Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineShifts.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitShl, visitLShr, and visitAShr functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 #define DEBUG_TYPE "instcombine"
     23 
     24 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
     25   assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
     26   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
     27 
     28   // See if we can fold away this shift.
     29   if (SimplifyDemandedInstructionBits(I))
     30     return &I;
     31 
     32   // Try to fold constant and into select arguments.
     33   if (isa<Constant>(Op0))
     34     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
     35       if (Instruction *R = FoldOpIntoSelect(I, SI))
     36         return R;
     37 
     38   if (Constant *CUI = dyn_cast<Constant>(Op1))
     39     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
     40       return Res;
     41 
     42   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
     43   // Because shifts by negative values (which could occur if A were negative)
     44   // are undefined.
     45   Value *A; const APInt *B;
     46   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
     47     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
     48     // demand the sign bit (and many others) here??
     49     Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
     50                                     Op1->getName());
     51     I.setOperand(1, Rem);
     52     return &I;
     53   }
     54 
     55   return nullptr;
     56 }
     57 
     58 /// See if we can compute the specified value, but shifted
     59 /// logically to the left or right by some number of bits.  This should return
     60 /// true if the expression can be computed for the same cost as the current
     61 /// expression tree.  This is used to eliminate extraneous shifting from things
     62 /// like:
     63 ///      %C = shl i128 %A, 64
     64 ///      %D = shl i128 %B, 96
     65 ///      %E = or i128 %C, %D
     66 ///      %F = lshr i128 %E, 64
     67 /// where the client will ask if E can be computed shifted right by 64-bits.  If
     68 /// this succeeds, the GetShiftedValue function will be called to produce the
     69 /// value.
     70 static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
     71                                InstCombiner &IC, Instruction *CxtI) {
     72   // We can always evaluate constants shifted.
     73   if (isa<Constant>(V))
     74     return true;
     75 
     76   Instruction *I = dyn_cast<Instruction>(V);
     77   if (!I) return false;
     78 
     79   // If this is the opposite shift, we can directly reuse the input of the shift
     80   // if the needed bits are already zero in the input.  This allows us to reuse
     81   // the value which means that we don't care if the shift has multiple uses.
     82   //  TODO:  Handle opposite shift by exact value.
     83   ConstantInt *CI = nullptr;
     84   if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
     85       (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
     86     if (CI->getZExtValue() == NumBits) {
     87       // TODO: Check that the input bits are already zero with MaskedValueIsZero
     88 #if 0
     89       // If this is a truncate of a logical shr, we can truncate it to a smaller
     90       // lshr iff we know that the bits we would otherwise be shifting in are
     91       // already zeros.
     92       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
     93       uint32_t BitWidth = Ty->getScalarSizeInBits();
     94       if (MaskedValueIsZero(I->getOperand(0),
     95             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
     96           CI->getLimitedValue(BitWidth) < BitWidth) {
     97         return CanEvaluateTruncated(I->getOperand(0), Ty);
     98       }
     99 #endif
    100 
    101     }
    102   }
    103 
    104   // We can't mutate something that has multiple uses: doing so would
    105   // require duplicating the instruction in general, which isn't profitable.
    106   if (!I->hasOneUse()) return false;
    107 
    108   switch (I->getOpcode()) {
    109   default: return false;
    110   case Instruction::And:
    111   case Instruction::Or:
    112   case Instruction::Xor:
    113     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    114     return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC, I) &&
    115            CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC, I);
    116 
    117   case Instruction::Shl: {
    118     // We can often fold the shift into shifts-by-a-constant.
    119     CI = dyn_cast<ConstantInt>(I->getOperand(1));
    120     if (!CI) return false;
    121 
    122     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
    123     if (isLeftShift) return true;
    124 
    125     // We can always turn shl(c)+shr(c) -> and(c2).
    126     if (CI->getValue() == NumBits) return true;
    127 
    128     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
    129 
    130     // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
    131     // profitable unless we know the and'd out bits are already zero.
    132     if (CI->getZExtValue() > NumBits) {
    133       unsigned LowBits = TypeWidth - CI->getZExtValue();
    134       if (IC.MaskedValueIsZero(I->getOperand(0),
    135                        APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
    136                        0, CxtI))
    137         return true;
    138     }
    139 
    140     return false;
    141   }
    142   case Instruction::LShr: {
    143     // We can often fold the shift into shifts-by-a-constant.
    144     CI = dyn_cast<ConstantInt>(I->getOperand(1));
    145     if (!CI) return false;
    146 
    147     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
    148     if (!isLeftShift) return true;
    149 
    150     // We can always turn lshr(c)+shl(c) -> and(c2).
    151     if (CI->getValue() == NumBits) return true;
    152 
    153     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
    154 
    155     // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
    156     // profitable unless we know the and'd out bits are already zero.
    157     if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
    158       unsigned LowBits = CI->getZExtValue() - NumBits;
    159       if (IC.MaskedValueIsZero(I->getOperand(0),
    160                           APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
    161                           0, CxtI))
    162         return true;
    163     }
    164 
    165     return false;
    166   }
    167   case Instruction::Select: {
    168     SelectInst *SI = cast<SelectInst>(I);
    169     return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift,
    170                               IC, SI) &&
    171            CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC, SI);
    172   }
    173   case Instruction::PHI: {
    174     // We can change a phi if we can change all operands.  Note that we never
    175     // get into trouble with cyclic PHIs here because we only consider
    176     // instructions with a single use.
    177     PHINode *PN = cast<PHINode>(I);
    178     for (Value *IncValue : PN->incoming_values())
    179       if (!CanEvaluateShifted(IncValue, NumBits, isLeftShift,
    180                               IC, PN))
    181         return false;
    182     return true;
    183   }
    184   }
    185 }
    186 
    187 /// When CanEvaluateShifted returned true for an expression,
    188 /// this value inserts the new computation that produces the shifted value.
    189 static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
    190                               InstCombiner &IC, const DataLayout &DL) {
    191   // We can always evaluate constants shifted.
    192   if (Constant *C = dyn_cast<Constant>(V)) {
    193     if (isLeftShift)
    194       V = IC.Builder->CreateShl(C, NumBits);
    195     else
    196       V = IC.Builder->CreateLShr(C, NumBits);
    197     // If we got a constantexpr back, try to simplify it with TD info.
    198     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    199       V = ConstantFoldConstantExpression(CE, DL, IC.getTargetLibraryInfo());
    200     return V;
    201   }
    202 
    203   Instruction *I = cast<Instruction>(V);
    204   IC.Worklist.Add(I);
    205 
    206   switch (I->getOpcode()) {
    207   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
    208   case Instruction::And:
    209   case Instruction::Or:
    210   case Instruction::Xor:
    211     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    212     I->setOperand(
    213         0, GetShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
    214     I->setOperand(
    215         1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    216     return I;
    217 
    218   case Instruction::Shl: {
    219     BinaryOperator *BO = cast<BinaryOperator>(I);
    220     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
    221 
    222     // We only accept shifts-by-a-constant in CanEvaluateShifted.
    223     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
    224 
    225     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
    226     if (isLeftShift) {
    227       // If this is oversized composite shift, then unsigned shifts get 0.
    228       unsigned NewShAmt = NumBits+CI->getZExtValue();
    229       if (NewShAmt >= TypeWidth)
    230         return Constant::getNullValue(I->getType());
    231 
    232       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
    233       BO->setHasNoUnsignedWrap(false);
    234       BO->setHasNoSignedWrap(false);
    235       return I;
    236     }
    237 
    238     // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
    239     // zeros.
    240     if (CI->getValue() == NumBits) {
    241       APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
    242       V = IC.Builder->CreateAnd(BO->getOperand(0),
    243                                 ConstantInt::get(BO->getContext(), Mask));
    244       if (Instruction *VI = dyn_cast<Instruction>(V)) {
    245         VI->moveBefore(BO);
    246         VI->takeName(BO);
    247       }
    248       return V;
    249     }
    250 
    251     // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
    252     // the and won't be needed.
    253     assert(CI->getZExtValue() > NumBits);
    254     BO->setOperand(1, ConstantInt::get(BO->getType(),
    255                                        CI->getZExtValue() - NumBits));
    256     BO->setHasNoUnsignedWrap(false);
    257     BO->setHasNoSignedWrap(false);
    258     return BO;
    259   }
    260   case Instruction::LShr: {
    261     BinaryOperator *BO = cast<BinaryOperator>(I);
    262     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
    263     // We only accept shifts-by-a-constant in CanEvaluateShifted.
    264     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
    265 
    266     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
    267     if (!isLeftShift) {
    268       // If this is oversized composite shift, then unsigned shifts get 0.
    269       unsigned NewShAmt = NumBits+CI->getZExtValue();
    270       if (NewShAmt >= TypeWidth)
    271         return Constant::getNullValue(BO->getType());
    272 
    273       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
    274       BO->setIsExact(false);
    275       return I;
    276     }
    277 
    278     // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
    279     // zeros.
    280     if (CI->getValue() == NumBits) {
    281       APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
    282       V = IC.Builder->CreateAnd(I->getOperand(0),
    283                                 ConstantInt::get(BO->getContext(), Mask));
    284       if (Instruction *VI = dyn_cast<Instruction>(V)) {
    285         VI->moveBefore(I);
    286         VI->takeName(I);
    287       }
    288       return V;
    289     }
    290 
    291     // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
    292     // the and won't be needed.
    293     assert(CI->getZExtValue() > NumBits);
    294     BO->setOperand(1, ConstantInt::get(BO->getType(),
    295                                        CI->getZExtValue() - NumBits));
    296     BO->setIsExact(false);
    297     return BO;
    298   }
    299 
    300   case Instruction::Select:
    301     I->setOperand(
    302         1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    303     I->setOperand(
    304         2, GetShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
    305     return I;
    306   case Instruction::PHI: {
    307     // We can change a phi if we can change all operands.  Note that we never
    308     // get into trouble with cyclic PHIs here because we only consider
    309     // instructions with a single use.
    310     PHINode *PN = cast<PHINode>(I);
    311     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    312       PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), NumBits,
    313                                               isLeftShift, IC, DL));
    314     return PN;
    315   }
    316   }
    317 }
    318 
    319 
    320 
    321 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
    322                                                BinaryOperator &I) {
    323   bool isLeftShift = I.getOpcode() == Instruction::Shl;
    324 
    325   ConstantInt *COp1 = nullptr;
    326   if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(Op1))
    327     COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
    328   else if (ConstantVector *CV = dyn_cast<ConstantVector>(Op1))
    329     COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
    330   else
    331     COp1 = dyn_cast<ConstantInt>(Op1);
    332 
    333   if (!COp1)
    334     return nullptr;
    335 
    336   // See if we can propagate this shift into the input, this covers the trivial
    337   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
    338   if (I.getOpcode() != Instruction::AShr &&
    339       CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this, &I)) {
    340     DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
    341               " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
    342 
    343     return ReplaceInstUsesWith(
    344         I, GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this, DL));
    345   }
    346 
    347   // See if we can simplify any instructions used by the instruction whose sole
    348   // purpose is to compute bits we don't care about.
    349   uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
    350 
    351   assert(!COp1->uge(TypeBits) &&
    352          "Shift over the type width should have been removed already");
    353 
    354   // ((X*C1) << C2) == (X * (C1 << C2))
    355   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
    356     if (BO->getOpcode() == Instruction::Mul && isLeftShift)
    357       if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
    358         return BinaryOperator::CreateMul(BO->getOperand(0),
    359                                         ConstantExpr::getShl(BOOp, Op1));
    360 
    361   // Try to fold constant and into select arguments.
    362   if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    363     if (Instruction *R = FoldOpIntoSelect(I, SI))
    364       return R;
    365   if (isa<PHINode>(Op0))
    366     if (Instruction *NV = FoldOpIntoPhi(I))
    367       return NV;
    368 
    369   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
    370   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
    371     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
    372     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
    373     // place.  Don't try to do this transformation in this case.  Also, we
    374     // require that the input operand is a shift-by-constant so that we have
    375     // confidence that the shifts will get folded together.  We could do this
    376     // xform in more cases, but it is unlikely to be profitable.
    377     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
    378         isa<ConstantInt>(TrOp->getOperand(1))) {
    379       // Okay, we'll do this xform.  Make the shift of shift.
    380       Constant *ShAmt = ConstantExpr::getZExt(COp1, TrOp->getType());
    381       // (shift2 (shift1 & 0x00FF), c2)
    382       Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
    383 
    384       // For logical shifts, the truncation has the effect of making the high
    385       // part of the register be zeros.  Emulate this by inserting an AND to
    386       // clear the top bits as needed.  This 'and' will usually be zapped by
    387       // other xforms later if dead.
    388       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
    389       unsigned DstSize = TI->getType()->getScalarSizeInBits();
    390       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
    391 
    392       // The mask we constructed says what the trunc would do if occurring
    393       // between the shifts.  We want to know the effect *after* the second
    394       // shift.  We know that it is a logical shift by a constant, so adjust the
    395       // mask as appropriate.
    396       if (I.getOpcode() == Instruction::Shl)
    397         MaskV <<= COp1->getZExtValue();
    398       else {
    399         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
    400         MaskV = MaskV.lshr(COp1->getZExtValue());
    401       }
    402 
    403       // shift1 & 0x00FF
    404       Value *And = Builder->CreateAnd(NSh,
    405                                       ConstantInt::get(I.getContext(), MaskV),
    406                                       TI->getName());
    407 
    408       // Return the value truncated to the interesting size.
    409       return new TruncInst(And, I.getType());
    410     }
    411   }
    412 
    413   if (Op0->hasOneUse()) {
    414     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
    415       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
    416       Value *V1, *V2;
    417       ConstantInt *CC;
    418       switch (Op0BO->getOpcode()) {
    419       default: break;
    420       case Instruction::Add:
    421       case Instruction::And:
    422       case Instruction::Or:
    423       case Instruction::Xor: {
    424         // These operators commute.
    425         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
    426         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
    427             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
    428                   m_Specific(Op1)))) {
    429           Value *YS =         // (Y << C)
    430             Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
    431           // (X + (Y << C))
    432           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
    433                                           Op0BO->getOperand(1)->getName());
    434           uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
    435 
    436           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
    437           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
    438           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
    439             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
    440           return BinaryOperator::CreateAnd(X, Mask);
    441         }
    442 
    443         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
    444         Value *Op0BOOp1 = Op0BO->getOperand(1);
    445         if (isLeftShift && Op0BOOp1->hasOneUse() &&
    446             match(Op0BOOp1,
    447                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
    448                         m_ConstantInt(CC)))) {
    449           Value *YS =   // (Y << C)
    450             Builder->CreateShl(Op0BO->getOperand(0), Op1,
    451                                          Op0BO->getName());
    452           // X & (CC << C)
    453           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
    454                                          V1->getName()+".mask");
    455           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
    456         }
    457       }
    458 
    459       // FALL THROUGH.
    460       case Instruction::Sub: {
    461         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
    462         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
    463             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
    464                   m_Specific(Op1)))) {
    465           Value *YS =  // (Y << C)
    466             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
    467           // (X + (Y << C))
    468           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
    469                                           Op0BO->getOperand(0)->getName());
    470           uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
    471 
    472           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
    473           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
    474           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
    475             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
    476           return BinaryOperator::CreateAnd(X, Mask);
    477         }
    478 
    479         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
    480         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
    481             match(Op0BO->getOperand(0),
    482                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
    483                         m_ConstantInt(CC))) && V2 == Op1) {
    484           Value *YS = // (Y << C)
    485             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
    486           // X & (CC << C)
    487           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
    488                                          V1->getName()+".mask");
    489 
    490           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
    491         }
    492 
    493         break;
    494       }
    495       }
    496 
    497 
    498       // If the operand is a bitwise operator with a constant RHS, and the
    499       // shift is the only use, we can pull it out of the shift.
    500       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
    501         bool isValid = true;     // Valid only for And, Or, Xor
    502         bool highBitSet = false; // Transform if high bit of constant set?
    503 
    504         switch (Op0BO->getOpcode()) {
    505         default: isValid = false; break;   // Do not perform transform!
    506         case Instruction::Add:
    507           isValid = isLeftShift;
    508           break;
    509         case Instruction::Or:
    510         case Instruction::Xor:
    511           highBitSet = false;
    512           break;
    513         case Instruction::And:
    514           highBitSet = true;
    515           break;
    516         }
    517 
    518         // If this is a signed shift right, and the high bit is modified
    519         // by the logical operation, do not perform the transformation.
    520         // The highBitSet boolean indicates the value of the high bit of
    521         // the constant which would cause it to be modified for this
    522         // operation.
    523         //
    524         if (isValid && I.getOpcode() == Instruction::AShr)
    525           isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
    526 
    527         if (isValid) {
    528           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
    529 
    530           Value *NewShift =
    531             Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
    532           NewShift->takeName(Op0BO);
    533 
    534           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
    535                                         NewRHS);
    536         }
    537       }
    538     }
    539   }
    540 
    541   // Find out if this is a shift of a shift by a constant.
    542   BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
    543   if (ShiftOp && !ShiftOp->isShift())
    544     ShiftOp = nullptr;
    545 
    546   if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
    547 
    548     // This is a constant shift of a constant shift. Be careful about hiding
    549     // shl instructions behind bit masks. They are used to represent multiplies
    550     // by a constant, and it is important that simple arithmetic expressions
    551     // are still recognizable by scalar evolution.
    552     //
    553     // The transforms applied to shl are very similar to the transforms applied
    554     // to mul by constant. We can be more aggressive about optimizing right
    555     // shifts.
    556     //
    557     // Combinations of right and left shifts will still be optimized in
    558     // DAGCombine where scalar evolution no longer applies.
    559 
    560     ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
    561     uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
    562     uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits);
    563     assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
    564     if (ShiftAmt1 == 0) return nullptr;  // Will be simplified in the future.
    565     Value *X = ShiftOp->getOperand(0);
    566 
    567     IntegerType *Ty = cast<IntegerType>(I.getType());
    568 
    569     // Check for (X << c1) << c2  and  (X >> c1) >> c2
    570     if (I.getOpcode() == ShiftOp->getOpcode()) {
    571       uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
    572       // If this is oversized composite shift, then unsigned shifts get 0, ashr
    573       // saturates.
    574       if (AmtSum >= TypeBits) {
    575         if (I.getOpcode() != Instruction::AShr)
    576           return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
    577         AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
    578       }
    579 
    580       return BinaryOperator::Create(I.getOpcode(), X,
    581                                     ConstantInt::get(Ty, AmtSum));
    582     }
    583 
    584     if (ShiftAmt1 == ShiftAmt2) {
    585       // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
    586       if (I.getOpcode() == Instruction::LShr &&
    587           ShiftOp->getOpcode() == Instruction::Shl) {
    588         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
    589         return BinaryOperator::CreateAnd(X,
    590                                         ConstantInt::get(I.getContext(), Mask));
    591       }
    592     } else if (ShiftAmt1 < ShiftAmt2) {
    593       uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
    594 
    595       // (X >>?,exact C1) << C2 --> X << (C2-C1)
    596       // The inexact version is deferred to DAGCombine so we don't hide shl
    597       // behind a bit mask.
    598       if (I.getOpcode() == Instruction::Shl &&
    599           ShiftOp->getOpcode() != Instruction::Shl &&
    600           ShiftOp->isExact()) {
    601         assert(ShiftOp->getOpcode() == Instruction::LShr ||
    602                ShiftOp->getOpcode() == Instruction::AShr);
    603         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    604         BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    605                                                         X, ShiftDiffCst);
    606         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    607         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
    608         return NewShl;
    609       }
    610 
    611       // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
    612       if (I.getOpcode() == Instruction::LShr &&
    613           ShiftOp->getOpcode() == Instruction::Shl) {
    614         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    615         // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
    616         if (ShiftOp->hasNoUnsignedWrap()) {
    617           BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
    618                                                            X, ShiftDiffCst);
    619           NewLShr->setIsExact(I.isExact());
    620           return NewLShr;
    621         }
    622         Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
    623 
    624         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
    625         return BinaryOperator::CreateAnd(Shift,
    626                                          ConstantInt::get(I.getContext(),Mask));
    627       }
    628 
    629       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
    630       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    631       if (I.getOpcode() == Instruction::AShr &&
    632           ShiftOp->getOpcode() == Instruction::Shl) {
    633         if (ShiftOp->hasNoSignedWrap()) {
    634           // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
    635           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    636           BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
    637                                                            X, ShiftDiffCst);
    638           NewAShr->setIsExact(I.isExact());
    639           return NewAShr;
    640         }
    641       }
    642     } else {
    643       assert(ShiftAmt2 < ShiftAmt1);
    644       uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
    645 
    646       // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
    647       // The inexact version is deferred to DAGCombine so we don't hide shl
    648       // behind a bit mask.
    649       if (I.getOpcode() == Instruction::Shl &&
    650           ShiftOp->getOpcode() != Instruction::Shl &&
    651           ShiftOp->isExact()) {
    652         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    653         BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
    654                                                         X, ShiftDiffCst);
    655         NewShr->setIsExact(true);
    656         return NewShr;
    657       }
    658 
    659       // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
    660       if (I.getOpcode() == Instruction::LShr &&
    661           ShiftOp->getOpcode() == Instruction::Shl) {
    662         ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    663         if (ShiftOp->hasNoUnsignedWrap()) {
    664           // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
    665           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    666                                                           X, ShiftDiffCst);
    667           NewShl->setHasNoUnsignedWrap(true);
    668           return NewShl;
    669         }
    670         Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
    671 
    672         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
    673         return BinaryOperator::CreateAnd(Shift,
    674                                          ConstantInt::get(I.getContext(),Mask));
    675       }
    676 
    677       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
    678       // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    679       if (I.getOpcode() == Instruction::AShr &&
    680           ShiftOp->getOpcode() == Instruction::Shl) {
    681         if (ShiftOp->hasNoSignedWrap()) {
    682           // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
    683           ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
    684           BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
    685                                                           X, ShiftDiffCst);
    686           NewShl->setHasNoSignedWrap(true);
    687           return NewShl;
    688         }
    689       }
    690     }
    691   }
    692   return nullptr;
    693 }
    694 
    695 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
    696   if (Value *V = SimplifyVectorOp(I))
    697     return ReplaceInstUsesWith(I, V);
    698 
    699   if (Value *V =
    700           SimplifyShlInst(I.getOperand(0), I.getOperand(1), I.hasNoSignedWrap(),
    701                           I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
    702     return ReplaceInstUsesWith(I, V);
    703 
    704   if (Instruction *V = commonShiftTransforms(I))
    705     return V;
    706 
    707   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
    708     unsigned ShAmt = Op1C->getZExtValue();
    709 
    710     // If the shifted-out value is known-zero, then this is a NUW shift.
    711     if (!I.hasNoUnsignedWrap() &&
    712         MaskedValueIsZero(I.getOperand(0),
    713                           APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt),
    714                           0, &I)) {
    715           I.setHasNoUnsignedWrap();
    716           return &I;
    717         }
    718 
    719     // If the shifted out value is all signbits, this is a NSW shift.
    720     if (!I.hasNoSignedWrap() &&
    721         ComputeNumSignBits(I.getOperand(0), 0, &I) > ShAmt) {
    722       I.setHasNoSignedWrap();
    723       return &I;
    724     }
    725   }
    726 
    727   // (C1 << A) << C2 -> (C1 << C2) << A
    728   Constant *C1, *C2;
    729   Value *A;
    730   if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
    731       match(I.getOperand(1), m_Constant(C2)))
    732     return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
    733 
    734   return nullptr;
    735 }
    736 
    737 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
    738   if (Value *V = SimplifyVectorOp(I))
    739     return ReplaceInstUsesWith(I, V);
    740 
    741   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
    742                                   DL, TLI, DT, AC))
    743     return ReplaceInstUsesWith(I, V);
    744 
    745   if (Instruction *R = commonShiftTransforms(I))
    746     return R;
    747 
    748   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    749 
    750   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    751     unsigned ShAmt = Op1C->getZExtValue();
    752 
    753     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
    754       unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
    755       // ctlz.i32(x)>>5  --> zext(x == 0)
    756       // cttz.i32(x)>>5  --> zext(x == 0)
    757       // ctpop.i32(x)>>5 --> zext(x == -1)
    758       if ((II->getIntrinsicID() == Intrinsic::ctlz ||
    759            II->getIntrinsicID() == Intrinsic::cttz ||
    760            II->getIntrinsicID() == Intrinsic::ctpop) &&
    761           isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
    762         bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
    763         Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
    764         Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
    765         return new ZExtInst(Cmp, II->getType());
    766       }
    767     }
    768 
    769     // If the shifted-out value is known-zero, then this is an exact shift.
    770     if (!I.isExact() &&
    771         MaskedValueIsZero(Op0, APInt::getLowBitsSet(Op1C->getBitWidth(), ShAmt),
    772                           0, &I)){
    773       I.setIsExact();
    774       return &I;
    775     }
    776   }
    777 
    778   return nullptr;
    779 }
    780 
    781 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
    782   if (Value *V = SimplifyVectorOp(I))
    783     return ReplaceInstUsesWith(I, V);
    784 
    785   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
    786                                   DL, TLI, DT, AC))
    787     return ReplaceInstUsesWith(I, V);
    788 
    789   if (Instruction *R = commonShiftTransforms(I))
    790     return R;
    791 
    792   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    793 
    794   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    795     unsigned ShAmt = Op1C->getZExtValue();
    796 
    797     // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
    798     // have a sign-extend idiom.
    799     Value *X;
    800     if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
    801       // If the input is an extension from the shifted amount value, e.g.
    802       //   %x = zext i8 %A to i32
    803       //   %y = shl i32 %x, 24
    804       //   %z = ashr %y, 24
    805       // then turn this into "z = sext i8 A to i32".
    806       if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
    807         uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
    808         uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
    809         if (Op1C->getZExtValue() == DestBits-SrcBits)
    810           return new SExtInst(ZI->getOperand(0), ZI->getType());
    811       }
    812     }
    813 
    814     // If the shifted-out value is known-zero, then this is an exact shift.
    815     if (!I.isExact() &&
    816         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt),
    817                           0, &I)){
    818       I.setIsExact();
    819       return &I;
    820     }
    821   }
    822 
    823   // See if we can turn a signed shr into an unsigned shr.
    824   if (MaskedValueIsZero(Op0,
    825                         APInt::getSignBit(I.getType()->getScalarSizeInBits()),
    826                         0, &I))
    827     return BinaryOperator::CreateLShr(Op0, Op1);
    828 
    829   return nullptr;
    830 }
    831