegister());
   3356     locations->SetInAt(1, Location::RequiresRegister());
   3357   }
   3358   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
   3359     locations->SetInAt(2, Location::RequiresRegister());
   3360   }
   3361   locations->SetOut(Location::SameAsFirstInput());
   3362 }
   3363 
   3364 void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) {
   3365   LocationSummary* locations = select->GetLocations();
   3366   MipsLabel false_target;
   3367   GenerateTestAndBranch(select,
   3368                         /* condition_input_index */ 2,
   3369                         /* true_target */ nullptr,
   3370                         &false_target);
   3371   codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
   3372   __ Bind(&false_target);
   3373 }
   3374 
   3375 void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) {
   3376   new (GetGraph()->GetArena()) LocationSummary(info);
   3377 }
   3378 
   3379 void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) {
   3380   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
   3381 }
   3382 
   3383 void CodeGeneratorMIPS::GenerateNop() {
   3384   __ Nop();
   3385 }
   3386 
   3387 void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
   3388   Primitive::Type field_type = field_info.GetFieldType();
   3389   bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
   3390   bool generate_volatile = field_info.IsVolatile() && is_wide;
   3391   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   3392       instruction, generate_volatile ? LocationSummary::kCall : LocationSummary::kNoCall);
   3393 
   3394   locations->SetInAt(0, Location::RequiresRegister());
   3395   if (generate_volatile) {
   3396     InvokeRuntimeCallingConvention calling_convention;
   3397     // need A0 to hold base + offset
   3398     locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   3399     if (field_type == Primitive::kPrimLong) {
   3400       locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimLong));
   3401     } else {
   3402       locations->SetOut(Location::RequiresFpuRegister());
   3403       // Need some temp core regs since FP results are returned in core registers
   3404       Location reg = calling_convention.GetReturnLocation(Primitive::kPrimLong);
   3405       locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>()));
   3406       locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>()));
   3407     }
   3408   } else {
   3409     if (Primitive::IsFloatingPointType(instruction->GetType())) {
   3410       locations->SetOut(Location::RequiresFpuRegister());
   3411     } else {
   3412       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3413     }
   3414   }
   3415 }
   3416 
   3417 void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction,
   3418                                                   const FieldInfo& field_info,
   3419                                                   uint32_t dex_pc) {
   3420   Primitive::Type type = field_info.GetFieldType();
   3421   LocationSummary* locations = instruction->GetLocations();
   3422   Register obj = locations->InAt(0).AsRegister<Register>();
   3423   LoadOperandType load_type = kLoadUnsignedByte;
   3424   bool is_volatile = field_info.IsVolatile();
   3425   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   3426 
   3427   switch (type) {
   3428     case Primitive::kPrimBoolean:
   3429       load_type = kLoadUnsignedByte;
   3430       break;
   3431     case Primitive::kPrimByte:
   3432       load_type = kLoadSignedByte;
   3433       break;
   3434     case Primitive::kPrimShort:
   3435       load_type = kLoadSignedHalfword;
   3436       break;
   3437     case Primitive::kPrimChar:
   3438       load_type = kLoadUnsignedHalfword;
   3439       break;
   3440     case Primitive::kPrimInt:
   3441     case Primitive::kPrimFloat:
   3442     case Primitive::kPrimNot:
   3443       load_type = kLoadWord;
   3444       break;
   3445     case Primitive::kPrimLong:
   3446     case Primitive::kPrimDouble:
   3447       load_type = kLoadDoubleword;
   3448       break;
   3449     case Primitive::kPrimVoid:
   3450       LOG(FATAL) << "Unreachable type " << type;
   3451       UNREACHABLE();
   3452   }
   3453 
   3454   if (is_volatile && load_type == kLoadDoubleword) {
   3455     InvokeRuntimeCallingConvention calling_convention;
   3456     __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
   3457     // Do implicit Null check
   3458     __ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
   3459     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   3460     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pA64Load),
   3461                             instruction,
   3462                             dex_pc,
   3463                             nullptr,
   3464                             IsDirectEntrypoint(kQuickA64Load));
   3465     CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>();
   3466     if (type == Primitive::kPrimDouble) {
   3467       // Need to move to FP regs since FP results are returned in core registers.
   3468       __ Mtc1(locations->GetTemp(1).AsRegister<Register>(),
   3469               locations->Out().AsFpuRegister<FRegister>());
   3470       __ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
   3471                        locations->Out().AsFpuRegister<FRegister>());
   3472     }
   3473   } else {
   3474     if (!Primitive::IsFloatingPointType(type)) {
   3475       Register dst;
   3476       if (type == Primitive::kPrimLong) {
   3477         DCHECK(locations->Out().IsRegisterPair());
   3478         dst = locations->Out().AsRegisterPairLow<Register>();
   3479         Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   3480         if (obj == dst) {
   3481           __ LoadFromOffset(kLoadWord, dst_high, obj, offset + kMipsWordSize);
   3482           codegen_->MaybeRecordImplicitNullCheck(instruction);
   3483           __ LoadFromOffset(kLoadWord, dst, obj, offset);
   3484         } else {
   3485           __ LoadFromOffset(kLoadWord, dst, obj, offset);
   3486           codegen_->MaybeRecordImplicitNullCheck(instruction);
   3487           __ LoadFromOffset(kLoadWord, dst_high, obj, offset + kMipsWordSize);
   3488         }
   3489       } else {
   3490         DCHECK(locations->Out().IsRegister());
   3491         dst = locations->Out().AsRegister<Register>();
   3492         __ LoadFromOffset(load_type, dst, obj, offset);
   3493       }
   3494     } else {
   3495       DCHECK(locations->Out().IsFpuRegister());
   3496       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   3497       if (type == Primitive::kPrimFloat) {
   3498         __ LoadSFromOffset(dst, obj, offset);
   3499       } else {
   3500         __ LoadDFromOffset(dst, obj, offset);
   3501       }
   3502     }
   3503     // Longs are handled earlier.
   3504     if (type != Primitive::kPrimLong) {
   3505       codegen_->MaybeRecordImplicitNullCheck(instruction);
   3506     }
   3507   }
   3508 
   3509   if (is_volatile) {
   3510     GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
   3511   }
   3512 }
   3513 
   3514 void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
   3515   Primitive::Type field_type = field_info.GetFieldType();
   3516   bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
   3517   bool generate_volatile = field_info.IsVolatile() && is_wide;
   3518   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
   3519       instruction, generate_volatile ? LocationSummary::kCall : LocationSummary::kNoCall);
   3520 
   3521   locations->SetInAt(0, Location::RequiresRegister());
   3522   if (generate_volatile) {
   3523     InvokeRuntimeCallingConvention calling_convention;
   3524     // need A0 to hold base + offset
   3525     locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   3526     if (field_type == Primitive::kPrimLong) {
   3527       locations->SetInAt(1, Location::RegisterPairLocation(
   3528           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   3529     } else {
   3530       locations->SetInAt(1, Location::RequiresFpuRegister());
   3531       // Pass FP parameters in core registers.
   3532       locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
   3533       locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
   3534     }
   3535   } else {
   3536     if (Primitive::IsFloatingPointType(field_type)) {
   3537       locations->SetInAt(1, Location::RequiresFpuRegister());
   3538     } else {
   3539       locations->SetInAt(1, Location::RequiresRegister());
   3540     }
   3541   }
   3542 }
   3543 
   3544 void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction,
   3545                                                   const FieldInfo& field_info,
   3546                                                   uint32_t dex_pc) {
   3547   Primitive::Type type = field_info.GetFieldType();
   3548   LocationSummary* locations = instruction->GetLocations();
   3549   Register obj = locations->InAt(0).AsRegister<Register>();
   3550   StoreOperandType store_type = kStoreByte;
   3551   bool is_volatile = field_info.IsVolatile();
   3552   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   3553 
   3554   switch (type) {
   3555     case Primitive::kPrimBoolean:
   3556     case Primitive::kPrimByte:
   3557       store_type = kStoreByte;
   3558       break;
   3559     case Primitive::kPrimShort:
   3560     case Primitive::kPrimChar:
   3561       store_type = kStoreHalfword;
   3562       break;
   3563     case Primitive::kPrimInt:
   3564     case Primitive::kPrimFloat:
   3565     case Primitive::kPrimNot:
   3566       store_type = kStoreWord;
   3567       break;
   3568     case Primitive::kPrimLong:
   3569     case Primitive::kPrimDouble:
   3570       store_type = kStoreDoubleword;
   3571       break;
   3572     case Primitive::kPrimVoid:
   3573       LOG(FATAL) << "Unreachable type " << type;
   3574       UNREACHABLE();
   3575   }
   3576 
   3577   if (is_volatile) {
   3578     GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
   3579   }
   3580 
   3581   if (is_volatile && store_type == kStoreDoubleword) {
   3582     InvokeRuntimeCallingConvention calling_convention;
   3583     __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
   3584     // Do implicit Null check.
   3585     __ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
   3586     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   3587     if (type == Primitive::kPrimDouble) {
   3588       // Pass FP parameters in core registers.
   3589       __ Mfc1(locations->GetTemp(1).AsRegister<Register>(),
   3590               locations->InAt(1).AsFpuRegister<FRegister>());
   3591       __ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
   3592                          locations->InAt(1).AsFpuRegister<FRegister>());
   3593     }
   3594     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pA64Store),
   3595                             instruction,
   3596                             dex_pc,
   3597                             nullptr,
   3598                             IsDirectEntrypoint(kQuickA64Store));
   3599     CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>();
   3600   } else {
   3601     if (!Primitive::IsFloatingPointType(type)) {
   3602       Register src;
   3603       if (type == Primitive::kPrimLong) {
   3604         DCHECK(locations->InAt(1).IsRegisterPair());
   3605         src = locations->InAt(1).AsRegisterPairLow<Register>();
   3606         Register src_high = locations->InAt(1).AsRegisterPairHigh<Register>();
   3607         __ StoreToOffset(kStoreWord, src, obj, offset);
   3608         codegen_->MaybeRecordImplicitNullCheck(instruction);
   3609         __ StoreToOffset(kStoreWord, src_high, obj, offset + kMipsWordSize);
   3610       } else {
   3611         DCHECK(locations->InAt(1).IsRegister());
   3612         src = locations->InAt(1).AsRegister<Register>();
   3613         __ StoreToOffset(store_type, src, obj, offset);
   3614       }
   3615     } else {
   3616       DCHECK(locations->InAt(1).IsFpuRegister());
   3617       FRegister src = locations->InAt(1).AsFpuRegister<FRegister>();
   3618       if (type == Primitive::kPrimFloat) {
   3619         __ StoreSToOffset(src, obj, offset);
   3620       } else {
   3621         __ StoreDToOffset(src, obj, offset);
   3622       }
   3623     }
   3624     // Longs are handled earlier.
   3625     if (type != Primitive::kPrimLong) {
   3626       codegen_->MaybeRecordImplicitNullCheck(instruction);
   3627     }
   3628   }
   3629 
   3630   // TODO: memory barriers?
   3631   if (CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1))) {
   3632     DCHECK(locations->InAt(1).IsRegister());
   3633     Register src = locations->InAt(1).AsRegister<Register>();
   3634     codegen_->MarkGCCard(obj, src);
   3635   }
   3636 
   3637   if (is_volatile) {
   3638     GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
   3639   }
   3640 }
   3641 
   3642 void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   3643   HandleFieldGet(instruction, instruction->GetFieldInfo());
   3644 }
   3645 
   3646 void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   3647   HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
   3648 }
   3649 
   3650 void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   3651   HandleFieldSet(instruction, instruction->GetFieldInfo());
   3652 }
   3653 
   3654 void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   3655   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
   3656 }
   3657 
   3658 void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) {
   3659   LocationSummary::CallKind call_kind =
   3660       instruction->IsExactCheck() ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath;
   3661   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   3662   locations->SetInAt(0, Location::RequiresRegister());
   3663   locations->SetInAt(1, Location::RequiresRegister());
   3664   // The output does overlap inputs.
   3665   // Note that TypeCheckSlowPathMIPS uses this register too.
   3666   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   3667 }
   3668 
   3669 void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) {
   3670   LocationSummary* locations = instruction->GetLocations();
   3671   Register obj = locations->InAt(0).AsRegister<Register>();
   3672   Register cls = locations->InAt(1).AsRegister<Register>();
   3673   Register out = locations->Out().AsRegister<Register>();
   3674 
   3675   MipsLabel done;
   3676 
   3677   // Return 0 if `obj` is null.
   3678   // TODO: Avoid this check if we know `obj` is not null.
   3679   __ Move(out, ZERO);
   3680   __ Beqz(obj, &done);
   3681 
   3682   // Compare the class of `obj` with `cls`.
   3683   __ LoadFromOffset(kLoadWord, out, obj, mirror::Object::ClassOffset().Int32Value());
   3684   if (instruction->IsExactCheck()) {
   3685     // Classes must be equal for the instanceof to succeed.
   3686     __ Xor(out, out, cls);
   3687     __ Sltiu(out, out, 1);
   3688   } else {
   3689     // If the classes are not equal, we go into a slow path.
   3690     DCHECK(locations->OnlyCallsOnSlowPath());
   3691     SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction);
   3692     codegen_->AddSlowPath(slow_path);
   3693     __ Bne(out, cls, slow_path->GetEntryLabel());
   3694     __ LoadConst32(out, 1);
   3695     __ Bind(slow_path->GetExitLabel());
   3696   }
   3697 
   3698   __ Bind(&done);
   3699 }
   3700 
   3701 void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) {
   3702   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   3703   locations->SetOut(Location::ConstantLocation(constant));
   3704 }
   3705 
   3706 void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
   3707   // Will be generated at use site.
   3708 }
   3709 
   3710 void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) {
   3711   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   3712   locations->SetOut(Location::ConstantLocation(constant));
   3713 }
   3714 
   3715 void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
   3716   // Will be generated at use site.
   3717 }
   3718 
   3719 void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) {
   3720   InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
   3721   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
   3722 }
   3723 
   3724 void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
   3725   HandleInvoke(invoke);
   3726   // The register T0 is required to be used for the hidden argument in
   3727   // art_quick_imt_conflict_trampoline, so add the hidden argument.
   3728   invoke->GetLocations()->AddTemp(Location::RegisterLocation(T0));
   3729 }
   3730 
   3731 void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
   3732   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
   3733   Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
   3734   Location receiver = invoke->GetLocations()->InAt(0);
   3735   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   3736   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize);
   3737 
   3738   // Set the hidden argument.
   3739   __ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
   3740                  invoke->GetDexMethodIndex());
   3741 
   3742   // temp = object->GetClass();
   3743   if (receiver.IsStackSlot()) {
   3744     __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
   3745     __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
   3746   } else {
   3747     __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
   3748   }
   3749   codegen_->MaybeRecordImplicitNullCheck(invoke);
   3750   __ LoadFromOffset(kLoadWord, temp, temp,
   3751       mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
   3752   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   3753       invoke->GetImtIndex() % ImTable::kSize, kMipsPointerSize));
   3754   // temp = temp->GetImtEntryAt(method_offset);
   3755   __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
   3756   // T9 = temp->GetEntryPoint();
   3757   __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
   3758   // T9();
   3759   __ Jalr(T9);
   3760   __ Nop();
   3761   DCHECK(!codegen_->IsLeafMethod());
   3762   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   3763 }
   3764 
   3765 void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   3766   IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
   3767   if (intrinsic.TryDispatch(invoke)) {
   3768     return;
   3769   }
   3770 
   3771   HandleInvoke(invoke);
   3772 }
   3773 
   3774 void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   3775   // Explicit clinit checks triggered by static invokes must have been pruned by
   3776   // art::PrepareForRegisterAllocation.
   3777   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   3778 
   3779   IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
   3780   if (intrinsic.TryDispatch(invoke)) {
   3781     return;
   3782   }
   3783 
   3784   HandleInvoke(invoke);
   3785 }
   3786 
   3787 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
   3788   if (invoke->GetLocations()->Intrinsified()) {
   3789     IntrinsicCodeGeneratorMIPS intrinsic(codegen);
   3790     intrinsic.Dispatch(invoke);
   3791     return true;
   3792   }
   3793   return false;
   3794 }
   3795 
   3796 HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind(
   3797     HLoadString::LoadKind desired_string_load_kind ATTRIBUTE_UNUSED) {
   3798   // TODO: Implement other kinds.
   3799   return HLoadString::LoadKind::kDexCacheViaMethod;
   3800 }
   3801 
   3802 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch(
   3803       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
   3804       MethodReference target_method ATTRIBUTE_UNUSED) {
   3805   switch (desired_dispatch_info.method_load_kind) {
   3806     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
   3807     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
   3808       // TODO: Implement these types. For the moment, we fall back to kDexCacheViaMethod.
   3809       return HInvokeStaticOrDirect::DispatchInfo {
   3810         HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
   3811         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
   3812         0u,
   3813         0u
   3814       };
   3815     default:
   3816       break;
   3817   }
   3818   switch (desired_dispatch_info.code_ptr_location) {
   3819     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
   3820     case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
   3821       // TODO: Implement these types. For the moment, we fall back to kCallArtMethod.
   3822       return HInvokeStaticOrDirect::DispatchInfo {
   3823         desired_dispatch_info.method_load_kind,
   3824         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
   3825         desired_dispatch_info.method_load_data,
   3826         0u
   3827       };
   3828     default:
   3829       return desired_dispatch_info;
   3830   }
   3831 }
   3832 
   3833 void CodeGeneratorMIPS::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
   3834   // All registers are assumed to be correctly set up per the calling convention.
   3835 
   3836   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
   3837   switch (invoke->GetMethodLoadKind()) {
   3838     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
   3839       // temp = thread->string_init_entrypoint
   3840       __ LoadFromOffset(kLoadWord,
   3841                         temp.AsRegister<Register>(),
   3842                         TR,
   3843                         invoke->GetStringInitOffset());
   3844       break;
   3845     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
   3846       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   3847       break;
   3848     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
   3849       __ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress());
   3850       break;
   3851     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
   3852     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
   3853       // TODO: Implement these types.
   3854       // Currently filtered out by GetSupportedInvokeStaticOrDirectDispatch().
   3855       LOG(FATAL) << "Unsupported";
   3856       UNREACHABLE();
   3857     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
   3858       Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   3859       Register reg = temp.AsRegister<Register>();
   3860       Register method_reg;
   3861       if (current_method.IsRegister()) {
   3862         method_reg = current_method.AsRegister<Register>();
   3863       } else {
   3864         // TODO: use the appropriate DCHECK() here if possible.
   3865         // DCHECK(invoke->GetLocations()->Intrinsified());
   3866         DCHECK(!current_method.IsValid());
   3867         method_reg = reg;
   3868         __ Lw(reg, SP, kCurrentMethodStackOffset);
   3869       }
   3870 
   3871       // temp = temp->dex_cache_resolved_methods_;
   3872       __ LoadFromOffset(kLoadWord,
   3873                         reg,
   3874                         method_reg,
   3875                         ArtMethod::DexCacheResolvedMethodsOffset(kMipsPointerSize).Int32Value());
   3876       // temp = temp[index_in_cache];
   3877       // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
   3878       uint32_t index_in_cache = invoke->GetDexMethodIndex();
   3879       __ LoadFromOffset(kLoadWord,
   3880                         reg,
   3881                         reg,
   3882                         CodeGenerator::GetCachePointerOffset(index_in_cache));
   3883       break;
   3884     }
   3885   }
   3886 
   3887   switch (invoke->GetCodePtrLocation()) {
   3888     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
   3889       __ Jalr(&frame_entry_label_, T9);
   3890       break;
   3891     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
   3892       // LR = invoke->GetDirectCodePtr();
   3893       __ LoadConst32(T9, invoke->GetDirectCodePtr());
   3894       // LR()
   3895       __ Jalr(T9);
   3896       __ Nop();
   3897       break;
   3898     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
   3899     case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
   3900       // TODO: Implement these types.
   3901       // Currently filtered out by GetSupportedInvokeStaticOrDirectDispatch().
   3902       LOG(FATAL) << "Unsupported";
   3903       UNREACHABLE();
   3904     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
   3905       // T9 = callee_method->entry_point_from_quick_compiled_code_;
   3906       __ LoadFromOffset(kLoadWord,
   3907                         T9,
   3908                         callee_method.AsRegister<Register>(),
   3909                         ArtMethod::EntryPointFromQuickCompiledCodeOffset(
   3910                             kMipsWordSize).Int32Value());
   3911       // T9()
   3912       __ Jalr(T9);
   3913       __ Nop();
   3914       break;
   3915   }
   3916   DCHECK(!IsLeafMethod());
   3917 }
   3918 
   3919 void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   3920   // Explicit clinit checks triggered by static invokes must have been pruned by
   3921   // art::PrepareForRegisterAllocation.
   3922   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   3923 
   3924   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   3925     return;
   3926   }
   3927 
   3928   LocationSummary* locations = invoke->GetLocations();
   3929   codegen_->GenerateStaticOrDirectCall(invoke,
   3930                                        locations->HasTemps()
   3931                                            ? locations->GetTemp(0)
   3932                                            : Location::NoLocation());
   3933   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   3934 }
   3935 
   3936 void CodeGeneratorMIPS::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
   3937   LocationSummary* locations = invoke->GetLocations();
   3938   Location receiver = locations->InAt(0);
   3939   Register temp = temp_location.AsRegister<Register>();
   3940   size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   3941       invoke->GetVTableIndex(), kMipsPointerSize).SizeValue();
   3942   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   3943   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize);
   3944 
   3945   // temp = object->GetClass();
   3946   DCHECK(receiver.IsRegister());
   3947   __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
   3948   MaybeRecordImplicitNullCheck(invoke);
   3949   // temp = temp->GetMethodAt(method_offset);
   3950   __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
   3951   // T9 = temp->GetEntryPoint();
   3952   __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
   3953   // T9();
   3954   __ Jalr(T9);
   3955   __ Nop();
   3956 }
   3957 
   3958 void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   3959   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   3960     return;
   3961   }
   3962 
   3963   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
   3964   DCHECK(!codegen_->IsLeafMethod());
   3965   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   3966 }
   3967 
   3968 void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) {
   3969   InvokeRuntimeCallingConvention calling_convention;
   3970   CodeGenerator::CreateLoadClassLocationSummary(
   3971       cls,
   3972       Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
   3973       Location::RegisterLocation(V0));
   3974 }
   3975 
   3976 void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) {
   3977   LocationSummary* locations = cls->GetLocations();
   3978   if (cls->NeedsAccessCheck()) {
   3979     codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
   3980     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
   3981                             cls,
   3982                             cls->GetDexPc(),
   3983                             nullptr,
   3984                             IsDirectEntrypoint(kQuickInitializeTypeAndVerifyAccess));
   3985     CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
   3986     return;
   3987   }
   3988 
   3989   Register out = locations->Out().AsRegister<Register>();
   3990   Register current_method = locations->InAt(0).AsRegister<Register>();
   3991   if (cls->IsReferrersClass()) {
   3992     DCHECK(!cls->CanCallRuntime());
   3993     DCHECK(!cls->MustGenerateClinitCheck());
   3994     __ LoadFromOffset(kLoadWord, out, current_method,
   3995                       ArtMethod::DeclaringClassOffset().Int32Value());
   3996   } else {
   3997     __ LoadFromOffset(kLoadWord, out, current_method,
   3998                       ArtMethod::DexCacheResolvedTypesOffset(kMipsPointerSize).Int32Value());
   3999     __ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
   4000 
   4001     if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
   4002       DCHECK(cls->CanCallRuntime());
   4003       SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
   4004           cls,
   4005           cls,
   4006           cls->GetDexPc(),
   4007           cls->MustGenerateClinitCheck());
   4008       codegen_->AddSlowPath(slow_path);
   4009       if (!cls->IsInDexCache()) {
   4010         __ Beqz(out, slow_path->GetEntryLabel());
   4011       }
   4012       if (cls->MustGenerateClinitCheck()) {
   4013         GenerateClassInitializationCheck(slow_path, out);
   4014       } else {
   4015         __ Bind(slow_path->GetExitLabel());
   4016       }
   4017     }
   4018   }
   4019 }
   4020 
   4021 static int32_t GetExceptionTlsOffset() {
   4022   return Thread::ExceptionOffset<kMipsWordSize>().Int32Value();
   4023 }
   4024 
   4025 void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) {
   4026   LocationSummary* locations =
   4027       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
   4028   locations->SetOut(Location::RequiresRegister());
   4029 }
   4030 
   4031 void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) {
   4032   Register out = load->GetLocations()->Out().AsRegister<Register>();
   4033   __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
   4034 }
   4035 
   4036 void LocationsBuilderMIPS::VisitClearException(HClearException* clear) {
   4037   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
   4038 }
   4039 
   4040 void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
   4041   __ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset());
   4042 }
   4043 
   4044 void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) {
   4045   LocationSummary::CallKind call_kind = load->NeedsEnvironment()
   4046       ? LocationSummary::kCallOnSlowPath
   4047       : LocationSummary::kNoCall;
   4048   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
   4049   locations->SetInAt(0, Location::RequiresRegister());
   4050   locations->SetOut(Location::RequiresRegister());
   4051 }
   4052 
   4053 void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) {
   4054   LocationSummary* locations = load->GetLocations();
   4055   Register out = locations->Out().AsRegister<Register>();
   4056   Register current_method = locations->InAt(0).AsRegister<Register>();
   4057   __ LoadFromOffset(kLoadWord, out, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
   4058   __ LoadFromOffset(kLoadWord, out, out, mirror::Class::DexCacheStringsOffset().Int32Value());
   4059   __ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(load->GetStringIndex()));
   4060 
   4061   if (!load->IsInDexCache()) {
   4062     SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathMIPS(load);
   4063     codegen_->AddSlowPath(slow_path);
   4064     __ Beqz(out, slow_path->GetEntryLabel());
   4065     __ Bind(slow_path->GetExitLabel());
   4066   }
   4067 }
   4068 
   4069 void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) {
   4070   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
   4071   locations->SetOut(Location::ConstantLocation(constant));
   4072 }
   4073 
   4074 void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
   4075   // Will be generated at use site.
   4076 }
   4077 
   4078 void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
   4079   LocationSummary* locations =
   4080       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4081   InvokeRuntimeCallingConvention calling_convention;
   4082   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   4083 }
   4084 
   4085 void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
   4086   if (instruction->IsEnter()) {
   4087     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLockObject),
   4088                             instruction,
   4089                             instruction->GetDexPc(),
   4090                             nullptr,
   4091                             IsDirectEntrypoint(kQuickLockObject));
   4092     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
   4093   } else {
   4094     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pUnlockObject),
   4095                             instruction,
   4096                             instruction->GetDexPc(),
   4097                             nullptr,
   4098                             IsDirectEntrypoint(kQuickUnlockObject));
   4099   }
   4100   CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
   4101 }
   4102 
   4103 void LocationsBuilderMIPS::VisitMul(HMul* mul) {
   4104   LocationSummary* locations =
   4105       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
   4106   switch (mul->GetResultType()) {
   4107     case Primitive::kPrimInt:
   4108     case Primitive::kPrimLong:
   4109       locations->SetInAt(0, Location::RequiresRegister());
   4110       locations->SetInAt(1, Location::RequiresRegister());
   4111       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4112       break;
   4113 
   4114     case Primitive::kPrimFloat:
   4115     case Primitive::kPrimDouble:
   4116       locations->SetInAt(0, Location::RequiresFpuRegister());
   4117       locations->SetInAt(1, Location::RequiresFpuRegister());
   4118       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4119       break;
   4120 
   4121     default:
   4122       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   4123   }
   4124 }
   4125 
   4126 void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) {
   4127   Primitive::Type type = instruction->GetType();
   4128   LocationSummary* locations = instruction->GetLocations();
   4129   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   4130 
   4131   switch (type) {
   4132     case Primitive::kPrimInt: {
   4133       Register dst = locations->Out().AsRegister<Register>();
   4134       Register lhs = locations->InAt(0).AsRegister<Register>();
   4135       Register rhs = locations->InAt(1).AsRegister<Register>();
   4136 
   4137       if (isR6) {
   4138         __ MulR6(dst, lhs, rhs);
   4139       } else {
   4140         __ MulR2(dst, lhs, rhs);
   4141       }
   4142       break;
   4143     }
   4144     case Primitive::kPrimLong: {
   4145       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   4146       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   4147       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   4148       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
   4149       Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
   4150       Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
   4151 
   4152       // Extra checks to protect caused by the existance of A1_A2.
   4153       // The algorithm is wrong if dst_high is either lhs_lo or rhs_lo:
   4154       // (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2).
   4155       DCHECK_NE(dst_high, lhs_low);
   4156       DCHECK_NE(dst_high, rhs_low);
   4157 
   4158       // A_B * C_D
   4159       // dst_hi:  [ low(A*D) + low(B*C) + hi(B*D) ]
   4160       // dst_lo:  [ low(B*D) ]
   4161       // Note: R2 and R6 MUL produce the low 32 bit of the multiplication result.
   4162 
   4163       if (isR6) {
   4164         __ MulR6(TMP, lhs_high, rhs_low);
   4165         __ MulR6(dst_high, lhs_low, rhs_high);
   4166         __ Addu(dst_high, dst_high, TMP);
   4167         __ MuhuR6(TMP, lhs_low, rhs_low);
   4168         __ Addu(dst_high, dst_high, TMP);
   4169         __ MulR6(dst_low, lhs_low, rhs_low);
   4170       } else {
   4171         __ MulR2(TMP, lhs_high, rhs_low);
   4172         __ MulR2(dst_high, lhs_low, rhs_high);
   4173         __ Addu(dst_high, dst_high, TMP);
   4174         __ MultuR2(lhs_low, rhs_low);
   4175         __ Mfhi(TMP);
   4176         __ Addu(dst_high, dst_high, TMP);
   4177         __ Mflo(dst_low);
   4178       }
   4179       break;
   4180     }
   4181     case Primitive::kPrimFloat:
   4182     case Primitive::kPrimDouble: {
   4183       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   4184       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
   4185       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
   4186       if (type == Primitive::kPrimFloat) {
   4187         __ MulS(dst, lhs, rhs);
   4188       } else {
   4189         __ MulD(dst, lhs, rhs);
   4190       }
   4191       break;
   4192     }
   4193     default:
   4194       LOG(FATAL) << "Unexpected mul type " << type;
   4195   }
   4196 }
   4197 
   4198 void LocationsBuilderMIPS::VisitNeg(HNeg* neg) {
   4199   LocationSummary* locations =
   4200       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
   4201   switch (neg->GetResultType()) {
   4202     case Primitive::kPrimInt:
   4203     case Primitive::kPrimLong:
   4204       locations->SetInAt(0, Location::RequiresRegister());
   4205       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4206       break;
   4207 
   4208     case Primitive::kPrimFloat:
   4209     case Primitive::kPrimDouble:
   4210       locations->SetInAt(0, Location::RequiresFpuRegister());
   4211       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4212       break;
   4213 
   4214     default:
   4215       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   4216   }
   4217 }
   4218 
   4219 void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) {
   4220   Primitive::Type type = instruction->GetType();
   4221   LocationSummary* locations = instruction->GetLocations();
   4222 
   4223   switch (type) {
   4224     case Primitive::kPrimInt: {
   4225       Register dst = locations->Out().AsRegister<Register>();
   4226       Register src = locations->InAt(0).AsRegister<Register>();
   4227       __ Subu(dst, ZERO, src);
   4228       break;
   4229     }
   4230     case Primitive::kPrimLong: {
   4231       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   4232       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   4233       Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   4234       Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
   4235       __ Subu(dst_low, ZERO, src_low);
   4236       __ Sltu(TMP, ZERO, dst_low);
   4237       __ Subu(dst_high, ZERO, src_high);
   4238       __ Subu(dst_high, dst_high, TMP);
   4239       break;
   4240     }
   4241     case Primitive::kPrimFloat:
   4242     case Primitive::kPrimDouble: {
   4243       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   4244       FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   4245       if (type == Primitive::kPrimFloat) {
   4246         __ NegS(dst, src);
   4247       } else {
   4248         __ NegD(dst, src);
   4249       }
   4250       break;
   4251     }
   4252     default:
   4253       LOG(FATAL) << "Unexpected neg type " << type;
   4254   }
   4255 }
   4256 
   4257 void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) {
   4258   LocationSummary* locations =
   4259       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4260   InvokeRuntimeCallingConvention calling_convention;
   4261   locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   4262   locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
   4263   locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
   4264   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   4265 }
   4266 
   4267 void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) {
   4268   InvokeRuntimeCallingConvention calling_convention;
   4269   Register current_method_register = calling_convention.GetRegisterAt(2);
   4270   __ Lw(current_method_register, SP, kCurrentMethodStackOffset);
   4271   // Move an uint16_t value to a register.
   4272   __ LoadConst32(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
   4273   codegen_->InvokeRuntime(
   4274       GetThreadOffset<kMipsWordSize>(instruction->GetEntrypoint()).Int32Value(),
   4275       instruction,
   4276       instruction->GetDexPc(),
   4277       nullptr,
   4278       IsDirectEntrypoint(kQuickAllocArrayWithAccessCheck));
   4279   CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck,
   4280                        void*, uint32_t, int32_t, ArtMethod*>();
   4281 }
   4282 
   4283 void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) {
   4284   LocationSummary* locations =
   4285       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4286   InvokeRuntimeCallingConvention calling_convention;
   4287   if (instruction->IsStringAlloc()) {
   4288     locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
   4289   } else {
   4290     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   4291     locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   4292   }
   4293   locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
   4294 }
   4295 
   4296 void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) {
   4297   if (instruction->IsStringAlloc()) {
   4298     // String is allocated through StringFactory. Call NewEmptyString entry point.
   4299     Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
   4300     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsWordSize);
   4301     __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
   4302     __ LoadFromOffset(kLoadWord, T9, temp, code_offset.Int32Value());
   4303     __ Jalr(T9);
   4304     __ Nop();
   4305     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   4306   } else {
   4307     codegen_->InvokeRuntime(
   4308         GetThreadOffset<kMipsWordSize>(instruction->GetEntrypoint()).Int32Value(),
   4309         instruction,
   4310         instruction->GetDexPc(),
   4311         nullptr,
   4312         IsDirectEntrypoint(kQuickAllocObjectWithAccessCheck));
   4313     CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
   4314   }
   4315 }
   4316 
   4317 void LocationsBuilderMIPS::VisitNot(HNot* instruction) {
   4318   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4319   locations->SetInAt(0, Location::RequiresRegister());
   4320   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4321 }
   4322 
   4323 void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) {
   4324   Primitive::Type type = instruction->GetType();
   4325   LocationSummary* locations = instruction->GetLocations();
   4326 
   4327   switch (type) {
   4328     case Primitive::kPrimInt: {
   4329       Register dst = locations->Out().AsRegister<Register>();
   4330       Register src = locations->InAt(0).AsRegister<Register>();
   4331       __ Nor(dst, src, ZERO);
   4332       break;
   4333     }
   4334 
   4335     case Primitive::kPrimLong: {
   4336       Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   4337       Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   4338       Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   4339       Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
   4340       __ Nor(dst_high, src_high, ZERO);
   4341       __ Nor(dst_low, src_low, ZERO);
   4342       break;
   4343     }
   4344 
   4345     default:
   4346       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
   4347   }
   4348 }
   4349 
   4350 void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) {
   4351   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4352   locations->SetInAt(0, Location::RequiresRegister());
   4353   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4354 }
   4355 
   4356 void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) {
   4357   LocationSummary* locations = instruction->GetLocations();
   4358   __ Xori(locations->Out().AsRegister<Register>(),
   4359           locations->InAt(0).AsRegister<Register>(),
   4360           1);
   4361 }
   4362 
   4363 void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) {
   4364   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
   4365       ? LocationSummary::kCallOnSlowPath
   4366       : LocationSummary::kNoCall;
   4367   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
   4368   locations->SetInAt(0, Location::RequiresRegister());
   4369   if (instruction->HasUses()) {
   4370     locations->SetOut(Location::SameAsFirstInput());
   4371   }
   4372 }
   4373 
   4374 void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) {
   4375   if (CanMoveNullCheckToUser(instruction)) {
   4376     return;
   4377   }
   4378   Location obj = instruction->GetLocations()->InAt(0);
   4379 
   4380   __ Lw(ZERO, obj.AsRegister<Register>(), 0);
   4381   RecordPcInfo(instruction, instruction->GetDexPc());
   4382 }
   4383 
   4384 void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) {
   4385   SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathMIPS(instruction);
   4386   AddSlowPath(slow_path);
   4387 
   4388   Location obj = instruction->GetLocations()->InAt(0);
   4389 
   4390   __ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
   4391 }
   4392 
   4393 void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) {
   4394   codegen_->GenerateNullCheck(instruction);
   4395 }
   4396 
   4397 void LocationsBuilderMIPS::VisitOr(HOr* instruction) {
   4398   HandleBinaryOp(instruction);
   4399 }
   4400 
   4401 void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) {
   4402   HandleBinaryOp(instruction);
   4403 }
   4404 
   4405 void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
   4406   LOG(FATAL) << "Unreachable";
   4407 }
   4408 
   4409 void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) {
   4410   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
   4411 }
   4412 
   4413 void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) {
   4414   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4415   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
   4416   if (location.IsStackSlot()) {
   4417     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   4418   } else if (location.IsDoubleStackSlot()) {
   4419     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   4420   }
   4421   locations->SetOut(location);
   4422 }
   4423 
   4424 void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction
   4425                                                          ATTRIBUTE_UNUSED) {
   4426   // Nothing to do, the parameter is already at its location.
   4427 }
   4428 
   4429 void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) {
   4430   LocationSummary* locations =
   4431       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   4432   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
   4433 }
   4434 
   4435 void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction
   4436                                                         ATTRIBUTE_UNUSED) {
   4437   // Nothing to do, the method is already at its location.
   4438 }
   4439 
   4440 void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) {
   4441   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
   4442   for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
   4443     locations->SetInAt(i, Location::Any());
   4444   }
   4445   locations->SetOut(Location::Any());
   4446 }
   4447 
   4448 void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
   4449   LOG(FATAL) << "Unreachable";
   4450 }
   4451 
   4452 void LocationsBuilderMIPS::VisitRem(HRem* rem) {
   4453   Primitive::Type type = rem->GetResultType();
   4454   LocationSummary::CallKind call_kind =
   4455       (type == Primitive::kPrimInt) ? LocationSummary::kNoCall : LocationSummary::kCall;
   4456   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
   4457 
   4458   switch (type) {
   4459     case Primitive::kPrimInt:
   4460       locations->SetInAt(0, Location::RequiresRegister());
   4461       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
   4462       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4463       break;
   4464 
   4465     case Primitive::kPrimLong: {
   4466       InvokeRuntimeCallingConvention calling_convention;
   4467       locations->SetInAt(0, Location::RegisterPairLocation(
   4468           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   4469       locations->SetInAt(1, Location::RegisterPairLocation(
   4470           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
   4471       locations->SetOut(calling_convention.GetReturnLocation(type));
   4472       break;
   4473     }
   4474 
   4475     case Primitive::kPrimFloat:
   4476     case Primitive::kPrimDouble: {
   4477       InvokeRuntimeCallingConvention calling_convention;
   4478       locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
   4479       locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
   4480       locations->SetOut(calling_convention.GetReturnLocation(type));
   4481       break;
   4482     }
   4483 
   4484     default:
   4485       LOG(FATAL) << "Unexpected rem type " << type;
   4486   }
   4487 }
   4488 
   4489 void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) {
   4490   Primitive::Type type = instruction->GetType();
   4491 
   4492   switch (type) {
   4493     case Primitive::kPrimInt:
   4494       GenerateDivRemIntegral(instruction);
   4495       break;
   4496     case Primitive::kPrimLong: {
   4497       codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod),
   4498                               instruction,
   4499                               instruction->GetDexPc(),
   4500                               nullptr,
   4501                               IsDirectEntrypoint(kQuickLmod));
   4502       CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
   4503       break;
   4504     }
   4505     case Primitive::kPrimFloat: {
   4506       codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmodf),
   4507                               instruction, instruction->GetDexPc(),
   4508                               nullptr,
   4509                               IsDirectEntrypoint(kQuickFmodf));
   4510       CheckEntrypointTypes<kQuickFmodf, float, float, float>();
   4511       break;
   4512     }
   4513     case Primitive::kPrimDouble: {
   4514       codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmod),
   4515                               instruction, instruction->GetDexPc(),
   4516                               nullptr,
   4517                               IsDirectEntrypoint(kQuickFmod));
   4518       CheckEntrypointTypes<kQuickFmod, double, double, double>();
   4519       break;
   4520     }
   4521     default:
   4522       LOG(FATAL) << "Unexpected rem type " << type;
   4523   }
   4524 }
   4525 
   4526 void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   4527   memory_barrier->SetLocations(nullptr);
   4528 }
   4529 
   4530 void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   4531   GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
   4532 }
   4533 
   4534 void LocationsBuilderMIPS::VisitReturn(HReturn* ret) {
   4535   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret);
   4536   Primitive::Type return_type = ret->InputAt(0)->GetType();
   4537   locations->SetInAt(0, MipsReturnLocation(return_type));
   4538 }
   4539 
   4540 void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
   4541   codegen_->GenerateFrameExit();
   4542 }
   4543 
   4544 void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) {
   4545   ret->SetLocations(nullptr);
   4546 }
   4547 
   4548 void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
   4549   codegen_->GenerateFrameExit();
   4550 }
   4551 
   4552 void LocationsBuilderMIPS::VisitRor(HRor* ror) {
   4553   HandleShift(ror);
   4554 }
   4555 
   4556 void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) {
   4557   HandleShift(ror);
   4558 }
   4559 
   4560 void LocationsBuilderMIPS::VisitShl(HShl* shl) {
   4561   HandleShift(shl);
   4562 }
   4563 
   4564 void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) {
   4565   HandleShift(shl);
   4566 }
   4567 
   4568 void LocationsBuilderMIPS::VisitShr(HShr* shr) {
   4569   HandleShift(shr);
   4570 }
   4571 
   4572 void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) {
   4573   HandleShift(shr);
   4574 }
   4575 
   4576 void LocationsBuilderMIPS::VisitSub(HSub* instruction) {
   4577   HandleBinaryOp(instruction);
   4578 }
   4579 
   4580 void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) {
   4581   HandleBinaryOp(instruction);
   4582 }
   4583 
   4584 void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   4585   HandleFieldGet(instruction, instruction->GetFieldInfo());
   4586 }
   4587 
   4588 void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   4589   HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
   4590 }
   4591 
   4592 void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   4593   HandleFieldSet(instruction, instruction->GetFieldInfo());
   4594 }
   4595 
   4596 void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   4597   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
   4598 }
   4599 
   4600 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet(
   4601     HUnresolvedInstanceFieldGet* instruction) {
   4602   FieldAccessCallingConventionMIPS calling_convention;
   4603   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   4604                                                  instruction->GetFieldType(),
   4605                                                  calling_convention);
   4606 }
   4607 
   4608 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet(
   4609     HUnresolvedInstanceFieldGet* instruction) {
   4610   FieldAccessCallingConventionMIPS calling_convention;
   4611   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4612                                           instruction->GetFieldType(),
   4613                                           instruction->GetFieldIndex(),
   4614                                           instruction->GetDexPc(),
   4615                                           calling_convention);
   4616 }
   4617 
   4618 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet(
   4619     HUnresolvedInstanceFieldSet* instruction) {
   4620   FieldAccessCallingConventionMIPS calling_convention;
   4621   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   4622                                                  instruction->GetFieldType(),
   4623                                                  calling_convention);
   4624 }
   4625 
   4626 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet(
   4627     HUnresolvedInstanceFieldSet* instruction) {
   4628   FieldAccessCallingConventionMIPS calling_convention;
   4629   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4630                                           instruction->GetFieldType(),
   4631                                           instruction->GetFieldIndex(),
   4632                                           instruction->GetDexPc(),
   4633                                           calling_convention);
   4634 }
   4635 
   4636 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet(
   4637     HUnresolvedStaticFieldGet* instruction) {
   4638   FieldAccessCallingConventionMIPS calling_convention;
   4639   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   4640                                                  instruction->GetFieldType(),
   4641                                                  calling_convention);
   4642 }
   4643 
   4644 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet(
   4645     HUnresolvedStaticFieldGet* instruction) {
   4646   FieldAccessCallingConventionMIPS calling_convention;
   4647   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4648                                           instruction->GetFieldType(),
   4649                                           instruction->GetFieldIndex(),
   4650                                           instruction->GetDexPc(),
   4651                                           calling_convention);
   4652 }
   4653 
   4654 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet(
   4655     HUnresolvedStaticFieldSet* instruction) {
   4656   FieldAccessCallingConventionMIPS calling_convention;
   4657   codegen_->CreateUnresolvedFieldLocationSummary(instruction,
   4658                                                  instruction->GetFieldType(),
   4659                                                  calling_convention);
   4660 }
   4661 
   4662 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet(
   4663     HUnresolvedStaticFieldSet* instruction) {
   4664   FieldAccessCallingConventionMIPS calling_convention;
   4665   codegen_->GenerateUnresolvedFieldAccess(instruction,
   4666                                           instruction->GetFieldType(),
   4667                                           instruction->GetFieldIndex(),
   4668                                           instruction->GetDexPc(),
   4669                                           calling_convention);
   4670 }
   4671 
   4672 void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
   4673   new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
   4674 }
   4675 
   4676 void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
   4677   HBasicBlock* block = instruction->GetBlock();
   4678   if (block->GetLoopInformation() != nullptr) {
   4679     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
   4680     // The back edge will generate the suspend check.
   4681     return;
   4682   }
   4683   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
   4684     // The goto will generate the suspend check.
   4685     return;
   4686   }
   4687   GenerateSuspendCheck(instruction, nullptr);
   4688 }
   4689 
   4690 void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) {
   4691   LocationSummary* locations =
   4692       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
   4693   InvokeRuntimeCallingConvention calling_convention;
   4694   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   4695 }
   4696 
   4697 void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) {
   4698   codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException),
   4699                           instruction,
   4700                           instruction->GetDexPc(),
   4701                           nullptr,
   4702                           IsDirectEntrypoint(kQuickDeliverException));
   4703   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
   4704 }
   4705 
   4706 void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) {
   4707   Primitive::Type input_type = conversion->GetInputType();
   4708   Primitive::Type result_type = conversion->GetResultType();
   4709   DCHECK_NE(input_type, result_type);
   4710   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   4711 
   4712   if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
   4713       (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
   4714     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
   4715   }
   4716 
   4717   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   4718   if (!isR6 &&
   4719       ((Primitive::IsFloatingPointType(result_type) && input_type == Primitive::kPrimLong) ||
   4720        (result_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(input_type)))) {
   4721     call_kind = LocationSummary::kCall;
   4722   }
   4723 
   4724   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
   4725 
   4726   if (call_kind == LocationSummary::kNoCall) {
   4727     if (Primitive::IsFloatingPointType(input_type)) {
   4728       locations->SetInAt(0, Location::RequiresFpuRegister());
   4729     } else {
   4730       locations->SetInAt(0, Location::RequiresRegister());
   4731     }
   4732 
   4733     if (Primitive::IsFloatingPointType(result_type)) {
   4734       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   4735     } else {
   4736       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   4737     }
   4738   } else {
   4739     InvokeRuntimeCallingConvention calling_convention;
   4740 
   4741     if (Primitive::IsFloatingPointType(input_type)) {
   4742       locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
   4743     } else {
   4744       DCHECK_EQ(input_type, Primitive::kPrimLong);
   4745       locations->SetInAt(0, Location::RegisterPairLocation(
   4746                  calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
   4747     }
   4748 
   4749     locations->SetOut(calling_convention.GetReturnLocation(result_type));
   4750   }
   4751 }
   4752 
   4753 void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) {
   4754   LocationSummary* locations = conversion->GetLocations();
   4755   Primitive::Type result_type = conversion->GetResultType();
   4756   Primitive::Type input_type = conversion->GetInputType();
   4757   bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
   4758   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
   4759   bool fpu_32bit = codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint();
   4760 
   4761   DCHECK_NE(input_type, result_type);
   4762 
   4763   if (result_type == Primitive::kPrimLong && Primitive::IsIntegralType(input_type)) {
   4764     Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   4765     Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   4766     Register src = locations->InAt(0).AsRegister<Register>();
   4767 
   4768     __ Move(dst_low, src);
   4769     __ Sra(dst_high, src, 31);
   4770   } else if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
   4771     Register dst = locations->Out().AsRegister<Register>();
   4772     Register src = (input_type == Primitive::kPrimLong)
   4773         ? locations->InAt(0).AsRegisterPairLow<Register>()
   4774         : locations->InAt(0).AsRegister<Register>();
   4775 
   4776     switch (result_type) {
   4777       case Primitive::kPrimChar:
   4778         __ Andi(dst, src, 0xFFFF);
   4779         break;
   4780       case Primitive::kPrimByte:
   4781         if (has_sign_extension) {
   4782           __ Seb(dst, src);
   4783         } else {
   4784           __ Sll(dst, src, 24);
   4785           __ Sra(dst, dst, 24);
   4786         }
   4787         break;
   4788       case Primitive::kPrimShort:
   4789         if (has_sign_extension) {
   4790           __ Seh(dst, src);
   4791         } else {
   4792           __ Sll(dst, src, 16);
   4793           __ Sra(dst, dst, 16);
   4794         }
   4795         break;
   4796       case Primitive::kPrimInt:
   4797         __ Move(dst, src);
   4798         break;
   4799 
   4800       default:
   4801         LOG(FATAL) << "Unexpected type conversion from " << input_type
   4802                    << " to " << result_type;
   4803     }
   4804   } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
   4805     if (input_type == Primitive::kPrimLong) {
   4806       if (isR6) {
   4807         // cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
   4808         // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
   4809         Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   4810         Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
   4811         FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   4812         __ Mtc1(src_low, FTMP);
   4813         __ Mthc1(src_high, FTMP);
   4814         if (result_type == Primitive::kPrimFloat) {
   4815           __ Cvtsl(dst, FTMP);
   4816         } else {
   4817           __ Cvtdl(dst, FTMP);
   4818         }
   4819       } else {
   4820         int32_t entry_offset = (result_type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pL2f)
   4821                                                                       : QUICK_ENTRY_POINT(pL2d);
   4822         bool direct = (result_type == Primitive::kPrimFloat) ? IsDirectEntrypoint(kQuickL2f)
   4823                                                              : IsDirectEntrypoint(kQuickL2d);
   4824         codegen_->InvokeRuntime(entry_offset,
   4825                                 conversion,
   4826                                 conversion->GetDexPc(),
   4827                                 nullptr,
   4828                                 direct);
   4829         if (result_type == Primitive::kPrimFloat) {
   4830           CheckEntrypointTypes<kQuickL2f, float, int64_t>();
   4831         } else {
   4832           CheckEntrypointTypes<kQuickL2d, double, int64_t>();
   4833         }
   4834       }
   4835     } else {
   4836       Register src = locations->InAt(0).AsRegister<Register>();
   4837       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   4838       __ Mtc1(src, FTMP);
   4839       if (result_type == Primitive::kPrimFloat) {
   4840         __ Cvtsw(dst, FTMP);
   4841       } else {
   4842         __ Cvtdw(dst, FTMP);
   4843       }
   4844     }
   4845   } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
   4846     CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
   4847     if (result_type == Primitive::kPrimLong) {
   4848       if (isR6) {
   4849         // trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
   4850         // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
   4851         FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   4852         Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
   4853         Register dst_low = locations->Out().AsRegisterPairLow<Register>();
   4854         MipsLabel truncate;
   4855         MipsLabel done;
   4856 
   4857         // When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive
   4858         // value when the input is either a NaN or is outside of the range of the output type
   4859         // after the truncation. IOW, the three special cases (NaN, too small, too big) produce
   4860         // the same result.
   4861         //
   4862         // When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum
   4863         // value of the output type if the input is outside of the range after the truncation or
   4864         // produces 0 when the input is a NaN. IOW, the three special cases produce three distinct
   4865         // results. This matches the desired float/double-to-int/long conversion exactly.
   4866         //
   4867         // So, NAN2008 affects handling of negative values and NaNs by the truncate instruction.
   4868         //
   4869         // The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate
   4870         // instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6,
   4871         // even though it must be NAN2008=1 on R6.
   4872         //
   4873         // The code takes care of the different behaviors by first comparing the input to the
   4874         // minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int).
   4875         // If the input is greater than or equal to the minimum, it procedes to the truncate
   4876         // instruction, which will handle such an input the same way irrespective of NAN2008.
   4877         // Otherwise the input is compared to itself to determine whether it is a NaN or not
   4878         // in order to return either zero or the minimum value.
   4879         //
   4880         // TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the
   4881         // truncate instruction for MIPS64R6.
   4882         if (input_type == Primitive::kPrimFloat) {
   4883           uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int64_t>::min());
   4884           __ LoadConst32(TMP, min_val);
   4885           __ Mtc1(TMP, FTMP);
   4886           __ CmpLeS(FTMP, FTMP, src);
   4887         } else {
   4888           uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int64_t>::min());
   4889           __ LoadConst32(TMP, High32Bits(min_val));
   4890           __ Mtc1(ZERO, FTMP);
   4891           __ Mthc1(TMP, FTMP);
   4892           __ CmpLeD(FTMP, FTMP, src);
   4893         }
   4894 
   4895         __ Bc1nez(FTMP, &truncate);
   4896 
   4897         if (input_type == Primitive::kPrimFloat) {
   4898           __ CmpEqS(FTMP, src, src);
   4899         } else {
   4900           __ CmpEqD(FTMP, src, src);
   4901         }
   4902         __ Move(dst_low, ZERO);
   4903         __ LoadConst32(dst_high, std::numeric_limits<int32_t>::min());
   4904         __ Mfc1(TMP, FTMP);
   4905         __ And(dst_high, dst_high, TMP);
   4906 
   4907         __ B(&done);
   4908 
   4909         __ Bind(&truncate);
   4910 
   4911         if (input_type == Primitive::kPrimFloat) {
   4912           __ TruncLS(FTMP, src);
   4913         } else {
   4914           __ TruncLD(FTMP, src);
   4915         }
   4916         __ Mfc1(dst_low, FTMP);
   4917         __ Mfhc1(dst_high, FTMP);
   4918 
   4919         __ Bind(&done);
   4920       } else {
   4921         int32_t entry_offset = (input_type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pF2l)
   4922                                                                      : QUICK_ENTRY_POINT(pD2l);
   4923         bool direct = (result_type == Primitive::kPrimFloat) ? IsDirectEntrypoint(kQuickF2l)
   4924                                                              : IsDirectEntrypoint(kQuickD2l);
   4925         codegen_->InvokeRuntime(entry_offset, conversion, conversion->GetDexPc(), nullptr, direct);
   4926         if (input_type == Primitive::kPrimFloat) {
   4927           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
   4928         } else {
   4929           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
   4930         }
   4931       }
   4932     } else {
   4933       FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   4934       Register dst = locations->Out().AsRegister<Register>();
   4935       MipsLabel truncate;
   4936       MipsLabel done;
   4937 
   4938       // The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate
   4939       // instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6,
   4940       // even though it must be NAN2008=1 on R6.
   4941       //
   4942       // For details see the large comment above for the truncation of float/double to long on R6.
   4943       //
   4944       // TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the
   4945       // truncate instruction for MIPS64R6.
   4946       if (input_type == Primitive::kPrimFloat) {
   4947         uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min());
   4948         __ LoadConst32(TMP, min_val);
   4949         __ Mtc1(TMP, FTMP);
   4950       } else {
   4951         uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min());
   4952         __ LoadConst32(TMP, High32Bits(min_val));
   4953         __ Mtc1(ZERO, FTMP);
   4954         if (fpu_32bit) {
   4955           __ Mtc1(TMP, static_cast<FRegister>(FTMP + 1));
   4956         } else {
   4957           __ Mthc1(TMP, FTMP);
   4958         }
   4959       }
   4960 
   4961       if (isR6) {
   4962         if (input_type == Primitive::kPrimFloat) {
   4963           __ CmpLeS(FTMP, FTMP, src);
   4964         } else {
   4965           __ CmpLeD(FTMP, FTMP, src);
   4966         }
   4967         __ Bc1nez(FTMP, &truncate);
   4968 
   4969         if (input_type == Primitive::kPrimFloat) {
   4970           __ CmpEqS(FTMP, src, src);
   4971         } else {
   4972           __ CmpEqD(FTMP, src, src);
   4973         }
   4974         __ LoadConst32(dst, std::numeric_limits<int32_t>::min());
   4975         __ Mfc1(TMP, FTMP);
   4976         __ And(dst, dst, TMP);
   4977       } else {
   4978         if (input_type == Primitive::kPrimFloat) {
   4979           __ ColeS(0, FTMP, src);
   4980         } else {
   4981           __ ColeD(0, FTMP, src);
   4982         }
   4983         __ Bc1t(0, &truncate);
   4984 
   4985         if (input_type == Primitive::kPrimFloat) {
   4986           __ CeqS(0, src, src);
   4987         } else {
   4988           __ CeqD(0, src, src);
   4989         }
   4990         __ LoadConst32(dst, std::numeric_limits<int32_t>::min());
   4991         __ Movf(dst, ZERO, 0);
   4992       }
   4993 
   4994       __ B(&done);
   4995 
   4996       __ Bind(&truncate);
   4997 
   4998       if (input_type == Primitive::kPrimFloat) {
   4999         __ TruncWS(FTMP, src);
   5000       } else {
   5001         __ TruncWD(FTMP, src);
   5002       }
   5003       __ Mfc1(dst, FTMP);
   5004 
   5005       __ Bind(&done);
   5006     }
   5007   } else if (Primitive::IsFloatingPointType(result_type) &&
   5008              Primitive::IsFloatingPointType(input_type)) {
   5009     FRegister dst = locations->Out().AsFpuRegister<FRegister>();
   5010     FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
   5011     if (result_type == Primitive::kPrimFloat) {
   5012       __ Cvtsd(dst, src);
   5013     } else {
   5014       __ Cvtds(dst, src);
   5015     }
   5016   } else {
   5017     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
   5018                 << " to " << result_type;
   5019   }
   5020 }
   5021 
   5022 void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) {
   5023   HandleShift(ushr);
   5024 }
   5025 
   5026 void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) {
   5027   HandleShift(ushr);
   5028 }
   5029 
   5030 void LocationsBuilderMIPS::VisitXor(HXor* instruction) {
   5031   HandleBinaryOp(instruction);
   5032 }
   5033 
   5034 void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) {
   5035   HandleBinaryOp(instruction);
   5036 }
   5037 
   5038 void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   5039   // Nothing to do, this should be removed during prepare for register allocator.
   5040   LOG(FATAL) << "Unreachable";
   5041 }
   5042 
   5043 void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   5044   // Nothing to do, this should be removed during prepare for register allocator.
   5045   LOG(FATAL) << "Unreachable";
   5046 }
   5047 
   5048 void LocationsBuilderMIPS::VisitEqual(HEqual* comp) {
   5049   HandleCondition(comp);
   5050 }
   5051 
   5052 void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) {
   5053   HandleCondition(comp);
   5054 }
   5055 
   5056 void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) {
   5057   HandleCondition(comp);
   5058 }
   5059 
   5060 void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) {
   5061   HandleCondition(comp);
   5062 }
   5063 
   5064 void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) {
   5065   HandleCondition(comp);
   5066 }
   5067 
   5068 void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) {
   5069   HandleCondition(comp);
   5070 }
   5071 
   5072 void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
   5073   HandleCondition(comp);
   5074 }
   5075 
   5076 void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
   5077   HandleCondition(comp);
   5078 }
   5079 
   5080 void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) {
   5081   HandleCondition(comp);
   5082 }
   5083 
   5084 void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) {
   5085   HandleCondition(comp);
   5086 }
   5087 
   5088 void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
   5089   HandleCondition(comp);
   5090 }
   5091 
   5092 void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
   5093   HandleCondition(comp);
   5094 }
   5095 
   5096 void LocationsBuilderMIPS::VisitBelow(HBelow* comp) {
   5097   HandleCondition(comp);
   5098 }
   5099 
   5100 void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) {
   5101   HandleCondition(comp);
   5102 }
   5103 
   5104 void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
   5105   HandleCondition(comp);
   5106 }
   5107 
   5108 void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
   5109   HandleCondition(comp);
   5110 }
   5111 
   5112 void LocationsBuilderMIPS::VisitAbove(HAbove* comp) {
   5113   HandleCondition(comp);
   5114 }
   5115 
   5116 void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) {
   5117   HandleCondition(comp);
   5118 }
   5119 
   5120 void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
   5121   HandleCondition(comp);
   5122 }
   5123 
   5124 void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
   5125   HandleCondition(comp);
   5126 }
   5127 
   5128 void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   5129   LocationSummary* locations =
   5130       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
   5131   locations->SetInAt(0, Location::RequiresRegister());
   5132 }
   5133 
   5134 void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   5135   int32_t lower_bound = switch_instr->GetStartValue();
   5136   int32_t num_entries = switch_instr->GetNumEntries();
   5137   LocationSummary* locations = switch_instr->GetLocations();
   5138   Register value_reg = locations->InAt(0).AsRegister<Register>();
   5139   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
   5140 
   5141   // Create a set of compare/jumps.
   5142   Register temp_reg = TMP;
   5143   __ Addiu32(temp_reg, value_reg, -lower_bound);
   5144   // Jump to default if index is negative
   5145   // Note: We don't check the case that index is positive while value < lower_bound, because in
   5146   // this case, index >= num_entries must be true. So that we can save one branch instruction.
   5147   __ Bltz(temp_reg, codegen_->GetLabelOf(default_block));
   5148 
   5149   const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
   5150   // Jump to successors[0] if value == lower_bound.
   5151   __ Beqz(temp_reg, codegen_->GetLabelOf(successors[0]));
   5152   int32_t last_index = 0;
   5153   for (; num_entries - last_index > 2; last_index += 2) {
   5154     __ Addiu(temp_reg, temp_reg, -2);
   5155     // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
   5156     __ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
   5157     // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
   5158     __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2]));
   5159   }
   5160   if (num_entries - last_index == 2) {
   5161     // The last missing case_value.
   5162     __ Addiu(temp_reg, temp_reg, -1);
   5163     __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
   5164   }
   5165 
   5166   // And the default for any other value.
   5167   if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
   5168     __ B(codegen_->GetLabelOf(default_block));
   5169   }
   5170 }
   5171 
   5172 void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   5173   // The trampoline uses the same calling convention as dex calling conventions,
   5174   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
   5175   // the method_idx.
   5176   HandleInvoke(invoke);
   5177 }
   5178 
   5179 void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   5180   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
   5181 }
   5182 
   5183 void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) {
   5184   LocationSummary* locations =
   5185       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
   5186   locations->SetInAt(0, Location::RequiresRegister());
   5187   locations->SetOut(Location::RequiresRegister());
   5188 }
   5189 
   5190 void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) {
   5191   LocationSummary* locations = instruction->GetLocations();
   5192   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
   5193     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   5194         instruction->GetIndex(), kMipsPointerSize).SizeValue();
   5195     __ LoadFromOffset(kLoadWord,
   5196                       locations->Out().AsRegister<Register>(),
   5197                       locations->InAt(0).AsRegister<Register>(),
   5198                       method_offset);
   5199   } else {
   5200     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   5201         instruction->GetIndex() % ImTable::kSize, kMipsPointerSize));
   5202     __ LoadFromOffset(kLoadWord,
   5203                       locations->Out().AsRegister<Register>(),
   5204                       locations->InAt(0).AsRegister<Register>(),
   5205                       mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
   5206     __ LoadFromOffset(kLoadWord,
   5207                       locations->Out().AsRegister<Register>(),
   5208                       locations->Out().AsRegister<Register>(),
   5209                       method_offset);
   5210   }
   5211 }
   5212 
   5213 #undef __
   5214 #undef QUICK_ENTRY_POINT
   5215 
   5216 }  // namespace mips
   5217 }  // namespace art
   5218