Home | History | Annotate | Download | only in X86
      1 //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass that performs some optimizations with LEA
     11 // instructions in order to improve code size.
     12 // Currently, it does one thing:
     13 // 1) Address calculations in load and store instructions are replaced by
     14 //    existing LEA def registers where possible.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "X86.h"
     19 #include "X86InstrInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/CodeGen/LiveVariables.h"
     23 #include "llvm/CodeGen/MachineFunctionPass.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/Passes.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetInstrInfo.h"
     31 
     32 using namespace llvm;
     33 
     34 #define DEBUG_TYPE "x86-optimize-LEAs"
     35 
     36 static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden,
     37                                      cl::desc("X86: Enable LEA optimizations."),
     38                                      cl::init(false));
     39 
     40 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
     41 
     42 namespace {
     43 class OptimizeLEAPass : public MachineFunctionPass {
     44 public:
     45   OptimizeLEAPass() : MachineFunctionPass(ID) {}
     46 
     47   const char *getPassName() const override { return "X86 LEA Optimize"; }
     48 
     49   /// \brief Loop over all of the basic blocks, replacing address
     50   /// calculations in load and store instructions, if it's already
     51   /// been calculated by LEA. Also, remove redundant LEAs.
     52   bool runOnMachineFunction(MachineFunction &MF) override;
     53 
     54 private:
     55   /// \brief Returns a distance between two instructions inside one basic block.
     56   /// Negative result means, that instructions occur in reverse order.
     57   int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
     58 
     59   /// \brief Choose the best \p LEA instruction from the \p List to replace
     60   /// address calculation in \p MI instruction. Return the address displacement
     61   /// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift
     62   /// and \p Dist.
     63   bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
     64                      const MachineInstr &MI, MachineInstr *&LEA,
     65                      int64_t &AddrDispShift, int &Dist);
     66 
     67   /// \brief Returns true if two machine operand are identical and they are not
     68   /// physical registers.
     69   bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2);
     70 
     71   /// \brief Returns true if the instruction is LEA.
     72   bool isLEA(const MachineInstr &MI);
     73 
     74   /// \brief Returns true if two instructions have memory operands that only
     75   /// differ by displacement. The numbers of the first memory operands for both
     76   /// instructions are specified through \p N1 and \p N2. The address
     77   /// displacement is returned through AddrDispShift.
     78   bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
     79                       const MachineInstr &MI2, unsigned N2,
     80                       int64_t &AddrDispShift);
     81 
     82   /// \brief Find all LEA instructions in the basic block.
     83   void findLEAs(const MachineBasicBlock &MBB,
     84                 SmallVectorImpl<MachineInstr *> &List);
     85 
     86   /// \brief Removes redundant address calculations.
     87   bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List);
     88 
     89   MachineRegisterInfo *MRI;
     90   const X86InstrInfo *TII;
     91   const X86RegisterInfo *TRI;
     92 
     93   static char ID;
     94 };
     95 char OptimizeLEAPass::ID = 0;
     96 }
     97 
     98 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
     99 
    100 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
    101                                    const MachineInstr &Last) {
    102   const MachineBasicBlock *MBB = First.getParent();
    103 
    104   // Both instructions must be in the same basic block.
    105   assert(Last.getParent() == MBB &&
    106          "Instructions are in different basic blocks");
    107 
    108   return std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&Last)) -
    109          std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&First));
    110 }
    111 
    112 // Find the best LEA instruction in the List to replace address recalculation in
    113 // MI. Such LEA must meet these requirements:
    114 // 1) The address calculated by the LEA differs only by the displacement from
    115 //    the address used in MI.
    116 // 2) The register class of the definition of the LEA is compatible with the
    117 //    register class of the address base register of MI.
    118 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
    119 // 4) The LEA should be as close to MI as possible, and prior to it if
    120 //    possible.
    121 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
    122                                     const MachineInstr &MI, MachineInstr *&LEA,
    123                                     int64_t &AddrDispShift, int &Dist) {
    124   const MachineFunction *MF = MI.getParent()->getParent();
    125   const MCInstrDesc &Desc = MI.getDesc();
    126   int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
    127                 X86II::getOperandBias(Desc);
    128 
    129   LEA = nullptr;
    130 
    131   // Loop over all LEA instructions.
    132   for (auto DefMI : List) {
    133     int64_t AddrDispShiftTemp = 0;
    134 
    135     // Compare instructions memory operands.
    136     if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp))
    137       continue;
    138 
    139     // Make sure address displacement fits 4 bytes.
    140     if (!isInt<32>(AddrDispShiftTemp))
    141       continue;
    142 
    143     // Check that LEA def register can be used as MI address base. Some
    144     // instructions can use a limited set of registers as address base, for
    145     // example MOV8mr_NOREX. We could constrain the register class of the LEA
    146     // def to suit MI, however since this case is very rare and hard to
    147     // reproduce in a test it's just more reliable to skip the LEA.
    148     if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
    149         MRI->getRegClass(DefMI->getOperand(0).getReg()))
    150       continue;
    151 
    152     // Choose the closest LEA instruction from the list, prior to MI if
    153     // possible. Note that we took into account resulting address displacement
    154     // as well. Also note that the list is sorted by the order in which the LEAs
    155     // occur, so the break condition is pretty simple.
    156     int DistTemp = calcInstrDist(*DefMI, MI);
    157     assert(DistTemp != 0 &&
    158            "The distance between two different instructions cannot be zero");
    159     if (DistTemp > 0 || LEA == nullptr) {
    160       // Do not update return LEA, if the current one provides a displacement
    161       // which fits in 1 byte, while the new candidate does not.
    162       if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
    163           isInt<8>(AddrDispShift))
    164         continue;
    165 
    166       LEA = DefMI;
    167       AddrDispShift = AddrDispShiftTemp;
    168       Dist = DistTemp;
    169     }
    170 
    171     // FIXME: Maybe we should not always stop at the first LEA after MI.
    172     if (DistTemp < 0)
    173       break;
    174   }
    175 
    176   return LEA != nullptr;
    177 }
    178 
    179 bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1,
    180                                     const MachineOperand &MO2) {
    181   return MO1.isIdenticalTo(MO2) &&
    182          (!MO1.isReg() ||
    183           !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
    184 }
    185 
    186 bool OptimizeLEAPass::isLEA(const MachineInstr &MI) {
    187   unsigned Opcode = MI.getOpcode();
    188   return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
    189          Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
    190 }
    191 
    192 // Check if MI1 and MI2 have memory operands which represent addresses that
    193 // differ only by displacement.
    194 bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
    195                                      const MachineInstr &MI2, unsigned N2,
    196                                      int64_t &AddrDispShift) {
    197   // Address base, scale, index and segment operands must be identical.
    198   static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt,
    199                                         X86::AddrIndexReg, X86::AddrSegmentReg};
    200   for (auto &N : IdenticalOpNums)
    201     if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N)))
    202       return false;
    203 
    204   // Address displacement operands may differ by a constant.
    205   const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp);
    206   const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp);
    207   if (!isIdenticalOp(*Op1, *Op2)) {
    208     if (Op1->isImm() && Op2->isImm())
    209       AddrDispShift = Op1->getImm() - Op2->getImm();
    210     else if (Op1->isGlobal() && Op2->isGlobal() &&
    211              Op1->getGlobal() == Op2->getGlobal())
    212       AddrDispShift = Op1->getOffset() - Op2->getOffset();
    213     else
    214       return false;
    215   }
    216 
    217   return true;
    218 }
    219 
    220 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
    221                                SmallVectorImpl<MachineInstr *> &List) {
    222   for (auto &MI : MBB) {
    223     if (isLEA(MI))
    224       List.push_back(const_cast<MachineInstr *>(&MI));
    225   }
    226 }
    227 
    228 // Try to find load and store instructions which recalculate addresses already
    229 // calculated by some LEA and replace their memory operands with its def
    230 // register.
    231 bool OptimizeLEAPass::removeRedundantAddrCalc(
    232     const SmallVectorImpl<MachineInstr *> &List) {
    233   bool Changed = false;
    234 
    235   assert(List.size() > 0);
    236   MachineBasicBlock *MBB = List[0]->getParent();
    237 
    238   // Process all instructions in basic block.
    239   for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
    240     MachineInstr &MI = *I++;
    241     unsigned Opcode = MI.getOpcode();
    242 
    243     // Instruction must be load or store.
    244     if (!MI.mayLoadOrStore())
    245       continue;
    246 
    247     // Get the number of the first memory operand.
    248     const MCInstrDesc &Desc = MI.getDesc();
    249     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode);
    250 
    251     // If instruction has no memory operand - skip it.
    252     if (MemOpNo < 0)
    253       continue;
    254 
    255     MemOpNo += X86II::getOperandBias(Desc);
    256 
    257     // Get the best LEA instruction to replace address calculation.
    258     MachineInstr *DefMI;
    259     int64_t AddrDispShift;
    260     int Dist;
    261     if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist))
    262       continue;
    263 
    264     // If LEA occurs before current instruction, we can freely replace
    265     // the instruction. If LEA occurs after, we can lift LEA above the
    266     // instruction and this way to be able to replace it. Since LEA and the
    267     // instruction have similar memory operands (thus, the same def
    268     // instructions for these operands), we can always do that, without
    269     // worries of using registers before their defs.
    270     if (Dist < 0) {
    271       DefMI->removeFromParent();
    272       MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
    273     }
    274 
    275     // Since we can possibly extend register lifetime, clear kill flags.
    276     MRI->clearKillFlags(DefMI->getOperand(0).getReg());
    277 
    278     ++NumSubstLEAs;
    279     DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
    280 
    281     // Change instruction operands.
    282     MI.getOperand(MemOpNo + X86::AddrBaseReg)
    283         .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
    284     MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
    285     MI.getOperand(MemOpNo + X86::AddrIndexReg)
    286         .ChangeToRegister(X86::NoRegister, false);
    287     MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
    288     MI.getOperand(MemOpNo + X86::AddrSegmentReg)
    289         .ChangeToRegister(X86::NoRegister, false);
    290 
    291     DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
    292 
    293     Changed = true;
    294   }
    295 
    296   return Changed;
    297 }
    298 
    299 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
    300   bool Changed = false;
    301 
    302   // Perform this optimization only if we care about code size.
    303   if (!EnableX86LEAOpt || !MF.getFunction()->optForSize())
    304     return false;
    305 
    306   MRI = &MF.getRegInfo();
    307   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
    308   TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
    309 
    310   // Process all basic blocks.
    311   for (auto &MBB : MF) {
    312     SmallVector<MachineInstr *, 16> LEAs;
    313 
    314     // Find all LEA instructions in basic block.
    315     findLEAs(MBB, LEAs);
    316 
    317     // If current basic block has no LEAs, move on to the next one.
    318     if (LEAs.empty())
    319       continue;
    320 
    321     // Remove redundant address calculations.
    322     Changed |= removeRedundantAddrCalc(LEAs);
    323   }
    324 
    325   return Changed;
    326 }
    327