Home | History | Annotate | Download | only in glshared
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program OpenGL (ES) Module
      3  * -----------------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Texture test utilities.
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "glsTextureTestUtil.hpp"
     25 #include "gluDefs.hpp"
     26 #include "gluDrawUtil.hpp"
     27 #include "gluRenderContext.hpp"
     28 #include "deRandom.hpp"
     29 #include "tcuTestLog.hpp"
     30 #include "tcuVectorUtil.hpp"
     31 #include "tcuTextureUtil.hpp"
     32 #include "tcuImageCompare.hpp"
     33 #include "tcuStringTemplate.hpp"
     34 #include "tcuTexLookupVerifier.hpp"
     35 #include "tcuTexCompareVerifier.hpp"
     36 #include "glwEnums.hpp"
     37 #include "glwFunctions.hpp"
     38 #include "qpWatchDog.h"
     39 #include "deStringUtil.hpp"
     40 
     41 using tcu::TestLog;
     42 using std::vector;
     43 using std::string;
     44 using std::map;
     45 
     46 namespace deqp
     47 {
     48 namespace gls
     49 {
     50 namespace TextureTestUtil
     51 {
     52 
     53 enum
     54 {
     55 	MIN_SUBPIXEL_BITS	= 4
     56 };
     57 
     58 SamplerType getSamplerType (tcu::TextureFormat format)
     59 {
     60 	using tcu::TextureFormat;
     61 
     62 	switch (format.type)
     63 	{
     64 		case TextureFormat::SIGNED_INT8:
     65 		case TextureFormat::SIGNED_INT16:
     66 		case TextureFormat::SIGNED_INT32:
     67 			return SAMPLERTYPE_INT;
     68 
     69 		case TextureFormat::UNSIGNED_INT8:
     70 		case TextureFormat::UNSIGNED_INT32:
     71 		case TextureFormat::UNSIGNED_INT_1010102_REV:
     72 			return SAMPLERTYPE_UINT;
     73 
     74 		// Texture formats used in depth/stencil textures.
     75 		case TextureFormat::UNSIGNED_INT16:
     76 		case TextureFormat::UNSIGNED_INT_24_8:
     77 			return (format.order == TextureFormat::D || format.order == TextureFormat::DS) ? SAMPLERTYPE_FLOAT : SAMPLERTYPE_UINT;
     78 
     79 		default:
     80 			return SAMPLERTYPE_FLOAT;
     81 	}
     82 }
     83 
     84 SamplerType getFetchSamplerType (tcu::TextureFormat format)
     85 {
     86 	using tcu::TextureFormat;
     87 
     88 	switch (format.type)
     89 	{
     90 		case TextureFormat::SIGNED_INT8:
     91 		case TextureFormat::SIGNED_INT16:
     92 		case TextureFormat::SIGNED_INT32:
     93 			return SAMPLERTYPE_FETCH_INT;
     94 
     95 		case TextureFormat::UNSIGNED_INT8:
     96 		case TextureFormat::UNSIGNED_INT32:
     97 		case TextureFormat::UNSIGNED_INT_1010102_REV:
     98 			return SAMPLERTYPE_FETCH_UINT;
     99 
    100 		// Texture formats used in depth/stencil textures.
    101 		case TextureFormat::UNSIGNED_INT16:
    102 		case TextureFormat::UNSIGNED_INT_24_8:
    103 			return (format.order == TextureFormat::D || format.order == TextureFormat::DS) ? SAMPLERTYPE_FETCH_FLOAT : SAMPLERTYPE_FETCH_UINT;
    104 
    105 		default:
    106 			return SAMPLERTYPE_FETCH_FLOAT;
    107 	}
    108 }
    109 
    110 static tcu::Texture1DView getSubView (const tcu::Texture1DView& view, int baseLevel, int maxLevel)
    111 {
    112 	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
    113 	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
    114 	const int	numLevels	= clampedMax-clampedBase+1;
    115 	return tcu::Texture1DView(numLevels, view.getLevels()+clampedBase);
    116 }
    117 
    118 static tcu::Texture2DView getSubView (const tcu::Texture2DView& view, int baseLevel, int maxLevel)
    119 {
    120 	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
    121 	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
    122 	const int	numLevels	= clampedMax-clampedBase+1;
    123 	return tcu::Texture2DView(numLevels, view.getLevels()+clampedBase);
    124 }
    125 
    126 static tcu::TextureCubeView getSubView (const tcu::TextureCubeView& view, int baseLevel, int maxLevel)
    127 {
    128 	const int							clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
    129 	const int							clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
    130 	const int							numLevels	= clampedMax-clampedBase+1;
    131 	const tcu::ConstPixelBufferAccess*	levels[tcu::CUBEFACE_LAST];
    132 
    133 	for (int face = 0; face < tcu::CUBEFACE_LAST; face++)
    134 		levels[face] = view.getFaceLevels((tcu::CubeFace)face) + clampedBase;
    135 
    136 	return tcu::TextureCubeView(numLevels, levels);
    137 }
    138 
    139 static tcu::Texture3DView getSubView (const tcu::Texture3DView& view, int baseLevel, int maxLevel)
    140 {
    141 	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
    142 	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
    143 	const int	numLevels	= clampedMax-clampedBase+1;
    144 	return tcu::Texture3DView(numLevels, view.getLevels()+clampedBase);
    145 }
    146 
    147 static tcu::TextureCubeArrayView getSubView (const tcu::TextureCubeArrayView& view, int baseLevel, int maxLevel)
    148 {
    149 	const int	clampedBase	= de::clamp(baseLevel, 0, view.getNumLevels()-1);
    150 	const int	clampedMax	= de::clamp(maxLevel, clampedBase, view.getNumLevels()-1);
    151 	const int	numLevels	= clampedMax-clampedBase+1;
    152 	return tcu::TextureCubeArrayView(numLevels, view.getLevels()+clampedBase);
    153 }
    154 
    155 inline float linearInterpolate (float t, float minVal, float maxVal)
    156 {
    157 	return minVal + (maxVal - minVal) * t;
    158 }
    159 
    160 inline tcu::Vec4 linearInterpolate (float t, const tcu::Vec4& a, const tcu::Vec4& b)
    161 {
    162 	return a + (b - a) * t;
    163 }
    164 
    165 inline float bilinearInterpolate (float x, float y, const tcu::Vec4& quad)
    166 {
    167 	float w00 = (1.0f-x)*(1.0f-y);
    168 	float w01 = (1.0f-x)*y;
    169 	float w10 = x*(1.0f-y);
    170 	float w11 = x*y;
    171 	return quad.x()*w00 + quad.y()*w10 + quad.z()*w01 + quad.w()*w11;
    172 }
    173 
    174 inline float triangleInterpolate (float v0, float v1, float v2, float x, float y)
    175 {
    176 	return v0 + (v2-v0)*x + (v1-v0)*y;
    177 }
    178 
    179 inline float triangleInterpolate (const tcu::Vec3& v, float x, float y)
    180 {
    181 	return triangleInterpolate(v.x(), v.y(), v.z(), x, y);
    182 }
    183 
    184 SurfaceAccess::SurfaceAccess (tcu::Surface& surface, const tcu::PixelFormat& colorFmt, int x, int y, int width, int height)
    185 	: m_surface		(&surface)
    186 	, m_colorMask	(getColorMask(colorFmt))
    187 	, m_x			(x)
    188 	, m_y			(y)
    189 	, m_width		(width)
    190 	, m_height		(height)
    191 {
    192 }
    193 
    194 SurfaceAccess::SurfaceAccess (tcu::Surface& surface, const tcu::PixelFormat& colorFmt)
    195 	: m_surface		(&surface)
    196 	, m_colorMask	(getColorMask(colorFmt))
    197 	, m_x			(0)
    198 	, m_y			(0)
    199 	, m_width		(surface.getWidth())
    200 	, m_height		(surface.getHeight())
    201 {
    202 }
    203 
    204 SurfaceAccess::SurfaceAccess (const SurfaceAccess& parent, int x, int y, int width, int height)
    205 	: m_surface			(parent.m_surface)
    206 	, m_colorMask		(parent.m_colorMask)
    207 	, m_x				(parent.m_x + x)
    208 	, m_y				(parent.m_y + y)
    209 	, m_width			(width)
    210 	, m_height			(height)
    211 {
    212 }
    213 
    214 // 1D lookup LOD computation.
    215 
    216 float computeLodFromDerivates (LodMode mode, float dudx, float dudy)
    217 {
    218 	float p = 0.0f;
    219 	switch (mode)
    220 	{
    221 		// \note [mika] Min and max bounds equal to exact with 1D textures
    222 		case LODMODE_EXACT:
    223 		case LODMODE_MIN_BOUND:
    224 		case LODMODE_MAX_BOUND:
    225 			p = de::max(deFloatAbs(dudx), deFloatAbs(dudy));
    226 			break;
    227 
    228 		default:
    229 			DE_ASSERT(DE_FALSE);
    230 	}
    231 
    232 	return deFloatLog2(p);
    233 }
    234 
    235 static float computeNonProjectedTriLod (LodMode mode, const tcu::IVec2& dstSize, deInt32 srcSize, const tcu::Vec3& sq)
    236 {
    237 	float dux	= (sq.z() - sq.x()) * (float)srcSize;
    238 	float duy	= (sq.y() - sq.x()) * (float)srcSize;
    239 	float dx	= (float)dstSize.x();
    240 	float dy	= (float)dstSize.y();
    241 
    242 	return computeLodFromDerivates(mode, dux/dx, duy/dy);
    243 }
    244 
    245 // 2D lookup LOD computation.
    246 
    247 float computeLodFromDerivates (LodMode mode, float dudx, float dvdx, float dudy, float dvdy)
    248 {
    249 	float p = 0.0f;
    250 	switch (mode)
    251 	{
    252 		case LODMODE_EXACT:
    253 			p = de::max(deFloatSqrt(dudx*dudx + dvdx*dvdx), deFloatSqrt(dudy*dudy + dvdy*dvdy));
    254 			break;
    255 
    256 		case LODMODE_MIN_BOUND:
    257 		case LODMODE_MAX_BOUND:
    258 		{
    259 			float mu = de::max(deFloatAbs(dudx), deFloatAbs(dudy));
    260 			float mv = de::max(deFloatAbs(dvdx), deFloatAbs(dvdy));
    261 
    262 			p = mode == LODMODE_MIN_BOUND ? de::max(mu, mv) : mu + mv;
    263 			break;
    264 		}
    265 
    266 		default:
    267 			DE_ASSERT(DE_FALSE);
    268 	}
    269 
    270 	return deFloatLog2(p);
    271 }
    272 
    273 static float computeNonProjectedTriLod (LodMode mode, const tcu::IVec2& dstSize, const tcu::IVec2& srcSize, const tcu::Vec3& sq, const tcu::Vec3& tq)
    274 {
    275 	float dux	= (sq.z() - sq.x()) * (float)srcSize.x();
    276 	float duy	= (sq.y() - sq.x()) * (float)srcSize.x();
    277 	float dvx	= (tq.z() - tq.x()) * (float)srcSize.y();
    278 	float dvy	= (tq.y() - tq.x()) * (float)srcSize.y();
    279 	float dx	= (float)dstSize.x();
    280 	float dy	= (float)dstSize.y();
    281 
    282 	return computeLodFromDerivates(mode, dux/dx, dvx/dx, duy/dy, dvy/dy);
    283 }
    284 
    285 // 3D lookup LOD computation.
    286 
    287 float computeLodFromDerivates (LodMode mode, float dudx, float dvdx, float dwdx, float dudy, float dvdy, float dwdy)
    288 {
    289 	float p = 0.0f;
    290 	switch (mode)
    291 	{
    292 		case LODMODE_EXACT:
    293 			p = de::max(deFloatSqrt(dudx*dudx + dvdx*dvdx + dwdx*dwdx), deFloatSqrt(dudy*dudy + dvdy*dvdy + dwdy*dwdy));
    294 			break;
    295 
    296 		case LODMODE_MIN_BOUND:
    297 		case LODMODE_MAX_BOUND:
    298 		{
    299 			float mu = de::max(deFloatAbs(dudx), deFloatAbs(dudy));
    300 			float mv = de::max(deFloatAbs(dvdx), deFloatAbs(dvdy));
    301 			float mw = de::max(deFloatAbs(dwdx), deFloatAbs(dwdy));
    302 
    303 			p = mode == LODMODE_MIN_BOUND ? de::max(de::max(mu, mv), mw) : (mu + mv + mw);
    304 			break;
    305 		}
    306 
    307 		default:
    308 			DE_ASSERT(DE_FALSE);
    309 	}
    310 
    311 	return deFloatLog2(p);
    312 }
    313 
    314 static float computeNonProjectedTriLod (LodMode mode, const tcu::IVec2& dstSize, const tcu::IVec3& srcSize, const tcu::Vec3& sq, const tcu::Vec3& tq, const tcu::Vec3& rq)
    315 {
    316 	float dux	= (sq.z() - sq.x()) * (float)srcSize.x();
    317 	float duy	= (sq.y() - sq.x()) * (float)srcSize.x();
    318 	float dvx	= (tq.z() - tq.x()) * (float)srcSize.y();
    319 	float dvy	= (tq.y() - tq.x()) * (float)srcSize.y();
    320 	float dwx	= (rq.z() - rq.x()) * (float)srcSize.z();
    321 	float dwy	= (rq.y() - rq.x()) * (float)srcSize.z();
    322 	float dx	= (float)dstSize.x();
    323 	float dy	= (float)dstSize.y();
    324 
    325 	return computeLodFromDerivates(mode, dux/dx, dvx/dx, dwx/dx, duy/dy, dvy/dy, dwy/dy);
    326 }
    327 
    328 static inline float projectedTriInterpolate (const tcu::Vec3& s, const tcu::Vec3& w, float nx, float ny)
    329 {
    330 	return (s[0]*(1.0f-nx-ny)/w[0] + s[1]*ny/w[1] + s[2]*nx/w[2]) / ((1.0f-nx-ny)/w[0] + ny/w[1] + nx/w[2]);
    331 }
    332 
    333 static inline float triDerivateX (const tcu::Vec3& s, const tcu::Vec3& w, float wx, float width, float ny)
    334 {
    335 	float d = w[1]*w[2]*(width*(ny - 1.0f) + wx) - w[0]*(w[2]*width*ny + w[1]*wx);
    336 	return (w[0]*w[1]*w[2]*width * (w[1]*(s[0] - s[2])*(ny - 1.0f) + ny*(w[2]*(s[1] - s[0]) + w[0]*(s[2] - s[1])))) / (d*d);
    337 }
    338 
    339 static inline float triDerivateY (const tcu::Vec3& s, const tcu::Vec3& w, float wy, float height, float nx)
    340 {
    341 	float d = w[1]*w[2]*(height*(nx - 1.0f) + wy) - w[0]*(w[1]*height*nx + w[2]*wy);
    342 	return (w[0]*w[1]*w[2]*height * (w[2]*(s[0] - s[1])*(nx - 1.0f) + nx*(w[0]*(s[1] - s[2]) + w[1]*(s[2] - s[0])))) / (d*d);
    343 }
    344 
    345 // 1D lookup LOD.
    346 static float computeProjectedTriLod (LodMode mode, const tcu::Vec3& u, const tcu::Vec3& projection, float wx, float wy, float width, float height)
    347 {
    348 	// Exact derivatives.
    349 	float dudx	= triDerivateX(u, projection, wx, width, wy/height);
    350 	float dudy	= triDerivateY(u, projection, wy, height, wx/width);
    351 
    352 	return computeLodFromDerivates(mode, dudx, dudy);
    353 }
    354 
    355 // 2D lookup LOD.
    356 static float computeProjectedTriLod (LodMode mode, const tcu::Vec3& u, const tcu::Vec3& v, const tcu::Vec3& projection, float wx, float wy, float width, float height)
    357 {
    358 	// Exact derivatives.
    359 	float dudx	= triDerivateX(u, projection, wx, width, wy/height);
    360 	float dvdx	= triDerivateX(v, projection, wx, width, wy/height);
    361 	float dudy	= triDerivateY(u, projection, wy, height, wx/width);
    362 	float dvdy	= triDerivateY(v, projection, wy, height, wx/width);
    363 
    364 	return computeLodFromDerivates(mode, dudx, dvdx, dudy, dvdy);
    365 }
    366 
    367 // 3D lookup LOD.
    368 static float computeProjectedTriLod (LodMode mode, const tcu::Vec3& u, const tcu::Vec3& v, const tcu::Vec3& w, const tcu::Vec3& projection, float wx, float wy, float width, float height)
    369 {
    370 	// Exact derivatives.
    371 	float dudx	= triDerivateX(u, projection, wx, width, wy/height);
    372 	float dvdx	= triDerivateX(v, projection, wx, width, wy/height);
    373 	float dwdx	= triDerivateX(w, projection, wx, width, wy/height);
    374 	float dudy	= triDerivateY(u, projection, wy, height, wx/width);
    375 	float dvdy	= triDerivateY(v, projection, wy, height, wx/width);
    376 	float dwdy	= triDerivateY(w, projection, wy, height, wx/width);
    377 
    378 	return computeLodFromDerivates(mode, dudx, dvdx, dwdx, dudy, dvdy, dwdy);
    379 }
    380 
    381 static inline tcu::Vec4 execSample (const tcu::Texture1DView& src, const ReferenceParams& params, float s, float lod)
    382 {
    383 	if (params.samplerType == SAMPLERTYPE_SHADOW)
    384 		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, lod), 0.0, 0.0, 1.0f);
    385 	else
    386 		return src.sample(params.sampler, s, lod);
    387 }
    388 
    389 static inline tcu::Vec4 execSample (const tcu::Texture2DView& src, const ReferenceParams& params, float s, float t, float lod)
    390 {
    391 	if (params.samplerType == SAMPLERTYPE_SHADOW)
    392 		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, lod), 0.0, 0.0, 1.0f);
    393 	else
    394 		return src.sample(params.sampler, s, t, lod);
    395 }
    396 
    397 static inline tcu::Vec4 execSample (const tcu::TextureCubeView& src, const ReferenceParams& params, float s, float t, float r, float lod)
    398 {
    399 	if (params.samplerType == SAMPLERTYPE_SHADOW)
    400 		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, r, lod), 0.0, 0.0, 1.0f);
    401 	else
    402 		return src.sample(params.sampler, s, t, r, lod);
    403 }
    404 
    405 static inline tcu::Vec4 execSample (const tcu::Texture2DArrayView& src, const ReferenceParams& params, float s, float t, float r, float lod)
    406 {
    407 	if (params.samplerType == SAMPLERTYPE_SHADOW)
    408 		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, r, lod), 0.0, 0.0, 1.0f);
    409 	else
    410 		return src.sample(params.sampler, s, t, r, lod);
    411 }
    412 
    413 static inline tcu::Vec4 execSample (const tcu::TextureCubeArrayView& src, const ReferenceParams& params, float s, float t, float r, float q, float lod)
    414 {
    415 	if (params.samplerType == SAMPLERTYPE_SHADOW)
    416 		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, r, q, lod), 0.0, 0.0, 1.0f);
    417 	else
    418 		return src.sample(params.sampler, s, t, r, q, lod);
    419 }
    420 
    421 static inline tcu::Vec4 execSample (const tcu::Texture1DArrayView& src, const ReferenceParams& params, float s, float t, float lod)
    422 {
    423 	if (params.samplerType == SAMPLERTYPE_SHADOW)
    424 		return tcu::Vec4(src.sampleCompare(params.sampler, params.ref, s, t, lod), 0.0, 0.0, 1.0f);
    425 	else
    426 		return src.sample(params.sampler, s, t, lod);
    427 }
    428 
    429 static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture1DView& rawSrc, const tcu::Vec4& sq, const ReferenceParams& params)
    430 {
    431 	// Separate combined DS formats
    432 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    433 	const tcu::Texture1DView					src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    434 
    435 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    436 
    437 	tcu::IVec2									dstSize				= tcu::IVec2(dst.getWidth(), dst.getHeight());
    438 	int											srcSize				= src.getWidth();
    439 
    440 	// Coordinates and lod per triangle.
    441 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    442 	float										triLod[2]			= { de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0]) + lodBias, params.minLod, params.maxLod),
    443 																		de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1]) + lodBias, params.minLod, params.maxLod) };
    444 
    445 	for (int y = 0; y < dst.getHeight(); y++)
    446 	{
    447 		for (int x = 0; x < dst.getWidth(); x++)
    448 		{
    449 			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
    450 			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
    451 
    452 			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
    453 			float	triX	= triNdx ? 1.0f-xf : xf;
    454 			float	triY	= triNdx ? 1.0f-yf : yf;
    455 
    456 			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
    457 			float	lod		= triLod[triNdx];
    458 
    459 			dst.setPixel(execSample(src, params, s, lod) * params.colorScale + params.colorBias, x, y);
    460 		}
    461 	}
    462 }
    463 
    464 static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture2DView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const ReferenceParams& params)
    465 {
    466 	// Separate combined DS formats
    467 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    468 	const tcu::Texture2DView					src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    469 
    470 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    471 
    472 	tcu::IVec2									dstSize				= tcu::IVec2(dst.getWidth(), dst.getHeight());
    473 	tcu::IVec2									srcSize				= tcu::IVec2(src.getWidth(), src.getHeight());
    474 
    475 	// Coordinates and lod per triangle.
    476 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    477 	tcu::Vec3									triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    478 	float										triLod[2]			= { de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0], triT[0]) + lodBias, params.minLod, params.maxLod),
    479 																		de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1], triT[1]) + lodBias, params.minLod, params.maxLod) };
    480 
    481 	for (int y = 0; y < dst.getHeight(); y++)
    482 	{
    483 		for (int x = 0; x < dst.getWidth(); x++)
    484 		{
    485 			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
    486 			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
    487 
    488 			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
    489 			float	triX	= triNdx ? 1.0f-xf : xf;
    490 			float	triY	= triNdx ? 1.0f-yf : yf;
    491 
    492 			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
    493 			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
    494 			float	lod		= triLod[triNdx];
    495 
    496 			dst.setPixel(execSample(src, params, s, t, lod) * params.colorScale + params.colorBias, x, y);
    497 		}
    498 	}
    499 }
    500 
    501 static void sampleTextureProjected (const SurfaceAccess& dst, const tcu::Texture1DView& rawSrc, const tcu::Vec4& sq, const ReferenceParams& params)
    502 {
    503 	// Separate combined DS formats
    504 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    505 	const tcu::Texture1DView					src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    506 
    507 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    508 	float										dstW				= (float)dst.getWidth();
    509 	float										dstH				= (float)dst.getHeight();
    510 
    511 	tcu::Vec4									uq					= sq * (float)src.getWidth();
    512 
    513 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    514 	tcu::Vec3									triU[2]				= { uq.swizzle(0, 1, 2), uq.swizzle(3, 2, 1) };
    515 	tcu::Vec3									triW[2]				= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
    516 
    517 	for (int py = 0; py < dst.getHeight(); py++)
    518 	{
    519 		for (int px = 0; px < dst.getWidth(); px++)
    520 		{
    521 			float	wx		= (float)px + 0.5f;
    522 			float	wy		= (float)py + 0.5f;
    523 			float	nx		= wx / dstW;
    524 			float	ny		= wy / dstH;
    525 
    526 			int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
    527 			float	triWx	= triNdx ? dstW - wx : wx;
    528 			float	triWy	= triNdx ? dstH - wy : wy;
    529 			float	triNx	= triNdx ? 1.0f - nx : nx;
    530 			float	triNy	= triNdx ? 1.0f - ny : ny;
    531 
    532 			float	s		= projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy);
    533 			float	lod		= computeProjectedTriLod(params.lodMode, triU[triNdx], triW[triNdx], triWx, triWy, (float)dst.getWidth(), (float)dst.getHeight())
    534 							+ lodBias;
    535 
    536 			dst.setPixel(execSample(src, params, s, lod) * params.colorScale + params.colorBias, px, py);
    537 		}
    538 	}
    539 }
    540 
    541 static void sampleTextureProjected (const SurfaceAccess& dst, const tcu::Texture2DView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const ReferenceParams& params)
    542 {
    543 	// Separate combined DS formats
    544 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    545 	const tcu::Texture2DView					src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    546 
    547 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    548 	float										dstW				= (float)dst.getWidth();
    549 	float										dstH				= (float)dst.getHeight();
    550 
    551 	tcu::Vec4									uq					= sq * (float)src.getWidth();
    552 	tcu::Vec4									vq					= tq * (float)src.getHeight();
    553 
    554 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    555 	tcu::Vec3									triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    556 	tcu::Vec3									triU[2]				= { uq.swizzle(0, 1, 2), uq.swizzle(3, 2, 1) };
    557 	tcu::Vec3									triV[2]				= { vq.swizzle(0, 1, 2), vq.swizzle(3, 2, 1) };
    558 	tcu::Vec3									triW[2]				= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
    559 
    560 	for (int py = 0; py < dst.getHeight(); py++)
    561 	{
    562 		for (int px = 0; px < dst.getWidth(); px++)
    563 		{
    564 			float	wx		= (float)px + 0.5f;
    565 			float	wy		= (float)py + 0.5f;
    566 			float	nx		= wx / dstW;
    567 			float	ny		= wy / dstH;
    568 
    569 			int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
    570 			float	triWx	= triNdx ? dstW - wx : wx;
    571 			float	triWy	= triNdx ? dstH - wy : wy;
    572 			float	triNx	= triNdx ? 1.0f - nx : nx;
    573 			float	triNy	= triNdx ? 1.0f - ny : ny;
    574 
    575 			float	s		= projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy);
    576 			float	t		= projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy);
    577 			float	lod		= computeProjectedTriLod(params.lodMode, triU[triNdx], triV[triNdx], triW[triNdx], triWx, triWy, (float)dst.getWidth(), (float)dst.getHeight())
    578 							+ lodBias;
    579 
    580 			dst.setPixel(execSample(src, params, s, t, lod) * params.colorScale + params.colorBias, px, py);
    581 		}
    582 	}
    583 }
    584 
    585 void sampleTexture (const SurfaceAccess& dst, const tcu::Texture2DView& src, const float* texCoord, const ReferenceParams& params)
    586 {
    587 	const tcu::Texture2DView	view	= getSubView(src, params.baseLevel, params.maxLevel);
    588 	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
    589 	const tcu::Vec4				tq		= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
    590 
    591 	if (params.flags & ReferenceParams::PROJECTED)
    592 		sampleTextureProjected(dst, view, sq, tq, params);
    593 	else
    594 		sampleTextureNonProjected(dst, view, sq, tq, params);
    595 }
    596 
    597 void sampleTexture (const SurfaceAccess& dst, const tcu::Texture1DView& src, const float* texCoord, const ReferenceParams& params)
    598 {
    599 	const tcu::Texture1DView	view	= getSubView(src, params.baseLevel, params.maxLevel);
    600 	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0], texCoord[1], texCoord[2], texCoord[3]);
    601 
    602 	if (params.flags & ReferenceParams::PROJECTED)
    603 		sampleTextureProjected(dst, view, sq, params);
    604 	else
    605 		sampleTextureNonProjected(dst, view, sq, params);
    606 }
    607 
    608 static float computeCubeLodFromDerivates (LodMode lodMode, const tcu::Vec3& coord, const tcu::Vec3& coordDx, const tcu::Vec3& coordDy, const int faceSize)
    609 {
    610 	const tcu::CubeFace	face	= tcu::selectCubeFace(coord);
    611 	int					maNdx	= 0;
    612 	int					sNdx	= 0;
    613 	int					tNdx	= 0;
    614 
    615 	// \note Derivate signs don't matter when computing lod
    616 	switch (face)
    617 	{
    618 		case tcu::CUBEFACE_NEGATIVE_X:
    619 		case tcu::CUBEFACE_POSITIVE_X: maNdx = 0; sNdx = 2; tNdx = 1; break;
    620 		case tcu::CUBEFACE_NEGATIVE_Y:
    621 		case tcu::CUBEFACE_POSITIVE_Y: maNdx = 1; sNdx = 0; tNdx = 2; break;
    622 		case tcu::CUBEFACE_NEGATIVE_Z:
    623 		case tcu::CUBEFACE_POSITIVE_Z: maNdx = 2; sNdx = 0; tNdx = 1; break;
    624 		default:
    625 			DE_ASSERT(DE_FALSE);
    626 	}
    627 
    628 	{
    629 		const float		sc		= coord[sNdx];
    630 		const float		tc		= coord[tNdx];
    631 		const float		ma		= de::abs(coord[maNdx]);
    632 		const float		scdx	= coordDx[sNdx];
    633 		const float		tcdx	= coordDx[tNdx];
    634 		const float		madx	= de::abs(coordDx[maNdx]);
    635 		const float		scdy	= coordDy[sNdx];
    636 		const float		tcdy	= coordDy[tNdx];
    637 		const float		mady	= de::abs(coordDy[maNdx]);
    638 		const float		dudx	= float(faceSize) * 0.5f * (scdx*ma - sc*madx) / (ma*ma);
    639 		const float		dvdx	= float(faceSize) * 0.5f * (tcdx*ma - tc*madx) / (ma*ma);
    640 		const float		dudy	= float(faceSize) * 0.5f * (scdy*ma - sc*mady) / (ma*ma);
    641 		const float		dvdy	= float(faceSize) * 0.5f * (tcdy*ma - tc*mady) / (ma*ma);
    642 
    643 		return computeLodFromDerivates(lodMode, dudx, dvdx, dudy, dvdy);
    644 	}
    645 }
    646 
    647 static void sampleTextureCube (const SurfaceAccess& dst, const tcu::TextureCubeView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
    648 {
    649 	// Separate combined DS formats
    650 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    651 	const tcu::TextureCubeView					src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    652 
    653 	const tcu::IVec2							dstSize				= tcu::IVec2(dst.getWidth(), dst.getHeight());
    654 	const float									dstW				= float(dstSize.x());
    655 	const float									dstH				= float(dstSize.y());
    656 	const int									srcSize				= src.getSize();
    657 
    658 	// Coordinates per triangle.
    659 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    660 	const tcu::Vec3								triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    661 	const tcu::Vec3								triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
    662 	const tcu::Vec3								triW[2]				= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
    663 
    664 	const float									lodBias				((params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f);
    665 
    666 	for (int py = 0; py < dst.getHeight(); py++)
    667 	{
    668 		for (int px = 0; px < dst.getWidth(); px++)
    669 		{
    670 			const float		wx		= (float)px + 0.5f;
    671 			const float		wy		= (float)py + 0.5f;
    672 			const float		nx		= wx / dstW;
    673 			const float		ny		= wy / dstH;
    674 
    675 			const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
    676 			const float		triNx	= triNdx ? 1.0f - nx : nx;
    677 			const float		triNy	= triNdx ? 1.0f - ny : ny;
    678 
    679 			const tcu::Vec3	coord		(triangleInterpolate(triS[triNdx], triNx, triNy),
    680 										 triangleInterpolate(triT[triNdx], triNx, triNy),
    681 										 triangleInterpolate(triR[triNdx], triNx, triNy));
    682 			const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
    683 										 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
    684 										 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
    685 			const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
    686 										 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
    687 										 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
    688 
    689 			const float		lod			= de::clamp(computeCubeLodFromDerivates(params.lodMode, coord, coordDx, coordDy, srcSize) + lodBias, params.minLod, params.maxLod);
    690 
    691 			dst.setPixel(execSample(src, params, coord.x(), coord.y(), coord.z(), lod) * params.colorScale + params.colorBias, px, py);
    692 		}
    693 	}
    694 }
    695 
    696 void sampleTexture (const SurfaceAccess& dst, const tcu::TextureCubeView& src, const float* texCoord, const ReferenceParams& params)
    697 {
    698 	const tcu::TextureCubeView	view	= getSubView(src, params.baseLevel, params.maxLevel);
    699 	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
    700 	const tcu::Vec4				tq		= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
    701 	const tcu::Vec4				rq		= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
    702 
    703 	return sampleTextureCube(dst, view, sq, tq, rq, params);
    704 }
    705 
    706 static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture2DArrayView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
    707 {
    708 	// Separate combined DS formats
    709 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    710 	const tcu::Texture2DArrayView				src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    711 
    712 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    713 
    714 	tcu::IVec2									dstSize				= tcu::IVec2(dst.getWidth(), dst.getHeight());
    715 	tcu::IVec2									srcSize				= tcu::IVec2(src.getWidth(), src.getHeight());
    716 
    717 	// Coordinates and lod per triangle.
    718 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    719 	tcu::Vec3									triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    720 	tcu::Vec3									triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
    721 	float										triLod[2]			= { de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0], triT[0]) + lodBias, params.minLod, params.maxLod),
    722 																		de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1], triT[1]) + lodBias, params.minLod, params.maxLod) };
    723 
    724 	for (int y = 0; y < dst.getHeight(); y++)
    725 	{
    726 		for (int x = 0; x < dst.getWidth(); x++)
    727 		{
    728 			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
    729 			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
    730 
    731 			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
    732 			float	triX	= triNdx ? 1.0f-xf : xf;
    733 			float	triY	= triNdx ? 1.0f-yf : yf;
    734 
    735 			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
    736 			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
    737 			float	r		= triangleInterpolate(triR[triNdx].x(), triR[triNdx].y(), triR[triNdx].z(), triX, triY);
    738 			float	lod		= triLod[triNdx];
    739 
    740 			dst.setPixel(execSample(src, params, s, t, r, lod) * params.colorScale + params.colorBias, x, y);
    741 		}
    742 	}
    743 }
    744 
    745 void sampleTexture (const SurfaceAccess& dst, const tcu::Texture2DArrayView& src, const float* texCoord, const ReferenceParams& params)
    746 {
    747 	tcu::Vec4 sq = tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
    748 	tcu::Vec4 tq = tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
    749 	tcu::Vec4 rq = tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
    750 
    751 	DE_ASSERT(!(params.flags & ReferenceParams::PROJECTED)); // \todo [2012-02-17 pyry] Support projected lookups.
    752 	sampleTextureNonProjected(dst, src, sq, tq, rq, params);
    753 }
    754 
    755 static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture1DArrayView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const ReferenceParams& params)
    756 {
    757 	// Separate combined DS formats
    758 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    759 	const tcu::Texture1DArrayView				src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    760 
    761 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    762 
    763 	tcu::IVec2									dstSize				= tcu::IVec2(dst.getWidth(), dst.getHeight());
    764 	deInt32										srcSize				= src.getWidth();
    765 
    766 	// Coordinates and lod per triangle.
    767 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    768 	tcu::Vec3									triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    769 	float										triLod[2]			= { computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0]) + lodBias,
    770 																		computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1]) + lodBias};
    771 
    772 	for (int y = 0; y < dst.getHeight(); y++)
    773 	{
    774 		for (int x = 0; x < dst.getWidth(); x++)
    775 		{
    776 			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
    777 			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
    778 
    779 			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
    780 			float	triX	= triNdx ? 1.0f-xf : xf;
    781 			float	triY	= triNdx ? 1.0f-yf : yf;
    782 
    783 			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
    784 			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
    785 			float	lod		= triLod[triNdx];
    786 
    787 			dst.setPixel(execSample(src, params, s, t, lod) * params.colorScale + params.colorBias, x, y);
    788 		}
    789 	}
    790 }
    791 
    792 void sampleTexture (const SurfaceAccess& dst, const tcu::Texture1DArrayView& src, const float* texCoord, const ReferenceParams& params)
    793 {
    794 	tcu::Vec4 sq = tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
    795 	tcu::Vec4 tq = tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
    796 
    797 	DE_ASSERT(!(params.flags & ReferenceParams::PROJECTED)); // \todo [2014-06-09 mika] Support projected lookups.
    798 	sampleTextureNonProjected(dst, src, sq, tq, params);
    799 }
    800 
    801 static void sampleTextureNonProjected (const SurfaceAccess& dst, const tcu::Texture3DView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
    802 {
    803 	// Separate combined DS formats
    804 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    805 	const tcu::Texture3DView					src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    806 
    807 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    808 
    809 	tcu::IVec2									dstSize				= tcu::IVec2(dst.getWidth(), dst.getHeight());
    810 	tcu::IVec3									srcSize				= tcu::IVec3(src.getWidth(), src.getHeight(), src.getDepth());
    811 
    812 	// Coordinates and lod per triangle.
    813 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    814 	tcu::Vec3									triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    815 	tcu::Vec3									triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
    816 	float										triLod[2]			= { de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[0], triT[0], triR[0]) + lodBias, params.minLod, params.maxLod),
    817 																		de::clamp(computeNonProjectedTriLod(params.lodMode, dstSize, srcSize, triS[1], triT[1], triR[1]) + lodBias, params.minLod, params.maxLod) };
    818 
    819 	for (int y = 0; y < dst.getHeight(); y++)
    820 	{
    821 		for (int x = 0; x < dst.getWidth(); x++)
    822 		{
    823 			float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
    824 			float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
    825 
    826 			int		triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
    827 			float	triX	= triNdx ? 1.0f-xf : xf;
    828 			float	triY	= triNdx ? 1.0f-yf : yf;
    829 
    830 			float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
    831 			float	t		= triangleInterpolate(triT[triNdx].x(), triT[triNdx].y(), triT[triNdx].z(), triX, triY);
    832 			float	r		= triangleInterpolate(triR[triNdx].x(), triR[triNdx].y(), triR[triNdx].z(), triX, triY);
    833 			float	lod		= triLod[triNdx];
    834 
    835 			dst.setPixel(src.sample(params.sampler, s, t, r, lod) * params.colorScale + params.colorBias, x, y);
    836 		}
    837 	}
    838 }
    839 
    840 static void sampleTextureProjected (const SurfaceAccess& dst, const tcu::Texture3DView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const ReferenceParams& params)
    841 {
    842 	// Separate combined DS formats
    843 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    844 	const tcu::Texture3DView					src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    845 
    846 	float										lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    847 	float										dstW				= (float)dst.getWidth();
    848 	float										dstH				= (float)dst.getHeight();
    849 
    850 	tcu::Vec4									uq					= sq * (float)src.getWidth();
    851 	tcu::Vec4									vq					= tq * (float)src.getHeight();
    852 	tcu::Vec4									wq					= rq * (float)src.getDepth();
    853 
    854 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    855 	tcu::Vec3									triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    856 	tcu::Vec3									triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
    857 	tcu::Vec3									triU[2]				= { uq.swizzle(0, 1, 2), uq.swizzle(3, 2, 1) };
    858 	tcu::Vec3									triV[2]				= { vq.swizzle(0, 1, 2), vq.swizzle(3, 2, 1) };
    859 	tcu::Vec3									triW[2]				= { wq.swizzle(0, 1, 2), wq.swizzle(3, 2, 1) };
    860 	tcu::Vec3									triP[2]				= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
    861 
    862 	for (int py = 0; py < dst.getHeight(); py++)
    863 	{
    864 		for (int px = 0; px < dst.getWidth(); px++)
    865 		{
    866 			float	wx		= (float)px + 0.5f;
    867 			float	wy		= (float)py + 0.5f;
    868 			float	nx		= wx / dstW;
    869 			float	ny		= wy / dstH;
    870 
    871 			int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
    872 			float	triWx	= triNdx ? dstW - wx : wx;
    873 			float	triWy	= triNdx ? dstH - wy : wy;
    874 			float	triNx	= triNdx ? 1.0f - nx : nx;
    875 			float	triNy	= triNdx ? 1.0f - ny : ny;
    876 
    877 			float	s		= projectedTriInterpolate(triS[triNdx], triP[triNdx], triNx, triNy);
    878 			float	t		= projectedTriInterpolate(triT[triNdx], triP[triNdx], triNx, triNy);
    879 			float	r		= projectedTriInterpolate(triR[triNdx], triP[triNdx], triNx, triNy);
    880 			float	lod		= computeProjectedTriLod(params.lodMode, triU[triNdx], triV[triNdx], triW[triNdx], triP[triNdx], triWx, triWy, (float)dst.getWidth(), (float)dst.getHeight())
    881 							+ lodBias;
    882 
    883 			dst.setPixel(src.sample(params.sampler, s, t, r, lod) * params.colorScale + params.colorBias, px, py);
    884 		}
    885 	}
    886 }
    887 
    888 void sampleTexture (const SurfaceAccess& dst, const tcu::Texture3DView& src, const float* texCoord, const ReferenceParams& params)
    889 {
    890 	const tcu::Texture3DView	view	= getSubView(src, params.baseLevel, params.maxLevel);
    891 	const tcu::Vec4				sq		= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
    892 	const tcu::Vec4				tq		= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
    893 	const tcu::Vec4				rq		= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
    894 
    895 	if (params.flags & ReferenceParams::PROJECTED)
    896 		sampleTextureProjected(dst, view, sq, tq, rq, params);
    897 	else
    898 		sampleTextureNonProjected(dst, view, sq, tq, rq, params);
    899 }
    900 
    901 static void sampleTextureCubeArray (const SurfaceAccess& dst, const tcu::TextureCubeArrayView& rawSrc, const tcu::Vec4& sq, const tcu::Vec4& tq, const tcu::Vec4& rq, const tcu::Vec4& qq, const ReferenceParams& params)
    902 {
    903 	// Separate combined DS formats
    904 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
    905 	const tcu::TextureCubeArrayView				src					= getEffectiveTextureView(rawSrc, srcLevelStorage, params.sampler);
    906 
    907 	const float									dstW				= (float)dst.getWidth();
    908 	const float									dstH				= (float)dst.getHeight();
    909 
    910 	// Coordinates per triangle.
    911 	tcu::Vec3									triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    912 	tcu::Vec3									triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
    913 	tcu::Vec3									triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
    914 	tcu::Vec3									triQ[2]				= { qq.swizzle(0, 1, 2), qq.swizzle(3, 2, 1) };
    915 	const tcu::Vec3								triW[2]				= { params.w.swizzle(0, 1, 2), params.w.swizzle(3, 2, 1) };
    916 
    917 	const float									lodBias				= (params.flags & ReferenceParams::USE_BIAS) ? params.bias : 0.0f;
    918 
    919 	for (int py = 0; py < dst.getHeight(); py++)
    920 	{
    921 		for (int px = 0; px < dst.getWidth(); px++)
    922 		{
    923 			const float		wx		= (float)px + 0.5f;
    924 			const float		wy		= (float)py + 0.5f;
    925 			const float		nx		= wx / dstW;
    926 			const float		ny		= wy / dstH;
    927 
    928 			const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
    929 			const float		triNx	= triNdx ? 1.0f - nx : nx;
    930 			const float		triNy	= triNdx ? 1.0f - ny : ny;
    931 
    932 			const tcu::Vec3	coord	(triangleInterpolate(triS[triNdx], triNx, triNy),
    933 									 triangleInterpolate(triT[triNdx], triNx, triNy),
    934 									 triangleInterpolate(triR[triNdx], triNx, triNy));
    935 
    936 			const float		coordQ	= triangleInterpolate(triQ[triNdx], triNx, triNy);
    937 
    938 			const tcu::Vec3	coordDx	(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
    939 									 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
    940 									 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
    941 			const tcu::Vec3	coordDy	(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
    942 									 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
    943 									 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
    944 
    945 			const float		lod		= de::clamp(computeCubeLodFromDerivates(params.lodMode, coord, coordDx, coordDy, src.getSize()) + lodBias, params.minLod, params.maxLod);
    946 
    947 			dst.setPixel(execSample(src, params, coord.x(), coord.y(), coord.z(), coordQ, lod) * params.colorScale + params.colorBias, px, py);
    948 		}
    949 	}
    950 }
    951 
    952 void sampleTexture (const SurfaceAccess& dst, const tcu::TextureCubeArrayView& src, const float* texCoord, const ReferenceParams& params)
    953 {
    954 	tcu::Vec4 sq = tcu::Vec4(texCoord[0+0], texCoord[4+0], texCoord[8+0], texCoord[12+0]);
    955 	tcu::Vec4 tq = tcu::Vec4(texCoord[0+1], texCoord[4+1], texCoord[8+1], texCoord[12+1]);
    956 	tcu::Vec4 rq = tcu::Vec4(texCoord[0+2], texCoord[4+2], texCoord[8+2], texCoord[12+2]);
    957 	tcu::Vec4 qq = tcu::Vec4(texCoord[0+3], texCoord[4+3], texCoord[8+3], texCoord[12+3]);
    958 
    959 	sampleTextureCubeArray(dst, src, sq, tq, rq, qq, params);
    960 }
    961 
    962 void fetchTexture (const SurfaceAccess& dst, const tcu::ConstPixelBufferAccess& src, const float* texCoord, const tcu::Vec4& colorScale, const tcu::Vec4& colorBias)
    963 {
    964 	const tcu::Vec4		sq			= tcu::Vec4(texCoord[0], texCoord[1], texCoord[2], texCoord[3]);
    965 	const tcu::Vec3		triS[2]		= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
    966 
    967 	for (int y = 0; y < dst.getHeight(); y++)
    968 	{
    969 		for (int x = 0; x < dst.getWidth(); x++)
    970 		{
    971 			const float	yf		= ((float)y + 0.5f) / (float)dst.getHeight();
    972 			const float	xf		= ((float)x + 0.5f) / (float)dst.getWidth();
    973 
    974 			const int	triNdx	= xf + yf >= 1.0f ? 1 : 0; // Top left fill rule.
    975 			const float	triX	= triNdx ? 1.0f-xf : xf;
    976 			const float	triY	= triNdx ? 1.0f-yf : yf;
    977 
    978 			const float	s		= triangleInterpolate(triS[triNdx].x(), triS[triNdx].y(), triS[triNdx].z(), triX, triY);
    979 
    980 			dst.setPixel(src.getPixel((int)s, 0) * colorScale + colorBias, x, y);
    981 		}
    982 	}
    983 }
    984 
    985 bool compareImages (TestLog& log, const tcu::Surface& reference, const tcu::Surface& rendered, tcu::RGBA threshold)
    986 {
    987 	return tcu::pixelThresholdCompare(log, "Result", "Image comparison result", reference, rendered, threshold, tcu::COMPARE_LOG_RESULT);
    988 }
    989 
    990 bool compareImages (TestLog& log, const char* name, const char* desc, const tcu::Surface& reference, const tcu::Surface& rendered, tcu::RGBA threshold)
    991 {
    992 	return tcu::pixelThresholdCompare(log, name, desc, reference, rendered, threshold, tcu::COMPARE_LOG_RESULT);
    993 }
    994 
    995 int measureAccuracy (tcu::TestLog& log, const tcu::Surface& reference, const tcu::Surface& rendered, int bestScoreDiff, int worstScoreDiff)
    996 {
    997 	return tcu::measurePixelDiffAccuracy(log, "Result", "Image comparison result", reference, rendered, bestScoreDiff, worstScoreDiff, tcu::COMPARE_LOG_EVERYTHING);
    998 }
    999 
   1000 inline int rangeDiff (int x, int a, int b)
   1001 {
   1002 	if (x < a)
   1003 		return a-x;
   1004 	else if (x > b)
   1005 		return x-b;
   1006 	else
   1007 		return 0;
   1008 }
   1009 
   1010 inline tcu::RGBA rangeDiff (tcu::RGBA p, tcu::RGBA a, tcu::RGBA b)
   1011 {
   1012 	int rMin = de::min(a.getRed(),		b.getRed());
   1013 	int rMax = de::max(a.getRed(),		b.getRed());
   1014 	int gMin = de::min(a.getGreen(),	b.getGreen());
   1015 	int gMax = de::max(a.getGreen(),	b.getGreen());
   1016 	int bMin = de::min(a.getBlue(),		b.getBlue());
   1017 	int bMax = de::max(a.getBlue(),		b.getBlue());
   1018 	int aMin = de::min(a.getAlpha(),	b.getAlpha());
   1019 	int aMax = de::max(a.getAlpha(),	b.getAlpha());
   1020 
   1021 	return tcu::RGBA(rangeDiff(p.getRed(),		rMin, rMax),
   1022 					 rangeDiff(p.getGreen(),	gMin, gMax),
   1023 					 rangeDiff(p.getBlue(),		bMin, bMax),
   1024 					 rangeDiff(p.getAlpha(),	aMin, aMax));
   1025 }
   1026 
   1027 inline bool rangeCompare (tcu::RGBA p, tcu::RGBA a, tcu::RGBA b, tcu::RGBA threshold)
   1028 {
   1029 	tcu::RGBA diff = rangeDiff(p, a, b);
   1030 	return diff.getRed()	<= threshold.getRed() &&
   1031 		   diff.getGreen()	<= threshold.getGreen() &&
   1032 		   diff.getBlue()	<= threshold.getBlue() &&
   1033 		   diff.getAlpha()	<= threshold.getAlpha();
   1034 }
   1035 
   1036 RandomViewport::RandomViewport (const tcu::RenderTarget& renderTarget, int preferredWidth, int preferredHeight, deUint32 seed)
   1037 	: x			(0)
   1038 	, y			(0)
   1039 	, width		(deMin32(preferredWidth, renderTarget.getWidth()))
   1040 	, height	(deMin32(preferredHeight, renderTarget.getHeight()))
   1041 {
   1042 	de::Random rnd(seed);
   1043 	x = rnd.getInt(0, renderTarget.getWidth()	- width);
   1044 	y = rnd.getInt(0, renderTarget.getHeight()	- height);
   1045 }
   1046 
   1047 ProgramLibrary::ProgramLibrary (const glu::RenderContext& context, tcu::TestLog& log, glu::GLSLVersion glslVersion, glu::Precision texCoordPrecision)
   1048 	: m_context				(context)
   1049 	, m_log					(log)
   1050 	, m_glslVersion			(glslVersion)
   1051 	, m_texCoordPrecision	(texCoordPrecision)
   1052 {
   1053 }
   1054 
   1055 ProgramLibrary::~ProgramLibrary (void)
   1056 {
   1057 	clear();
   1058 }
   1059 
   1060 void ProgramLibrary::clear (void)
   1061 {
   1062 	for (map<Program, glu::ShaderProgram*>::iterator i = m_programs.begin(); i != m_programs.end(); i++)
   1063 	{
   1064 		delete i->second;
   1065 		i->second = DE_NULL;
   1066 	}
   1067 	m_programs.clear();
   1068 }
   1069 
   1070 glu::ShaderProgram* ProgramLibrary::getProgram (Program program)
   1071 {
   1072 	if (m_programs.find(program) != m_programs.end())
   1073 		return m_programs[program]; // Return from cache.
   1074 
   1075 	static const char* vertShaderTemplate =
   1076 		"${VTX_HEADER}"
   1077 		"${VTX_IN} highp vec4 a_position;\n"
   1078 		"${VTX_IN} ${PRECISION} ${TEXCOORD_TYPE} a_texCoord;\n"
   1079 		"${VTX_OUT} ${PRECISION} ${TEXCOORD_TYPE} v_texCoord;\n"
   1080 		"\n"
   1081 		"void main (void)\n"
   1082 		"{\n"
   1083 		"	gl_Position = a_position;\n"
   1084 		"	v_texCoord = a_texCoord;\n"
   1085 		"}\n";
   1086 	static const char* fragShaderTemplate =
   1087 		"${FRAG_HEADER}"
   1088 		"${FRAG_IN} ${PRECISION} ${TEXCOORD_TYPE} v_texCoord;\n"
   1089 		"uniform ${PRECISION} float u_bias;\n"
   1090 		"uniform ${PRECISION} float u_ref;\n"
   1091 		"uniform ${PRECISION} vec4 u_colorScale;\n"
   1092 		"uniform ${PRECISION} vec4 u_colorBias;\n"
   1093 		"uniform ${PRECISION} ${SAMPLER_TYPE} u_sampler;\n"
   1094 		"\n"
   1095 		"void main (void)\n"
   1096 		"{\n"
   1097 		"	${FRAG_COLOR} = ${LOOKUP} * u_colorScale + u_colorBias;\n"
   1098 		"}\n";
   1099 
   1100 	map<string, string> params;
   1101 
   1102 	bool	isCube		= de::inRange<int>(program, PROGRAM_CUBE_FLOAT, PROGRAM_CUBE_SHADOW_BIAS);
   1103 	bool	isArray		= de::inRange<int>(program, PROGRAM_2D_ARRAY_FLOAT, PROGRAM_2D_ARRAY_SHADOW)
   1104 							|| de::inRange<int>(program, PROGRAM_1D_ARRAY_FLOAT, PROGRAM_1D_ARRAY_SHADOW);
   1105 
   1106 	bool	is1D		= de::inRange<int>(program, PROGRAM_1D_FLOAT, PROGRAM_1D_UINT_BIAS)
   1107 							|| de::inRange<int>(program, PROGRAM_1D_ARRAY_FLOAT, PROGRAM_1D_ARRAY_SHADOW)
   1108 							|| de::inRange<int>(program, PROGRAM_BUFFER_FLOAT, PROGRAM_BUFFER_UINT);
   1109 
   1110 	bool	is2D		= de::inRange<int>(program, PROGRAM_2D_FLOAT, PROGRAM_2D_UINT_BIAS)
   1111 							|| de::inRange<int>(program, PROGRAM_2D_ARRAY_FLOAT, PROGRAM_2D_ARRAY_SHADOW);
   1112 
   1113 	bool	is3D		= de::inRange<int>(program, PROGRAM_3D_FLOAT, PROGRAM_3D_UINT_BIAS);
   1114 	bool	isCubeArray	= de::inRange<int>(program, PROGRAM_CUBE_ARRAY_FLOAT, PROGRAM_CUBE_ARRAY_SHADOW);
   1115 	bool	isBuffer	= de::inRange<int>(program, PROGRAM_BUFFER_FLOAT, PROGRAM_BUFFER_UINT);
   1116 
   1117 	if (m_glslVersion == glu::GLSL_VERSION_100_ES)
   1118 	{
   1119 		params["FRAG_HEADER"]	= "";
   1120 		params["VTX_HEADER"]	= "";
   1121 		params["VTX_IN"]		= "attribute";
   1122 		params["VTX_OUT"]		= "varying";
   1123 		params["FRAG_IN"]		= "varying";
   1124 		params["FRAG_COLOR"]	= "gl_FragColor";
   1125 	}
   1126 	else if (m_glslVersion == glu::GLSL_VERSION_300_ES || m_glslVersion == glu::GLSL_VERSION_310_ES || m_glslVersion == glu::GLSL_VERSION_320_ES || m_glslVersion == glu::GLSL_VERSION_330)
   1127 	{
   1128 		const string	version	= glu::getGLSLVersionDeclaration(m_glslVersion);
   1129 		const char*		ext		= DE_NULL;
   1130 
   1131 		if (glu::glslVersionIsES(m_glslVersion) && m_glslVersion != glu::GLSL_VERSION_320_ES) {
   1132 			if (isCubeArray)
   1133 				ext = "GL_EXT_texture_cube_map_array";
   1134 			else if (isBuffer)
   1135 				ext = "GL_EXT_texture_buffer";
   1136 		}
   1137 
   1138 		params["FRAG_HEADER"]	= version + (ext ? string("\n#extension ") + ext + " : require" : string()) + "\nlayout(location = 0) out mediump vec4 dEQP_FragColor;\n";
   1139 		params["VTX_HEADER"]	= version + "\n";
   1140 		params["VTX_IN"]		= "in";
   1141 		params["VTX_OUT"]		= "out";
   1142 		params["FRAG_IN"]		= "in";
   1143 		params["FRAG_COLOR"]	= "dEQP_FragColor";
   1144 	}
   1145 	else
   1146 		DE_FATAL("Unsupported version");
   1147 
   1148 	params["PRECISION"]		= glu::getPrecisionName(m_texCoordPrecision);
   1149 
   1150 	if (isCubeArray)
   1151 		params["TEXCOORD_TYPE"]	= "vec4";
   1152 	else if (isCube || (is2D && isArray) || is3D)
   1153 		params["TEXCOORD_TYPE"]	= "vec3";
   1154 	else if ((is1D && isArray) || is2D)
   1155 		params["TEXCOORD_TYPE"]	= "vec2";
   1156 	else if (is1D)
   1157 		params["TEXCOORD_TYPE"]	= "float";
   1158 	else
   1159 		DE_ASSERT(DE_FALSE);
   1160 
   1161 	const char*	sampler	= DE_NULL;
   1162 	const char*	lookup	= DE_NULL;
   1163 
   1164 	if (m_glslVersion == glu::GLSL_VERSION_300_ES || m_glslVersion == glu::GLSL_VERSION_310_ES || m_glslVersion == glu::GLSL_VERSION_320_ES || m_glslVersion == glu::GLSL_VERSION_330)
   1165 	{
   1166 		switch (program)
   1167 		{
   1168 			case PROGRAM_2D_FLOAT:			sampler = "sampler2D";				lookup = "texture(u_sampler, v_texCoord)";												break;
   1169 			case PROGRAM_2D_INT:			sampler = "isampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1170 			case PROGRAM_2D_UINT:			sampler = "usampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1171 			case PROGRAM_2D_SHADOW:			sampler = "sampler2DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
   1172 			case PROGRAM_2D_FLOAT_BIAS:		sampler = "sampler2D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
   1173 			case PROGRAM_2D_INT_BIAS:		sampler = "isampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1174 			case PROGRAM_2D_UINT_BIAS:		sampler = "usampler2D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1175 			case PROGRAM_2D_SHADOW_BIAS:	sampler = "sampler2DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
   1176 			case PROGRAM_1D_FLOAT:			sampler = "sampler1D";				lookup = "texture(u_sampler, v_texCoord)";												break;
   1177 			case PROGRAM_1D_INT:			sampler = "isampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1178 			case PROGRAM_1D_UINT:			sampler = "usampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1179 			case PROGRAM_1D_SHADOW:			sampler = "sampler1DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
   1180 			case PROGRAM_1D_FLOAT_BIAS:		sampler = "sampler1D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
   1181 			case PROGRAM_1D_INT_BIAS:		sampler = "isampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1182 			case PROGRAM_1D_UINT_BIAS:		sampler = "usampler1D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1183 			case PROGRAM_1D_SHADOW_BIAS:	sampler = "sampler1DShadow";		lookup = "vec4(texture(u_sampler, vec3(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
   1184 			case PROGRAM_CUBE_FLOAT:		sampler = "samplerCube";			lookup = "texture(u_sampler, v_texCoord)";												break;
   1185 			case PROGRAM_CUBE_INT:			sampler = "isamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1186 			case PROGRAM_CUBE_UINT:			sampler = "usamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1187 			case PROGRAM_CUBE_SHADOW:		sampler = "samplerCubeShadow";		lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
   1188 			case PROGRAM_CUBE_FLOAT_BIAS:	sampler = "samplerCube";			lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
   1189 			case PROGRAM_CUBE_INT_BIAS:		sampler = "isamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1190 			case PROGRAM_CUBE_UINT_BIAS:	sampler = "usamplerCube";			lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1191 			case PROGRAM_CUBE_SHADOW_BIAS:	sampler = "samplerCubeShadow";		lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref), u_bias), 0.0, 0.0, 1.0)";	break;
   1192 			case PROGRAM_2D_ARRAY_FLOAT:	sampler = "sampler2DArray";			lookup = "texture(u_sampler, v_texCoord)";												break;
   1193 			case PROGRAM_2D_ARRAY_INT:		sampler = "isampler2DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1194 			case PROGRAM_2D_ARRAY_UINT:		sampler = "usampler2DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1195 			case PROGRAM_2D_ARRAY_SHADOW:	sampler = "sampler2DArrayShadow";	lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
   1196 			case PROGRAM_3D_FLOAT:			sampler = "sampler3D";				lookup = "texture(u_sampler, v_texCoord)";												break;
   1197 			case PROGRAM_3D_INT:			sampler = "isampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1198 			case PROGRAM_3D_UINT:			sampler = "usampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1199 			case PROGRAM_3D_FLOAT_BIAS:		sampler = "sampler3D";				lookup = "texture(u_sampler, v_texCoord, u_bias)";										break;
   1200 			case PROGRAM_3D_INT_BIAS:		sampler = "isampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1201 			case PROGRAM_3D_UINT_BIAS:		sampler = "usampler3D";				lookup = "vec4(texture(u_sampler, v_texCoord, u_bias))";								break;
   1202 			case PROGRAM_CUBE_ARRAY_FLOAT:	sampler = "samplerCubeArray";		lookup = "texture(u_sampler, v_texCoord)";												break;
   1203 			case PROGRAM_CUBE_ARRAY_INT:	sampler = "isamplerCubeArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1204 			case PROGRAM_CUBE_ARRAY_UINT:	sampler = "usamplerCubeArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1205 			case PROGRAM_CUBE_ARRAY_SHADOW:	sampler = "samplerCubeArrayShadow";	lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
   1206 			case PROGRAM_1D_ARRAY_FLOAT:	sampler = "sampler1DArray";			lookup = "texture(u_sampler, v_texCoord)";												break;
   1207 			case PROGRAM_1D_ARRAY_INT:		sampler = "isampler1DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1208 			case PROGRAM_1D_ARRAY_UINT:		sampler = "usampler1DArray";		lookup = "vec4(texture(u_sampler, v_texCoord))";										break;
   1209 			case PROGRAM_1D_ARRAY_SHADOW:	sampler = "sampler1DArrayShadow";	lookup = "vec4(texture(u_sampler, vec4(v_texCoord, u_ref)), 0.0, 0.0, 1.0)";			break;
   1210 			case PROGRAM_BUFFER_FLOAT:		sampler = "samplerBuffer";			lookup = "texelFetch(u_sampler, int(v_texCoord))";										break;
   1211 			case PROGRAM_BUFFER_INT:		sampler = "isamplerBuffer";			lookup = "vec4(texelFetch(u_sampler, int(v_texCoord)))";								break;
   1212 			case PROGRAM_BUFFER_UINT:		sampler = "usamplerBuffer";			lookup = "vec4(texelFetch(u_sampler, int(v_texCoord)))";								break;
   1213 			default:
   1214 				DE_ASSERT(false);
   1215 		}
   1216 	}
   1217 	else if (m_glslVersion == glu::GLSL_VERSION_100_ES)
   1218 	{
   1219 		sampler = isCube ? "samplerCube" : "sampler2D";
   1220 
   1221 		switch (program)
   1222 		{
   1223 			case PROGRAM_2D_FLOAT:			lookup = "texture2D(u_sampler, v_texCoord)";			break;
   1224 			case PROGRAM_2D_FLOAT_BIAS:		lookup = "texture2D(u_sampler, v_texCoord, u_bias)";	break;
   1225 			case PROGRAM_CUBE_FLOAT:		lookup = "textureCube(u_sampler, v_texCoord)";			break;
   1226 			case PROGRAM_CUBE_FLOAT_BIAS:	lookup = "textureCube(u_sampler, v_texCoord, u_bias)";	break;
   1227 			default:
   1228 				DE_ASSERT(false);
   1229 		}
   1230 	}
   1231 	else
   1232 		DE_FATAL("Unsupported version");
   1233 
   1234 	params["SAMPLER_TYPE"]	= sampler;
   1235 	params["LOOKUP"]		= lookup;
   1236 
   1237 	std::string vertSrc = tcu::StringTemplate(vertShaderTemplate).specialize(params);
   1238 	std::string fragSrc = tcu::StringTemplate(fragShaderTemplate).specialize(params);
   1239 
   1240 	glu::ShaderProgram* progObj = new glu::ShaderProgram(m_context, glu::makeVtxFragSources(vertSrc, fragSrc));
   1241 	if (!progObj->isOk())
   1242 	{
   1243 		m_log << *progObj;
   1244 		delete progObj;
   1245 		TCU_FAIL("Failed to compile shader program");
   1246 	}
   1247 
   1248 	try
   1249 	{
   1250 		m_programs[program] = progObj;
   1251 	}
   1252 	catch (...)
   1253 	{
   1254 		delete progObj;
   1255 		throw;
   1256 	}
   1257 
   1258 	return progObj;
   1259 }
   1260 
   1261 TextureRenderer::TextureRenderer (const glu::RenderContext& context, tcu::TestLog& log, glu::GLSLVersion glslVersion, glu::Precision texCoordPrecision)
   1262 	: m_renderCtx		(context)
   1263 	, m_log				(log)
   1264 	, m_programLibrary	(context, log, glslVersion, texCoordPrecision)
   1265 {
   1266 }
   1267 
   1268 TextureRenderer::~TextureRenderer (void)
   1269 {
   1270 	clear();
   1271 }
   1272 
   1273 void TextureRenderer::clear (void)
   1274 {
   1275 	m_programLibrary.clear();
   1276 }
   1277 
   1278 void TextureRenderer::renderQuad (int texUnit, const float* texCoord, TextureType texType)
   1279 {
   1280 	renderQuad(texUnit, texCoord, RenderParams(texType));
   1281 }
   1282 
   1283 void TextureRenderer::renderQuad (int texUnit, const float* texCoord, const RenderParams& params)
   1284 {
   1285 	const glw::Functions&	gl			= m_renderCtx.getFunctions();
   1286 	tcu::Vec4				wCoord		= params.flags & RenderParams::PROJECTED ? params.w : tcu::Vec4(1.0f);
   1287 	bool					useBias		= !!(params.flags & RenderParams::USE_BIAS);
   1288 	bool					logUniforms	= !!(params.flags & RenderParams::LOG_UNIFORMS);
   1289 
   1290 	// Render quad with texture.
   1291 	float position[] =
   1292 	{
   1293 		-1.0f*wCoord.x(), -1.0f*wCoord.x(), 0.0f, wCoord.x(),
   1294 		-1.0f*wCoord.y(), +1.0f*wCoord.y(), 0.0f, wCoord.y(),
   1295 		+1.0f*wCoord.z(), -1.0f*wCoord.z(), 0.0f, wCoord.z(),
   1296 		+1.0f*wCoord.w(), +1.0f*wCoord.w(), 0.0f, wCoord.w()
   1297 	};
   1298 	static const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
   1299 
   1300 	Program progSpec	= PROGRAM_LAST;
   1301 	int		numComps	= 0;
   1302 	if (params.texType == TEXTURETYPE_2D)
   1303 	{
   1304 		numComps = 2;
   1305 
   1306 		switch (params.samplerType)
   1307 		{
   1308 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_2D_FLOAT_BIAS	: PROGRAM_2D_FLOAT;		break;
   1309 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_2D_INT_BIAS	: PROGRAM_2D_INT;		break;
   1310 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_2D_UINT_BIAS	: PROGRAM_2D_UINT;		break;
   1311 			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_2D_SHADOW_BIAS	: PROGRAM_2D_SHADOW;	break;
   1312 			default:					DE_ASSERT(false);
   1313 		}
   1314 	}
   1315 	else if (params.texType == TEXTURETYPE_1D)
   1316 	{
   1317 		numComps = 1;
   1318 
   1319 		switch (params.samplerType)
   1320 		{
   1321 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_1D_FLOAT_BIAS	: PROGRAM_1D_FLOAT;		break;
   1322 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_1D_INT_BIAS	: PROGRAM_1D_INT;		break;
   1323 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_1D_UINT_BIAS	: PROGRAM_1D_UINT;		break;
   1324 			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_1D_SHADOW_BIAS	: PROGRAM_1D_SHADOW;	break;
   1325 			default:					DE_ASSERT(false);
   1326 		}
   1327 	}
   1328 	else if (params.texType == TEXTURETYPE_CUBE)
   1329 	{
   1330 		numComps = 3;
   1331 
   1332 		switch (params.samplerType)
   1333 		{
   1334 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_CUBE_FLOAT_BIAS	: PROGRAM_CUBE_FLOAT;	break;
   1335 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_CUBE_INT_BIAS		: PROGRAM_CUBE_INT;		break;
   1336 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_CUBE_UINT_BIAS		: PROGRAM_CUBE_UINT;	break;
   1337 			case SAMPLERTYPE_SHADOW:	progSpec = useBias ? PROGRAM_CUBE_SHADOW_BIAS	: PROGRAM_CUBE_SHADOW;	break;
   1338 			default:					DE_ASSERT(false);
   1339 		}
   1340 	}
   1341 	else if (params.texType == TEXTURETYPE_3D)
   1342 	{
   1343 		numComps = 3;
   1344 
   1345 		switch (params.samplerType)
   1346 		{
   1347 			case SAMPLERTYPE_FLOAT:		progSpec = useBias ? PROGRAM_3D_FLOAT_BIAS	: PROGRAM_3D_FLOAT;		break;
   1348 			case SAMPLERTYPE_INT:		progSpec = useBias ? PROGRAM_3D_INT_BIAS	: PROGRAM_3D_INT;		break;
   1349 			case SAMPLERTYPE_UINT:		progSpec = useBias ? PROGRAM_3D_UINT_BIAS	: PROGRAM_3D_UINT;		break;
   1350 			default:					DE_ASSERT(false);
   1351 		}
   1352 	}
   1353 	else if (params.texType == TEXTURETYPE_2D_ARRAY)
   1354 	{
   1355 		DE_ASSERT(!useBias); // \todo [2012-02-17 pyry] Support bias.
   1356 
   1357 		numComps = 3;
   1358 
   1359 		switch (params.samplerType)
   1360 		{
   1361 			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_2D_ARRAY_FLOAT;	break;
   1362 			case SAMPLERTYPE_INT:		progSpec = PROGRAM_2D_ARRAY_INT;	break;
   1363 			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_2D_ARRAY_UINT;	break;
   1364 			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_2D_ARRAY_SHADOW;	break;
   1365 			default:					DE_ASSERT(false);
   1366 		}
   1367 	}
   1368 	else if (params.texType == TEXTURETYPE_CUBE_ARRAY)
   1369 	{
   1370 		DE_ASSERT(!useBias);
   1371 
   1372 		numComps = 4;
   1373 
   1374 		switch (params.samplerType)
   1375 		{
   1376 			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_CUBE_ARRAY_FLOAT;	break;
   1377 			case SAMPLERTYPE_INT:		progSpec = PROGRAM_CUBE_ARRAY_INT;		break;
   1378 			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_CUBE_ARRAY_UINT;		break;
   1379 			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_CUBE_ARRAY_SHADOW;	break;
   1380 			default:					DE_ASSERT(false);
   1381 		}
   1382 	}
   1383 	else if (params.texType == TEXTURETYPE_1D_ARRAY)
   1384 	{
   1385 		DE_ASSERT(!useBias); // \todo [2012-02-17 pyry] Support bias.
   1386 
   1387 		numComps = 2;
   1388 
   1389 		switch (params.samplerType)
   1390 		{
   1391 			case SAMPLERTYPE_FLOAT:		progSpec = PROGRAM_1D_ARRAY_FLOAT;	break;
   1392 			case SAMPLERTYPE_INT:		progSpec = PROGRAM_1D_ARRAY_INT;	break;
   1393 			case SAMPLERTYPE_UINT:		progSpec = PROGRAM_1D_ARRAY_UINT;	break;
   1394 			case SAMPLERTYPE_SHADOW:	progSpec = PROGRAM_1D_ARRAY_SHADOW;	break;
   1395 			default:					DE_ASSERT(false);
   1396 		}
   1397 	}
   1398 	else if (params.texType == TEXTURETYPE_BUFFER)
   1399 	{
   1400 		numComps = 1;
   1401 
   1402 		switch (params.samplerType)
   1403 		{
   1404 			case SAMPLERTYPE_FETCH_FLOAT:	progSpec = PROGRAM_BUFFER_FLOAT;	break;
   1405 			case SAMPLERTYPE_FETCH_INT:		progSpec = PROGRAM_BUFFER_INT;		break;
   1406 			case SAMPLERTYPE_FETCH_UINT:	progSpec = PROGRAM_BUFFER_UINT;		break;
   1407 			default:						DE_ASSERT(false);
   1408 		}
   1409 	}
   1410 	else
   1411 		DE_ASSERT(DE_FALSE);
   1412 
   1413 	glu::ShaderProgram* program = m_programLibrary.getProgram(progSpec);
   1414 
   1415 	// \todo [2012-09-26 pyry] Move to ProgramLibrary and log unique programs only(?)
   1416 	if (params.flags & RenderParams::LOG_PROGRAMS)
   1417 		m_log << *program;
   1418 
   1419 	GLU_EXPECT_NO_ERROR(gl.getError(), "Set vertex attributes");
   1420 
   1421 	// Program and uniforms.
   1422 	deUint32 prog = program->getProgram();
   1423 	gl.useProgram(prog);
   1424 
   1425 	gl.uniform1i(gl.getUniformLocation(prog, "u_sampler"), texUnit);
   1426 	if (logUniforms)
   1427 		m_log << TestLog::Message << "u_sampler = " << texUnit << TestLog::EndMessage;
   1428 
   1429 	if (useBias)
   1430 	{
   1431 		gl.uniform1f(gl.getUniformLocation(prog, "u_bias"), params.bias);
   1432 		if (logUniforms)
   1433 			m_log << TestLog::Message << "u_bias = " << params.bias << TestLog::EndMessage;
   1434 	}
   1435 
   1436 	if (params.samplerType == SAMPLERTYPE_SHADOW)
   1437 	{
   1438 		gl.uniform1f(gl.getUniformLocation(prog, "u_ref"), params.ref);
   1439 		if (logUniforms)
   1440 			m_log << TestLog::Message << "u_ref = " << params.ref << TestLog::EndMessage;
   1441 	}
   1442 
   1443 	gl.uniform4fv(gl.getUniformLocation(prog, "u_colorScale"),	1, params.colorScale.getPtr());
   1444 	gl.uniform4fv(gl.getUniformLocation(prog, "u_colorBias"),	1, params.colorBias.getPtr());
   1445 
   1446 	if (logUniforms)
   1447 	{
   1448 		m_log << TestLog::Message << "u_colorScale = " << params.colorScale << TestLog::EndMessage;
   1449 		m_log << TestLog::Message << "u_colorBias = " << params.colorBias << TestLog::EndMessage;
   1450 	}
   1451 
   1452 	GLU_EXPECT_NO_ERROR(gl.getError(), "Set program state");
   1453 
   1454 	{
   1455 		const glu::VertexArrayBinding vertexArrays[] =
   1456 		{
   1457 			glu::va::Float("a_position",	4,			4, 0, &position[0]),
   1458 			glu::va::Float("a_texCoord",	numComps,	4, 0, texCoord)
   1459 		};
   1460 		glu::draw(m_renderCtx, prog, DE_LENGTH_OF_ARRAY(vertexArrays), &vertexArrays[0],
   1461 				  glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
   1462 	}
   1463 }
   1464 
   1465 void computeQuadTexCoord1D (std::vector<float>& dst, float left, float right)
   1466 {
   1467 	dst.resize(4);
   1468 
   1469 	dst[0] = left;
   1470 	dst[1] = left;
   1471 	dst[2] = right;
   1472 	dst[3] = right;
   1473 }
   1474 
   1475 void computeQuadTexCoord1DArray (std::vector<float>& dst, int layerNdx, float left, float right)
   1476 {
   1477 	dst.resize(4*2);
   1478 
   1479 	dst[0] = left;	dst[1] = (float)layerNdx;
   1480 	dst[2] = left;	dst[3] = (float)layerNdx;
   1481 	dst[4] = right;	dst[5] = (float)layerNdx;
   1482 	dst[6] = right;	dst[7] = (float)layerNdx;
   1483 }
   1484 
   1485 void computeQuadTexCoord2D (std::vector<float>& dst, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight)
   1486 {
   1487 	dst.resize(4*2);
   1488 
   1489 	dst[0] = bottomLeft.x();	dst[1] = bottomLeft.y();
   1490 	dst[2] = bottomLeft.x();	dst[3] = topRight.y();
   1491 	dst[4] = topRight.x();		dst[5] = bottomLeft.y();
   1492 	dst[6] = topRight.x();		dst[7] = topRight.y();
   1493 }
   1494 
   1495 void computeQuadTexCoord2DArray (std::vector<float>& dst, int layerNdx, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight)
   1496 {
   1497 	dst.resize(4*3);
   1498 
   1499 	dst[0] = bottomLeft.x();	dst[ 1] = bottomLeft.y();	dst[ 2] = (float)layerNdx;
   1500 	dst[3] = bottomLeft.x();	dst[ 4] = topRight.y();		dst[ 5] = (float)layerNdx;
   1501 	dst[6] = topRight.x();		dst[ 7] = bottomLeft.y();	dst[ 8] = (float)layerNdx;
   1502 	dst[9] = topRight.x();		dst[10] = topRight.y();		dst[11] = (float)layerNdx;
   1503 }
   1504 
   1505 void computeQuadTexCoord3D (std::vector<float>& dst, const tcu::Vec3& p0, const tcu::Vec3& p1, const tcu::IVec3& dirSwz)
   1506 {
   1507 	tcu::Vec3 f0 = tcu::Vec3(0.0f, 0.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
   1508 	tcu::Vec3 f1 = tcu::Vec3(0.0f, 1.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
   1509 	tcu::Vec3 f2 = tcu::Vec3(1.0f, 0.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
   1510 	tcu::Vec3 f3 = tcu::Vec3(1.0f, 1.0f, 0.0f).swizzle(dirSwz[0], dirSwz[1], dirSwz[2]);
   1511 
   1512 	tcu::Vec3 v0 = p0 + (p1-p0)*f0;
   1513 	tcu::Vec3 v1 = p0 + (p1-p0)*f1;
   1514 	tcu::Vec3 v2 = p0 + (p1-p0)*f2;
   1515 	tcu::Vec3 v3 = p0 + (p1-p0)*f3;
   1516 
   1517 	dst.resize(4*3);
   1518 
   1519 	dst[0] = v0.x(); dst[ 1] = v0.y(); dst[ 2] = v0.z();
   1520 	dst[3] = v1.x(); dst[ 4] = v1.y(); dst[ 5] = v1.z();
   1521 	dst[6] = v2.x(); dst[ 7] = v2.y(); dst[ 8] = v2.z();
   1522 	dst[9] = v3.x(); dst[10] = v3.y(); dst[11] = v3.z();
   1523 }
   1524 
   1525 void computeQuadTexCoordCube (std::vector<float>& dst, tcu::CubeFace face)
   1526 {
   1527 	static const float texCoordNegX[] =
   1528 	{
   1529 		-1.0f,  1.0f, -1.0f,
   1530 		-1.0f, -1.0f, -1.0f,
   1531 		-1.0f,  1.0f,  1.0f,
   1532 		-1.0f, -1.0f,  1.0f
   1533 	};
   1534 	static const float texCoordPosX[] =
   1535 	{
   1536 		+1.0f,  1.0f,  1.0f,
   1537 		+1.0f, -1.0f,  1.0f,
   1538 		+1.0f,  1.0f, -1.0f,
   1539 		+1.0f, -1.0f, -1.0f
   1540 	};
   1541 	static const float texCoordNegY[] =
   1542 	{
   1543 		-1.0f, -1.0f,  1.0f,
   1544 		-1.0f, -1.0f, -1.0f,
   1545 		 1.0f, -1.0f,  1.0f,
   1546 		 1.0f, -1.0f, -1.0f
   1547 	};
   1548 	static const float texCoordPosY[] =
   1549 	{
   1550 		-1.0f, +1.0f, -1.0f,
   1551 		-1.0f, +1.0f,  1.0f,
   1552 		 1.0f, +1.0f, -1.0f,
   1553 		 1.0f, +1.0f,  1.0f
   1554 	};
   1555 	static const float texCoordNegZ[] =
   1556 	{
   1557 		 1.0f,  1.0f, -1.0f,
   1558 		 1.0f, -1.0f, -1.0f,
   1559 		-1.0f,  1.0f, -1.0f,
   1560 		-1.0f, -1.0f, -1.0f
   1561 	};
   1562 	static const float texCoordPosZ[] =
   1563 	{
   1564 		-1.0f,  1.0f, +1.0f,
   1565 		-1.0f, -1.0f, +1.0f,
   1566 		 1.0f,  1.0f, +1.0f,
   1567 		 1.0f, -1.0f, +1.0f
   1568 	};
   1569 
   1570 	const float*	texCoord		= DE_NULL;
   1571 	int				texCoordSize	= DE_LENGTH_OF_ARRAY(texCoordNegX);
   1572 
   1573 	switch (face)
   1574 	{
   1575 		case tcu::CUBEFACE_NEGATIVE_X: texCoord = texCoordNegX; break;
   1576 		case tcu::CUBEFACE_POSITIVE_X: texCoord = texCoordPosX; break;
   1577 		case tcu::CUBEFACE_NEGATIVE_Y: texCoord = texCoordNegY; break;
   1578 		case tcu::CUBEFACE_POSITIVE_Y: texCoord = texCoordPosY; break;
   1579 		case tcu::CUBEFACE_NEGATIVE_Z: texCoord = texCoordNegZ; break;
   1580 		case tcu::CUBEFACE_POSITIVE_Z: texCoord = texCoordPosZ; break;
   1581 		default:
   1582 			DE_ASSERT(DE_FALSE);
   1583 			return;
   1584 	}
   1585 
   1586 	dst.resize(texCoordSize);
   1587 	std::copy(texCoord, texCoord+texCoordSize, dst.begin());
   1588 }
   1589 
   1590 void computeQuadTexCoordCube (std::vector<float>& dst, tcu::CubeFace face, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight)
   1591 {
   1592 	int		sRow		= 0;
   1593 	int		tRow		= 0;
   1594 	int		mRow		= 0;
   1595 	float	sSign		= 1.0f;
   1596 	float	tSign		= 1.0f;
   1597 	float	mSign		= 1.0f;
   1598 
   1599 	switch (face)
   1600 	{
   1601 		case tcu::CUBEFACE_NEGATIVE_X: mRow = 0; sRow = 2; tRow = 1; mSign = -1.0f;				   tSign = -1.0f;	break;
   1602 		case tcu::CUBEFACE_POSITIVE_X: mRow = 0; sRow = 2; tRow = 1;				sSign = -1.0f; tSign = -1.0f;	break;
   1603 		case tcu::CUBEFACE_NEGATIVE_Y: mRow = 1; sRow = 0; tRow = 2; mSign = -1.0f;				   tSign = -1.0f;	break;
   1604 		case tcu::CUBEFACE_POSITIVE_Y: mRow = 1; sRow = 0; tRow = 2;												break;
   1605 		case tcu::CUBEFACE_NEGATIVE_Z: mRow = 2; sRow = 0; tRow = 1; mSign = -1.0f; sSign = -1.0f; tSign = -1.0f;	break;
   1606 		case tcu::CUBEFACE_POSITIVE_Z: mRow = 2; sRow = 0; tRow = 1;							   tSign = -1.0f;	break;
   1607 		default:
   1608 			DE_ASSERT(DE_FALSE);
   1609 			return;
   1610 	}
   1611 
   1612 	dst.resize(3*4);
   1613 
   1614 	dst[0+mRow] = mSign;
   1615 	dst[3+mRow] = mSign;
   1616 	dst[6+mRow] = mSign;
   1617 	dst[9+mRow] = mSign;
   1618 
   1619 	dst[0+sRow] = sSign * bottomLeft.x();
   1620 	dst[3+sRow] = sSign * bottomLeft.x();
   1621 	dst[6+sRow] = sSign * topRight.x();
   1622 	dst[9+sRow] = sSign * topRight.x();
   1623 
   1624 	dst[0+tRow] = tSign * bottomLeft.y();
   1625 	dst[3+tRow] = tSign * topRight.y();
   1626 	dst[6+tRow] = tSign * bottomLeft.y();
   1627 	dst[9+tRow] = tSign * topRight.y();
   1628 }
   1629 
   1630 void computeQuadTexCoordCubeArray (std::vector<float>& dst, tcu::CubeFace face, const tcu::Vec2& bottomLeft, const tcu::Vec2& topRight, const tcu::Vec2& layerRange)
   1631 {
   1632 	int			sRow	= 0;
   1633 	int			tRow	= 0;
   1634 	int			mRow	= 0;
   1635 	const int	qRow	= 3;
   1636 	float		sSign	= 1.0f;
   1637 	float		tSign	= 1.0f;
   1638 	float		mSign	= 1.0f;
   1639 	const float	l0		= layerRange.x();
   1640 	const float	l1		= layerRange.y();
   1641 
   1642 	switch (face)
   1643 	{
   1644 		case tcu::CUBEFACE_NEGATIVE_X: mRow = 0; sRow = 2; tRow = 1; mSign = -1.0f;				   tSign = -1.0f;	break;
   1645 		case tcu::CUBEFACE_POSITIVE_X: mRow = 0; sRow = 2; tRow = 1;				sSign = -1.0f; tSign = -1.0f;	break;
   1646 		case tcu::CUBEFACE_NEGATIVE_Y: mRow = 1; sRow = 0; tRow = 2; mSign = -1.0f;				   tSign = -1.0f;	break;
   1647 		case tcu::CUBEFACE_POSITIVE_Y: mRow = 1; sRow = 0; tRow = 2;												break;
   1648 		case tcu::CUBEFACE_NEGATIVE_Z: mRow = 2; sRow = 0; tRow = 1; mSign = -1.0f; sSign = -1.0f; tSign = -1.0f;	break;
   1649 		case tcu::CUBEFACE_POSITIVE_Z: mRow = 2; sRow = 0; tRow = 1;							   tSign = -1.0f;	break;
   1650 		default:
   1651 			DE_ASSERT(DE_FALSE);
   1652 			return;
   1653 	}
   1654 
   1655 	dst.resize(4*4);
   1656 
   1657 	dst[ 0+mRow] = mSign;
   1658 	dst[ 4+mRow] = mSign;
   1659 	dst[ 8+mRow] = mSign;
   1660 	dst[12+mRow] = mSign;
   1661 
   1662 	dst[ 0+sRow] = sSign * bottomLeft.x();
   1663 	dst[ 4+sRow] = sSign * bottomLeft.x();
   1664 	dst[ 8+sRow] = sSign * topRight.x();
   1665 	dst[12+sRow] = sSign * topRight.x();
   1666 
   1667 	dst[ 0+tRow] = tSign * bottomLeft.y();
   1668 	dst[ 4+tRow] = tSign * topRight.y();
   1669 	dst[ 8+tRow] = tSign * bottomLeft.y();
   1670 	dst[12+tRow] = tSign * topRight.y();
   1671 
   1672 	if (l0 != l1)
   1673 	{
   1674 		dst[ 0+qRow] = l0;
   1675 		dst[ 4+qRow] = l0*0.5f + l1*0.5f;
   1676 		dst[ 8+qRow] = l0*0.5f + l1*0.5f;
   1677 		dst[12+qRow] = l1;
   1678 	}
   1679 	else
   1680 	{
   1681 		dst[ 0+qRow] = l0;
   1682 		dst[ 4+qRow] = l0;
   1683 		dst[ 8+qRow] = l0;
   1684 		dst[12+qRow] = l0;
   1685 	}
   1686 }
   1687 
   1688 // Texture result verification
   1689 
   1690 //! Verifies texture lookup results and returns number of failed pixels.
   1691 int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
   1692 							  const tcu::ConstPixelBufferAccess&	reference,
   1693 							  const tcu::PixelBufferAccess&			errorMask,
   1694 							  const tcu::Texture1DView&				baseView,
   1695 							  const float*							texCoord,
   1696 							  const ReferenceParams&				sampleParams,
   1697 							  const tcu::LookupPrecision&			lookupPrec,
   1698 							  const tcu::LodPrecision&				lodPrec,
   1699 							  qpWatchDog*							watchDog)
   1700 {
   1701 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   1702 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   1703 
   1704 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
   1705 	const tcu::Texture1DView					src					= getEffectiveTextureView(getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel), srcLevelStorage, sampleParams.sampler);
   1706 
   1707 	const tcu::Vec4								sq					= tcu::Vec4(texCoord[0], texCoord[1], texCoord[2], texCoord[3]);
   1708 
   1709 	const tcu::IVec2							dstSize				= tcu::IVec2(result.getWidth(), result.getHeight());
   1710 	const float									dstW				= float(dstSize.x());
   1711 	const float									dstH				= float(dstSize.y());
   1712 	const int									srcSize				= src.getWidth();
   1713 
   1714 	// Coordinates and lod per triangle.
   1715 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   1716 	const tcu::Vec3								triW[2]				= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   1717 
   1718 	const tcu::Vec2								lodBias				((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   1719 
   1720 	int											numFailed			= 0;
   1721 
   1722 	const tcu::Vec2 lodOffsets[] =
   1723 	{
   1724 		tcu::Vec2(-1,  0),
   1725 		tcu::Vec2(+1,  0),
   1726 		tcu::Vec2( 0, -1),
   1727 		tcu::Vec2( 0, +1),
   1728 	};
   1729 
   1730 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   1731 
   1732 	for (int py = 0; py < result.getHeight(); py++)
   1733 	{
   1734 		// Ugly hack, validation can take way too long at the moment.
   1735 		if (watchDog)
   1736 			qpWatchDog_touch(watchDog);
   1737 
   1738 		for (int px = 0; px < result.getWidth(); px++)
   1739 		{
   1740 			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
   1741 			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
   1742 
   1743 			// Try comparison to ideal reference first, and if that fails use slower verificator.
   1744 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
   1745 			{
   1746 				const float		wx		= (float)px + 0.5f;
   1747 				const float		wy		= (float)py + 0.5f;
   1748 				const float		nx		= wx / dstW;
   1749 				const float		ny		= wy / dstH;
   1750 
   1751 				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
   1752 				const float		triWx	= triNdx ? dstW - wx : wx;
   1753 				const float		triWy	= triNdx ? dstH - wy : wy;
   1754 				const float		triNx	= triNdx ? 1.0f - nx : nx;
   1755 				const float		triNy	= triNdx ? 1.0f - ny : ny;
   1756 
   1757 				const float		coord		= projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy);
   1758 				const float		coordDx		= triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy) * float(srcSize);
   1759 				const float 	coordDy		= triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx) * float(srcSize);
   1760 
   1761 				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx, coordDy, lodPrec);
   1762 
   1763 				// Compute lod bounds across lodOffsets range.
   1764 				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   1765 				{
   1766 					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   1767 					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   1768 					const float		nxo		= wxo/dstW;
   1769 					const float		nyo		= wyo/dstH;
   1770 
   1771 					const float	coordDxo	= triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo) * float(srcSize);
   1772 					const float	coordDyo	= triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo) * float(srcSize);
   1773 					const tcu::Vec2	lodO	= tcu::computeLodBoundsFromDerivates(coordDxo, coordDyo, lodPrec);
   1774 
   1775 					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   1776 					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   1777 				}
   1778 
   1779 				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   1780 				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
   1781 
   1782 				if (!isOk)
   1783 				{
   1784 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   1785 					numFailed += 1;
   1786 				}
   1787 			}
   1788 		}
   1789 	}
   1790 
   1791 	return numFailed;
   1792 }
   1793 
   1794 int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
   1795 							  const tcu::ConstPixelBufferAccess&	reference,
   1796 							  const tcu::PixelBufferAccess&			errorMask,
   1797 							  const tcu::Texture2DView&				baseView,
   1798 							  const float*							texCoord,
   1799 							  const ReferenceParams&				sampleParams,
   1800 							  const tcu::LookupPrecision&			lookupPrec,
   1801 							  const tcu::LodPrecision&				lodPrec,
   1802 							  qpWatchDog*							watchDog)
   1803 {
   1804 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   1805 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   1806 
   1807 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
   1808 	const tcu::Texture2DView					src					= getEffectiveTextureView(getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel), srcLevelStorage, sampleParams.sampler);
   1809 
   1810 	const tcu::Vec4								sq					= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
   1811 	const tcu::Vec4								tq					= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
   1812 
   1813 	const tcu::IVec2							dstSize				= tcu::IVec2(result.getWidth(), result.getHeight());
   1814 	const float									dstW				= float(dstSize.x());
   1815 	const float									dstH				= float(dstSize.y());
   1816 	const tcu::IVec2							srcSize				= tcu::IVec2(src.getWidth(), src.getHeight());
   1817 
   1818 	// Coordinates and lod per triangle.
   1819 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   1820 	const tcu::Vec3								triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   1821 	const tcu::Vec3								triW[2]				= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   1822 
   1823 	const tcu::Vec2								lodBias				((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   1824 
   1825 	int											numFailed			= 0;
   1826 
   1827 	const tcu::Vec2 lodOffsets[] =
   1828 	{
   1829 		tcu::Vec2(-1,  0),
   1830 		tcu::Vec2(+1,  0),
   1831 		tcu::Vec2( 0, -1),
   1832 		tcu::Vec2( 0, +1),
   1833 	};
   1834 
   1835 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   1836 
   1837 	for (int py = 0; py < result.getHeight(); py++)
   1838 	{
   1839 		// Ugly hack, validation can take way too long at the moment.
   1840 		if (watchDog)
   1841 			qpWatchDog_touch(watchDog);
   1842 
   1843 		for (int px = 0; px < result.getWidth(); px++)
   1844 		{
   1845 			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
   1846 			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
   1847 
   1848 			// Try comparison to ideal reference first, and if that fails use slower verificator.
   1849 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
   1850 			{
   1851 				const float		wx		= (float)px + 0.5f;
   1852 				const float		wy		= (float)py + 0.5f;
   1853 				const float		nx		= wx / dstW;
   1854 				const float		ny		= wy / dstH;
   1855 
   1856 				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
   1857 				const float		triWx	= triNdx ? dstW - wx : wx;
   1858 				const float		triWy	= triNdx ? dstH - wy : wy;
   1859 				const float		triNx	= triNdx ? 1.0f - nx : nx;
   1860 				const float		triNy	= triNdx ? 1.0f - ny : ny;
   1861 
   1862 				const tcu::Vec2	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   1863 											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy));
   1864 				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   1865 														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
   1866 				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   1867 														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
   1868 
   1869 				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
   1870 
   1871 				// Compute lod bounds across lodOffsets range.
   1872 				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   1873 				{
   1874 					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   1875 					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   1876 					const float		nxo		= wxo/dstW;
   1877 					const float		nyo		= wyo/dstH;
   1878 
   1879 					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   1880 															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
   1881 					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   1882 															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
   1883 					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
   1884 
   1885 					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   1886 					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   1887 				}
   1888 
   1889 				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   1890 				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
   1891 
   1892 				if (!isOk)
   1893 				{
   1894 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   1895 					numFailed += 1;
   1896 				}
   1897 			}
   1898 		}
   1899 	}
   1900 
   1901 	return numFailed;
   1902 }
   1903 
   1904 bool verifyTextureResult (tcu::TestContext&						testCtx,
   1905 						  const tcu::ConstPixelBufferAccess&	result,
   1906 						  const tcu::Texture1DView&				src,
   1907 						  const float*							texCoord,
   1908 						  const ReferenceParams&				sampleParams,
   1909 						  const tcu::LookupPrecision&			lookupPrec,
   1910 						  const tcu::LodPrecision&				lodPrec,
   1911 						  const tcu::PixelFormat&				pixelFormat)
   1912 {
   1913 	tcu::TestLog&	log				= testCtx.getLog();
   1914 	tcu::Surface	reference		(result.getWidth(), result.getHeight());
   1915 	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
   1916 	int				numFailedPixels;
   1917 
   1918 	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
   1919 
   1920 	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
   1921 	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
   1922 
   1923 	if (numFailedPixels > 0)
   1924 		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
   1925 
   1926 	log << TestLog::ImageSet("VerifyResult", "Verification result")
   1927 		<< TestLog::Image("Rendered", "Rendered image", result);
   1928 
   1929 	if (numFailedPixels > 0)
   1930 	{
   1931 		log << TestLog::Image("Reference", "Ideal reference image", reference)
   1932 			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
   1933 	}
   1934 
   1935 	log << TestLog::EndImageSet;
   1936 
   1937 	return numFailedPixels == 0;
   1938 }
   1939 
   1940 bool verifyTextureResult (tcu::TestContext&						testCtx,
   1941 						  const tcu::ConstPixelBufferAccess&	result,
   1942 						  const tcu::Texture2DView&				src,
   1943 						  const float*							texCoord,
   1944 						  const ReferenceParams&				sampleParams,
   1945 						  const tcu::LookupPrecision&			lookupPrec,
   1946 						  const tcu::LodPrecision&				lodPrec,
   1947 						  const tcu::PixelFormat&				pixelFormat)
   1948 {
   1949 	tcu::TestLog&	log				= testCtx.getLog();
   1950 	tcu::Surface	reference		(result.getWidth(), result.getHeight());
   1951 	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
   1952 	int				numFailedPixels;
   1953 
   1954 	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
   1955 
   1956 	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
   1957 	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
   1958 
   1959 	if (numFailedPixels > 0)
   1960 		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
   1961 
   1962 	log << TestLog::ImageSet("VerifyResult", "Verification result")
   1963 		<< TestLog::Image("Rendered", "Rendered image", result);
   1964 
   1965 	if (numFailedPixels > 0)
   1966 	{
   1967 		log << TestLog::Image("Reference", "Ideal reference image", reference)
   1968 			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
   1969 	}
   1970 
   1971 	log << TestLog::EndImageSet;
   1972 
   1973 	return numFailedPixels == 0;
   1974 }
   1975 
   1976 //! Verifies texture lookup results and returns number of failed pixels.
   1977 int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
   1978 							  const tcu::ConstPixelBufferAccess&	reference,
   1979 							  const tcu::PixelBufferAccess&			errorMask,
   1980 							  const tcu::TextureCubeView&			baseView,
   1981 							  const float*							texCoord,
   1982 							  const ReferenceParams&				sampleParams,
   1983 							  const tcu::LookupPrecision&			lookupPrec,
   1984 							  const tcu::LodPrecision&				lodPrec,
   1985 							  qpWatchDog*							watchDog)
   1986 {
   1987 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   1988 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   1989 
   1990 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
   1991 	const tcu::TextureCubeView					src					= getEffectiveTextureView(getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel), srcLevelStorage, sampleParams.sampler);
   1992 
   1993 	const tcu::Vec4								sq					= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
   1994 	const tcu::Vec4								tq					= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
   1995 	const tcu::Vec4								rq					= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
   1996 
   1997 	const tcu::IVec2							dstSize				= tcu::IVec2(result.getWidth(), result.getHeight());
   1998 	const float									dstW				= float(dstSize.x());
   1999 	const float									dstH				= float(dstSize.y());
   2000 	const int									srcSize				= src.getSize();
   2001 
   2002 	// Coordinates per triangle.
   2003 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   2004 	const tcu::Vec3								triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   2005 	const tcu::Vec3								triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
   2006 	const tcu::Vec3								triW[2]				= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   2007 
   2008 	const tcu::Vec2								lodBias				((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   2009 
   2010 	const float									posEps				= 1.0f / float(1<<MIN_SUBPIXEL_BITS);
   2011 
   2012 	int											numFailed			= 0;
   2013 
   2014 	const tcu::Vec2 lodOffsets[] =
   2015 	{
   2016 		tcu::Vec2(-1,  0),
   2017 		tcu::Vec2(+1,  0),
   2018 		tcu::Vec2( 0, -1),
   2019 		tcu::Vec2( 0, +1),
   2020 
   2021 		// \note Not strictly allowed by spec, but implementations do this in practice.
   2022 		tcu::Vec2(-1, -1),
   2023 		tcu::Vec2(-1, +1),
   2024 		tcu::Vec2(+1, -1),
   2025 		tcu::Vec2(+1, +1),
   2026 	};
   2027 
   2028 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   2029 
   2030 	for (int py = 0; py < result.getHeight(); py++)
   2031 	{
   2032 		// Ugly hack, validation can take way too long at the moment.
   2033 		if (watchDog)
   2034 			qpWatchDog_touch(watchDog);
   2035 
   2036 		for (int px = 0; px < result.getWidth(); px++)
   2037 		{
   2038 			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
   2039 			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
   2040 
   2041 			// Try comparison to ideal reference first, and if that fails use slower verificator.
   2042 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
   2043 			{
   2044 				const float		wx		= (float)px + 0.5f;
   2045 				const float		wy		= (float)py + 0.5f;
   2046 				const float		nx		= wx / dstW;
   2047 				const float		ny		= wy / dstH;
   2048 
   2049 				const bool		tri0	= (wx-posEps)/dstW + (wy-posEps)/dstH <= 1.0f;
   2050 				const bool		tri1	= (wx+posEps)/dstW + (wy+posEps)/dstH >= 1.0f;
   2051 
   2052 				bool			isOk	= false;
   2053 
   2054 				DE_ASSERT(tri0 || tri1);
   2055 
   2056 				// Pixel can belong to either of the triangles if it lies close enough to the edge.
   2057 				for (int triNdx = (tri0?0:1); triNdx <= (tri1?1:0); triNdx++)
   2058 				{
   2059 					const float		triWx	= triNdx ? dstW - wx : wx;
   2060 					const float		triWy	= triNdx ? dstH - wy : wy;
   2061 					const float		triNx	= triNdx ? 1.0f - nx : nx;
   2062 					const float		triNy	= triNdx ? 1.0f - ny : ny;
   2063 
   2064 					const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   2065 												 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
   2066 												 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
   2067 					const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   2068 												 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
   2069 												 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
   2070 					const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   2071 												 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
   2072 												 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
   2073 
   2074 					tcu::Vec2		lodBounds	= tcu::computeCubeLodBoundsFromDerivates(coord, coordDx, coordDy, srcSize, lodPrec);
   2075 
   2076 					// Compute lod bounds across lodOffsets range.
   2077 					for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   2078 					{
   2079 						const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   2080 						const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   2081 						const float		nxo		= wxo/dstW;
   2082 						const float		nyo		= wyo/dstH;
   2083 
   2084 						const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
   2085 													 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
   2086 													 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
   2087 						const tcu::Vec3	coordDxo	(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   2088 													 triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
   2089 													 triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo));
   2090 						const tcu::Vec3	coordDyo	(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   2091 													 triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
   2092 													 triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo));
   2093 						const tcu::Vec2	lodO		= tcu::computeCubeLodBoundsFromDerivates(coordO, coordDxo, coordDyo, srcSize, lodPrec);
   2094 
   2095 						lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   2096 						lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   2097 					}
   2098 
   2099 					const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   2100 
   2101 					if (tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix))
   2102 					{
   2103 						isOk = true;
   2104 						break;
   2105 					}
   2106 				}
   2107 
   2108 				if (!isOk)
   2109 				{
   2110 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2111 					numFailed += 1;
   2112 				}
   2113 			}
   2114 		}
   2115 	}
   2116 
   2117 	return numFailed;
   2118 }
   2119 
   2120 bool verifyTextureResult (tcu::TestContext&						testCtx,
   2121 						  const tcu::ConstPixelBufferAccess&	result,
   2122 						  const tcu::TextureCubeView&			src,
   2123 						  const float*							texCoord,
   2124 						  const ReferenceParams&				sampleParams,
   2125 						  const tcu::LookupPrecision&			lookupPrec,
   2126 						  const tcu::LodPrecision&				lodPrec,
   2127 						  const tcu::PixelFormat&				pixelFormat)
   2128 {
   2129 	tcu::TestLog&	log				= testCtx.getLog();
   2130 	tcu::Surface	reference		(result.getWidth(), result.getHeight());
   2131 	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
   2132 	int				numFailedPixels;
   2133 
   2134 	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
   2135 
   2136 	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
   2137 	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
   2138 
   2139 	if (numFailedPixels > 0)
   2140 		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
   2141 
   2142 	log << TestLog::ImageSet("VerifyResult", "Verification result")
   2143 		<< TestLog::Image("Rendered", "Rendered image", result);
   2144 
   2145 	if (numFailedPixels > 0)
   2146 	{
   2147 		log << TestLog::Image("Reference", "Ideal reference image", reference)
   2148 			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
   2149 	}
   2150 
   2151 	log << TestLog::EndImageSet;
   2152 
   2153 	return numFailedPixels == 0;
   2154 }
   2155 
   2156 //! Verifies texture lookup results and returns number of failed pixels.
   2157 int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
   2158 							  const tcu::ConstPixelBufferAccess&	reference,
   2159 							  const tcu::PixelBufferAccess&			errorMask,
   2160 							  const tcu::Texture3DView&				baseView,
   2161 							  const float*							texCoord,
   2162 							  const ReferenceParams&				sampleParams,
   2163 							  const tcu::LookupPrecision&			lookupPrec,
   2164 							  const tcu::LodPrecision&				lodPrec,
   2165 							  qpWatchDog*							watchDog)
   2166 {
   2167 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   2168 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   2169 
   2170 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
   2171 	const tcu::Texture3DView					src					= getEffectiveTextureView(getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel), srcLevelStorage, sampleParams.sampler);
   2172 
   2173 	const tcu::Vec4								sq					= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
   2174 	const tcu::Vec4								tq					= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
   2175 	const tcu::Vec4								rq					= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
   2176 
   2177 	const tcu::IVec2							dstSize				= tcu::IVec2(result.getWidth(), result.getHeight());
   2178 	const float									dstW				= float(dstSize.x());
   2179 	const float									dstH				= float(dstSize.y());
   2180 	const tcu::IVec3							srcSize				= tcu::IVec3(src.getWidth(), src.getHeight(), src.getDepth());
   2181 
   2182 	// Coordinates and lod per triangle.
   2183 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   2184 	const tcu::Vec3								triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   2185 	const tcu::Vec3								triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
   2186 	const tcu::Vec3								triW[2]				= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   2187 
   2188 	const tcu::Vec2								lodBias				((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   2189 
   2190 	const float									posEps				= 1.0f / float(1<<MIN_SUBPIXEL_BITS);
   2191 
   2192 	int											numFailed			= 0;
   2193 
   2194 	const tcu::Vec2 lodOffsets[] =
   2195 	{
   2196 		tcu::Vec2(-1,  0),
   2197 		tcu::Vec2(+1,  0),
   2198 		tcu::Vec2( 0, -1),
   2199 		tcu::Vec2( 0, +1),
   2200 	};
   2201 
   2202 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   2203 
   2204 	for (int py = 0; py < result.getHeight(); py++)
   2205 	{
   2206 		// Ugly hack, validation can take way too long at the moment.
   2207 		if (watchDog)
   2208 			qpWatchDog_touch(watchDog);
   2209 
   2210 		for (int px = 0; px < result.getWidth(); px++)
   2211 		{
   2212 			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
   2213 			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
   2214 
   2215 			// Try comparison to ideal reference first, and if that fails use slower verificator.
   2216 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
   2217 			{
   2218 				const float		wx		= (float)px + 0.5f;
   2219 				const float		wy		= (float)py + 0.5f;
   2220 				const float		nx		= wx / dstW;
   2221 				const float		ny		= wy / dstH;
   2222 
   2223 				const bool		tri0	= (wx-posEps)/dstW + (wy-posEps)/dstH <= 1.0f;
   2224 				const bool		tri1	= (wx+posEps)/dstW + (wy+posEps)/dstH >= 1.0f;
   2225 
   2226 				bool			isOk	= false;
   2227 
   2228 				DE_ASSERT(tri0 || tri1);
   2229 
   2230 				// Pixel can belong to either of the triangles if it lies close enough to the edge.
   2231 				for (int triNdx = (tri0?0:1); triNdx <= (tri1?1:0); triNdx++)
   2232 				{
   2233 					const float		triWx	= triNdx ? dstW - wx : wx;
   2234 					const float		triWy	= triNdx ? dstH - wy : wy;
   2235 					const float		triNx	= triNdx ? 1.0f - nx : nx;
   2236 					const float		triNy	= triNdx ? 1.0f - ny : ny;
   2237 
   2238 					const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   2239 												 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
   2240 												 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
   2241 					const tcu::Vec3	coordDx		= tcu::Vec3(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   2242 															triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
   2243 															triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
   2244 					const tcu::Vec3	coordDy		= tcu::Vec3(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   2245 															triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
   2246 															triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
   2247 
   2248 					tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDx.z(), coordDy.x(), coordDy.y(), coordDy.z(), lodPrec);
   2249 
   2250 					// Compute lod bounds across lodOffsets range.
   2251 					for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   2252 					{
   2253 						const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   2254 						const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   2255 						const float		nxo		= wxo/dstW;
   2256 						const float		nyo		= wyo/dstH;
   2257 
   2258 						const tcu::Vec3	coordDxo	= tcu::Vec3(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   2259 																triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
   2260 																triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
   2261 						const tcu::Vec3	coordDyo	= tcu::Vec3(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   2262 																triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
   2263 																triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
   2264 						const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDxo.z(), coordDyo.x(), coordDyo.y(), coordDyo.z(), lodPrec);
   2265 
   2266 						lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   2267 						lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   2268 					}
   2269 
   2270 					const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   2271 
   2272 					if (tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix))
   2273 					{
   2274 						isOk = true;
   2275 						break;
   2276 					}
   2277 				}
   2278 
   2279 				if (!isOk)
   2280 				{
   2281 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2282 					numFailed += 1;
   2283 				}
   2284 			}
   2285 		}
   2286 	}
   2287 
   2288 	return numFailed;
   2289 }
   2290 
   2291 bool verifyTextureResult (tcu::TestContext&						testCtx,
   2292 						  const tcu::ConstPixelBufferAccess&	result,
   2293 						  const tcu::Texture3DView&				src,
   2294 						  const float*							texCoord,
   2295 						  const ReferenceParams&				sampleParams,
   2296 						  const tcu::LookupPrecision&			lookupPrec,
   2297 						  const tcu::LodPrecision&				lodPrec,
   2298 						  const tcu::PixelFormat&				pixelFormat)
   2299 {
   2300 	tcu::TestLog&	log				= testCtx.getLog();
   2301 	tcu::Surface	reference		(result.getWidth(), result.getHeight());
   2302 	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
   2303 	int				numFailedPixels;
   2304 
   2305 	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
   2306 
   2307 	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
   2308 	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
   2309 
   2310 	if (numFailedPixels > 0)
   2311 		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
   2312 
   2313 	log << TestLog::ImageSet("VerifyResult", "Verification result")
   2314 		<< TestLog::Image("Rendered", "Rendered image", result);
   2315 
   2316 	if (numFailedPixels > 0)
   2317 	{
   2318 		log << TestLog::Image("Reference", "Ideal reference image", reference)
   2319 			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
   2320 	}
   2321 
   2322 	log << TestLog::EndImageSet;
   2323 
   2324 	return numFailedPixels == 0;
   2325 }
   2326 
   2327 //! Verifies texture lookup results and returns number of failed pixels.
   2328 int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
   2329 							  const tcu::ConstPixelBufferAccess&	reference,
   2330 							  const tcu::PixelBufferAccess&			errorMask,
   2331 							  const tcu::Texture1DArrayView&		baseView,
   2332 							  const float*							texCoord,
   2333 							  const ReferenceParams&				sampleParams,
   2334 							  const tcu::LookupPrecision&			lookupPrec,
   2335 							  const tcu::LodPrecision&				lodPrec,
   2336 							  qpWatchDog*							watchDog)
   2337 {
   2338 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   2339 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   2340 
   2341 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
   2342 	const tcu::Texture1DArrayView				src					= getEffectiveTextureView(baseView, srcLevelStorage, sampleParams.sampler);
   2343 
   2344 	const tcu::Vec4								sq					= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
   2345 	const tcu::Vec4								tq					= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
   2346 
   2347 	const tcu::IVec2							dstSize				= tcu::IVec2(result.getWidth(), result.getHeight());
   2348 	const float									dstW				= float(dstSize.x());
   2349 	const float									dstH				= float(dstSize.y());
   2350 	const float									srcSize				= float(src.getWidth()); // For lod computation, thus #layers is ignored.
   2351 
   2352 	// Coordinates and lod per triangle.
   2353 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   2354 	const tcu::Vec3								triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   2355 	const tcu::Vec3								triW[2]				= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   2356 
   2357 	const tcu::Vec2								lodBias				((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   2358 
   2359 	int											numFailed			= 0;
   2360 
   2361 	const tcu::Vec2 lodOffsets[] =
   2362 	{
   2363 		tcu::Vec2(-1,  0),
   2364 		tcu::Vec2(+1,  0),
   2365 		tcu::Vec2( 0, -1),
   2366 		tcu::Vec2( 0, +1),
   2367 	};
   2368 
   2369 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   2370 
   2371 	for (int py = 0; py < result.getHeight(); py++)
   2372 	{
   2373 		// Ugly hack, validation can take way too long at the moment.
   2374 		if (watchDog)
   2375 			qpWatchDog_touch(watchDog);
   2376 
   2377 		for (int px = 0; px < result.getWidth(); px++)
   2378 		{
   2379 			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
   2380 			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
   2381 
   2382 			// Try comparison to ideal reference first, and if that fails use slower verificator.
   2383 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
   2384 			{
   2385 				const float		wx		= (float)px + 0.5f;
   2386 				const float		wy		= (float)py + 0.5f;
   2387 				const float		nx		= wx / dstW;
   2388 				const float		ny		= wy / dstH;
   2389 
   2390 				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
   2391 				const float		triWx	= triNdx ? dstW - wx : wx;
   2392 				const float		triWy	= triNdx ? dstH - wy : wy;
   2393 				const float		triNx	= triNdx ? 1.0f - nx : nx;
   2394 				const float		triNy	= triNdx ? 1.0f - ny : ny;
   2395 
   2396 				const tcu::Vec2	coord	(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   2397 										 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy));
   2398 				const float	coordDx		= triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy) * srcSize;
   2399 				const float	coordDy		= triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx) * srcSize;
   2400 
   2401 				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx, coordDy, lodPrec);
   2402 
   2403 				// Compute lod bounds across lodOffsets range.
   2404 				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   2405 				{
   2406 					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   2407 					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   2408 					const float		nxo		= wxo/dstW;
   2409 					const float		nyo		= wyo/dstH;
   2410 
   2411 					const float	coordDxo		= triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo) * srcSize;
   2412 					const float	coordDyo		= triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo) * srcSize;
   2413 					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo, coordDyo, lodPrec);
   2414 
   2415 					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   2416 					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   2417 				}
   2418 
   2419 				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   2420 				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
   2421 
   2422 				if (!isOk)
   2423 				{
   2424 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2425 					numFailed += 1;
   2426 				}
   2427 			}
   2428 		}
   2429 	}
   2430 
   2431 	return numFailed;
   2432 }
   2433 
   2434 //! Verifies texture lookup results and returns number of failed pixels.
   2435 int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
   2436 							  const tcu::ConstPixelBufferAccess&	reference,
   2437 							  const tcu::PixelBufferAccess&			errorMask,
   2438 							  const tcu::Texture2DArrayView&		baseView,
   2439 							  const float*							texCoord,
   2440 							  const ReferenceParams&				sampleParams,
   2441 							  const tcu::LookupPrecision&			lookupPrec,
   2442 							  const tcu::LodPrecision&				lodPrec,
   2443 							  qpWatchDog*							watchDog)
   2444 {
   2445 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   2446 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   2447 
   2448 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
   2449 	const tcu::Texture2DArrayView				src					= getEffectiveTextureView(baseView, srcLevelStorage, sampleParams.sampler);
   2450 
   2451 	const tcu::Vec4								sq					= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
   2452 	const tcu::Vec4								tq					= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
   2453 	const tcu::Vec4								rq					= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
   2454 
   2455 	const tcu::IVec2							dstSize				= tcu::IVec2(result.getWidth(), result.getHeight());
   2456 	const float									dstW				= float(dstSize.x());
   2457 	const float									dstH				= float(dstSize.y());
   2458 	const tcu::Vec2								srcSize				= tcu::IVec2(src.getWidth(), src.getHeight()).asFloat(); // For lod computation, thus #layers is ignored.
   2459 
   2460 	// Coordinates and lod per triangle.
   2461 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   2462 	const tcu::Vec3								triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   2463 	const tcu::Vec3								triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
   2464 	const tcu::Vec3								triW[2]				= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   2465 
   2466 	const tcu::Vec2								lodBias				((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   2467 
   2468 	int											numFailed			= 0;
   2469 
   2470 	const tcu::Vec2 lodOffsets[] =
   2471 	{
   2472 		tcu::Vec2(-1,  0),
   2473 		tcu::Vec2(+1,  0),
   2474 		tcu::Vec2( 0, -1),
   2475 		tcu::Vec2( 0, +1),
   2476 	};
   2477 
   2478 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   2479 
   2480 	for (int py = 0; py < result.getHeight(); py++)
   2481 	{
   2482 		// Ugly hack, validation can take way too long at the moment.
   2483 		if (watchDog)
   2484 			qpWatchDog_touch(watchDog);
   2485 
   2486 		for (int px = 0; px < result.getWidth(); px++)
   2487 		{
   2488 			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
   2489 			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
   2490 
   2491 			// Try comparison to ideal reference first, and if that fails use slower verificator.
   2492 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
   2493 			{
   2494 				const float		wx		= (float)px + 0.5f;
   2495 				const float		wy		= (float)py + 0.5f;
   2496 				const float		nx		= wx / dstW;
   2497 				const float		ny		= wy / dstH;
   2498 
   2499 				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
   2500 				const float		triWx	= triNdx ? dstW - wx : wx;
   2501 				const float		triWy	= triNdx ? dstH - wy : wy;
   2502 				const float		triNx	= triNdx ? 1.0f - nx : nx;
   2503 				const float		triNy	= triNdx ? 1.0f - ny : ny;
   2504 
   2505 				const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   2506 											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
   2507 											 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
   2508 				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   2509 														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize;
   2510 				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   2511 														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize;
   2512 
   2513 				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
   2514 
   2515 				// Compute lod bounds across lodOffsets range.
   2516 				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   2517 				{
   2518 					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   2519 					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   2520 					const float		nxo		= wxo/dstW;
   2521 					const float		nyo		= wyo/dstH;
   2522 
   2523 					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   2524 															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize;
   2525 					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   2526 															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize;
   2527 					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
   2528 
   2529 					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   2530 					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   2531 				}
   2532 
   2533 				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   2534 				const bool		isOk		= tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coord, clampedLod, resPix);
   2535 
   2536 				if (!isOk)
   2537 				{
   2538 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2539 					numFailed += 1;
   2540 				}
   2541 			}
   2542 		}
   2543 	}
   2544 
   2545 	return numFailed;
   2546 }
   2547 
   2548 bool verifyTextureResult (tcu::TestContext&						testCtx,
   2549 						  const tcu::ConstPixelBufferAccess&	result,
   2550 						  const tcu::Texture1DArrayView&		src,
   2551 						  const float*							texCoord,
   2552 						  const ReferenceParams&				sampleParams,
   2553 						  const tcu::LookupPrecision&			lookupPrec,
   2554 						  const tcu::LodPrecision&				lodPrec,
   2555 						  const tcu::PixelFormat&				pixelFormat)
   2556 {
   2557 	tcu::TestLog&	log				= testCtx.getLog();
   2558 	tcu::Surface	reference		(result.getWidth(), result.getHeight());
   2559 	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
   2560 	int				numFailedPixels;
   2561 
   2562 	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
   2563 
   2564 	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
   2565 	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
   2566 
   2567 	if (numFailedPixels > 0)
   2568 		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
   2569 
   2570 	log << TestLog::ImageSet("VerifyResult", "Verification result")
   2571 		<< TestLog::Image("Rendered", "Rendered image", result);
   2572 
   2573 	if (numFailedPixels > 0)
   2574 	{
   2575 		log << TestLog::Image("Reference", "Ideal reference image", reference)
   2576 			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
   2577 	}
   2578 
   2579 	log << TestLog::EndImageSet;
   2580 
   2581 	return numFailedPixels == 0;
   2582 }
   2583 
   2584 bool verifyTextureResult (tcu::TestContext&						testCtx,
   2585 						  const tcu::ConstPixelBufferAccess&	result,
   2586 						  const tcu::Texture2DArrayView&		src,
   2587 						  const float*							texCoord,
   2588 						  const ReferenceParams&				sampleParams,
   2589 						  const tcu::LookupPrecision&			lookupPrec,
   2590 						  const tcu::LodPrecision&				lodPrec,
   2591 						  const tcu::PixelFormat&				pixelFormat)
   2592 {
   2593 	tcu::TestLog&	log				= testCtx.getLog();
   2594 	tcu::Surface	reference		(result.getWidth(), result.getHeight());
   2595 	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
   2596 	int				numFailedPixels;
   2597 
   2598 	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
   2599 
   2600 	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
   2601 	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, lodPrec, testCtx.getWatchDog());
   2602 
   2603 	if (numFailedPixels > 0)
   2604 		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
   2605 
   2606 	log << TestLog::ImageSet("VerifyResult", "Verification result")
   2607 		<< TestLog::Image("Rendered", "Rendered image", result);
   2608 
   2609 	if (numFailedPixels > 0)
   2610 	{
   2611 		log << TestLog::Image("Reference", "Ideal reference image", reference)
   2612 			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
   2613 	}
   2614 
   2615 	log << TestLog::EndImageSet;
   2616 
   2617 	return numFailedPixels == 0;
   2618 }
   2619 
   2620 //! Verifies texture lookup results and returns number of failed pixels.
   2621 int computeTextureLookupDiff (const tcu::ConstPixelBufferAccess&	result,
   2622 							  const tcu::ConstPixelBufferAccess&	reference,
   2623 							  const tcu::PixelBufferAccess&			errorMask,
   2624 							  const tcu::TextureCubeArrayView&		baseView,
   2625 							  const float*							texCoord,
   2626 							  const ReferenceParams&				sampleParams,
   2627 							  const tcu::LookupPrecision&			lookupPrec,
   2628 							  const tcu::IVec4&						coordBits,
   2629 							  const tcu::LodPrecision&				lodPrec,
   2630 							  qpWatchDog*							watchDog)
   2631 {
   2632 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   2633 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   2634 
   2635 	std::vector<tcu::ConstPixelBufferAccess>	srcLevelStorage;
   2636 	const tcu::TextureCubeArrayView				src					= getEffectiveTextureView(getSubView(baseView, sampleParams.baseLevel, sampleParams.maxLevel), srcLevelStorage, sampleParams.sampler);
   2637 
   2638 	const tcu::Vec4								sq					= tcu::Vec4(texCoord[0+0], texCoord[4+0], texCoord[8+0], texCoord[12+0]);
   2639 	const tcu::Vec4								tq					= tcu::Vec4(texCoord[0+1], texCoord[4+1], texCoord[8+1], texCoord[12+1]);
   2640 	const tcu::Vec4								rq					= tcu::Vec4(texCoord[0+2], texCoord[4+2], texCoord[8+2], texCoord[12+2]);
   2641 	const tcu::Vec4								qq					= tcu::Vec4(texCoord[0+3], texCoord[4+3], texCoord[8+3], texCoord[12+3]);
   2642 
   2643 	const tcu::IVec2							dstSize				= tcu::IVec2(result.getWidth(), result.getHeight());
   2644 	const float									dstW				= float(dstSize.x());
   2645 	const float									dstH				= float(dstSize.y());
   2646 	const int									srcSize				= src.getSize();
   2647 
   2648 	// Coordinates per triangle.
   2649 	const tcu::Vec3								triS[2]				= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   2650 	const tcu::Vec3								triT[2]				= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   2651 	const tcu::Vec3								triR[2]				= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
   2652 	const tcu::Vec3								triQ[2]				= { qq.swizzle(0, 1, 2), qq.swizzle(3, 2, 1) };
   2653 	const tcu::Vec3								triW[2]				= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   2654 
   2655 	const tcu::Vec2								lodBias				((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   2656 
   2657 	const float									posEps				= 1.0f / float((1<<4) + 1); // ES3 requires at least 4 subpixel bits.
   2658 
   2659 	int											numFailed			= 0;
   2660 
   2661 	const tcu::Vec2 lodOffsets[] =
   2662 	{
   2663 		tcu::Vec2(-1,  0),
   2664 		tcu::Vec2(+1,  0),
   2665 		tcu::Vec2( 0, -1),
   2666 		tcu::Vec2( 0, +1),
   2667 
   2668 		// \note Not strictly allowed by spec, but implementations do this in practice.
   2669 		tcu::Vec2(-1, -1),
   2670 		tcu::Vec2(-1, +1),
   2671 		tcu::Vec2(+1, -1),
   2672 		tcu::Vec2(+1, +1),
   2673 	};
   2674 
   2675 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   2676 
   2677 	for (int py = 0; py < result.getHeight(); py++)
   2678 	{
   2679 		// Ugly hack, validation can take way too long at the moment.
   2680 		if (watchDog)
   2681 			qpWatchDog_touch(watchDog);
   2682 
   2683 		for (int px = 0; px < result.getWidth(); px++)
   2684 		{
   2685 			const tcu::Vec4	resPix	= (result.getPixel(px, py)		- sampleParams.colorBias) / sampleParams.colorScale;
   2686 			const tcu::Vec4	refPix	= (reference.getPixel(px, py)	- sampleParams.colorBias) / sampleParams.colorScale;
   2687 
   2688 			// Try comparison to ideal reference first, and if that fails use slower verificator.
   2689 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(resPix - refPix), lookupPrec.colorThreshold)))
   2690 			{
   2691 				const float		wx		= (float)px + 0.5f;
   2692 				const float		wy		= (float)py + 0.5f;
   2693 				const float		nx		= wx / dstW;
   2694 				const float		ny		= wy / dstH;
   2695 
   2696 				const bool		tri0	= nx + ny - posEps <= 1.0f;
   2697 				const bool		tri1	= nx + ny + posEps >= 1.0f;
   2698 
   2699 				bool			isOk	= false;
   2700 
   2701 				DE_ASSERT(tri0 || tri1);
   2702 
   2703 				// Pixel can belong to either of the triangles if it lies close enough to the edge.
   2704 				for (int triNdx = (tri0?0:1); triNdx <= (tri1?1:0); triNdx++)
   2705 				{
   2706 					const float		triWx		= triNdx ? dstW - wx : wx;
   2707 					const float		triWy		= triNdx ? dstH - wy : wy;
   2708 					const float		triNx		= triNdx ? 1.0f - nx : nx;
   2709 					const float		triNy		= triNdx ? 1.0f - ny : ny;
   2710 
   2711 					const tcu::Vec4	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   2712 												 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
   2713 												 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy),
   2714 												 projectedTriInterpolate(triQ[triNdx], triW[triNdx], triNx, triNy));
   2715 					const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   2716 												 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
   2717 												 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
   2718 					const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   2719 												 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
   2720 												 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
   2721 
   2722 					tcu::Vec2		lodBounds	= tcu::computeCubeLodBoundsFromDerivates(coord.toWidth<3>(), coordDx, coordDy, srcSize, lodPrec);
   2723 
   2724 					// Compute lod bounds across lodOffsets range.
   2725 					for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   2726 					{
   2727 						const float		wxo			= triWx + lodOffsets[lodOffsNdx].x();
   2728 						const float		wyo			= triWy + lodOffsets[lodOffsNdx].y();
   2729 						const float		nxo			= wxo/dstW;
   2730 						const float		nyo			= wyo/dstH;
   2731 
   2732 						const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
   2733 													 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
   2734 													 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
   2735 						const tcu::Vec3	coordDxo	(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   2736 													 triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
   2737 													 triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo));
   2738 						const tcu::Vec3	coordDyo	(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   2739 													 triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
   2740 													 triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo));
   2741 						const tcu::Vec2	lodO		= tcu::computeCubeLodBoundsFromDerivates(coordO, coordDxo, coordDyo, srcSize, lodPrec);
   2742 
   2743 						lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   2744 						lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   2745 					}
   2746 
   2747 					const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   2748 
   2749 					if (tcu::isLookupResultValid(src, sampleParams.sampler, lookupPrec, coordBits, coord, clampedLod, resPix))
   2750 					{
   2751 						isOk = true;
   2752 						break;
   2753 					}
   2754 				}
   2755 
   2756 				if (!isOk)
   2757 				{
   2758 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2759 					numFailed += 1;
   2760 				}
   2761 			}
   2762 		}
   2763 	}
   2764 
   2765 	return numFailed;
   2766 }
   2767 
   2768 bool verifyTextureResult (tcu::TestContext&						testCtx,
   2769 						  const tcu::ConstPixelBufferAccess&	result,
   2770 						  const tcu::TextureCubeArrayView&		src,
   2771 						  const float*							texCoord,
   2772 						  const ReferenceParams&				sampleParams,
   2773 						  const tcu::LookupPrecision&			lookupPrec,
   2774 						  const tcu::IVec4&						coordBits,
   2775 						  const tcu::LodPrecision&				lodPrec,
   2776 						  const tcu::PixelFormat&				pixelFormat)
   2777 {
   2778 	tcu::TestLog&	log				= testCtx.getLog();
   2779 	tcu::Surface	reference		(result.getWidth(), result.getHeight());
   2780 	tcu::Surface	errorMask		(result.getWidth(), result.getHeight());
   2781 	int				numFailedPixels;
   2782 
   2783 	DE_ASSERT(getCompareMask(pixelFormat) == lookupPrec.colorMask);
   2784 
   2785 	sampleTexture(SurfaceAccess(reference, pixelFormat), src, texCoord, sampleParams);
   2786 	numFailedPixels = computeTextureLookupDiff(result, reference.getAccess(), errorMask.getAccess(), src, texCoord, sampleParams, lookupPrec, coordBits, lodPrec, testCtx.getWatchDog());
   2787 
   2788 	if (numFailedPixels > 0)
   2789 		log << TestLog::Message << "ERROR: Result verification failed, got " << numFailedPixels << " invalid pixels!" << TestLog::EndMessage;
   2790 
   2791 	log << TestLog::ImageSet("VerifyResult", "Verification result")
   2792 		<< TestLog::Image("Rendered", "Rendered image", result);
   2793 
   2794 	if (numFailedPixels > 0)
   2795 	{
   2796 		log << TestLog::Image("Reference", "Ideal reference image", reference)
   2797 			<< TestLog::Image("ErrorMask", "Error mask", errorMask);
   2798 	}
   2799 
   2800 	log << TestLog::EndImageSet;
   2801 
   2802 	return numFailedPixels == 0;
   2803 }
   2804 
   2805 // Shadow lookup verification
   2806 
   2807 int computeTextureCompareDiff (const tcu::ConstPixelBufferAccess&	result,
   2808 							   const tcu::ConstPixelBufferAccess&	reference,
   2809 							   const tcu::PixelBufferAccess&		errorMask,
   2810 							   const tcu::Texture2DView&			src,
   2811 							   const float*							texCoord,
   2812 							   const ReferenceParams&				sampleParams,
   2813 							   const tcu::TexComparePrecision&		comparePrec,
   2814 							   const tcu::LodPrecision&				lodPrec,
   2815 							   const tcu::Vec3&						nonShadowThreshold)
   2816 {
   2817 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   2818 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   2819 
   2820 	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[2+0], texCoord[4+0], texCoord[6+0]);
   2821 	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[2+1], texCoord[4+1], texCoord[6+1]);
   2822 
   2823 	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
   2824 	const float			dstW			= float(dstSize.x());
   2825 	const float			dstH			= float(dstSize.y());
   2826 	const tcu::IVec2	srcSize			= tcu::IVec2(src.getWidth(), src.getHeight());
   2827 
   2828 	// Coordinates and lod per triangle.
   2829 	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   2830 	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   2831 	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   2832 
   2833 	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   2834 
   2835 	int					numFailed		= 0;
   2836 
   2837 	const tcu::Vec2 lodOffsets[] =
   2838 	{
   2839 		tcu::Vec2(-1,  0),
   2840 		tcu::Vec2(+1,  0),
   2841 		tcu::Vec2( 0, -1),
   2842 		tcu::Vec2( 0, +1),
   2843 	};
   2844 
   2845 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   2846 
   2847 	for (int py = 0; py < result.getHeight(); py++)
   2848 	{
   2849 		for (int px = 0; px < result.getWidth(); px++)
   2850 		{
   2851 			const tcu::Vec4	resPix	= result.getPixel(px, py);
   2852 			const tcu::Vec4	refPix	= reference.getPixel(px, py);
   2853 
   2854 			// Other channels should trivially match to reference.
   2855 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(refPix.swizzle(1,2,3) - resPix.swizzle(1,2,3)), nonShadowThreshold)))
   2856 			{
   2857 				errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2858 				numFailed += 1;
   2859 				continue;
   2860 			}
   2861 
   2862 			// Reference result is known to be a valid result, we can
   2863 			// skip verification if thes results are equal
   2864 			if (resPix.x() != refPix.x())
   2865 			{
   2866 				const float		wx		= (float)px + 0.5f;
   2867 				const float		wy		= (float)py + 0.5f;
   2868 				const float		nx		= wx / dstW;
   2869 				const float		ny		= wy / dstH;
   2870 
   2871 				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
   2872 				const float		triWx	= triNdx ? dstW - wx : wx;
   2873 				const float		triWy	= triNdx ? dstH - wy : wy;
   2874 				const float		triNx	= triNdx ? 1.0f - nx : nx;
   2875 				const float		triNy	= triNdx ? 1.0f - ny : ny;
   2876 
   2877 				const tcu::Vec2	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   2878 											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy));
   2879 				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   2880 														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
   2881 				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   2882 														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
   2883 
   2884 				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
   2885 
   2886 				// Compute lod bounds across lodOffsets range.
   2887 				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   2888 				{
   2889 					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   2890 					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   2891 					const float		nxo		= wxo/dstW;
   2892 					const float		nyo		= wyo/dstH;
   2893 
   2894 					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   2895 															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
   2896 					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   2897 															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
   2898 					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
   2899 
   2900 					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   2901 					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   2902 				}
   2903 
   2904 				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   2905 				const bool		isOk		= tcu::isTexCompareResultValid(src, sampleParams.sampler, comparePrec, coord, clampedLod, sampleParams.ref, resPix.x());
   2906 
   2907 				if (!isOk)
   2908 				{
   2909 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2910 					numFailed += 1;
   2911 				}
   2912 			}
   2913 		}
   2914 	}
   2915 
   2916 	return numFailed;
   2917 }
   2918 
   2919 int computeTextureCompareDiff (const tcu::ConstPixelBufferAccess&	result,
   2920 							   const tcu::ConstPixelBufferAccess&	reference,
   2921 							   const tcu::PixelBufferAccess&		errorMask,
   2922 							   const tcu::TextureCubeView&			src,
   2923 							   const float*							texCoord,
   2924 							   const ReferenceParams&				sampleParams,
   2925 							   const tcu::TexComparePrecision&		comparePrec,
   2926 							   const tcu::LodPrecision&				lodPrec,
   2927 							   const tcu::Vec3&						nonShadowThreshold)
   2928 {
   2929 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   2930 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   2931 
   2932 	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
   2933 	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
   2934 	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
   2935 
   2936 	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
   2937 	const float			dstW			= float(dstSize.x());
   2938 	const float			dstH			= float(dstSize.y());
   2939 	const int			srcSize			= src.getSize();
   2940 
   2941 	// Coordinates per triangle.
   2942 	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   2943 	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   2944 	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
   2945 	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   2946 
   2947 	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   2948 
   2949 	int					numFailed		= 0;
   2950 
   2951 	const tcu::Vec2 lodOffsets[] =
   2952 	{
   2953 		tcu::Vec2(-1,  0),
   2954 		tcu::Vec2(+1,  0),
   2955 		tcu::Vec2( 0, -1),
   2956 		tcu::Vec2( 0, +1),
   2957 	};
   2958 
   2959 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   2960 
   2961 	for (int py = 0; py < result.getHeight(); py++)
   2962 	{
   2963 		for (int px = 0; px < result.getWidth(); px++)
   2964 		{
   2965 			const tcu::Vec4	resPix	= result.getPixel(px, py);
   2966 			const tcu::Vec4	refPix	= reference.getPixel(px, py);
   2967 
   2968 			// Other channels should trivially match to reference.
   2969 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(refPix.swizzle(1,2,3) - resPix.swizzle(1,2,3)), nonShadowThreshold)))
   2970 			{
   2971 				errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   2972 				numFailed += 1;
   2973 				continue;
   2974 			}
   2975 
   2976 			// Reference result is known to be a valid result, we can
   2977 			// skip verification if thes results are equal
   2978 			if (resPix.x() != refPix.x())
   2979 			{
   2980 				const float		wx		= (float)px + 0.5f;
   2981 				const float		wy		= (float)py + 0.5f;
   2982 				const float		nx		= wx / dstW;
   2983 				const float		ny		= wy / dstH;
   2984 
   2985 				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
   2986 				const float		triWx	= triNdx ? dstW - wx : wx;
   2987 				const float		triWy	= triNdx ? dstH - wy : wy;
   2988 				const float		triNx	= triNdx ? 1.0f - nx : nx;
   2989 				const float		triNy	= triNdx ? 1.0f - ny : ny;
   2990 
   2991 				const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   2992 											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
   2993 											 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
   2994 				const tcu::Vec3	coordDx		(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   2995 											 triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy),
   2996 											 triDerivateX(triR[triNdx], triW[triNdx], wx, dstW, triNy));
   2997 				const tcu::Vec3	coordDy		(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   2998 											 triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx),
   2999 											 triDerivateY(triR[triNdx], triW[triNdx], wy, dstH, triNx));
   3000 
   3001 				tcu::Vec2		lodBounds	= tcu::computeCubeLodBoundsFromDerivates(coord, coordDx, coordDy, srcSize, lodPrec);
   3002 
   3003 				// Compute lod bounds across lodOffsets range.
   3004 				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   3005 				{
   3006 					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   3007 					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   3008 					const float		nxo		= wxo/dstW;
   3009 					const float		nyo		= wyo/dstH;
   3010 
   3011 					const tcu::Vec3	coordO		(projectedTriInterpolate(triS[triNdx], triW[triNdx], nxo, nyo),
   3012 												 projectedTriInterpolate(triT[triNdx], triW[triNdx], nxo, nyo),
   3013 												 projectedTriInterpolate(triR[triNdx], triW[triNdx], nxo, nyo));
   3014 					const tcu::Vec3	coordDxo	(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   3015 												 triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo),
   3016 												 triDerivateX(triR[triNdx], triW[triNdx], wxo, dstW, nyo));
   3017 					const tcu::Vec3	coordDyo	(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   3018 												 triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo),
   3019 												 triDerivateY(triR[triNdx], triW[triNdx], wyo, dstH, nxo));
   3020 					const tcu::Vec2	lodO		= tcu::computeCubeLodBoundsFromDerivates(coordO, coordDxo, coordDyo, srcSize, lodPrec);
   3021 
   3022 					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   3023 					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   3024 				}
   3025 
   3026 				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   3027 				const bool		isOk		= tcu::isTexCompareResultValid(src, sampleParams.sampler, comparePrec, coord, clampedLod, sampleParams.ref, resPix.x());
   3028 
   3029 				if (!isOk)
   3030 				{
   3031 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   3032 					numFailed += 1;
   3033 				}
   3034 			}
   3035 		}
   3036 	}
   3037 
   3038 	return numFailed;
   3039 }
   3040 
   3041 int computeTextureCompareDiff (const tcu::ConstPixelBufferAccess&	result,
   3042 							   const tcu::ConstPixelBufferAccess&	reference,
   3043 							   const tcu::PixelBufferAccess&		errorMask,
   3044 							   const tcu::Texture2DArrayView&		src,
   3045 							   const float*							texCoord,
   3046 							   const ReferenceParams&				sampleParams,
   3047 							   const tcu::TexComparePrecision&		comparePrec,
   3048 							   const tcu::LodPrecision&				lodPrec,
   3049 							   const tcu::Vec3&						nonShadowThreshold)
   3050 {
   3051 	DE_ASSERT(result.getWidth() == reference.getWidth() && result.getHeight() == reference.getHeight());
   3052 	DE_ASSERT(result.getWidth() == errorMask.getWidth() && result.getHeight() == errorMask.getHeight());
   3053 
   3054 	const tcu::Vec4		sq				= tcu::Vec4(texCoord[0+0], texCoord[3+0], texCoord[6+0], texCoord[9+0]);
   3055 	const tcu::Vec4		tq				= tcu::Vec4(texCoord[0+1], texCoord[3+1], texCoord[6+1], texCoord[9+1]);
   3056 	const tcu::Vec4		rq				= tcu::Vec4(texCoord[0+2], texCoord[3+2], texCoord[6+2], texCoord[9+2]);
   3057 
   3058 	const tcu::IVec2	dstSize			= tcu::IVec2(result.getWidth(), result.getHeight());
   3059 	const float			dstW			= float(dstSize.x());
   3060 	const float			dstH			= float(dstSize.y());
   3061 	const tcu::IVec2	srcSize			= tcu::IVec2(src.getWidth(), src.getHeight());
   3062 
   3063 	// Coordinates and lod per triangle.
   3064 	const tcu::Vec3		triS[2]			= { sq.swizzle(0, 1, 2), sq.swizzle(3, 2, 1) };
   3065 	const tcu::Vec3		triT[2]			= { tq.swizzle(0, 1, 2), tq.swizzle(3, 2, 1) };
   3066 	const tcu::Vec3		triR[2]			= { rq.swizzle(0, 1, 2), rq.swizzle(3, 2, 1) };
   3067 	const tcu::Vec3		triW[2]			= { sampleParams.w.swizzle(0, 1, 2), sampleParams.w.swizzle(3, 2, 1) };
   3068 
   3069 	const tcu::Vec2		lodBias			((sampleParams.flags & ReferenceParams::USE_BIAS) ? sampleParams.bias : 0.0f);
   3070 
   3071 	int					numFailed		= 0;
   3072 
   3073 	const tcu::Vec2 lodOffsets[] =
   3074 	{
   3075 		tcu::Vec2(-1,  0),
   3076 		tcu::Vec2(+1,  0),
   3077 		tcu::Vec2( 0, -1),
   3078 		tcu::Vec2( 0, +1),
   3079 	};
   3080 
   3081 	tcu::clear(errorMask, tcu::RGBA::green().toVec());
   3082 
   3083 	for (int py = 0; py < result.getHeight(); py++)
   3084 	{
   3085 		for (int px = 0; px < result.getWidth(); px++)
   3086 		{
   3087 			const tcu::Vec4	resPix	= result.getPixel(px, py);
   3088 			const tcu::Vec4	refPix	= reference.getPixel(px, py);
   3089 
   3090 			// Other channels should trivially match to reference.
   3091 			if (!tcu::boolAll(tcu::lessThanEqual(tcu::abs(refPix.swizzle(1,2,3) - resPix.swizzle(1,2,3)), nonShadowThreshold)))
   3092 			{
   3093 				errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   3094 				numFailed += 1;
   3095 				continue;
   3096 			}
   3097 
   3098 			// Reference result is known to be a valid result, we can
   3099 			// skip verification if thes results are equal
   3100 			if (resPix.x() != refPix.x())
   3101 			{
   3102 				const float		wx		= (float)px + 0.5f;
   3103 				const float		wy		= (float)py + 0.5f;
   3104 				const float		nx		= wx / dstW;
   3105 				const float		ny		= wy / dstH;
   3106 
   3107 				const int		triNdx	= nx + ny >= 1.0f ? 1 : 0;
   3108 				const float		triWx	= triNdx ? dstW - wx : wx;
   3109 				const float		triWy	= triNdx ? dstH - wy : wy;
   3110 				const float		triNx	= triNdx ? 1.0f - nx : nx;
   3111 				const float		triNy	= triNdx ? 1.0f - ny : ny;
   3112 
   3113 				const tcu::Vec3	coord		(projectedTriInterpolate(triS[triNdx], triW[triNdx], triNx, triNy),
   3114 											 projectedTriInterpolate(triT[triNdx], triW[triNdx], triNx, triNy),
   3115 											 projectedTriInterpolate(triR[triNdx], triW[triNdx], triNx, triNy));
   3116 				const tcu::Vec2	coordDx		= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wx, dstW, triNy),
   3117 														triDerivateX(triT[triNdx], triW[triNdx], wx, dstW, triNy)) * srcSize.asFloat();
   3118 				const tcu::Vec2	coordDy		= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wy, dstH, triNx),
   3119 														triDerivateY(triT[triNdx], triW[triNdx], wy, dstH, triNx)) * srcSize.asFloat();
   3120 
   3121 				tcu::Vec2		lodBounds	= tcu::computeLodBoundsFromDerivates(coordDx.x(), coordDx.y(), coordDy.x(), coordDy.y(), lodPrec);
   3122 
   3123 				// Compute lod bounds across lodOffsets range.
   3124 				for (int lodOffsNdx = 0; lodOffsNdx < DE_LENGTH_OF_ARRAY(lodOffsets); lodOffsNdx++)
   3125 				{
   3126 					const float		wxo		= triWx + lodOffsets[lodOffsNdx].x();
   3127 					const float		wyo		= triWy + lodOffsets[lodOffsNdx].y();
   3128 					const float		nxo		= wxo/dstW;
   3129 					const float		nyo		= wyo/dstH;
   3130 
   3131 					const tcu::Vec2	coordDxo	= tcu::Vec2(triDerivateX(triS[triNdx], triW[triNdx], wxo, dstW, nyo),
   3132 															triDerivateX(triT[triNdx], triW[triNdx], wxo, dstW, nyo)) * srcSize.asFloat();
   3133 					const tcu::Vec2	coordDyo	= tcu::Vec2(triDerivateY(triS[triNdx], triW[triNdx], wyo, dstH, nxo),
   3134 															triDerivateY(triT[triNdx], triW[triNdx], wyo, dstH, nxo)) * srcSize.asFloat();
   3135 					const tcu::Vec2	lodO		= tcu::computeLodBoundsFromDerivates(coordDxo.x(), coordDxo.y(), coordDyo.x(), coordDyo.y(), lodPrec);
   3136 
   3137 					lodBounds.x() = de::min(lodBounds.x(), lodO.x());
   3138 					lodBounds.y() = de::max(lodBounds.y(), lodO.y());
   3139 				}
   3140 
   3141 				const tcu::Vec2	clampedLod	= tcu::clampLodBounds(lodBounds + lodBias, tcu::Vec2(sampleParams.minLod, sampleParams.maxLod), lodPrec);
   3142 				const bool		isOk		= tcu::isTexCompareResultValid(src, sampleParams.sampler, comparePrec, coord, clampedLod, sampleParams.ref, resPix.x());
   3143 
   3144 				if (!isOk)
   3145 				{
   3146 					errorMask.setPixel(tcu::RGBA::red().toVec(), px, py);
   3147 					numFailed += 1;
   3148 				}
   3149 			}
   3150 		}
   3151 	}
   3152 
   3153 	return numFailed;
   3154 }
   3155 
   3156 // Mipmap generation comparison.
   3157 
   3158 static int compareGenMipmapBilinear (const tcu::ConstPixelBufferAccess& dst, const tcu::ConstPixelBufferAccess& src, const tcu::PixelBufferAccess& errorMask, const GenMipmapPrecision& precision)
   3159 {
   3160 	DE_ASSERT(dst.getDepth() == 1 && src.getDepth() == 1); // \todo [2013-10-29 pyry] 3D textures.
   3161 
   3162 	const float		dstW		= float(dst.getWidth());
   3163 	const float		dstH		= float(dst.getHeight());
   3164 	const float		srcW		= float(src.getWidth());
   3165 	const float		srcH		= float(src.getHeight());
   3166 	int				numFailed	= 0;
   3167 
   3168 	// Translation to lookup verification parameters.
   3169 	const tcu::Sampler		sampler		(tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE,
   3170 										 tcu::Sampler::LINEAR, tcu::Sampler::LINEAR, 0.0f, false /* non-normalized coords */);
   3171 	tcu::LookupPrecision	lookupPrec;
   3172 
   3173 	lookupPrec.colorThreshold	= precision.colorThreshold;
   3174 	lookupPrec.colorMask		= precision.colorMask;
   3175 	lookupPrec.coordBits		= tcu::IVec3(22);
   3176 	lookupPrec.uvwBits			= precision.filterBits;
   3177 
   3178 	for (int y = 0; y < dst.getHeight(); y++)
   3179 	for (int x = 0; x < dst.getWidth(); x++)
   3180 	{
   3181 		const tcu::Vec4	result	= dst.getPixel(x, y);
   3182 		const float		cx		= (float(x)+0.5f) / dstW * srcW;
   3183 		const float		cy		= (float(y)+0.5f) / dstH * srcH;
   3184 		const bool		isOk	= tcu::isLinearSampleResultValid(src, sampler, lookupPrec, tcu::Vec2(cx, cy), 0, result);
   3185 
   3186 		errorMask.setPixel(isOk ? tcu::RGBA::green().toVec() : tcu::RGBA::red().toVec(), x, y);
   3187 		if (!isOk)
   3188 			numFailed += 1;
   3189 	}
   3190 
   3191 	return numFailed;
   3192 }
   3193 
   3194 static int compareGenMipmapBox (const tcu::ConstPixelBufferAccess& dst, const tcu::ConstPixelBufferAccess& src, const tcu::PixelBufferAccess& errorMask, const GenMipmapPrecision& precision)
   3195 {
   3196 	DE_ASSERT(dst.getDepth() == 1 && src.getDepth() == 1); // \todo [2013-10-29 pyry] 3D textures.
   3197 
   3198 	const float		dstW		= float(dst.getWidth());
   3199 	const float		dstH		= float(dst.getHeight());
   3200 	const float		srcW		= float(src.getWidth());
   3201 	const float		srcH		= float(src.getHeight());
   3202 	int				numFailed	= 0;
   3203 
   3204 	// Translation to lookup verification parameters.
   3205 	const tcu::Sampler		sampler		(tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE, tcu::Sampler::CLAMP_TO_EDGE,
   3206 										 tcu::Sampler::LINEAR, tcu::Sampler::LINEAR, 0.0f, false /* non-normalized coords */);
   3207 	tcu::LookupPrecision	lookupPrec;
   3208 
   3209 	lookupPrec.colorThreshold	= precision.colorThreshold;
   3210 	lookupPrec.colorMask		= precision.colorMask;
   3211 	lookupPrec.coordBits		= tcu::IVec3(22);
   3212 	lookupPrec.uvwBits			= precision.filterBits;
   3213 
   3214 	for (int y = 0; y < dst.getHeight(); y++)
   3215 	for (int x = 0; x < dst.getWidth(); x++)
   3216 	{
   3217 		const tcu::Vec4	result	= dst.getPixel(x, y);
   3218 		const float		cx		= deFloatFloor(float(x) / dstW * srcW) + 1.0f;
   3219 		const float		cy		= deFloatFloor(float(y) / dstH * srcH) + 1.0f;
   3220 		const bool		isOk	= tcu::isLinearSampleResultValid(src, sampler, lookupPrec, tcu::Vec2(cx, cy), 0, result);
   3221 
   3222 		errorMask.setPixel(isOk ? tcu::RGBA::green().toVec() : tcu::RGBA::red().toVec(), x, y);
   3223 		if (!isOk)
   3224 			numFailed += 1;
   3225 	}
   3226 
   3227 	return numFailed;
   3228 }
   3229 
   3230 static int compareGenMipmapVeryLenient (const tcu::ConstPixelBufferAccess& dst, const tcu::ConstPixelBufferAccess& src, const tcu::PixelBufferAccess& errorMask, const GenMipmapPrecision& precision)
   3231 {
   3232 	DE_ASSERT(dst.getDepth() == 1 && src.getDepth() == 1); // \todo [2013-10-29 pyry] 3D textures.
   3233 	DE_UNREF(precision);
   3234 
   3235 	const float		dstW		= float(dst.getWidth());
   3236 	const float		dstH		= float(dst.getHeight());
   3237 	const float		srcW		= float(src.getWidth());
   3238 	const float		srcH		= float(src.getHeight());
   3239 	int				numFailed	= 0;
   3240 
   3241 	for (int y = 0; y < dst.getHeight(); y++)
   3242 	for (int x = 0; x < dst.getWidth(); x++)
   3243 	{
   3244 		const tcu::Vec4	result	= dst.getPixel(x, y);
   3245 		const int		minX		= deFloorFloatToInt32(((float)x-0.5f) / dstW * srcW);
   3246 		const int		minY		= deFloorFloatToInt32(((float)y-0.5f) / dstH * srcH);
   3247 		const int		maxX		= deCeilFloatToInt32(((float)x+1.5f) / dstW * srcW);
   3248 		const int		maxY		= deCeilFloatToInt32(((float)y+1.5f) / dstH * srcH);
   3249 		tcu::Vec4		minVal, maxVal;
   3250 		bool			isOk;
   3251 
   3252 		DE_ASSERT(minX < maxX && minY < maxY);
   3253 
   3254 		for (int ky = minY; ky <= maxY; ky++)
   3255 		{
   3256 			for (int kx = minX; kx <= maxX; kx++)
   3257 			{
   3258 				const int		sx		= de::clamp(kx, 0, src.getWidth()-1);
   3259 				const int		sy		= de::clamp(ky, 0, src.getHeight()-1);
   3260 				const tcu::Vec4	sample	= src.getPixel(sx, sy);
   3261 
   3262 				if (ky == minY && kx == minX)
   3263 				{
   3264 					minVal = sample;
   3265 					maxVal = sample;
   3266 				}
   3267 				else
   3268 				{
   3269 					minVal = min(sample, minVal);
   3270 					maxVal = max(sample, maxVal);
   3271 				}
   3272 			}
   3273 		}
   3274 
   3275 		isOk = boolAll(logicalAnd(lessThanEqual(minVal, result), lessThanEqual(result, maxVal)));
   3276 
   3277 		errorMask.setPixel(isOk ? tcu::RGBA::green().toVec() : tcu::RGBA::red().toVec(), x, y);
   3278 		if (!isOk)
   3279 			numFailed += 1;
   3280 	}
   3281 
   3282 	return numFailed;
   3283 }
   3284 
   3285 qpTestResult compareGenMipmapResult (tcu::TestLog& log, const tcu::Texture2D& resultTexture, const tcu::Texture2D& level0Reference, const GenMipmapPrecision& precision)
   3286 {
   3287 	qpTestResult result = QP_TEST_RESULT_PASS;
   3288 
   3289 	// Special comparison for level 0.
   3290 	{
   3291 		const tcu::Vec4		threshold	= select(precision.colorThreshold, tcu::Vec4(1.0f), precision.colorMask);
   3292 		const bool			level0Ok	= tcu::floatThresholdCompare(log, "Level0", "Level 0", level0Reference.getLevel(0), resultTexture.getLevel(0), threshold, tcu::COMPARE_LOG_RESULT);
   3293 
   3294 		if (!level0Ok)
   3295 		{
   3296 			log << TestLog::Message << "ERROR: Level 0 comparison failed!" << TestLog::EndMessage;
   3297 			result = QP_TEST_RESULT_FAIL;
   3298 		}
   3299 	}
   3300 
   3301 	for (int levelNdx = 1; levelNdx < resultTexture.getNumLevels(); levelNdx++)
   3302 	{
   3303 		const tcu::ConstPixelBufferAccess	src			= resultTexture.getLevel(levelNdx-1);
   3304 		const tcu::ConstPixelBufferAccess	dst			= resultTexture.getLevel(levelNdx);
   3305 		tcu::Surface						errorMask	(dst.getWidth(), dst.getHeight());
   3306 		bool								levelOk		= false;
   3307 
   3308 		// Try different comparisons in quality order.
   3309 
   3310 		if (!levelOk)
   3311 		{
   3312 			const int numFailed = compareGenMipmapBilinear(dst, src, errorMask.getAccess(), precision);
   3313 			if (numFailed == 0)
   3314 				levelOk = true;
   3315 			else
   3316 				log << TestLog::Message << "WARNING: Level " << levelNdx << " comparison to bilinear method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
   3317 		}
   3318 
   3319 		if (!levelOk)
   3320 		{
   3321 			const int numFailed = compareGenMipmapBox(dst, src, errorMask.getAccess(), precision);
   3322 			if (numFailed == 0)
   3323 				levelOk = true;
   3324 			else
   3325 				log << TestLog::Message << "WARNING: Level " << levelNdx << " comparison to box method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
   3326 		}
   3327 
   3328 		// At this point all high-quality methods have been used.
   3329 		if (!levelOk && result == QP_TEST_RESULT_PASS)
   3330 			result = QP_TEST_RESULT_QUALITY_WARNING;
   3331 
   3332 		if (!levelOk)
   3333 		{
   3334 			const int numFailed = compareGenMipmapVeryLenient(dst, src, errorMask.getAccess(), precision);
   3335 			if (numFailed == 0)
   3336 				levelOk = true;
   3337 			else
   3338 				log << TestLog::Message << "ERROR: Level " << levelNdx << " appears to contain " << numFailed << " completely wrong pixels, failing case!" << TestLog::EndMessage;
   3339 		}
   3340 
   3341 		if (!levelOk)
   3342 			result = QP_TEST_RESULT_FAIL;
   3343 
   3344 		log << TestLog::ImageSet(string("Level") + de::toString(levelNdx), string("Level ") + de::toString(levelNdx) + " result")
   3345 			<< TestLog::Image("Result", "Result", dst);
   3346 
   3347 		if (!levelOk)
   3348 			log << TestLog::Image("ErrorMask", "Error mask", errorMask);
   3349 
   3350 		log << TestLog::EndImageSet;
   3351 	}
   3352 
   3353 	return result;
   3354 }
   3355 
   3356 qpTestResult compareGenMipmapResult (tcu::TestLog& log, const tcu::TextureCube& resultTexture, const tcu::TextureCube& level0Reference, const GenMipmapPrecision& precision)
   3357 {
   3358 	qpTestResult result = QP_TEST_RESULT_PASS;
   3359 
   3360 	static const char* s_faceNames[] = { "-X", "+X", "-Y", "+Y", "-Z", "+Z" };
   3361 	DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_faceNames) == tcu::CUBEFACE_LAST);
   3362 
   3363 	// Special comparison for level 0.
   3364 	for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; faceNdx++)
   3365 	{
   3366 		const tcu::CubeFace	face		= tcu::CubeFace(faceNdx);
   3367 		const tcu::Vec4		threshold	= select(precision.colorThreshold, tcu::Vec4(1.0f), precision.colorMask);
   3368 		const bool			level0Ok	= tcu::floatThresholdCompare(log,
   3369 																	 ("Level0Face" + de::toString(faceNdx)).c_str(),
   3370 																	 (string("Level 0, face ") + s_faceNames[face]).c_str(),
   3371 																	 level0Reference.getLevelFace(0, face),
   3372 																	 resultTexture.getLevelFace(0, face),
   3373 																	 threshold, tcu::COMPARE_LOG_RESULT);
   3374 
   3375 		if (!level0Ok)
   3376 		{
   3377 			log << TestLog::Message << "ERROR: Level 0, face " << s_faceNames[face] << " comparison failed!" << TestLog::EndMessage;
   3378 			result = QP_TEST_RESULT_FAIL;
   3379 		}
   3380 	}
   3381 
   3382 	for (int levelNdx = 1; levelNdx < resultTexture.getNumLevels(); levelNdx++)
   3383 	{
   3384 		for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; faceNdx++)
   3385 		{
   3386 			const tcu::CubeFace					face		= tcu::CubeFace(faceNdx);
   3387 			const char*							faceName	= s_faceNames[face];
   3388 			const tcu::ConstPixelBufferAccess	src			= resultTexture.getLevelFace(levelNdx-1,	face);
   3389 			const tcu::ConstPixelBufferAccess	dst			= resultTexture.getLevelFace(levelNdx,		face);
   3390 			tcu::Surface						errorMask	(dst.getWidth(), dst.getHeight());
   3391 			bool								levelOk		= false;
   3392 
   3393 			// Try different comparisons in quality order.
   3394 
   3395 			if (!levelOk)
   3396 			{
   3397 				const int numFailed = compareGenMipmapBilinear(dst, src, errorMask.getAccess(), precision);
   3398 				if (numFailed == 0)
   3399 					levelOk = true;
   3400 				else
   3401 					log << TestLog::Message << "WARNING: Level " << levelNdx << ", face " << faceName << " comparison to bilinear method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
   3402 			}
   3403 
   3404 			if (!levelOk)
   3405 			{
   3406 				const int numFailed = compareGenMipmapBox(dst, src, errorMask.getAccess(), precision);
   3407 				if (numFailed == 0)
   3408 					levelOk = true;
   3409 				else
   3410 					log << TestLog::Message << "WARNING: Level " << levelNdx << ", face " << faceName <<" comparison to box method failed, found " << numFailed << " invalid pixels." << TestLog::EndMessage;
   3411 			}
   3412 
   3413 			// At this point all high-quality methods have been used.
   3414 			if (!levelOk && result == QP_TEST_RESULT_PASS)
   3415 				result = QP_TEST_RESULT_QUALITY_WARNING;
   3416 
   3417 			if (!levelOk)
   3418 			{
   3419 				const int numFailed = compareGenMipmapVeryLenient(dst, src, errorMask.getAccess(), precision);
   3420 				if (numFailed == 0)
   3421 					levelOk = true;
   3422 				else
   3423 					log << TestLog::Message << "ERROR: Level " << levelNdx << ", face " << faceName << " appears to contain " << numFailed << " completely wrong pixels, failing case!" << TestLog::EndMessage;
   3424 			}
   3425 
   3426 			if (!levelOk)
   3427 				result = QP_TEST_RESULT_FAIL;
   3428 
   3429 			log << TestLog::ImageSet(string("Level") + de::toString(levelNdx) + "Face" + de::toString(faceNdx), string("Level ") + de::toString(levelNdx) + ", face " + string(faceName) + " result")
   3430 				<< TestLog::Image("Result", "Result", dst);
   3431 
   3432 			if (!levelOk)
   3433 				log << TestLog::Image("ErrorMask", "Error mask", errorMask);
   3434 
   3435 			log << TestLog::EndImageSet;
   3436 		}
   3437 	}
   3438 
   3439 	return result;
   3440 }
   3441 
   3442 // Logging utilities.
   3443 
   3444 std::ostream& operator<< (std::ostream& str, const LogGradientFmt& fmt)
   3445 {
   3446 	return str << "(R: " << fmt.valueMin->x() << " -> " << fmt.valueMax->x() << ", "
   3447 			   <<  "G: " << fmt.valueMin->y() << " -> " << fmt.valueMax->y() << ", "
   3448 			   <<  "B: " << fmt.valueMin->z() << " -> " << fmt.valueMax->z() << ", "
   3449 			   <<  "A: " << fmt.valueMin->w() << " -> " << fmt.valueMax->w() << ")";
   3450 }
   3451 
   3452 } // TextureTestUtil
   3453 } // gls
   3454 } // deqp
   3455