Home | History | Annotate | Download | only in x64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_X64
      6 
      7 #include "src/crankshaft/x64/lithium-codegen-x64.h"
      8 
      9 #include "src/base/bits.h"
     10 #include "src/code-factory.h"
     11 #include "src/code-stubs.h"
     12 #include "src/crankshaft/hydrogen-osr.h"
     13 #include "src/ic/ic.h"
     14 #include "src/ic/stub-cache.h"
     15 
     16 namespace v8 {
     17 namespace internal {
     18 
     19 
     20 // When invoking builtins, we need to record the safepoint in the middle of
     21 // the invoke instruction sequence generated by the macro assembler.
     22 class SafepointGenerator final : public CallWrapper {
     23  public:
     24   SafepointGenerator(LCodeGen* codegen,
     25                      LPointerMap* pointers,
     26                      Safepoint::DeoptMode mode)
     27       : codegen_(codegen),
     28         pointers_(pointers),
     29         deopt_mode_(mode) { }
     30   virtual ~SafepointGenerator() {}
     31 
     32   void BeforeCall(int call_size) const override {}
     33 
     34   void AfterCall() const override {
     35     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     36   }
     37 
     38  private:
     39   LCodeGen* codegen_;
     40   LPointerMap* pointers_;
     41   Safepoint::DeoptMode deopt_mode_;
     42 };
     43 
     44 
     45 #define __ masm()->
     46 
     47 bool LCodeGen::GenerateCode() {
     48   LPhase phase("Z_Code generation", chunk());
     49   DCHECK(is_unused());
     50   status_ = GENERATING;
     51 
     52   // Open a frame scope to indicate that there is a frame on the stack.  The
     53   // MANUAL indicates that the scope shouldn't actually generate code to set up
     54   // the frame (that is done in GeneratePrologue).
     55   FrameScope frame_scope(masm_, StackFrame::MANUAL);
     56 
     57   return GeneratePrologue() &&
     58       GenerateBody() &&
     59       GenerateDeferredCode() &&
     60       GenerateJumpTable() &&
     61       GenerateSafepointTable();
     62 }
     63 
     64 
     65 void LCodeGen::FinishCode(Handle<Code> code) {
     66   DCHECK(is_done());
     67   code->set_stack_slots(GetTotalFrameSlotCount());
     68   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
     69   PopulateDeoptimizationData(code);
     70 }
     71 
     72 
     73 #ifdef _MSC_VER
     74 void LCodeGen::MakeSureStackPagesMapped(int offset) {
     75   const int kPageSize = 4 * KB;
     76   for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
     77     __ movp(Operand(rsp, offset), rax);
     78   }
     79 }
     80 #endif
     81 
     82 
     83 void LCodeGen::SaveCallerDoubles() {
     84   DCHECK(info()->saves_caller_doubles());
     85   DCHECK(NeedsEagerFrame());
     86   Comment(";;; Save clobbered callee double registers");
     87   int count = 0;
     88   BitVector* doubles = chunk()->allocated_double_registers();
     89   BitVector::Iterator save_iterator(doubles);
     90   while (!save_iterator.Done()) {
     91     __ Movsd(MemOperand(rsp, count * kDoubleSize),
     92              XMMRegister::from_code(save_iterator.Current()));
     93     save_iterator.Advance();
     94     count++;
     95   }
     96 }
     97 
     98 
     99 void LCodeGen::RestoreCallerDoubles() {
    100   DCHECK(info()->saves_caller_doubles());
    101   DCHECK(NeedsEagerFrame());
    102   Comment(";;; Restore clobbered callee double registers");
    103   BitVector* doubles = chunk()->allocated_double_registers();
    104   BitVector::Iterator save_iterator(doubles);
    105   int count = 0;
    106   while (!save_iterator.Done()) {
    107     __ Movsd(XMMRegister::from_code(save_iterator.Current()),
    108              MemOperand(rsp, count * kDoubleSize));
    109     save_iterator.Advance();
    110     count++;
    111   }
    112 }
    113 
    114 
    115 bool LCodeGen::GeneratePrologue() {
    116   DCHECK(is_generating());
    117 
    118   if (info()->IsOptimizing()) {
    119     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    120   }
    121 
    122   info()->set_prologue_offset(masm_->pc_offset());
    123   if (NeedsEagerFrame()) {
    124     DCHECK(!frame_is_built_);
    125     frame_is_built_ = true;
    126     if (info()->IsStub()) {
    127       __ StubPrologue(StackFrame::STUB);
    128     } else {
    129       __ Prologue(info()->GeneratePreagedPrologue());
    130     }
    131   }
    132 
    133   // Reserve space for the stack slots needed by the code.
    134   int slots = GetStackSlotCount();
    135   if (slots > 0) {
    136     if (FLAG_debug_code) {
    137       __ subp(rsp, Immediate(slots * kPointerSize));
    138 #ifdef _MSC_VER
    139       MakeSureStackPagesMapped(slots * kPointerSize);
    140 #endif
    141       __ Push(rax);
    142       __ Set(rax, slots);
    143       __ Set(kScratchRegister, kSlotsZapValue);
    144       Label loop;
    145       __ bind(&loop);
    146       __ movp(MemOperand(rsp, rax, times_pointer_size, 0),
    147               kScratchRegister);
    148       __ decl(rax);
    149       __ j(not_zero, &loop);
    150       __ Pop(rax);
    151     } else {
    152       __ subp(rsp, Immediate(slots * kPointerSize));
    153 #ifdef _MSC_VER
    154       MakeSureStackPagesMapped(slots * kPointerSize);
    155 #endif
    156     }
    157 
    158     if (info()->saves_caller_doubles()) {
    159       SaveCallerDoubles();
    160     }
    161   }
    162   return !is_aborted();
    163 }
    164 
    165 
    166 void LCodeGen::DoPrologue(LPrologue* instr) {
    167   Comment(";;; Prologue begin");
    168 
    169   // Possibly allocate a local context.
    170   if (info_->scope()->num_heap_slots() > 0) {
    171     Comment(";;; Allocate local context");
    172     bool need_write_barrier = true;
    173     // Argument to NewContext is the function, which is still in rdi.
    174     int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    175     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
    176     if (info()->scope()->is_script_scope()) {
    177       __ Push(rdi);
    178       __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
    179       __ CallRuntime(Runtime::kNewScriptContext);
    180       deopt_mode = Safepoint::kLazyDeopt;
    181     } else if (slots <= FastNewContextStub::kMaximumSlots) {
    182       FastNewContextStub stub(isolate(), slots);
    183       __ CallStub(&stub);
    184       // Result of FastNewContextStub is always in new space.
    185       need_write_barrier = false;
    186     } else {
    187       __ Push(rdi);
    188       __ CallRuntime(Runtime::kNewFunctionContext);
    189     }
    190     RecordSafepoint(deopt_mode);
    191 
    192     // Context is returned in rax.  It replaces the context passed to us.
    193     // It's saved in the stack and kept live in rsi.
    194     __ movp(rsi, rax);
    195     __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
    196 
    197     // Copy any necessary parameters into the context.
    198     int num_parameters = scope()->num_parameters();
    199     int first_parameter = scope()->has_this_declaration() ? -1 : 0;
    200     for (int i = first_parameter; i < num_parameters; i++) {
    201       Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
    202       if (var->IsContextSlot()) {
    203         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    204             (num_parameters - 1 - i) * kPointerSize;
    205         // Load parameter from stack.
    206         __ movp(rax, Operand(rbp, parameter_offset));
    207         // Store it in the context.
    208         int context_offset = Context::SlotOffset(var->index());
    209         __ movp(Operand(rsi, context_offset), rax);
    210         // Update the write barrier. This clobbers rax and rbx.
    211         if (need_write_barrier) {
    212           __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
    213         } else if (FLAG_debug_code) {
    214           Label done;
    215           __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
    216           __ Abort(kExpectedNewSpaceObject);
    217           __ bind(&done);
    218         }
    219       }
    220     }
    221     Comment(";;; End allocate local context");
    222   }
    223 
    224   Comment(";;; Prologue end");
    225 }
    226 
    227 
    228 void LCodeGen::GenerateOsrPrologue() {
    229   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    230   // are none, at the OSR entrypoint instruction.
    231   if (osr_pc_offset_ >= 0) return;
    232 
    233   osr_pc_offset_ = masm()->pc_offset();
    234 
    235   // Adjust the frame size, subsuming the unoptimized frame into the
    236   // optimized frame.
    237   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    238   DCHECK(slots >= 0);
    239   __ subp(rsp, Immediate(slots * kPointerSize));
    240 }
    241 
    242 
    243 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    244   if (instr->IsCall()) {
    245     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    246   }
    247   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    248     safepoints_.BumpLastLazySafepointIndex();
    249   }
    250 }
    251 
    252 
    253 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
    254   if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
    255       instr->hydrogen_value()->representation().IsInteger32() &&
    256       instr->result()->IsRegister()) {
    257     __ AssertZeroExtended(ToRegister(instr->result()));
    258   }
    259 
    260   if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
    261     // We sign extend the dehoisted key at the definition point when the pointer
    262     // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
    263     // points and MustSignExtendResult is always false. We can't use
    264     // STATIC_ASSERT here as the pointer size is 32-bit for x32.
    265     DCHECK(kPointerSize == kInt64Size);
    266     if (instr->result()->IsRegister()) {
    267       Register result_reg = ToRegister(instr->result());
    268       __ movsxlq(result_reg, result_reg);
    269     } else {
    270       // Sign extend the 32bit result in the stack slots.
    271       DCHECK(instr->result()->IsStackSlot());
    272       Operand src = ToOperand(instr->result());
    273       __ movsxlq(kScratchRegister, src);
    274       __ movq(src, kScratchRegister);
    275     }
    276   }
    277 }
    278 
    279 
    280 bool LCodeGen::GenerateJumpTable() {
    281   if (jump_table_.length() == 0) return !is_aborted();
    282 
    283   Label needs_frame;
    284   Comment(";;; -------------------- Jump table --------------------");
    285   for (int i = 0; i < jump_table_.length(); i++) {
    286     Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
    287     __ bind(&table_entry->label);
    288     Address entry = table_entry->address;
    289     DeoptComment(table_entry->deopt_info);
    290     if (table_entry->needs_frame) {
    291       DCHECK(!info()->saves_caller_doubles());
    292       __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
    293       __ call(&needs_frame);
    294     } else {
    295       if (info()->saves_caller_doubles()) {
    296         DCHECK(info()->IsStub());
    297         RestoreCallerDoubles();
    298       }
    299       __ call(entry, RelocInfo::RUNTIME_ENTRY);
    300     }
    301   }
    302 
    303   if (needs_frame.is_linked()) {
    304     __ bind(&needs_frame);
    305     /* stack layout
    306        3: return address  <-- rsp
    307        2: garbage
    308        1: garbage
    309        0: garbage
    310     */
    311     // Reserve space for stub marker.
    312     __ subp(rsp, Immediate(TypedFrameConstants::kFrameTypeSize));
    313     __ Push(MemOperand(
    314         rsp, TypedFrameConstants::kFrameTypeSize));  // Copy return address.
    315     __ Push(kScratchRegister);
    316 
    317     /* stack layout
    318        3: return address
    319        2: garbage
    320        1: return address
    321        0: entry address  <-- rsp
    322     */
    323 
    324     // Create a stack frame.
    325     __ movp(MemOperand(rsp, 3 * kPointerSize), rbp);
    326     __ leap(rbp, MemOperand(rsp, 3 * kPointerSize));
    327 
    328     // This variant of deopt can only be used with stubs. Since we don't
    329     // have a function pointer to install in the stack frame that we're
    330     // building, install a special marker there instead.
    331     DCHECK(info()->IsStub());
    332     __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB));
    333 
    334     /* stack layout
    335        3: old rbp
    336        2: stub marker
    337        1: return address
    338        0: entry address  <-- rsp
    339     */
    340     __ ret(0);
    341   }
    342 
    343   return !is_aborted();
    344 }
    345 
    346 
    347 bool LCodeGen::GenerateDeferredCode() {
    348   DCHECK(is_generating());
    349   if (deferred_.length() > 0) {
    350     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
    351       LDeferredCode* code = deferred_[i];
    352 
    353       HValue* value =
    354           instructions_->at(code->instruction_index())->hydrogen_value();
    355       RecordAndWritePosition(
    356           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    357 
    358       Comment(";;; <@%d,#%d> "
    359               "-------------------- Deferred %s --------------------",
    360               code->instruction_index(),
    361               code->instr()->hydrogen_value()->id(),
    362               code->instr()->Mnemonic());
    363       __ bind(code->entry());
    364       if (NeedsDeferredFrame()) {
    365         Comment(";;; Build frame");
    366         DCHECK(!frame_is_built_);
    367         DCHECK(info()->IsStub());
    368         frame_is_built_ = true;
    369         // Build the frame in such a way that esi isn't trashed.
    370         __ pushq(rbp);  // Caller's frame pointer.
    371         __ Push(Smi::FromInt(StackFrame::STUB));
    372         __ leap(rbp, Operand(rsp, TypedFrameConstants::kFixedFrameSizeFromFp));
    373         Comment(";;; Deferred code");
    374       }
    375       code->Generate();
    376       if (NeedsDeferredFrame()) {
    377         __ bind(code->done());
    378         Comment(";;; Destroy frame");
    379         DCHECK(frame_is_built_);
    380         frame_is_built_ = false;
    381         __ movp(rsp, rbp);
    382         __ popq(rbp);
    383       }
    384       __ jmp(code->exit());
    385     }
    386   }
    387 
    388   // Deferred code is the last part of the instruction sequence. Mark
    389   // the generated code as done unless we bailed out.
    390   if (!is_aborted()) status_ = DONE;
    391   return !is_aborted();
    392 }
    393 
    394 
    395 bool LCodeGen::GenerateSafepointTable() {
    396   DCHECK(is_done());
    397   safepoints_.Emit(masm(), GetTotalFrameSlotCount());
    398   return !is_aborted();
    399 }
    400 
    401 
    402 Register LCodeGen::ToRegister(int index) const {
    403   return Register::from_code(index);
    404 }
    405 
    406 
    407 XMMRegister LCodeGen::ToDoubleRegister(int index) const {
    408   return XMMRegister::from_code(index);
    409 }
    410 
    411 
    412 Register LCodeGen::ToRegister(LOperand* op) const {
    413   DCHECK(op->IsRegister());
    414   return ToRegister(op->index());
    415 }
    416 
    417 
    418 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
    419   DCHECK(op->IsDoubleRegister());
    420   return ToDoubleRegister(op->index());
    421 }
    422 
    423 
    424 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
    425   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
    426 }
    427 
    428 
    429 bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
    430   return chunk_->LookupLiteralRepresentation(op).IsExternal();
    431 }
    432 
    433 
    434 bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
    435   return op->IsConstantOperand() &&
    436       chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
    437 }
    438 
    439 
    440 bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
    441   return chunk_->LookupLiteralRepresentation(op).IsSmi();
    442 }
    443 
    444 
    445 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
    446   return ToRepresentation(op, Representation::Integer32());
    447 }
    448 
    449 
    450 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
    451                                    const Representation& r) const {
    452   HConstant* constant = chunk_->LookupConstant(op);
    453   int32_t value = constant->Integer32Value();
    454   if (r.IsInteger32()) return value;
    455   DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
    456   return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
    457 }
    458 
    459 
    460 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
    461   HConstant* constant = chunk_->LookupConstant(op);
    462   return Smi::FromInt(constant->Integer32Value());
    463 }
    464 
    465 
    466 double LCodeGen::ToDouble(LConstantOperand* op) const {
    467   HConstant* constant = chunk_->LookupConstant(op);
    468   DCHECK(constant->HasDoubleValue());
    469   return constant->DoubleValue();
    470 }
    471 
    472 
    473 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
    474   HConstant* constant = chunk_->LookupConstant(op);
    475   DCHECK(constant->HasExternalReferenceValue());
    476   return constant->ExternalReferenceValue();
    477 }
    478 
    479 
    480 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
    481   HConstant* constant = chunk_->LookupConstant(op);
    482   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
    483   return constant->handle(isolate());
    484 }
    485 
    486 
    487 static int ArgumentsOffsetWithoutFrame(int index) {
    488   DCHECK(index < 0);
    489   return -(index + 1) * kPointerSize + kPCOnStackSize;
    490 }
    491 
    492 
    493 Operand LCodeGen::ToOperand(LOperand* op) const {
    494   // Does not handle registers. In X64 assembler, plain registers are not
    495   // representable as an Operand.
    496   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
    497   if (NeedsEagerFrame()) {
    498     return Operand(rbp, FrameSlotToFPOffset(op->index()));
    499   } else {
    500     // Retrieve parameter without eager stack-frame relative to the
    501     // stack-pointer.
    502     return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
    503   }
    504 }
    505 
    506 
    507 void LCodeGen::WriteTranslation(LEnvironment* environment,
    508                                 Translation* translation) {
    509   if (environment == NULL) return;
    510 
    511   // The translation includes one command per value in the environment.
    512   int translation_size = environment->translation_size();
    513 
    514   WriteTranslation(environment->outer(), translation);
    515   WriteTranslationFrame(environment, translation);
    516 
    517   int object_index = 0;
    518   int dematerialized_index = 0;
    519   for (int i = 0; i < translation_size; ++i) {
    520     LOperand* value = environment->values()->at(i);
    521     AddToTranslation(
    522         environment, translation, value, environment->HasTaggedValueAt(i),
    523         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
    524   }
    525 }
    526 
    527 
    528 void LCodeGen::AddToTranslation(LEnvironment* environment,
    529                                 Translation* translation,
    530                                 LOperand* op,
    531                                 bool is_tagged,
    532                                 bool is_uint32,
    533                                 int* object_index_pointer,
    534                                 int* dematerialized_index_pointer) {
    535   if (op == LEnvironment::materialization_marker()) {
    536     int object_index = (*object_index_pointer)++;
    537     if (environment->ObjectIsDuplicateAt(object_index)) {
    538       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    539       translation->DuplicateObject(dupe_of);
    540       return;
    541     }
    542     int object_length = environment->ObjectLengthAt(object_index);
    543     if (environment->ObjectIsArgumentsAt(object_index)) {
    544       translation->BeginArgumentsObject(object_length);
    545     } else {
    546       translation->BeginCapturedObject(object_length);
    547     }
    548     int dematerialized_index = *dematerialized_index_pointer;
    549     int env_offset = environment->translation_size() + dematerialized_index;
    550     *dematerialized_index_pointer += object_length;
    551     for (int i = 0; i < object_length; ++i) {
    552       LOperand* value = environment->values()->at(env_offset + i);
    553       AddToTranslation(environment,
    554                        translation,
    555                        value,
    556                        environment->HasTaggedValueAt(env_offset + i),
    557                        environment->HasUint32ValueAt(env_offset + i),
    558                        object_index_pointer,
    559                        dematerialized_index_pointer);
    560     }
    561     return;
    562   }
    563 
    564   if (op->IsStackSlot()) {
    565     int index = op->index();
    566     if (is_tagged) {
    567       translation->StoreStackSlot(index);
    568     } else if (is_uint32) {
    569       translation->StoreUint32StackSlot(index);
    570     } else {
    571       translation->StoreInt32StackSlot(index);
    572     }
    573   } else if (op->IsDoubleStackSlot()) {
    574     int index = op->index();
    575     translation->StoreDoubleStackSlot(index);
    576   } else if (op->IsRegister()) {
    577     Register reg = ToRegister(op);
    578     if (is_tagged) {
    579       translation->StoreRegister(reg);
    580     } else if (is_uint32) {
    581       translation->StoreUint32Register(reg);
    582     } else {
    583       translation->StoreInt32Register(reg);
    584     }
    585   } else if (op->IsDoubleRegister()) {
    586     XMMRegister reg = ToDoubleRegister(op);
    587     translation->StoreDoubleRegister(reg);
    588   } else if (op->IsConstantOperand()) {
    589     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    590     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    591     translation->StoreLiteral(src_index);
    592   } else {
    593     UNREACHABLE();
    594   }
    595 }
    596 
    597 
    598 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    599                                RelocInfo::Mode mode,
    600                                LInstruction* instr,
    601                                SafepointMode safepoint_mode,
    602                                int argc) {
    603   DCHECK(instr != NULL);
    604   __ call(code, mode);
    605   RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
    606 
    607   // Signal that we don't inline smi code before these stubs in the
    608   // optimizing code generator.
    609   if (code->kind() == Code::BINARY_OP_IC ||
    610       code->kind() == Code::COMPARE_IC) {
    611     __ nop();
    612   }
    613 }
    614 
    615 
    616 void LCodeGen::CallCode(Handle<Code> code,
    617                         RelocInfo::Mode mode,
    618                         LInstruction* instr) {
    619   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
    620 }
    621 
    622 
    623 void LCodeGen::CallRuntime(const Runtime::Function* function,
    624                            int num_arguments,
    625                            LInstruction* instr,
    626                            SaveFPRegsMode save_doubles) {
    627   DCHECK(instr != NULL);
    628   DCHECK(instr->HasPointerMap());
    629 
    630   __ CallRuntime(function, num_arguments, save_doubles);
    631 
    632   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
    633 }
    634 
    635 
    636 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
    637   if (context->IsRegister()) {
    638     if (!ToRegister(context).is(rsi)) {
    639       __ movp(rsi, ToRegister(context));
    640     }
    641   } else if (context->IsStackSlot()) {
    642     __ movp(rsi, ToOperand(context));
    643   } else if (context->IsConstantOperand()) {
    644     HConstant* constant =
    645         chunk_->LookupConstant(LConstantOperand::cast(context));
    646     __ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
    647   } else {
    648     UNREACHABLE();
    649   }
    650 }
    651 
    652 
    653 
    654 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
    655                                        int argc,
    656                                        LInstruction* instr,
    657                                        LOperand* context) {
    658   LoadContextFromDeferred(context);
    659 
    660   __ CallRuntimeSaveDoubles(id);
    661   RecordSafepointWithRegisters(
    662       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
    663 }
    664 
    665 
    666 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
    667                                                     Safepoint::DeoptMode mode) {
    668   environment->set_has_been_used();
    669   if (!environment->HasBeenRegistered()) {
    670     // Physical stack frame layout:
    671     // -x ............. -4  0 ..................................... y
    672     // [incoming arguments] [spill slots] [pushed outgoing arguments]
    673 
    674     // Layout of the environment:
    675     // 0 ..................................................... size-1
    676     // [parameters] [locals] [expression stack including arguments]
    677 
    678     // Layout of the translation:
    679     // 0 ........................................................ size - 1 + 4
    680     // [expression stack including arguments] [locals] [4 words] [parameters]
    681     // |>------------  translation_size ------------<|
    682 
    683     int frame_count = 0;
    684     int jsframe_count = 0;
    685     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
    686       ++frame_count;
    687       if (e->frame_type() == JS_FUNCTION) {
    688         ++jsframe_count;
    689       }
    690     }
    691     Translation translation(&translations_, frame_count, jsframe_count, zone());
    692     WriteTranslation(environment, &translation);
    693     int deoptimization_index = deoptimizations_.length();
    694     int pc_offset = masm()->pc_offset();
    695     environment->Register(deoptimization_index,
    696                           translation.index(),
    697                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    698     deoptimizations_.Add(environment, environment->zone());
    699   }
    700 }
    701 
    702 
    703 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
    704                             Deoptimizer::DeoptReason deopt_reason,
    705                             Deoptimizer::BailoutType bailout_type) {
    706   LEnvironment* environment = instr->environment();
    707   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
    708   DCHECK(environment->HasBeenRegistered());
    709   int id = environment->deoptimization_index();
    710   Address entry =
    711       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
    712   if (entry == NULL) {
    713     Abort(kBailoutWasNotPrepared);
    714     return;
    715   }
    716 
    717   if (DeoptEveryNTimes()) {
    718     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
    719     Label no_deopt;
    720     __ pushfq();
    721     __ pushq(rax);
    722     Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
    723     __ movl(rax, count_operand);
    724     __ subl(rax, Immediate(1));
    725     __ j(not_zero, &no_deopt, Label::kNear);
    726     if (FLAG_trap_on_deopt) __ int3();
    727     __ movl(rax, Immediate(FLAG_deopt_every_n_times));
    728     __ movl(count_operand, rax);
    729     __ popq(rax);
    730     __ popfq();
    731     DCHECK(frame_is_built_);
    732     __ call(entry, RelocInfo::RUNTIME_ENTRY);
    733     __ bind(&no_deopt);
    734     __ movl(count_operand, rax);
    735     __ popq(rax);
    736     __ popfq();
    737   }
    738 
    739   if (info()->ShouldTrapOnDeopt()) {
    740     Label done;
    741     if (cc != no_condition) {
    742       __ j(NegateCondition(cc), &done, Label::kNear);
    743     }
    744     __ int3();
    745     __ bind(&done);
    746   }
    747 
    748   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
    749 
    750   DCHECK(info()->IsStub() || frame_is_built_);
    751   // Go through jump table if we need to handle condition, build frame, or
    752   // restore caller doubles.
    753   if (cc == no_condition && frame_is_built_ &&
    754       !info()->saves_caller_doubles()) {
    755     DeoptComment(deopt_info);
    756     __ call(entry, RelocInfo::RUNTIME_ENTRY);
    757   } else {
    758     Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
    759                                             !frame_is_built_);
    760     // We often have several deopts to the same entry, reuse the last
    761     // jump entry if this is the case.
    762     if (FLAG_trace_deopt || isolate()->is_profiling() ||
    763         jump_table_.is_empty() ||
    764         !table_entry.IsEquivalentTo(jump_table_.last())) {
    765       jump_table_.Add(table_entry, zone());
    766     }
    767     if (cc == no_condition) {
    768       __ jmp(&jump_table_.last().label);
    769     } else {
    770       __ j(cc, &jump_table_.last().label);
    771     }
    772   }
    773 }
    774 
    775 
    776 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
    777                             Deoptimizer::DeoptReason deopt_reason) {
    778   Deoptimizer::BailoutType bailout_type = info()->IsStub()
    779       ? Deoptimizer::LAZY
    780       : Deoptimizer::EAGER;
    781   DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
    782 }
    783 
    784 
    785 void LCodeGen::RecordSafepointWithLazyDeopt(
    786     LInstruction* instr, SafepointMode safepoint_mode, int argc) {
    787   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    788     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
    789   } else {
    790     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
    791     RecordSafepointWithRegisters(
    792         instr->pointer_map(), argc, Safepoint::kLazyDeopt);
    793   }
    794 }
    795 
    796 
    797 void LCodeGen::RecordSafepoint(
    798     LPointerMap* pointers,
    799     Safepoint::Kind kind,
    800     int arguments,
    801     Safepoint::DeoptMode deopt_mode) {
    802   DCHECK(kind == expected_safepoint_kind_);
    803 
    804   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
    805 
    806   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
    807       kind, arguments, deopt_mode);
    808   for (int i = 0; i < operands->length(); i++) {
    809     LOperand* pointer = operands->at(i);
    810     if (pointer->IsStackSlot()) {
    811       safepoint.DefinePointerSlot(pointer->index(), zone());
    812     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
    813       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    814     }
    815   }
    816 }
    817 
    818 
    819 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    820                                Safepoint::DeoptMode deopt_mode) {
    821   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
    822 }
    823 
    824 
    825 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
    826   LPointerMap empty_pointers(zone());
    827   RecordSafepoint(&empty_pointers, deopt_mode);
    828 }
    829 
    830 
    831 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
    832                                             int arguments,
    833                                             Safepoint::DeoptMode deopt_mode) {
    834   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
    835 }
    836 
    837 
    838 void LCodeGen::RecordAndWritePosition(int position) {
    839   if (position == RelocInfo::kNoPosition) return;
    840   masm()->positions_recorder()->RecordPosition(position);
    841 }
    842 
    843 
    844 static const char* LabelType(LLabel* label) {
    845   if (label->is_loop_header()) return " (loop header)";
    846   if (label->is_osr_entry()) return " (OSR entry)";
    847   return "";
    848 }
    849 
    850 
    851 void LCodeGen::DoLabel(LLabel* label) {
    852   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
    853           current_instruction_,
    854           label->hydrogen_value()->id(),
    855           label->block_id(),
    856           LabelType(label));
    857   __ bind(label->label());
    858   current_block_ = label->block_id();
    859   DoGap(label);
    860 }
    861 
    862 
    863 void LCodeGen::DoParallelMove(LParallelMove* move) {
    864   resolver_.Resolve(move);
    865 }
    866 
    867 
    868 void LCodeGen::DoGap(LGap* gap) {
    869   for (int i = LGap::FIRST_INNER_POSITION;
    870        i <= LGap::LAST_INNER_POSITION;
    871        i++) {
    872     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
    873     LParallelMove* move = gap->GetParallelMove(inner_pos);
    874     if (move != NULL) DoParallelMove(move);
    875   }
    876 }
    877 
    878 
    879 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
    880   DoGap(instr);
    881 }
    882 
    883 
    884 void LCodeGen::DoParameter(LParameter* instr) {
    885   // Nothing to do.
    886 }
    887 
    888 
    889 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
    890   GenerateOsrPrologue();
    891 }
    892 
    893 
    894 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
    895   Register dividend = ToRegister(instr->dividend());
    896   int32_t divisor = instr->divisor();
    897   DCHECK(dividend.is(ToRegister(instr->result())));
    898 
    899   // Theoretically, a variation of the branch-free code for integer division by
    900   // a power of 2 (calculating the remainder via an additional multiplication
    901   // (which gets simplified to an 'and') and subtraction) should be faster, and
    902   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
    903   // indicate that positive dividends are heavily favored, so the branching
    904   // version performs better.
    905   HMod* hmod = instr->hydrogen();
    906   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
    907   Label dividend_is_not_negative, done;
    908   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
    909     __ testl(dividend, dividend);
    910     __ j(not_sign, &dividend_is_not_negative, Label::kNear);
    911     // Note that this is correct even for kMinInt operands.
    912     __ negl(dividend);
    913     __ andl(dividend, Immediate(mask));
    914     __ negl(dividend);
    915     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
    916       DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
    917     }
    918     __ jmp(&done, Label::kNear);
    919   }
    920 
    921   __ bind(&dividend_is_not_negative);
    922   __ andl(dividend, Immediate(mask));
    923   __ bind(&done);
    924 }
    925 
    926 
    927 void LCodeGen::DoModByConstI(LModByConstI* instr) {
    928   Register dividend = ToRegister(instr->dividend());
    929   int32_t divisor = instr->divisor();
    930   DCHECK(ToRegister(instr->result()).is(rax));
    931 
    932   if (divisor == 0) {
    933     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
    934     return;
    935   }
    936 
    937   __ TruncatingDiv(dividend, Abs(divisor));
    938   __ imull(rdx, rdx, Immediate(Abs(divisor)));
    939   __ movl(rax, dividend);
    940   __ subl(rax, rdx);
    941 
    942   // Check for negative zero.
    943   HMod* hmod = instr->hydrogen();
    944   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
    945     Label remainder_not_zero;
    946     __ j(not_zero, &remainder_not_zero, Label::kNear);
    947     __ cmpl(dividend, Immediate(0));
    948     DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
    949     __ bind(&remainder_not_zero);
    950   }
    951 }
    952 
    953 
    954 void LCodeGen::DoModI(LModI* instr) {
    955   HMod* hmod = instr->hydrogen();
    956 
    957   Register left_reg = ToRegister(instr->left());
    958   DCHECK(left_reg.is(rax));
    959   Register right_reg = ToRegister(instr->right());
    960   DCHECK(!right_reg.is(rax));
    961   DCHECK(!right_reg.is(rdx));
    962   Register result_reg = ToRegister(instr->result());
    963   DCHECK(result_reg.is(rdx));
    964 
    965   Label done;
    966   // Check for x % 0, idiv would signal a divide error. We have to
    967   // deopt in this case because we can't return a NaN.
    968   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
    969     __ testl(right_reg, right_reg);
    970     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
    971   }
    972 
    973   // Check for kMinInt % -1, idiv would signal a divide error. We
    974   // have to deopt if we care about -0, because we can't return that.
    975   if (hmod->CheckFlag(HValue::kCanOverflow)) {
    976     Label no_overflow_possible;
    977     __ cmpl(left_reg, Immediate(kMinInt));
    978     __ j(not_zero, &no_overflow_possible, Label::kNear);
    979     __ cmpl(right_reg, Immediate(-1));
    980     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
    981       DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero);
    982     } else {
    983       __ j(not_equal, &no_overflow_possible, Label::kNear);
    984       __ Set(result_reg, 0);
    985       __ jmp(&done, Label::kNear);
    986     }
    987     __ bind(&no_overflow_possible);
    988   }
    989 
    990   // Sign extend dividend in eax into edx:eax, since we are using only the low
    991   // 32 bits of the values.
    992   __ cdq();
    993 
    994   // If we care about -0, test if the dividend is <0 and the result is 0.
    995   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
    996     Label positive_left;
    997     __ testl(left_reg, left_reg);
    998     __ j(not_sign, &positive_left, Label::kNear);
    999     __ idivl(right_reg);
   1000     __ testl(result_reg, result_reg);
   1001     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1002     __ jmp(&done, Label::kNear);
   1003     __ bind(&positive_left);
   1004   }
   1005   __ idivl(right_reg);
   1006   __ bind(&done);
   1007 }
   1008 
   1009 
   1010 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   1011   Register dividend = ToRegister(instr->dividend());
   1012   int32_t divisor = instr->divisor();
   1013   DCHECK(dividend.is(ToRegister(instr->result())));
   1014 
   1015   // If the divisor is positive, things are easy: There can be no deopts and we
   1016   // can simply do an arithmetic right shift.
   1017   if (divisor == 1) return;
   1018   int32_t shift = WhichPowerOf2Abs(divisor);
   1019   if (divisor > 1) {
   1020     __ sarl(dividend, Immediate(shift));
   1021     return;
   1022   }
   1023 
   1024   // If the divisor is negative, we have to negate and handle edge cases.
   1025   __ negl(dividend);
   1026   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1027     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1028   }
   1029 
   1030   // Dividing by -1 is basically negation, unless we overflow.
   1031   if (divisor == -1) {
   1032     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1033       DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1034     }
   1035     return;
   1036   }
   1037 
   1038   // If the negation could not overflow, simply shifting is OK.
   1039   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1040     __ sarl(dividend, Immediate(shift));
   1041     return;
   1042   }
   1043 
   1044   Label not_kmin_int, done;
   1045   __ j(no_overflow, &not_kmin_int, Label::kNear);
   1046   __ movl(dividend, Immediate(kMinInt / divisor));
   1047   __ jmp(&done, Label::kNear);
   1048   __ bind(&not_kmin_int);
   1049   __ sarl(dividend, Immediate(shift));
   1050   __ bind(&done);
   1051 }
   1052 
   1053 
   1054 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   1055   Register dividend = ToRegister(instr->dividend());
   1056   int32_t divisor = instr->divisor();
   1057   DCHECK(ToRegister(instr->result()).is(rdx));
   1058 
   1059   if (divisor == 0) {
   1060     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
   1061     return;
   1062   }
   1063 
   1064   // Check for (0 / -x) that will produce negative zero.
   1065   HMathFloorOfDiv* hdiv = instr->hydrogen();
   1066   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1067     __ testl(dividend, dividend);
   1068     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1069   }
   1070 
   1071   // Easy case: We need no dynamic check for the dividend and the flooring
   1072   // division is the same as the truncating division.
   1073   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   1074       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   1075     __ TruncatingDiv(dividend, Abs(divisor));
   1076     if (divisor < 0) __ negl(rdx);
   1077     return;
   1078   }
   1079 
   1080   // In the general case we may need to adjust before and after the truncating
   1081   // division to get a flooring division.
   1082   Register temp = ToRegister(instr->temp3());
   1083   DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
   1084   Label needs_adjustment, done;
   1085   __ cmpl(dividend, Immediate(0));
   1086   __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
   1087   __ TruncatingDiv(dividend, Abs(divisor));
   1088   if (divisor < 0) __ negl(rdx);
   1089   __ jmp(&done, Label::kNear);
   1090   __ bind(&needs_adjustment);
   1091   __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
   1092   __ TruncatingDiv(temp, Abs(divisor));
   1093   if (divisor < 0) __ negl(rdx);
   1094   __ decl(rdx);
   1095   __ bind(&done);
   1096 }
   1097 
   1098 
   1099 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   1100 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   1101   HBinaryOperation* hdiv = instr->hydrogen();
   1102   Register dividend = ToRegister(instr->dividend());
   1103   Register divisor = ToRegister(instr->divisor());
   1104   Register remainder = ToRegister(instr->temp());
   1105   Register result = ToRegister(instr->result());
   1106   DCHECK(dividend.is(rax));
   1107   DCHECK(remainder.is(rdx));
   1108   DCHECK(result.is(rax));
   1109   DCHECK(!divisor.is(rax));
   1110   DCHECK(!divisor.is(rdx));
   1111 
   1112   // Check for x / 0.
   1113   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1114     __ testl(divisor, divisor);
   1115     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
   1116   }
   1117 
   1118   // Check for (0 / -x) that will produce negative zero.
   1119   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1120     Label dividend_not_zero;
   1121     __ testl(dividend, dividend);
   1122     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1123     __ testl(divisor, divisor);
   1124     DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
   1125     __ bind(&dividend_not_zero);
   1126   }
   1127 
   1128   // Check for (kMinInt / -1).
   1129   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1130     Label dividend_not_min_int;
   1131     __ cmpl(dividend, Immediate(kMinInt));
   1132     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1133     __ cmpl(divisor, Immediate(-1));
   1134     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
   1135     __ bind(&dividend_not_min_int);
   1136   }
   1137 
   1138   // Sign extend to rdx (= remainder).
   1139   __ cdq();
   1140   __ idivl(divisor);
   1141 
   1142   Label done;
   1143   __ testl(remainder, remainder);
   1144   __ j(zero, &done, Label::kNear);
   1145   __ xorl(remainder, divisor);
   1146   __ sarl(remainder, Immediate(31));
   1147   __ addl(result, remainder);
   1148   __ bind(&done);
   1149 }
   1150 
   1151 
   1152 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   1153   Register dividend = ToRegister(instr->dividend());
   1154   int32_t divisor = instr->divisor();
   1155   Register result = ToRegister(instr->result());
   1156   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
   1157   DCHECK(!result.is(dividend));
   1158 
   1159   // Check for (0 / -x) that will produce negative zero.
   1160   HDiv* hdiv = instr->hydrogen();
   1161   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1162     __ testl(dividend, dividend);
   1163     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1164   }
   1165   // Check for (kMinInt / -1).
   1166   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   1167     __ cmpl(dividend, Immediate(kMinInt));
   1168     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
   1169   }
   1170   // Deoptimize if remainder will not be 0.
   1171   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   1172       divisor != 1 && divisor != -1) {
   1173     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1174     __ testl(dividend, Immediate(mask));
   1175     DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
   1176   }
   1177   __ Move(result, dividend);
   1178   int32_t shift = WhichPowerOf2Abs(divisor);
   1179   if (shift > 0) {
   1180     // The arithmetic shift is always OK, the 'if' is an optimization only.
   1181     if (shift > 1) __ sarl(result, Immediate(31));
   1182     __ shrl(result, Immediate(32 - shift));
   1183     __ addl(result, dividend);
   1184     __ sarl(result, Immediate(shift));
   1185   }
   1186   if (divisor < 0) __ negl(result);
   1187 }
   1188 
   1189 
   1190 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   1191   Register dividend = ToRegister(instr->dividend());
   1192   int32_t divisor = instr->divisor();
   1193   DCHECK(ToRegister(instr->result()).is(rdx));
   1194 
   1195   if (divisor == 0) {
   1196     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
   1197     return;
   1198   }
   1199 
   1200   // Check for (0 / -x) that will produce negative zero.
   1201   HDiv* hdiv = instr->hydrogen();
   1202   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1203     __ testl(dividend, dividend);
   1204     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1205   }
   1206 
   1207   __ TruncatingDiv(dividend, Abs(divisor));
   1208   if (divisor < 0) __ negl(rdx);
   1209 
   1210   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   1211     __ movl(rax, rdx);
   1212     __ imull(rax, rax, Immediate(divisor));
   1213     __ subl(rax, dividend);
   1214     DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
   1215   }
   1216 }
   1217 
   1218 
   1219 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   1220 void LCodeGen::DoDivI(LDivI* instr) {
   1221   HBinaryOperation* hdiv = instr->hydrogen();
   1222   Register dividend = ToRegister(instr->dividend());
   1223   Register divisor = ToRegister(instr->divisor());
   1224   Register remainder = ToRegister(instr->temp());
   1225   DCHECK(dividend.is(rax));
   1226   DCHECK(remainder.is(rdx));
   1227   DCHECK(ToRegister(instr->result()).is(rax));
   1228   DCHECK(!divisor.is(rax));
   1229   DCHECK(!divisor.is(rdx));
   1230 
   1231   // Check for x / 0.
   1232   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1233     __ testl(divisor, divisor);
   1234     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
   1235   }
   1236 
   1237   // Check for (0 / -x) that will produce negative zero.
   1238   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1239     Label dividend_not_zero;
   1240     __ testl(dividend, dividend);
   1241     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1242     __ testl(divisor, divisor);
   1243     DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
   1244     __ bind(&dividend_not_zero);
   1245   }
   1246 
   1247   // Check for (kMinInt / -1).
   1248   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1249     Label dividend_not_min_int;
   1250     __ cmpl(dividend, Immediate(kMinInt));
   1251     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1252     __ cmpl(divisor, Immediate(-1));
   1253     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
   1254     __ bind(&dividend_not_min_int);
   1255   }
   1256 
   1257   // Sign extend to rdx (= remainder).
   1258   __ cdq();
   1259   __ idivl(divisor);
   1260 
   1261   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   1262     // Deoptimize if remainder is not 0.
   1263     __ testl(remainder, remainder);
   1264     DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
   1265   }
   1266 }
   1267 
   1268 
   1269 void LCodeGen::DoMulI(LMulI* instr) {
   1270   Register left = ToRegister(instr->left());
   1271   LOperand* right = instr->right();
   1272 
   1273   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1274     if (instr->hydrogen_value()->representation().IsSmi()) {
   1275       __ movp(kScratchRegister, left);
   1276     } else {
   1277       __ movl(kScratchRegister, left);
   1278     }
   1279   }
   1280 
   1281   bool can_overflow =
   1282       instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1283   if (right->IsConstantOperand()) {
   1284     int32_t right_value = ToInteger32(LConstantOperand::cast(right));
   1285     if (right_value == -1) {
   1286       __ negl(left);
   1287     } else if (right_value == 0) {
   1288       __ xorl(left, left);
   1289     } else if (right_value == 2) {
   1290       __ addl(left, left);
   1291     } else if (!can_overflow) {
   1292       // If the multiplication is known to not overflow, we
   1293       // can use operations that don't set the overflow flag
   1294       // correctly.
   1295       switch (right_value) {
   1296         case 1:
   1297           // Do nothing.
   1298           break;
   1299         case 3:
   1300           __ leal(left, Operand(left, left, times_2, 0));
   1301           break;
   1302         case 4:
   1303           __ shll(left, Immediate(2));
   1304           break;
   1305         case 5:
   1306           __ leal(left, Operand(left, left, times_4, 0));
   1307           break;
   1308         case 8:
   1309           __ shll(left, Immediate(3));
   1310           break;
   1311         case 9:
   1312           __ leal(left, Operand(left, left, times_8, 0));
   1313           break;
   1314         case 16:
   1315           __ shll(left, Immediate(4));
   1316           break;
   1317         default:
   1318           __ imull(left, left, Immediate(right_value));
   1319           break;
   1320       }
   1321     } else {
   1322       __ imull(left, left, Immediate(right_value));
   1323     }
   1324   } else if (right->IsStackSlot()) {
   1325     if (instr->hydrogen_value()->representation().IsSmi()) {
   1326       __ SmiToInteger64(left, left);
   1327       __ imulp(left, ToOperand(right));
   1328     } else {
   1329       __ imull(left, ToOperand(right));
   1330     }
   1331   } else {
   1332     if (instr->hydrogen_value()->representation().IsSmi()) {
   1333       __ SmiToInteger64(left, left);
   1334       __ imulp(left, ToRegister(right));
   1335     } else {
   1336       __ imull(left, ToRegister(right));
   1337     }
   1338   }
   1339 
   1340   if (can_overflow) {
   1341     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1342   }
   1343 
   1344   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1345     // Bail out if the result is supposed to be negative zero.
   1346     Label done;
   1347     if (instr->hydrogen_value()->representation().IsSmi()) {
   1348       __ testp(left, left);
   1349     } else {
   1350       __ testl(left, left);
   1351     }
   1352     __ j(not_zero, &done, Label::kNear);
   1353     if (right->IsConstantOperand()) {
   1354       // Constant can't be represented as 32-bit Smi due to immediate size
   1355       // limit.
   1356       DCHECK(SmiValuesAre32Bits()
   1357           ? !instr->hydrogen_value()->representation().IsSmi()
   1358           : SmiValuesAre31Bits());
   1359       if (ToInteger32(LConstantOperand::cast(right)) < 0) {
   1360         DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
   1361       } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
   1362         __ cmpl(kScratchRegister, Immediate(0));
   1363         DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
   1364       }
   1365     } else if (right->IsStackSlot()) {
   1366       if (instr->hydrogen_value()->representation().IsSmi()) {
   1367         __ orp(kScratchRegister, ToOperand(right));
   1368       } else {
   1369         __ orl(kScratchRegister, ToOperand(right));
   1370       }
   1371       DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
   1372     } else {
   1373       // Test the non-zero operand for negative sign.
   1374       if (instr->hydrogen_value()->representation().IsSmi()) {
   1375         __ orp(kScratchRegister, ToRegister(right));
   1376       } else {
   1377         __ orl(kScratchRegister, ToRegister(right));
   1378       }
   1379       DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
   1380     }
   1381     __ bind(&done);
   1382   }
   1383 }
   1384 
   1385 
   1386 void LCodeGen::DoBitI(LBitI* instr) {
   1387   LOperand* left = instr->left();
   1388   LOperand* right = instr->right();
   1389   DCHECK(left->Equals(instr->result()));
   1390   DCHECK(left->IsRegister());
   1391 
   1392   if (right->IsConstantOperand()) {
   1393     int32_t right_operand =
   1394         ToRepresentation(LConstantOperand::cast(right),
   1395                          instr->hydrogen()->right()->representation());
   1396     switch (instr->op()) {
   1397       case Token::BIT_AND:
   1398         __ andl(ToRegister(left), Immediate(right_operand));
   1399         break;
   1400       case Token::BIT_OR:
   1401         __ orl(ToRegister(left), Immediate(right_operand));
   1402         break;
   1403       case Token::BIT_XOR:
   1404         if (right_operand == int32_t(~0)) {
   1405           __ notl(ToRegister(left));
   1406         } else {
   1407           __ xorl(ToRegister(left), Immediate(right_operand));
   1408         }
   1409         break;
   1410       default:
   1411         UNREACHABLE();
   1412         break;
   1413     }
   1414   } else if (right->IsStackSlot()) {
   1415     switch (instr->op()) {
   1416       case Token::BIT_AND:
   1417         if (instr->IsInteger32()) {
   1418           __ andl(ToRegister(left), ToOperand(right));
   1419         } else {
   1420           __ andp(ToRegister(left), ToOperand(right));
   1421         }
   1422         break;
   1423       case Token::BIT_OR:
   1424         if (instr->IsInteger32()) {
   1425           __ orl(ToRegister(left), ToOperand(right));
   1426         } else {
   1427           __ orp(ToRegister(left), ToOperand(right));
   1428         }
   1429         break;
   1430       case Token::BIT_XOR:
   1431         if (instr->IsInteger32()) {
   1432           __ xorl(ToRegister(left), ToOperand(right));
   1433         } else {
   1434           __ xorp(ToRegister(left), ToOperand(right));
   1435         }
   1436         break;
   1437       default:
   1438         UNREACHABLE();
   1439         break;
   1440     }
   1441   } else {
   1442     DCHECK(right->IsRegister());
   1443     switch (instr->op()) {
   1444       case Token::BIT_AND:
   1445         if (instr->IsInteger32()) {
   1446           __ andl(ToRegister(left), ToRegister(right));
   1447         } else {
   1448           __ andp(ToRegister(left), ToRegister(right));
   1449         }
   1450         break;
   1451       case Token::BIT_OR:
   1452         if (instr->IsInteger32()) {
   1453           __ orl(ToRegister(left), ToRegister(right));
   1454         } else {
   1455           __ orp(ToRegister(left), ToRegister(right));
   1456         }
   1457         break;
   1458       case Token::BIT_XOR:
   1459         if (instr->IsInteger32()) {
   1460           __ xorl(ToRegister(left), ToRegister(right));
   1461         } else {
   1462           __ xorp(ToRegister(left), ToRegister(right));
   1463         }
   1464         break;
   1465       default:
   1466         UNREACHABLE();
   1467         break;
   1468     }
   1469   }
   1470 }
   1471 
   1472 
   1473 void LCodeGen::DoShiftI(LShiftI* instr) {
   1474   LOperand* left = instr->left();
   1475   LOperand* right = instr->right();
   1476   DCHECK(left->Equals(instr->result()));
   1477   DCHECK(left->IsRegister());
   1478   if (right->IsRegister()) {
   1479     DCHECK(ToRegister(right).is(rcx));
   1480 
   1481     switch (instr->op()) {
   1482       case Token::ROR:
   1483         __ rorl_cl(ToRegister(left));
   1484         break;
   1485       case Token::SAR:
   1486         __ sarl_cl(ToRegister(left));
   1487         break;
   1488       case Token::SHR:
   1489         __ shrl_cl(ToRegister(left));
   1490         if (instr->can_deopt()) {
   1491           __ testl(ToRegister(left), ToRegister(left));
   1492           DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
   1493         }
   1494         break;
   1495       case Token::SHL:
   1496         __ shll_cl(ToRegister(left));
   1497         break;
   1498       default:
   1499         UNREACHABLE();
   1500         break;
   1501     }
   1502   } else {
   1503     int32_t value = ToInteger32(LConstantOperand::cast(right));
   1504     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
   1505     switch (instr->op()) {
   1506       case Token::ROR:
   1507         if (shift_count != 0) {
   1508           __ rorl(ToRegister(left), Immediate(shift_count));
   1509         }
   1510         break;
   1511       case Token::SAR:
   1512         if (shift_count != 0) {
   1513           __ sarl(ToRegister(left), Immediate(shift_count));
   1514         }
   1515         break;
   1516       case Token::SHR:
   1517         if (shift_count != 0) {
   1518           __ shrl(ToRegister(left), Immediate(shift_count));
   1519         } else if (instr->can_deopt()) {
   1520           __ testl(ToRegister(left), ToRegister(left));
   1521           DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
   1522         }
   1523         break;
   1524       case Token::SHL:
   1525         if (shift_count != 0) {
   1526           if (instr->hydrogen_value()->representation().IsSmi()) {
   1527             if (SmiValuesAre32Bits()) {
   1528               __ shlp(ToRegister(left), Immediate(shift_count));
   1529             } else {
   1530               DCHECK(SmiValuesAre31Bits());
   1531               if (instr->can_deopt()) {
   1532                 if (shift_count != 1) {
   1533                   __ shll(ToRegister(left), Immediate(shift_count - 1));
   1534                 }
   1535                 __ Integer32ToSmi(ToRegister(left), ToRegister(left));
   1536                 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1537               } else {
   1538                 __ shll(ToRegister(left), Immediate(shift_count));
   1539               }
   1540             }
   1541           } else {
   1542             __ shll(ToRegister(left), Immediate(shift_count));
   1543           }
   1544         }
   1545         break;
   1546       default:
   1547         UNREACHABLE();
   1548         break;
   1549     }
   1550   }
   1551 }
   1552 
   1553 
   1554 void LCodeGen::DoSubI(LSubI* instr) {
   1555   LOperand* left = instr->left();
   1556   LOperand* right = instr->right();
   1557   DCHECK(left->Equals(instr->result()));
   1558 
   1559   if (right->IsConstantOperand()) {
   1560     int32_t right_operand =
   1561         ToRepresentation(LConstantOperand::cast(right),
   1562                          instr->hydrogen()->right()->representation());
   1563     __ subl(ToRegister(left), Immediate(right_operand));
   1564   } else if (right->IsRegister()) {
   1565     if (instr->hydrogen_value()->representation().IsSmi()) {
   1566       __ subp(ToRegister(left), ToRegister(right));
   1567     } else {
   1568       __ subl(ToRegister(left), ToRegister(right));
   1569     }
   1570   } else {
   1571     if (instr->hydrogen_value()->representation().IsSmi()) {
   1572       __ subp(ToRegister(left), ToOperand(right));
   1573     } else {
   1574       __ subl(ToRegister(left), ToOperand(right));
   1575     }
   1576   }
   1577 
   1578   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1579     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1580   }
   1581 }
   1582 
   1583 
   1584 void LCodeGen::DoConstantI(LConstantI* instr) {
   1585   Register dst = ToRegister(instr->result());
   1586   if (instr->value() == 0) {
   1587     __ xorl(dst, dst);
   1588   } else {
   1589     __ movl(dst, Immediate(instr->value()));
   1590   }
   1591 }
   1592 
   1593 
   1594 void LCodeGen::DoConstantS(LConstantS* instr) {
   1595   __ Move(ToRegister(instr->result()), instr->value());
   1596 }
   1597 
   1598 
   1599 void LCodeGen::DoConstantD(LConstantD* instr) {
   1600   __ Move(ToDoubleRegister(instr->result()), instr->bits());
   1601 }
   1602 
   1603 
   1604 void LCodeGen::DoConstantE(LConstantE* instr) {
   1605   __ LoadAddress(ToRegister(instr->result()), instr->value());
   1606 }
   1607 
   1608 
   1609 void LCodeGen::DoConstantT(LConstantT* instr) {
   1610   Handle<Object> object = instr->value(isolate());
   1611   AllowDeferredHandleDereference smi_check;
   1612   __ Move(ToRegister(instr->result()), object);
   1613 }
   1614 
   1615 
   1616 Operand LCodeGen::BuildSeqStringOperand(Register string,
   1617                                         LOperand* index,
   1618                                         String::Encoding encoding) {
   1619   if (index->IsConstantOperand()) {
   1620     int offset = ToInteger32(LConstantOperand::cast(index));
   1621     if (encoding == String::TWO_BYTE_ENCODING) {
   1622       offset *= kUC16Size;
   1623     }
   1624     STATIC_ASSERT(kCharSize == 1);
   1625     return FieldOperand(string, SeqString::kHeaderSize + offset);
   1626   }
   1627   return FieldOperand(
   1628       string, ToRegister(index),
   1629       encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
   1630       SeqString::kHeaderSize);
   1631 }
   1632 
   1633 
   1634 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   1635   String::Encoding encoding = instr->hydrogen()->encoding();
   1636   Register result = ToRegister(instr->result());
   1637   Register string = ToRegister(instr->string());
   1638 
   1639   if (FLAG_debug_code) {
   1640     __ Push(string);
   1641     __ movp(string, FieldOperand(string, HeapObject::kMapOffset));
   1642     __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
   1643 
   1644     __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
   1645     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1646     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1647     __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
   1648                               ? one_byte_seq_type : two_byte_seq_type));
   1649     __ Check(equal, kUnexpectedStringType);
   1650     __ Pop(string);
   1651   }
   1652 
   1653   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1654   if (encoding == String::ONE_BYTE_ENCODING) {
   1655     __ movzxbl(result, operand);
   1656   } else {
   1657     __ movzxwl(result, operand);
   1658   }
   1659 }
   1660 
   1661 
   1662 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   1663   String::Encoding encoding = instr->hydrogen()->encoding();
   1664   Register string = ToRegister(instr->string());
   1665 
   1666   if (FLAG_debug_code) {
   1667     Register value = ToRegister(instr->value());
   1668     Register index = ToRegister(instr->index());
   1669     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1670     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1671     int encoding_mask =
   1672         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   1673         ? one_byte_seq_type : two_byte_seq_type;
   1674     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
   1675   }
   1676 
   1677   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1678   if (instr->value()->IsConstantOperand()) {
   1679     int value = ToInteger32(LConstantOperand::cast(instr->value()));
   1680     DCHECK_LE(0, value);
   1681     if (encoding == String::ONE_BYTE_ENCODING) {
   1682       DCHECK_LE(value, String::kMaxOneByteCharCode);
   1683       __ movb(operand, Immediate(value));
   1684     } else {
   1685       DCHECK_LE(value, String::kMaxUtf16CodeUnit);
   1686       __ movw(operand, Immediate(value));
   1687     }
   1688   } else {
   1689     Register value = ToRegister(instr->value());
   1690     if (encoding == String::ONE_BYTE_ENCODING) {
   1691       __ movb(operand, value);
   1692     } else {
   1693       __ movw(operand, value);
   1694     }
   1695   }
   1696 }
   1697 
   1698 
   1699 void LCodeGen::DoAddI(LAddI* instr) {
   1700   LOperand* left = instr->left();
   1701   LOperand* right = instr->right();
   1702 
   1703   Representation target_rep = instr->hydrogen()->representation();
   1704   bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
   1705 
   1706   if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
   1707     if (right->IsConstantOperand()) {
   1708       // No support for smi-immediates for 32-bit SMI.
   1709       DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
   1710       int32_t offset =
   1711           ToRepresentation(LConstantOperand::cast(right),
   1712                            instr->hydrogen()->right()->representation());
   1713       if (is_p) {
   1714         __ leap(ToRegister(instr->result()),
   1715                 MemOperand(ToRegister(left), offset));
   1716       } else {
   1717         __ leal(ToRegister(instr->result()),
   1718                 MemOperand(ToRegister(left), offset));
   1719       }
   1720     } else {
   1721       Operand address(ToRegister(left), ToRegister(right), times_1, 0);
   1722       if (is_p) {
   1723         __ leap(ToRegister(instr->result()), address);
   1724       } else {
   1725         __ leal(ToRegister(instr->result()), address);
   1726       }
   1727     }
   1728   } else {
   1729     if (right->IsConstantOperand()) {
   1730       // No support for smi-immediates for 32-bit SMI.
   1731       DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
   1732       int32_t right_operand =
   1733           ToRepresentation(LConstantOperand::cast(right),
   1734                            instr->hydrogen()->right()->representation());
   1735       if (is_p) {
   1736         __ addp(ToRegister(left), Immediate(right_operand));
   1737       } else {
   1738         __ addl(ToRegister(left), Immediate(right_operand));
   1739       }
   1740     } else if (right->IsRegister()) {
   1741       if (is_p) {
   1742         __ addp(ToRegister(left), ToRegister(right));
   1743       } else {
   1744         __ addl(ToRegister(left), ToRegister(right));
   1745       }
   1746     } else {
   1747       if (is_p) {
   1748         __ addp(ToRegister(left), ToOperand(right));
   1749       } else {
   1750         __ addl(ToRegister(left), ToOperand(right));
   1751       }
   1752     }
   1753     if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1754       DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1755     }
   1756   }
   1757 }
   1758 
   1759 
   1760 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   1761   LOperand* left = instr->left();
   1762   LOperand* right = instr->right();
   1763   DCHECK(left->Equals(instr->result()));
   1764   HMathMinMax::Operation operation = instr->hydrogen()->operation();
   1765   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
   1766     Label return_left;
   1767     Condition condition = (operation == HMathMinMax::kMathMin)
   1768         ? less_equal
   1769         : greater_equal;
   1770     Register left_reg = ToRegister(left);
   1771     if (right->IsConstantOperand()) {
   1772       Immediate right_imm = Immediate(
   1773           ToRepresentation(LConstantOperand::cast(right),
   1774                            instr->hydrogen()->right()->representation()));
   1775       DCHECK(SmiValuesAre32Bits()
   1776           ? !instr->hydrogen()->representation().IsSmi()
   1777           : SmiValuesAre31Bits());
   1778       __ cmpl(left_reg, right_imm);
   1779       __ j(condition, &return_left, Label::kNear);
   1780       __ movl(left_reg, right_imm);
   1781     } else if (right->IsRegister()) {
   1782       Register right_reg = ToRegister(right);
   1783       if (instr->hydrogen_value()->representation().IsSmi()) {
   1784         __ cmpp(left_reg, right_reg);
   1785       } else {
   1786         __ cmpl(left_reg, right_reg);
   1787       }
   1788       __ j(condition, &return_left, Label::kNear);
   1789       __ movp(left_reg, right_reg);
   1790     } else {
   1791       Operand right_op = ToOperand(right);
   1792       if (instr->hydrogen_value()->representation().IsSmi()) {
   1793         __ cmpp(left_reg, right_op);
   1794       } else {
   1795         __ cmpl(left_reg, right_op);
   1796       }
   1797       __ j(condition, &return_left, Label::kNear);
   1798       __ movp(left_reg, right_op);
   1799     }
   1800     __ bind(&return_left);
   1801   } else {
   1802     DCHECK(instr->hydrogen()->representation().IsDouble());
   1803     Label not_nan, distinct, return_left, return_right;
   1804     Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
   1805     XMMRegister left_reg = ToDoubleRegister(left);
   1806     XMMRegister right_reg = ToDoubleRegister(right);
   1807     __ Ucomisd(left_reg, right_reg);
   1808     __ j(parity_odd, &not_nan, Label::kNear);  // Both are not NaN.
   1809 
   1810     // One of the numbers is NaN. Find which one and return it.
   1811     __ Ucomisd(left_reg, left_reg);
   1812     __ j(parity_even, &return_left, Label::kNear);  // left is NaN.
   1813     __ jmp(&return_right, Label::kNear);            // right is NaN.
   1814 
   1815     __ bind(&not_nan);
   1816     __ j(not_equal, &distinct, Label::kNear);  // left != right.
   1817 
   1818     // left == right
   1819     XMMRegister xmm_scratch = double_scratch0();
   1820     __ Xorpd(xmm_scratch, xmm_scratch);
   1821     __ Ucomisd(left_reg, xmm_scratch);
   1822     __ j(not_equal, &return_left, Label::kNear);  // left == right != 0.
   1823 
   1824     // At this point, both left and right are either +0 or -0.
   1825     if (operation == HMathMinMax::kMathMin) {
   1826       __ Orpd(left_reg, right_reg);
   1827     } else {
   1828       __ Andpd(left_reg, right_reg);
   1829     }
   1830     __ jmp(&return_left, Label::kNear);
   1831 
   1832     __ bind(&distinct);
   1833     __ j(condition, &return_left, Label::kNear);
   1834 
   1835     __ bind(&return_right);
   1836     __ Movapd(left_reg, right_reg);
   1837 
   1838     __ bind(&return_left);
   1839   }
   1840 }
   1841 
   1842 
   1843 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   1844   XMMRegister left = ToDoubleRegister(instr->left());
   1845   XMMRegister right = ToDoubleRegister(instr->right());
   1846   XMMRegister result = ToDoubleRegister(instr->result());
   1847   switch (instr->op()) {
   1848     case Token::ADD:
   1849       if (CpuFeatures::IsSupported(AVX)) {
   1850         CpuFeatureScope scope(masm(), AVX);
   1851         __ vaddsd(result, left, right);
   1852       } else {
   1853         DCHECK(result.is(left));
   1854         __ addsd(left, right);
   1855       }
   1856       break;
   1857     case Token::SUB:
   1858       if (CpuFeatures::IsSupported(AVX)) {
   1859         CpuFeatureScope scope(masm(), AVX);
   1860         __ vsubsd(result, left, right);
   1861       } else {
   1862         DCHECK(result.is(left));
   1863         __ subsd(left, right);
   1864       }
   1865        break;
   1866     case Token::MUL:
   1867       if (CpuFeatures::IsSupported(AVX)) {
   1868         CpuFeatureScope scope(masm(), AVX);
   1869         __ vmulsd(result, left, right);
   1870       } else {
   1871         DCHECK(result.is(left));
   1872         __ mulsd(left, right);
   1873       }
   1874       break;
   1875     case Token::DIV:
   1876       if (CpuFeatures::IsSupported(AVX)) {
   1877         CpuFeatureScope scope(masm(), AVX);
   1878         __ vdivsd(result, left, right);
   1879       } else {
   1880         DCHECK(result.is(left));
   1881         __ divsd(left, right);
   1882       }
   1883       // Don't delete this mov. It may improve performance on some CPUs,
   1884       // when there is a (v)mulsd depending on the result
   1885       __ Movapd(result, result);
   1886       break;
   1887     case Token::MOD: {
   1888       DCHECK(left.is(xmm0));
   1889       DCHECK(right.is(xmm1));
   1890       DCHECK(result.is(xmm0));
   1891       __ PrepareCallCFunction(2);
   1892       __ CallCFunction(
   1893           ExternalReference::mod_two_doubles_operation(isolate()), 2);
   1894       break;
   1895     }
   1896     default:
   1897       UNREACHABLE();
   1898       break;
   1899   }
   1900 }
   1901 
   1902 
   1903 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   1904   DCHECK(ToRegister(instr->context()).is(rsi));
   1905   DCHECK(ToRegister(instr->left()).is(rdx));
   1906   DCHECK(ToRegister(instr->right()).is(rax));
   1907   DCHECK(ToRegister(instr->result()).is(rax));
   1908 
   1909   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
   1910   CallCode(code, RelocInfo::CODE_TARGET, instr);
   1911 }
   1912 
   1913 
   1914 template<class InstrType>
   1915 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
   1916   int left_block = instr->TrueDestination(chunk_);
   1917   int right_block = instr->FalseDestination(chunk_);
   1918 
   1919   int next_block = GetNextEmittedBlock();
   1920 
   1921   if (right_block == left_block || cc == no_condition) {
   1922     EmitGoto(left_block);
   1923   } else if (left_block == next_block) {
   1924     __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
   1925   } else if (right_block == next_block) {
   1926     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   1927   } else {
   1928     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   1929     if (cc != always) {
   1930       __ jmp(chunk_->GetAssemblyLabel(right_block));
   1931     }
   1932   }
   1933 }
   1934 
   1935 
   1936 template <class InstrType>
   1937 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
   1938   int true_block = instr->TrueDestination(chunk_);
   1939   __ j(cc, chunk_->GetAssemblyLabel(true_block));
   1940 }
   1941 
   1942 
   1943 template <class InstrType>
   1944 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
   1945   int false_block = instr->FalseDestination(chunk_);
   1946   __ j(cc, chunk_->GetAssemblyLabel(false_block));
   1947 }
   1948 
   1949 
   1950 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   1951   __ int3();
   1952 }
   1953 
   1954 
   1955 void LCodeGen::DoBranch(LBranch* instr) {
   1956   Representation r = instr->hydrogen()->value()->representation();
   1957   if (r.IsInteger32()) {
   1958     DCHECK(!info()->IsStub());
   1959     Register reg = ToRegister(instr->value());
   1960     __ testl(reg, reg);
   1961     EmitBranch(instr, not_zero);
   1962   } else if (r.IsSmi()) {
   1963     DCHECK(!info()->IsStub());
   1964     Register reg = ToRegister(instr->value());
   1965     __ testp(reg, reg);
   1966     EmitBranch(instr, not_zero);
   1967   } else if (r.IsDouble()) {
   1968     DCHECK(!info()->IsStub());
   1969     XMMRegister reg = ToDoubleRegister(instr->value());
   1970     XMMRegister xmm_scratch = double_scratch0();
   1971     __ Xorpd(xmm_scratch, xmm_scratch);
   1972     __ Ucomisd(reg, xmm_scratch);
   1973     EmitBranch(instr, not_equal);
   1974   } else {
   1975     DCHECK(r.IsTagged());
   1976     Register reg = ToRegister(instr->value());
   1977     HType type = instr->hydrogen()->value()->type();
   1978     if (type.IsBoolean()) {
   1979       DCHECK(!info()->IsStub());
   1980       __ CompareRoot(reg, Heap::kTrueValueRootIndex);
   1981       EmitBranch(instr, equal);
   1982     } else if (type.IsSmi()) {
   1983       DCHECK(!info()->IsStub());
   1984       __ SmiCompare(reg, Smi::FromInt(0));
   1985       EmitBranch(instr, not_equal);
   1986     } else if (type.IsJSArray()) {
   1987       DCHECK(!info()->IsStub());
   1988       EmitBranch(instr, no_condition);
   1989     } else if (type.IsHeapNumber()) {
   1990       DCHECK(!info()->IsStub());
   1991       XMMRegister xmm_scratch = double_scratch0();
   1992       __ Xorpd(xmm_scratch, xmm_scratch);
   1993       __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
   1994       EmitBranch(instr, not_equal);
   1995     } else if (type.IsString()) {
   1996       DCHECK(!info()->IsStub());
   1997       __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   1998       EmitBranch(instr, not_equal);
   1999     } else {
   2000       ToBooleanICStub::Types expected =
   2001           instr->hydrogen()->expected_input_types();
   2002       // Avoid deopts in the case where we've never executed this path before.
   2003       if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
   2004 
   2005       if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
   2006         // undefined -> false.
   2007         __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
   2008         __ j(equal, instr->FalseLabel(chunk_));
   2009       }
   2010       if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
   2011         // true -> true.
   2012         __ CompareRoot(reg, Heap::kTrueValueRootIndex);
   2013         __ j(equal, instr->TrueLabel(chunk_));
   2014         // false -> false.
   2015         __ CompareRoot(reg, Heap::kFalseValueRootIndex);
   2016         __ j(equal, instr->FalseLabel(chunk_));
   2017       }
   2018       if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
   2019         // 'null' -> false.
   2020         __ CompareRoot(reg, Heap::kNullValueRootIndex);
   2021         __ j(equal, instr->FalseLabel(chunk_));
   2022       }
   2023 
   2024       if (expected.Contains(ToBooleanICStub::SMI)) {
   2025         // Smis: 0 -> false, all other -> true.
   2026         __ Cmp(reg, Smi::FromInt(0));
   2027         __ j(equal, instr->FalseLabel(chunk_));
   2028         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
   2029       } else if (expected.NeedsMap()) {
   2030         // If we need a map later and have a Smi -> deopt.
   2031         __ testb(reg, Immediate(kSmiTagMask));
   2032         DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
   2033       }
   2034 
   2035       const Register map = kScratchRegister;
   2036       if (expected.NeedsMap()) {
   2037         __ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
   2038 
   2039         if (expected.CanBeUndetectable()) {
   2040           // Undetectable -> false.
   2041           __ testb(FieldOperand(map, Map::kBitFieldOffset),
   2042                    Immediate(1 << Map::kIsUndetectable));
   2043           __ j(not_zero, instr->FalseLabel(chunk_));
   2044         }
   2045       }
   2046 
   2047       if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
   2048         // spec object -> true.
   2049         __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
   2050         __ j(above_equal, instr->TrueLabel(chunk_));
   2051       }
   2052 
   2053       if (expected.Contains(ToBooleanICStub::STRING)) {
   2054         // String value -> false iff empty.
   2055         Label not_string;
   2056         __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
   2057         __ j(above_equal, &not_string, Label::kNear);
   2058         __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   2059         __ j(not_zero, instr->TrueLabel(chunk_));
   2060         __ jmp(instr->FalseLabel(chunk_));
   2061         __ bind(&not_string);
   2062       }
   2063 
   2064       if (expected.Contains(ToBooleanICStub::SYMBOL)) {
   2065         // Symbol value -> true.
   2066         __ CmpInstanceType(map, SYMBOL_TYPE);
   2067         __ j(equal, instr->TrueLabel(chunk_));
   2068       }
   2069 
   2070       if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
   2071         // SIMD value -> true.
   2072         __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
   2073         __ j(equal, instr->TrueLabel(chunk_));
   2074       }
   2075 
   2076       if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
   2077         // heap number -> false iff +0, -0, or NaN.
   2078         Label not_heap_number;
   2079         __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
   2080         __ j(not_equal, &not_heap_number, Label::kNear);
   2081         XMMRegister xmm_scratch = double_scratch0();
   2082         __ Xorpd(xmm_scratch, xmm_scratch);
   2083         __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
   2084         __ j(zero, instr->FalseLabel(chunk_));
   2085         __ jmp(instr->TrueLabel(chunk_));
   2086         __ bind(&not_heap_number);
   2087       }
   2088 
   2089       if (!expected.IsGeneric()) {
   2090         // We've seen something for the first time -> deopt.
   2091         // This can only happen if we are not generic already.
   2092         DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject);
   2093       }
   2094     }
   2095   }
   2096 }
   2097 
   2098 
   2099 void LCodeGen::EmitGoto(int block) {
   2100   if (!IsNextEmittedBlock(block)) {
   2101     __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
   2102   }
   2103 }
   2104 
   2105 
   2106 void LCodeGen::DoGoto(LGoto* instr) {
   2107   EmitGoto(instr->block_id());
   2108 }
   2109 
   2110 
   2111 inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   2112   Condition cond = no_condition;
   2113   switch (op) {
   2114     case Token::EQ:
   2115     case Token::EQ_STRICT:
   2116       cond = equal;
   2117       break;
   2118     case Token::NE:
   2119     case Token::NE_STRICT:
   2120       cond = not_equal;
   2121       break;
   2122     case Token::LT:
   2123       cond = is_unsigned ? below : less;
   2124       break;
   2125     case Token::GT:
   2126       cond = is_unsigned ? above : greater;
   2127       break;
   2128     case Token::LTE:
   2129       cond = is_unsigned ? below_equal : less_equal;
   2130       break;
   2131     case Token::GTE:
   2132       cond = is_unsigned ? above_equal : greater_equal;
   2133       break;
   2134     case Token::IN:
   2135     case Token::INSTANCEOF:
   2136     default:
   2137       UNREACHABLE();
   2138   }
   2139   return cond;
   2140 }
   2141 
   2142 
   2143 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2144   LOperand* left = instr->left();
   2145   LOperand* right = instr->right();
   2146   bool is_unsigned =
   2147       instr->is_double() ||
   2148       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2149       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2150   Condition cc = TokenToCondition(instr->op(), is_unsigned);
   2151 
   2152   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2153     // We can statically evaluate the comparison.
   2154     double left_val = ToDouble(LConstantOperand::cast(left));
   2155     double right_val = ToDouble(LConstantOperand::cast(right));
   2156     int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
   2157                          ? instr->TrueDestination(chunk_)
   2158                          : instr->FalseDestination(chunk_);
   2159     EmitGoto(next_block);
   2160   } else {
   2161     if (instr->is_double()) {
   2162       // Don't base result on EFLAGS when a NaN is involved. Instead
   2163       // jump to the false block.
   2164       __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
   2165       __ j(parity_even, instr->FalseLabel(chunk_));
   2166     } else {
   2167       int32_t value;
   2168       if (right->IsConstantOperand()) {
   2169         value = ToInteger32(LConstantOperand::cast(right));
   2170         if (instr->hydrogen_value()->representation().IsSmi()) {
   2171           __ Cmp(ToRegister(left), Smi::FromInt(value));
   2172         } else {
   2173           __ cmpl(ToRegister(left), Immediate(value));
   2174         }
   2175       } else if (left->IsConstantOperand()) {
   2176         value = ToInteger32(LConstantOperand::cast(left));
   2177         if (instr->hydrogen_value()->representation().IsSmi()) {
   2178           if (right->IsRegister()) {
   2179             __ Cmp(ToRegister(right), Smi::FromInt(value));
   2180           } else {
   2181             __ Cmp(ToOperand(right), Smi::FromInt(value));
   2182           }
   2183         } else if (right->IsRegister()) {
   2184           __ cmpl(ToRegister(right), Immediate(value));
   2185         } else {
   2186           __ cmpl(ToOperand(right), Immediate(value));
   2187         }
   2188         // We commuted the operands, so commute the condition.
   2189         cc = CommuteCondition(cc);
   2190       } else if (instr->hydrogen_value()->representation().IsSmi()) {
   2191         if (right->IsRegister()) {
   2192           __ cmpp(ToRegister(left), ToRegister(right));
   2193         } else {
   2194           __ cmpp(ToRegister(left), ToOperand(right));
   2195         }
   2196       } else {
   2197         if (right->IsRegister()) {
   2198           __ cmpl(ToRegister(left), ToRegister(right));
   2199         } else {
   2200           __ cmpl(ToRegister(left), ToOperand(right));
   2201         }
   2202       }
   2203     }
   2204     EmitBranch(instr, cc);
   2205   }
   2206 }
   2207 
   2208 
   2209 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2210   Register left = ToRegister(instr->left());
   2211 
   2212   if (instr->right()->IsConstantOperand()) {
   2213     Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
   2214     __ Cmp(left, right);
   2215   } else {
   2216     Register right = ToRegister(instr->right());
   2217     __ cmpp(left, right);
   2218   }
   2219   EmitBranch(instr, equal);
   2220 }
   2221 
   2222 
   2223 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
   2224   if (instr->hydrogen()->representation().IsTagged()) {
   2225     Register input_reg = ToRegister(instr->object());
   2226     __ Cmp(input_reg, factory()->the_hole_value());
   2227     EmitBranch(instr, equal);
   2228     return;
   2229   }
   2230 
   2231   XMMRegister input_reg = ToDoubleRegister(instr->object());
   2232   __ Ucomisd(input_reg, input_reg);
   2233   EmitFalseBranch(instr, parity_odd);
   2234 
   2235   __ subp(rsp, Immediate(kDoubleSize));
   2236   __ Movsd(MemOperand(rsp, 0), input_reg);
   2237   __ addp(rsp, Immediate(kDoubleSize));
   2238 
   2239   int offset = sizeof(kHoleNanUpper32);
   2240   __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
   2241   EmitBranch(instr, equal);
   2242 }
   2243 
   2244 
   2245 Condition LCodeGen::EmitIsString(Register input,
   2246                                  Register temp1,
   2247                                  Label* is_not_string,
   2248                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   2249   if (check_needed == INLINE_SMI_CHECK) {
   2250     __ JumpIfSmi(input, is_not_string);
   2251   }
   2252 
   2253   Condition cond =  masm_->IsObjectStringType(input, temp1, temp1);
   2254 
   2255   return cond;
   2256 }
   2257 
   2258 
   2259 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   2260   Register reg = ToRegister(instr->value());
   2261   Register temp = ToRegister(instr->temp());
   2262 
   2263   SmiCheck check_needed =
   2264       instr->hydrogen()->value()->type().IsHeapObject()
   2265           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2266 
   2267   Condition true_cond = EmitIsString(
   2268       reg, temp, instr->FalseLabel(chunk_), check_needed);
   2269 
   2270   EmitBranch(instr, true_cond);
   2271 }
   2272 
   2273 
   2274 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   2275   Condition is_smi;
   2276   if (instr->value()->IsRegister()) {
   2277     Register input = ToRegister(instr->value());
   2278     is_smi = masm()->CheckSmi(input);
   2279   } else {
   2280     Operand input = ToOperand(instr->value());
   2281     is_smi = masm()->CheckSmi(input);
   2282   }
   2283   EmitBranch(instr, is_smi);
   2284 }
   2285 
   2286 
   2287 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   2288   Register input = ToRegister(instr->value());
   2289   Register temp = ToRegister(instr->temp());
   2290 
   2291   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2292     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2293   }
   2294   __ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
   2295   __ testb(FieldOperand(temp, Map::kBitFieldOffset),
   2296            Immediate(1 << Map::kIsUndetectable));
   2297   EmitBranch(instr, not_zero);
   2298 }
   2299 
   2300 
   2301 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   2302   DCHECK(ToRegister(instr->context()).is(rsi));
   2303   DCHECK(ToRegister(instr->left()).is(rdx));
   2304   DCHECK(ToRegister(instr->right()).is(rax));
   2305 
   2306   Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
   2307   CallCode(code, RelocInfo::CODE_TARGET, instr);
   2308   __ CompareRoot(rax, Heap::kTrueValueRootIndex);
   2309   EmitBranch(instr, equal);
   2310 }
   2311 
   2312 
   2313 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   2314   InstanceType from = instr->from();
   2315   InstanceType to = instr->to();
   2316   if (from == FIRST_TYPE) return to;
   2317   DCHECK(from == to || to == LAST_TYPE);
   2318   return from;
   2319 }
   2320 
   2321 
   2322 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   2323   InstanceType from = instr->from();
   2324   InstanceType to = instr->to();
   2325   if (from == to) return equal;
   2326   if (to == LAST_TYPE) return above_equal;
   2327   if (from == FIRST_TYPE) return below_equal;
   2328   UNREACHABLE();
   2329   return equal;
   2330 }
   2331 
   2332 
   2333 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   2334   Register input = ToRegister(instr->value());
   2335 
   2336   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2337     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2338   }
   2339 
   2340   __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
   2341   EmitBranch(instr, BranchCondition(instr->hydrogen()));
   2342 }
   2343 
   2344 
   2345 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2346   Register input = ToRegister(instr->value());
   2347   Register result = ToRegister(instr->result());
   2348 
   2349   __ AssertString(input);
   2350 
   2351   __ movl(result, FieldOperand(input, String::kHashFieldOffset));
   2352   DCHECK(String::kHashShift >= kSmiTagSize);
   2353   __ IndexFromHash(result, result);
   2354 }
   2355 
   2356 
   2357 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2358     LHasCachedArrayIndexAndBranch* instr) {
   2359   Register input = ToRegister(instr->value());
   2360 
   2361   __ testl(FieldOperand(input, String::kHashFieldOffset),
   2362            Immediate(String::kContainsCachedArrayIndexMask));
   2363   EmitBranch(instr, equal);
   2364 }
   2365 
   2366 
   2367 // Branches to a label or falls through with the answer in the z flag.
   2368 // Trashes the temp register.
   2369 void LCodeGen::EmitClassOfTest(Label* is_true,
   2370                                Label* is_false,
   2371                                Handle<String> class_name,
   2372                                Register input,
   2373                                Register temp,
   2374                                Register temp2) {
   2375   DCHECK(!input.is(temp));
   2376   DCHECK(!input.is(temp2));
   2377   DCHECK(!temp.is(temp2));
   2378 
   2379   __ JumpIfSmi(input, is_false);
   2380 
   2381   __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
   2382   STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
   2383   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
   2384     __ j(above_equal, is_true);
   2385   } else {
   2386     __ j(above_equal, is_false);
   2387   }
   2388 
   2389   // Check if the constructor in the map is a function.
   2390   __ GetMapConstructor(temp, temp, kScratchRegister);
   2391 
   2392   // Objects with a non-function constructor have class 'Object'.
   2393   __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
   2394   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
   2395     __ j(not_equal, is_true);
   2396   } else {
   2397     __ j(not_equal, is_false);
   2398   }
   2399 
   2400   // temp now contains the constructor function. Grab the
   2401   // instance class name from there.
   2402   __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
   2403   __ movp(temp, FieldOperand(temp,
   2404                              SharedFunctionInfo::kInstanceClassNameOffset));
   2405   // The class name we are testing against is internalized since it's a literal.
   2406   // The name in the constructor is internalized because of the way the context
   2407   // is booted.  This routine isn't expected to work for random API-created
   2408   // classes and it doesn't have to because you can't access it with natives
   2409   // syntax.  Since both sides are internalized it is sufficient to use an
   2410   // identity comparison.
   2411   DCHECK(class_name->IsInternalizedString());
   2412   __ Cmp(temp, class_name);
   2413   // End with the answer in the z flag.
   2414 }
   2415 
   2416 
   2417 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2418   Register input = ToRegister(instr->value());
   2419   Register temp = ToRegister(instr->temp());
   2420   Register temp2 = ToRegister(instr->temp2());
   2421   Handle<String> class_name = instr->hydrogen()->class_name();
   2422 
   2423   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
   2424       class_name, input, temp, temp2);
   2425 
   2426   EmitBranch(instr, equal);
   2427 }
   2428 
   2429 
   2430 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2431   Register reg = ToRegister(instr->value());
   2432 
   2433   __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
   2434   EmitBranch(instr, equal);
   2435 }
   2436 
   2437 
   2438 void LCodeGen::DoHasInPrototypeChainAndBranch(
   2439     LHasInPrototypeChainAndBranch* instr) {
   2440   Register const object = ToRegister(instr->object());
   2441   Register const object_map = kScratchRegister;
   2442   Register const object_prototype = object_map;
   2443   Register const prototype = ToRegister(instr->prototype());
   2444 
   2445   // The {object} must be a spec object.  It's sufficient to know that {object}
   2446   // is not a smi, since all other non-spec objects have {null} prototypes and
   2447   // will be ruled out below.
   2448   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
   2449     Condition is_smi = __ CheckSmi(object);
   2450     EmitFalseBranch(instr, is_smi);
   2451   }
   2452 
   2453   // Loop through the {object}s prototype chain looking for the {prototype}.
   2454   __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
   2455   Label loop;
   2456   __ bind(&loop);
   2457 
   2458   // Deoptimize if the object needs to be access checked.
   2459   __ testb(FieldOperand(object_map, Map::kBitFieldOffset),
   2460            Immediate(1 << Map::kIsAccessCheckNeeded));
   2461   DeoptimizeIf(not_zero, instr, Deoptimizer::kAccessCheck);
   2462   // Deoptimize for proxies.
   2463   __ CmpInstanceType(object_map, JS_PROXY_TYPE);
   2464   DeoptimizeIf(equal, instr, Deoptimizer::kProxy);
   2465 
   2466   __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
   2467   __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
   2468   EmitFalseBranch(instr, equal);
   2469   __ cmpp(object_prototype, prototype);
   2470   EmitTrueBranch(instr, equal);
   2471   __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
   2472   __ jmp(&loop);
   2473 }
   2474 
   2475 
   2476 void LCodeGen::DoCmpT(LCmpT* instr) {
   2477   DCHECK(ToRegister(instr->context()).is(rsi));
   2478   Token::Value op = instr->op();
   2479 
   2480   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   2481   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2482 
   2483   Condition condition = TokenToCondition(op, false);
   2484   Label true_value, done;
   2485   __ testp(rax, rax);
   2486   __ j(condition, &true_value, Label::kNear);
   2487   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
   2488   __ jmp(&done, Label::kNear);
   2489   __ bind(&true_value);
   2490   __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
   2491   __ bind(&done);
   2492 }
   2493 
   2494 
   2495 void LCodeGen::DoReturn(LReturn* instr) {
   2496   if (FLAG_trace && info()->IsOptimizing()) {
   2497     // Preserve the return value on the stack and rely on the runtime call
   2498     // to return the value in the same register.  We're leaving the code
   2499     // managed by the register allocator and tearing down the frame, it's
   2500     // safe to write to the context register.
   2501     __ Push(rax);
   2502     __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   2503     __ CallRuntime(Runtime::kTraceExit);
   2504   }
   2505   if (info()->saves_caller_doubles()) {
   2506     RestoreCallerDoubles();
   2507   }
   2508   if (NeedsEagerFrame()) {
   2509     __ movp(rsp, rbp);
   2510     __ popq(rbp);
   2511   }
   2512   if (instr->has_constant_parameter_count()) {
   2513     __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
   2514            rcx);
   2515   } else {
   2516     DCHECK(info()->IsStub());  // Functions would need to drop one more value.
   2517     Register reg = ToRegister(instr->parameter_count());
   2518     // The argument count parameter is a smi
   2519     __ SmiToInteger32(reg, reg);
   2520     Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
   2521     __ PopReturnAddressTo(return_addr_reg);
   2522     __ shlp(reg, Immediate(kPointerSizeLog2));
   2523     __ addp(rsp, reg);
   2524     __ jmp(return_addr_reg);
   2525   }
   2526 }
   2527 
   2528 
   2529 template <class T>
   2530 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
   2531   Register vector_register = ToRegister(instr->temp_vector());
   2532   Register slot_register = LoadWithVectorDescriptor::SlotRegister();
   2533   DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
   2534   DCHECK(slot_register.is(rax));
   2535 
   2536   AllowDeferredHandleDereference vector_structure_check;
   2537   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
   2538   __ Move(vector_register, vector);
   2539   // No need to allocate this register.
   2540   FeedbackVectorSlot slot = instr->hydrogen()->slot();
   2541   int index = vector->GetIndex(slot);
   2542   __ Move(slot_register, Smi::FromInt(index));
   2543 }
   2544 
   2545 
   2546 template <class T>
   2547 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
   2548   Register vector_register = ToRegister(instr->temp_vector());
   2549   Register slot_register = ToRegister(instr->temp_slot());
   2550 
   2551   AllowDeferredHandleDereference vector_structure_check;
   2552   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
   2553   __ Move(vector_register, vector);
   2554   FeedbackVectorSlot slot = instr->hydrogen()->slot();
   2555   int index = vector->GetIndex(slot);
   2556   __ Move(slot_register, Smi::FromInt(index));
   2557 }
   2558 
   2559 
   2560 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   2561   DCHECK(ToRegister(instr->context()).is(rsi));
   2562   DCHECK(ToRegister(instr->result()).is(rax));
   2563 
   2564   EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
   2565   Handle<Code> ic =
   2566       CodeFactory::LoadGlobalICInOptimizedCode(isolate(), instr->typeof_mode())
   2567           .code();
   2568   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2569 }
   2570 
   2571 
   2572 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   2573   Register context = ToRegister(instr->context());
   2574   Register result = ToRegister(instr->result());
   2575   __ movp(result, ContextOperand(context, instr->slot_index()));
   2576   if (instr->hydrogen()->RequiresHoleCheck()) {
   2577     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
   2578     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2579       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2580     } else {
   2581       Label is_not_hole;
   2582       __ j(not_equal, &is_not_hole, Label::kNear);
   2583       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   2584       __ bind(&is_not_hole);
   2585     }
   2586   }
   2587 }
   2588 
   2589 
   2590 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   2591   Register context = ToRegister(instr->context());
   2592   Register value = ToRegister(instr->value());
   2593 
   2594   Operand target = ContextOperand(context, instr->slot_index());
   2595 
   2596   Label skip_assignment;
   2597   if (instr->hydrogen()->RequiresHoleCheck()) {
   2598     __ CompareRoot(target, Heap::kTheHoleValueRootIndex);
   2599     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2600       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2601     } else {
   2602       __ j(not_equal, &skip_assignment);
   2603     }
   2604   }
   2605   __ movp(target, value);
   2606 
   2607   if (instr->hydrogen()->NeedsWriteBarrier()) {
   2608     SmiCheck check_needed =
   2609       instr->hydrogen()->value()->type().IsHeapObject()
   2610           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2611     int offset = Context::SlotOffset(instr->slot_index());
   2612     Register scratch = ToRegister(instr->temp());
   2613     __ RecordWriteContextSlot(context,
   2614                               offset,
   2615                               value,
   2616                               scratch,
   2617                               kSaveFPRegs,
   2618                               EMIT_REMEMBERED_SET,
   2619                               check_needed);
   2620   }
   2621 
   2622   __ bind(&skip_assignment);
   2623 }
   2624 
   2625 
   2626 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   2627   HObjectAccess access = instr->hydrogen()->access();
   2628   int offset = access.offset();
   2629 
   2630   if (access.IsExternalMemory()) {
   2631     Register result = ToRegister(instr->result());
   2632     if (instr->object()->IsConstantOperand()) {
   2633       DCHECK(result.is(rax));
   2634       __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
   2635     } else {
   2636       Register object = ToRegister(instr->object());
   2637       __ Load(result, MemOperand(object, offset), access.representation());
   2638     }
   2639     return;
   2640   }
   2641 
   2642   Register object = ToRegister(instr->object());
   2643   if (instr->hydrogen()->representation().IsDouble()) {
   2644     DCHECK(access.IsInobject());
   2645     XMMRegister result = ToDoubleRegister(instr->result());
   2646     __ Movsd(result, FieldOperand(object, offset));
   2647     return;
   2648   }
   2649 
   2650   Register result = ToRegister(instr->result());
   2651   if (!access.IsInobject()) {
   2652     __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
   2653     object = result;
   2654   }
   2655 
   2656   Representation representation = access.representation();
   2657   if (representation.IsSmi() && SmiValuesAre32Bits() &&
   2658       instr->hydrogen()->representation().IsInteger32()) {
   2659     if (FLAG_debug_code) {
   2660       Register scratch = kScratchRegister;
   2661       __ Load(scratch, FieldOperand(object, offset), representation);
   2662       __ AssertSmi(scratch);
   2663     }
   2664 
   2665     // Read int value directly from upper half of the smi.
   2666     STATIC_ASSERT(kSmiTag == 0);
   2667     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
   2668     offset += kPointerSize / 2;
   2669     representation = Representation::Integer32();
   2670   }
   2671   __ Load(result, FieldOperand(object, offset), representation);
   2672 }
   2673 
   2674 
   2675 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   2676   DCHECK(ToRegister(instr->context()).is(rsi));
   2677   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   2678   DCHECK(ToRegister(instr->result()).is(rax));
   2679 
   2680   __ Move(LoadDescriptor::NameRegister(), instr->name());
   2681   EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
   2682   Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate()).code();
   2683   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2684 }
   2685 
   2686 
   2687 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   2688   Register function = ToRegister(instr->function());
   2689   Register result = ToRegister(instr->result());
   2690 
   2691   // Get the prototype or initial map from the function.
   2692   __ movp(result,
   2693          FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   2694 
   2695   // Check that the function has a prototype or an initial map.
   2696   __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
   2697   DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2698 
   2699   // If the function does not have an initial map, we're done.
   2700   Label done;
   2701   __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
   2702   __ j(not_equal, &done, Label::kNear);
   2703 
   2704   // Get the prototype from the initial map.
   2705   __ movp(result, FieldOperand(result, Map::kPrototypeOffset));
   2706 
   2707   // All done.
   2708   __ bind(&done);
   2709 }
   2710 
   2711 
   2712 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   2713   Register result = ToRegister(instr->result());
   2714   __ LoadRoot(result, instr->index());
   2715 }
   2716 
   2717 
   2718 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   2719   Register arguments = ToRegister(instr->arguments());
   2720   Register result = ToRegister(instr->result());
   2721 
   2722   if (instr->length()->IsConstantOperand() &&
   2723       instr->index()->IsConstantOperand()) {
   2724     int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   2725     int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
   2726     if (const_index >= 0 && const_index < const_length) {
   2727       StackArgumentsAccessor args(arguments, const_length,
   2728                                   ARGUMENTS_DONT_CONTAIN_RECEIVER);
   2729       __ movp(result, args.GetArgumentOperand(const_index));
   2730     } else if (FLAG_debug_code) {
   2731       __ int3();
   2732     }
   2733   } else {
   2734     Register length = ToRegister(instr->length());
   2735     // There are two words between the frame pointer and the last argument.
   2736     // Subtracting from length accounts for one of them add one more.
   2737     if (instr->index()->IsRegister()) {
   2738       __ subl(length, ToRegister(instr->index()));
   2739     } else {
   2740       __ subl(length, ToOperand(instr->index()));
   2741     }
   2742     StackArgumentsAccessor args(arguments, length,
   2743                                 ARGUMENTS_DONT_CONTAIN_RECEIVER);
   2744     __ movp(result, args.GetArgumentOperand(0));
   2745   }
   2746 }
   2747 
   2748 
   2749 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
   2750   ElementsKind elements_kind = instr->elements_kind();
   2751   LOperand* key = instr->key();
   2752   if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
   2753     Register key_reg = ToRegister(key);
   2754     Representation key_representation =
   2755         instr->hydrogen()->key()->representation();
   2756     if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
   2757       __ SmiToInteger64(key_reg, key_reg);
   2758     } else if (instr->hydrogen()->IsDehoisted()) {
   2759       // Sign extend key because it could be a 32 bit negative value
   2760       // and the dehoisted address computation happens in 64 bits
   2761       __ movsxlq(key_reg, key_reg);
   2762     }
   2763   }
   2764   Operand operand(BuildFastArrayOperand(
   2765       instr->elements(),
   2766       key,
   2767       instr->hydrogen()->key()->representation(),
   2768       elements_kind,
   2769       instr->base_offset()));
   2770 
   2771   if (elements_kind == FLOAT32_ELEMENTS) {
   2772     XMMRegister result(ToDoubleRegister(instr->result()));
   2773     __ Cvtss2sd(result, operand);
   2774   } else if (elements_kind == FLOAT64_ELEMENTS) {
   2775     __ Movsd(ToDoubleRegister(instr->result()), operand);
   2776   } else {
   2777     Register result(ToRegister(instr->result()));
   2778     switch (elements_kind) {
   2779       case INT8_ELEMENTS:
   2780         __ movsxbl(result, operand);
   2781         break;
   2782       case UINT8_ELEMENTS:
   2783       case UINT8_CLAMPED_ELEMENTS:
   2784         __ movzxbl(result, operand);
   2785         break;
   2786       case INT16_ELEMENTS:
   2787         __ movsxwl(result, operand);
   2788         break;
   2789       case UINT16_ELEMENTS:
   2790         __ movzxwl(result, operand);
   2791         break;
   2792       case INT32_ELEMENTS:
   2793         __ movl(result, operand);
   2794         break;
   2795       case UINT32_ELEMENTS:
   2796         __ movl(result, operand);
   2797         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   2798           __ testl(result, result);
   2799           DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
   2800         }
   2801         break;
   2802       case FLOAT32_ELEMENTS:
   2803       case FLOAT64_ELEMENTS:
   2804       case FAST_ELEMENTS:
   2805       case FAST_SMI_ELEMENTS:
   2806       case FAST_DOUBLE_ELEMENTS:
   2807       case FAST_HOLEY_ELEMENTS:
   2808       case FAST_HOLEY_SMI_ELEMENTS:
   2809       case FAST_HOLEY_DOUBLE_ELEMENTS:
   2810       case DICTIONARY_ELEMENTS:
   2811       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   2812       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   2813       case FAST_STRING_WRAPPER_ELEMENTS:
   2814       case SLOW_STRING_WRAPPER_ELEMENTS:
   2815       case NO_ELEMENTS:
   2816         UNREACHABLE();
   2817         break;
   2818     }
   2819   }
   2820 }
   2821 
   2822 
   2823 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
   2824   XMMRegister result(ToDoubleRegister(instr->result()));
   2825   LOperand* key = instr->key();
   2826   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
   2827       instr->hydrogen()->IsDehoisted()) {
   2828     // Sign extend key because it could be a 32 bit negative value
   2829     // and the dehoisted address computation happens in 64 bits
   2830     __ movsxlq(ToRegister(key), ToRegister(key));
   2831   }
   2832   if (instr->hydrogen()->RequiresHoleCheck()) {
   2833     Operand hole_check_operand = BuildFastArrayOperand(
   2834         instr->elements(),
   2835         key,
   2836         instr->hydrogen()->key()->representation(),
   2837         FAST_DOUBLE_ELEMENTS,
   2838         instr->base_offset() + sizeof(kHoleNanLower32));
   2839     __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
   2840     DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2841   }
   2842 
   2843   Operand double_load_operand = BuildFastArrayOperand(
   2844       instr->elements(),
   2845       key,
   2846       instr->hydrogen()->key()->representation(),
   2847       FAST_DOUBLE_ELEMENTS,
   2848       instr->base_offset());
   2849   __ Movsd(result, double_load_operand);
   2850 }
   2851 
   2852 
   2853 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
   2854   HLoadKeyed* hinstr = instr->hydrogen();
   2855   Register result = ToRegister(instr->result());
   2856   LOperand* key = instr->key();
   2857   bool requires_hole_check = hinstr->RequiresHoleCheck();
   2858   Representation representation = hinstr->representation();
   2859   int offset = instr->base_offset();
   2860 
   2861   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
   2862       instr->hydrogen()->IsDehoisted()) {
   2863     // Sign extend key because it could be a 32 bit negative value
   2864     // and the dehoisted address computation happens in 64 bits
   2865     __ movsxlq(ToRegister(key), ToRegister(key));
   2866   }
   2867   if (representation.IsInteger32() && SmiValuesAre32Bits() &&
   2868       hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
   2869     DCHECK(!requires_hole_check);
   2870     if (FLAG_debug_code) {
   2871       Register scratch = kScratchRegister;
   2872       __ Load(scratch,
   2873               BuildFastArrayOperand(instr->elements(),
   2874                                     key,
   2875                                     instr->hydrogen()->key()->representation(),
   2876                                     FAST_ELEMENTS,
   2877                                     offset),
   2878               Representation::Smi());
   2879       __ AssertSmi(scratch);
   2880     }
   2881     // Read int value directly from upper half of the smi.
   2882     STATIC_ASSERT(kSmiTag == 0);
   2883     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
   2884     offset += kPointerSize / 2;
   2885   }
   2886 
   2887   __ Load(result,
   2888           BuildFastArrayOperand(instr->elements(), key,
   2889                                 instr->hydrogen()->key()->representation(),
   2890                                 FAST_ELEMENTS, offset),
   2891           representation);
   2892 
   2893   // Check for the hole value.
   2894   if (requires_hole_check) {
   2895     if (IsFastSmiElementsKind(hinstr->elements_kind())) {
   2896       Condition smi = __ CheckSmi(result);
   2897       DeoptimizeIf(NegateCondition(smi), instr, Deoptimizer::kNotASmi);
   2898     } else {
   2899       __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
   2900       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2901     }
   2902   } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
   2903     DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS);
   2904     Label done;
   2905     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
   2906     __ j(not_equal, &done);
   2907     if (info()->IsStub()) {
   2908       // A stub can safely convert the hole to undefined only if the array
   2909       // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
   2910       // it needs to bail out.
   2911       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
   2912       __ Cmp(FieldOperand(result, Cell::kValueOffset),
   2913              Smi::FromInt(Isolate::kArrayProtectorValid));
   2914       DeoptimizeIf(not_equal, instr, Deoptimizer::kHole);
   2915     }
   2916     __ Move(result, isolate()->factory()->undefined_value());
   2917     __ bind(&done);
   2918   }
   2919 }
   2920 
   2921 
   2922 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
   2923   if (instr->is_fixed_typed_array()) {
   2924     DoLoadKeyedExternalArray(instr);
   2925   } else if (instr->hydrogen()->representation().IsDouble()) {
   2926     DoLoadKeyedFixedDoubleArray(instr);
   2927   } else {
   2928     DoLoadKeyedFixedArray(instr);
   2929   }
   2930 }
   2931 
   2932 
   2933 Operand LCodeGen::BuildFastArrayOperand(
   2934     LOperand* elements_pointer,
   2935     LOperand* key,
   2936     Representation key_representation,
   2937     ElementsKind elements_kind,
   2938     uint32_t offset) {
   2939   Register elements_pointer_reg = ToRegister(elements_pointer);
   2940   int shift_size = ElementsKindToShiftSize(elements_kind);
   2941   if (key->IsConstantOperand()) {
   2942     int32_t constant_value = ToInteger32(LConstantOperand::cast(key));
   2943     if (constant_value & 0xF0000000) {
   2944       Abort(kArrayIndexConstantValueTooBig);
   2945     }
   2946     return Operand(elements_pointer_reg,
   2947                    (constant_value << shift_size) + offset);
   2948   } else {
   2949     // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement().
   2950     DCHECK(key_representation.IsInteger32());
   2951 
   2952     ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
   2953     return Operand(elements_pointer_reg,
   2954                    ToRegister(key),
   2955                    scale_factor,
   2956                    offset);
   2957   }
   2958 }
   2959 
   2960 
   2961 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   2962   DCHECK(ToRegister(instr->context()).is(rsi));
   2963   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   2964   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
   2965 
   2966   EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
   2967 
   2968   Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
   2969   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2970 }
   2971 
   2972 
   2973 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   2974   Register result = ToRegister(instr->result());
   2975 
   2976   if (instr->hydrogen()->from_inlined()) {
   2977     __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize));
   2978   } else if (instr->hydrogen()->arguments_adaptor()) {
   2979     // Check for arguments adapter frame.
   2980     Label done, adapted;
   2981     __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
   2982     __ Cmp(Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset),
   2983            Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   2984     __ j(equal, &adapted, Label::kNear);
   2985 
   2986     // No arguments adaptor frame.
   2987     __ movp(result, rbp);
   2988     __ jmp(&done, Label::kNear);
   2989 
   2990     // Arguments adaptor frame present.
   2991     __ bind(&adapted);
   2992     __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
   2993 
   2994     // Result is the frame pointer for the frame if not adapted and for the real
   2995     // frame below the adaptor frame if adapted.
   2996     __ bind(&done);
   2997   } else {
   2998     __ movp(result, rbp);
   2999   }
   3000 }
   3001 
   3002 
   3003 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   3004   Register result = ToRegister(instr->result());
   3005 
   3006   Label done;
   3007 
   3008   // If no arguments adaptor frame the number of arguments is fixed.
   3009   if (instr->elements()->IsRegister()) {
   3010     __ cmpp(rbp, ToRegister(instr->elements()));
   3011   } else {
   3012     __ cmpp(rbp, ToOperand(instr->elements()));
   3013   }
   3014   __ movl(result, Immediate(scope()->num_parameters()));
   3015   __ j(equal, &done, Label::kNear);
   3016 
   3017   // Arguments adaptor frame present. Get argument length from there.
   3018   __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
   3019   __ SmiToInteger32(result,
   3020                     Operand(result,
   3021                             ArgumentsAdaptorFrameConstants::kLengthOffset));
   3022 
   3023   // Argument length is in result register.
   3024   __ bind(&done);
   3025 }
   3026 
   3027 
   3028 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   3029   Register receiver = ToRegister(instr->receiver());
   3030   Register function = ToRegister(instr->function());
   3031 
   3032   // If the receiver is null or undefined, we have to pass the global
   3033   // object as a receiver to normal functions. Values have to be
   3034   // passed unchanged to builtins and strict-mode functions.
   3035   Label global_object, receiver_ok;
   3036   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   3037 
   3038   if (!instr->hydrogen()->known_function()) {
   3039     // Do not transform the receiver to object for strict mode
   3040     // functions.
   3041     __ movp(kScratchRegister,
   3042             FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
   3043     __ testb(FieldOperand(kScratchRegister,
   3044                           SharedFunctionInfo::kStrictModeByteOffset),
   3045              Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
   3046     __ j(not_equal, &receiver_ok, dist);
   3047 
   3048     // Do not transform the receiver to object for builtins.
   3049     __ testb(FieldOperand(kScratchRegister,
   3050                           SharedFunctionInfo::kNativeByteOffset),
   3051              Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
   3052     __ j(not_equal, &receiver_ok, dist);
   3053   }
   3054 
   3055   // Normal function. Replace undefined or null with global receiver.
   3056   __ CompareRoot(receiver, Heap::kNullValueRootIndex);
   3057   __ j(equal, &global_object, Label::kNear);
   3058   __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
   3059   __ j(equal, &global_object, Label::kNear);
   3060 
   3061   // The receiver should be a JS object.
   3062   Condition is_smi = __ CheckSmi(receiver);
   3063   DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
   3064   __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister);
   3065   DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject);
   3066 
   3067   __ jmp(&receiver_ok, Label::kNear);
   3068   __ bind(&global_object);
   3069   __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset));
   3070   __ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
   3071   __ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
   3072 
   3073   __ bind(&receiver_ok);
   3074 }
   3075 
   3076 
   3077 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   3078   Register receiver = ToRegister(instr->receiver());
   3079   Register function = ToRegister(instr->function());
   3080   Register length = ToRegister(instr->length());
   3081   Register elements = ToRegister(instr->elements());
   3082   DCHECK(receiver.is(rax));  // Used for parameter count.
   3083   DCHECK(function.is(rdi));  // Required by InvokeFunction.
   3084   DCHECK(ToRegister(instr->result()).is(rax));
   3085 
   3086   // Copy the arguments to this function possibly from the
   3087   // adaptor frame below it.
   3088   const uint32_t kArgumentsLimit = 1 * KB;
   3089   __ cmpp(length, Immediate(kArgumentsLimit));
   3090   DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments);
   3091 
   3092   __ Push(receiver);
   3093   __ movp(receiver, length);
   3094 
   3095   // Loop through the arguments pushing them onto the execution
   3096   // stack.
   3097   Label invoke, loop;
   3098   // length is a small non-negative integer, due to the test above.
   3099   __ testl(length, length);
   3100   __ j(zero, &invoke, Label::kNear);
   3101   __ bind(&loop);
   3102   StackArgumentsAccessor args(elements, length,
   3103                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
   3104   __ Push(args.GetArgumentOperand(0));
   3105   __ decl(length);
   3106   __ j(not_zero, &loop);
   3107 
   3108   // Invoke the function.
   3109   __ bind(&invoke);
   3110 
   3111   InvokeFlag flag = CALL_FUNCTION;
   3112   if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
   3113     DCHECK(!info()->saves_caller_doubles());
   3114     // TODO(ishell): drop current frame before pushing arguments to the stack.
   3115     flag = JUMP_FUNCTION;
   3116     ParameterCount actual(rax);
   3117     // It is safe to use rbx, rcx and r8 as scratch registers here given that
   3118     // 1) we are not going to return to caller function anyway,
   3119     // 2) rbx (expected number of arguments) will be initialized below.
   3120     PrepareForTailCall(actual, rbx, rcx, r8);
   3121   }
   3122 
   3123   DCHECK(instr->HasPointerMap());
   3124   LPointerMap* pointers = instr->pointer_map();
   3125   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
   3126   ParameterCount actual(rax);
   3127   __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
   3128 }
   3129 
   3130 
   3131 void LCodeGen::DoPushArgument(LPushArgument* instr) {
   3132   LOperand* argument = instr->value();
   3133   EmitPushTaggedOperand(argument);
   3134 }
   3135 
   3136 
   3137 void LCodeGen::DoDrop(LDrop* instr) {
   3138   __ Drop(instr->count());
   3139 }
   3140 
   3141 
   3142 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   3143   Register result = ToRegister(instr->result());
   3144   __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   3145 }
   3146 
   3147 
   3148 void LCodeGen::DoContext(LContext* instr) {
   3149   Register result = ToRegister(instr->result());
   3150   if (info()->IsOptimizing()) {
   3151     __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset));
   3152   } else {
   3153     // If there is no frame, the context must be in rsi.
   3154     DCHECK(result.is(rsi));
   3155   }
   3156 }
   3157 
   3158 
   3159 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   3160   DCHECK(ToRegister(instr->context()).is(rsi));
   3161   __ Push(instr->hydrogen()->pairs());
   3162   __ Push(Smi::FromInt(instr->hydrogen()->flags()));
   3163   CallRuntime(Runtime::kDeclareGlobals, instr);
   3164 }
   3165 
   3166 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   3167                                  int formal_parameter_count, int arity,
   3168                                  bool is_tail_call, LInstruction* instr) {
   3169   bool dont_adapt_arguments =
   3170       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   3171   bool can_invoke_directly =
   3172       dont_adapt_arguments || formal_parameter_count == arity;
   3173 
   3174   Register function_reg = rdi;
   3175   LPointerMap* pointers = instr->pointer_map();
   3176 
   3177   if (can_invoke_directly) {
   3178     // Change context.
   3179     __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset));
   3180 
   3181     // Always initialize new target and number of actual arguments.
   3182     __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
   3183     __ Set(rax, arity);
   3184 
   3185     bool is_self_call = function.is_identical_to(info()->closure());
   3186 
   3187     // Invoke function.
   3188     if (is_self_call) {
   3189       Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
   3190       if (is_tail_call) {
   3191         __ Jump(self, RelocInfo::CODE_TARGET);
   3192       } else {
   3193         __ Call(self, RelocInfo::CODE_TARGET);
   3194       }
   3195     } else {
   3196       Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset);
   3197       if (is_tail_call) {
   3198         __ Jump(target);
   3199       } else {
   3200         __ Call(target);
   3201       }
   3202     }
   3203 
   3204     if (!is_tail_call) {
   3205       // Set up deoptimization.
   3206       RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
   3207     }
   3208   } else {
   3209     // We need to adapt arguments.
   3210     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3211     ParameterCount actual(arity);
   3212     ParameterCount expected(formal_parameter_count);
   3213     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
   3214     __ InvokeFunction(function_reg, no_reg, expected, actual, flag, generator);
   3215   }
   3216 }
   3217 
   3218 
   3219 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   3220   DCHECK(ToRegister(instr->result()).is(rax));
   3221 
   3222   if (instr->hydrogen()->IsTailCall()) {
   3223     if (NeedsEagerFrame()) __ leave();
   3224 
   3225     if (instr->target()->IsConstantOperand()) {
   3226       LConstantOperand* target = LConstantOperand::cast(instr->target());
   3227       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   3228       __ jmp(code, RelocInfo::CODE_TARGET);
   3229     } else {
   3230       DCHECK(instr->target()->IsRegister());
   3231       Register target = ToRegister(instr->target());
   3232       __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
   3233       __ jmp(target);
   3234     }
   3235   } else {
   3236     LPointerMap* pointers = instr->pointer_map();
   3237     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3238 
   3239     if (instr->target()->IsConstantOperand()) {
   3240       LConstantOperand* target = LConstantOperand::cast(instr->target());
   3241       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   3242       generator.BeforeCall(__ CallSize(code));
   3243       __ call(code, RelocInfo::CODE_TARGET);
   3244     } else {
   3245       DCHECK(instr->target()->IsRegister());
   3246       Register target = ToRegister(instr->target());
   3247       generator.BeforeCall(__ CallSize(target));
   3248       __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
   3249       __ call(target);
   3250     }
   3251     generator.AfterCall();
   3252   }
   3253 }
   3254 
   3255 
   3256 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
   3257   Register input_reg = ToRegister(instr->value());
   3258   __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
   3259                  Heap::kHeapNumberMapRootIndex);
   3260   DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   3261 
   3262   Label slow, allocated, done;
   3263   uint32_t available_regs = rax.bit() | rcx.bit() | rdx.bit() | rbx.bit();
   3264   available_regs &= ~input_reg.bit();
   3265   if (instr->context()->IsRegister()) {
   3266     // Make sure that the context isn't overwritten in the AllocateHeapNumber
   3267     // macro below.
   3268     available_regs &= ~ToRegister(instr->context()).bit();
   3269   }
   3270 
   3271   Register tmp =
   3272       Register::from_code(base::bits::CountTrailingZeros32(available_regs));
   3273   available_regs &= ~tmp.bit();
   3274   Register tmp2 =
   3275       Register::from_code(base::bits::CountTrailingZeros32(available_regs));
   3276 
   3277   // Preserve the value of all registers.
   3278   PushSafepointRegistersScope scope(this);
   3279 
   3280   __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   3281   // Check the sign of the argument. If the argument is positive, just
   3282   // return it. We do not need to patch the stack since |input| and
   3283   // |result| are the same register and |input| will be restored
   3284   // unchanged by popping safepoint registers.
   3285   __ testl(tmp, Immediate(HeapNumber::kSignMask));
   3286   __ j(zero, &done);
   3287 
   3288   __ AllocateHeapNumber(tmp, tmp2, &slow);
   3289   __ jmp(&allocated, Label::kNear);
   3290 
   3291   // Slow case: Call the runtime system to do the number allocation.
   3292   __ bind(&slow);
   3293   CallRuntimeFromDeferred(
   3294       Runtime::kAllocateHeapNumber, 0, instr, instr->context());
   3295   // Set the pointer to the new heap number in tmp.
   3296   if (!tmp.is(rax)) __ movp(tmp, rax);
   3297   // Restore input_reg after call to runtime.
   3298   __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
   3299 
   3300   __ bind(&allocated);
   3301   __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
   3302   __ shlq(tmp2, Immediate(1));
   3303   __ shrq(tmp2, Immediate(1));
   3304   __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
   3305   __ StoreToSafepointRegisterSlot(input_reg, tmp);
   3306 
   3307   __ bind(&done);
   3308 }
   3309 
   3310 
   3311 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
   3312   Register input_reg = ToRegister(instr->value());
   3313   __ testl(input_reg, input_reg);
   3314   Label is_positive;
   3315   __ j(not_sign, &is_positive, Label::kNear);
   3316   __ negl(input_reg);  // Sets flags.
   3317   DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
   3318   __ bind(&is_positive);
   3319 }
   3320 
   3321 
   3322 void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
   3323   Register input_reg = ToRegister(instr->value());
   3324   __ testp(input_reg, input_reg);
   3325   Label is_positive;
   3326   __ j(not_sign, &is_positive, Label::kNear);
   3327   __ negp(input_reg);  // Sets flags.
   3328   DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
   3329   __ bind(&is_positive);
   3330 }
   3331 
   3332 
   3333 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3334   // Class for deferred case.
   3335   class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
   3336    public:
   3337     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
   3338         : LDeferredCode(codegen), instr_(instr) { }
   3339     void Generate() override {
   3340       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
   3341     }
   3342     LInstruction* instr() override { return instr_; }
   3343 
   3344    private:
   3345     LMathAbs* instr_;
   3346   };
   3347 
   3348   DCHECK(instr->value()->Equals(instr->result()));
   3349   Representation r = instr->hydrogen()->value()->representation();
   3350 
   3351   if (r.IsDouble()) {
   3352     XMMRegister scratch = double_scratch0();
   3353     XMMRegister input_reg = ToDoubleRegister(instr->value());
   3354     __ Xorpd(scratch, scratch);
   3355     __ Subsd(scratch, input_reg);
   3356     __ Andpd(input_reg, scratch);
   3357   } else if (r.IsInteger32()) {
   3358     EmitIntegerMathAbs(instr);
   3359   } else if (r.IsSmi()) {
   3360     EmitSmiMathAbs(instr);
   3361   } else {  // Tagged case.
   3362     DeferredMathAbsTaggedHeapNumber* deferred =
   3363         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
   3364     Register input_reg = ToRegister(instr->value());
   3365     // Smi check.
   3366     __ JumpIfNotSmi(input_reg, deferred->entry());
   3367     EmitSmiMathAbs(instr);
   3368     __ bind(deferred->exit());
   3369   }
   3370 }
   3371 
   3372 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
   3373   XMMRegister output_reg = ToDoubleRegister(instr->result());
   3374   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3375   CpuFeatureScope scope(masm(), SSE4_1);
   3376   __ Roundsd(output_reg, input_reg, kRoundDown);
   3377 }
   3378 
   3379 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
   3380   XMMRegister xmm_scratch = double_scratch0();
   3381   Register output_reg = ToRegister(instr->result());
   3382   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3383 
   3384   if (CpuFeatures::IsSupported(SSE4_1)) {
   3385     CpuFeatureScope scope(masm(), SSE4_1);
   3386     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3387       // Deoptimize if minus zero.
   3388       __ Movq(output_reg, input_reg);
   3389       __ subq(output_reg, Immediate(1));
   3390       DeoptimizeIf(overflow, instr, Deoptimizer::kMinusZero);
   3391     }
   3392     __ Roundsd(xmm_scratch, input_reg, kRoundDown);
   3393     __ Cvttsd2si(output_reg, xmm_scratch);
   3394     __ cmpl(output_reg, Immediate(0x1));
   3395     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   3396   } else {
   3397     Label negative_sign, done;
   3398     // Deoptimize on unordered.
   3399     __ Xorpd(xmm_scratch, xmm_scratch);  // Zero the register.
   3400     __ Ucomisd(input_reg, xmm_scratch);
   3401     DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
   3402     __ j(below, &negative_sign, Label::kNear);
   3403 
   3404     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3405       // Check for negative zero.
   3406       Label positive_sign;
   3407       __ j(above, &positive_sign, Label::kNear);
   3408       __ Movmskpd(output_reg, input_reg);
   3409       __ testl(output_reg, Immediate(1));
   3410       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
   3411       __ Set(output_reg, 0);
   3412       __ jmp(&done);
   3413       __ bind(&positive_sign);
   3414     }
   3415 
   3416     // Use truncating instruction (OK because input is positive).
   3417     __ Cvttsd2si(output_reg, input_reg);
   3418     // Overflow is signalled with minint.
   3419     __ cmpl(output_reg, Immediate(0x1));
   3420     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   3421     __ jmp(&done, Label::kNear);
   3422 
   3423     // Non-zero negative reaches here.
   3424     __ bind(&negative_sign);
   3425     // Truncate, then compare and compensate.
   3426     __ Cvttsd2si(output_reg, input_reg);
   3427     __ Cvtlsi2sd(xmm_scratch, output_reg);
   3428     __ Ucomisd(input_reg, xmm_scratch);
   3429     __ j(equal, &done, Label::kNear);
   3430     __ subl(output_reg, Immediate(1));
   3431     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   3432 
   3433     __ bind(&done);
   3434   }
   3435 }
   3436 
   3437 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
   3438   XMMRegister xmm_scratch = double_scratch0();
   3439   XMMRegister output_reg = ToDoubleRegister(instr->result());
   3440   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3441   CpuFeatureScope scope(masm(), SSE4_1);
   3442   Label done;
   3443   __ Roundsd(output_reg, input_reg, kRoundUp);
   3444   __ Move(xmm_scratch, -0.5);
   3445   __ Addsd(xmm_scratch, output_reg);
   3446   __ Ucomisd(xmm_scratch, input_reg);
   3447   __ j(below_equal, &done, Label::kNear);
   3448   __ Move(xmm_scratch, 1.0);
   3449   __ Subsd(output_reg, xmm_scratch);
   3450   __ bind(&done);
   3451 }
   3452 
   3453 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
   3454   const XMMRegister xmm_scratch = double_scratch0();
   3455   Register output_reg = ToRegister(instr->result());
   3456   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3457   XMMRegister input_temp = ToDoubleRegister(instr->temp());
   3458   static int64_t one_half = V8_INT64_C(0x3FE0000000000000);  // 0.5
   3459   static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000);  // -0.5
   3460 
   3461   Label done, round_to_zero, below_one_half;
   3462   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   3463   __ movq(kScratchRegister, one_half);
   3464   __ Movq(xmm_scratch, kScratchRegister);
   3465   __ Ucomisd(xmm_scratch, input_reg);
   3466   __ j(above, &below_one_half, Label::kNear);
   3467 
   3468   // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
   3469   __ Addsd(xmm_scratch, input_reg);
   3470   __ Cvttsd2si(output_reg, xmm_scratch);
   3471   // Overflow is signalled with minint.
   3472   __ cmpl(output_reg, Immediate(0x1));
   3473   DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   3474   __ jmp(&done, dist);
   3475 
   3476   __ bind(&below_one_half);
   3477   __ movq(kScratchRegister, minus_one_half);
   3478   __ Movq(xmm_scratch, kScratchRegister);
   3479   __ Ucomisd(xmm_scratch, input_reg);
   3480   __ j(below_equal, &round_to_zero, Label::kNear);
   3481 
   3482   // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
   3483   // compare and compensate.
   3484   __ Movapd(input_temp, input_reg);  // Do not alter input_reg.
   3485   __ Subsd(input_temp, xmm_scratch);
   3486   __ Cvttsd2si(output_reg, input_temp);
   3487   // Catch minint due to overflow, and to prevent overflow when compensating.
   3488   __ cmpl(output_reg, Immediate(0x1));
   3489   DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   3490 
   3491   __ Cvtlsi2sd(xmm_scratch, output_reg);
   3492   __ Ucomisd(xmm_scratch, input_temp);
   3493   __ j(equal, &done, dist);
   3494   __ subl(output_reg, Immediate(1));
   3495   // No overflow because we already ruled out minint.
   3496   __ jmp(&done, dist);
   3497 
   3498   __ bind(&round_to_zero);
   3499   // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
   3500   // we can ignore the difference between a result of -0 and +0.
   3501   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3502     __ Movq(output_reg, input_reg);
   3503     __ testq(output_reg, output_reg);
   3504     DeoptimizeIf(negative, instr, Deoptimizer::kMinusZero);
   3505   }
   3506   __ Set(output_reg, 0);
   3507   __ bind(&done);
   3508 }
   3509 
   3510 
   3511 void LCodeGen::DoMathFround(LMathFround* instr) {
   3512   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3513   XMMRegister output_reg = ToDoubleRegister(instr->result());
   3514   __ Cvtsd2ss(output_reg, input_reg);
   3515   __ Cvtss2sd(output_reg, output_reg);
   3516 }
   3517 
   3518 
   3519 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   3520   XMMRegister output = ToDoubleRegister(instr->result());
   3521   if (instr->value()->IsDoubleRegister()) {
   3522     XMMRegister input = ToDoubleRegister(instr->value());
   3523     __ Sqrtsd(output, input);
   3524   } else {
   3525     Operand input = ToOperand(instr->value());
   3526     __ Sqrtsd(output, input);
   3527   }
   3528 }
   3529 
   3530 
   3531 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   3532   XMMRegister xmm_scratch = double_scratch0();
   3533   XMMRegister input_reg = ToDoubleRegister(instr->value());
   3534   DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
   3535 
   3536   // Note that according to ECMA-262 15.8.2.13:
   3537   // Math.pow(-Infinity, 0.5) == Infinity
   3538   // Math.sqrt(-Infinity) == NaN
   3539   Label done, sqrt;
   3540   // Check base for -Infinity.  According to IEEE-754, double-precision
   3541   // -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
   3542   __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000));
   3543   __ Movq(xmm_scratch, kScratchRegister);
   3544   __ Ucomisd(xmm_scratch, input_reg);
   3545   // Comparing -Infinity with NaN results in "unordered", which sets the
   3546   // zero flag as if both were equal.  However, it also sets the carry flag.
   3547   __ j(not_equal, &sqrt, Label::kNear);
   3548   __ j(carry, &sqrt, Label::kNear);
   3549   // If input is -Infinity, return Infinity.
   3550   __ Xorpd(input_reg, input_reg);
   3551   __ Subsd(input_reg, xmm_scratch);
   3552   __ jmp(&done, Label::kNear);
   3553 
   3554   // Square root.
   3555   __ bind(&sqrt);
   3556   __ Xorpd(xmm_scratch, xmm_scratch);
   3557   __ Addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
   3558   __ Sqrtsd(input_reg, input_reg);
   3559   __ bind(&done);
   3560 }
   3561 
   3562 
   3563 void LCodeGen::DoPower(LPower* instr) {
   3564   Representation exponent_type = instr->hydrogen()->right()->representation();
   3565   // Having marked this as a call, we can use any registers.
   3566   // Just make sure that the input/output registers are the expected ones.
   3567 
   3568   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
   3569   DCHECK(!instr->right()->IsRegister() ||
   3570          ToRegister(instr->right()).is(tagged_exponent));
   3571   DCHECK(!instr->right()->IsDoubleRegister() ||
   3572          ToDoubleRegister(instr->right()).is(xmm1));
   3573   DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
   3574   DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
   3575 
   3576   if (exponent_type.IsSmi()) {
   3577     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3578     __ CallStub(&stub);
   3579   } else if (exponent_type.IsTagged()) {
   3580     Label no_deopt;
   3581     __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear);
   3582     __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx);
   3583     DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   3584     __ bind(&no_deopt);
   3585     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3586     __ CallStub(&stub);
   3587   } else if (exponent_type.IsInteger32()) {
   3588     MathPowStub stub(isolate(), MathPowStub::INTEGER);
   3589     __ CallStub(&stub);
   3590   } else {
   3591     DCHECK(exponent_type.IsDouble());
   3592     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
   3593     __ CallStub(&stub);
   3594   }
   3595 }
   3596 
   3597 void LCodeGen::DoMathCos(LMathCos* instr) {
   3598   DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
   3599   DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
   3600   __ PrepareCallCFunction(1);
   3601   __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 1);
   3602 }
   3603 
   3604 void LCodeGen::DoMathExp(LMathExp* instr) {
   3605   DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
   3606   DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
   3607   __ PrepareCallCFunction(1);
   3608   __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 1);
   3609 }
   3610 
   3611 void LCodeGen::DoMathSin(LMathSin* instr) {
   3612   DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
   3613   DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
   3614   __ PrepareCallCFunction(1);
   3615   __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 1);
   3616 }
   3617 
   3618 void LCodeGen::DoMathLog(LMathLog* instr) {
   3619   DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
   3620   DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
   3621   __ PrepareCallCFunction(1);
   3622   __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 1);
   3623 }
   3624 
   3625 
   3626 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   3627   Register input = ToRegister(instr->value());
   3628   Register result = ToRegister(instr->result());
   3629 
   3630   __ Lzcntl(result, input);
   3631 }
   3632 
   3633 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
   3634                                   Register scratch1, Register scratch2,
   3635                                   Register scratch3) {
   3636 #if DEBUG
   3637   if (actual.is_reg()) {
   3638     DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
   3639   } else {
   3640     DCHECK(!AreAliased(scratch1, scratch2, scratch3));
   3641   }
   3642 #endif
   3643   if (FLAG_code_comments) {
   3644     if (actual.is_reg()) {
   3645       Comment(";;; PrepareForTailCall, actual: %s {",
   3646               RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
   3647                   actual.reg().code()));
   3648     } else {
   3649       Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
   3650     }
   3651   }
   3652 
   3653   // Check if next frame is an arguments adaptor frame.
   3654   Register caller_args_count_reg = scratch1;
   3655   Label no_arguments_adaptor, formal_parameter_count_loaded;
   3656   __ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
   3657   __ Cmp(Operand(scratch2, StandardFrameConstants::kContextOffset),
   3658          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   3659   __ j(not_equal, &no_arguments_adaptor, Label::kNear);
   3660 
   3661   // Drop current frame and load arguments count from arguments adaptor frame.
   3662   __ movp(rbp, scratch2);
   3663   __ SmiToInteger32(
   3664       caller_args_count_reg,
   3665       Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
   3666   __ jmp(&formal_parameter_count_loaded, Label::kNear);
   3667 
   3668   __ bind(&no_arguments_adaptor);
   3669   // Load caller's formal parameter count.
   3670   __ movp(caller_args_count_reg,
   3671           Immediate(info()->literal()->parameter_count()));
   3672 
   3673   __ bind(&formal_parameter_count_loaded);
   3674   __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3,
   3675                         ReturnAddressState::kNotOnStack);
   3676   Comment(";;; }");
   3677 }
   3678 
   3679 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   3680   HInvokeFunction* hinstr = instr->hydrogen();
   3681   DCHECK(ToRegister(instr->context()).is(rsi));
   3682   DCHECK(ToRegister(instr->function()).is(rdi));
   3683   DCHECK(instr->HasPointerMap());
   3684 
   3685   bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
   3686 
   3687   if (is_tail_call) {
   3688     DCHECK(!info()->saves_caller_doubles());
   3689     ParameterCount actual(instr->arity());
   3690     // It is safe to use rbx, rcx and r8 as scratch registers here given that
   3691     // 1) we are not going to return to caller function anyway,
   3692     // 2) rbx (expected number of arguments) will be initialized below.
   3693     PrepareForTailCall(actual, rbx, rcx, r8);
   3694   }
   3695 
   3696   Handle<JSFunction> known_function = hinstr->known_function();
   3697   if (known_function.is_null()) {
   3698     LPointerMap* pointers = instr->pointer_map();
   3699     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3700     ParameterCount actual(instr->arity());
   3701     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
   3702     __ InvokeFunction(rdi, no_reg, actual, flag, generator);
   3703   } else {
   3704     CallKnownFunction(known_function, hinstr->formal_parameter_count(),
   3705                       instr->arity(), is_tail_call, instr);
   3706   }
   3707 }
   3708 
   3709 
   3710 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
   3711   DCHECK(ToRegister(instr->context()).is(rsi));
   3712   DCHECK(ToRegister(instr->constructor()).is(rdi));
   3713   DCHECK(ToRegister(instr->result()).is(rax));
   3714 
   3715   __ Set(rax, instr->arity());
   3716   __ Move(rbx, instr->hydrogen()->site());
   3717 
   3718   ElementsKind kind = instr->hydrogen()->elements_kind();
   3719   AllocationSiteOverrideMode override_mode =
   3720       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
   3721           ? DISABLE_ALLOCATION_SITES
   3722           : DONT_OVERRIDE;
   3723 
   3724   if (instr->arity() == 0) {
   3725     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
   3726     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3727   } else if (instr->arity() == 1) {
   3728     Label done;
   3729     if (IsFastPackedElementsKind(kind)) {
   3730       Label packed_case;
   3731       // We might need a change here
   3732       // look at the first argument
   3733       __ movp(rcx, Operand(rsp, 0));
   3734       __ testp(rcx, rcx);
   3735       __ j(zero, &packed_case, Label::kNear);
   3736 
   3737       ElementsKind holey_kind = GetHoleyElementsKind(kind);
   3738       ArraySingleArgumentConstructorStub stub(isolate(),
   3739                                               holey_kind,
   3740                                               override_mode);
   3741       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3742       __ jmp(&done, Label::kNear);
   3743       __ bind(&packed_case);
   3744     }
   3745 
   3746     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
   3747     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3748     __ bind(&done);
   3749   } else {
   3750     ArrayNArgumentsConstructorStub stub(isolate());
   3751     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3752   }
   3753 }
   3754 
   3755 
   3756 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   3757   DCHECK(ToRegister(instr->context()).is(rsi));
   3758   CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
   3759 }
   3760 
   3761 
   3762 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   3763   Register function = ToRegister(instr->function());
   3764   Register code_object = ToRegister(instr->code_object());
   3765   __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize));
   3766   __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
   3767 }
   3768 
   3769 
   3770 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   3771   Register result = ToRegister(instr->result());
   3772   Register base = ToRegister(instr->base_object());
   3773   if (instr->offset()->IsConstantOperand()) {
   3774     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
   3775     __ leap(result, Operand(base, ToInteger32(offset)));
   3776   } else {
   3777     Register offset = ToRegister(instr->offset());
   3778     __ leap(result, Operand(base, offset, times_1, 0));
   3779   }
   3780 }
   3781 
   3782 
   3783 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   3784   HStoreNamedField* hinstr = instr->hydrogen();
   3785   Representation representation = instr->representation();
   3786 
   3787   HObjectAccess access = hinstr->access();
   3788   int offset = access.offset();
   3789 
   3790   if (access.IsExternalMemory()) {
   3791     DCHECK(!hinstr->NeedsWriteBarrier());
   3792     Register value = ToRegister(instr->value());
   3793     if (instr->object()->IsConstantOperand()) {
   3794       DCHECK(value.is(rax));
   3795       LConstantOperand* object = LConstantOperand::cast(instr->object());
   3796       __ store_rax(ToExternalReference(object));
   3797     } else {
   3798       Register object = ToRegister(instr->object());
   3799       __ Store(MemOperand(object, offset), value, representation);
   3800     }
   3801     return;
   3802   }
   3803 
   3804   Register object = ToRegister(instr->object());
   3805   __ AssertNotSmi(object);
   3806 
   3807   DCHECK(!representation.IsSmi() ||
   3808          !instr->value()->IsConstantOperand() ||
   3809          IsInteger32Constant(LConstantOperand::cast(instr->value())));
   3810   if (!FLAG_unbox_double_fields && representation.IsDouble()) {
   3811     DCHECK(access.IsInobject());
   3812     DCHECK(!hinstr->has_transition());
   3813     DCHECK(!hinstr->NeedsWriteBarrier());
   3814     XMMRegister value = ToDoubleRegister(instr->value());
   3815     __ Movsd(FieldOperand(object, offset), value);
   3816     return;
   3817   }
   3818 
   3819   if (hinstr->has_transition()) {
   3820     Handle<Map> transition = hinstr->transition_map();
   3821     AddDeprecationDependency(transition);
   3822     if (!hinstr->NeedsWriteBarrierForMap()) {
   3823       __ Move(FieldOperand(object, HeapObject::kMapOffset), transition);
   3824     } else {
   3825       Register temp = ToRegister(instr->temp());
   3826       __ Move(kScratchRegister, transition);
   3827       __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister);
   3828       // Update the write barrier for the map field.
   3829       __ RecordWriteForMap(object,
   3830                            kScratchRegister,
   3831                            temp,
   3832                            kSaveFPRegs);
   3833     }
   3834   }
   3835 
   3836   // Do the store.
   3837   Register write_register = object;
   3838   if (!access.IsInobject()) {
   3839     write_register = ToRegister(instr->temp());
   3840     __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
   3841   }
   3842 
   3843   if (representation.IsSmi() && SmiValuesAre32Bits() &&
   3844       hinstr->value()->representation().IsInteger32()) {
   3845     DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   3846     if (FLAG_debug_code) {
   3847       Register scratch = kScratchRegister;
   3848       __ Load(scratch, FieldOperand(write_register, offset), representation);
   3849       __ AssertSmi(scratch);
   3850     }
   3851     // Store int value directly to upper half of the smi.
   3852     STATIC_ASSERT(kSmiTag == 0);
   3853     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
   3854     offset += kPointerSize / 2;
   3855     representation = Representation::Integer32();
   3856   }
   3857 
   3858   Operand operand = FieldOperand(write_register, offset);
   3859 
   3860   if (FLAG_unbox_double_fields && representation.IsDouble()) {
   3861     DCHECK(access.IsInobject());
   3862     XMMRegister value = ToDoubleRegister(instr->value());
   3863     __ Movsd(operand, value);
   3864 
   3865   } else if (instr->value()->IsRegister()) {
   3866     Register value = ToRegister(instr->value());
   3867     __ Store(operand, value, representation);
   3868   } else {
   3869     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   3870     if (IsInteger32Constant(operand_value)) {
   3871       DCHECK(!hinstr->NeedsWriteBarrier());
   3872       int32_t value = ToInteger32(operand_value);
   3873       if (representation.IsSmi()) {
   3874         __ Move(operand, Smi::FromInt(value));
   3875 
   3876       } else {
   3877         __ movl(operand, Immediate(value));
   3878       }
   3879 
   3880     } else if (IsExternalConstant(operand_value)) {
   3881       DCHECK(!hinstr->NeedsWriteBarrier());
   3882       ExternalReference ptr = ToExternalReference(operand_value);
   3883       __ Move(kScratchRegister, ptr);
   3884       __ movp(operand, kScratchRegister);
   3885     } else {
   3886       Handle<Object> handle_value = ToHandle(operand_value);
   3887       DCHECK(!hinstr->NeedsWriteBarrier());
   3888       __ Move(operand, handle_value);
   3889     }
   3890   }
   3891 
   3892   if (hinstr->NeedsWriteBarrier()) {
   3893     Register value = ToRegister(instr->value());
   3894     Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
   3895     // Update the write barrier for the object for in-object properties.
   3896     __ RecordWriteField(write_register,
   3897                         offset,
   3898                         value,
   3899                         temp,
   3900                         kSaveFPRegs,
   3901                         EMIT_REMEMBERED_SET,
   3902                         hinstr->SmiCheckForWriteBarrier(),
   3903                         hinstr->PointersToHereCheckForValue());
   3904   }
   3905 }
   3906 
   3907 
   3908 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   3909   DCHECK(ToRegister(instr->context()).is(rsi));
   3910   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   3911   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   3912 
   3913   EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
   3914 
   3915   __ Move(StoreDescriptor::NameRegister(), instr->hydrogen()->name());
   3916   Handle<Code> ic =
   3917       CodeFactory::StoreICInOptimizedCode(isolate(), instr->language_mode())
   3918           .code();
   3919   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3920 }
   3921 
   3922 
   3923 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
   3924   Representation representation = instr->hydrogen()->length()->representation();
   3925   DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
   3926   DCHECK(representation.IsSmiOrInteger32());
   3927 
   3928   Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal;
   3929   if (instr->length()->IsConstantOperand()) {
   3930     int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
   3931     Register index = ToRegister(instr->index());
   3932     if (representation.IsSmi()) {
   3933       __ Cmp(index, Smi::FromInt(length));
   3934     } else {
   3935       __ cmpl(index, Immediate(length));
   3936     }
   3937     cc = CommuteCondition(cc);
   3938   } else if (instr->index()->IsConstantOperand()) {
   3939     int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
   3940     if (instr->length()->IsRegister()) {
   3941       Register length = ToRegister(instr->length());
   3942       if (representation.IsSmi()) {
   3943         __ Cmp(length, Smi::FromInt(index));
   3944       } else {
   3945         __ cmpl(length, Immediate(index));
   3946       }
   3947     } else {
   3948       Operand length = ToOperand(instr->length());
   3949       if (representation.IsSmi()) {
   3950         __ Cmp(length, Smi::FromInt(index));
   3951       } else {
   3952         __ cmpl(length, Immediate(index));
   3953       }
   3954     }
   3955   } else {
   3956     Register index = ToRegister(instr->index());
   3957     if (instr->length()->IsRegister()) {
   3958       Register length = ToRegister(instr->length());
   3959       if (representation.IsSmi()) {
   3960         __ cmpp(length, index);
   3961       } else {
   3962         __ cmpl(length, index);
   3963       }
   3964     } else {
   3965       Operand length = ToOperand(instr->length());
   3966       if (representation.IsSmi()) {
   3967         __ cmpp(length, index);
   3968       } else {
   3969         __ cmpl(length, index);
   3970       }
   3971     }
   3972   }
   3973   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   3974     Label done;
   3975     __ j(NegateCondition(cc), &done, Label::kNear);
   3976     __ int3();
   3977     __ bind(&done);
   3978   } else {
   3979     DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
   3980   }
   3981 }
   3982 
   3983 
   3984 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
   3985   ElementsKind elements_kind = instr->elements_kind();
   3986   LOperand* key = instr->key();
   3987   if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
   3988     Register key_reg = ToRegister(key);
   3989     Representation key_representation =
   3990         instr->hydrogen()->key()->representation();
   3991     if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
   3992       __ SmiToInteger64(key_reg, key_reg);
   3993     } else if (instr->hydrogen()->IsDehoisted()) {
   3994       // Sign extend key because it could be a 32 bit negative value
   3995       // and the dehoisted address computation happens in 64 bits
   3996       __ movsxlq(key_reg, key_reg);
   3997     }
   3998   }
   3999   Operand operand(BuildFastArrayOperand(
   4000       instr->elements(),
   4001       key,
   4002       instr->hydrogen()->key()->representation(),
   4003       elements_kind,
   4004       instr->base_offset()));
   4005 
   4006   if (elements_kind == FLOAT32_ELEMENTS) {
   4007     XMMRegister value(ToDoubleRegister(instr->value()));
   4008     __ Cvtsd2ss(value, value);
   4009     __ Movss(operand, value);
   4010   } else if (elements_kind == FLOAT64_ELEMENTS) {
   4011     __ Movsd(operand, ToDoubleRegister(instr->value()));
   4012   } else {
   4013     Register value(ToRegister(instr->value()));
   4014     switch (elements_kind) {
   4015       case INT8_ELEMENTS:
   4016       case UINT8_ELEMENTS:
   4017       case UINT8_CLAMPED_ELEMENTS:
   4018         __ movb(operand, value);
   4019         break;
   4020       case INT16_ELEMENTS:
   4021       case UINT16_ELEMENTS:
   4022         __ movw(operand, value);
   4023         break;
   4024       case INT32_ELEMENTS:
   4025       case UINT32_ELEMENTS:
   4026         __ movl(operand, value);
   4027         break;
   4028       case FLOAT32_ELEMENTS:
   4029       case FLOAT64_ELEMENTS:
   4030       case FAST_ELEMENTS:
   4031       case FAST_SMI_ELEMENTS:
   4032       case FAST_DOUBLE_ELEMENTS:
   4033       case FAST_HOLEY_ELEMENTS:
   4034       case FAST_HOLEY_SMI_ELEMENTS:
   4035       case FAST_HOLEY_DOUBLE_ELEMENTS:
   4036       case DICTIONARY_ELEMENTS:
   4037       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   4038       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   4039       case FAST_STRING_WRAPPER_ELEMENTS:
   4040       case SLOW_STRING_WRAPPER_ELEMENTS:
   4041       case NO_ELEMENTS:
   4042         UNREACHABLE();
   4043         break;
   4044     }
   4045   }
   4046 }
   4047 
   4048 
   4049 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
   4050   XMMRegister value = ToDoubleRegister(instr->value());
   4051   LOperand* key = instr->key();
   4052   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
   4053       instr->hydrogen()->IsDehoisted()) {
   4054     // Sign extend key because it could be a 32 bit negative value
   4055     // and the dehoisted address computation happens in 64 bits
   4056     __ movsxlq(ToRegister(key), ToRegister(key));
   4057   }
   4058   if (instr->NeedsCanonicalization()) {
   4059     XMMRegister xmm_scratch = double_scratch0();
   4060     // Turn potential sNaN value into qNaN.
   4061     __ Xorpd(xmm_scratch, xmm_scratch);
   4062     __ Subsd(value, xmm_scratch);
   4063   }
   4064 
   4065   Operand double_store_operand = BuildFastArrayOperand(
   4066       instr->elements(),
   4067       key,
   4068       instr->hydrogen()->key()->representation(),
   4069       FAST_DOUBLE_ELEMENTS,
   4070       instr->base_offset());
   4071 
   4072   __ Movsd(double_store_operand, value);
   4073 }
   4074 
   4075 
   4076 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
   4077   HStoreKeyed* hinstr = instr->hydrogen();
   4078   LOperand* key = instr->key();
   4079   int offset = instr->base_offset();
   4080   Representation representation = hinstr->value()->representation();
   4081 
   4082   if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
   4083       instr->hydrogen()->IsDehoisted()) {
   4084     // Sign extend key because it could be a 32 bit negative value
   4085     // and the dehoisted address computation happens in 64 bits
   4086     __ movsxlq(ToRegister(key), ToRegister(key));
   4087   }
   4088   if (representation.IsInteger32() && SmiValuesAre32Bits()) {
   4089     DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   4090     DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
   4091     if (FLAG_debug_code) {
   4092       Register scratch = kScratchRegister;
   4093       __ Load(scratch,
   4094               BuildFastArrayOperand(instr->elements(),
   4095                                     key,
   4096                                     instr->hydrogen()->key()->representation(),
   4097                                     FAST_ELEMENTS,
   4098                                     offset),
   4099               Representation::Smi());
   4100       __ AssertSmi(scratch);
   4101     }
   4102     // Store int value directly to upper half of the smi.
   4103     STATIC_ASSERT(kSmiTag == 0);
   4104     DCHECK(kSmiTagSize + kSmiShiftSize == 32);
   4105     offset += kPointerSize / 2;
   4106   }
   4107 
   4108   Operand operand =
   4109       BuildFastArrayOperand(instr->elements(),
   4110                             key,
   4111                             instr->hydrogen()->key()->representation(),
   4112                             FAST_ELEMENTS,
   4113                             offset);
   4114   if (instr->value()->IsRegister()) {
   4115     __ Store(operand, ToRegister(instr->value()), representation);
   4116   } else {
   4117     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   4118     if (IsInteger32Constant(operand_value)) {
   4119       int32_t value = ToInteger32(operand_value);
   4120       if (representation.IsSmi()) {
   4121         __ Move(operand, Smi::FromInt(value));
   4122 
   4123       } else {
   4124         __ movl(operand, Immediate(value));
   4125       }
   4126     } else {
   4127       Handle<Object> handle_value = ToHandle(operand_value);
   4128       __ Move(operand, handle_value);
   4129     }
   4130   }
   4131 
   4132   if (hinstr->NeedsWriteBarrier()) {
   4133     Register elements = ToRegister(instr->elements());
   4134     DCHECK(instr->value()->IsRegister());
   4135     Register value = ToRegister(instr->value());
   4136     DCHECK(!key->IsConstantOperand());
   4137     SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
   4138             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   4139     // Compute address of modified element and store it into key register.
   4140     Register key_reg(ToRegister(key));
   4141     __ leap(key_reg, operand);
   4142     __ RecordWrite(elements,
   4143                    key_reg,
   4144                    value,
   4145                    kSaveFPRegs,
   4146                    EMIT_REMEMBERED_SET,
   4147                    check_needed,
   4148                    hinstr->PointersToHereCheckForValue());
   4149   }
   4150 }
   4151 
   4152 
   4153 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
   4154   if (instr->is_fixed_typed_array()) {
   4155     DoStoreKeyedExternalArray(instr);
   4156   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
   4157     DoStoreKeyedFixedDoubleArray(instr);
   4158   } else {
   4159     DoStoreKeyedFixedArray(instr);
   4160   }
   4161 }
   4162 
   4163 
   4164 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   4165   DCHECK(ToRegister(instr->context()).is(rsi));
   4166   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   4167   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
   4168   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   4169 
   4170   EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
   4171 
   4172   Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
   4173                         isolate(), instr->language_mode())
   4174                         .code();
   4175   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4176 }
   4177 
   4178 
   4179 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
   4180   class DeferredMaybeGrowElements final : public LDeferredCode {
   4181    public:
   4182     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
   4183         : LDeferredCode(codegen), instr_(instr) {}
   4184     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
   4185     LInstruction* instr() override { return instr_; }
   4186 
   4187    private:
   4188     LMaybeGrowElements* instr_;
   4189   };
   4190 
   4191   Register result = rax;
   4192   DeferredMaybeGrowElements* deferred =
   4193       new (zone()) DeferredMaybeGrowElements(this, instr);
   4194   LOperand* key = instr->key();
   4195   LOperand* current_capacity = instr->current_capacity();
   4196 
   4197   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
   4198   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
   4199   DCHECK(key->IsConstantOperand() || key->IsRegister());
   4200   DCHECK(current_capacity->IsConstantOperand() ||
   4201          current_capacity->IsRegister());
   4202 
   4203   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
   4204     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
   4205     int32_t constant_capacity =
   4206         ToInteger32(LConstantOperand::cast(current_capacity));
   4207     if (constant_key >= constant_capacity) {
   4208       // Deferred case.
   4209       __ jmp(deferred->entry());
   4210     }
   4211   } else if (key->IsConstantOperand()) {
   4212     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
   4213     __ cmpl(ToRegister(current_capacity), Immediate(constant_key));
   4214     __ j(less_equal, deferred->entry());
   4215   } else if (current_capacity->IsConstantOperand()) {
   4216     int32_t constant_capacity =
   4217         ToInteger32(LConstantOperand::cast(current_capacity));
   4218     __ cmpl(ToRegister(key), Immediate(constant_capacity));
   4219     __ j(greater_equal, deferred->entry());
   4220   } else {
   4221     __ cmpl(ToRegister(key), ToRegister(current_capacity));
   4222     __ j(greater_equal, deferred->entry());
   4223   }
   4224 
   4225   if (instr->elements()->IsRegister()) {
   4226     __ movp(result, ToRegister(instr->elements()));
   4227   } else {
   4228     __ movp(result, ToOperand(instr->elements()));
   4229   }
   4230 
   4231   __ bind(deferred->exit());
   4232 }
   4233 
   4234 
   4235 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
   4236   // TODO(3095996): Get rid of this. For now, we need to make the
   4237   // result register contain a valid pointer because it is already
   4238   // contained in the register pointer map.
   4239   Register result = rax;
   4240   __ Move(result, Smi::FromInt(0));
   4241 
   4242   // We have to call a stub.
   4243   {
   4244     PushSafepointRegistersScope scope(this);
   4245     if (instr->object()->IsConstantOperand()) {
   4246       LConstantOperand* constant_object =
   4247           LConstantOperand::cast(instr->object());
   4248       if (IsSmiConstant(constant_object)) {
   4249         Smi* immediate = ToSmi(constant_object);
   4250         __ Move(result, immediate);
   4251       } else {
   4252         Handle<Object> handle_value = ToHandle(constant_object);
   4253         __ Move(result, handle_value);
   4254       }
   4255     } else if (instr->object()->IsRegister()) {
   4256       __ Move(result, ToRegister(instr->object()));
   4257     } else {
   4258       __ movp(result, ToOperand(instr->object()));
   4259     }
   4260 
   4261     LOperand* key = instr->key();
   4262     if (key->IsConstantOperand()) {
   4263       __ Move(rbx, ToSmi(LConstantOperand::cast(key)));
   4264     } else {
   4265       __ Move(rbx, ToRegister(key));
   4266       __ Integer32ToSmi(rbx, rbx);
   4267     }
   4268 
   4269     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
   4270                                instr->hydrogen()->kind());
   4271     __ CallStub(&stub);
   4272     RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
   4273     __ StoreToSafepointRegisterSlot(result, result);
   4274   }
   4275 
   4276   // Deopt on smi, which means the elements array changed to dictionary mode.
   4277   Condition is_smi = __ CheckSmi(result);
   4278   DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
   4279 }
   4280 
   4281 
   4282 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   4283   Register object_reg = ToRegister(instr->object());
   4284 
   4285   Handle<Map> from_map = instr->original_map();
   4286   Handle<Map> to_map = instr->transitioned_map();
   4287   ElementsKind from_kind = instr->from_kind();
   4288   ElementsKind to_kind = instr->to_kind();
   4289 
   4290   Label not_applicable;
   4291   __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
   4292   __ j(not_equal, &not_applicable);
   4293   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
   4294     Register new_map_reg = ToRegister(instr->new_map_temp());
   4295     __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
   4296     __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
   4297     // Write barrier.
   4298     __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()),
   4299                          kDontSaveFPRegs);
   4300   } else {
   4301     DCHECK(object_reg.is(rax));
   4302     DCHECK(ToRegister(instr->context()).is(rsi));
   4303     PushSafepointRegistersScope scope(this);
   4304     __ Move(rbx, to_map);
   4305     TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
   4306     __ CallStub(&stub);
   4307     RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
   4308   }
   4309   __ bind(&not_applicable);
   4310 }
   4311 
   4312 
   4313 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   4314   Register object = ToRegister(instr->object());
   4315   Register temp = ToRegister(instr->temp());
   4316   Label no_memento_found;
   4317   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
   4318   DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound);
   4319   __ bind(&no_memento_found);
   4320 }
   4321 
   4322 
   4323 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   4324   DCHECK(ToRegister(instr->context()).is(rsi));
   4325   DCHECK(ToRegister(instr->left()).is(rdx));
   4326   DCHECK(ToRegister(instr->right()).is(rax));
   4327   StringAddStub stub(isolate(),
   4328                      instr->hydrogen()->flags(),
   4329                      instr->hydrogen()->pretenure_flag());
   4330   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   4331 }
   4332 
   4333 
   4334 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   4335   class DeferredStringCharCodeAt final : public LDeferredCode {
   4336    public:
   4337     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
   4338         : LDeferredCode(codegen), instr_(instr) { }
   4339     void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
   4340     LInstruction* instr() override { return instr_; }
   4341 
   4342    private:
   4343     LStringCharCodeAt* instr_;
   4344   };
   4345 
   4346   DeferredStringCharCodeAt* deferred =
   4347       new(zone()) DeferredStringCharCodeAt(this, instr);
   4348 
   4349   StringCharLoadGenerator::Generate(masm(),
   4350                                     ToRegister(instr->string()),
   4351                                     ToRegister(instr->index()),
   4352                                     ToRegister(instr->result()),
   4353                                     deferred->entry());
   4354   __ bind(deferred->exit());
   4355 }
   4356 
   4357 
   4358 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   4359   Register string = ToRegister(instr->string());
   4360   Register result = ToRegister(instr->result());
   4361 
   4362   // TODO(3095996): Get rid of this. For now, we need to make the
   4363   // result register contain a valid pointer because it is already
   4364   // contained in the register pointer map.
   4365   __ Set(result, 0);
   4366 
   4367   PushSafepointRegistersScope scope(this);
   4368   __ Push(string);
   4369   // Push the index as a smi. This is safe because of the checks in
   4370   // DoStringCharCodeAt above.
   4371   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
   4372   if (instr->index()->IsConstantOperand()) {
   4373     int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   4374     __ Push(Smi::FromInt(const_index));
   4375   } else {
   4376     Register index = ToRegister(instr->index());
   4377     __ Integer32ToSmi(index, index);
   4378     __ Push(index);
   4379   }
   4380   CallRuntimeFromDeferred(
   4381       Runtime::kStringCharCodeAtRT, 2, instr, instr->context());
   4382   __ AssertSmi(rax);
   4383   __ SmiToInteger32(rax, rax);
   4384   __ StoreToSafepointRegisterSlot(result, rax);
   4385 }
   4386 
   4387 
   4388 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   4389   class DeferredStringCharFromCode final : public LDeferredCode {
   4390    public:
   4391     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
   4392         : LDeferredCode(codegen), instr_(instr) { }
   4393     void Generate() override {
   4394       codegen()->DoDeferredStringCharFromCode(instr_);
   4395     }
   4396     LInstruction* instr() override { return instr_; }
   4397 
   4398    private:
   4399     LStringCharFromCode* instr_;
   4400   };
   4401 
   4402   DeferredStringCharFromCode* deferred =
   4403       new(zone()) DeferredStringCharFromCode(this, instr);
   4404 
   4405   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
   4406   Register char_code = ToRegister(instr->char_code());
   4407   Register result = ToRegister(instr->result());
   4408   DCHECK(!char_code.is(result));
   4409 
   4410   __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode));
   4411   __ j(above, deferred->entry());
   4412   __ movsxlq(char_code, char_code);
   4413   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
   4414   __ movp(result, FieldOperand(result,
   4415                                char_code, times_pointer_size,
   4416                                FixedArray::kHeaderSize));
   4417   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
   4418   __ j(equal, deferred->entry());
   4419   __ bind(deferred->exit());
   4420 }
   4421 
   4422 
   4423 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   4424   Register char_code = ToRegister(instr->char_code());
   4425   Register result = ToRegister(instr->result());
   4426 
   4427   // TODO(3095996): Get rid of this. For now, we need to make the
   4428   // result register contain a valid pointer because it is already
   4429   // contained in the register pointer map.
   4430   __ Set(result, 0);
   4431 
   4432   PushSafepointRegistersScope scope(this);
   4433   __ Integer32ToSmi(char_code, char_code);
   4434   __ Push(char_code);
   4435   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
   4436                           instr->context());
   4437   __ StoreToSafepointRegisterSlot(result, rax);
   4438 }
   4439 
   4440 
   4441 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   4442   LOperand* input = instr->value();
   4443   DCHECK(input->IsRegister() || input->IsStackSlot());
   4444   LOperand* output = instr->result();
   4445   DCHECK(output->IsDoubleRegister());
   4446   if (input->IsRegister()) {
   4447     __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
   4448   } else {
   4449     __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
   4450   }
   4451 }
   4452 
   4453 
   4454 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   4455   LOperand* input = instr->value();
   4456   LOperand* output = instr->result();
   4457 
   4458   __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
   4459 }
   4460 
   4461 
   4462 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
   4463   class DeferredNumberTagI final : public LDeferredCode {
   4464    public:
   4465     DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
   4466         : LDeferredCode(codegen), instr_(instr) { }
   4467     void Generate() override {
   4468       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
   4469                                        instr_->temp2(), SIGNED_INT32);
   4470     }
   4471     LInstruction* instr() override { return instr_; }
   4472 
   4473    private:
   4474     LNumberTagI* instr_;
   4475   };
   4476 
   4477   LOperand* input = instr->value();
   4478   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   4479   Register reg = ToRegister(input);
   4480 
   4481   if (SmiValuesAre32Bits()) {
   4482     __ Integer32ToSmi(reg, reg);
   4483   } else {
   4484     DCHECK(SmiValuesAre31Bits());
   4485     DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
   4486     __ Integer32ToSmi(reg, reg);
   4487     __ j(overflow, deferred->entry());
   4488     __ bind(deferred->exit());
   4489   }
   4490 }
   4491 
   4492 
   4493 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4494   class DeferredNumberTagU final : public LDeferredCode {
   4495    public:
   4496     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
   4497         : LDeferredCode(codegen), instr_(instr) { }
   4498     void Generate() override {
   4499       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
   4500                                        instr_->temp2(), UNSIGNED_INT32);
   4501     }
   4502     LInstruction* instr() override { return instr_; }
   4503 
   4504    private:
   4505     LNumberTagU* instr_;
   4506   };
   4507 
   4508   LOperand* input = instr->value();
   4509   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   4510   Register reg = ToRegister(input);
   4511 
   4512   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
   4513   __ cmpl(reg, Immediate(Smi::kMaxValue));
   4514   __ j(above, deferred->entry());
   4515   __ Integer32ToSmi(reg, reg);
   4516   __ bind(deferred->exit());
   4517 }
   4518 
   4519 
   4520 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
   4521                                      LOperand* value,
   4522                                      LOperand* temp1,
   4523                                      LOperand* temp2,
   4524                                      IntegerSignedness signedness) {
   4525   Label done, slow;
   4526   Register reg = ToRegister(value);
   4527   Register tmp = ToRegister(temp1);
   4528   XMMRegister temp_xmm = ToDoubleRegister(temp2);
   4529 
   4530   // Load value into temp_xmm which will be preserved across potential call to
   4531   // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
   4532   // XMM registers on x64).
   4533   if (signedness == SIGNED_INT32) {
   4534     DCHECK(SmiValuesAre31Bits());
   4535     // There was overflow, so bits 30 and 31 of the original integer
   4536     // disagree. Try to allocate a heap number in new space and store
   4537     // the value in there. If that fails, call the runtime system.
   4538     __ SmiToInteger32(reg, reg);
   4539     __ xorl(reg, Immediate(0x80000000));
   4540     __ Cvtlsi2sd(temp_xmm, reg);
   4541   } else {
   4542     DCHECK(signedness == UNSIGNED_INT32);
   4543     __ LoadUint32(temp_xmm, reg);
   4544   }
   4545 
   4546   if (FLAG_inline_new) {
   4547     __ AllocateHeapNumber(reg, tmp, &slow);
   4548     __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar);
   4549   }
   4550 
   4551   // Slow case: Call the runtime system to do the number allocation.
   4552   __ bind(&slow);
   4553   {
   4554     // Put a valid pointer value in the stack slot where the result
   4555     // register is stored, as this register is in the pointer map, but contains
   4556     // an integer value.
   4557     __ Set(reg, 0);
   4558 
   4559     // Preserve the value of all registers.
   4560     PushSafepointRegistersScope scope(this);
   4561 
   4562     // NumberTagIU uses the context from the frame, rather than
   4563     // the environment's HContext or HInlinedContext value.
   4564     // They only call Runtime::kAllocateHeapNumber.
   4565     // The corresponding HChange instructions are added in a phase that does
   4566     // not have easy access to the local context.
   4567     __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   4568     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4569     RecordSafepointWithRegisters(
   4570         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4571     __ StoreToSafepointRegisterSlot(reg, rax);
   4572   }
   4573 
   4574   // Done. Put the value in temp_xmm into the value of the allocated heap
   4575   // number.
   4576   __ bind(&done);
   4577   __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
   4578 }
   4579 
   4580 
   4581 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   4582   class DeferredNumberTagD final : public LDeferredCode {
   4583    public:
   4584     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
   4585         : LDeferredCode(codegen), instr_(instr) { }
   4586     void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
   4587     LInstruction* instr() override { return instr_; }
   4588 
   4589    private:
   4590     LNumberTagD* instr_;
   4591   };
   4592 
   4593   XMMRegister input_reg = ToDoubleRegister(instr->value());
   4594   Register reg = ToRegister(instr->result());
   4595   Register tmp = ToRegister(instr->temp());
   4596 
   4597   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
   4598   if (FLAG_inline_new) {
   4599     __ AllocateHeapNumber(reg, tmp, deferred->entry());
   4600   } else {
   4601     __ jmp(deferred->entry());
   4602   }
   4603   __ bind(deferred->exit());
   4604   __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
   4605 }
   4606 
   4607 
   4608 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   4609   // TODO(3095996): Get rid of this. For now, we need to make the
   4610   // result register contain a valid pointer because it is already
   4611   // contained in the register pointer map.
   4612   Register reg = ToRegister(instr->result());
   4613   __ Move(reg, Smi::FromInt(0));
   4614 
   4615   {
   4616     PushSafepointRegistersScope scope(this);
   4617     // NumberTagD uses the context from the frame, rather than
   4618     // the environment's HContext or HInlinedContext value.
   4619     // They only call Runtime::kAllocateHeapNumber.
   4620     // The corresponding HChange instructions are added in a phase that does
   4621     // not have easy access to the local context.
   4622     __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   4623     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4624     RecordSafepointWithRegisters(
   4625         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4626     __ movp(kScratchRegister, rax);
   4627   }
   4628   __ movp(reg, kScratchRegister);
   4629 }
   4630 
   4631 
   4632 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   4633   HChange* hchange = instr->hydrogen();
   4634   Register input = ToRegister(instr->value());
   4635   Register output = ToRegister(instr->result());
   4636   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4637       hchange->value()->CheckFlag(HValue::kUint32)) {
   4638     Condition is_smi = __ CheckUInteger32ValidSmiValue(input);
   4639     DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kOverflow);
   4640   }
   4641   __ Integer32ToSmi(output, input);
   4642   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4643       !hchange->value()->CheckFlag(HValue::kUint32)) {
   4644     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   4645   }
   4646 }
   4647 
   4648 
   4649 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   4650   DCHECK(instr->value()->Equals(instr->result()));
   4651   Register input = ToRegister(instr->value());
   4652   if (instr->needs_check()) {
   4653     Condition is_smi = __ CheckSmi(input);
   4654     DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kNotASmi);
   4655   } else {
   4656     __ AssertSmi(input);
   4657   }
   4658   __ SmiToInteger32(input, input);
   4659 }
   4660 
   4661 
   4662 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
   4663                                 XMMRegister result_reg, NumberUntagDMode mode) {
   4664   bool can_convert_undefined_to_nan =
   4665       instr->hydrogen()->can_convert_undefined_to_nan();
   4666   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
   4667 
   4668   Label convert, load_smi, done;
   4669 
   4670   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   4671     // Smi check.
   4672     __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
   4673 
   4674     // Heap number map check.
   4675     __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
   4676                    Heap::kHeapNumberMapRootIndex);
   4677 
   4678     // On x64 it is safe to load at heap number offset before evaluating the map
   4679     // check, since all heap objects are at least two words long.
   4680     __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
   4681 
   4682     if (can_convert_undefined_to_nan) {
   4683       __ j(not_equal, &convert, Label::kNear);
   4684     } else {
   4685       DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   4686     }
   4687 
   4688     if (deoptimize_on_minus_zero) {
   4689       XMMRegister xmm_scratch = double_scratch0();
   4690       __ Xorpd(xmm_scratch, xmm_scratch);
   4691       __ Ucomisd(xmm_scratch, result_reg);
   4692       __ j(not_equal, &done, Label::kNear);
   4693       __ Movmskpd(kScratchRegister, result_reg);
   4694       __ testl(kScratchRegister, Immediate(1));
   4695       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
   4696     }
   4697     __ jmp(&done, Label::kNear);
   4698 
   4699     if (can_convert_undefined_to_nan) {
   4700       __ bind(&convert);
   4701 
   4702       // Convert undefined (and hole) to NaN. Compute NaN as 0/0.
   4703       __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
   4704       DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
   4705 
   4706       __ Pcmpeqd(result_reg, result_reg);
   4707       __ jmp(&done, Label::kNear);
   4708     }
   4709   } else {
   4710     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
   4711   }
   4712 
   4713   // Smi to XMM conversion
   4714   __ bind(&load_smi);
   4715   __ SmiToInteger32(kScratchRegister, input_reg);
   4716   __ Cvtlsi2sd(result_reg, kScratchRegister);
   4717   __ bind(&done);
   4718 }
   4719 
   4720 
   4721 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
   4722   Register input_reg = ToRegister(instr->value());
   4723 
   4724   if (instr->truncating()) {
   4725     Label no_heap_number, check_bools, check_false;
   4726 
   4727     // Heap number map check.
   4728     __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
   4729                    Heap::kHeapNumberMapRootIndex);
   4730     __ j(not_equal, &no_heap_number, Label::kNear);
   4731     __ TruncateHeapNumberToI(input_reg, input_reg);
   4732     __ jmp(done);
   4733 
   4734     __ bind(&no_heap_number);
   4735     // Check for Oddballs. Undefined/False is converted to zero and True to one
   4736     // for truncating conversions.
   4737     __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
   4738     __ j(not_equal, &check_bools, Label::kNear);
   4739     __ Set(input_reg, 0);
   4740     __ jmp(done);
   4741 
   4742     __ bind(&check_bools);
   4743     __ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
   4744     __ j(not_equal, &check_false, Label::kNear);
   4745     __ Set(input_reg, 1);
   4746     __ jmp(done);
   4747 
   4748     __ bind(&check_false);
   4749     __ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
   4750     DeoptimizeIf(not_equal, instr,
   4751                  Deoptimizer::kNotAHeapNumberUndefinedBoolean);
   4752     __ Set(input_reg, 0);
   4753   } else {
   4754     XMMRegister scratch = ToDoubleRegister(instr->temp());
   4755     DCHECK(!scratch.is(double_scratch0()));
   4756     __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
   4757                    Heap::kHeapNumberMapRootIndex);
   4758     DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   4759     __ Movsd(double_scratch0(),
   4760              FieldOperand(input_reg, HeapNumber::kValueOffset));
   4761     __ Cvttsd2si(input_reg, double_scratch0());
   4762     __ Cvtlsi2sd(scratch, input_reg);
   4763     __ Ucomisd(double_scratch0(), scratch);
   4764     DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
   4765     DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
   4766     if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
   4767       __ testl(input_reg, input_reg);
   4768       __ j(not_zero, done);
   4769       __ Movmskpd(input_reg, double_scratch0());
   4770       __ andl(input_reg, Immediate(1));
   4771       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
   4772     }
   4773   }
   4774 }
   4775 
   4776 
   4777 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   4778   class DeferredTaggedToI final : public LDeferredCode {
   4779    public:
   4780     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
   4781         : LDeferredCode(codegen), instr_(instr) { }
   4782     void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
   4783     LInstruction* instr() override { return instr_; }
   4784 
   4785    private:
   4786     LTaggedToI* instr_;
   4787   };
   4788 
   4789   LOperand* input = instr->value();
   4790   DCHECK(input->IsRegister());
   4791   DCHECK(input->Equals(instr->result()));
   4792   Register input_reg = ToRegister(input);
   4793 
   4794   if (instr->hydrogen()->value()->representation().IsSmi()) {
   4795     __ SmiToInteger32(input_reg, input_reg);
   4796   } else {
   4797     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
   4798     __ JumpIfNotSmi(input_reg, deferred->entry());
   4799     __ SmiToInteger32(input_reg, input_reg);
   4800     __ bind(deferred->exit());
   4801   }
   4802 }
   4803 
   4804 
   4805 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   4806   LOperand* input = instr->value();
   4807   DCHECK(input->IsRegister());
   4808   LOperand* result = instr->result();
   4809   DCHECK(result->IsDoubleRegister());
   4810 
   4811   Register input_reg = ToRegister(input);
   4812   XMMRegister result_reg = ToDoubleRegister(result);
   4813 
   4814   HValue* value = instr->hydrogen()->value();
   4815   NumberUntagDMode mode = value->representation().IsSmi()
   4816       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   4817 
   4818   EmitNumberUntagD(instr, input_reg, result_reg, mode);
   4819 }
   4820 
   4821 
   4822 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
   4823   LOperand* input = instr->value();
   4824   DCHECK(input->IsDoubleRegister());
   4825   LOperand* result = instr->result();
   4826   DCHECK(result->IsRegister());
   4827 
   4828   XMMRegister input_reg = ToDoubleRegister(input);
   4829   Register result_reg = ToRegister(result);
   4830 
   4831   if (instr->truncating()) {
   4832     __ TruncateDoubleToI(result_reg, input_reg);
   4833   } else {
   4834     Label lost_precision, is_nan, minus_zero, done;
   4835     XMMRegister xmm_scratch = double_scratch0();
   4836     Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   4837     __ DoubleToI(result_reg, input_reg, xmm_scratch,
   4838                  instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
   4839                  &is_nan, &minus_zero, dist);
   4840     __ jmp(&done, dist);
   4841     __ bind(&lost_precision);
   4842     DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
   4843     __ bind(&is_nan);
   4844     DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
   4845     __ bind(&minus_zero);
   4846     DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
   4847     __ bind(&done);
   4848   }
   4849 }
   4850 
   4851 
   4852 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
   4853   LOperand* input = instr->value();
   4854   DCHECK(input->IsDoubleRegister());
   4855   LOperand* result = instr->result();
   4856   DCHECK(result->IsRegister());
   4857 
   4858   XMMRegister input_reg = ToDoubleRegister(input);
   4859   Register result_reg = ToRegister(result);
   4860 
   4861   Label lost_precision, is_nan, minus_zero, done;
   4862   XMMRegister xmm_scratch = double_scratch0();
   4863   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   4864   __ DoubleToI(result_reg, input_reg, xmm_scratch,
   4865                instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
   4866                &minus_zero, dist);
   4867   __ jmp(&done, dist);
   4868   __ bind(&lost_precision);
   4869   DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
   4870   __ bind(&is_nan);
   4871   DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
   4872   __ bind(&minus_zero);
   4873   DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
   4874   __ bind(&done);
   4875   __ Integer32ToSmi(result_reg, result_reg);
   4876   DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   4877 }
   4878 
   4879 
   4880 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   4881   LOperand* input = instr->value();
   4882   Condition cc = masm()->CheckSmi(ToRegister(input));
   4883   DeoptimizeIf(NegateCondition(cc), instr, Deoptimizer::kNotASmi);
   4884 }
   4885 
   4886 
   4887 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   4888   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   4889     LOperand* input = instr->value();
   4890     Condition cc = masm()->CheckSmi(ToRegister(input));
   4891     DeoptimizeIf(cc, instr, Deoptimizer::kSmi);
   4892   }
   4893 }
   4894 
   4895 
   4896 void LCodeGen::DoCheckArrayBufferNotNeutered(
   4897     LCheckArrayBufferNotNeutered* instr) {
   4898   Register view = ToRegister(instr->view());
   4899 
   4900   __ movp(kScratchRegister,
   4901           FieldOperand(view, JSArrayBufferView::kBufferOffset));
   4902   __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset),
   4903            Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
   4904   DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds);
   4905 }
   4906 
   4907 
   4908 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   4909   Register input = ToRegister(instr->value());
   4910 
   4911   __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
   4912 
   4913   if (instr->hydrogen()->is_interval_check()) {
   4914     InstanceType first;
   4915     InstanceType last;
   4916     instr->hydrogen()->GetCheckInterval(&first, &last);
   4917 
   4918     __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
   4919             Immediate(static_cast<int8_t>(first)));
   4920 
   4921     // If there is only one type in the interval check for equality.
   4922     if (first == last) {
   4923       DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
   4924     } else {
   4925       DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType);
   4926       // Omit check for the last type.
   4927       if (last != LAST_TYPE) {
   4928         __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
   4929                 Immediate(static_cast<int8_t>(last)));
   4930         DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType);
   4931       }
   4932     }
   4933   } else {
   4934     uint8_t mask;
   4935     uint8_t tag;
   4936     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   4937 
   4938     if (base::bits::IsPowerOfTwo32(mask)) {
   4939       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
   4940       __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
   4941                Immediate(mask));
   4942       DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
   4943                    Deoptimizer::kWrongInstanceType);
   4944     } else {
   4945       __ movzxbl(kScratchRegister,
   4946                  FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
   4947       __ andb(kScratchRegister, Immediate(mask));
   4948       __ cmpb(kScratchRegister, Immediate(tag));
   4949       DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
   4950     }
   4951   }
   4952 }
   4953 
   4954 
   4955 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   4956   Register reg = ToRegister(instr->value());
   4957   __ Cmp(reg, instr->hydrogen()->object().handle());
   4958   DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch);
   4959 }
   4960 
   4961 
   4962 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   4963   {
   4964     PushSafepointRegistersScope scope(this);
   4965     __ Push(object);
   4966     __ Set(rsi, 0);
   4967     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   4968     RecordSafepointWithRegisters(
   4969         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   4970 
   4971     __ testp(rax, Immediate(kSmiTagMask));
   4972   }
   4973   DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed);
   4974 }
   4975 
   4976 
   4977 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   4978   class DeferredCheckMaps final : public LDeferredCode {
   4979    public:
   4980     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
   4981         : LDeferredCode(codegen), instr_(instr), object_(object) {
   4982       SetExit(check_maps());
   4983     }
   4984     void Generate() override {
   4985       codegen()->DoDeferredInstanceMigration(instr_, object_);
   4986     }
   4987     Label* check_maps() { return &check_maps_; }
   4988     LInstruction* instr() override { return instr_; }
   4989 
   4990    private:
   4991     LCheckMaps* instr_;
   4992     Label check_maps_;
   4993     Register object_;
   4994   };
   4995 
   4996   if (instr->hydrogen()->IsStabilityCheck()) {
   4997     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   4998     for (int i = 0; i < maps->size(); ++i) {
   4999       AddStabilityDependency(maps->at(i).handle());
   5000     }
   5001     return;
   5002   }
   5003 
   5004   LOperand* input = instr->value();
   5005   DCHECK(input->IsRegister());
   5006   Register reg = ToRegister(input);
   5007 
   5008   DeferredCheckMaps* deferred = NULL;
   5009   if (instr->hydrogen()->HasMigrationTarget()) {
   5010     deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
   5011     __ bind(deferred->check_maps());
   5012   }
   5013 
   5014   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   5015   Label success;
   5016   for (int i = 0; i < maps->size() - 1; i++) {
   5017     Handle<Map> map = maps->at(i).handle();
   5018     __ CompareMap(reg, map);
   5019     __ j(equal, &success, Label::kNear);
   5020   }
   5021 
   5022   Handle<Map> map = maps->at(maps->size() - 1).handle();
   5023   __ CompareMap(reg, map);
   5024   if (instr->hydrogen()->HasMigrationTarget()) {
   5025     __ j(not_equal, deferred->entry());
   5026   } else {
   5027     DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
   5028   }
   5029 
   5030   __ bind(&success);
   5031 }
   5032 
   5033 
   5034 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   5035   XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
   5036   XMMRegister xmm_scratch = double_scratch0();
   5037   Register result_reg = ToRegister(instr->result());
   5038   __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
   5039 }
   5040 
   5041 
   5042 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   5043   DCHECK(instr->unclamped()->Equals(instr->result()));
   5044   Register value_reg = ToRegister(instr->result());
   5045   __ ClampUint8(value_reg);
   5046 }
   5047 
   5048 
   5049 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
   5050   DCHECK(instr->unclamped()->Equals(instr->result()));
   5051   Register input_reg = ToRegister(instr->unclamped());
   5052   XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
   5053   XMMRegister xmm_scratch = double_scratch0();
   5054   Label is_smi, done, heap_number;
   5055   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   5056   __ JumpIfSmi(input_reg, &is_smi, dist);
   5057 
   5058   // Check for heap number
   5059   __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   5060          factory()->heap_number_map());
   5061   __ j(equal, &heap_number, Label::kNear);
   5062 
   5063   // Check for undefined. Undefined is converted to zero for clamping
   5064   // conversions.
   5065   __ Cmp(input_reg, factory()->undefined_value());
   5066   DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
   5067   __ xorl(input_reg, input_reg);
   5068   __ jmp(&done, Label::kNear);
   5069 
   5070   // Heap number
   5071   __ bind(&heap_number);
   5072   __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
   5073   __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
   5074   __ jmp(&done, Label::kNear);
   5075 
   5076   // smi
   5077   __ bind(&is_smi);
   5078   __ SmiToInteger32(input_reg, input_reg);
   5079   __ ClampUint8(input_reg);
   5080 
   5081   __ bind(&done);
   5082 }
   5083 
   5084 
   5085 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   5086   XMMRegister value_reg = ToDoubleRegister(instr->value());
   5087   Register result_reg = ToRegister(instr->result());
   5088   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   5089     __ Movq(result_reg, value_reg);
   5090     __ shrq(result_reg, Immediate(32));
   5091   } else {
   5092     __ Movd(result_reg, value_reg);
   5093   }
   5094 }
   5095 
   5096 
   5097 void LCodeGen::DoAllocate(LAllocate* instr) {
   5098   class DeferredAllocate final : public LDeferredCode {
   5099    public:
   5100     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
   5101         : LDeferredCode(codegen), instr_(instr) { }
   5102     void Generate() override { codegen()->DoDeferredAllocate(instr_); }
   5103     LInstruction* instr() override { return instr_; }
   5104 
   5105    private:
   5106     LAllocate* instr_;
   5107   };
   5108 
   5109   DeferredAllocate* deferred =
   5110       new(zone()) DeferredAllocate(this, instr);
   5111 
   5112   Register result = ToRegister(instr->result());
   5113   Register temp = ToRegister(instr->temp());
   5114 
   5115   // Allocate memory for the object.
   5116   AllocationFlags flags = NO_ALLOCATION_FLAGS;
   5117   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   5118     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   5119   }
   5120   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5121     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5122     flags = static_cast<AllocationFlags>(flags | PRETENURE);
   5123   }
   5124 
   5125   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
   5126     flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
   5127   }
   5128   DCHECK(!instr->hydrogen()->IsAllocationFolded());
   5129 
   5130   if (instr->size()->IsConstantOperand()) {
   5131     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5132     CHECK(size <= Page::kMaxRegularHeapObjectSize);
   5133     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5134   } else {
   5135     Register size = ToRegister(instr->size());
   5136     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5137   }
   5138 
   5139   __ bind(deferred->exit());
   5140 
   5141   if (instr->hydrogen()->MustPrefillWithFiller()) {
   5142     if (instr->size()->IsConstantOperand()) {
   5143       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5144       __ movl(temp, Immediate((size / kPointerSize) - 1));
   5145     } else {
   5146       temp = ToRegister(instr->size());
   5147       __ sarp(temp, Immediate(kPointerSizeLog2));
   5148       __ decl(temp);
   5149     }
   5150     Label loop;
   5151     __ bind(&loop);
   5152     __ Move(FieldOperand(result, temp, times_pointer_size, 0),
   5153         isolate()->factory()->one_pointer_filler_map());
   5154     __ decl(temp);
   5155     __ j(not_zero, &loop);
   5156   }
   5157 }
   5158 
   5159 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
   5160   DCHECK(instr->hydrogen()->IsAllocationFolded());
   5161   DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
   5162   Register result = ToRegister(instr->result());
   5163   Register temp = ToRegister(instr->temp());
   5164 
   5165   AllocationFlags flags = ALLOCATION_FOLDED;
   5166   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   5167     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   5168   }
   5169   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5170     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5171     flags = static_cast<AllocationFlags>(flags | PRETENURE);
   5172   }
   5173   if (instr->size()->IsConstantOperand()) {
   5174     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5175     CHECK(size <= Page::kMaxRegularHeapObjectSize);
   5176     __ FastAllocate(size, result, temp, flags);
   5177   } else {
   5178     Register size = ToRegister(instr->size());
   5179     __ FastAllocate(size, result, temp, flags);
   5180   }
   5181 }
   5182 
   5183 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   5184   Register result = ToRegister(instr->result());
   5185 
   5186   // TODO(3095996): Get rid of this. For now, we need to make the
   5187   // result register contain a valid pointer because it is already
   5188   // contained in the register pointer map.
   5189   __ Move(result, Smi::FromInt(0));
   5190 
   5191   PushSafepointRegistersScope scope(this);
   5192   if (instr->size()->IsRegister()) {
   5193     Register size = ToRegister(instr->size());
   5194     DCHECK(!size.is(result));
   5195     __ Integer32ToSmi(size, size);
   5196     __ Push(size);
   5197   } else {
   5198     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5199     __ Push(Smi::FromInt(size));
   5200   }
   5201 
   5202   int flags = 0;
   5203   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5204     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5205     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
   5206   } else {
   5207     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   5208   }
   5209   __ Push(Smi::FromInt(flags));
   5210 
   5211   CallRuntimeFromDeferred(
   5212       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
   5213   __ StoreToSafepointRegisterSlot(result, rax);
   5214 
   5215   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
   5216     AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
   5217     if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5218       DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5219       allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
   5220     }
   5221     // If the allocation folding dominator allocate triggered a GC, allocation
   5222     // happend in the runtime. We have to reset the top pointer to virtually
   5223     // undo the allocation.
   5224     ExternalReference allocation_top =
   5225         AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
   5226     __ subp(rax, Immediate(kHeapObjectTag));
   5227     __ Store(allocation_top, rax);
   5228     __ addp(rax, Immediate(kHeapObjectTag));
   5229   }
   5230 }
   5231 
   5232 
   5233 void LCodeGen::DoTypeof(LTypeof* instr) {
   5234   DCHECK(ToRegister(instr->context()).is(rsi));
   5235   DCHECK(ToRegister(instr->value()).is(rbx));
   5236   Label end, do_call;
   5237   Register value_register = ToRegister(instr->value());
   5238   __ JumpIfNotSmi(value_register, &do_call);
   5239   __ Move(rax, isolate()->factory()->number_string());
   5240   __ jmp(&end);
   5241   __ bind(&do_call);
   5242   TypeofStub stub(isolate());
   5243   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5244   __ bind(&end);
   5245 }
   5246 
   5247 
   5248 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
   5249   DCHECK(!operand->IsDoubleRegister());
   5250   if (operand->IsConstantOperand()) {
   5251     __ Push(ToHandle(LConstantOperand::cast(operand)));
   5252   } else if (operand->IsRegister()) {
   5253     __ Push(ToRegister(operand));
   5254   } else {
   5255     __ Push(ToOperand(operand));
   5256   }
   5257 }
   5258 
   5259 
   5260 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5261   Register input = ToRegister(instr->value());
   5262   Condition final_branch_condition = EmitTypeofIs(instr, input);
   5263   if (final_branch_condition != no_condition) {
   5264     EmitBranch(instr, final_branch_condition);
   5265   }
   5266 }
   5267 
   5268 
   5269 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
   5270   Label* true_label = instr->TrueLabel(chunk_);
   5271   Label* false_label = instr->FalseLabel(chunk_);
   5272   Handle<String> type_name = instr->type_literal();
   5273   int left_block = instr->TrueDestination(chunk_);
   5274   int right_block = instr->FalseDestination(chunk_);
   5275   int next_block = GetNextEmittedBlock();
   5276 
   5277   Label::Distance true_distance = left_block == next_block ? Label::kNear
   5278                                                            : Label::kFar;
   5279   Label::Distance false_distance = right_block == next_block ? Label::kNear
   5280                                                              : Label::kFar;
   5281   Condition final_branch_condition = no_condition;
   5282   Factory* factory = isolate()->factory();
   5283   if (String::Equals(type_name, factory->number_string())) {
   5284     __ JumpIfSmi(input, true_label, true_distance);
   5285     __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
   5286                    Heap::kHeapNumberMapRootIndex);
   5287 
   5288     final_branch_condition = equal;
   5289 
   5290   } else if (String::Equals(type_name, factory->string_string())) {
   5291     __ JumpIfSmi(input, false_label, false_distance);
   5292     __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
   5293     final_branch_condition = below;
   5294 
   5295   } else if (String::Equals(type_name, factory->symbol_string())) {
   5296     __ JumpIfSmi(input, false_label, false_distance);
   5297     __ CmpObjectType(input, SYMBOL_TYPE, input);
   5298     final_branch_condition = equal;
   5299 
   5300   } else if (String::Equals(type_name, factory->boolean_string())) {
   5301     __ CompareRoot(input, Heap::kTrueValueRootIndex);
   5302     __ j(equal, true_label, true_distance);
   5303     __ CompareRoot(input, Heap::kFalseValueRootIndex);
   5304     final_branch_condition = equal;
   5305 
   5306   } else if (String::Equals(type_name, factory->undefined_string())) {
   5307     __ CompareRoot(input, Heap::kNullValueRootIndex);
   5308     __ j(equal, false_label, false_distance);
   5309     __ JumpIfSmi(input, false_label, false_distance);
   5310     // Check for undetectable objects => true.
   5311     __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
   5312     __ testb(FieldOperand(input, Map::kBitFieldOffset),
   5313              Immediate(1 << Map::kIsUndetectable));
   5314     final_branch_condition = not_zero;
   5315 
   5316   } else if (String::Equals(type_name, factory->function_string())) {
   5317     __ JumpIfSmi(input, false_label, false_distance);
   5318     // Check for callable and not undetectable objects => true.
   5319     __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
   5320     __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset));
   5321     __ andb(input,
   5322             Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
   5323     __ cmpb(input, Immediate(1 << Map::kIsCallable));
   5324     final_branch_condition = equal;
   5325 
   5326   } else if (String::Equals(type_name, factory->object_string())) {
   5327     __ JumpIfSmi(input, false_label, false_distance);
   5328     __ CompareRoot(input, Heap::kNullValueRootIndex);
   5329     __ j(equal, true_label, true_distance);
   5330     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   5331     __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
   5332     __ j(below, false_label, false_distance);
   5333     // Check for callable or undetectable objects => false.
   5334     __ testb(FieldOperand(input, Map::kBitFieldOffset),
   5335              Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
   5336     final_branch_condition = zero;
   5337 
   5338 // clang-format off
   5339 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)       \
   5340   } else if (String::Equals(type_name, factory->type##_string())) { \
   5341     __ JumpIfSmi(input, false_label, false_distance);               \
   5342     __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),     \
   5343                    Heap::k##Type##MapRootIndex);                    \
   5344     final_branch_condition = equal;
   5345   SIMD128_TYPES(SIMD128_TYPE)
   5346 #undef SIMD128_TYPE
   5347     // clang-format on
   5348 
   5349   } else {
   5350     __ jmp(false_label, false_distance);
   5351   }
   5352 
   5353   return final_branch_condition;
   5354 }
   5355 
   5356 
   5357 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
   5358   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
   5359     // Ensure that we have enough space after the previous lazy-bailout
   5360     // instruction for patching the code here.
   5361     int current_pc = masm()->pc_offset();
   5362     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
   5363       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   5364       __ Nop(padding_size);
   5365     }
   5366   }
   5367   last_lazy_deopt_pc_ = masm()->pc_offset();
   5368 }
   5369 
   5370 
   5371 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   5372   last_lazy_deopt_pc_ = masm()->pc_offset();
   5373   DCHECK(instr->HasEnvironment());
   5374   LEnvironment* env = instr->environment();
   5375   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5376   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5377 }
   5378 
   5379 
   5380 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   5381   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   5382   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   5383   // needed return address), even though the implementation of LAZY and EAGER is
   5384   // now identical. When LAZY is eventually completely folded into EAGER, remove
   5385   // the special case below.
   5386   if (info()->IsStub() && type == Deoptimizer::EAGER) {
   5387     type = Deoptimizer::LAZY;
   5388   }
   5389   DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
   5390 }
   5391 
   5392 
   5393 void LCodeGen::DoDummy(LDummy* instr) {
   5394   // Nothing to see here, move on!
   5395 }
   5396 
   5397 
   5398 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   5399   // Nothing to see here, move on!
   5400 }
   5401 
   5402 
   5403 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   5404   PushSafepointRegistersScope scope(this);
   5405   __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
   5406   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
   5407   RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
   5408   DCHECK(instr->HasEnvironment());
   5409   LEnvironment* env = instr->environment();
   5410   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5411 }
   5412 
   5413 
   5414 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   5415   class DeferredStackCheck final : public LDeferredCode {
   5416    public:
   5417     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
   5418         : LDeferredCode(codegen), instr_(instr) { }
   5419     void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
   5420     LInstruction* instr() override { return instr_; }
   5421 
   5422    private:
   5423     LStackCheck* instr_;
   5424   };
   5425 
   5426   DCHECK(instr->HasEnvironment());
   5427   LEnvironment* env = instr->environment();
   5428   // There is no LLazyBailout instruction for stack-checks. We have to
   5429   // prepare for lazy deoptimization explicitly here.
   5430   if (instr->hydrogen()->is_function_entry()) {
   5431     // Perform stack overflow check.
   5432     Label done;
   5433     __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
   5434     __ j(above_equal, &done, Label::kNear);
   5435 
   5436     DCHECK(instr->context()->IsRegister());
   5437     DCHECK(ToRegister(instr->context()).is(rsi));
   5438     CallCode(isolate()->builtins()->StackCheck(),
   5439              RelocInfo::CODE_TARGET,
   5440              instr);
   5441     __ bind(&done);
   5442   } else {
   5443     DCHECK(instr->hydrogen()->is_backwards_branch());
   5444     // Perform stack overflow check if this goto needs it before jumping.
   5445     DeferredStackCheck* deferred_stack_check =
   5446         new(zone()) DeferredStackCheck(this, instr);
   5447     __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
   5448     __ j(below, deferred_stack_check->entry());
   5449     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   5450     __ bind(instr->done_label());
   5451     deferred_stack_check->SetExit(instr->done_label());
   5452     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5453     // Don't record a deoptimization index for the safepoint here.
   5454     // This will be done explicitly when emitting call and the safepoint in
   5455     // the deferred code.
   5456   }
   5457 }
   5458 
   5459 
   5460 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   5461   // This is a pseudo-instruction that ensures that the environment here is
   5462   // properly registered for deoptimization and records the assembler's PC
   5463   // offset.
   5464   LEnvironment* environment = instr->environment();
   5465 
   5466   // If the environment were already registered, we would have no way of
   5467   // backpatching it with the spill slot operands.
   5468   DCHECK(!environment->HasBeenRegistered());
   5469   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   5470 
   5471   GenerateOsrPrologue();
   5472 }
   5473 
   5474 
   5475 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   5476   DCHECK(ToRegister(instr->context()).is(rsi));
   5477 
   5478   Label use_cache, call_runtime;
   5479   __ CheckEnumCache(&call_runtime);
   5480 
   5481   __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
   5482   __ jmp(&use_cache, Label::kNear);
   5483 
   5484   // Get the set of properties to enumerate.
   5485   __ bind(&call_runtime);
   5486   __ Push(rax);
   5487   CallRuntime(Runtime::kForInEnumerate, instr);
   5488   __ bind(&use_cache);
   5489 }
   5490 
   5491 
   5492 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   5493   Register map = ToRegister(instr->map());
   5494   Register result = ToRegister(instr->result());
   5495   Label load_cache, done;
   5496   __ EnumLength(result, map);
   5497   __ Cmp(result, Smi::FromInt(0));
   5498   __ j(not_equal, &load_cache, Label::kNear);
   5499   __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex);
   5500   __ jmp(&done, Label::kNear);
   5501   __ bind(&load_cache);
   5502   __ LoadInstanceDescriptors(map, result);
   5503   __ movp(result,
   5504           FieldOperand(result, DescriptorArray::kEnumCacheOffset));
   5505   __ movp(result,
   5506           FieldOperand(result, FixedArray::SizeFor(instr->idx())));
   5507   __ bind(&done);
   5508   Condition cc = masm()->CheckSmi(result);
   5509   DeoptimizeIf(cc, instr, Deoptimizer::kNoCache);
   5510 }
   5511 
   5512 
   5513 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   5514   Register object = ToRegister(instr->value());
   5515   __ cmpp(ToRegister(instr->map()),
   5516           FieldOperand(object, HeapObject::kMapOffset));
   5517   DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
   5518 }
   5519 
   5520 
   5521 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   5522                                            Register object,
   5523                                            Register index) {
   5524   PushSafepointRegistersScope scope(this);
   5525   __ Push(object);
   5526   __ Push(index);
   5527   __ xorp(rsi, rsi);
   5528   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   5529   RecordSafepointWithRegisters(
   5530       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   5531   __ StoreToSafepointRegisterSlot(object, rax);
   5532 }
   5533 
   5534 
   5535 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   5536   class DeferredLoadMutableDouble final : public LDeferredCode {
   5537    public:
   5538     DeferredLoadMutableDouble(LCodeGen* codegen,
   5539                               LLoadFieldByIndex* instr,
   5540                               Register object,
   5541                               Register index)
   5542         : LDeferredCode(codegen),
   5543           instr_(instr),
   5544           object_(object),
   5545           index_(index) {
   5546     }
   5547     void Generate() override {
   5548       codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
   5549     }
   5550     LInstruction* instr() override { return instr_; }
   5551 
   5552    private:
   5553     LLoadFieldByIndex* instr_;
   5554     Register object_;
   5555     Register index_;
   5556   };
   5557 
   5558   Register object = ToRegister(instr->object());
   5559   Register index = ToRegister(instr->index());
   5560 
   5561   DeferredLoadMutableDouble* deferred;
   5562   deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index);
   5563 
   5564   Label out_of_object, done;
   5565   __ Move(kScratchRegister, Smi::FromInt(1));
   5566   __ testp(index, kScratchRegister);
   5567   __ j(not_zero, deferred->entry());
   5568 
   5569   __ sarp(index, Immediate(1));
   5570 
   5571   __ SmiToInteger32(index, index);
   5572   __ cmpl(index, Immediate(0));
   5573   __ j(less, &out_of_object, Label::kNear);
   5574   __ movp(object, FieldOperand(object,
   5575                                index,
   5576                                times_pointer_size,
   5577                                JSObject::kHeaderSize));
   5578   __ jmp(&done, Label::kNear);
   5579 
   5580   __ bind(&out_of_object);
   5581   __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset));
   5582   __ negl(index);
   5583   // Index is now equal to out of object property index plus 1.
   5584   __ movp(object, FieldOperand(object,
   5585                                index,
   5586                                times_pointer_size,
   5587                                FixedArray::kHeaderSize - kPointerSize));
   5588   __ bind(deferred->exit());
   5589   __ bind(&done);
   5590 }
   5591 
   5592 #undef __
   5593 
   5594 }  // namespace internal
   5595 }  // namespace v8
   5596 
   5597 #endif  // V8_TARGET_ARCH_X64
   5598