Home | History | Annotate | Download | only in IPO
      1 //===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic.
     11 // See http://llvm.org/docs/LangRef.html#bitsets for more information.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/IPO/LowerBitSets.h"
     16 #include "llvm/Transforms/IPO.h"
     17 #include "llvm/ADT/EquivalenceClasses.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/ADT/Triple.h"
     20 #include "llvm/IR/Constant.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/Function.h"
     23 #include "llvm/IR/GlobalObject.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/IR/IRBuilder.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/Module.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/Pass.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     34 
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "lowerbitsets"
     38 
     39 STATISTIC(ByteArraySizeBits, "Byte array size in bits");
     40 STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
     41 STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
     42 STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
     43 STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");
     44 
     45 static cl::opt<bool> AvoidReuse(
     46     "lowerbitsets-avoid-reuse",
     47     cl::desc("Try to avoid reuse of byte array addresses using aliases"),
     48     cl::Hidden, cl::init(true));
     49 
     50 bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
     51   if (Offset < ByteOffset)
     52     return false;
     53 
     54   if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
     55     return false;
     56 
     57   uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
     58   if (BitOffset >= BitSize)
     59     return false;
     60 
     61   return Bits.count(BitOffset);
     62 }
     63 
     64 bool BitSetInfo::containsValue(
     65     const DataLayout &DL,
     66     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
     67     uint64_t COffset) const {
     68   if (auto GV = dyn_cast<GlobalObject>(V)) {
     69     auto I = GlobalLayout.find(GV);
     70     if (I == GlobalLayout.end())
     71       return false;
     72     return containsGlobalOffset(I->second + COffset);
     73   }
     74 
     75   if (auto GEP = dyn_cast<GEPOperator>(V)) {
     76     APInt APOffset(DL.getPointerSizeInBits(0), 0);
     77     bool Result = GEP->accumulateConstantOffset(DL, APOffset);
     78     if (!Result)
     79       return false;
     80     COffset += APOffset.getZExtValue();
     81     return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
     82                          COffset);
     83   }
     84 
     85   if (auto Op = dyn_cast<Operator>(V)) {
     86     if (Op->getOpcode() == Instruction::BitCast)
     87       return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);
     88 
     89     if (Op->getOpcode() == Instruction::Select)
     90       return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
     91              containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
     92   }
     93 
     94   return false;
     95 }
     96 
     97 void BitSetInfo::print(raw_ostream &OS) const {
     98   OS << "offset " << ByteOffset << " size " << BitSize << " align "
     99      << (1 << AlignLog2);
    100 
    101   if (isAllOnes()) {
    102     OS << " all-ones\n";
    103     return;
    104   }
    105 
    106   OS << " { ";
    107   for (uint64_t B : Bits)
    108     OS << B << ' ';
    109   OS << "}\n";
    110 }
    111 
    112 BitSetInfo BitSetBuilder::build() {
    113   if (Min > Max)
    114     Min = 0;
    115 
    116   // Normalize each offset against the minimum observed offset, and compute
    117   // the bitwise OR of each of the offsets. The number of trailing zeros
    118   // in the mask gives us the log2 of the alignment of all offsets, which
    119   // allows us to compress the bitset by only storing one bit per aligned
    120   // address.
    121   uint64_t Mask = 0;
    122   for (uint64_t &Offset : Offsets) {
    123     Offset -= Min;
    124     Mask |= Offset;
    125   }
    126 
    127   BitSetInfo BSI;
    128   BSI.ByteOffset = Min;
    129 
    130   BSI.AlignLog2 = 0;
    131   if (Mask != 0)
    132     BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
    133 
    134   // Build the compressed bitset while normalizing the offsets against the
    135   // computed alignment.
    136   BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
    137   for (uint64_t Offset : Offsets) {
    138     Offset >>= BSI.AlignLog2;
    139     BSI.Bits.insert(Offset);
    140   }
    141 
    142   return BSI;
    143 }
    144 
    145 void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
    146   // Create a new fragment to hold the layout for F.
    147   Fragments.emplace_back();
    148   std::vector<uint64_t> &Fragment = Fragments.back();
    149   uint64_t FragmentIndex = Fragments.size() - 1;
    150 
    151   for (auto ObjIndex : F) {
    152     uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
    153     if (OldFragmentIndex == 0) {
    154       // We haven't seen this object index before, so just add it to the current
    155       // fragment.
    156       Fragment.push_back(ObjIndex);
    157     } else {
    158       // This index belongs to an existing fragment. Copy the elements of the
    159       // old fragment into this one and clear the old fragment. We don't update
    160       // the fragment map just yet, this ensures that any further references to
    161       // indices from the old fragment in this fragment do not insert any more
    162       // indices.
    163       std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
    164       Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
    165       OldFragment.clear();
    166     }
    167   }
    168 
    169   // Update the fragment map to point our object indices to this fragment.
    170   for (uint64_t ObjIndex : Fragment)
    171     FragmentMap[ObjIndex] = FragmentIndex;
    172 }
    173 
    174 void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
    175                                 uint64_t BitSize, uint64_t &AllocByteOffset,
    176                                 uint8_t &AllocMask) {
    177   // Find the smallest current allocation.
    178   unsigned Bit = 0;
    179   for (unsigned I = 1; I != BitsPerByte; ++I)
    180     if (BitAllocs[I] < BitAllocs[Bit])
    181       Bit = I;
    182 
    183   AllocByteOffset = BitAllocs[Bit];
    184 
    185   // Add our size to it.
    186   unsigned ReqSize = AllocByteOffset + BitSize;
    187   BitAllocs[Bit] = ReqSize;
    188   if (Bytes.size() < ReqSize)
    189     Bytes.resize(ReqSize);
    190 
    191   // Set our bits.
    192   AllocMask = 1 << Bit;
    193   for (uint64_t B : Bits)
    194     Bytes[AllocByteOffset + B] |= AllocMask;
    195 }
    196 
    197 namespace {
    198 
    199 struct ByteArrayInfo {
    200   std::set<uint64_t> Bits;
    201   uint64_t BitSize;
    202   GlobalVariable *ByteArray;
    203   Constant *Mask;
    204 };
    205 
    206 struct LowerBitSets : public ModulePass {
    207   static char ID;
    208   LowerBitSets() : ModulePass(ID) {
    209     initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
    210   }
    211 
    212   Module *M;
    213 
    214   bool LinkerSubsectionsViaSymbols;
    215   Triple::ArchType Arch;
    216   Triple::ObjectFormatType ObjectFormat;
    217   IntegerType *Int1Ty;
    218   IntegerType *Int8Ty;
    219   IntegerType *Int32Ty;
    220   Type *Int32PtrTy;
    221   IntegerType *Int64Ty;
    222   IntegerType *IntPtrTy;
    223 
    224   // The llvm.bitsets named metadata.
    225   NamedMDNode *BitSetNM;
    226 
    227   // Mapping from bitset identifiers to the call sites that test them.
    228   DenseMap<Metadata *, std::vector<CallInst *>> BitSetTestCallSites;
    229 
    230   std::vector<ByteArrayInfo> ByteArrayInfos;
    231 
    232   BitSetInfo
    233   buildBitSet(Metadata *BitSet,
    234               const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
    235   ByteArrayInfo *createByteArray(BitSetInfo &BSI);
    236   void allocateByteArrays();
    237   Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
    238                           Value *BitOffset);
    239   void lowerBitSetCalls(ArrayRef<Metadata *> BitSets,
    240                         Constant *CombinedGlobalAddr,
    241                         const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
    242   Value *
    243   lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
    244                   Constant *CombinedGlobal,
    245                   const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
    246   void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> BitSets,
    247                                        ArrayRef<GlobalVariable *> Globals);
    248   unsigned getJumpTableEntrySize();
    249   Type *getJumpTableEntryType();
    250   Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
    251                                  unsigned Distance);
    252   void verifyBitSetMDNode(MDNode *Op);
    253   void buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
    254                                  ArrayRef<Function *> Functions);
    255   void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> BitSets,
    256                                    ArrayRef<GlobalObject *> Globals);
    257   bool buildBitSets();
    258   bool eraseBitSetMetadata();
    259 
    260   bool doInitialization(Module &M) override;
    261   bool runOnModule(Module &M) override;
    262 };
    263 
    264 } // anonymous namespace
    265 
    266 INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets",
    267                 "Lower bitset metadata", false, false)
    268 INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets",
    269                 "Lower bitset metadata", false, false)
    270 char LowerBitSets::ID = 0;
    271 
    272 ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }
    273 
    274 bool LowerBitSets::doInitialization(Module &Mod) {
    275   M = &Mod;
    276   const DataLayout &DL = Mod.getDataLayout();
    277 
    278   Triple TargetTriple(M->getTargetTriple());
    279   LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
    280   Arch = TargetTriple.getArch();
    281   ObjectFormat = TargetTriple.getObjectFormat();
    282 
    283   Int1Ty = Type::getInt1Ty(M->getContext());
    284   Int8Ty = Type::getInt8Ty(M->getContext());
    285   Int32Ty = Type::getInt32Ty(M->getContext());
    286   Int32PtrTy = PointerType::getUnqual(Int32Ty);
    287   Int64Ty = Type::getInt64Ty(M->getContext());
    288   IntPtrTy = DL.getIntPtrType(M->getContext(), 0);
    289 
    290   BitSetNM = M->getNamedMetadata("llvm.bitsets");
    291 
    292   BitSetTestCallSites.clear();
    293 
    294   return false;
    295 }
    296 
    297 /// Build a bit set for BitSet using the object layouts in
    298 /// GlobalLayout.
    299 BitSetInfo LowerBitSets::buildBitSet(
    300     Metadata *BitSet,
    301     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
    302   BitSetBuilder BSB;
    303 
    304   // Compute the byte offset of each element of this bitset.
    305   if (BitSetNM) {
    306     for (MDNode *Op : BitSetNM->operands()) {
    307       if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
    308         continue;
    309       Constant *OpConst =
    310           cast<ConstantAsMetadata>(Op->getOperand(1))->getValue();
    311       if (auto GA = dyn_cast<GlobalAlias>(OpConst))
    312         OpConst = GA->getAliasee();
    313       auto OpGlobal = dyn_cast<GlobalObject>(OpConst);
    314       if (!OpGlobal)
    315         continue;
    316       uint64_t Offset =
    317           cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2))
    318                                 ->getValue())->getZExtValue();
    319 
    320       Offset += GlobalLayout.find(OpGlobal)->second;
    321 
    322       BSB.addOffset(Offset);
    323     }
    324   }
    325 
    326   return BSB.build();
    327 }
    328 
    329 /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
    330 /// Bits. This pattern matches to the bt instruction on x86.
    331 static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
    332                                   Value *BitOffset) {
    333   auto BitsType = cast<IntegerType>(Bits->getType());
    334   unsigned BitWidth = BitsType->getBitWidth();
    335 
    336   BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
    337   Value *BitIndex =
    338       B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
    339   Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
    340   Value *MaskedBits = B.CreateAnd(Bits, BitMask);
    341   return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
    342 }
    343 
    344 ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
    345   // Create globals to stand in for byte arrays and masks. These never actually
    346   // get initialized, we RAUW and erase them later in allocateByteArrays() once
    347   // we know the offset and mask to use.
    348   auto ByteArrayGlobal = new GlobalVariable(
    349       *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
    350   auto MaskGlobal = new GlobalVariable(
    351       *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
    352 
    353   ByteArrayInfos.emplace_back();
    354   ByteArrayInfo *BAI = &ByteArrayInfos.back();
    355 
    356   BAI->Bits = BSI.Bits;
    357   BAI->BitSize = BSI.BitSize;
    358   BAI->ByteArray = ByteArrayGlobal;
    359   BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
    360   return BAI;
    361 }
    362 
    363 void LowerBitSets::allocateByteArrays() {
    364   std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
    365                    [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
    366                      return BAI1.BitSize > BAI2.BitSize;
    367                    });
    368 
    369   std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
    370 
    371   ByteArrayBuilder BAB;
    372   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    373     ByteArrayInfo *BAI = &ByteArrayInfos[I];
    374 
    375     uint8_t Mask;
    376     BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
    377 
    378     BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
    379     cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
    380   }
    381 
    382   Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
    383   auto ByteArray =
    384       new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
    385                          GlobalValue::PrivateLinkage, ByteArrayConst);
    386 
    387   for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    388     ByteArrayInfo *BAI = &ByteArrayInfos[I];
    389 
    390     Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
    391                         ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
    392     Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
    393         ByteArrayConst->getType(), ByteArray, Idxs);
    394 
    395     // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
    396     // that the pc-relative displacement is folded into the lea instead of the
    397     // test instruction getting another displacement.
    398     if (LinkerSubsectionsViaSymbols) {
    399       BAI->ByteArray->replaceAllUsesWith(GEP);
    400     } else {
    401       GlobalAlias *Alias = GlobalAlias::create(
    402           Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
    403       BAI->ByteArray->replaceAllUsesWith(Alias);
    404     }
    405     BAI->ByteArray->eraseFromParent();
    406   }
    407 
    408   ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
    409                       BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
    410                       BAB.BitAllocs[6] + BAB.BitAllocs[7];
    411   ByteArraySizeBytes = BAB.Bytes.size();
    412 }
    413 
    414 /// Build a test that bit BitOffset is set in BSI, where
    415 /// BitSetGlobal is a global containing the bits in BSI.
    416 Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
    417                                       ByteArrayInfo *&BAI, Value *BitOffset) {
    418   if (BSI.BitSize <= 64) {
    419     // If the bit set is sufficiently small, we can avoid a load by bit testing
    420     // a constant.
    421     IntegerType *BitsTy;
    422     if (BSI.BitSize <= 32)
    423       BitsTy = Int32Ty;
    424     else
    425       BitsTy = Int64Ty;
    426 
    427     uint64_t Bits = 0;
    428     for (auto Bit : BSI.Bits)
    429       Bits |= uint64_t(1) << Bit;
    430     Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
    431     return createMaskedBitTest(B, BitsConst, BitOffset);
    432   } else {
    433     if (!BAI) {
    434       ++NumByteArraysCreated;
    435       BAI = createByteArray(BSI);
    436     }
    437 
    438     Constant *ByteArray = BAI->ByteArray;
    439     Type *Ty = BAI->ByteArray->getValueType();
    440     if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
    441       // Each use of the byte array uses a different alias. This makes the
    442       // backend less likely to reuse previously computed byte array addresses,
    443       // improving the security of the CFI mechanism based on this pass.
    444       ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0,
    445                                       GlobalValue::PrivateLinkage, "bits_use",
    446                                       ByteArray, M);
    447     }
    448 
    449     Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
    450     Value *Byte = B.CreateLoad(ByteAddr);
    451 
    452     Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
    453     return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
    454   }
    455 }
    456 
    457 /// Lower a llvm.bitset.test call to its implementation. Returns the value to
    458 /// replace the call with.
    459 Value *LowerBitSets::lowerBitSetCall(
    460     CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
    461     Constant *CombinedGlobalIntAddr,
    462     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
    463   Value *Ptr = CI->getArgOperand(0);
    464   const DataLayout &DL = M->getDataLayout();
    465 
    466   if (BSI.containsValue(DL, GlobalLayout, Ptr))
    467     return ConstantInt::getTrue(M->getContext());
    468 
    469   Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
    470       CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
    471 
    472   BasicBlock *InitialBB = CI->getParent();
    473 
    474   IRBuilder<> B(CI);
    475 
    476   Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
    477 
    478   if (BSI.isSingleOffset())
    479     return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
    480 
    481   Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
    482 
    483   Value *BitOffset;
    484   if (BSI.AlignLog2 == 0) {
    485     BitOffset = PtrOffset;
    486   } else {
    487     // We need to check that the offset both falls within our range and is
    488     // suitably aligned. We can check both properties at the same time by
    489     // performing a right rotate by log2(alignment) followed by an integer
    490     // comparison against the bitset size. The rotate will move the lower
    491     // order bits that need to be zero into the higher order bits of the
    492     // result, causing the comparison to fail if they are nonzero. The rotate
    493     // also conveniently gives us a bit offset to use during the load from
    494     // the bitset.
    495     Value *OffsetSHR =
    496         B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
    497     Value *OffsetSHL = B.CreateShl(
    498         PtrOffset,
    499         ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
    500     BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
    501   }
    502 
    503   Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
    504   Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);
    505 
    506   // If the bit set is all ones, testing against it is unnecessary.
    507   if (BSI.isAllOnes())
    508     return OffsetInRange;
    509 
    510   TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
    511   IRBuilder<> ThenB(Term);
    512 
    513   // Now that we know that the offset is in range and aligned, load the
    514   // appropriate bit from the bitset.
    515   Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);
    516 
    517   // The value we want is 0 if we came directly from the initial block
    518   // (having failed the range or alignment checks), or the loaded bit if
    519   // we came from the block in which we loaded it.
    520   B.SetInsertPoint(CI);
    521   PHINode *P = B.CreatePHI(Int1Ty, 2);
    522   P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
    523   P->addIncoming(Bit, ThenB.GetInsertBlock());
    524   return P;
    525 }
    526 
    527 /// Given a disjoint set of bitsets and globals, layout the globals, build the
    528 /// bit sets and lower the llvm.bitset.test calls.
    529 void LowerBitSets::buildBitSetsFromGlobalVariables(
    530     ArrayRef<Metadata *> BitSets, ArrayRef<GlobalVariable *> Globals) {
    531   // Build a new global with the combined contents of the referenced globals.
    532   // This global is a struct whose even-indexed elements contain the original
    533   // contents of the referenced globals and whose odd-indexed elements contain
    534   // any padding required to align the next element to the next power of 2.
    535   std::vector<Constant *> GlobalInits;
    536   const DataLayout &DL = M->getDataLayout();
    537   for (GlobalVariable *G : Globals) {
    538     GlobalInits.push_back(G->getInitializer());
    539     uint64_t InitSize = DL.getTypeAllocSize(G->getValueType());
    540 
    541     // Compute the amount of padding required.
    542     uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
    543 
    544     // Cap at 128 was found experimentally to have a good data/instruction
    545     // overhead tradeoff.
    546     if (Padding > 128)
    547       Padding = RoundUpToAlignment(InitSize, 128) - InitSize;
    548 
    549     GlobalInits.push_back(
    550         ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
    551   }
    552   if (!GlobalInits.empty())
    553     GlobalInits.pop_back();
    554   Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
    555   auto *CombinedGlobal =
    556       new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
    557                          GlobalValue::PrivateLinkage, NewInit);
    558 
    559   StructType *NewTy = cast<StructType>(NewInit->getType());
    560   const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);
    561 
    562   // Compute the offsets of the original globals within the new global.
    563   DenseMap<GlobalObject *, uint64_t> GlobalLayout;
    564   for (unsigned I = 0; I != Globals.size(); ++I)
    565     // Multiply by 2 to account for padding elements.
    566     GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
    567 
    568   lowerBitSetCalls(BitSets, CombinedGlobal, GlobalLayout);
    569 
    570   // Build aliases pointing to offsets into the combined global for each
    571   // global from which we built the combined global, and replace references
    572   // to the original globals with references to the aliases.
    573   for (unsigned I = 0; I != Globals.size(); ++I) {
    574     // Multiply by 2 to account for padding elements.
    575     Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
    576                                       ConstantInt::get(Int32Ty, I * 2)};
    577     Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
    578         NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
    579     if (LinkerSubsectionsViaSymbols) {
    580       Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
    581     } else {
    582       assert(Globals[I]->getType()->getAddressSpace() == 0);
    583       GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0,
    584                                                 Globals[I]->getLinkage(), "",
    585                                                 CombinedGlobalElemPtr, M);
    586       GAlias->setVisibility(Globals[I]->getVisibility());
    587       GAlias->takeName(Globals[I]);
    588       Globals[I]->replaceAllUsesWith(GAlias);
    589     }
    590     Globals[I]->eraseFromParent();
    591   }
    592 }
    593 
    594 void LowerBitSets::lowerBitSetCalls(
    595     ArrayRef<Metadata *> BitSets, Constant *CombinedGlobalAddr,
    596     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
    597   Constant *CombinedGlobalIntAddr =
    598       ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);
    599 
    600   // For each bitset in this disjoint set...
    601   for (Metadata *BS : BitSets) {
    602     // Build the bitset.
    603     BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
    604     DEBUG({
    605       if (auto BSS = dyn_cast<MDString>(BS))
    606         dbgs() << BSS->getString() << ": ";
    607       else
    608         dbgs() << "<unnamed>: ";
    609       BSI.print(dbgs());
    610     });
    611 
    612     ByteArrayInfo *BAI = nullptr;
    613 
    614     // Lower each call to llvm.bitset.test for this bitset.
    615     for (CallInst *CI : BitSetTestCallSites[BS]) {
    616       ++NumBitSetCallsLowered;
    617       Value *Lowered =
    618           lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
    619       CI->replaceAllUsesWith(Lowered);
    620       CI->eraseFromParent();
    621     }
    622   }
    623 }
    624 
    625 void LowerBitSets::verifyBitSetMDNode(MDNode *Op) {
    626   if (Op->getNumOperands() != 3)
    627     report_fatal_error(
    628         "All operands of llvm.bitsets metadata must have 3 elements");
    629   if (!Op->getOperand(1))
    630     return;
    631 
    632   auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
    633   if (!OpConstMD)
    634     report_fatal_error("Bit set element must be a constant");
    635   auto OpGlobal = dyn_cast<GlobalObject>(OpConstMD->getValue());
    636   if (!OpGlobal)
    637     return;
    638 
    639   if (OpGlobal->isThreadLocal())
    640     report_fatal_error("Bit set element may not be thread-local");
    641   if (OpGlobal->hasSection())
    642     report_fatal_error("Bit set element may not have an explicit section");
    643 
    644   if (isa<GlobalVariable>(OpGlobal) && OpGlobal->isDeclarationForLinker())
    645     report_fatal_error("Bit set global var element must be a definition");
    646 
    647   auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
    648   if (!OffsetConstMD)
    649     report_fatal_error("Bit set element offset must be a constant");
    650   auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
    651   if (!OffsetInt)
    652     report_fatal_error("Bit set element offset must be an integer constant");
    653 }
    654 
    655 static const unsigned kX86JumpTableEntrySize = 8;
    656 
    657 unsigned LowerBitSets::getJumpTableEntrySize() {
    658   if (Arch != Triple::x86 && Arch != Triple::x86_64)
    659     report_fatal_error("Unsupported architecture for jump tables");
    660 
    661   return kX86JumpTableEntrySize;
    662 }
    663 
    664 // Create a constant representing a jump table entry for the target. This
    665 // consists of an instruction sequence containing a relative branch to Dest. The
    666 // constant will be laid out at address Src+(Len*Distance) where Len is the
    667 // target-specific jump table entry size.
    668 Constant *LowerBitSets::createJumpTableEntry(GlobalObject *Src, Function *Dest,
    669                                              unsigned Distance) {
    670   if (Arch != Triple::x86 && Arch != Triple::x86_64)
    671     report_fatal_error("Unsupported architecture for jump tables");
    672 
    673   const unsigned kJmpPCRel32Code = 0xe9;
    674   const unsigned kInt3Code = 0xcc;
    675 
    676   ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);
    677 
    678   // Build a constant representing the displacement between the constant's
    679   // address and Dest. This will resolve to a PC32 relocation referring to Dest.
    680   Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
    681   Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
    682   Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
    683   ConstantInt *DispOffset =
    684       ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
    685   Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
    686   OffsetedDisp = ConstantExpr::getTruncOrBitCast(OffsetedDisp, Int32Ty);
    687 
    688   ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);
    689 
    690   Constant *Fields[] = {
    691       Jmp, OffsetedDisp, Int3, Int3, Int3,
    692   };
    693   return ConstantStruct::getAnon(Fields, /*Packed=*/true);
    694 }
    695 
    696 Type *LowerBitSets::getJumpTableEntryType() {
    697   if (Arch != Triple::x86 && Arch != Triple::x86_64)
    698     report_fatal_error("Unsupported architecture for jump tables");
    699 
    700   return StructType::get(M->getContext(),
    701                          {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
    702                          /*Packed=*/true);
    703 }
    704 
    705 /// Given a disjoint set of bitsets and functions, build a jump table for the
    706 /// functions, build the bit sets and lower the llvm.bitset.test calls.
    707 void LowerBitSets::buildBitSetsFromFunctions(ArrayRef<Metadata *> BitSets,
    708                                              ArrayRef<Function *> Functions) {
    709   // Unlike the global bitset builder, the function bitset builder cannot
    710   // re-arrange functions in a particular order and base its calculations on the
    711   // layout of the functions' entry points, as we have no idea how large a
    712   // particular function will end up being (the size could even depend on what
    713   // this pass does!) Instead, we build a jump table, which is a block of code
    714   // consisting of one branch instruction for each of the functions in the bit
    715   // set that branches to the target function, and redirect any taken function
    716   // addresses to the corresponding jump table entry. In the object file's
    717   // symbol table, the symbols for the target functions also refer to the jump
    718   // table entries, so that addresses taken outside the module will pass any
    719   // verification done inside the module.
    720   //
    721   // In more concrete terms, suppose we have three functions f, g, h which are
    722   // members of a single bitset, and a function foo that returns their
    723   // addresses:
    724   //
    725   // f:
    726   // mov 0, %eax
    727   // ret
    728   //
    729   // g:
    730   // mov 1, %eax
    731   // ret
    732   //
    733   // h:
    734   // mov 2, %eax
    735   // ret
    736   //
    737   // foo:
    738   // mov f, %eax
    739   // mov g, %edx
    740   // mov h, %ecx
    741   // ret
    742   //
    743   // To create a jump table for these functions, we instruct the LLVM code
    744   // generator to output a jump table in the .text section. This is done by
    745   // representing the instructions in the jump table as an LLVM constant and
    746   // placing them in a global variable in the .text section. The end result will
    747   // (conceptually) look like this:
    748   //
    749   // f:
    750   // jmp .Ltmp0 ; 5 bytes
    751   // int3       ; 1 byte
    752   // int3       ; 1 byte
    753   // int3       ; 1 byte
    754   //
    755   // g:
    756   // jmp .Ltmp1 ; 5 bytes
    757   // int3       ; 1 byte
    758   // int3       ; 1 byte
    759   // int3       ; 1 byte
    760   //
    761   // h:
    762   // jmp .Ltmp2 ; 5 bytes
    763   // int3       ; 1 byte
    764   // int3       ; 1 byte
    765   // int3       ; 1 byte
    766   //
    767   // .Ltmp0:
    768   // mov 0, %eax
    769   // ret
    770   //
    771   // .Ltmp1:
    772   // mov 1, %eax
    773   // ret
    774   //
    775   // .Ltmp2:
    776   // mov 2, %eax
    777   // ret
    778   //
    779   // foo:
    780   // mov f, %eax
    781   // mov g, %edx
    782   // mov h, %ecx
    783   // ret
    784   //
    785   // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
    786   // normal case the check can be carried out using the same kind of simple
    787   // arithmetic that we normally use for globals.
    788 
    789   assert(!Functions.empty());
    790 
    791   // Build a simple layout based on the regular layout of jump tables.
    792   DenseMap<GlobalObject *, uint64_t> GlobalLayout;
    793   unsigned EntrySize = getJumpTableEntrySize();
    794   for (unsigned I = 0; I != Functions.size(); ++I)
    795     GlobalLayout[Functions[I]] = I * EntrySize;
    796 
    797   // Create a constant to hold the jump table.
    798   ArrayType *JumpTableType =
    799       ArrayType::get(getJumpTableEntryType(), Functions.size());
    800   auto JumpTable = new GlobalVariable(*M, JumpTableType,
    801                                       /*isConstant=*/true,
    802                                       GlobalValue::PrivateLinkage, nullptr);
    803   JumpTable->setSection(ObjectFormat == Triple::MachO
    804                             ? "__TEXT,__text,regular,pure_instructions"
    805                             : ".text");
    806   lowerBitSetCalls(BitSets, JumpTable, GlobalLayout);
    807 
    808   // Build aliases pointing to offsets into the jump table, and replace
    809   // references to the original functions with references to the aliases.
    810   for (unsigned I = 0; I != Functions.size(); ++I) {
    811     Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
    812         ConstantExpr::getGetElementPtr(
    813             JumpTableType, JumpTable,
    814             ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
    815                                  ConstantInt::get(IntPtrTy, I)}),
    816         Functions[I]->getType());
    817     if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
    818       Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
    819     } else {
    820       assert(Functions[I]->getType()->getAddressSpace() == 0);
    821       GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getValueType(), 0,
    822                                                 Functions[I]->getLinkage(), "",
    823                                                 CombinedGlobalElemPtr, M);
    824       GAlias->setVisibility(Functions[I]->getVisibility());
    825       GAlias->takeName(Functions[I]);
    826       Functions[I]->replaceAllUsesWith(GAlias);
    827     }
    828     if (!Functions[I]->isDeclarationForLinker())
    829       Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
    830   }
    831 
    832   // Build and set the jump table's initializer.
    833   std::vector<Constant *> JumpTableEntries;
    834   for (unsigned I = 0; I != Functions.size(); ++I)
    835     JumpTableEntries.push_back(
    836         createJumpTableEntry(JumpTable, Functions[I], I));
    837   JumpTable->setInitializer(
    838       ConstantArray::get(JumpTableType, JumpTableEntries));
    839 }
    840 
    841 void LowerBitSets::buildBitSetsFromDisjointSet(
    842     ArrayRef<Metadata *> BitSets, ArrayRef<GlobalObject *> Globals) {
    843   llvm::DenseMap<Metadata *, uint64_t> BitSetIndices;
    844   llvm::DenseMap<GlobalObject *, uint64_t> GlobalIndices;
    845   for (unsigned I = 0; I != BitSets.size(); ++I)
    846     BitSetIndices[BitSets[I]] = I;
    847   for (unsigned I = 0; I != Globals.size(); ++I)
    848     GlobalIndices[Globals[I]] = I;
    849 
    850   // For each bitset, build a set of indices that refer to globals referenced by
    851   // the bitset.
    852   std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
    853   if (BitSetNM) {
    854     for (MDNode *Op : BitSetNM->operands()) {
    855       // Op = { bitset name, global, offset }
    856       if (!Op->getOperand(1))
    857         continue;
    858       auto I = BitSetIndices.find(Op->getOperand(0));
    859       if (I == BitSetIndices.end())
    860         continue;
    861 
    862       auto OpGlobal = dyn_cast<GlobalObject>(
    863           cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
    864       if (!OpGlobal)
    865         continue;
    866       BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
    867     }
    868   }
    869 
    870   // Order the sets of indices by size. The GlobalLayoutBuilder works best
    871   // when given small index sets first.
    872   std::stable_sort(
    873       BitSetMembers.begin(), BitSetMembers.end(),
    874       [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
    875         return O1.size() < O2.size();
    876       });
    877 
    878   // Create a GlobalLayoutBuilder and provide it with index sets as layout
    879   // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
    880   // close together as possible.
    881   GlobalLayoutBuilder GLB(Globals.size());
    882   for (auto &&MemSet : BitSetMembers)
    883     GLB.addFragment(MemSet);
    884 
    885   // Build the bitsets from this disjoint set.
    886   if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
    887     // Build a vector of global variables with the computed layout.
    888     std::vector<GlobalVariable *> OrderedGVs(Globals.size());
    889     auto OGI = OrderedGVs.begin();
    890     for (auto &&F : GLB.Fragments) {
    891       for (auto &&Offset : F) {
    892         auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
    893         if (!GV)
    894           report_fatal_error(
    895               "Bit set may not contain both global variables and functions");
    896         *OGI++ = GV;
    897       }
    898     }
    899 
    900     buildBitSetsFromGlobalVariables(BitSets, OrderedGVs);
    901   } else {
    902     // Build a vector of functions with the computed layout.
    903     std::vector<Function *> OrderedFns(Globals.size());
    904     auto OFI = OrderedFns.begin();
    905     for (auto &&F : GLB.Fragments) {
    906       for (auto &&Offset : F) {
    907         auto Fn = dyn_cast<Function>(Globals[Offset]);
    908         if (!Fn)
    909           report_fatal_error(
    910               "Bit set may not contain both global variables and functions");
    911         *OFI++ = Fn;
    912       }
    913     }
    914 
    915     buildBitSetsFromFunctions(BitSets, OrderedFns);
    916   }
    917 }
    918 
    919 /// Lower all bit sets in this module.
    920 bool LowerBitSets::buildBitSets() {
    921   Function *BitSetTestFunc =
    922       M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
    923   if (!BitSetTestFunc)
    924     return false;
    925 
    926   // Equivalence class set containing bitsets and the globals they reference.
    927   // This is used to partition the set of bitsets in the module into disjoint
    928   // sets.
    929   typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
    930       GlobalClassesTy;
    931   GlobalClassesTy GlobalClasses;
    932 
    933   // Verify the bitset metadata and build a mapping from bitset identifiers to
    934   // their last observed index in BitSetNM. This will used later to
    935   // deterministically order the list of bitset identifiers.
    936   llvm::DenseMap<Metadata *, unsigned> BitSetIdIndices;
    937   if (BitSetNM) {
    938     for (unsigned I = 0, E = BitSetNM->getNumOperands(); I != E; ++I) {
    939       MDNode *Op = BitSetNM->getOperand(I);
    940       verifyBitSetMDNode(Op);
    941       BitSetIdIndices[Op->getOperand(0)] = I;
    942     }
    943   }
    944 
    945   for (const Use &U : BitSetTestFunc->uses()) {
    946     auto CI = cast<CallInst>(U.getUser());
    947 
    948     auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
    949     if (!BitSetMDVal)
    950       report_fatal_error(
    951           "Second argument of llvm.bitset.test must be metadata");
    952     auto BitSet = BitSetMDVal->getMetadata();
    953 
    954     // Add the call site to the list of call sites for this bit set. We also use
    955     // BitSetTestCallSites to keep track of whether we have seen this bit set
    956     // before. If we have, we don't need to re-add the referenced globals to the
    957     // equivalence class.
    958     std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator,
    959               bool> Ins =
    960         BitSetTestCallSites.insert(
    961             std::make_pair(BitSet, std::vector<CallInst *>()));
    962     Ins.first->second.push_back(CI);
    963     if (!Ins.second)
    964       continue;
    965 
    966     // Add the bitset to the equivalence class.
    967     GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
    968     GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
    969 
    970     if (!BitSetNM)
    971       continue;
    972 
    973     // Add the referenced globals to the bitset's equivalence class.
    974     for (MDNode *Op : BitSetNM->operands()) {
    975       if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
    976         continue;
    977 
    978       auto OpGlobal = dyn_cast<GlobalObject>(
    979           cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
    980       if (!OpGlobal)
    981         continue;
    982 
    983       CurSet = GlobalClasses.unionSets(
    984           CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
    985     }
    986   }
    987 
    988   if (GlobalClasses.empty())
    989     return false;
    990 
    991   // Build a list of disjoint sets ordered by their maximum BitSetNM index
    992   // for determinism.
    993   std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
    994   for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
    995                                  E = GlobalClasses.end();
    996        I != E; ++I) {
    997     if (!I->isLeader()) continue;
    998     ++NumBitSetDisjointSets;
    999 
   1000     unsigned MaxIndex = 0;
   1001     for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
   1002          MI != GlobalClasses.member_end(); ++MI) {
   1003       if ((*MI).is<Metadata *>())
   1004         MaxIndex = std::max(MaxIndex, BitSetIdIndices[MI->get<Metadata *>()]);
   1005     }
   1006     Sets.emplace_back(I, MaxIndex);
   1007   }
   1008   std::sort(Sets.begin(), Sets.end(),
   1009             [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
   1010                const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
   1011               return S1.second < S2.second;
   1012             });
   1013 
   1014   // For each disjoint set we found...
   1015   for (const auto &S : Sets) {
   1016     // Build the list of bitsets in this disjoint set.
   1017     std::vector<Metadata *> BitSets;
   1018     std::vector<GlobalObject *> Globals;
   1019     for (GlobalClassesTy::member_iterator MI =
   1020              GlobalClasses.member_begin(S.first);
   1021          MI != GlobalClasses.member_end(); ++MI) {
   1022       if ((*MI).is<Metadata *>())
   1023         BitSets.push_back(MI->get<Metadata *>());
   1024       else
   1025         Globals.push_back(MI->get<GlobalObject *>());
   1026     }
   1027 
   1028     // Order bitsets by BitSetNM index for determinism. This ordering is stable
   1029     // as there is a one-to-one mapping between metadata and indices.
   1030     std::sort(BitSets.begin(), BitSets.end(), [&](Metadata *M1, Metadata *M2) {
   1031       return BitSetIdIndices[M1] < BitSetIdIndices[M2];
   1032     });
   1033 
   1034     // Lower the bitsets in this disjoint set.
   1035     buildBitSetsFromDisjointSet(BitSets, Globals);
   1036   }
   1037 
   1038   allocateByteArrays();
   1039 
   1040   return true;
   1041 }
   1042 
   1043 bool LowerBitSets::eraseBitSetMetadata() {
   1044   if (!BitSetNM)
   1045     return false;
   1046 
   1047   M->eraseNamedMetadata(BitSetNM);
   1048   return true;
   1049 }
   1050 
   1051 bool LowerBitSets::runOnModule(Module &M) {
   1052   bool Changed = buildBitSets();
   1053   Changed |= eraseBitSetMetadata();
   1054   return Changed;
   1055 }
   1056