Home | History | Annotate | Download | only in vulkan
      1 /*-------------------------------------------------------------------------
      2  * Vulkan Conformance Tests
      3  * ------------------------
      4  *
      5  * Copyright (c) 2016 Google Inc.
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Platform Synchronization tests
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "vktSynchronization.hpp"
     25 
     26 #include "vktTestCaseUtil.hpp"
     27 
     28 #include "vkPlatform.hpp"
     29 #include "vkStrUtil.hpp"
     30 #include "vkRef.hpp"
     31 #include "vkRefUtil.hpp"
     32 #include "vkDeviceUtil.hpp"
     33 
     34 #include "tcuTestLog.hpp"
     35 #include "tcuFormatUtil.hpp"
     36 
     37 #include "deUniquePtr.hpp"
     38 #include "deThread.hpp"
     39 #include "vkMemUtil.hpp"
     40 #include "vkQueryUtil.hpp"
     41 #include "vkPrograms.hpp"
     42 #include "vkTypeUtil.hpp"
     43 
     44 #include <limits>
     45 
     46 namespace vkt
     47 {
     48 
     49 using namespace vk;
     50 using namespace tcu;
     51 
     52 namespace
     53 {
     54 
     55 using std::vector;
     56 using std::string;
     57 using tcu::TestLog;
     58 using de::UniquePtr;
     59 using de::MovePtr;
     60 
     61 static const deUint64 DEFAULT_TIMEOUT = 2ull*1000*1000*1000; //!< 2 seconds in nanoseconds
     62 
     63 void buildShaders (SourceCollections& shaderCollection)
     64 {
     65 	shaderCollection.glslSources.add("glslvert") <<
     66 		glu::VertexSource(
     67 				"#version 310 es\n"
     68 				"precision mediump float;\n"
     69 				"layout (location = 0) in vec4 vertexPosition;\n"
     70 				"void main()\n"
     71 				"{\n"
     72 				"	gl_Position = vertexPosition;\n"
     73 				"}\n");
     74 
     75 	shaderCollection.glslSources.add("glslfrag") <<
     76 		glu::FragmentSource(
     77 				"#version 310 es\n"
     78 				"precision mediump float;\n"
     79 				"layout (location = 0) out vec4 outputColor;\n"
     80 				"void main()\n"
     81 				"{\n"
     82 				"	outputColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
     83 				"}\n");
     84 }
     85 
     86 Move<VkDevice> createTestDevice (const InstanceInterface& vki, VkPhysicalDevice physicalDevice, deUint32 *outQueueFamilyIndex)
     87 {
     88 	VkDeviceQueueCreateInfo		queueInfo;
     89 	VkDeviceCreateInfo			deviceInfo;
     90 	size_t						queueNdx;
     91 	const deUint32				queueCount					= 2u;
     92 	const float					queuePriority[queueCount]	= { 1.0f, 1.0f };
     93 
     94 	const vector<VkQueueFamilyProperties>	queueProps				= getPhysicalDeviceQueueFamilyProperties(vki, physicalDevice);
     95 	const VkPhysicalDeviceFeatures			physicalDeviceFeatures	= getPhysicalDeviceFeatures(vki, physicalDevice);
     96 
     97 	for (queueNdx = 0; queueNdx < queueProps.size(); queueNdx++)
     98 	{
     99 		if ((queueProps[queueNdx].queueFlags & VK_QUEUE_GRAPHICS_BIT) == VK_QUEUE_GRAPHICS_BIT && (queueProps[queueNdx].queueCount >= queueCount))
    100 			break;
    101 	}
    102 
    103 	if (queueNdx >= queueProps.size())
    104 	{
    105 		// No queue family index found
    106 		std::ostringstream msg;
    107 		msg << "Cannot create device with " << queueCount << " graphics queues";
    108 
    109 		throw tcu::NotSupportedError(msg.str());
    110 	}
    111 
    112 	deMemset(&queueInfo,	0, sizeof(queueInfo));
    113 	deMemset(&deviceInfo,	0, sizeof(deviceInfo));
    114 
    115 	deMemset(&queueInfo, 0xcd, sizeof(queueInfo));
    116 	queueInfo.sType							= VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
    117 	queueInfo.pNext							= DE_NULL;
    118 	queueInfo.flags							= (VkDeviceQueueCreateFlags)0u;
    119 	queueInfo.queueFamilyIndex				= (deUint32)queueNdx;
    120 	queueInfo.queueCount					= queueCount;
    121 	queueInfo.pQueuePriorities				= queuePriority;
    122 
    123 	deMemset(&deviceInfo, 0xcd, sizeof(deviceInfo));
    124 	deviceInfo.sType						= VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
    125 	deviceInfo.pNext						= DE_NULL;
    126 	deviceInfo.queueCreateInfoCount			= 1u;
    127 	deviceInfo.pQueueCreateInfos			= &queueInfo;
    128 	deviceInfo.enabledExtensionCount		= 0u;
    129 	deviceInfo.ppEnabledExtensionNames		= DE_NULL;
    130 	deviceInfo.enabledLayerCount			= 0u;
    131 	deviceInfo.ppEnabledLayerNames			= DE_NULL;
    132 	deviceInfo.pEnabledFeatures				= &physicalDeviceFeatures;
    133 
    134 	*outQueueFamilyIndex					= queueInfo.queueFamilyIndex;
    135 
    136 	return createDevice(vki, physicalDevice, &deviceInfo);
    137 };
    138 
    139 struct BufferParameters
    140 {
    141 	const void*						memory;
    142 	VkDeviceSize					size;
    143 	VkBufferUsageFlags				usage;
    144 	VkSharingMode					sharingMode;
    145 	deUint32						queueFamilyCount;
    146 	const deUint32*					queueFamilyIndex;
    147 	VkAccessFlags					inputBarrierFlags;
    148 };
    149 
    150 struct Buffer
    151 {
    152 	MovePtr<Allocation>				allocation;
    153 	vector<VkMemoryBarrier> 		memoryBarrier;
    154 	vk::Move<VkBuffer>				buffer;
    155 };
    156 
    157 void createVulkanBuffer (const DeviceInterface& vkd, VkDevice device, Allocator& allocator, const BufferParameters& bufferParameters, Buffer& buffer, MemoryRequirement visibility)
    158 {
    159 	VkBufferCreateInfo	bufferCreateParams;
    160 
    161 	deMemset(&bufferCreateParams, 0xcd, sizeof(bufferCreateParams));
    162 	bufferCreateParams.sType					= VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    163 	bufferCreateParams.pNext					= DE_NULL;
    164 	bufferCreateParams.flags					= 0;
    165 	bufferCreateParams.size						= bufferParameters.size;
    166 	bufferCreateParams.usage					= bufferParameters.usage;
    167 	bufferCreateParams.sharingMode				= bufferParameters.sharingMode;
    168 	bufferCreateParams.queueFamilyIndexCount	= bufferParameters.queueFamilyCount;
    169 	bufferCreateParams.pQueueFamilyIndices		= bufferParameters.queueFamilyIndex;
    170 
    171 	buffer.buffer		= createBuffer(vkd, device, &bufferCreateParams);
    172 	buffer.allocation	= allocator.allocate(getBufferMemoryRequirements(vkd, device, *buffer.buffer), visibility);
    173 
    174 	VK_CHECK(vkd.bindBufferMemory(device, *buffer.buffer, buffer.allocation->getMemory(), buffer.allocation->getOffset()));
    175 
    176 	// If caller provides a host memory buffer for the allocation, then go
    177 	// ahead and copy the provided data into the allocation and update the
    178 	// barrier list with the associated access
    179 	if (bufferParameters.memory != DE_NULL)
    180 	{
    181 		VkMemoryBarrier				barrier;
    182 		VkMappedMemoryRange			range;
    183 
    184 		deMemset(&range, 0xcd, sizeof(range));
    185 		range.sType		= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
    186 		range.pNext		= DE_NULL;
    187 		range.memory	= buffer.allocation->getMemory();
    188 		range.offset	= buffer.allocation->getOffset();
    189 		range.size		= bufferParameters.size;
    190 
    191 		deMemcpy(buffer.allocation->getHostPtr(), bufferParameters.memory, (size_t)bufferParameters.size);
    192 		VK_CHECK(vkd.flushMappedMemoryRanges(device, 1, &range));
    193 
    194 		deMemset(&barrier, 0xcd, sizeof(barrier));
    195 		barrier.sType			= VK_STRUCTURE_TYPE_MEMORY_BARRIER;
    196 		barrier.pNext			= DE_NULL;
    197 		barrier.srcAccessMask	= VK_ACCESS_HOST_WRITE_BIT;
    198 		barrier.dstAccessMask	= bufferParameters.inputBarrierFlags;
    199 
    200 		buffer.memoryBarrier.push_back(barrier);
    201 	}
    202 }
    203 
    204 struct ImageParameters
    205 {
    206 	VkImageType							imageType;
    207 	VkFormat							format;
    208 	VkExtent3D							extent3D;
    209 	deUint32							mipLevels;
    210 	VkSampleCountFlagBits				samples;
    211 	VkImageTiling						tiling;
    212 	VkBufferUsageFlags					usage;
    213 	VkSharingMode						sharingMode;
    214 	deUint32							queueFamilyCount;
    215 	const deUint32*						queueFamilyNdxList;
    216 	VkImageLayout						initialLayout;
    217 	VkImageLayout						finalLayout;
    218 	VkAccessFlags						barrierInputMask;
    219 };
    220 
    221 struct Image
    222 {
    223 	vk::Move<VkImage>					image;
    224 	vk::Move<VkImageView>				imageView;
    225 	MovePtr<Allocation>					allocation;
    226 	vector<VkImageMemoryBarrier>		imageMemoryBarrier;
    227 };
    228 
    229 void createVulkanImage (const DeviceInterface& vkd, VkDevice device, Allocator& allocator, const ImageParameters& imageParameters, Image& image, MemoryRequirement visibility)
    230 {
    231 	VkComponentMapping			componentMap;
    232 	VkImageSubresourceRange		subresourceRange;
    233 	VkImageViewCreateInfo		imageViewCreateInfo;
    234 	VkImageCreateInfo			imageCreateParams;
    235 	VkImageMemoryBarrier		imageBarrier;
    236 
    237 	deMemset(&imageCreateParams, 0xcd, sizeof(imageCreateParams));
    238 	imageCreateParams.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
    239 	imageCreateParams.pNext					= DE_NULL;
    240 	imageCreateParams.flags					= 0;
    241 	imageCreateParams.imageType				= imageParameters.imageType;
    242 	imageCreateParams.format				= imageParameters.format;
    243 	imageCreateParams.extent				= imageParameters.extent3D;
    244 	imageCreateParams.mipLevels				= imageParameters.mipLevels;
    245 	imageCreateParams.arrayLayers			= 1;
    246 	imageCreateParams.samples				= imageParameters.samples;
    247 	imageCreateParams.tiling				= imageParameters.tiling;
    248 	imageCreateParams.usage					= imageParameters.usage;
    249 	imageCreateParams.sharingMode			= imageParameters.sharingMode;
    250 	imageCreateParams.queueFamilyIndexCount	= imageParameters.queueFamilyCount;
    251 	imageCreateParams.pQueueFamilyIndices	= imageParameters.queueFamilyNdxList;
    252 	imageCreateParams.initialLayout			= imageParameters.initialLayout;
    253 
    254 	image.image			= createImage(vkd, device, &imageCreateParams);
    255 	image.allocation	= allocator.allocate(getImageMemoryRequirements(vkd, device, *image.image), visibility);
    256 
    257 	VK_CHECK(vkd.bindImageMemory(device, *image.image, image.allocation->getMemory(), image.allocation->getOffset()));
    258 
    259 	componentMap.r							= VK_COMPONENT_SWIZZLE_R;
    260 	componentMap.g							= VK_COMPONENT_SWIZZLE_G;
    261 	componentMap.b							= VK_COMPONENT_SWIZZLE_B;
    262 	componentMap.a							= VK_COMPONENT_SWIZZLE_A;
    263 
    264 	subresourceRange.aspectMask				= VK_IMAGE_ASPECT_COLOR_BIT;
    265 	subresourceRange.baseMipLevel			= 0;
    266 	subresourceRange.levelCount				= imageParameters.mipLevels;
    267 	subresourceRange.baseArrayLayer			= 0;
    268 	subresourceRange.layerCount				= 1;
    269 
    270 	deMemset(&imageViewCreateInfo, 0xcd, sizeof(imageViewCreateInfo));
    271 	imageViewCreateInfo.sType				= VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    272 	imageViewCreateInfo.pNext				= DE_NULL;
    273 	imageViewCreateInfo.flags				= 0;
    274 	imageViewCreateInfo.image				= image.image.get();
    275 	imageViewCreateInfo.viewType			= VK_IMAGE_VIEW_TYPE_2D;
    276 	imageViewCreateInfo.format				= imageParameters.format;
    277 	imageViewCreateInfo.components			= componentMap;
    278 	imageViewCreateInfo.subresourceRange	= subresourceRange;
    279 
    280 	image.imageView	= createImageView(vkd, device, &imageViewCreateInfo);
    281 
    282 	deMemset(&imageBarrier, 0xcd, sizeof(imageBarrier));
    283 	imageBarrier.sType					= VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    284 	imageBarrier.pNext					= DE_NULL;
    285 	imageBarrier.srcAccessMask			= 0;
    286 	imageBarrier.dstAccessMask			= imageParameters.barrierInputMask;
    287 	imageBarrier.oldLayout				= imageParameters.initialLayout;
    288 	imageBarrier.newLayout				= imageParameters.finalLayout;
    289 	imageBarrier.srcQueueFamilyIndex	= imageParameters.queueFamilyNdxList[0];
    290 	imageBarrier.dstQueueFamilyIndex	= imageParameters.queueFamilyNdxList[imageParameters.queueFamilyCount-1];
    291 	imageBarrier.image					= image.image.get();
    292 	imageBarrier.subresourceRange		= subresourceRange;
    293 
    294 	image.imageMemoryBarrier.push_back(imageBarrier);
    295 }
    296 
    297 struct RenderPassParameters
    298 {
    299 	VkFormat				colorFormat;
    300 	VkSampleCountFlagBits	colorSamples;
    301 };
    302 
    303 void  createColorOnlyRenderPass (const DeviceInterface& vkd, VkDevice device, const RenderPassParameters& renderPassParameters, vk::Move<VkRenderPass>& renderPass)
    304 {
    305 	VkAttachmentDescription				colorAttachmentDesc;
    306 	VkAttachmentReference				colorAttachmentRef;
    307 	VkAttachmentReference				stencilAttachmentRef;
    308 	VkSubpassDescription				subpassDesc;
    309 	VkRenderPassCreateInfo				renderPassParams;
    310 	VkRenderPass						newRenderPass;
    311 
    312 	colorAttachmentDesc.flags			= 0;
    313 	colorAttachmentDesc.format			= renderPassParameters.colorFormat;
    314 	colorAttachmentDesc.samples			= renderPassParameters.colorSamples;
    315 	colorAttachmentDesc.loadOp			= VK_ATTACHMENT_LOAD_OP_CLEAR;
    316 	colorAttachmentDesc.storeOp			= VK_ATTACHMENT_STORE_OP_STORE;
    317 	colorAttachmentDesc.stencilLoadOp	= VK_ATTACHMENT_LOAD_OP_DONT_CARE;
    318 	colorAttachmentDesc.stencilStoreOp	= VK_ATTACHMENT_STORE_OP_DONT_CARE;
    319 	colorAttachmentDesc.initialLayout	= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    320 	colorAttachmentDesc.finalLayout		= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    321 
    322 	colorAttachmentRef.attachment		= 0;
    323 	colorAttachmentRef.layout			= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    324 
    325 	stencilAttachmentRef.attachment		= VK_NO_ATTACHMENT;
    326 	stencilAttachmentRef.layout			= VK_IMAGE_LAYOUT_UNDEFINED;
    327 
    328 	subpassDesc.flags					= 0;
    329 	subpassDesc.pipelineBindPoint		= VK_PIPELINE_BIND_POINT_GRAPHICS;
    330 	subpassDesc.inputAttachmentCount	= 0;
    331 	subpassDesc.pInputAttachments		= DE_NULL;
    332 	subpassDesc.colorAttachmentCount	= 1;
    333 	subpassDesc.pColorAttachments		= &colorAttachmentRef;
    334 	subpassDesc.pResolveAttachments		= DE_NULL;
    335 	subpassDesc.pDepthStencilAttachment	= &stencilAttachmentRef;
    336 	subpassDesc.preserveAttachmentCount	= 0;
    337 	subpassDesc.pPreserveAttachments	= DE_NULL;
    338 
    339 	deMemset(&renderPassParams, 0xcd, sizeof(renderPassParams));
    340 	renderPassParams.sType				= VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
    341 	renderPassParams.pNext				= DE_NULL;
    342 	renderPassParams.flags				= 0;
    343 	renderPassParams.attachmentCount	= 1;
    344 	renderPassParams.pAttachments		= &colorAttachmentDesc;
    345 	renderPassParams.subpassCount		= 1;
    346 	renderPassParams.pSubpasses			= &subpassDesc;
    347 	renderPassParams.dependencyCount	= 0;
    348 	renderPassParams.pDependencies		= DE_NULL;
    349 
    350 	renderPass = createRenderPass(vkd, device, &renderPassParams);
    351 }
    352 
    353 struct ShaderDescParams
    354 {
    355 	VkShaderModule			shaderModule;
    356 	VkShaderStageFlagBits	stage;
    357 };
    358 
    359 struct VertexDesc
    360 {
    361 	deUint32	location;
    362 	VkFormat	format;
    363 	deUint32	stride;
    364 	deUint32	offset;
    365 };
    366 
    367 void createVertexInfo (const vector<VertexDesc>& vertexDesc, vector<VkVertexInputBindingDescription>& bindingList, vector<VkVertexInputAttributeDescription>& attrList, VkPipelineVertexInputStateCreateInfo& vertexInputState)
    368 {
    369 	for (vector<VertexDesc>::const_iterator vertDescIter = vertexDesc.begin(); vertDescIter != vertexDesc.end(); vertDescIter++)
    370 	{
    371 		deUint32							bindingId = 0;
    372 		VkVertexInputBindingDescription		bindingDesc;
    373 		VkVertexInputAttributeDescription	attrDesc;
    374 
    375 		bindingDesc.binding		= bindingId;
    376 		bindingDesc.stride		= vertDescIter->stride;
    377 		bindingDesc.inputRate	= VK_VERTEX_INPUT_RATE_VERTEX;
    378 		bindingList.push_back(bindingDesc);
    379 
    380 		attrDesc.location		= vertDescIter->location;
    381 		attrDesc.binding		= bindingId;
    382 		attrDesc.format			= vertDescIter->format;
    383 		attrDesc.offset			= vertDescIter->offset;
    384 		attrList.push_back(attrDesc);
    385 
    386 		bindingId++;
    387 	}
    388 
    389 	deMemset(&vertexInputState, 0xcd, sizeof(vertexInputState));
    390 	vertexInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
    391 	vertexInputState.pNext = DE_NULL,
    392 	vertexInputState.vertexBindingDescriptionCount = (deUint32)bindingList.size();
    393 	vertexInputState.pVertexBindingDescriptions = &bindingList[0];
    394 	vertexInputState.vertexAttributeDescriptionCount = (deUint32)attrList.size();
    395 	vertexInputState.pVertexAttributeDescriptions = &attrList[0];
    396 }
    397 
    398 void createCommandBuffer (const DeviceInterface& deviceInterface, const VkDevice device, const deUint32 queueFamilyNdx, vk::Move<VkCommandBuffer>* commandBufferRef, vk::Move<VkCommandPool>* commandPoolRef)
    399 {
    400 	vk::Move<VkCommandPool>		commandPool;
    401 	VkCommandPoolCreateInfo		commandPoolInfo;
    402 	VkCommandBufferAllocateInfo	commandBufferInfo;
    403 	VkCommandBuffer				commandBuffer;
    404 
    405 	deMemset(&commandPoolInfo, 0xcd, sizeof(commandPoolInfo));
    406 	commandPoolInfo.sType				= VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
    407 	commandPoolInfo.pNext				= DE_NULL;
    408 	commandPoolInfo.flags				= 0;
    409 	commandPoolInfo.queueFamilyIndex	= queueFamilyNdx;
    410 
    411 	commandPool = createCommandPool(deviceInterface, device, &commandPoolInfo, DE_NULL);
    412 
    413 	deMemset(&commandBufferInfo, 0xcd, sizeof(commandBufferInfo));
    414 	commandBufferInfo.sType					= VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    415 	commandBufferInfo.pNext					= DE_NULL;
    416 	commandBufferInfo.commandPool			= commandPool.get();
    417 	commandBufferInfo.level					= VK_COMMAND_BUFFER_LEVEL_PRIMARY;
    418 	commandBufferInfo.commandBufferCount	= 1;
    419 
    420 	VK_CHECK(deviceInterface.allocateCommandBuffers(device, &commandBufferInfo, &commandBuffer));
    421 	*commandBufferRef = vk::Move<VkCommandBuffer>(vk::check<VkCommandBuffer>(commandBuffer), Deleter<VkCommandBuffer>(deviceInterface, device, commandPool.get()));
    422 	*commandPoolRef = commandPool;
    423 }
    424 
    425 void createFences (const DeviceInterface& deviceInterface, VkDevice device, bool signaled, deUint32 numFences, VkFence* fence)
    426 {
    427 	VkFenceCreateInfo		fenceState;
    428 	VkFenceCreateFlags		signalFlag = signaled ? VK_FENCE_CREATE_SIGNALED_BIT : 0;
    429 
    430 	deMemset(&fenceState, 0xcd, sizeof(fenceState));
    431 	fenceState.sType		= VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    432 	fenceState.pNext		= DE_NULL;
    433 	fenceState.flags		= signalFlag;
    434 
    435 	for (deUint32 ndx = 0; ndx < numFences; ndx++)
    436 		VK_CHECK(deviceInterface.createFence(device, &fenceState, DE_NULL, &fence[ndx]));
    437 }
    438 
    439 void destroyFences (const DeviceInterface& deviceInterface, VkDevice device, deUint32 numFences, VkFence* fence)
    440 {
    441 	for (deUint32 ndx = 0; ndx < numFences; ndx++)
    442 		deviceInterface.destroyFence(device, fence[ndx], DE_NULL);
    443 }
    444 
    445 struct RenderInfo
    446 {
    447 	deInt32							width;
    448 	deInt32							height;
    449 	deUint32						vertexBufferSize;
    450 	VkBuffer						vertexBuffer;
    451 	VkImage							image;
    452 	VkCommandBuffer					commandBuffer;
    453 	VkRenderPass					renderPass;
    454 	VkFramebuffer					framebuffer;
    455 	VkPipeline						pipeline;
    456 	deUint32						mipLevels;
    457 	const deUint32*					queueFamilyNdxList;
    458 	deUint32						queueFamilyNdxCount;
    459 	bool							waitEvent;
    460 	VkEvent							event;
    461 	vector<VkImageMemoryBarrier>*	barriers;
    462 };
    463 
    464 void  recordRenderPass (const DeviceInterface& deviceInterface, const RenderInfo& renderInfo)
    465 {
    466 	const VkDeviceSize					bindingOffset			= 0;
    467 	const VkClearValue					clearValue				= makeClearValueColorF32(0.0, 0.0, 1.0, 1.0);
    468 	VkRenderPassBeginInfo				renderPassBeginState;
    469 	VkImageMemoryBarrier				renderBarrier;
    470 
    471 	deMemset(&renderPassBeginState, 0xcd, sizeof(renderPassBeginState));
    472 	renderPassBeginState.sType						= VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    473 	renderPassBeginState.pNext						= DE_NULL;
    474 	renderPassBeginState.renderPass					= renderInfo.renderPass;
    475 	renderPassBeginState.framebuffer				= renderInfo.framebuffer;
    476 	renderPassBeginState.renderArea.offset.x		= 0;
    477 	renderPassBeginState.renderArea.offset.y		= 0;
    478 	renderPassBeginState.renderArea.extent.width	= renderInfo.width;
    479 	renderPassBeginState.renderArea.extent.height	= renderInfo.height;
    480 	renderPassBeginState.clearValueCount			= 1;
    481 	renderPassBeginState.pClearValues				= &clearValue;
    482 
    483 	deviceInterface.cmdBeginRenderPass(renderInfo.commandBuffer, &renderPassBeginState, VK_SUBPASS_CONTENTS_INLINE);
    484 	if (renderInfo.waitEvent)
    485 		deviceInterface.cmdWaitEvents(renderInfo.commandBuffer, 1, &renderInfo.event, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, DE_NULL, 0, DE_NULL, 0, DE_NULL);
    486 	deviceInterface.cmdBindPipeline(renderInfo.commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, renderInfo.pipeline);
    487 	deviceInterface.cmdBindVertexBuffers(renderInfo.commandBuffer, 0u, 1u, &renderInfo.vertexBuffer, &bindingOffset);
    488 	deviceInterface.cmdDraw(renderInfo.commandBuffer, renderInfo.vertexBufferSize, 1, 0, 0);
    489 	deviceInterface.cmdEndRenderPass(renderInfo.commandBuffer);
    490 
    491 	deMemset(&renderBarrier, 0xcd, sizeof(renderBarrier));
    492 	renderBarrier.sType								= VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    493 	renderBarrier.pNext								= DE_NULL;
    494 	renderBarrier.srcAccessMask						= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    495 	renderBarrier.dstAccessMask						= VK_ACCESS_TRANSFER_READ_BIT;
    496 	renderBarrier.oldLayout							= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    497 	renderBarrier.newLayout							= VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
    498 	renderBarrier.srcQueueFamilyIndex				= renderInfo.queueFamilyNdxList[0];
    499 	renderBarrier.dstQueueFamilyIndex				= renderInfo.queueFamilyNdxList[renderInfo.queueFamilyNdxCount-1];
    500 	renderBarrier.image								= renderInfo.image;
    501 	renderBarrier.subresourceRange.aspectMask		= VK_IMAGE_ASPECT_COLOR_BIT;
    502 	renderBarrier.subresourceRange.baseMipLevel		= 0;
    503 	renderBarrier.subresourceRange.levelCount		= renderInfo.mipLevels;
    504 	renderBarrier.subresourceRange.baseArrayLayer	= 0;
    505 	renderBarrier.subresourceRange.layerCount		= 1;
    506 	renderInfo.barriers->push_back(renderBarrier);
    507 }
    508 
    509 struct TransferInfo
    510 {
    511 	VkCommandBuffer					commandBuffer;
    512 	deUint32						width;
    513 	deUint32						height;
    514 	VkImage							image;
    515 	VkBuffer						buffer;
    516 	VkDeviceSize					size;
    517 	deUint32						mipLevel;
    518 	VkOffset3D						imageOffset;
    519 	vector<VkBufferMemoryBarrier>*	barriers;
    520 };
    521 
    522 void copyToCPU (const DeviceInterface& vkd, TransferInfo* transferInfo)
    523 {
    524 	VkBufferImageCopy	copyState;
    525 
    526 	copyState.bufferOffset						= 0;
    527 	copyState.bufferRowLength					= transferInfo->width;
    528 	copyState.bufferImageHeight					= transferInfo->height;
    529 	copyState.imageSubresource.aspectMask		= VK_IMAGE_ASPECT_COLOR_BIT;
    530 	copyState.imageSubresource.mipLevel			= transferInfo->mipLevel;
    531 	copyState.imageSubresource.baseArrayLayer	= 0;
    532 	copyState.imageSubresource.layerCount		= 1;
    533 	copyState.imageOffset						= transferInfo->imageOffset;
    534 	copyState.imageExtent.width					= (deInt32)(transferInfo->width);
    535 	copyState.imageExtent.height				= (deInt32)(transferInfo->height);
    536 	copyState.imageExtent.depth					= 1;
    537 
    538 	vkd.cmdCopyImageToBuffer(transferInfo->commandBuffer, transferInfo->image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, transferInfo->buffer, 1, &copyState);
    539 
    540 	{
    541 		VkBufferMemoryBarrier	bufferBarrier;
    542 		deMemset(&bufferBarrier, 0xcd, sizeof(bufferBarrier));
    543 		bufferBarrier.sType					= VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
    544 		bufferBarrier.pNext					= DE_NULL;
    545 		bufferBarrier.srcAccessMask			= VK_ACCESS_TRANSFER_WRITE_BIT;
    546 		bufferBarrier.dstAccessMask			= VK_ACCESS_HOST_READ_BIT;
    547 		bufferBarrier.srcQueueFamilyIndex	= VK_QUEUE_FAMILY_IGNORED;
    548 		bufferBarrier.dstQueueFamilyIndex	= VK_QUEUE_FAMILY_IGNORED;
    549 		bufferBarrier.buffer				= transferInfo->buffer;
    550 		bufferBarrier.offset				= 0;
    551 		bufferBarrier.size					= transferInfo->size;
    552 		transferInfo->barriers->push_back(bufferBarrier);
    553 	}
    554 }
    555 
    556 struct TestContext
    557 {
    558 	const DeviceInterface&		vkd;
    559 	const VkDevice				device;
    560 	const deUint32				queueFamilyIndex;
    561 	const BinaryCollection&		binaryCollection;
    562 	Allocator&					allocator;
    563 
    564 	const tcu::Vec4*			vertices;
    565 	deUint32					numVertices;
    566 	tcu::IVec2					renderDimension;
    567 	VkFence						fences[2];
    568 	VkDeviceSize				renderSize;
    569 	MovePtr<Allocation>			renderReadBuffer;
    570 	MovePtr<Allocation>			vertexBufferAllocation;
    571 	vk::Move<VkBuffer>			vertexBuffer;
    572 	vk::Move<VkBuffer>			renderBuffer;
    573 	bool						waitEvent;
    574 	VkEvent						event;
    575 	vk::Move<VkImage>			image;
    576 	vk::Move<VkImageView>		imageView;
    577 	vk::Move<VkFramebuffer>		framebuffer;
    578 	vk::Move<VkCommandPool>		commandPool;
    579 	vk::Move<VkCommandBuffer>	cmdBuffer;
    580 	vk::Move<VkRenderPass>		renderPass;
    581 	vk::Move<VkPipelineCache>	pipelineCache;
    582 	vk::Move<VkPipeline>		pipeline;
    583 	MovePtr<Allocation>			imageAllocation;
    584 
    585 	TestContext (const DeviceInterface&		vkd_,
    586 				 const VkDevice				device_,
    587 				 deUint32					queueFamilyIndex_,
    588 				 const BinaryCollection&	binaryCollection_,
    589 				 Allocator&					allocator_)
    590 		: vkd				(vkd_)
    591 		, device			(device_)
    592 		, queueFamilyIndex	(queueFamilyIndex_)
    593 		, binaryCollection	(binaryCollection_)
    594 		, allocator			(allocator_)
    595 		, numVertices		(0)
    596 		, waitEvent			(false)
    597 	{
    598 		createFences(vkd, device, false, DE_LENGTH_OF_ARRAY(fences), fences);
    599 	}
    600 
    601 	~TestContext()
    602 	{
    603 		destroyFences(vkd, device, DE_LENGTH_OF_ARRAY(fences), fences);
    604 	}
    605 };
    606 
    607 void generateWork (TestContext& testContext)
    608 {
    609 	const DeviceInterface&						deviceInterface		= testContext.vkd;
    610 	const deUint32								queueFamilyNdx		= testContext.queueFamilyIndex;
    611 
    612 	// \note VkShaderModule is consumed by vkCreate*Pipelines() so it can be deleted
    613 	//       as pipeline has been constructed.
    614 	const vk::Unique<VkShaderModule>			vertShaderModule	(createShaderModule(deviceInterface,
    615 																						testContext.device,
    616 																						testContext.binaryCollection.get("glslvert"),
    617 																						(VkShaderModuleCreateFlags)0));
    618 
    619 	const vk::Unique<VkShaderModule>			fragShaderModule	(createShaderModule(deviceInterface,
    620 																						testContext.device,
    621 																						testContext.binaryCollection.get("glslfrag"),
    622 																						(VkShaderModuleCreateFlags)0));
    623 	const VkPipelineShaderStageCreateInfo		shaderStageParams[]	=
    624 	{
    625 		{
    626 			VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
    627 			DE_NULL,
    628 			(VkPipelineShaderStageCreateFlags)0,
    629 			VK_SHADER_STAGE_VERTEX_BIT,
    630 			*vertShaderModule,
    631 			"main",
    632 			(const VkSpecializationInfo*)DE_NULL,
    633 		},
    634 		{
    635 			VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
    636 			DE_NULL,
    637 			(VkPipelineShaderStageCreateFlags)0,
    638 			VK_SHADER_STAGE_FRAGMENT_BIT,
    639 			*fragShaderModule,
    640 			"main",
    641 			(const VkSpecializationInfo*)DE_NULL,
    642 		}
    643 	};
    644 
    645 	vk::Move<VkPipelineLayout>					layout;
    646 	vector<ShaderDescParams>					shaderDescParams;
    647 	VertexDesc									vertexDesc;
    648 	vector<VertexDesc>							vertexDescList;
    649 	vector<VkVertexInputAttributeDescription>	attrList;
    650 	vector<VkBufferMemoryBarrier>				bufferMemoryBarrier;
    651 	deUint32									memoryBarrierNdx;
    652 	deUint32									bufferMemoryBarrierNdx;
    653 	deUint32									imageMemoryBarrierNdx;
    654 	vector<VkVertexInputBindingDescription>		bindingList;
    655 	VkPipelineVertexInputStateCreateInfo		vertexInputState;
    656 	VkPipelineInputAssemblyStateCreateInfo		inputAssemblyState;
    657 	VkPipelineDepthStencilStateCreateInfo		depthStencilState;
    658 	VkPipelineColorBlendAttachmentState			blendAttachment;
    659 	VkPipelineColorBlendStateCreateInfo			blendState;
    660 	VkPipelineLayoutCreateInfo					pipelineLayoutState;
    661 	VkGraphicsPipelineCreateInfo				pipelineState;
    662 	VkPipelineCacheCreateInfo					cacheState;
    663 	VkViewport									viewport;
    664 	VkPipelineViewportStateCreateInfo			viewportInfo;
    665 	VkRect2D									scissor;
    666 	BufferParameters							bufferParameters;
    667 	Buffer										buffer;
    668 	RenderInfo									renderInfo;
    669 	ImageParameters								imageParameters;
    670 	Image										image;
    671 	VkPipelineRasterizationStateCreateInfo		rasterState;
    672 	VkPipelineMultisampleStateCreateInfo		multisampleState;
    673 	VkFramebufferCreateInfo						fbState;
    674 	VkCommandBufferBeginInfo					commandBufRecordState;
    675 	VkCommandBufferInheritanceInfo				inheritanceInfo;
    676 	RenderPassParameters						renderPassParameters;
    677 	TransferInfo								transferInfo;
    678 	vector<void*>								barrierList;
    679 	VkExtent3D									extent;
    680 	vector<VkMemoryBarrier>						memoryBarriers;
    681 	vector<VkBufferMemoryBarrier>				bufferBarriers;
    682 	vector<VkImageMemoryBarrier>				imageBarriers;
    683 
    684 	memoryBarrierNdx			= 0;
    685 	bufferMemoryBarrierNdx		= 0;
    686 	imageMemoryBarrierNdx		= 0;
    687 	buffer.memoryBarrier.resize(memoryBarrierNdx);
    688 	bufferMemoryBarrier.resize(bufferMemoryBarrierNdx);
    689 	image.imageMemoryBarrier.resize(imageMemoryBarrierNdx);
    690 
    691 	memoryBarriers.resize(0);
    692 	bufferBarriers.resize(0);
    693 	imageBarriers.resize(0);
    694 
    695 	bufferParameters.memory					= testContext.vertices;
    696 	bufferParameters.size					= testContext.numVertices * sizeof(tcu::Vec4);
    697 	bufferParameters.usage					= VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
    698 	bufferParameters.sharingMode			= VK_SHARING_MODE_EXCLUSIVE;
    699 	bufferParameters.queueFamilyCount		= 1;
    700 	bufferParameters.queueFamilyIndex		= &queueFamilyNdx;
    701 	bufferParameters.inputBarrierFlags		= VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
    702 	createVulkanBuffer(deviceInterface, testContext.device, testContext.allocator, bufferParameters, buffer, MemoryRequirement::HostVisible);
    703 	testContext.vertexBufferAllocation		= buffer.allocation;
    704 	testContext.vertexBuffer				= buffer.buffer;
    705 
    706 	bufferParameters.memory					= DE_NULL;
    707 	bufferParameters.size					= testContext.renderSize;
    708 	bufferParameters.usage					= VK_BUFFER_USAGE_TRANSFER_DST_BIT;
    709 	bufferParameters.sharingMode			= VK_SHARING_MODE_EXCLUSIVE;
    710 	bufferParameters.queueFamilyCount		= 1;
    711 	bufferParameters.queueFamilyIndex		= &queueFamilyNdx;
    712 	bufferParameters.inputBarrierFlags		= 0;
    713 	createVulkanBuffer(deviceInterface, testContext.device, testContext.allocator, bufferParameters, buffer, MemoryRequirement::HostVisible);
    714 	testContext.renderReadBuffer			= buffer.allocation;
    715 	testContext.renderBuffer				= buffer.buffer;
    716 
    717 	extent.width							= testContext.renderDimension.x();
    718 	extent.height							= testContext.renderDimension.y();
    719 	extent.depth							= 1;
    720 
    721 	imageParameters.imageType 				= VK_IMAGE_TYPE_2D;
    722 	imageParameters.format					= VK_FORMAT_R8G8B8A8_UNORM;
    723 	imageParameters.extent3D				= extent;
    724 	imageParameters.mipLevels				= 1;
    725 	imageParameters.samples					= VK_SAMPLE_COUNT_1_BIT;
    726 	imageParameters.tiling					= VK_IMAGE_TILING_OPTIMAL;
    727 	imageParameters.usage					= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
    728 	imageParameters.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;
    729 	imageParameters.queueFamilyCount		= 1;
    730 	imageParameters.queueFamilyNdxList		= &queueFamilyNdx;
    731 	imageParameters.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;
    732 	imageParameters.finalLayout				= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    733 	imageParameters.barrierInputMask		= VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    734 	createVulkanImage(deviceInterface, testContext.device, testContext.allocator, imageParameters, image, MemoryRequirement::Any);
    735 	testContext.imageAllocation				= image.allocation;
    736 	testContext.image						= image.image;
    737 
    738 	for (size_t ndx = 0; ndx < image.imageMemoryBarrier.size(); ++ndx)
    739 		imageBarriers.push_back(image.imageMemoryBarrier[ndx]);
    740 
    741 	renderPassParameters.colorFormat		= VK_FORMAT_R8G8B8A8_UNORM;
    742 	renderPassParameters.colorSamples		= VK_SAMPLE_COUNT_1_BIT;
    743 	createColorOnlyRenderPass(deviceInterface, testContext.device, renderPassParameters, testContext.renderPass);
    744 
    745 	vertexDesc.location = 0;
    746 	vertexDesc.format = VK_FORMAT_R32G32B32A32_SFLOAT;
    747 	vertexDesc.stride = sizeof(tcu::Vec4);
    748 	vertexDesc.offset = 0;
    749 	vertexDescList.push_back(vertexDesc);
    750 
    751 	createVertexInfo(vertexDescList, bindingList, attrList, vertexInputState);
    752 
    753 	deMemset(&inputAssemblyState, 0xcd, sizeof(inputAssemblyState));
    754 	inputAssemblyState.sType					= VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
    755 	inputAssemblyState.pNext					= DE_NULL;
    756 	inputAssemblyState.topology					= VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
    757 	inputAssemblyState.primitiveRestartEnable	= false;
    758 
    759 	viewport.x									= 0;
    760 	viewport.y									= 0;
    761 	viewport.width								= (float)testContext.renderDimension.x();
    762 	viewport.height								= (float)testContext.renderDimension.y();
    763 	viewport.minDepth							= 0;
    764 	viewport.maxDepth							= 1;
    765 
    766 	scissor.offset.x							= 0;
    767 	scissor.offset.y							= 0;
    768 	scissor.extent.width						= testContext.renderDimension.x();
    769 	scissor.extent.height						= testContext.renderDimension.y();
    770 
    771 	deMemset(&viewportInfo, 0xcd, sizeof(viewportInfo));
    772 	viewportInfo.sType							= VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
    773 	viewportInfo.pNext							= DE_NULL;
    774 	viewportInfo.flags							= 0;
    775 	viewportInfo.viewportCount					= 1;
    776 	viewportInfo.pViewports						= &viewport;
    777 	viewportInfo.scissorCount					= 1;
    778 	viewportInfo.pScissors						= &scissor;
    779 
    780 	deMemset(&rasterState, 0xcd, sizeof(rasterState));
    781 	rasterState.sType							= VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
    782 	rasterState.pNext							= DE_NULL;
    783 	rasterState.flags							= 0;
    784 	rasterState.depthClampEnable				= VK_TRUE;
    785 	rasterState.rasterizerDiscardEnable			= VK_FALSE;
    786 	rasterState.polygonMode						= VK_POLYGON_MODE_FILL;
    787 	rasterState.cullMode						= VK_CULL_MODE_NONE;
    788 	rasterState.frontFace						= VK_FRONT_FACE_COUNTER_CLOCKWISE;
    789 	rasterState.depthBiasEnable					= VK_FALSE;
    790 	rasterState.lineWidth						= 1;
    791 
    792 	deMemset(&multisampleState, 0xcd, sizeof(multisampleState));
    793 	multisampleState.sType						= VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
    794 	multisampleState.pNext						= DE_NULL;
    795 	multisampleState.flags						= 0;
    796 	multisampleState.rasterizationSamples		= VK_SAMPLE_COUNT_1_BIT;
    797 	multisampleState.sampleShadingEnable		= VK_FALSE;
    798 	multisampleState.pSampleMask				= DE_NULL;
    799 	multisampleState.alphaToCoverageEnable		= VK_FALSE;
    800 	multisampleState.alphaToOneEnable			= VK_FALSE;
    801 
    802 	deMemset(&depthStencilState, 0xcd, sizeof(depthStencilState));
    803 	depthStencilState.sType						= VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
    804 	depthStencilState.pNext						= DE_NULL;
    805 	depthStencilState.flags						= 0;
    806 	depthStencilState.depthTestEnable			= VK_FALSE;
    807 	depthStencilState.depthWriteEnable			= VK_FALSE;
    808 	depthStencilState.depthCompareOp			= VK_COMPARE_OP_ALWAYS;
    809 	depthStencilState.depthBoundsTestEnable		= VK_FALSE;
    810 	depthStencilState.stencilTestEnable			= VK_FALSE;
    811 	depthStencilState.front.failOp				= VK_STENCIL_OP_KEEP;
    812 	depthStencilState.front.passOp				= VK_STENCIL_OP_KEEP;
    813 	depthStencilState.front.depthFailOp			= VK_STENCIL_OP_KEEP;
    814 	depthStencilState.front.compareOp			= VK_COMPARE_OP_ALWAYS;
    815 	depthStencilState.front.compareMask			= 0u;
    816 	depthStencilState.front.writeMask			= 0u;
    817 	depthStencilState.front.reference			= 0u;
    818 	depthStencilState.back						= depthStencilState.front;
    819 
    820 	deMemset(&blendAttachment, 0xcd, sizeof(blendAttachment));
    821 	blendAttachment.blendEnable					= VK_FALSE;
    822 	blendAttachment.srcColorBlendFactor			= VK_BLEND_FACTOR_ZERO;
    823 	blendAttachment.srcAlphaBlendFactor			= VK_BLEND_FACTOR_ZERO;
    824 	blendAttachment.dstColorBlendFactor			= VK_BLEND_FACTOR_ZERO;
    825 	blendAttachment.dstAlphaBlendFactor			= VK_BLEND_FACTOR_ZERO;
    826 	blendAttachment.colorBlendOp				= VK_BLEND_OP_ADD;
    827 	blendAttachment.alphaBlendOp				= VK_BLEND_OP_ADD;
    828 
    829 	deMemset(&blendState, 0xcd, sizeof(blendState));
    830 	blendState.sType							= VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
    831 	blendState.pNext							= DE_NULL;
    832 	blendState.flags							= 0;
    833 	blendState.logicOpEnable					= VK_FALSE;
    834 	blendState.logicOp							= VK_LOGIC_OP_COPY;
    835 	blendState.attachmentCount					= 1;
    836 	blendState.pAttachments						= &blendAttachment;
    837 
    838 	deMemset(&pipelineLayoutState, 0xcd, sizeof(pipelineLayoutState));
    839 	pipelineLayoutState.sType					= VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
    840 	pipelineLayoutState.pNext					= DE_NULL;
    841 	pipelineLayoutState.flags					= 0;
    842 	pipelineLayoutState.setLayoutCount			= 0;
    843 	pipelineLayoutState.pSetLayouts				= DE_NULL;
    844 	pipelineLayoutState.pushConstantRangeCount	= 0;
    845 	pipelineLayoutState.pPushConstantRanges		= DE_NULL;
    846 	layout = createPipelineLayout(deviceInterface, testContext.device, &pipelineLayoutState, DE_NULL);
    847 
    848 	deMemset(&pipelineState, 0xcd, sizeof(pipelineState));
    849 	pipelineState.sType							= VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
    850 	pipelineState.pNext							= DE_NULL;
    851 	pipelineState.flags							= 0;
    852 	pipelineState.stageCount					= DE_LENGTH_OF_ARRAY(shaderStageParams);
    853 	pipelineState.pStages						= &shaderStageParams[0];
    854 	pipelineState.pVertexInputState				= &vertexInputState;
    855 	pipelineState.pInputAssemblyState			= &inputAssemblyState;
    856 	pipelineState.pTessellationState			= DE_NULL;
    857 	pipelineState.pViewportState				= &viewportInfo;
    858 	pipelineState.pRasterizationState			= &rasterState;
    859 	pipelineState.pMultisampleState				= &multisampleState;
    860 	pipelineState.pDepthStencilState			= &depthStencilState;
    861 	pipelineState.pColorBlendState				= &blendState;
    862 	pipelineState.pDynamicState					= (const VkPipelineDynamicStateCreateInfo*)DE_NULL;
    863 	pipelineState.layout						= layout.get();
    864 	pipelineState.renderPass					= testContext.renderPass.get();
    865 	pipelineState.subpass						= 0;
    866 	pipelineState.basePipelineHandle			= DE_NULL;
    867 	pipelineState.basePipelineIndex				= 0;
    868 
    869 	deMemset(&cacheState, 0xcd, sizeof(cacheState));
    870 	cacheState.sType							= VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
    871 	cacheState.pNext							= DE_NULL;
    872 	cacheState.flags							= 0;
    873 	cacheState.initialDataSize					= 0;
    874 	cacheState.pInitialData						= DE_NULL;
    875 
    876 	testContext.pipelineCache	= createPipelineCache(deviceInterface, testContext.device, &cacheState);
    877 	testContext.pipeline		= createGraphicsPipeline(deviceInterface, testContext.device, testContext.pipelineCache.get(), &pipelineState);
    878 
    879 	deMemset(&fbState, 0xcd, sizeof(fbState));
    880 	fbState.sType								= VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
    881 	fbState.pNext								= DE_NULL;
    882 	fbState.flags								= 0;
    883 	fbState.renderPass							= testContext.renderPass.get();
    884 	fbState.attachmentCount						= 1;
    885 	fbState.pAttachments						= &image.imageView.get();
    886 	fbState.width								= (deUint32)testContext.renderDimension.x();
    887 	fbState.height								= (deUint32)testContext.renderDimension.y();
    888 	fbState.layers								= 1;
    889 
    890 	testContext.framebuffer	= createFramebuffer(deviceInterface, testContext.device, &fbState);
    891 	testContext.imageView	= image.imageView;
    892 
    893 	deMemset(&inheritanceInfo, 0xcd, sizeof(inheritanceInfo));
    894 	inheritanceInfo.sType						= VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
    895 	inheritanceInfo.pNext						= DE_NULL;
    896 	inheritanceInfo.renderPass					= testContext.renderPass.get();
    897 	inheritanceInfo.subpass						= 0;
    898 	inheritanceInfo.framebuffer					= *testContext.framebuffer;
    899 	inheritanceInfo.occlusionQueryEnable		= VK_FALSE;
    900 
    901 	deMemset(&commandBufRecordState, 0xcd, sizeof(commandBufRecordState));
    902 	commandBufRecordState.sType					= VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    903 	commandBufRecordState.pNext					= DE_NULL;
    904 	commandBufRecordState.flags					= VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
    905 	commandBufRecordState.pInheritanceInfo		= &inheritanceInfo;
    906 	VK_CHECK(deviceInterface.beginCommandBuffer(testContext.cmdBuffer.get(), &commandBufRecordState));
    907 
    908 	deviceInterface.cmdPipelineBarrier( testContext.cmdBuffer.get(),
    909 										VK_PIPELINE_STAGE_HOST_BIT,
    910 										VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
    911 										false,
    912 										(deUint32)memoryBarriers.size(), (memoryBarriers.empty() ? DE_NULL : &memoryBarriers[0]),
    913 										(deUint32)bufferBarriers.size(), (bufferBarriers.empty() ? DE_NULL : &bufferBarriers[0]),
    914 										(deUint32)imageBarriers.size(), (imageBarriers.empty() ? DE_NULL : &imageBarriers[0]));
    915 
    916 	memoryBarriers.resize(0);
    917 	bufferBarriers.resize(0);
    918 	imageBarriers.resize(0);
    919 
    920 	renderInfo.width				= testContext.renderDimension.x();
    921 	renderInfo.height				= testContext.renderDimension.y();
    922 	renderInfo.vertexBufferSize		= testContext.numVertices;
    923 	renderInfo.vertexBuffer			= testContext.vertexBuffer.get();
    924 	renderInfo.image				= testContext.image.get();
    925 	renderInfo.commandBuffer		= testContext.cmdBuffer.get();
    926 	renderInfo.renderPass			= testContext.renderPass.get();
    927 	renderInfo.framebuffer			= *testContext.framebuffer;
    928 	renderInfo.pipeline				= *testContext.pipeline;
    929 	renderInfo.mipLevels			= 1;
    930 	renderInfo.queueFamilyNdxList	= &queueFamilyNdx;
    931 	renderInfo.queueFamilyNdxCount	= 1;
    932 	renderInfo.waitEvent			= testContext.waitEvent;
    933 	renderInfo.event				= testContext.event;
    934 	renderInfo.barriers				= &imageBarriers;
    935 	recordRenderPass(deviceInterface, renderInfo);
    936 
    937 	deviceInterface.cmdPipelineBarrier(	renderInfo.commandBuffer,
    938 										VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
    939 										VK_PIPELINE_STAGE_TRANSFER_BIT,
    940 										false,
    941 										(deUint32)memoryBarriers.size(), (memoryBarriers.empty() ? DE_NULL : &memoryBarriers[0]),
    942 										(deUint32)bufferBarriers.size(), (bufferBarriers.empty() ? DE_NULL : &bufferBarriers[0]),
    943 										(deUint32)imageBarriers.size(), (imageBarriers.empty() ? DE_NULL : &imageBarriers[0]));
    944 
    945 	memoryBarriers.resize(0);
    946 	bufferBarriers.resize(0);
    947 	imageBarriers.resize(0);
    948 
    949 	transferInfo.commandBuffer		= renderInfo.commandBuffer;
    950 	transferInfo.width				= testContext.renderDimension.x();
    951 	transferInfo.height				= testContext.renderDimension.y();
    952 	transferInfo.image				= renderInfo.image;
    953 	transferInfo.buffer				= testContext.renderBuffer.get();
    954 	transferInfo.size				= testContext.renderSize;
    955 	transferInfo.mipLevel			= 0;
    956 	transferInfo.imageOffset.x		= 0;
    957 	transferInfo.imageOffset.y		= 0;
    958 	transferInfo.imageOffset.z		= 0;
    959 	transferInfo.barriers			= &bufferBarriers;
    960 	copyToCPU(deviceInterface, &transferInfo);
    961 
    962 	deviceInterface.cmdPipelineBarrier(	transferInfo.commandBuffer,
    963 										VK_PIPELINE_STAGE_TRANSFER_BIT,
    964 										VK_PIPELINE_STAGE_HOST_BIT,
    965 										false,
    966 										(deUint32)memoryBarriers.size(), (memoryBarriers.empty() ? DE_NULL : &memoryBarriers[0]),
    967 										(deUint32)bufferBarriers.size(), (bufferBarriers.empty() ? DE_NULL : &bufferBarriers[0]),
    968 										(deUint32)imageBarriers.size(), (imageBarriers.empty() ? DE_NULL : &imageBarriers[0]));
    969 
    970 	memoryBarriers.resize(0);
    971 	bufferBarriers.resize(0);
    972 	imageBarriers.resize(0);
    973 
    974 	VK_CHECK(deviceInterface.endCommandBuffer(transferInfo.commandBuffer));
    975 }
    976 
    977 static void initSubmitInfo (VkSubmitInfo* submitInfo, deUint32 submitInfoCount)
    978 {
    979 	for (deUint32 ndx = 0; ndx < submitInfoCount; ndx++)
    980 	{
    981 		submitInfo[ndx].sType					= VK_STRUCTURE_TYPE_SUBMIT_INFO;
    982 		submitInfo[ndx].pNext					= DE_NULL;
    983 		submitInfo[ndx].waitSemaphoreCount		= 0;
    984 		submitInfo[ndx].pWaitSemaphores			= DE_NULL;
    985 		submitInfo[ndx].pWaitDstStageMask		= DE_NULL;
    986 		submitInfo[ndx].commandBufferCount		= 1;
    987 		submitInfo[ndx].signalSemaphoreCount	= 0;
    988 		submitInfo[ndx].pSignalSemaphores		= DE_NULL;
    989 	}
    990 }
    991 
    992 tcu::TestStatus testFences (Context& context)
    993 {
    994 	TestLog&					log					= context.getTestContext().getLog();
    995 	const DeviceInterface&		deviceInterface		= context.getDeviceInterface();
    996 	const VkQueue				queue				= context.getUniversalQueue();
    997 	const deUint32				queueFamilyIdx		= context.getUniversalQueueFamilyIndex();
    998 	VkDevice					device				= context.getDevice();
    999 	VkResult					waitStatus;
   1000 	VkResult					fenceStatus;
   1001 	TestContext					testContext			(deviceInterface, device, queueFamilyIdx, context.getBinaryCollection(), context.getDefaultAllocator());
   1002 	VkSubmitInfo				submitInfo;
   1003 	VkMappedMemoryRange			range;
   1004 	void*						resultImage;
   1005 
   1006 	const tcu::Vec4				vertices[]			=
   1007 	{
   1008 		tcu::Vec4( 0.5f,  0.5f, 0.0f, 1.0f),
   1009 		tcu::Vec4(-0.5f,  0.5f, 0.0f, 1.0f),
   1010 		tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f)
   1011 	};
   1012 
   1013 	testContext.vertices = vertices;
   1014 	testContext.numVertices = DE_LENGTH_OF_ARRAY(vertices);
   1015 	testContext.renderDimension = tcu::IVec2(256, 256);
   1016 	testContext.renderSize = sizeof(deUint32) * testContext.renderDimension.x() * testContext.renderDimension.y();
   1017 
   1018 	createCommandBuffer(deviceInterface, device, queueFamilyIdx, &testContext.cmdBuffer, &testContext.commandPool);
   1019 	generateWork(testContext);
   1020 
   1021 	initSubmitInfo(&submitInfo, 1);
   1022 	submitInfo.pCommandBuffers		= &testContext.cmdBuffer.get();
   1023 
   1024 	// Default status is unsignaled
   1025 	fenceStatus = deviceInterface.getFenceStatus(device, testContext.fences[0]);
   1026 	if (fenceStatus != VK_NOT_READY)
   1027 	{
   1028 		log << TestLog::Message << "testSynchronizationPrimitives fence 0 should be reset but status is " << getResultName(fenceStatus) << TestLog::EndMessage;
   1029 		return tcu::TestStatus::fail("Fence in incorrect state");
   1030 	}
   1031 	fenceStatus = deviceInterface.getFenceStatus(device, testContext.fences[1]);
   1032 	if (fenceStatus != VK_NOT_READY)
   1033 	{
   1034 		log << TestLog::Message << "testSynchronizationPrimitives fence 1 should be reset but status is " << getResultName(fenceStatus) << TestLog::EndMessage;
   1035 		return tcu::TestStatus::fail("Fence in incorrect state");
   1036 	}
   1037 
   1038 	VK_CHECK(deviceInterface.queueSubmit(queue, 1, &submitInfo, testContext.fences[0]));
   1039 
   1040 	// Wait with timeout = 0
   1041 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, 0u);
   1042 	if (waitStatus != VK_SUCCESS && waitStatus != VK_TIMEOUT)
   1043 	{
   1044 		// Will most likely end with VK_TIMEOUT
   1045 		log << TestLog::Message << "testSynchPrimitives failed to wait for a single fence" << TestLog::EndMessage;
   1046 		return tcu::TestStatus::fail("Failed to wait for a single fence");
   1047 	}
   1048 
   1049 	// Wait with a reasonable timeout
   1050 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, DEFAULT_TIMEOUT);
   1051 	if (waitStatus != VK_SUCCESS && waitStatus != VK_TIMEOUT)
   1052 	{
   1053 		// \note Wait can end with a timeout if DEFAULT_TIMEOUT is not sufficient
   1054 		log << TestLog::Message << "testSynchPrimitives failed to wait for a single fence" << TestLog::EndMessage;
   1055 		return tcu::TestStatus::fail("Failed to wait for a single fence");
   1056 	}
   1057 
   1058 	// Wait for work on fences[0] to actually complete
   1059 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, std::numeric_limits<deUint64>::max());
   1060 	if (waitStatus != VK_SUCCESS)
   1061 	{
   1062 		log << TestLog::Message << "testSynchPrimitives failed to wait for a fence" << TestLog::EndMessage;
   1063 		return tcu::TestStatus::fail("failed to wait for a fence");
   1064 	}
   1065 
   1066 	// Wait until timeout on a fence that has not been submitted
   1067 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[1], true, 1);
   1068 	if (waitStatus != VK_TIMEOUT)
   1069 	{
   1070 		log << TestLog::Message << "testSyncPrimitives failed to timeout on wait for single fence" << TestLog::EndMessage;
   1071 		return tcu::TestStatus::fail("failed to timeout on wait for single fence");
   1072 	}
   1073 
   1074 	// Check that the fence is signaled after the wait
   1075 	fenceStatus = deviceInterface.getFenceStatus(device, testContext.fences[0]);
   1076 	if (fenceStatus != VK_SUCCESS)
   1077 	{
   1078 		log << TestLog::Message << "testSynchronizationPrimitives fence should be signaled but status is " << getResultName(fenceStatus) << TestLog::EndMessage;
   1079 		return tcu::TestStatus::fail("Fence in incorrect state");
   1080 	}
   1081 
   1082 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1083 	range.pNext			= DE_NULL;
   1084 	range.memory		= testContext.renderReadBuffer->getMemory();
   1085 	range.offset		= 0;
   1086 	range.size			= testContext.renderSize;
   1087 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device, 1, &range));
   1088 	resultImage = testContext.renderReadBuffer->getHostPtr();
   1089 
   1090 	log << TestLog::Image(	"result",
   1091 							"result",
   1092 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1093 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1094 									testContext.renderDimension.x(),
   1095 									testContext.renderDimension.y(),
   1096 									1,
   1097 									resultImage));
   1098 
   1099 	return TestStatus::pass("synchronization-fences passed");
   1100 }
   1101 
   1102 vk::refdetails::Checked<VkSemaphore> createSemaphore (const DeviceInterface& deviceInterface, const VkDevice& device, const VkAllocationCallbacks* allocationCallbacks)
   1103 {
   1104 	VkSemaphoreCreateInfo		semaCreateInfo;
   1105 	VkSemaphore					semaphore;
   1106 
   1107 	semaCreateInfo.sType		= VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
   1108 	semaCreateInfo.pNext		= DE_NULL;
   1109 	semaCreateInfo.flags		= 0;
   1110 	VK_CHECK(deviceInterface.createSemaphore(device, &semaCreateInfo, allocationCallbacks, &semaphore));
   1111 
   1112 	return vk::check<VkSemaphore>(semaphore);
   1113 }
   1114 
   1115 tcu::TestStatus testSemaphores (Context& context)
   1116 {
   1117 	TestLog&					log					= context.getTestContext().getLog();
   1118 	const InstanceInterface&	instanceInterface	= context.getInstanceInterface();
   1119 	const VkPhysicalDevice		physicalDevice		= context.getPhysicalDevice();
   1120 	deUint32					queueFamilyIdx;
   1121 	vk::Move<VkDevice>			device				= createTestDevice(instanceInterface, physicalDevice, &queueFamilyIdx);
   1122 	const DeviceDriver			deviceInterface		(instanceInterface, *device);
   1123 	SimpleAllocator				allocator			(deviceInterface,
   1124 													 *device,
   1125 													 getPhysicalDeviceMemoryProperties(instanceInterface, physicalDevice));
   1126 	VkQueue						queue[2];
   1127 	VkResult					testStatus;
   1128 	TestContext					testContext1		(deviceInterface, device.get(), queueFamilyIdx, context.getBinaryCollection(), allocator);
   1129 	TestContext					testContext2		(deviceInterface, device.get(), queueFamilyIdx, context.getBinaryCollection(), allocator);
   1130 	Unique<VkSemaphore>			semaphore			(createSemaphore(deviceInterface, device.get(), (VkAllocationCallbacks*)DE_NULL), Deleter<VkSemaphore>(deviceInterface, device.get(), DE_NULL));
   1131 	VkSubmitInfo				submitInfo[2];
   1132 	VkMappedMemoryRange			range;
   1133 	void*						resultImage;
   1134 	const VkPipelineStageFlags	waitDstStageMask	= VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
   1135 
   1136 	deviceInterface.getDeviceQueue(device.get(), queueFamilyIdx, 0, &queue[0]);
   1137 	deviceInterface.getDeviceQueue(device.get(), queueFamilyIdx, 1, &queue[1]);
   1138 
   1139 	const tcu::Vec4		vertices1[]			=
   1140 	{
   1141 		tcu::Vec4( 0.5f,  0.5f, 0.0f, 1.0f),
   1142 		tcu::Vec4(-0.5f,  0.5f, 0.0f, 1.0f),
   1143 		tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f)
   1144 	};
   1145 
   1146 	const tcu::Vec4		vertices2[]			=
   1147 	{
   1148 		tcu::Vec4(-0.5f, -0.5f, 0.0f, 1.0f),
   1149 		tcu::Vec4(+0.5f, -0.5f, 0.0f, 1.0f),
   1150 		tcu::Vec4( 0.0f, +0.5f, 0.0f, 1.0f)
   1151 	};
   1152 
   1153 	testContext1.vertices			= vertices1;
   1154 	testContext1.numVertices		= DE_LENGTH_OF_ARRAY(vertices1);
   1155 	testContext1.renderDimension	= tcu::IVec2(256, 256);
   1156 	testContext1.renderSize			= sizeof(deUint32) * testContext1.renderDimension.x() * testContext1.renderDimension.y();
   1157 
   1158 	testContext2.vertices			= vertices2;
   1159 	testContext2.numVertices		= DE_LENGTH_OF_ARRAY(vertices2);
   1160 	testContext2.renderDimension	= tcu::IVec2(256, 256);
   1161 	testContext2.renderSize			= sizeof(deUint32) * testContext2.renderDimension.x() * testContext2.renderDimension.y();
   1162 
   1163 	createCommandBuffer(deviceInterface, device.get(), queueFamilyIdx, &testContext1.cmdBuffer, &testContext1.commandPool);
   1164 	generateWork(testContext1);
   1165 
   1166 	createCommandBuffer(deviceInterface, device.get(), queueFamilyIdx, &testContext2.cmdBuffer, &testContext2.commandPool);
   1167 	generateWork(testContext2);
   1168 
   1169 	initSubmitInfo(submitInfo, DE_LENGTH_OF_ARRAY(submitInfo));
   1170 
   1171 	// The difference between the two submit infos is that each will use a unique cmd buffer,
   1172 	// and one will signal a semaphore but not wait on a semaphore, the other will wait on the
   1173 	// semaphore but not signal a semaphore
   1174 	submitInfo[0].pCommandBuffers		= &testContext1.cmdBuffer.get();
   1175 	submitInfo[1].pCommandBuffers		= &testContext2.cmdBuffer.get();
   1176 
   1177 	submitInfo[0].signalSemaphoreCount	= 1;
   1178 	submitInfo[0].pSignalSemaphores		= &semaphore.get();
   1179 	submitInfo[1].waitSemaphoreCount	= 1;
   1180 	submitInfo[1].pWaitSemaphores		= &semaphore.get();
   1181 	submitInfo[1].pWaitDstStageMask		= &waitDstStageMask;
   1182 
   1183 	VK_CHECK(deviceInterface.queueSubmit(queue[0], 1, &submitInfo[0], testContext1.fences[0]));
   1184 
   1185 	testStatus  = deviceInterface.waitForFences(device.get(), 1, &testContext1.fences[0], true, DEFAULT_TIMEOUT);
   1186 	if (testStatus != VK_SUCCESS)
   1187 	{
   1188 		log << TestLog::Message << "testSynchPrimitives failed to wait for a set fence" << TestLog::EndMessage;
   1189 		return tcu::TestStatus::fail("failed to wait for a set fence");
   1190 	}
   1191 
   1192 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1193 	range.pNext			= DE_NULL;
   1194 	range.memory		= testContext1.renderReadBuffer->getMemory();
   1195 	range.offset		= 0;
   1196 	range.size			= testContext1.renderSize;
   1197 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device.get(), 1, &range));
   1198 	resultImage = testContext1.renderReadBuffer->getHostPtr();
   1199 
   1200 	log << TestLog::Image(	"result",
   1201 							"result",
   1202 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1203 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1204 									testContext1.renderDimension.x(),
   1205 									testContext1.renderDimension.y(),
   1206 									1,
   1207 									resultImage));
   1208 
   1209 	VK_CHECK(deviceInterface.queueSubmit(queue[1], 1, &submitInfo[1], testContext2.fences[0]));
   1210 
   1211 	testStatus  = deviceInterface.waitForFences(device.get(), 1, &testContext2.fences[0], true, DEFAULT_TIMEOUT);
   1212 	if (testStatus != VK_SUCCESS)
   1213 	{
   1214 		log << TestLog::Message << "testSynchPrimitives failed to wait for a set fence" << TestLog::EndMessage;
   1215 		return tcu::TestStatus::fail("failed to wait for a set fence");
   1216 	}
   1217 
   1218 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1219 	range.pNext			= DE_NULL;
   1220 	range.memory		= testContext2.renderReadBuffer->getMemory();
   1221 	range.offset		= 0;
   1222 	range.size			= testContext2.renderSize;
   1223 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device.get(), 1, &range));
   1224 	resultImage = testContext2.renderReadBuffer->getHostPtr();
   1225 
   1226 	log << TestLog::Image(	"result",
   1227 							"result",
   1228 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1229 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1230 									testContext2.renderDimension.x(),
   1231 									testContext2.renderDimension.y(),
   1232 									1,
   1233 									resultImage));
   1234 
   1235 	return tcu::TestStatus::pass("synchronization-semaphores passed");
   1236 }
   1237 
   1238 vk::refdetails::Checked<VkEvent> createEvent (const DeviceInterface& deviceInterface, const VkDevice& device, const VkAllocationCallbacks* allocationCallbacks)
   1239 {
   1240 	VkEventCreateInfo		eventCreateInfo;
   1241 	VkEvent					event;
   1242 
   1243 	eventCreateInfo.sType		= VK_STRUCTURE_TYPE_EVENT_CREATE_INFO;
   1244 	eventCreateInfo.pNext		= DE_NULL;
   1245 	eventCreateInfo.flags		= 0;
   1246 	VK_CHECK(deviceInterface.createEvent(device, &eventCreateInfo, allocationCallbacks, &event));
   1247 
   1248 	return vk::check<VkEvent>(event);
   1249 }
   1250 
   1251 tcu::TestStatus testEvents (Context& context)
   1252 {
   1253 	TestLog&					log					= context.getTestContext().getLog();
   1254 	const DeviceInterface&		deviceInterface		= context.getDeviceInterface();
   1255 	VkDevice					device				= context.getDevice();
   1256 	const deUint32				queueFamilyIdx		= context.getUniversalQueueFamilyIndex();
   1257 	Allocator&					allocator			= context.getDefaultAllocator();
   1258 	VkQueue						queue				= context.getUniversalQueue();
   1259 	VkResult					testStatus;
   1260 	VkResult					eventStatus;
   1261 	TestContext					testContext			(deviceInterface, device, queueFamilyIdx, context.getBinaryCollection(), allocator);
   1262 	Unique<VkEvent>				event				(createEvent(deviceInterface, device, (VkAllocationCallbacks*)DE_NULL), Deleter<VkEvent>(deviceInterface, device, DE_NULL));
   1263 	VkSubmitInfo				submitInfo;
   1264 	VkMappedMemoryRange			range;
   1265 	void*						resultImage;
   1266 
   1267 	const tcu::Vec4		vertices1[]			=
   1268 	{
   1269 		tcu::Vec4( 0.5f,  0.5f, 0.0f, 1.0f),
   1270 		tcu::Vec4(-0.5f,  0.5f, 0.0f, 1.0f),
   1271 		tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f)
   1272 	};
   1273 
   1274 	testContext.vertices = vertices1;
   1275 	testContext.numVertices = DE_LENGTH_OF_ARRAY(vertices1);
   1276 	testContext.renderDimension = tcu::IVec2(256, 256);
   1277 	testContext.waitEvent = true;
   1278 	testContext.event = event.get();
   1279 	testContext.renderSize = sizeof(deUint32) * testContext.renderDimension.x() * testContext.renderDimension.y();
   1280 
   1281 	createCommandBuffer(deviceInterface, device, queueFamilyIdx, &testContext.cmdBuffer, &testContext.commandPool);
   1282 	generateWork(testContext);
   1283 
   1284 	initSubmitInfo(&submitInfo, 1);
   1285 	submitInfo.pCommandBuffers = &testContext.cmdBuffer.get();
   1286 
   1287 	// 6.3 An event is initially in the unsignaled state
   1288 	eventStatus = deviceInterface.getEventStatus(device, event.get());
   1289 	if (eventStatus != VK_EVENT_RESET)
   1290 	{
   1291 		log << TestLog::Message << "testSynchronizationPrimitives event should be reset but status is " << getResultName(eventStatus) << TestLog::EndMessage;
   1292 		return tcu::TestStatus::fail("Event in incorrect status");
   1293 	}
   1294 
   1295 	// The recorded command buffer should wait at the top of the graphics pipe for an event signaled by the host and so should not
   1296 	// make forward progress as long as the event is not signaled
   1297 	VK_CHECK(deviceInterface.queueSubmit(queue, 1, &submitInfo, testContext.fences[0]));
   1298 
   1299 	testStatus  = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, 1);
   1300 	if (testStatus != VK_TIMEOUT)
   1301 	{
   1302 		log << TestLog::Message << "testSynchronizationPrimitives failed to wait for set event from host." << TestLog::EndMessage;
   1303 		return tcu::TestStatus::fail("failed to wait for event set from host");
   1304 	}
   1305 
   1306 	// Should allow the recorded command buffer to finally make progress
   1307 	VK_CHECK(deviceInterface.setEvent(device, event.get()));
   1308 	eventStatus = deviceInterface.getEventStatus(device, event.get());
   1309 	if (eventStatus != VK_EVENT_SET)
   1310 	{
   1311 		log << TestLog::Message << "testEvents failed to transition event to signaled state via setEvent call from host" << TestLog::EndMessage;
   1312 		return tcu::TestStatus::fail("failed to signal event from host");
   1313 	}
   1314 
   1315 	testStatus  = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, ~(0ull));
   1316 	if (testStatus != VK_SUCCESS)
   1317 	{
   1318 		log << TestLog::Message << "testSynchronizationPrimitives failed to proceed after set event from host." << TestLog::EndMessage;
   1319 		return tcu::TestStatus::fail("failed to proceed after event set from host");
   1320 	}
   1321 
   1322 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1323 	range.pNext			= DE_NULL;
   1324 	range.memory		= testContext.renderReadBuffer->getMemory();
   1325 	range.offset		= 0;
   1326 	range.size			= testContext.renderSize;
   1327 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device, 1, &range));
   1328 	resultImage = testContext.renderReadBuffer->getHostPtr();
   1329 
   1330 	log << TestLog::Image(	"result",
   1331 							"result",
   1332 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1333 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1334 									testContext.renderDimension.x(),
   1335 									testContext.renderDimension.y(),
   1336 									1,
   1337 									resultImage));
   1338 
   1339 	return tcu::TestStatus::pass("synchronization-events passed");
   1340 }
   1341 
   1342 } // anonymous
   1343 
   1344 tcu::TestCaseGroup* createSynchronizationTests (tcu::TestContext& textCtx)
   1345 {
   1346 	de::MovePtr<tcu::TestCaseGroup> synchTests  (new tcu::TestCaseGroup(textCtx, "synchronization", "Vulkan Synchronization Tests"));
   1347 
   1348 	addFunctionCaseWithPrograms(synchTests.get(), "fences", "", buildShaders, testFences);
   1349 	addFunctionCaseWithPrograms(synchTests.get(), "semaphores", "", buildShaders, testSemaphores);
   1350 	addFunctionCaseWithPrograms(synchTests.get(), "events", "", buildShaders, testEvents);
   1351 
   1352 	return synchTests.release();
   1353 }
   1354 
   1355 
   1356 }; // vkt
   1357