Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/TargetSchedule.h - Sched Machine Model -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a wrapper around MCSchedModel that allows the interface to
     11 // benefit from information currently only available in TargetInstrInfo.
     12 // Ideally, the scheduling interface would be fully defined in the MC layer.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
     17 #define LLVM_CODEGEN_TARGETSCHEDULE_H
     18 
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/MC/MCInstrItineraries.h"
     21 #include "llvm/MC/MCSchedule.h"
     22 #include "llvm/Target/TargetSubtargetInfo.h"
     23 
     24 namespace llvm {
     25 
     26 class TargetRegisterInfo;
     27 class TargetSubtargetInfo;
     28 class TargetInstrInfo;
     29 class MachineInstr;
     30 
     31 /// Provide an instruction scheduling machine model to CodeGen passes.
     32 class TargetSchedModel {
     33   // For efficiency, hold a copy of the statically defined MCSchedModel for this
     34   // processor.
     35   MCSchedModel SchedModel;
     36   InstrItineraryData InstrItins;
     37   const TargetSubtargetInfo *STI;
     38   const TargetInstrInfo *TII;
     39 
     40   SmallVector<unsigned, 16> ResourceFactors;
     41   unsigned MicroOpFactor; // Multiply to normalize microops to resource units.
     42   unsigned ResourceLCM;   // Resource units per cycle. Latency normalization factor.
     43 
     44   unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const;
     45 
     46 public:
     47   TargetSchedModel(): SchedModel(MCSchedModel::GetDefaultSchedModel()), STI(nullptr), TII(nullptr) {}
     48 
     49   /// \brief Initialize the machine model for instruction scheduling.
     50   ///
     51   /// The machine model API keeps a copy of the top-level MCSchedModel table
     52   /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
     53   /// dynamic properties.
     54   void init(const MCSchedModel &sm, const TargetSubtargetInfo *sti,
     55             const TargetInstrInfo *tii);
     56 
     57   /// Return the MCSchedClassDesc for this instruction.
     58   const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const;
     59 
     60   /// \brief TargetInstrInfo getter.
     61   const TargetInstrInfo *getInstrInfo() const { return TII; }
     62 
     63   /// \brief Return true if this machine model includes an instruction-level
     64   /// scheduling model.
     65   ///
     66   /// This is more detailed than the course grain IssueWidth and default
     67   /// latency properties, but separate from the per-cycle itinerary data.
     68   bool hasInstrSchedModel() const;
     69 
     70   const MCSchedModel *getMCSchedModel() const { return &SchedModel; }
     71 
     72   /// \brief Return true if this machine model includes cycle-to-cycle itinerary
     73   /// data.
     74   ///
     75   /// This models scheduling at each stage in the processor pipeline.
     76   bool hasInstrItineraries() const;
     77 
     78   const InstrItineraryData *getInstrItineraries() const {
     79     if (hasInstrItineraries())
     80       return &InstrItins;
     81     return nullptr;
     82   }
     83 
     84   /// \brief Return true if this machine model includes an instruction-level
     85   /// scheduling model or cycle-to-cycle itinerary data.
     86   bool hasInstrSchedModelOrItineraries() const {
     87     return hasInstrSchedModel() || hasInstrItineraries();
     88   }
     89 
     90   /// \brief Identify the processor corresponding to the current subtarget.
     91   unsigned getProcessorID() const { return SchedModel.getProcessorID(); }
     92 
     93   /// \brief Maximum number of micro-ops that may be scheduled per cycle.
     94   unsigned getIssueWidth() const { return SchedModel.IssueWidth; }
     95 
     96   /// \brief Return the number of issue slots required for this MI.
     97   unsigned getNumMicroOps(const MachineInstr *MI,
     98                           const MCSchedClassDesc *SC = nullptr) const;
     99 
    100   /// \brief Get the number of kinds of resources for this target.
    101   unsigned getNumProcResourceKinds() const {
    102     return SchedModel.getNumProcResourceKinds();
    103   }
    104 
    105   /// \brief Get a processor resource by ID for convenience.
    106   const MCProcResourceDesc *getProcResource(unsigned PIdx) const {
    107     return SchedModel.getProcResource(PIdx);
    108   }
    109 
    110 #ifndef NDEBUG
    111   const char *getResourceName(unsigned PIdx) const {
    112     if (!PIdx)
    113       return "MOps";
    114     return SchedModel.getProcResource(PIdx)->Name;
    115   }
    116 #endif
    117 
    118   typedef const MCWriteProcResEntry *ProcResIter;
    119 
    120   // \brief Get an iterator into the processor resources consumed by this
    121   // scheduling class.
    122   ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const {
    123     // The subtarget holds a single resource table for all processors.
    124     return STI->getWriteProcResBegin(SC);
    125   }
    126   ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const {
    127     return STI->getWriteProcResEnd(SC);
    128   }
    129 
    130   /// \brief Multiply the number of units consumed for a resource by this factor
    131   /// to normalize it relative to other resources.
    132   unsigned getResourceFactor(unsigned ResIdx) const {
    133     return ResourceFactors[ResIdx];
    134   }
    135 
    136   /// \brief Multiply number of micro-ops by this factor to normalize it
    137   /// relative to other resources.
    138   unsigned getMicroOpFactor() const {
    139     return MicroOpFactor;
    140   }
    141 
    142   /// \brief Multiply cycle count by this factor to normalize it relative to
    143   /// other resources. This is the number of resource units per cycle.
    144   unsigned getLatencyFactor() const {
    145     return ResourceLCM;
    146   }
    147 
    148   /// \brief Number of micro-ops that may be buffered for OOO execution.
    149   unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; }
    150 
    151   /// \brief Number of resource units that may be buffered for OOO execution.
    152   /// \return The buffer size in resource units or -1 for unlimited.
    153   int getResourceBufferSize(unsigned PIdx) const {
    154     return SchedModel.getProcResource(PIdx)->BufferSize;
    155   }
    156 
    157   /// \brief Compute operand latency based on the available machine model.
    158   ///
    159   /// Compute and return the latency of the given data dependent def and use
    160   /// when the operand indices are already known. UseMI may be NULL for an
    161   /// unknown user.
    162   unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
    163                                  const MachineInstr *UseMI, unsigned UseOperIdx)
    164     const;
    165 
    166   /// \brief Compute the instruction latency based on the available machine
    167   /// model.
    168   ///
    169   /// Compute and return the expected latency of this instruction independent of
    170   /// a particular use. computeOperandLatency is the preferred API, but this is
    171   /// occasionally useful to help estimate instruction cost.
    172   ///
    173   /// If UseDefaultDefLatency is false and no new machine sched model is
    174   /// present this method falls back to TII->getInstrLatency with an empty
    175   /// instruction itinerary (this is so we preserve the previous behavior of the
    176   /// if converter after moving it to TargetSchedModel).
    177   unsigned computeInstrLatency(const MachineInstr *MI,
    178                                bool UseDefaultDefLatency = true) const;
    179   unsigned computeInstrLatency(unsigned Opcode) const;
    180 
    181   /// \brief Output dependency latency of a pair of defs of the same register.
    182   ///
    183   /// This is typically one cycle.
    184   unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefIdx,
    185                                 const MachineInstr *DepMI) const;
    186 };
    187 
    188 } // namespace llvm
    189 
    190 #endif
    191