Home | History | Annotate | Download | only in IR
      1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements folding of constants for LLVM.  This implements the
     11 // (internal) ConstantFold.h interface, which is used by the
     12 // ConstantExpr::get* methods to automatically fold constants when possible.
     13 //
     14 // The current constant folding implementation is implemented in two pieces: the
     15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
     16 // a dependence in IR on Target.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "ConstantFold.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/GetElementPtrTypeIterator.h"
     26 #include "llvm/IR/GlobalAlias.h"
     27 #include "llvm/IR/GlobalVariable.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/IR/PatternMatch.h"
     31 #include "llvm/Support/Compiler.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/ManagedStatic.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include <limits>
     36 using namespace llvm;
     37 using namespace llvm::PatternMatch;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                ConstantFold*Instruction Implementations
     41 //===----------------------------------------------------------------------===//
     42 
     43 /// BitCastConstantVector - Convert the specified vector Constant node to the
     44 /// specified vector type.  At this point, we know that the elements of the
     45 /// input vector constant are all simple integer or FP values.
     46 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
     47 
     48   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
     49   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
     50 
     51   // If this cast changes element count then we can't handle it here:
     52   // doing so requires endianness information.  This should be handled by
     53   // Analysis/ConstantFolding.cpp
     54   unsigned NumElts = DstTy->getNumElements();
     55   if (NumElts != CV->getType()->getVectorNumElements())
     56     return nullptr;
     57 
     58   Type *DstEltTy = DstTy->getElementType();
     59 
     60   SmallVector<Constant*, 16> Result;
     61   Type *Ty = IntegerType::get(CV->getContext(), 32);
     62   for (unsigned i = 0; i != NumElts; ++i) {
     63     Constant *C =
     64       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
     65     C = ConstantExpr::getBitCast(C, DstEltTy);
     66     Result.push_back(C);
     67   }
     68 
     69   return ConstantVector::get(Result);
     70 }
     71 
     72 /// This function determines which opcode to use to fold two constant cast
     73 /// expressions together. It uses CastInst::isEliminableCastPair to determine
     74 /// the opcode. Consequently its just a wrapper around that function.
     75 /// @brief Determine if it is valid to fold a cast of a cast
     76 static unsigned
     77 foldConstantCastPair(
     78   unsigned opc,          ///< opcode of the second cast constant expression
     79   ConstantExpr *Op,      ///< the first cast constant expression
     80   Type *DstTy            ///< destination type of the first cast
     81 ) {
     82   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
     83   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
     84   assert(CastInst::isCast(opc) && "Invalid cast opcode");
     85 
     86   // The types and opcodes for the two Cast constant expressions
     87   Type *SrcTy = Op->getOperand(0)->getType();
     88   Type *MidTy = Op->getType();
     89   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
     90   Instruction::CastOps secondOp = Instruction::CastOps(opc);
     91 
     92   // Assume that pointers are never more than 64 bits wide, and only use this
     93   // for the middle type. Otherwise we could end up folding away illegal
     94   // bitcasts between address spaces with different sizes.
     95   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
     96 
     97   // Let CastInst::isEliminableCastPair do the heavy lifting.
     98   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
     99                                         nullptr, FakeIntPtrTy, nullptr);
    100 }
    101 
    102 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
    103   Type *SrcTy = V->getType();
    104   if (SrcTy == DestTy)
    105     return V; // no-op cast
    106 
    107   // Check to see if we are casting a pointer to an aggregate to a pointer to
    108   // the first element.  If so, return the appropriate GEP instruction.
    109   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
    110     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
    111       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
    112           && PTy->getElementType()->isSized()) {
    113         SmallVector<Value*, 8> IdxList;
    114         Value *Zero =
    115           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
    116         IdxList.push_back(Zero);
    117         Type *ElTy = PTy->getElementType();
    118         while (ElTy != DPTy->getElementType()) {
    119           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
    120             if (STy->getNumElements() == 0) break;
    121             ElTy = STy->getElementType(0);
    122             IdxList.push_back(Zero);
    123           } else if (SequentialType *STy =
    124                      dyn_cast<SequentialType>(ElTy)) {
    125             if (ElTy->isPointerTy()) break;  // Can't index into pointers!
    126             ElTy = STy->getElementType();
    127             IdxList.push_back(Zero);
    128           } else {
    129             break;
    130           }
    131         }
    132 
    133         if (ElTy == DPTy->getElementType())
    134           // This GEP is inbounds because all indices are zero.
    135           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
    136                                                         V, IdxList);
    137       }
    138 
    139   // Handle casts from one vector constant to another.  We know that the src
    140   // and dest type have the same size (otherwise its an illegal cast).
    141   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
    142     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
    143       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
    144              "Not cast between same sized vectors!");
    145       SrcTy = nullptr;
    146       // First, check for null.  Undef is already handled.
    147       if (isa<ConstantAggregateZero>(V))
    148         return Constant::getNullValue(DestTy);
    149 
    150       // Handle ConstantVector and ConstantAggregateVector.
    151       return BitCastConstantVector(V, DestPTy);
    152     }
    153 
    154     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
    155     // This allows for other simplifications (although some of them
    156     // can only be handled by Analysis/ConstantFolding.cpp).
    157     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
    158       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
    159   }
    160 
    161   // Finally, implement bitcast folding now.   The code below doesn't handle
    162   // bitcast right.
    163   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
    164     return ConstantPointerNull::get(cast<PointerType>(DestTy));
    165 
    166   // Handle integral constant input.
    167   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    168     if (DestTy->isIntegerTy())
    169       // Integral -> Integral. This is a no-op because the bit widths must
    170       // be the same. Consequently, we just fold to V.
    171       return V;
    172 
    173     // See note below regarding the PPC_FP128 restriction.
    174     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
    175       return ConstantFP::get(DestTy->getContext(),
    176                              APFloat(DestTy->getFltSemantics(),
    177                                      CI->getValue()));
    178 
    179     // Otherwise, can't fold this (vector?)
    180     return nullptr;
    181   }
    182 
    183   // Handle ConstantFP input: FP -> Integral.
    184   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
    185     // PPC_FP128 is really the sum of two consecutive doubles, where the first
    186     // double is always stored first in memory, regardless of the target
    187     // endianness. The memory layout of i128, however, depends on the target
    188     // endianness, and so we can't fold this without target endianness
    189     // information. This should instead be handled by
    190     // Analysis/ConstantFolding.cpp
    191     if (FP->getType()->isPPC_FP128Ty())
    192       return nullptr;
    193 
    194     return ConstantInt::get(FP->getContext(),
    195                             FP->getValueAPF().bitcastToAPInt());
    196   }
    197 
    198   return nullptr;
    199 }
    200 
    201 
    202 /// ExtractConstantBytes - V is an integer constant which only has a subset of
    203 /// its bytes used.  The bytes used are indicated by ByteStart (which is the
    204 /// first byte used, counting from the least significant byte) and ByteSize,
    205 /// which is the number of bytes used.
    206 ///
    207 /// This function analyzes the specified constant to see if the specified byte
    208 /// range can be returned as a simplified constant.  If so, the constant is
    209 /// returned, otherwise null is returned.
    210 ///
    211 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
    212                                       unsigned ByteSize) {
    213   assert(C->getType()->isIntegerTy() &&
    214          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
    215          "Non-byte sized integer input");
    216   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
    217   assert(ByteSize && "Must be accessing some piece");
    218   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
    219   assert(ByteSize != CSize && "Should not extract everything");
    220 
    221   // Constant Integers are simple.
    222   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    223     APInt V = CI->getValue();
    224     if (ByteStart)
    225       V = V.lshr(ByteStart*8);
    226     V = V.trunc(ByteSize*8);
    227     return ConstantInt::get(CI->getContext(), V);
    228   }
    229 
    230   // In the input is a constant expr, we might be able to recursively simplify.
    231   // If not, we definitely can't do anything.
    232   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    233   if (!CE) return nullptr;
    234 
    235   switch (CE->getOpcode()) {
    236   default: return nullptr;
    237   case Instruction::Or: {
    238     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    239     if (!RHS)
    240       return nullptr;
    241 
    242     // X | -1 -> -1.
    243     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
    244       if (RHSC->isAllOnesValue())
    245         return RHSC;
    246 
    247     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    248     if (!LHS)
    249       return nullptr;
    250     return ConstantExpr::getOr(LHS, RHS);
    251   }
    252   case Instruction::And: {
    253     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    254     if (!RHS)
    255       return nullptr;
    256 
    257     // X & 0 -> 0.
    258     if (RHS->isNullValue())
    259       return RHS;
    260 
    261     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    262     if (!LHS)
    263       return nullptr;
    264     return ConstantExpr::getAnd(LHS, RHS);
    265   }
    266   case Instruction::LShr: {
    267     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    268     if (!Amt)
    269       return nullptr;
    270     unsigned ShAmt = Amt->getZExtValue();
    271     // Cannot analyze non-byte shifts.
    272     if ((ShAmt & 7) != 0)
    273       return nullptr;
    274     ShAmt >>= 3;
    275 
    276     // If the extract is known to be all zeros, return zero.
    277     if (ByteStart >= CSize-ShAmt)
    278       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    279                                                      ByteSize*8));
    280     // If the extract is known to be fully in the input, extract it.
    281     if (ByteStart+ByteSize+ShAmt <= CSize)
    282       return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
    283 
    284     // TODO: Handle the 'partially zero' case.
    285     return nullptr;
    286   }
    287 
    288   case Instruction::Shl: {
    289     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    290     if (!Amt)
    291       return nullptr;
    292     unsigned ShAmt = Amt->getZExtValue();
    293     // Cannot analyze non-byte shifts.
    294     if ((ShAmt & 7) != 0)
    295       return nullptr;
    296     ShAmt >>= 3;
    297 
    298     // If the extract is known to be all zeros, return zero.
    299     if (ByteStart+ByteSize <= ShAmt)
    300       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    301                                                      ByteSize*8));
    302     // If the extract is known to be fully in the input, extract it.
    303     if (ByteStart >= ShAmt)
    304       return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
    305 
    306     // TODO: Handle the 'partially zero' case.
    307     return nullptr;
    308   }
    309 
    310   case Instruction::ZExt: {
    311     unsigned SrcBitSize =
    312       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
    313 
    314     // If extracting something that is completely zero, return 0.
    315     if (ByteStart*8 >= SrcBitSize)
    316       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    317                                                      ByteSize*8));
    318 
    319     // If exactly extracting the input, return it.
    320     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
    321       return CE->getOperand(0);
    322 
    323     // If extracting something completely in the input, if if the input is a
    324     // multiple of 8 bits, recurse.
    325     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
    326       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
    327 
    328     // Otherwise, if extracting a subset of the input, which is not multiple of
    329     // 8 bits, do a shift and trunc to get the bits.
    330     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
    331       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
    332       Constant *Res = CE->getOperand(0);
    333       if (ByteStart)
    334         Res = ConstantExpr::getLShr(Res,
    335                                  ConstantInt::get(Res->getType(), ByteStart*8));
    336       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
    337                                                           ByteSize*8));
    338     }
    339 
    340     // TODO: Handle the 'partially zero' case.
    341     return nullptr;
    342   }
    343   }
    344 }
    345 
    346 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
    347 /// on Ty, with any known factors factored out. If Folded is false,
    348 /// return null if no factoring was possible, to avoid endlessly
    349 /// bouncing an unfoldable expression back into the top-level folder.
    350 ///
    351 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
    352                                  bool Folded) {
    353   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    354     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
    355     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    356     return ConstantExpr::getNUWMul(E, N);
    357   }
    358 
    359   if (StructType *STy = dyn_cast<StructType>(Ty))
    360     if (!STy->isPacked()) {
    361       unsigned NumElems = STy->getNumElements();
    362       // An empty struct has size zero.
    363       if (NumElems == 0)
    364         return ConstantExpr::getNullValue(DestTy);
    365       // Check for a struct with all members having the same size.
    366       Constant *MemberSize =
    367         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    368       bool AllSame = true;
    369       for (unsigned i = 1; i != NumElems; ++i)
    370         if (MemberSize !=
    371             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    372           AllSame = false;
    373           break;
    374         }
    375       if (AllSame) {
    376         Constant *N = ConstantInt::get(DestTy, NumElems);
    377         return ConstantExpr::getNUWMul(MemberSize, N);
    378       }
    379     }
    380 
    381   // Pointer size doesn't depend on the pointee type, so canonicalize them
    382   // to an arbitrary pointee.
    383   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    384     if (!PTy->getElementType()->isIntegerTy(1))
    385       return
    386         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
    387                                          PTy->getAddressSpace()),
    388                         DestTy, true);
    389 
    390   // If there's no interesting folding happening, bail so that we don't create
    391   // a constant that looks like it needs folding but really doesn't.
    392   if (!Folded)
    393     return nullptr;
    394 
    395   // Base case: Get a regular sizeof expression.
    396   Constant *C = ConstantExpr::getSizeOf(Ty);
    397   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    398                                                     DestTy, false),
    399                             C, DestTy);
    400   return C;
    401 }
    402 
    403 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
    404 /// on Ty, with any known factors factored out. If Folded is false,
    405 /// return null if no factoring was possible, to avoid endlessly
    406 /// bouncing an unfoldable expression back into the top-level folder.
    407 ///
    408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
    409                                   bool Folded) {
    410   // The alignment of an array is equal to the alignment of the
    411   // array element. Note that this is not always true for vectors.
    412   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    413     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
    414     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    415                                                       DestTy,
    416                                                       false),
    417                               C, DestTy);
    418     return C;
    419   }
    420 
    421   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    422     // Packed structs always have an alignment of 1.
    423     if (STy->isPacked())
    424       return ConstantInt::get(DestTy, 1);
    425 
    426     // Otherwise, struct alignment is the maximum alignment of any member.
    427     // Without target data, we can't compare much, but we can check to see
    428     // if all the members have the same alignment.
    429     unsigned NumElems = STy->getNumElements();
    430     // An empty struct has minimal alignment.
    431     if (NumElems == 0)
    432       return ConstantInt::get(DestTy, 1);
    433     // Check for a struct with all members having the same alignment.
    434     Constant *MemberAlign =
    435       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
    436     bool AllSame = true;
    437     for (unsigned i = 1; i != NumElems; ++i)
    438       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
    439         AllSame = false;
    440         break;
    441       }
    442     if (AllSame)
    443       return MemberAlign;
    444   }
    445 
    446   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
    447   // to an arbitrary pointee.
    448   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    449     if (!PTy->getElementType()->isIntegerTy(1))
    450       return
    451         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
    452                                                            1),
    453                                           PTy->getAddressSpace()),
    454                          DestTy, true);
    455 
    456   // If there's no interesting folding happening, bail so that we don't create
    457   // a constant that looks like it needs folding but really doesn't.
    458   if (!Folded)
    459     return nullptr;
    460 
    461   // Base case: Get a regular alignof expression.
    462   Constant *C = ConstantExpr::getAlignOf(Ty);
    463   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    464                                                     DestTy, false),
    465                             C, DestTy);
    466   return C;
    467 }
    468 
    469 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
    470 /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
    471 /// return null if no factoring was possible, to avoid endlessly
    472 /// bouncing an unfoldable expression back into the top-level folder.
    473 ///
    474 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
    475                                    Type *DestTy,
    476                                    bool Folded) {
    477   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    478     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
    479                                                                 DestTy, false),
    480                                         FieldNo, DestTy);
    481     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    482     return ConstantExpr::getNUWMul(E, N);
    483   }
    484 
    485   if (StructType *STy = dyn_cast<StructType>(Ty))
    486     if (!STy->isPacked()) {
    487       unsigned NumElems = STy->getNumElements();
    488       // An empty struct has no members.
    489       if (NumElems == 0)
    490         return nullptr;
    491       // Check for a struct with all members having the same size.
    492       Constant *MemberSize =
    493         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    494       bool AllSame = true;
    495       for (unsigned i = 1; i != NumElems; ++i)
    496         if (MemberSize !=
    497             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    498           AllSame = false;
    499           break;
    500         }
    501       if (AllSame) {
    502         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
    503                                                                     false,
    504                                                                     DestTy,
    505                                                                     false),
    506                                             FieldNo, DestTy);
    507         return ConstantExpr::getNUWMul(MemberSize, N);
    508       }
    509     }
    510 
    511   // If there's no interesting folding happening, bail so that we don't create
    512   // a constant that looks like it needs folding but really doesn't.
    513   if (!Folded)
    514     return nullptr;
    515 
    516   // Base case: Get a regular offsetof expression.
    517   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
    518   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    519                                                     DestTy, false),
    520                             C, DestTy);
    521   return C;
    522 }
    523 
    524 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
    525                                             Type *DestTy) {
    526   if (isa<UndefValue>(V)) {
    527     // zext(undef) = 0, because the top bits will be zero.
    528     // sext(undef) = 0, because the top bits will all be the same.
    529     // [us]itofp(undef) = 0, because the result value is bounded.
    530     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
    531         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
    532       return Constant::getNullValue(DestTy);
    533     return UndefValue::get(DestTy);
    534   }
    535 
    536   if (V->isNullValue() && !DestTy->isX86_MMXTy())
    537     return Constant::getNullValue(DestTy);
    538 
    539   // If the cast operand is a constant expression, there's a few things we can
    540   // do to try to simplify it.
    541   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    542     if (CE->isCast()) {
    543       // Try hard to fold cast of cast because they are often eliminable.
    544       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
    545         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
    546     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
    547                // Do not fold addrspacecast (gep 0, .., 0). It might make the
    548                // addrspacecast uncanonicalized.
    549                opc != Instruction::AddrSpaceCast) {
    550       // If all of the indexes in the GEP are null values, there is no pointer
    551       // adjustment going on.  We might as well cast the source pointer.
    552       bool isAllNull = true;
    553       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
    554         if (!CE->getOperand(i)->isNullValue()) {
    555           isAllNull = false;
    556           break;
    557         }
    558       if (isAllNull)
    559         // This is casting one pointer type to another, always BitCast
    560         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
    561     }
    562   }
    563 
    564   // If the cast operand is a constant vector, perform the cast by
    565   // operating on each element. In the cast of bitcasts, the element
    566   // count may be mismatched; don't attempt to handle that here.
    567   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
    568       DestTy->isVectorTy() &&
    569       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
    570     SmallVector<Constant*, 16> res;
    571     VectorType *DestVecTy = cast<VectorType>(DestTy);
    572     Type *DstEltTy = DestVecTy->getElementType();
    573     Type *Ty = IntegerType::get(V->getContext(), 32);
    574     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
    575       Constant *C =
    576         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
    577       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
    578     }
    579     return ConstantVector::get(res);
    580   }
    581 
    582   // We actually have to do a cast now. Perform the cast according to the
    583   // opcode specified.
    584   switch (opc) {
    585   default:
    586     llvm_unreachable("Failed to cast constant expression");
    587   case Instruction::FPTrunc:
    588   case Instruction::FPExt:
    589     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    590       bool ignored;
    591       APFloat Val = FPC->getValueAPF();
    592       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
    593                   DestTy->isFloatTy() ? APFloat::IEEEsingle :
    594                   DestTy->isDoubleTy() ? APFloat::IEEEdouble :
    595                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
    596                   DestTy->isFP128Ty() ? APFloat::IEEEquad :
    597                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
    598                   APFloat::Bogus,
    599                   APFloat::rmNearestTiesToEven, &ignored);
    600       return ConstantFP::get(V->getContext(), Val);
    601     }
    602     return nullptr; // Can't fold.
    603   case Instruction::FPToUI:
    604   case Instruction::FPToSI:
    605     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    606       const APFloat &V = FPC->getValueAPF();
    607       bool ignored;
    608       uint64_t x[2];
    609       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    610       if (APFloat::opInvalidOp ==
    611           V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
    612                              APFloat::rmTowardZero, &ignored)) {
    613         // Undefined behavior invoked - the destination type can't represent
    614         // the input constant.
    615         return UndefValue::get(DestTy);
    616       }
    617       APInt Val(DestBitWidth, x);
    618       return ConstantInt::get(FPC->getContext(), Val);
    619     }
    620     return nullptr; // Can't fold.
    621   case Instruction::IntToPtr:   //always treated as unsigned
    622     if (V->isNullValue())       // Is it an integral null value?
    623       return ConstantPointerNull::get(cast<PointerType>(DestTy));
    624     return nullptr;                   // Other pointer types cannot be casted
    625   case Instruction::PtrToInt:   // always treated as unsigned
    626     // Is it a null pointer value?
    627     if (V->isNullValue())
    628       return ConstantInt::get(DestTy, 0);
    629     // If this is a sizeof-like expression, pull out multiplications by
    630     // known factors to expose them to subsequent folding. If it's an
    631     // alignof-like expression, factor out known factors.
    632     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    633       if (CE->getOpcode() == Instruction::GetElementPtr &&
    634           CE->getOperand(0)->isNullValue()) {
    635         GEPOperator *GEPO = cast<GEPOperator>(CE);
    636         Type *Ty = GEPO->getSourceElementType();
    637         if (CE->getNumOperands() == 2) {
    638           // Handle a sizeof-like expression.
    639           Constant *Idx = CE->getOperand(1);
    640           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
    641           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
    642             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
    643                                                                 DestTy, false),
    644                                         Idx, DestTy);
    645             return ConstantExpr::getMul(C, Idx);
    646           }
    647         } else if (CE->getNumOperands() == 3 &&
    648                    CE->getOperand(1)->isNullValue()) {
    649           // Handle an alignof-like expression.
    650           if (StructType *STy = dyn_cast<StructType>(Ty))
    651             if (!STy->isPacked()) {
    652               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
    653               if (CI->isOne() &&
    654                   STy->getNumElements() == 2 &&
    655                   STy->getElementType(0)->isIntegerTy(1)) {
    656                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
    657               }
    658             }
    659           // Handle an offsetof-like expression.
    660           if (Ty->isStructTy() || Ty->isArrayTy()) {
    661             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
    662                                                 DestTy, false))
    663               return C;
    664           }
    665         }
    666       }
    667     // Other pointer types cannot be casted
    668     return nullptr;
    669   case Instruction::UIToFP:
    670   case Instruction::SIToFP:
    671     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    672       APInt api = CI->getValue();
    673       APFloat apf(DestTy->getFltSemantics(),
    674                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
    675       if (APFloat::opOverflow &
    676           apf.convertFromAPInt(api, opc==Instruction::SIToFP,
    677                               APFloat::rmNearestTiesToEven)) {
    678         // Undefined behavior invoked - the destination type can't represent
    679         // the input constant.
    680         return UndefValue::get(DestTy);
    681       }
    682       return ConstantFP::get(V->getContext(), apf);
    683     }
    684     return nullptr;
    685   case Instruction::ZExt:
    686     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    687       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    688       return ConstantInt::get(V->getContext(),
    689                               CI->getValue().zext(BitWidth));
    690     }
    691     return nullptr;
    692   case Instruction::SExt:
    693     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    694       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    695       return ConstantInt::get(V->getContext(),
    696                               CI->getValue().sext(BitWidth));
    697     }
    698     return nullptr;
    699   case Instruction::Trunc: {
    700     if (V->getType()->isVectorTy())
    701       return nullptr;
    702 
    703     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    704     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    705       return ConstantInt::get(V->getContext(),
    706                               CI->getValue().trunc(DestBitWidth));
    707     }
    708 
    709     // The input must be a constantexpr.  See if we can simplify this based on
    710     // the bytes we are demanding.  Only do this if the source and dest are an
    711     // even multiple of a byte.
    712     if ((DestBitWidth & 7) == 0 &&
    713         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
    714       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
    715         return Res;
    716 
    717     return nullptr;
    718   }
    719   case Instruction::BitCast:
    720     return FoldBitCast(V, DestTy);
    721   case Instruction::AddrSpaceCast:
    722     return nullptr;
    723   }
    724 }
    725 
    726 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
    727                                               Constant *V1, Constant *V2) {
    728   // Check for i1 and vector true/false conditions.
    729   if (Cond->isNullValue()) return V2;
    730   if (Cond->isAllOnesValue()) return V1;
    731 
    732   // If the condition is a vector constant, fold the result elementwise.
    733   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
    734     SmallVector<Constant*, 16> Result;
    735     Type *Ty = IntegerType::get(CondV->getContext(), 32);
    736     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
    737       Constant *V;
    738       Constant *V1Element = ConstantExpr::getExtractElement(V1,
    739                                                     ConstantInt::get(Ty, i));
    740       Constant *V2Element = ConstantExpr::getExtractElement(V2,
    741                                                     ConstantInt::get(Ty, i));
    742       Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
    743       if (V1Element == V2Element) {
    744         V = V1Element;
    745       } else if (isa<UndefValue>(Cond)) {
    746         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
    747       } else {
    748         if (!isa<ConstantInt>(Cond)) break;
    749         V = Cond->isNullValue() ? V2Element : V1Element;
    750       }
    751       Result.push_back(V);
    752     }
    753 
    754     // If we were able to build the vector, return it.
    755     if (Result.size() == V1->getType()->getVectorNumElements())
    756       return ConstantVector::get(Result);
    757   }
    758 
    759   if (isa<UndefValue>(Cond)) {
    760     if (isa<UndefValue>(V1)) return V1;
    761     return V2;
    762   }
    763   if (isa<UndefValue>(V1)) return V2;
    764   if (isa<UndefValue>(V2)) return V1;
    765   if (V1 == V2) return V1;
    766 
    767   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
    768     if (TrueVal->getOpcode() == Instruction::Select)
    769       if (TrueVal->getOperand(0) == Cond)
    770         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
    771   }
    772   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
    773     if (FalseVal->getOpcode() == Instruction::Select)
    774       if (FalseVal->getOperand(0) == Cond)
    775         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
    776   }
    777 
    778   return nullptr;
    779 }
    780 
    781 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
    782                                                       Constant *Idx) {
    783   if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
    784     return UndefValue::get(Val->getType()->getVectorElementType());
    785   if (Val->isNullValue())  // ee(zero, x) -> zero
    786     return Constant::getNullValue(Val->getType()->getVectorElementType());
    787   // ee({w,x,y,z}, undef) -> undef
    788   if (isa<UndefValue>(Idx))
    789     return UndefValue::get(Val->getType()->getVectorElementType());
    790 
    791   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
    792     // ee({w,x,y,z}, wrong_value) -> undef
    793     if (CIdx->uge(Val->getType()->getVectorNumElements()))
    794       return UndefValue::get(Val->getType()->getVectorElementType());
    795     return Val->getAggregateElement(CIdx->getZExtValue());
    796   }
    797   return nullptr;
    798 }
    799 
    800 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
    801                                                      Constant *Elt,
    802                                                      Constant *Idx) {
    803   if (isa<UndefValue>(Idx))
    804     return UndefValue::get(Val->getType());
    805 
    806   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
    807   if (!CIdx) return nullptr;
    808 
    809   unsigned NumElts = Val->getType()->getVectorNumElements();
    810   if (CIdx->uge(NumElts))
    811     return UndefValue::get(Val->getType());
    812 
    813   SmallVector<Constant*, 16> Result;
    814   Result.reserve(NumElts);
    815   auto *Ty = Type::getInt32Ty(Val->getContext());
    816   uint64_t IdxVal = CIdx->getZExtValue();
    817   for (unsigned i = 0; i != NumElts; ++i) {
    818     if (i == IdxVal) {
    819       Result.push_back(Elt);
    820       continue;
    821     }
    822 
    823     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
    824     Result.push_back(C);
    825   }
    826 
    827   return ConstantVector::get(Result);
    828 }
    829 
    830 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
    831                                                      Constant *V2,
    832                                                      Constant *Mask) {
    833   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
    834   Type *EltTy = V1->getType()->getVectorElementType();
    835 
    836   // Undefined shuffle mask -> undefined value.
    837   if (isa<UndefValue>(Mask))
    838     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
    839 
    840   // Don't break the bitcode reader hack.
    841   if (isa<ConstantExpr>(Mask)) return nullptr;
    842 
    843   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
    844 
    845   // Loop over the shuffle mask, evaluating each element.
    846   SmallVector<Constant*, 32> Result;
    847   for (unsigned i = 0; i != MaskNumElts; ++i) {
    848     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
    849     if (Elt == -1) {
    850       Result.push_back(UndefValue::get(EltTy));
    851       continue;
    852     }
    853     Constant *InElt;
    854     if (unsigned(Elt) >= SrcNumElts*2)
    855       InElt = UndefValue::get(EltTy);
    856     else if (unsigned(Elt) >= SrcNumElts) {
    857       Type *Ty = IntegerType::get(V2->getContext(), 32);
    858       InElt =
    859         ConstantExpr::getExtractElement(V2,
    860                                         ConstantInt::get(Ty, Elt - SrcNumElts));
    861     } else {
    862       Type *Ty = IntegerType::get(V1->getContext(), 32);
    863       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
    864     }
    865     Result.push_back(InElt);
    866   }
    867 
    868   return ConstantVector::get(Result);
    869 }
    870 
    871 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
    872                                                     ArrayRef<unsigned> Idxs) {
    873   // Base case: no indices, so return the entire value.
    874   if (Idxs.empty())
    875     return Agg;
    876 
    877   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
    878     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
    879 
    880   return nullptr;
    881 }
    882 
    883 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
    884                                                    Constant *Val,
    885                                                    ArrayRef<unsigned> Idxs) {
    886   // Base case: no indices, so replace the entire value.
    887   if (Idxs.empty())
    888     return Val;
    889 
    890   unsigned NumElts;
    891   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    892     NumElts = ST->getNumElements();
    893   else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    894     NumElts = AT->getNumElements();
    895   else
    896     NumElts = Agg->getType()->getVectorNumElements();
    897 
    898   SmallVector<Constant*, 32> Result;
    899   for (unsigned i = 0; i != NumElts; ++i) {
    900     Constant *C = Agg->getAggregateElement(i);
    901     if (!C) return nullptr;
    902 
    903     if (Idxs[0] == i)
    904       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
    905 
    906     Result.push_back(C);
    907   }
    908 
    909   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    910     return ConstantStruct::get(ST, Result);
    911   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    912     return ConstantArray::get(AT, Result);
    913   return ConstantVector::get(Result);
    914 }
    915 
    916 
    917 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
    918                                               Constant *C1, Constant *C2) {
    919   // Handle UndefValue up front.
    920   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
    921     switch (Opcode) {
    922     case Instruction::Xor:
    923       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
    924         // Handle undef ^ undef -> 0 special case. This is a common
    925         // idiom (misuse).
    926         return Constant::getNullValue(C1->getType());
    927       // Fallthrough
    928     case Instruction::Add:
    929     case Instruction::Sub:
    930       return UndefValue::get(C1->getType());
    931     case Instruction::And:
    932       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
    933         return C1;
    934       return Constant::getNullValue(C1->getType());   // undef & X -> 0
    935     case Instruction::Mul: {
    936       // undef * undef -> undef
    937       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
    938         return C1;
    939       const APInt *CV;
    940       // X * undef -> undef   if X is odd
    941       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
    942         if ((*CV)[0])
    943           return UndefValue::get(C1->getType());
    944 
    945       // X * undef -> 0       otherwise
    946       return Constant::getNullValue(C1->getType());
    947     }
    948     case Instruction::SDiv:
    949     case Instruction::UDiv:
    950       // X / undef -> undef
    951       if (match(C1, m_Zero()))
    952         return C2;
    953       // undef / 0 -> undef
    954       // undef / 1 -> undef
    955       if (match(C2, m_Zero()) || match(C2, m_One()))
    956         return C1;
    957       // undef / X -> 0       otherwise
    958       return Constant::getNullValue(C1->getType());
    959     case Instruction::URem:
    960     case Instruction::SRem:
    961       // X % undef -> undef
    962       if (match(C2, m_Undef()))
    963         return C2;
    964       // undef % 0 -> undef
    965       if (match(C2, m_Zero()))
    966         return C1;
    967       // undef % X -> 0       otherwise
    968       return Constant::getNullValue(C1->getType());
    969     case Instruction::Or:                          // X | undef -> -1
    970       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
    971         return C1;
    972       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
    973     case Instruction::LShr:
    974       // X >>l undef -> undef
    975       if (isa<UndefValue>(C2))
    976         return C2;
    977       // undef >>l 0 -> undef
    978       if (match(C2, m_Zero()))
    979         return C1;
    980       // undef >>l X -> 0
    981       return Constant::getNullValue(C1->getType());
    982     case Instruction::AShr:
    983       // X >>a undef -> undef
    984       if (isa<UndefValue>(C2))
    985         return C2;
    986       // undef >>a 0 -> undef
    987       if (match(C2, m_Zero()))
    988         return C1;
    989       // TODO: undef >>a X -> undef if the shift is exact
    990       // undef >>a X -> 0
    991       return Constant::getNullValue(C1->getType());
    992     case Instruction::Shl:
    993       // X << undef -> undef
    994       if (isa<UndefValue>(C2))
    995         return C2;
    996       // undef << 0 -> undef
    997       if (match(C2, m_Zero()))
    998         return C1;
    999       // undef << X -> 0
   1000       return Constant::getNullValue(C1->getType());
   1001     }
   1002   }
   1003 
   1004   // Handle simplifications when the RHS is a constant int.
   1005   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
   1006     switch (Opcode) {
   1007     case Instruction::Add:
   1008       if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
   1009       break;
   1010     case Instruction::Sub:
   1011       if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
   1012       break;
   1013     case Instruction::Mul:
   1014       if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
   1015       if (CI2->equalsInt(1))
   1016         return C1;                                              // X * 1 == X
   1017       break;
   1018     case Instruction::UDiv:
   1019     case Instruction::SDiv:
   1020       if (CI2->equalsInt(1))
   1021         return C1;                                            // X / 1 == X
   1022       if (CI2->equalsInt(0))
   1023         return UndefValue::get(CI2->getType());               // X / 0 == undef
   1024       break;
   1025     case Instruction::URem:
   1026     case Instruction::SRem:
   1027       if (CI2->equalsInt(1))
   1028         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
   1029       if (CI2->equalsInt(0))
   1030         return UndefValue::get(CI2->getType());               // X % 0 == undef
   1031       break;
   1032     case Instruction::And:
   1033       if (CI2->isZero()) return C2;                           // X & 0 == 0
   1034       if (CI2->isAllOnesValue())
   1035         return C1;                                            // X & -1 == X
   1036 
   1037       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1038         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
   1039         if (CE1->getOpcode() == Instruction::ZExt) {
   1040           unsigned DstWidth = CI2->getType()->getBitWidth();
   1041           unsigned SrcWidth =
   1042             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1043           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
   1044           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
   1045             return C1;
   1046         }
   1047 
   1048         // If and'ing the address of a global with a constant, fold it.
   1049         if (CE1->getOpcode() == Instruction::PtrToInt &&
   1050             isa<GlobalValue>(CE1->getOperand(0))) {
   1051           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
   1052 
   1053           // Functions are at least 4-byte aligned.
   1054           unsigned GVAlign = GV->getAlignment();
   1055           if (isa<Function>(GV))
   1056             GVAlign = std::max(GVAlign, 4U);
   1057 
   1058           if (GVAlign > 1) {
   1059             unsigned DstWidth = CI2->getType()->getBitWidth();
   1060             unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
   1061             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
   1062 
   1063             // If checking bits we know are clear, return zero.
   1064             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
   1065               return Constant::getNullValue(CI2->getType());
   1066           }
   1067         }
   1068       }
   1069       break;
   1070     case Instruction::Or:
   1071       if (CI2->equalsInt(0)) return C1;    // X | 0 == X
   1072       if (CI2->isAllOnesValue())
   1073         return C2;                         // X | -1 == -1
   1074       break;
   1075     case Instruction::Xor:
   1076       if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
   1077 
   1078       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1079         switch (CE1->getOpcode()) {
   1080         default: break;
   1081         case Instruction::ICmp:
   1082         case Instruction::FCmp:
   1083           // cmp pred ^ true -> cmp !pred
   1084           assert(CI2->equalsInt(1));
   1085           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
   1086           pred = CmpInst::getInversePredicate(pred);
   1087           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
   1088                                           CE1->getOperand(1));
   1089         }
   1090       }
   1091       break;
   1092     case Instruction::AShr:
   1093       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
   1094       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
   1095         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
   1096           return ConstantExpr::getLShr(C1, C2);
   1097       break;
   1098     }
   1099   } else if (isa<ConstantInt>(C1)) {
   1100     // If C1 is a ConstantInt and C2 is not, swap the operands.
   1101     if (Instruction::isCommutative(Opcode))
   1102       return ConstantExpr::get(Opcode, C2, C1);
   1103   }
   1104 
   1105   // At this point we know neither constant is an UndefValue.
   1106   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
   1107     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
   1108       const APInt &C1V = CI1->getValue();
   1109       const APInt &C2V = CI2->getValue();
   1110       switch (Opcode) {
   1111       default:
   1112         break;
   1113       case Instruction::Add:
   1114         return ConstantInt::get(CI1->getContext(), C1V + C2V);
   1115       case Instruction::Sub:
   1116         return ConstantInt::get(CI1->getContext(), C1V - C2V);
   1117       case Instruction::Mul:
   1118         return ConstantInt::get(CI1->getContext(), C1V * C2V);
   1119       case Instruction::UDiv:
   1120         assert(!CI2->isNullValue() && "Div by zero handled above");
   1121         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
   1122       case Instruction::SDiv:
   1123         assert(!CI2->isNullValue() && "Div by zero handled above");
   1124         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1125           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
   1126         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
   1127       case Instruction::URem:
   1128         assert(!CI2->isNullValue() && "Div by zero handled above");
   1129         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
   1130       case Instruction::SRem:
   1131         assert(!CI2->isNullValue() && "Div by zero handled above");
   1132         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1133           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
   1134         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
   1135       case Instruction::And:
   1136         return ConstantInt::get(CI1->getContext(), C1V & C2V);
   1137       case Instruction::Or:
   1138         return ConstantInt::get(CI1->getContext(), C1V | C2V);
   1139       case Instruction::Xor:
   1140         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
   1141       case Instruction::Shl:
   1142         if (C2V.ult(C1V.getBitWidth()))
   1143           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
   1144         return UndefValue::get(C1->getType()); // too big shift is undef
   1145       case Instruction::LShr:
   1146         if (C2V.ult(C1V.getBitWidth()))
   1147           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
   1148         return UndefValue::get(C1->getType()); // too big shift is undef
   1149       case Instruction::AShr:
   1150         if (C2V.ult(C1V.getBitWidth()))
   1151           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
   1152         return UndefValue::get(C1->getType()); // too big shift is undef
   1153       }
   1154     }
   1155 
   1156     switch (Opcode) {
   1157     case Instruction::SDiv:
   1158     case Instruction::UDiv:
   1159     case Instruction::URem:
   1160     case Instruction::SRem:
   1161     case Instruction::LShr:
   1162     case Instruction::AShr:
   1163     case Instruction::Shl:
   1164       if (CI1->equalsInt(0)) return C1;
   1165       break;
   1166     default:
   1167       break;
   1168     }
   1169   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
   1170     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
   1171       APFloat C1V = CFP1->getValueAPF();
   1172       APFloat C2V = CFP2->getValueAPF();
   1173       APFloat C3V = C1V;  // copy for modification
   1174       switch (Opcode) {
   1175       default:
   1176         break;
   1177       case Instruction::FAdd:
   1178         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
   1179         return ConstantFP::get(C1->getContext(), C3V);
   1180       case Instruction::FSub:
   1181         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
   1182         return ConstantFP::get(C1->getContext(), C3V);
   1183       case Instruction::FMul:
   1184         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
   1185         return ConstantFP::get(C1->getContext(), C3V);
   1186       case Instruction::FDiv:
   1187         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
   1188         return ConstantFP::get(C1->getContext(), C3V);
   1189       case Instruction::FRem:
   1190         (void)C3V.mod(C2V);
   1191         return ConstantFP::get(C1->getContext(), C3V);
   1192       }
   1193     }
   1194   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
   1195     // Perform elementwise folding.
   1196     SmallVector<Constant*, 16> Result;
   1197     Type *Ty = IntegerType::get(VTy->getContext(), 32);
   1198     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
   1199       Constant *LHS =
   1200         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1201       Constant *RHS =
   1202         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1203 
   1204       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
   1205     }
   1206 
   1207     return ConstantVector::get(Result);
   1208   }
   1209 
   1210   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1211     // There are many possible foldings we could do here.  We should probably
   1212     // at least fold add of a pointer with an integer into the appropriate
   1213     // getelementptr.  This will improve alias analysis a bit.
   1214 
   1215     // Given ((a + b) + c), if (b + c) folds to something interesting, return
   1216     // (a + (b + c)).
   1217     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
   1218       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
   1219       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
   1220         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
   1221     }
   1222   } else if (isa<ConstantExpr>(C2)) {
   1223     // If C2 is a constant expr and C1 isn't, flop them around and fold the
   1224     // other way if possible.
   1225     if (Instruction::isCommutative(Opcode))
   1226       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
   1227   }
   1228 
   1229   // i1 can be simplified in many cases.
   1230   if (C1->getType()->isIntegerTy(1)) {
   1231     switch (Opcode) {
   1232     case Instruction::Add:
   1233     case Instruction::Sub:
   1234       return ConstantExpr::getXor(C1, C2);
   1235     case Instruction::Mul:
   1236       return ConstantExpr::getAnd(C1, C2);
   1237     case Instruction::Shl:
   1238     case Instruction::LShr:
   1239     case Instruction::AShr:
   1240       // We can assume that C2 == 0.  If it were one the result would be
   1241       // undefined because the shift value is as large as the bitwidth.
   1242       return C1;
   1243     case Instruction::SDiv:
   1244     case Instruction::UDiv:
   1245       // We can assume that C2 == 1.  If it were zero the result would be
   1246       // undefined through division by zero.
   1247       return C1;
   1248     case Instruction::URem:
   1249     case Instruction::SRem:
   1250       // We can assume that C2 == 1.  If it were zero the result would be
   1251       // undefined through division by zero.
   1252       return ConstantInt::getFalse(C1->getContext());
   1253     default:
   1254       break;
   1255     }
   1256   }
   1257 
   1258   // We don't know how to fold this.
   1259   return nullptr;
   1260 }
   1261 
   1262 /// isZeroSizedType - This type is zero sized if its an array or structure of
   1263 /// zero sized types.  The only leaf zero sized type is an empty structure.
   1264 static bool isMaybeZeroSizedType(Type *Ty) {
   1265   if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1266     if (STy->isOpaque()) return true;  // Can't say.
   1267 
   1268     // If all of elements have zero size, this does too.
   1269     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1270       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
   1271     return true;
   1272 
   1273   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1274     return isMaybeZeroSizedType(ATy->getElementType());
   1275   }
   1276   return false;
   1277 }
   1278 
   1279 /// IdxCompare - Compare the two constants as though they were getelementptr
   1280 /// indices.  This allows coercion of the types to be the same thing.
   1281 ///
   1282 /// If the two constants are the "same" (after coercion), return 0.  If the
   1283 /// first is less than the second, return -1, if the second is less than the
   1284 /// first, return 1.  If the constants are not integral, return -2.
   1285 ///
   1286 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
   1287   if (C1 == C2) return 0;
   1288 
   1289   // Ok, we found a different index.  If they are not ConstantInt, we can't do
   1290   // anything with them.
   1291   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
   1292     return -2; // don't know!
   1293 
   1294   // We cannot compare the indices if they don't fit in an int64_t.
   1295   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
   1296       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
   1297     return -2; // don't know!
   1298 
   1299   // Ok, we have two differing integer indices.  Sign extend them to be the same
   1300   // type.
   1301   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
   1302   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
   1303 
   1304   if (C1Val == C2Val) return 0;  // They are equal
   1305 
   1306   // If the type being indexed over is really just a zero sized type, there is
   1307   // no pointer difference being made here.
   1308   if (isMaybeZeroSizedType(ElTy))
   1309     return -2; // dunno.
   1310 
   1311   // If they are really different, now that they are the same type, then we
   1312   // found a difference!
   1313   if (C1Val < C2Val)
   1314     return -1;
   1315   else
   1316     return 1;
   1317 }
   1318 
   1319 /// evaluateFCmpRelation - This function determines if there is anything we can
   1320 /// decide about the two constants provided.  This doesn't need to handle simple
   1321 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
   1322 /// If we can determine that the two constants have a particular relation to
   1323 /// each other, we should return the corresponding FCmpInst predicate,
   1324 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
   1325 /// ConstantFoldCompareInstruction.
   1326 ///
   1327 /// To simplify this code we canonicalize the relation so that the first
   1328 /// operand is always the most "complex" of the two.  We consider ConstantFP
   1329 /// to be the simplest, and ConstantExprs to be the most complex.
   1330 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
   1331   assert(V1->getType() == V2->getType() &&
   1332          "Cannot compare values of different types!");
   1333 
   1334   // Handle degenerate case quickly
   1335   if (V1 == V2) return FCmpInst::FCMP_OEQ;
   1336 
   1337   if (!isa<ConstantExpr>(V1)) {
   1338     if (!isa<ConstantExpr>(V2)) {
   1339       // Simple case, use the standard constant folder.
   1340       ConstantInt *R = nullptr;
   1341       R = dyn_cast<ConstantInt>(
   1342                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
   1343       if (R && !R->isZero())
   1344         return FCmpInst::FCMP_OEQ;
   1345       R = dyn_cast<ConstantInt>(
   1346                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
   1347       if (R && !R->isZero())
   1348         return FCmpInst::FCMP_OLT;
   1349       R = dyn_cast<ConstantInt>(
   1350                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
   1351       if (R && !R->isZero())
   1352         return FCmpInst::FCMP_OGT;
   1353 
   1354       // Nothing more we can do
   1355       return FCmpInst::BAD_FCMP_PREDICATE;
   1356     }
   1357 
   1358     // If the first operand is simple and second is ConstantExpr, swap operands.
   1359     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
   1360     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
   1361       return FCmpInst::getSwappedPredicate(SwappedRelation);
   1362   } else {
   1363     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1364     // constantexpr or a simple constant.
   1365     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1366     switch (CE1->getOpcode()) {
   1367     case Instruction::FPTrunc:
   1368     case Instruction::FPExt:
   1369     case Instruction::UIToFP:
   1370     case Instruction::SIToFP:
   1371       // We might be able to do something with these but we don't right now.
   1372       break;
   1373     default:
   1374       break;
   1375     }
   1376   }
   1377   // There are MANY other foldings that we could perform here.  They will
   1378   // probably be added on demand, as they seem needed.
   1379   return FCmpInst::BAD_FCMP_PREDICATE;
   1380 }
   1381 
   1382 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
   1383                                                       const GlobalValue *GV2) {
   1384   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
   1385     if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
   1386       return true;
   1387     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
   1388       Type *Ty = GVar->getValueType();
   1389       // A global with opaque type might end up being zero sized.
   1390       if (!Ty->isSized())
   1391         return true;
   1392       // A global with an empty type might lie at the address of any other
   1393       // global.
   1394       if (Ty->isEmptyTy())
   1395         return true;
   1396     }
   1397     return false;
   1398   };
   1399   // Don't try to decide equality of aliases.
   1400   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
   1401     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
   1402       return ICmpInst::ICMP_NE;
   1403   return ICmpInst::BAD_ICMP_PREDICATE;
   1404 }
   1405 
   1406 /// evaluateICmpRelation - This function determines if there is anything we can
   1407 /// decide about the two constants provided.  This doesn't need to handle simple
   1408 /// things like integer comparisons, but should instead handle ConstantExprs
   1409 /// and GlobalValues.  If we can determine that the two constants have a
   1410 /// particular relation to each other, we should return the corresponding ICmp
   1411 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
   1412 ///
   1413 /// To simplify this code we canonicalize the relation so that the first
   1414 /// operand is always the most "complex" of the two.  We consider simple
   1415 /// constants (like ConstantInt) to be the simplest, followed by
   1416 /// GlobalValues, followed by ConstantExpr's (the most complex).
   1417 ///
   1418 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
   1419                                                 bool isSigned) {
   1420   assert(V1->getType() == V2->getType() &&
   1421          "Cannot compare different types of values!");
   1422   if (V1 == V2) return ICmpInst::ICMP_EQ;
   1423 
   1424   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
   1425       !isa<BlockAddress>(V1)) {
   1426     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
   1427         !isa<BlockAddress>(V2)) {
   1428       // We distilled this down to a simple case, use the standard constant
   1429       // folder.
   1430       ConstantInt *R = nullptr;
   1431       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
   1432       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1433       if (R && !R->isZero())
   1434         return pred;
   1435       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1436       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1437       if (R && !R->isZero())
   1438         return pred;
   1439       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1440       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1441       if (R && !R->isZero())
   1442         return pred;
   1443 
   1444       // If we couldn't figure it out, bail.
   1445       return ICmpInst::BAD_ICMP_PREDICATE;
   1446     }
   1447 
   1448     // If the first operand is simple, swap operands.
   1449     ICmpInst::Predicate SwappedRelation =
   1450       evaluateICmpRelation(V2, V1, isSigned);
   1451     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1452       return ICmpInst::getSwappedPredicate(SwappedRelation);
   1453 
   1454   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
   1455     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1456       ICmpInst::Predicate SwappedRelation =
   1457         evaluateICmpRelation(V2, V1, isSigned);
   1458       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1459         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1460       return ICmpInst::BAD_ICMP_PREDICATE;
   1461     }
   1462 
   1463     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1464     // constant (which, since the types must match, means that it's a
   1465     // ConstantPointerNull).
   1466     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1467       return areGlobalsPotentiallyEqual(GV, GV2);
   1468     } else if (isa<BlockAddress>(V2)) {
   1469       return ICmpInst::ICMP_NE; // Globals never equal labels.
   1470     } else {
   1471       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
   1472       // GlobalVals can never be null unless they have external weak linkage.
   1473       // We don't try to evaluate aliases here.
   1474       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
   1475         return ICmpInst::ICMP_NE;
   1476     }
   1477   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
   1478     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1479       ICmpInst::Predicate SwappedRelation =
   1480         evaluateICmpRelation(V2, V1, isSigned);
   1481       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1482         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1483       return ICmpInst::BAD_ICMP_PREDICATE;
   1484     }
   1485 
   1486     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1487     // constant (which, since the types must match, means that it is a
   1488     // ConstantPointerNull).
   1489     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
   1490       // Block address in another function can't equal this one, but block
   1491       // addresses in the current function might be the same if blocks are
   1492       // empty.
   1493       if (BA2->getFunction() != BA->getFunction())
   1494         return ICmpInst::ICMP_NE;
   1495     } else {
   1496       // Block addresses aren't null, don't equal the address of globals.
   1497       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
   1498              "Canonicalization guarantee!");
   1499       return ICmpInst::ICMP_NE;
   1500     }
   1501   } else {
   1502     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1503     // constantexpr, a global, block address, or a simple constant.
   1504     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1505     Constant *CE1Op0 = CE1->getOperand(0);
   1506 
   1507     switch (CE1->getOpcode()) {
   1508     case Instruction::Trunc:
   1509     case Instruction::FPTrunc:
   1510     case Instruction::FPExt:
   1511     case Instruction::FPToUI:
   1512     case Instruction::FPToSI:
   1513       break; // We can't evaluate floating point casts or truncations.
   1514 
   1515     case Instruction::UIToFP:
   1516     case Instruction::SIToFP:
   1517     case Instruction::BitCast:
   1518     case Instruction::ZExt:
   1519     case Instruction::SExt:
   1520       // If the cast is not actually changing bits, and the second operand is a
   1521       // null pointer, do the comparison with the pre-casted value.
   1522       if (V2->isNullValue() &&
   1523           (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
   1524         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
   1525         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
   1526         return evaluateICmpRelation(CE1Op0,
   1527                                     Constant::getNullValue(CE1Op0->getType()),
   1528                                     isSigned);
   1529       }
   1530       break;
   1531 
   1532     case Instruction::GetElementPtr: {
   1533       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
   1534       // Ok, since this is a getelementptr, we know that the constant has a
   1535       // pointer type.  Check the various cases.
   1536       if (isa<ConstantPointerNull>(V2)) {
   1537         // If we are comparing a GEP to a null pointer, check to see if the base
   1538         // of the GEP equals the null pointer.
   1539         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1540           if (GV->hasExternalWeakLinkage())
   1541             // Weak linkage GVals could be zero or not. We're comparing that
   1542             // to null pointer so its greater-or-equal
   1543             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
   1544           else
   1545             // If its not weak linkage, the GVal must have a non-zero address
   1546             // so the result is greater-than
   1547             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1548         } else if (isa<ConstantPointerNull>(CE1Op0)) {
   1549           // If we are indexing from a null pointer, check to see if we have any
   1550           // non-zero indices.
   1551           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
   1552             if (!CE1->getOperand(i)->isNullValue())
   1553               // Offsetting from null, must not be equal.
   1554               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1555           // Only zero indexes from null, must still be zero.
   1556           return ICmpInst::ICMP_EQ;
   1557         }
   1558         // Otherwise, we can't really say if the first operand is null or not.
   1559       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1560         if (isa<ConstantPointerNull>(CE1Op0)) {
   1561           if (GV2->hasExternalWeakLinkage())
   1562             // Weak linkage GVals could be zero or not. We're comparing it to
   1563             // a null pointer, so its less-or-equal
   1564             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
   1565           else
   1566             // If its not weak linkage, the GVal must have a non-zero address
   1567             // so the result is less-than
   1568             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1569         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1570           if (GV == GV2) {
   1571             // If this is a getelementptr of the same global, then it must be
   1572             // different.  Because the types must match, the getelementptr could
   1573             // only have at most one index, and because we fold getelementptr's
   1574             // with a single zero index, it must be nonzero.
   1575             assert(CE1->getNumOperands() == 2 &&
   1576                    !CE1->getOperand(1)->isNullValue() &&
   1577                    "Surprising getelementptr!");
   1578             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1579           } else {
   1580             if (CE1GEP->hasAllZeroIndices())
   1581               return areGlobalsPotentiallyEqual(GV, GV2);
   1582             return ICmpInst::BAD_ICMP_PREDICATE;
   1583           }
   1584         }
   1585       } else {
   1586         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
   1587         Constant *CE2Op0 = CE2->getOperand(0);
   1588 
   1589         // There are MANY other foldings that we could perform here.  They will
   1590         // probably be added on demand, as they seem needed.
   1591         switch (CE2->getOpcode()) {
   1592         default: break;
   1593         case Instruction::GetElementPtr:
   1594           // By far the most common case to handle is when the base pointers are
   1595           // obviously to the same global.
   1596           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
   1597             // Don't know relative ordering, but check for inequality.
   1598             if (CE1Op0 != CE2Op0) {
   1599               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
   1600               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
   1601                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
   1602                                                   cast<GlobalValue>(CE2Op0));
   1603               return ICmpInst::BAD_ICMP_PREDICATE;
   1604             }
   1605             // Ok, we know that both getelementptr instructions are based on the
   1606             // same global.  From this, we can precisely determine the relative
   1607             // ordering of the resultant pointers.
   1608             unsigned i = 1;
   1609 
   1610             // The logic below assumes that the result of the comparison
   1611             // can be determined by finding the first index that differs.
   1612             // This doesn't work if there is over-indexing in any
   1613             // subsequent indices, so check for that case first.
   1614             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
   1615                 !CE2->isGEPWithNoNotionalOverIndexing())
   1616                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1617 
   1618             // Compare all of the operands the GEP's have in common.
   1619             gep_type_iterator GTI = gep_type_begin(CE1);
   1620             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
   1621                  ++i, ++GTI)
   1622               switch (IdxCompare(CE1->getOperand(i),
   1623                                  CE2->getOperand(i), GTI.getIndexedType())) {
   1624               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
   1625               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
   1626               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
   1627               }
   1628 
   1629             // Ok, we ran out of things they have in common.  If any leftovers
   1630             // are non-zero then we have a difference, otherwise we are equal.
   1631             for (; i < CE1->getNumOperands(); ++i)
   1632               if (!CE1->getOperand(i)->isNullValue()) {
   1633                 if (isa<ConstantInt>(CE1->getOperand(i)))
   1634                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1635                 else
   1636                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1637               }
   1638 
   1639             for (; i < CE2->getNumOperands(); ++i)
   1640               if (!CE2->getOperand(i)->isNullValue()) {
   1641                 if (isa<ConstantInt>(CE2->getOperand(i)))
   1642                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1643                 else
   1644                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1645               }
   1646             return ICmpInst::ICMP_EQ;
   1647           }
   1648         }
   1649       }
   1650     }
   1651     default:
   1652       break;
   1653     }
   1654   }
   1655 
   1656   return ICmpInst::BAD_ICMP_PREDICATE;
   1657 }
   1658 
   1659 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
   1660                                                Constant *C1, Constant *C2) {
   1661   Type *ResultTy;
   1662   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
   1663     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
   1664                                VT->getNumElements());
   1665   else
   1666     ResultTy = Type::getInt1Ty(C1->getContext());
   1667 
   1668   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
   1669   if (pred == FCmpInst::FCMP_FALSE)
   1670     return Constant::getNullValue(ResultTy);
   1671 
   1672   if (pred == FCmpInst::FCMP_TRUE)
   1673     return Constant::getAllOnesValue(ResultTy);
   1674 
   1675   // Handle some degenerate cases first
   1676   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
   1677     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
   1678     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
   1679     // For EQ and NE, we can always pick a value for the undef to make the
   1680     // predicate pass or fail, so we can return undef.
   1681     // Also, if both operands are undef, we can return undef for int comparison.
   1682     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
   1683       return UndefValue::get(ResultTy);
   1684 
   1685     // Otherwise, for integer compare, pick the same value as the non-undef
   1686     // operand, and fold it to true or false.
   1687     if (isIntegerPredicate)
   1688       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
   1689 
   1690     // Choosing NaN for the undef will always make unordered comparison succeed
   1691     // and ordered comparison fails.
   1692     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
   1693   }
   1694 
   1695   // icmp eq/ne(null,GV) -> false/true
   1696   if (C1->isNullValue()) {
   1697     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
   1698       // Don't try to evaluate aliases.  External weak GV can be null.
   1699       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1700         if (pred == ICmpInst::ICMP_EQ)
   1701           return ConstantInt::getFalse(C1->getContext());
   1702         else if (pred == ICmpInst::ICMP_NE)
   1703           return ConstantInt::getTrue(C1->getContext());
   1704       }
   1705   // icmp eq/ne(GV,null) -> false/true
   1706   } else if (C2->isNullValue()) {
   1707     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
   1708       // Don't try to evaluate aliases.  External weak GV can be null.
   1709       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1710         if (pred == ICmpInst::ICMP_EQ)
   1711           return ConstantInt::getFalse(C1->getContext());
   1712         else if (pred == ICmpInst::ICMP_NE)
   1713           return ConstantInt::getTrue(C1->getContext());
   1714       }
   1715   }
   1716 
   1717   // If the comparison is a comparison between two i1's, simplify it.
   1718   if (C1->getType()->isIntegerTy(1)) {
   1719     switch(pred) {
   1720     case ICmpInst::ICMP_EQ:
   1721       if (isa<ConstantInt>(C2))
   1722         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
   1723       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
   1724     case ICmpInst::ICMP_NE:
   1725       return ConstantExpr::getXor(C1, C2);
   1726     default:
   1727       break;
   1728     }
   1729   }
   1730 
   1731   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
   1732     APInt V1 = cast<ConstantInt>(C1)->getValue();
   1733     APInt V2 = cast<ConstantInt>(C2)->getValue();
   1734     switch (pred) {
   1735     default: llvm_unreachable("Invalid ICmp Predicate");
   1736     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
   1737     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
   1738     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
   1739     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
   1740     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
   1741     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
   1742     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
   1743     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
   1744     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
   1745     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
   1746     }
   1747   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
   1748     APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
   1749     APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
   1750     APFloat::cmpResult R = C1V.compare(C2V);
   1751     switch (pred) {
   1752     default: llvm_unreachable("Invalid FCmp Predicate");
   1753     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
   1754     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
   1755     case FCmpInst::FCMP_UNO:
   1756       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
   1757     case FCmpInst::FCMP_ORD:
   1758       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
   1759     case FCmpInst::FCMP_UEQ:
   1760       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1761                                         R==APFloat::cmpEqual);
   1762     case FCmpInst::FCMP_OEQ:
   1763       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
   1764     case FCmpInst::FCMP_UNE:
   1765       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
   1766     case FCmpInst::FCMP_ONE:
   1767       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1768                                         R==APFloat::cmpGreaterThan);
   1769     case FCmpInst::FCMP_ULT:
   1770       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1771                                         R==APFloat::cmpLessThan);
   1772     case FCmpInst::FCMP_OLT:
   1773       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
   1774     case FCmpInst::FCMP_UGT:
   1775       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1776                                         R==APFloat::cmpGreaterThan);
   1777     case FCmpInst::FCMP_OGT:
   1778       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
   1779     case FCmpInst::FCMP_ULE:
   1780       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
   1781     case FCmpInst::FCMP_OLE:
   1782       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1783                                         R==APFloat::cmpEqual);
   1784     case FCmpInst::FCMP_UGE:
   1785       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
   1786     case FCmpInst::FCMP_OGE:
   1787       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
   1788                                         R==APFloat::cmpEqual);
   1789     }
   1790   } else if (C1->getType()->isVectorTy()) {
   1791     // If we can constant fold the comparison of each element, constant fold
   1792     // the whole vector comparison.
   1793     SmallVector<Constant*, 4> ResElts;
   1794     Type *Ty = IntegerType::get(C1->getContext(), 32);
   1795     // Compare the elements, producing an i1 result or constant expr.
   1796     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
   1797       Constant *C1E =
   1798         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1799       Constant *C2E =
   1800         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1801 
   1802       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
   1803     }
   1804 
   1805     return ConstantVector::get(ResElts);
   1806   }
   1807 
   1808   if (C1->getType()->isFloatingPointTy() &&
   1809       // Only call evaluateFCmpRelation if we have a constant expr to avoid
   1810       // infinite recursive loop
   1811       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
   1812     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1813     switch (evaluateFCmpRelation(C1, C2)) {
   1814     default: llvm_unreachable("Unknown relation!");
   1815     case FCmpInst::FCMP_UNO:
   1816     case FCmpInst::FCMP_ORD:
   1817     case FCmpInst::FCMP_UEQ:
   1818     case FCmpInst::FCMP_UNE:
   1819     case FCmpInst::FCMP_ULT:
   1820     case FCmpInst::FCMP_UGT:
   1821     case FCmpInst::FCMP_ULE:
   1822     case FCmpInst::FCMP_UGE:
   1823     case FCmpInst::FCMP_TRUE:
   1824     case FCmpInst::FCMP_FALSE:
   1825     case FCmpInst::BAD_FCMP_PREDICATE:
   1826       break; // Couldn't determine anything about these constants.
   1827     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
   1828       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
   1829                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
   1830                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1831       break;
   1832     case FCmpInst::FCMP_OLT: // We know that C1 < C2
   1833       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1834                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
   1835                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
   1836       break;
   1837     case FCmpInst::FCMP_OGT: // We know that C1 > C2
   1838       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1839                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
   1840                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1841       break;
   1842     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
   1843       // We can only partially decide this relation.
   1844       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1845         Result = 0;
   1846       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1847         Result = 1;
   1848       break;
   1849     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
   1850       // We can only partially decide this relation.
   1851       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1852         Result = 0;
   1853       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1854         Result = 1;
   1855       break;
   1856     case FCmpInst::FCMP_ONE: // We know that C1 != C2
   1857       // We can only partially decide this relation.
   1858       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
   1859         Result = 0;
   1860       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
   1861         Result = 1;
   1862       break;
   1863     }
   1864 
   1865     // If we evaluated the result, return it now.
   1866     if (Result != -1)
   1867       return ConstantInt::get(ResultTy, Result);
   1868 
   1869   } else {
   1870     // Evaluate the relation between the two constants, per the predicate.
   1871     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1872     switch (evaluateICmpRelation(C1, C2,
   1873                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
   1874     default: llvm_unreachable("Unknown relational!");
   1875     case ICmpInst::BAD_ICMP_PREDICATE:
   1876       break;  // Couldn't determine anything about these constants.
   1877     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
   1878       // If we know the constants are equal, we can decide the result of this
   1879       // computation precisely.
   1880       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
   1881       break;
   1882     case ICmpInst::ICMP_ULT:
   1883       switch (pred) {
   1884       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
   1885         Result = 1; break;
   1886       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
   1887         Result = 0; break;
   1888       }
   1889       break;
   1890     case ICmpInst::ICMP_SLT:
   1891       switch (pred) {
   1892       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
   1893         Result = 1; break;
   1894       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
   1895         Result = 0; break;
   1896       }
   1897       break;
   1898     case ICmpInst::ICMP_UGT:
   1899       switch (pred) {
   1900       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
   1901         Result = 1; break;
   1902       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
   1903         Result = 0; break;
   1904       }
   1905       break;
   1906     case ICmpInst::ICMP_SGT:
   1907       switch (pred) {
   1908       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
   1909         Result = 1; break;
   1910       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
   1911         Result = 0; break;
   1912       }
   1913       break;
   1914     case ICmpInst::ICMP_ULE:
   1915       if (pred == ICmpInst::ICMP_UGT) Result = 0;
   1916       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
   1917       break;
   1918     case ICmpInst::ICMP_SLE:
   1919       if (pred == ICmpInst::ICMP_SGT) Result = 0;
   1920       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
   1921       break;
   1922     case ICmpInst::ICMP_UGE:
   1923       if (pred == ICmpInst::ICMP_ULT) Result = 0;
   1924       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
   1925       break;
   1926     case ICmpInst::ICMP_SGE:
   1927       if (pred == ICmpInst::ICMP_SLT) Result = 0;
   1928       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
   1929       break;
   1930     case ICmpInst::ICMP_NE:
   1931       if (pred == ICmpInst::ICMP_EQ) Result = 0;
   1932       if (pred == ICmpInst::ICMP_NE) Result = 1;
   1933       break;
   1934     }
   1935 
   1936     // If we evaluated the result, return it now.
   1937     if (Result != -1)
   1938       return ConstantInt::get(ResultTy, Result);
   1939 
   1940     // If the right hand side is a bitcast, try using its inverse to simplify
   1941     // it by moving it to the left hand side.  We can't do this if it would turn
   1942     // a vector compare into a scalar compare or visa versa.
   1943     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
   1944       Constant *CE2Op0 = CE2->getOperand(0);
   1945       if (CE2->getOpcode() == Instruction::BitCast &&
   1946           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
   1947         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
   1948         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
   1949       }
   1950     }
   1951 
   1952     // If the left hand side is an extension, try eliminating it.
   1953     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1954       if ((CE1->getOpcode() == Instruction::SExt &&
   1955            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
   1956           (CE1->getOpcode() == Instruction::ZExt &&
   1957            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
   1958         Constant *CE1Op0 = CE1->getOperand(0);
   1959         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
   1960         if (CE1Inverse == CE1Op0) {
   1961           // Check whether we can safely truncate the right hand side.
   1962           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
   1963           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
   1964                                     C2->getType()) == C2)
   1965             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
   1966         }
   1967       }
   1968     }
   1969 
   1970     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
   1971         (C1->isNullValue() && !C2->isNullValue())) {
   1972       // If C2 is a constant expr and C1 isn't, flip them around and fold the
   1973       // other way if possible.
   1974       // Also, if C1 is null and C2 isn't, flip them around.
   1975       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
   1976       return ConstantExpr::getICmp(pred, C2, C1);
   1977     }
   1978   }
   1979   return nullptr;
   1980 }
   1981 
   1982 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
   1983 /// is "inbounds".
   1984 template<typename IndexTy>
   1985 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
   1986   // No indices means nothing that could be out of bounds.
   1987   if (Idxs.empty()) return true;
   1988 
   1989   // If the first index is zero, it's in bounds.
   1990   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
   1991 
   1992   // If the first index is one and all the rest are zero, it's in bounds,
   1993   // by the one-past-the-end rule.
   1994   if (!cast<ConstantInt>(Idxs[0])->isOne())
   1995     return false;
   1996   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
   1997     if (!cast<Constant>(Idxs[i])->isNullValue())
   1998       return false;
   1999   return true;
   2000 }
   2001 
   2002 /// \brief Test whether a given ConstantInt is in-range for a SequentialType.
   2003 static bool isIndexInRangeOfSequentialType(SequentialType *STy,
   2004                                            const ConstantInt *CI) {
   2005   // And indices are valid when indexing along a pointer
   2006   if (isa<PointerType>(STy))
   2007     return true;
   2008 
   2009   uint64_t NumElements = 0;
   2010   // Determine the number of elements in our sequential type.
   2011   if (auto *ATy = dyn_cast<ArrayType>(STy))
   2012     NumElements = ATy->getNumElements();
   2013   else if (auto *VTy = dyn_cast<VectorType>(STy))
   2014     NumElements = VTy->getNumElements();
   2015 
   2016   assert((isa<ArrayType>(STy) || NumElements > 0) &&
   2017          "didn't expect non-array type to have zero elements!");
   2018 
   2019   // We cannot bounds check the index if it doesn't fit in an int64_t.
   2020   if (CI->getValue().getActiveBits() > 64)
   2021     return false;
   2022 
   2023   // A negative index or an index past the end of our sequential type is
   2024   // considered out-of-range.
   2025   int64_t IndexVal = CI->getSExtValue();
   2026   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
   2027     return false;
   2028 
   2029   // Otherwise, it is in-range.
   2030   return true;
   2031 }
   2032 
   2033 template<typename IndexTy>
   2034 static Constant *ConstantFoldGetElementPtrImpl(Type *PointeeTy, Constant *C,
   2035                                                bool inBounds,
   2036                                                ArrayRef<IndexTy> Idxs) {
   2037   if (Idxs.empty()) return C;
   2038   Constant *Idx0 = cast<Constant>(Idxs[0]);
   2039   if ((Idxs.size() == 1 && Idx0->isNullValue()))
   2040     return C;
   2041 
   2042   if (isa<UndefValue>(C)) {
   2043     PointerType *Ptr = cast<PointerType>(C->getType());
   2044     Type *Ty = GetElementPtrInst::getIndexedType(
   2045         cast<PointerType>(Ptr->getScalarType())->getElementType(), Idxs);
   2046     assert(Ty && "Invalid indices for GEP!");
   2047     return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
   2048   }
   2049 
   2050   if (C->isNullValue()) {
   2051     bool isNull = true;
   2052     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   2053       if (!cast<Constant>(Idxs[i])->isNullValue()) {
   2054         isNull = false;
   2055         break;
   2056       }
   2057     if (isNull) {
   2058       PointerType *Ptr = cast<PointerType>(C->getType());
   2059       Type *Ty = GetElementPtrInst::getIndexedType(
   2060           cast<PointerType>(Ptr->getScalarType())->getElementType(), Idxs);
   2061       assert(Ty && "Invalid indices for GEP!");
   2062       return ConstantPointerNull::get(PointerType::get(Ty,
   2063                                                        Ptr->getAddressSpace()));
   2064     }
   2065   }
   2066 
   2067   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2068     // Combine Indices - If the source pointer to this getelementptr instruction
   2069     // is a getelementptr instruction, combine the indices of the two
   2070     // getelementptr instructions into a single instruction.
   2071     //
   2072     if (CE->getOpcode() == Instruction::GetElementPtr) {
   2073       Type *LastTy = nullptr;
   2074       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
   2075            I != E; ++I)
   2076         LastTy = *I;
   2077 
   2078       // We cannot combine indices if doing so would take us outside of an
   2079       // array or vector.  Doing otherwise could trick us if we evaluated such a
   2080       // GEP as part of a load.
   2081       //
   2082       // e.g. Consider if the original GEP was:
   2083       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
   2084       //                    i32 0, i32 0, i64 0)
   2085       //
   2086       // If we then tried to offset it by '8' to get to the third element,
   2087       // an i8, we should *not* get:
   2088       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
   2089       //                    i32 0, i32 0, i64 8)
   2090       //
   2091       // This GEP tries to index array element '8  which runs out-of-bounds.
   2092       // Subsequent evaluation would get confused and produce erroneous results.
   2093       //
   2094       // The following prohibits such a GEP from being formed by checking to see
   2095       // if the index is in-range with respect to an array or vector.
   2096       bool PerformFold = false;
   2097       if (Idx0->isNullValue())
   2098         PerformFold = true;
   2099       else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
   2100         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
   2101           PerformFold = isIndexInRangeOfSequentialType(STy, CI);
   2102 
   2103       if (PerformFold) {
   2104         SmallVector<Value*, 16> NewIndices;
   2105         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
   2106         NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
   2107 
   2108         // Add the last index of the source with the first index of the new GEP.
   2109         // Make sure to handle the case when they are actually different types.
   2110         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
   2111         // Otherwise it must be an array.
   2112         if (!Idx0->isNullValue()) {
   2113           Type *IdxTy = Combined->getType();
   2114           if (IdxTy != Idx0->getType()) {
   2115             unsigned CommonExtendedWidth =
   2116                 std::max(IdxTy->getIntegerBitWidth(),
   2117                          Idx0->getType()->getIntegerBitWidth());
   2118             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
   2119 
   2120             Type *CommonTy =
   2121                 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
   2122             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
   2123             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
   2124             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
   2125           } else {
   2126             Combined =
   2127               ConstantExpr::get(Instruction::Add, Idx0, Combined);
   2128           }
   2129         }
   2130 
   2131         NewIndices.push_back(Combined);
   2132         NewIndices.append(Idxs.begin() + 1, Idxs.end());
   2133         return ConstantExpr::getGetElementPtr(
   2134             cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
   2135             NewIndices, inBounds && cast<GEPOperator>(CE)->isInBounds());
   2136       }
   2137     }
   2138 
   2139     // Attempt to fold casts to the same type away.  For example, folding:
   2140     //
   2141     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
   2142     //                       i64 0, i64 0)
   2143     // into:
   2144     //
   2145     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
   2146     //
   2147     // Don't fold if the cast is changing address spaces.
   2148     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
   2149       PointerType *SrcPtrTy =
   2150         dyn_cast<PointerType>(CE->getOperand(0)->getType());
   2151       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
   2152       if (SrcPtrTy && DstPtrTy) {
   2153         ArrayType *SrcArrayTy =
   2154           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
   2155         ArrayType *DstArrayTy =
   2156           dyn_cast<ArrayType>(DstPtrTy->getElementType());
   2157         if (SrcArrayTy && DstArrayTy
   2158             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
   2159             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
   2160           return ConstantExpr::getGetElementPtr(
   2161               SrcArrayTy, (Constant *)CE->getOperand(0), Idxs, inBounds);
   2162       }
   2163     }
   2164   }
   2165 
   2166   // Check to see if any array indices are not within the corresponding
   2167   // notional array or vector bounds. If so, try to determine if they can be
   2168   // factored out into preceding dimensions.
   2169   SmallVector<Constant *, 8> NewIdxs;
   2170   Type *Ty = PointeeTy;
   2171   Type *Prev = C->getType();
   2172   bool Unknown = !isa<ConstantInt>(Idxs[0]);
   2173   for (unsigned i = 1, e = Idxs.size(); i != e;
   2174        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
   2175     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
   2176       if (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
   2177         if (CI->getSExtValue() > 0 &&
   2178             !isIndexInRangeOfSequentialType(cast<SequentialType>(Ty), CI)) {
   2179           if (isa<SequentialType>(Prev)) {
   2180             // It's out of range, but we can factor it into the prior
   2181             // dimension.
   2182             NewIdxs.resize(Idxs.size());
   2183             uint64_t NumElements = 0;
   2184             if (auto *ATy = dyn_cast<ArrayType>(Ty))
   2185               NumElements = ATy->getNumElements();
   2186             else
   2187               NumElements = cast<VectorType>(Ty)->getNumElements();
   2188 
   2189             ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
   2190             NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
   2191 
   2192             Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
   2193             Constant *Div = ConstantExpr::getSDiv(CI, Factor);
   2194 
   2195             unsigned CommonExtendedWidth =
   2196                 std::max(PrevIdx->getType()->getIntegerBitWidth(),
   2197                          Div->getType()->getIntegerBitWidth());
   2198             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
   2199 
   2200             // Before adding, extend both operands to i64 to avoid
   2201             // overflow trouble.
   2202             if (!PrevIdx->getType()->isIntegerTy(CommonExtendedWidth))
   2203               PrevIdx = ConstantExpr::getSExt(
   2204                   PrevIdx,
   2205                   Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
   2206             if (!Div->getType()->isIntegerTy(CommonExtendedWidth))
   2207               Div = ConstantExpr::getSExt(
   2208                   Div, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
   2209 
   2210             NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
   2211           } else {
   2212             // It's out of range, but the prior dimension is a struct
   2213             // so we can't do anything about it.
   2214             Unknown = true;
   2215           }
   2216         }
   2217     } else {
   2218       // We don't know if it's in range or not.
   2219       Unknown = true;
   2220     }
   2221   }
   2222 
   2223   // If we did any factoring, start over with the adjusted indices.
   2224   if (!NewIdxs.empty()) {
   2225     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   2226       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
   2227     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, inBounds);
   2228   }
   2229 
   2230   // If all indices are known integers and normalized, we can do a simple
   2231   // check for the "inbounds" property.
   2232   if (!Unknown && !inBounds)
   2233     if (auto *GV = dyn_cast<GlobalVariable>(C))
   2234       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
   2235         return ConstantExpr::getInBoundsGetElementPtr(PointeeTy, C, Idxs);
   2236 
   2237   return nullptr;
   2238 }
   2239 
   2240 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
   2241                                           bool inBounds,
   2242                                           ArrayRef<Constant *> Idxs) {
   2243   return ConstantFoldGetElementPtrImpl(
   2244       cast<PointerType>(C->getType()->getScalarType())->getElementType(), C,
   2245       inBounds, Idxs);
   2246 }
   2247 
   2248 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
   2249                                           bool inBounds,
   2250                                           ArrayRef<Value *> Idxs) {
   2251   return ConstantFoldGetElementPtrImpl(
   2252       cast<PointerType>(C->getType()->getScalarType())->getElementType(), C,
   2253       inBounds, Idxs);
   2254 }
   2255 
   2256 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
   2257                                           bool inBounds,
   2258                                           ArrayRef<Constant *> Idxs) {
   2259   return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
   2260 }
   2261 
   2262 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
   2263                                           bool inBounds,
   2264                                           ArrayRef<Value *> Idxs) {
   2265   return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
   2266 }
   2267