1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DEBUG_TYPE "machine-sink" 20 #include "llvm/CodeGen/Passes.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Target/TargetRegisterInfo.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 static cl::opt<bool> 36 SplitEdges("machine-sink-split", 37 cl::desc("Split critical edges during machine sinking"), 38 cl::init(true), cl::Hidden); 39 40 STATISTIC(NumSunk, "Number of machine instructions sunk"); 41 STATISTIC(NumSplit, "Number of critical edges split"); 42 STATISTIC(NumCoalesces, "Number of copies coalesced"); 43 44 namespace { 45 class MachineSinking : public MachineFunctionPass { 46 const TargetInstrInfo *TII; 47 const TargetRegisterInfo *TRI; 48 MachineRegisterInfo *MRI; // Machine register information 49 MachineDominatorTree *DT; // Machine dominator tree 50 MachineLoopInfo *LI; 51 AliasAnalysis *AA; 52 BitVector AllocatableSet; // Which physregs are allocatable? 53 54 // Remember which edges have been considered for breaking. 55 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> 56 CEBCandidates; 57 58 public: 59 static char ID; // Pass identification 60 MachineSinking() : MachineFunctionPass(ID) { 61 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 62 } 63 64 virtual bool runOnMachineFunction(MachineFunction &MF); 65 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 AU.setPreservesCFG(); 68 MachineFunctionPass::getAnalysisUsage(AU); 69 AU.addRequired<AliasAnalysis>(); 70 AU.addRequired<MachineDominatorTree>(); 71 AU.addRequired<MachineLoopInfo>(); 72 AU.addPreserved<MachineDominatorTree>(); 73 AU.addPreserved<MachineLoopInfo>(); 74 } 75 76 virtual void releaseMemory() { 77 CEBCandidates.clear(); 78 } 79 80 private: 81 bool ProcessBlock(MachineBasicBlock &MBB); 82 bool isWorthBreakingCriticalEdge(MachineInstr *MI, 83 MachineBasicBlock *From, 84 MachineBasicBlock *To); 85 MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI, 86 MachineBasicBlock *From, 87 MachineBasicBlock *To, 88 bool BreakPHIEdge); 89 bool SinkInstruction(MachineInstr *MI, bool &SawStore); 90 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 91 MachineBasicBlock *DefMBB, 92 bool &BreakPHIEdge, bool &LocalUse) const; 93 bool PerformTrivialForwardCoalescing(MachineInstr *MI, 94 MachineBasicBlock *MBB); 95 }; 96 } // end anonymous namespace 97 98 char MachineSinking::ID = 0; 99 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 100 "Machine code sinking", false, false) 101 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 102 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 103 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 104 INITIALIZE_PASS_END(MachineSinking, "machine-sink", 105 "Machine code sinking", false, false) 106 107 FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); } 108 109 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, 110 MachineBasicBlock *MBB) { 111 if (!MI->isCopy()) 112 return false; 113 114 unsigned SrcReg = MI->getOperand(1).getReg(); 115 unsigned DstReg = MI->getOperand(0).getReg(); 116 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 117 !TargetRegisterInfo::isVirtualRegister(DstReg) || 118 !MRI->hasOneNonDBGUse(SrcReg)) 119 return false; 120 121 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 122 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 123 if (SRC != DRC) 124 return false; 125 126 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 127 if (DefMI->isCopyLike()) 128 return false; 129 DEBUG(dbgs() << "Coalescing: " << *DefMI); 130 DEBUG(dbgs() << "*** to: " << *MI); 131 MRI->replaceRegWith(DstReg, SrcReg); 132 MI->eraseFromParent(); 133 ++NumCoalesces; 134 return true; 135 } 136 137 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 138 /// occur in blocks dominated by the specified block. If any use is in the 139 /// definition block, then return false since it is never legal to move def 140 /// after uses. 141 bool 142 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 143 MachineBasicBlock *MBB, 144 MachineBasicBlock *DefMBB, 145 bool &BreakPHIEdge, 146 bool &LocalUse) const { 147 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 148 "Only makes sense for vregs"); 149 150 if (MRI->use_nodbg_empty(Reg)) 151 return true; 152 153 // Ignoring debug uses is necessary so debug info doesn't affect the code. 154 // This may leave a referencing dbg_value in the original block, before 155 // the definition of the vreg. Dwarf generator handles this although the 156 // user might not get the right info at runtime. 157 158 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 159 // into and they are all PHI nodes. In this case, machine-sink must break 160 // the critical edge first. e.g. 161 // 162 // BB#1: derived from LLVM BB %bb4.preheader 163 // Predecessors according to CFG: BB#0 164 // ... 165 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 166 // ... 167 // JE_4 <BB#37>, %EFLAGS<imp-use> 168 // Successors according to CFG: BB#37 BB#2 169 // 170 // BB#2: derived from LLVM BB %bb.nph 171 // Predecessors according to CFG: BB#0 BB#1 172 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 173 BreakPHIEdge = true; 174 for (MachineRegisterInfo::use_nodbg_iterator 175 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 176 I != E; ++I) { 177 MachineInstr *UseInst = &*I; 178 MachineBasicBlock *UseBlock = UseInst->getParent(); 179 if (!(UseBlock == MBB && UseInst->isPHI() && 180 UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) { 181 BreakPHIEdge = false; 182 break; 183 } 184 } 185 if (BreakPHIEdge) 186 return true; 187 188 for (MachineRegisterInfo::use_nodbg_iterator 189 I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); 190 I != E; ++I) { 191 // Determine the block of the use. 192 MachineInstr *UseInst = &*I; 193 MachineBasicBlock *UseBlock = UseInst->getParent(); 194 if (UseInst->isPHI()) { 195 // PHI nodes use the operand in the predecessor block, not the block with 196 // the PHI. 197 UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB(); 198 } else if (UseBlock == DefMBB) { 199 LocalUse = true; 200 return false; 201 } 202 203 // Check that it dominates. 204 if (!DT->dominates(MBB, UseBlock)) 205 return false; 206 } 207 208 return true; 209 } 210 211 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 212 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 213 214 const TargetMachine &TM = MF.getTarget(); 215 TII = TM.getInstrInfo(); 216 TRI = TM.getRegisterInfo(); 217 MRI = &MF.getRegInfo(); 218 DT = &getAnalysis<MachineDominatorTree>(); 219 LI = &getAnalysis<MachineLoopInfo>(); 220 AA = &getAnalysis<AliasAnalysis>(); 221 AllocatableSet = TRI->getAllocatableSet(MF); 222 223 bool EverMadeChange = false; 224 225 while (1) { 226 bool MadeChange = false; 227 228 // Process all basic blocks. 229 CEBCandidates.clear(); 230 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 231 I != E; ++I) 232 MadeChange |= ProcessBlock(*I); 233 234 // If this iteration over the code changed anything, keep iterating. 235 if (!MadeChange) break; 236 EverMadeChange = true; 237 } 238 return EverMadeChange; 239 } 240 241 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 242 // Can't sink anything out of a block that has less than two successors. 243 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 244 245 // Don't bother sinking code out of unreachable blocks. In addition to being 246 // unprofitable, it can also lead to infinite looping, because in an 247 // unreachable loop there may be nowhere to stop. 248 if (!DT->isReachableFromEntry(&MBB)) return false; 249 250 bool MadeChange = false; 251 252 // Walk the basic block bottom-up. Remember if we saw a store. 253 MachineBasicBlock::iterator I = MBB.end(); 254 --I; 255 bool ProcessedBegin, SawStore = false; 256 do { 257 MachineInstr *MI = I; // The instruction to sink. 258 259 // Predecrement I (if it's not begin) so that it isn't invalidated by 260 // sinking. 261 ProcessedBegin = I == MBB.begin(); 262 if (!ProcessedBegin) 263 --I; 264 265 if (MI->isDebugValue()) 266 continue; 267 268 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 269 if (Joined) { 270 MadeChange = true; 271 continue; 272 } 273 274 if (SinkInstruction(MI, SawStore)) 275 ++NumSunk, MadeChange = true; 276 277 // If we just processed the first instruction in the block, we're done. 278 } while (!ProcessedBegin); 279 280 return MadeChange; 281 } 282 283 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, 284 MachineBasicBlock *From, 285 MachineBasicBlock *To) { 286 // FIXME: Need much better heuristics. 287 288 // If the pass has already considered breaking this edge (during this pass 289 // through the function), then let's go ahead and break it. This means 290 // sinking multiple "cheap" instructions into the same block. 291 if (!CEBCandidates.insert(std::make_pair(From, To))) 292 return true; 293 294 if (!MI->isCopy() && !MI->getDesc().isAsCheapAsAMove()) 295 return true; 296 297 // MI is cheap, we probably don't want to break the critical edge for it. 298 // However, if this would allow some definitions of its source operands 299 // to be sunk then it's probably worth it. 300 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 301 const MachineOperand &MO = MI->getOperand(i); 302 if (!MO.isReg()) continue; 303 unsigned Reg = MO.getReg(); 304 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) 305 continue; 306 if (MRI->hasOneNonDBGUse(Reg)) 307 return true; 308 } 309 310 return false; 311 } 312 313 MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI, 314 MachineBasicBlock *FromBB, 315 MachineBasicBlock *ToBB, 316 bool BreakPHIEdge) { 317 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 318 return 0; 319 320 // Avoid breaking back edge. From == To means backedge for single BB loop. 321 if (!SplitEdges || FromBB == ToBB) 322 return 0; 323 324 // Check for backedges of more "complex" loops. 325 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 326 LI->isLoopHeader(ToBB)) 327 return 0; 328 329 // It's not always legal to break critical edges and sink the computation 330 // to the edge. 331 // 332 // BB#1: 333 // v1024 334 // Beq BB#3 335 // <fallthrough> 336 // BB#2: 337 // ... no uses of v1024 338 // <fallthrough> 339 // BB#3: 340 // ... 341 // = v1024 342 // 343 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 344 // 345 // BB#1: 346 // ... 347 // Bne BB#2 348 // BB#4: 349 // v1024 = 350 // B BB#3 351 // BB#2: 352 // ... no uses of v1024 353 // <fallthrough> 354 // BB#3: 355 // ... 356 // = v1024 357 // 358 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 359 // flow. We need to ensure the new basic block where the computation is 360 // sunk to dominates all the uses. 361 // It's only legal to break critical edge and sink the computation to the 362 // new block if all the predecessors of "To", except for "From", are 363 // not dominated by "From". Given SSA property, this means these 364 // predecessors are dominated by "To". 365 // 366 // There is no need to do this check if all the uses are PHI nodes. PHI 367 // sources are only defined on the specific predecessor edges. 368 if (!BreakPHIEdge) { 369 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 370 E = ToBB->pred_end(); PI != E; ++PI) { 371 if (*PI == FromBB) 372 continue; 373 if (!DT->dominates(ToBB, *PI)) 374 return 0; 375 } 376 } 377 378 return FromBB->SplitCriticalEdge(ToBB, this); 379 } 380 381 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { 382 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); 383 } 384 385 /// collectDebgValues - Scan instructions following MI and collect any 386 /// matching DBG_VALUEs. 387 static void collectDebugValues(MachineInstr *MI, 388 SmallVector<MachineInstr *, 2> & DbgValues) { 389 DbgValues.clear(); 390 if (!MI->getOperand(0).isReg()) 391 return; 392 393 MachineBasicBlock::iterator DI = MI; ++DI; 394 for (MachineBasicBlock::iterator DE = MI->getParent()->end(); 395 DI != DE; ++DI) { 396 if (!DI->isDebugValue()) 397 return; 398 if (DI->getOperand(0).isReg() && 399 DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) 400 DbgValues.push_back(DI); 401 } 402 } 403 404 /// SinkInstruction - Determine whether it is safe to sink the specified machine 405 /// instruction out of its current block into a successor. 406 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { 407 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to 408 // be close to the source to make it easier to coalesce. 409 if (AvoidsSinking(MI, MRI)) 410 return false; 411 412 // Check if it's safe to move the instruction. 413 if (!MI->isSafeToMove(TII, AA, SawStore)) 414 return false; 415 416 // FIXME: This should include support for sinking instructions within the 417 // block they are currently in to shorten the live ranges. We often get 418 // instructions sunk into the top of a large block, but it would be better to 419 // also sink them down before their first use in the block. This xform has to 420 // be careful not to *increase* register pressure though, e.g. sinking 421 // "x = y + z" down if it kills y and z would increase the live ranges of y 422 // and z and only shrink the live range of x. 423 424 // Loop over all the operands of the specified instruction. If there is 425 // anything we can't handle, bail out. 426 MachineBasicBlock *ParentBlock = MI->getParent(); 427 428 // SuccToSinkTo - This is the successor to sink this instruction to, once we 429 // decide. 430 MachineBasicBlock *SuccToSinkTo = 0; 431 432 bool BreakPHIEdge = false; 433 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 434 const MachineOperand &MO = MI->getOperand(i); 435 if (!MO.isReg()) continue; // Ignore non-register operands. 436 437 unsigned Reg = MO.getReg(); 438 if (Reg == 0) continue; 439 440 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 441 if (MO.isUse()) { 442 // If the physreg has no defs anywhere, it's just an ambient register 443 // and we can freely move its uses. Alternatively, if it's allocatable, 444 // it could get allocated to something with a def during allocation. 445 if (!MRI->def_empty(Reg)) 446 return false; 447 448 if (AllocatableSet.test(Reg)) 449 return false; 450 451 // Check for a def among the register's aliases too. 452 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 453 unsigned AliasReg = *Alias; 454 if (!MRI->def_empty(AliasReg)) 455 return false; 456 457 if (AllocatableSet.test(AliasReg)) 458 return false; 459 } 460 } else if (!MO.isDead()) { 461 // A def that isn't dead. We can't move it. 462 return false; 463 } 464 } else { 465 // Virtual register uses are always safe to sink. 466 if (MO.isUse()) continue; 467 468 // If it's not safe to move defs of the register class, then abort. 469 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 470 return false; 471 472 // FIXME: This picks a successor to sink into based on having one 473 // successor that dominates all the uses. However, there are cases where 474 // sinking can happen but where the sink point isn't a successor. For 475 // example: 476 // 477 // x = computation 478 // if () {} else {} 479 // use x 480 // 481 // the instruction could be sunk over the whole diamond for the 482 // if/then/else (or loop, etc), allowing it to be sunk into other blocks 483 // after that. 484 485 // Virtual register defs can only be sunk if all their uses are in blocks 486 // dominated by one of the successors. 487 if (SuccToSinkTo) { 488 // If a previous operand picked a block to sink to, then this operand 489 // must be sinkable to the same block. 490 bool LocalUse = false; 491 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock, 492 BreakPHIEdge, LocalUse)) 493 return false; 494 495 continue; 496 } 497 498 // Otherwise, we should look at all the successors and decide which one 499 // we should sink to. 500 for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(), 501 E = ParentBlock->succ_end(); SI != E; ++SI) { 502 bool LocalUse = false; 503 if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock, 504 BreakPHIEdge, LocalUse)) { 505 SuccToSinkTo = *SI; 506 break; 507 } 508 if (LocalUse) 509 // Def is used locally, it's never safe to move this def. 510 return false; 511 } 512 513 // If we couldn't find a block to sink to, ignore this instruction. 514 if (SuccToSinkTo == 0) 515 return false; 516 } 517 } 518 519 // If there are no outputs, it must have side-effects. 520 if (SuccToSinkTo == 0) 521 return false; 522 523 // It's not safe to sink instructions to EH landing pad. Control flow into 524 // landing pad is implicitly defined. 525 if (SuccToSinkTo->isLandingPad()) 526 return false; 527 528 // It is not possible to sink an instruction into its own block. This can 529 // happen with loops. 530 if (MI->getParent() == SuccToSinkTo) 531 return false; 532 533 // If the instruction to move defines a dead physical register which is live 534 // when leaving the basic block, don't move it because it could turn into a 535 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 536 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 537 const MachineOperand &MO = MI->getOperand(I); 538 if (!MO.isReg()) continue; 539 unsigned Reg = MO.getReg(); 540 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 541 if (SuccToSinkTo->isLiveIn(Reg)) 542 return false; 543 } 544 545 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); 546 547 // If the block has multiple predecessors, this would introduce computation on 548 // a path that it doesn't already exist. We could split the critical edge, 549 // but for now we just punt. 550 if (SuccToSinkTo->pred_size() > 1) { 551 // We cannot sink a load across a critical edge - there may be stores in 552 // other code paths. 553 bool TryBreak = false; 554 bool store = true; 555 if (!MI->isSafeToMove(TII, AA, store)) { 556 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 557 TryBreak = true; 558 } 559 560 // We don't want to sink across a critical edge if we don't dominate the 561 // successor. We could be introducing calculations to new code paths. 562 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 563 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 564 TryBreak = true; 565 } 566 567 // Don't sink instructions into a loop. 568 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 569 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 570 TryBreak = true; 571 } 572 573 // Otherwise we are OK with sinking along a critical edge. 574 if (!TryBreak) 575 DEBUG(dbgs() << "Sinking along critical edge.\n"); 576 else { 577 MachineBasicBlock *NewSucc = 578 SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 579 if (!NewSucc) { 580 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 581 "break critical edge\n"); 582 return false; 583 } else { 584 DEBUG(dbgs() << " *** Splitting critical edge:" 585 " BB#" << ParentBlock->getNumber() 586 << " -- BB#" << NewSucc->getNumber() 587 << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); 588 SuccToSinkTo = NewSucc; 589 ++NumSplit; 590 BreakPHIEdge = false; 591 } 592 } 593 } 594 595 if (BreakPHIEdge) { 596 // BreakPHIEdge is true if all the uses are in the successor MBB being 597 // sunken into and they are all PHI nodes. In this case, machine-sink must 598 // break the critical edge first. 599 MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock, 600 SuccToSinkTo, BreakPHIEdge); 601 if (!NewSucc) { 602 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 603 "break critical edge\n"); 604 return false; 605 } 606 607 DEBUG(dbgs() << " *** Splitting critical edge:" 608 " BB#" << ParentBlock->getNumber() 609 << " -- BB#" << NewSucc->getNumber() 610 << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); 611 SuccToSinkTo = NewSucc; 612 ++NumSplit; 613 } 614 615 // Determine where to insert into. Skip phi nodes. 616 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 617 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 618 ++InsertPos; 619 620 // collect matching debug values. 621 SmallVector<MachineInstr *, 2> DbgValuesToSink; 622 collectDebugValues(MI, DbgValuesToSink); 623 624 // Move the instruction. 625 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 626 ++MachineBasicBlock::iterator(MI)); 627 628 // Move debug values. 629 for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(), 630 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 631 MachineInstr *DbgMI = *DBI; 632 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 633 ++MachineBasicBlock::iterator(DbgMI)); 634 } 635 636 // Conservatively, clear any kill flags, since it's possible that they are no 637 // longer correct. 638 MI->clearKillInfo(); 639 640 return true; 641 } 642