Home | History | Annotate | Download | only in libGLES_CM
      1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //    http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 
     15 // Context.cpp: Implements the es1::Context class, managing all GL state and performing
     16 // rendering operations. It is the GLES2 specific implementation of EGLContext.
     17 
     18 #include "Context.h"
     19 
     20 #include "main.h"
     21 #include "mathutil.h"
     22 #include "utilities.h"
     23 #include "ResourceManager.h"
     24 #include "Buffer.h"
     25 #include "Framebuffer.h"
     26 #include "Renderbuffer.h"
     27 #include "Texture.h"
     28 #include "VertexDataManager.h"
     29 #include "IndexDataManager.h"
     30 #include "libEGL/Display.h"
     31 #include "libEGL/Surface.h"
     32 #include "Common/Half.hpp"
     33 
     34 #include <EGL/eglext.h>
     35 
     36 using std::abs;
     37 
     38 namespace es1
     39 {
     40 Context::Context(const egl::Config *config, const Context *shareContext)
     41 	: modelViewStack(MAX_MODELVIEW_STACK_DEPTH),
     42 	  projectionStack(MAX_PROJECTION_STACK_DEPTH),
     43 	  textureStack0(MAX_TEXTURE_STACK_DEPTH),
     44 	  textureStack1(MAX_TEXTURE_STACK_DEPTH)
     45 {
     46 	sw::Context *context = new sw::Context();
     47 	device = new es1::Device(context);
     48 
     49 	mVertexDataManager = new VertexDataManager(this);
     50 	mIndexDataManager = new IndexDataManager();
     51 
     52 	setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
     53 
     54 	mState.depthClearValue = 1.0f;
     55 	mState.stencilClearValue = 0;
     56 
     57 	mState.cullFaceEnabled = false;
     58 	mState.cullMode = GL_BACK;
     59 	mState.frontFace = GL_CCW;
     60 	mState.depthTestEnabled = false;
     61 	mState.depthFunc = GL_LESS;
     62 	mState.blendEnabled = false;
     63 	mState.sourceBlendRGB = GL_ONE;
     64 	mState.sourceBlendAlpha = GL_ONE;
     65 	mState.destBlendRGB = GL_ZERO;
     66 	mState.destBlendAlpha = GL_ZERO;
     67 	mState.blendEquationRGB = GL_FUNC_ADD_OES;
     68 	mState.blendEquationAlpha = GL_FUNC_ADD_OES;
     69 	mState.stencilTestEnabled = false;
     70 	mState.stencilFunc = GL_ALWAYS;
     71 	mState.stencilRef = 0;
     72 	mState.stencilMask = -1;
     73 	mState.stencilWritemask = -1;
     74 	mState.stencilFail = GL_KEEP;
     75 	mState.stencilPassDepthFail = GL_KEEP;
     76 	mState.stencilPassDepthPass = GL_KEEP;
     77 	mState.polygonOffsetFillEnabled = false;
     78 	mState.polygonOffsetFactor = 0.0f;
     79 	mState.polygonOffsetUnits = 0.0f;
     80 	mState.sampleAlphaToCoverageEnabled = false;
     81 	mState.sampleCoverageEnabled = false;
     82 	mState.sampleCoverageValue = 1.0f;
     83 	mState.sampleCoverageInvert = false;
     84 	mState.scissorTestEnabled = false;
     85 	mState.ditherEnabled = true;
     86 	mState.shadeModel = GL_SMOOTH;
     87 	mState.generateMipmapHint = GL_DONT_CARE;
     88 	mState.perspectiveCorrectionHint = GL_DONT_CARE;
     89 	mState.fogHint = GL_DONT_CARE;
     90 
     91 	mState.lineWidth = 1.0f;
     92 
     93 	mState.viewportX = 0;
     94 	mState.viewportY = 0;
     95 	mState.viewportWidth = 0;
     96 	mState.viewportHeight = 0;
     97 	mState.zNear = 0.0f;
     98 	mState.zFar = 1.0f;
     99 
    100 	mState.scissorX = 0;
    101 	mState.scissorY = 0;
    102 	mState.scissorWidth = 0;
    103 	mState.scissorHeight = 0;
    104 
    105 	mState.colorMaskRed = true;
    106 	mState.colorMaskGreen = true;
    107 	mState.colorMaskBlue = true;
    108 	mState.colorMaskAlpha = true;
    109 	mState.depthMask = true;
    110 
    111 	for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
    112 	{
    113 		mState.textureUnit[i].color = {0, 0, 0, 0};
    114 		mState.textureUnit[i].environmentMode = GL_MODULATE;
    115 		mState.textureUnit[i].combineRGB = GL_MODULATE;
    116 		mState.textureUnit[i].combineAlpha = GL_MODULATE;
    117 		mState.textureUnit[i].src0RGB = GL_TEXTURE;
    118 		mState.textureUnit[i].src1RGB = GL_PREVIOUS;
    119 		mState.textureUnit[i].src2RGB = GL_CONSTANT;
    120 		mState.textureUnit[i].src0Alpha = GL_TEXTURE;
    121 		mState.textureUnit[i].src1Alpha = GL_PREVIOUS;
    122 		mState.textureUnit[i].src2Alpha = GL_CONSTANT;
    123 		mState.textureUnit[i].operand0RGB = GL_SRC_COLOR;
    124 		mState.textureUnit[i].operand1RGB = GL_SRC_COLOR;
    125 		mState.textureUnit[i].operand2RGB = GL_SRC_ALPHA;
    126 		mState.textureUnit[i].operand0Alpha = GL_SRC_ALPHA;
    127 		mState.textureUnit[i].operand1Alpha = GL_SRC_ALPHA;
    128 		mState.textureUnit[i].operand2Alpha = GL_SRC_ALPHA;
    129 	}
    130 
    131 	if(shareContext)
    132 	{
    133 		mResourceManager = shareContext->mResourceManager;
    134 		mResourceManager->addRef();
    135 	}
    136 	else
    137 	{
    138 		mResourceManager = new ResourceManager();
    139 	}
    140 
    141 	// [OpenGL ES 2.0.24] section 3.7 page 83:
    142 	// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
    143 	// and cube map texture state vectors respectively associated with them.
    144 	// In order that access to these initial textures not be lost, they are treated as texture
    145 	// objects all of whose names are 0.
    146 
    147 	mTexture2DZero = new Texture2D(0);
    148 	mTextureExternalZero = new TextureExternal(0);
    149 
    150 	mState.activeSampler = 0;
    151 	bindArrayBuffer(0);
    152 	bindElementArrayBuffer(0);
    153 	bindTexture2D(0);
    154 	bindFramebuffer(0);
    155 	bindRenderbuffer(0);
    156 
    157 	mState.packAlignment = 4;
    158 	mState.unpackAlignment = 4;
    159 
    160 	mInvalidEnum = false;
    161 	mInvalidValue = false;
    162 	mInvalidOperation = false;
    163 	mOutOfMemory = false;
    164 	mInvalidFramebufferOperation = false;
    165 	mMatrixStackOverflow = false;
    166 	mMatrixStackUnderflow = false;
    167 
    168 	lightingEnabled = false;
    169 
    170 	for(int i = 0; i < MAX_LIGHTS; i++)
    171 	{
    172 		light[i].enabled = false;
    173 		light[i].ambient = {0.0f, 0.0f, 0.0f, 1.0f};
    174 		light[i].diffuse = {0.0f, 0.0f, 0.0f, 1.0f};
    175 		light[i].specular = {0.0f, 0.0f, 0.0f, 1.0f};
    176 		light[i].position = {0.0f, 0.0f, 1.0f, 0.0f};
    177 		light[i].direction = {0.0f, 0.0f, -1.0f};
    178 		light[i].attenuation = {1.0f, 0.0f, 0.0f};
    179 		light[i].spotExponent = 0.0f;
    180 		light[i].spotCutoffAngle = 180.0f;
    181 	}
    182 
    183 	light[0].diffuse = {1.0f, 1.0f, 1.0f, 1.0f};
    184 	light[0].specular = {1.0f, 1.0f, 1.0f, 1.0f};
    185 
    186 	globalAmbient = {0.2f, 0.2f, 0.2f, 1.0f};
    187 	materialAmbient = {0.2f, 0.2f, 0.2f, 1.0f};
    188 	materialDiffuse = {0.8f, 0.8f, 0.8f, 1.0f};
    189 	materialSpecular = {0.0f, 0.0f, 0.0f, 1.0f};
    190 	materialEmission = {0.0f, 0.0f, 0.0f, 1.0f};
    191 	materialShininess = 0.0f;
    192 	lightModelTwoSide = false;
    193 
    194 	matrixMode = GL_MODELVIEW;
    195 
    196 	for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
    197 	{
    198 		texture2Denabled[i] = false;
    199 		textureExternalEnabled[i] = false;
    200 	}
    201 
    202 	clientTexture = GL_TEXTURE0;
    203 
    204 	setVertexAttrib(sw::Color0, 1.0f, 1.0f, 1.0f, 1.0f);
    205 
    206 	for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
    207 	{
    208 		setVertexAttrib(sw::TexCoord0 + i, 0.0f, 0.0f, 0.0f, 1.0f);
    209 	}
    210 
    211 	setVertexAttrib(sw::Normal, 0.0f, 0.0f, 1.0f, 1.0f);
    212 	setVertexAttrib(sw::PointSize, 1.0f, 1.0f, 1.0f, 1.0f);
    213 
    214 	clipFlags = 0;
    215 
    216 	alphaTestEnabled = false;
    217 	alphaTestFunc = GL_ALWAYS;
    218 	alphaTestRef = 0;
    219 
    220 	fogEnabled = false;
    221 	fogMode = GL_EXP;
    222 	fogDensity = 1.0f;
    223 	fogStart = 0.0f;
    224 	fogEnd = 1.0f;
    225 	fogColor = {0, 0, 0, 0};
    226 
    227 	lineSmoothEnabled = false;
    228 	colorMaterialEnabled = false;
    229 	normalizeEnabled = false;
    230 	rescaleNormalEnabled = false;
    231 	multisampleEnabled = true;
    232 	sampleAlphaToOneEnabled = false;
    233 
    234 	colorLogicOpEnabled = false;
    235 	logicalOperation = GL_COPY;
    236 
    237 	pointSpriteEnabled = false;
    238 	pointSmoothEnabled = false;
    239 	pointSizeMin = 0.0f;
    240 	pointSizeMax = 1.0f;
    241 	pointDistanceAttenuation = {1.0f, 0.0f, 0.0f};
    242 	pointFadeThresholdSize = 1.0f;
    243 
    244 	mHasBeenCurrent = false;
    245 
    246 	markAllStateDirty();
    247 }
    248 
    249 Context::~Context()
    250 {
    251 	while(!mFramebufferNameSpace.empty())
    252 	{
    253 		deleteFramebuffer(mFramebufferNameSpace.firstName());
    254 	}
    255 
    256 	for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
    257 	{
    258 		for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++)
    259 		{
    260 			mState.samplerTexture[type][sampler] = nullptr;
    261 		}
    262 	}
    263 
    264 	for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
    265 	{
    266 		mState.vertexAttribute[i].mBoundBuffer = nullptr;
    267 	}
    268 
    269 	mState.arrayBuffer = nullptr;
    270 	mState.elementArrayBuffer = nullptr;
    271 	mState.renderbuffer = nullptr;
    272 
    273 	mTexture2DZero = nullptr;
    274 	mTextureExternalZero = nullptr;
    275 
    276 	delete mVertexDataManager;
    277 	delete mIndexDataManager;
    278 
    279 	mResourceManager->release();
    280 	delete device;
    281 }
    282 
    283 void Context::makeCurrent(egl::Surface *surface)
    284 {
    285 	if(!mHasBeenCurrent)
    286 	{
    287 		mState.viewportX = 0;
    288 		mState.viewportY = 0;
    289 		mState.viewportWidth = surface->getWidth();
    290 		mState.viewportHeight = surface->getHeight();
    291 
    292 		mState.scissorX = 0;
    293 		mState.scissorY = 0;
    294 		mState.scissorWidth = surface->getWidth();
    295 		mState.scissorHeight = surface->getHeight();
    296 
    297 		mHasBeenCurrent = true;
    298 	}
    299 
    300 	// Wrap the existing resources into GL objects and assign them to the '0' names
    301 	egl::Image *defaultRenderTarget = surface->getRenderTarget();
    302 	egl::Image *depthStencil = surface->getDepthStencil();
    303 
    304 	Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
    305 	DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
    306 	Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);
    307 
    308 	setFramebufferZero(framebufferZero);
    309 
    310 	if(defaultRenderTarget)
    311 	{
    312 		defaultRenderTarget->release();
    313 	}
    314 
    315 	if(depthStencil)
    316 	{
    317 		depthStencil->release();
    318 	}
    319 
    320 	markAllStateDirty();
    321 }
    322 
    323 int Context::getClientVersion() const
    324 {
    325 	return 1;
    326 }
    327 
    328 // This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
    329 void Context::markAllStateDirty()
    330 {
    331 	mDepthStateDirty = true;
    332 	mMaskStateDirty = true;
    333 	mBlendStateDirty = true;
    334 	mStencilStateDirty = true;
    335 	mPolygonOffsetStateDirty = true;
    336 	mSampleStateDirty = true;
    337 	mDitherStateDirty = true;
    338 	mFrontFaceDirty = true;
    339 }
    340 
    341 void Context::setClearColor(float red, float green, float blue, float alpha)
    342 {
    343 	mState.colorClearValue.red = red;
    344 	mState.colorClearValue.green = green;
    345 	mState.colorClearValue.blue = blue;
    346 	mState.colorClearValue.alpha = alpha;
    347 }
    348 
    349 void Context::setClearDepth(float depth)
    350 {
    351 	mState.depthClearValue = depth;
    352 }
    353 
    354 void Context::setClearStencil(int stencil)
    355 {
    356 	mState.stencilClearValue = stencil;
    357 }
    358 
    359 void Context::setCullFaceEnabled(bool enabled)
    360 {
    361 	mState.cullFaceEnabled = enabled;
    362 }
    363 
    364 bool Context::isCullFaceEnabled() const
    365 {
    366 	return mState.cullFaceEnabled;
    367 }
    368 
    369 void Context::setCullMode(GLenum mode)
    370 {
    371    mState.cullMode = mode;
    372 }
    373 
    374 void Context::setFrontFace(GLenum front)
    375 {
    376 	if(mState.frontFace != front)
    377 	{
    378 		mState.frontFace = front;
    379 		mFrontFaceDirty = true;
    380 	}
    381 }
    382 
    383 void Context::setDepthTestEnabled(bool enabled)
    384 {
    385 	if(mState.depthTestEnabled != enabled)
    386 	{
    387 		mState.depthTestEnabled = enabled;
    388 		mDepthStateDirty = true;
    389 	}
    390 }
    391 
    392 bool Context::isDepthTestEnabled() const
    393 {
    394 	return mState.depthTestEnabled;
    395 }
    396 
    397 void Context::setDepthFunc(GLenum depthFunc)
    398 {
    399 	if(mState.depthFunc != depthFunc)
    400 	{
    401 		mState.depthFunc = depthFunc;
    402 		mDepthStateDirty = true;
    403 	}
    404 }
    405 
    406 void Context::setDepthRange(float zNear, float zFar)
    407 {
    408 	mState.zNear = zNear;
    409 	mState.zFar = zFar;
    410 }
    411 
    412 void Context::setAlphaTestEnabled(bool enabled)
    413 {
    414 	alphaTestEnabled = enabled;
    415 }
    416 
    417 bool Context::isAlphaTestEnabled() const
    418 {
    419 	return alphaTestEnabled;
    420 }
    421 
    422 void Context::setAlphaFunc(GLenum alphaFunc, GLclampf reference)
    423 {
    424 	alphaTestFunc = alphaFunc;
    425 	alphaTestRef = reference;
    426 }
    427 
    428 void Context::setBlendEnabled(bool enabled)
    429 {
    430 	if(mState.blendEnabled != enabled)
    431 	{
    432 		mState.blendEnabled = enabled;
    433 		mBlendStateDirty = true;
    434 	}
    435 }
    436 
    437 bool Context::isBlendEnabled() const
    438 {
    439 	return mState.blendEnabled;
    440 }
    441 
    442 void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
    443 {
    444 	if(mState.sourceBlendRGB != sourceRGB ||
    445 	   mState.sourceBlendAlpha != sourceAlpha ||
    446 	   mState.destBlendRGB != destRGB ||
    447 	   mState.destBlendAlpha != destAlpha)
    448 	{
    449 		mState.sourceBlendRGB = sourceRGB;
    450 		mState.destBlendRGB = destRGB;
    451 		mState.sourceBlendAlpha = sourceAlpha;
    452 		mState.destBlendAlpha = destAlpha;
    453 		mBlendStateDirty = true;
    454 	}
    455 }
    456 
    457 void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
    458 {
    459 	if(mState.blendEquationRGB != rgbEquation ||
    460 	   mState.blendEquationAlpha != alphaEquation)
    461 	{
    462 		mState.blendEquationRGB = rgbEquation;
    463 		mState.blendEquationAlpha = alphaEquation;
    464 		mBlendStateDirty = true;
    465 	}
    466 }
    467 
    468 void Context::setStencilTestEnabled(bool enabled)
    469 {
    470 	if(mState.stencilTestEnabled != enabled)
    471 	{
    472 		mState.stencilTestEnabled = enabled;
    473 		mStencilStateDirty = true;
    474 	}
    475 }
    476 
    477 bool Context::isStencilTestEnabled() const
    478 {
    479 	return mState.stencilTestEnabled;
    480 }
    481 
    482 void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
    483 {
    484 	if(mState.stencilFunc != stencilFunc ||
    485 	   mState.stencilRef != stencilRef ||
    486 	   mState.stencilMask != stencilMask)
    487 	{
    488 		mState.stencilFunc = stencilFunc;
    489 		mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
    490 		mState.stencilMask = stencilMask;
    491 		mStencilStateDirty = true;
    492 	}
    493 }
    494 
    495 void Context::setStencilWritemask(GLuint stencilWritemask)
    496 {
    497 	if(mState.stencilWritemask != stencilWritemask)
    498 	{
    499 		mState.stencilWritemask = stencilWritemask;
    500 		mStencilStateDirty = true;
    501 	}
    502 }
    503 
    504 void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
    505 {
    506 	if(mState.stencilFail != stencilFail ||
    507 	   mState.stencilPassDepthFail != stencilPassDepthFail ||
    508 	   mState.stencilPassDepthPass != stencilPassDepthPass)
    509 	{
    510 		mState.stencilFail = stencilFail;
    511 		mState.stencilPassDepthFail = stencilPassDepthFail;
    512 		mState.stencilPassDepthPass = stencilPassDepthPass;
    513 		mStencilStateDirty = true;
    514 	}
    515 }
    516 
    517 void Context::setPolygonOffsetFillEnabled(bool enabled)
    518 {
    519 	if(mState.polygonOffsetFillEnabled != enabled)
    520 	{
    521 		mState.polygonOffsetFillEnabled = enabled;
    522 		mPolygonOffsetStateDirty = true;
    523 	}
    524 }
    525 
    526 bool Context::isPolygonOffsetFillEnabled() const
    527 {
    528 	return mState.polygonOffsetFillEnabled;
    529 }
    530 
    531 void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
    532 {
    533 	if(mState.polygonOffsetFactor != factor ||
    534 	   mState.polygonOffsetUnits != units)
    535 	{
    536 		mState.polygonOffsetFactor = factor;
    537 		mState.polygonOffsetUnits = units;
    538 		mPolygonOffsetStateDirty = true;
    539 	}
    540 }
    541 
    542 void Context::setSampleAlphaToCoverageEnabled(bool enabled)
    543 {
    544 	if(mState.sampleAlphaToCoverageEnabled != enabled)
    545 	{
    546 		mState.sampleAlphaToCoverageEnabled = enabled;
    547 		mSampleStateDirty = true;
    548 	}
    549 }
    550 
    551 bool Context::isSampleAlphaToCoverageEnabled() const
    552 {
    553 	return mState.sampleAlphaToCoverageEnabled;
    554 }
    555 
    556 void Context::setSampleCoverageEnabled(bool enabled)
    557 {
    558 	if(mState.sampleCoverageEnabled != enabled)
    559 	{
    560 		mState.sampleCoverageEnabled = enabled;
    561 		mSampleStateDirty = true;
    562 	}
    563 }
    564 
    565 bool Context::isSampleCoverageEnabled() const
    566 {
    567 	return mState.sampleCoverageEnabled;
    568 }
    569 
    570 void Context::setSampleCoverageParams(GLclampf value, bool invert)
    571 {
    572 	if(mState.sampleCoverageValue != value ||
    573 	   mState.sampleCoverageInvert != invert)
    574 	{
    575 		mState.sampleCoverageValue = value;
    576 		mState.sampleCoverageInvert = invert;
    577 		mSampleStateDirty = true;
    578 	}
    579 }
    580 
    581 void Context::setScissorTestEnabled(bool enabled)
    582 {
    583 	mState.scissorTestEnabled = enabled;
    584 }
    585 
    586 bool Context::isScissorTestEnabled() const
    587 {
    588 	return mState.scissorTestEnabled;
    589 }
    590 
    591 void Context::setShadeModel(GLenum mode)
    592 {
    593 	mState.shadeModel = mode;
    594 }
    595 
    596 void Context::setDitherEnabled(bool enabled)
    597 {
    598 	if(mState.ditherEnabled != enabled)
    599 	{
    600 		mState.ditherEnabled = enabled;
    601 		mDitherStateDirty = true;
    602 	}
    603 }
    604 
    605 bool Context::isDitherEnabled() const
    606 {
    607 	return mState.ditherEnabled;
    608 }
    609 
    610 void Context::setLightingEnabled(bool enable)
    611 {
    612 	lightingEnabled = enable;
    613 }
    614 
    615 bool Context::isLightingEnabled() const
    616 {
    617 	return lightingEnabled;
    618 }
    619 
    620 void Context::setLightEnabled(int index, bool enable)
    621 {
    622 	light[index].enabled = enable;
    623 }
    624 
    625 bool Context::isLightEnabled(int index) const
    626 {
    627 	return light[index].enabled;
    628 }
    629 
    630 void Context::setLightAmbient(int index, float r, float g, float b, float a)
    631 {
    632 	light[index].ambient = {r, g, b, a};
    633 }
    634 
    635 void Context::setLightDiffuse(int index, float r, float g, float b, float a)
    636 {
    637 	light[index].diffuse = {r, g, b, a};
    638 }
    639 
    640 void Context::setLightSpecular(int index, float r, float g, float b, float a)
    641 {
    642 	light[index].specular = {r, g, b, a};
    643 }
    644 
    645 void Context::setLightPosition(int index, float x, float y, float z, float w)
    646 {
    647 	sw::float4 v = {x, y, z, w};
    648 
    649 	// Transform from object coordinates to eye coordinates
    650 	v = modelViewStack.current() * v;
    651 
    652 	light[index].position = {v.x, v.y, v.z, v.w};
    653 }
    654 
    655 void Context::setLightDirection(int index, float x, float y, float z)
    656 {
    657 	// FIXME: Transform by inverse of 3x3 model-view matrix
    658 	light[index].direction = {x, y, z};
    659 }
    660 
    661 void Context::setLightAttenuationConstant(int index, float constant)
    662 {
    663 	light[index].attenuation.constant = constant;
    664 }
    665 
    666 void Context::setLightAttenuationLinear(int index, float linear)
    667 {
    668 	light[index].attenuation.linear = linear;
    669 }
    670 
    671 void Context::setLightAttenuationQuadratic(int index, float quadratic)
    672 {
    673 	light[index].attenuation.quadratic = quadratic;
    674 }
    675 
    676 void Context::setSpotLightExponent(int index, float exponent)
    677 {
    678 	light[index].spotExponent = exponent;
    679 }
    680 
    681 void Context::setSpotLightCutoff(int index, float cutoff)
    682 {
    683 	light[index].spotCutoffAngle = cutoff;
    684 }
    685 
    686 void Context::setGlobalAmbient(float red, float green, float blue, float alpha)
    687 {
    688 	globalAmbient.red = red;
    689 	globalAmbient.green = green;
    690 	globalAmbient.blue = blue;
    691 	globalAmbient.alpha = alpha;
    692 }
    693 
    694 void Context::setMaterialAmbient(float red, float green, float blue, float alpha)
    695 {
    696 	materialAmbient.red = red;
    697 	materialAmbient.green = green;
    698 	materialAmbient.blue = blue;
    699 	materialAmbient.alpha = alpha;
    700 }
    701 
    702 void Context::setMaterialDiffuse(float red, float green, float blue, float alpha)
    703 {
    704 	materialDiffuse.red = red;
    705 	materialDiffuse.green = green;
    706 	materialDiffuse.blue = blue;
    707 	materialDiffuse.alpha = alpha;
    708 }
    709 
    710 void Context::setMaterialSpecular(float red, float green, float blue, float alpha)
    711 {
    712 	materialSpecular.red = red;
    713 	materialSpecular.green = green;
    714 	materialSpecular.blue = blue;
    715 	materialSpecular.alpha = alpha;
    716 }
    717 
    718 void Context::setMaterialEmission(float red, float green, float blue, float alpha)
    719 {
    720 	materialEmission.red = red;
    721 	materialEmission.green = green;
    722 	materialEmission.blue = blue;
    723 	materialEmission.alpha = alpha;
    724 }
    725 
    726 void Context::setMaterialShininess(float shininess)
    727 {
    728 	materialShininess = shininess;
    729 }
    730 
    731 void Context::setLightModelTwoSide(bool enable)
    732 {
    733 	lightModelTwoSide = enable;
    734 }
    735 
    736 void Context::setFogEnabled(bool enable)
    737 {
    738 	fogEnabled = enable;
    739 }
    740 
    741 bool Context::isFogEnabled() const
    742 {
    743 	return fogEnabled;
    744 }
    745 
    746 void Context::setFogMode(GLenum mode)
    747 {
    748 	fogMode = mode;
    749 }
    750 
    751 void Context::setFogDensity(float fogDensity)
    752 {
    753 	this->fogDensity = fogDensity;
    754 }
    755 
    756 void Context::setFogStart(float fogStart)
    757 {
    758 	this->fogStart = fogStart;
    759 }
    760 
    761 void Context::setFogEnd(float fogEnd)
    762 {
    763 	this->fogEnd = fogEnd;
    764 }
    765 
    766 void Context::setFogColor(float r, float g, float b, float a)
    767 {
    768 	this->fogColor = {r, g, b, a};
    769 }
    770 
    771 void Context::setTexture2Denabled(bool enable)
    772 {
    773 	texture2Denabled[mState.activeSampler] = enable;
    774 }
    775 
    776 bool Context::isTexture2Denabled() const
    777 {
    778 	return texture2Denabled[mState.activeSampler];
    779 }
    780 
    781 void Context::setTextureExternalEnabled(bool enable)
    782 {
    783 	textureExternalEnabled[mState.activeSampler] = enable;
    784 }
    785 
    786 bool Context::isTextureExternalEnabled() const
    787 {
    788 	return textureExternalEnabled[mState.activeSampler];
    789 }
    790 
    791 void Context::setLineWidth(GLfloat width)
    792 {
    793 	mState.lineWidth = width;
    794 	device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX));
    795 }
    796 
    797 void Context::setGenerateMipmapHint(GLenum hint)
    798 {
    799 	mState.generateMipmapHint = hint;
    800 }
    801 
    802 void Context::setPerspectiveCorrectionHint(GLenum hint)
    803 {
    804 	mState.perspectiveCorrectionHint = hint;
    805 }
    806 
    807 void Context::setFogHint(GLenum hint)
    808 {
    809 	mState.fogHint = hint;
    810 }
    811 
    812 void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
    813 {
    814 	mState.viewportX = x;
    815 	mState.viewportY = y;
    816 	mState.viewportWidth = width;
    817 	mState.viewportHeight = height;
    818 }
    819 
    820 void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
    821 {
    822 	mState.scissorX = x;
    823 	mState.scissorY = y;
    824 	mState.scissorWidth = width;
    825 	mState.scissorHeight = height;
    826 }
    827 
    828 void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
    829 {
    830 	if(mState.colorMaskRed != red || mState.colorMaskGreen != green ||
    831 	   mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
    832 	{
    833 		mState.colorMaskRed = red;
    834 		mState.colorMaskGreen = green;
    835 		mState.colorMaskBlue = blue;
    836 		mState.colorMaskAlpha = alpha;
    837 		mMaskStateDirty = true;
    838 	}
    839 }
    840 
    841 void Context::setDepthMask(bool mask)
    842 {
    843 	if(mState.depthMask != mask)
    844 	{
    845 		mState.depthMask = mask;
    846 		mMaskStateDirty = true;
    847 	}
    848 }
    849 
    850 void Context::setActiveSampler(unsigned int active)
    851 {
    852 	mState.activeSampler = active;
    853 }
    854 
    855 GLuint Context::getFramebufferName() const
    856 {
    857 	return mState.framebuffer;
    858 }
    859 
    860 GLuint Context::getRenderbufferName() const
    861 {
    862 	return mState.renderbuffer.name();
    863 }
    864 
    865 GLuint Context::getArrayBufferName() const
    866 {
    867 	return mState.arrayBuffer.name();
    868 }
    869 
    870 void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled)
    871 {
    872 	mState.vertexAttribute[attribNum].mArrayEnabled = enabled;
    873 }
    874 
    875 const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum)
    876 {
    877 	return mState.vertexAttribute[attribNum];
    878 }
    879 
    880 void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
    881                                    GLsizei stride, const void *pointer)
    882 {
    883 	mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer;
    884 	mState.vertexAttribute[attribNum].mSize = size;
    885 	mState.vertexAttribute[attribNum].mType = type;
    886 	mState.vertexAttribute[attribNum].mNormalized = normalized;
    887 	mState.vertexAttribute[attribNum].mStride = stride;
    888 	mState.vertexAttribute[attribNum].mPointer = pointer;
    889 }
    890 
    891 const void *Context::getVertexAttribPointer(unsigned int attribNum) const
    892 {
    893 	return mState.vertexAttribute[attribNum].mPointer;
    894 }
    895 
    896 const VertexAttributeArray &Context::getVertexAttributes()
    897 {
    898 	return mState.vertexAttribute;
    899 }
    900 
    901 void Context::setPackAlignment(GLint alignment)
    902 {
    903 	mState.packAlignment = alignment;
    904 }
    905 
    906 GLint Context::getPackAlignment() const
    907 {
    908 	return mState.packAlignment;
    909 }
    910 
    911 void Context::setUnpackAlignment(GLint alignment)
    912 {
    913 	mState.unpackAlignment = alignment;
    914 }
    915 
    916 GLint Context::getUnpackAlignment() const
    917 {
    918 	return mState.unpackAlignment;
    919 }
    920 
    921 GLuint Context::createBuffer()
    922 {
    923 	return mResourceManager->createBuffer();
    924 }
    925 
    926 GLuint Context::createTexture()
    927 {
    928 	return mResourceManager->createTexture();
    929 }
    930 
    931 GLuint Context::createRenderbuffer()
    932 {
    933 	return mResourceManager->createRenderbuffer();
    934 }
    935 
    936 // Returns an unused framebuffer name
    937 GLuint Context::createFramebuffer()
    938 {
    939 	return mFramebufferNameSpace.allocate();
    940 }
    941 
    942 void Context::deleteBuffer(GLuint buffer)
    943 {
    944 	detachBuffer(buffer);
    945 
    946 	mResourceManager->deleteBuffer(buffer);
    947 }
    948 
    949 void Context::deleteTexture(GLuint texture)
    950 {
    951 	detachTexture(texture);
    952 
    953 	mResourceManager->deleteTexture(texture);
    954 }
    955 
    956 void Context::deleteRenderbuffer(GLuint renderbuffer)
    957 {
    958 	detachRenderbuffer(renderbuffer);
    959 
    960 	mResourceManager->deleteRenderbuffer(renderbuffer);
    961 }
    962 
    963 void Context::deleteFramebuffer(GLuint framebuffer)
    964 {
    965 	detachFramebuffer(framebuffer);
    966 
    967 	Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer);
    968 
    969 	if(framebufferObject)
    970 	{
    971 		delete framebufferObject;
    972 	}
    973 }
    974 
    975 Buffer *Context::getBuffer(GLuint handle)
    976 {
    977 	return mResourceManager->getBuffer(handle);
    978 }
    979 
    980 Texture *Context::getTexture(GLuint handle)
    981 {
    982 	return mResourceManager->getTexture(handle);
    983 }
    984 
    985 Renderbuffer *Context::getRenderbuffer(GLuint handle)
    986 {
    987 	return mResourceManager->getRenderbuffer(handle);
    988 }
    989 
    990 Framebuffer *Context::getFramebuffer()
    991 {
    992 	return getFramebuffer(mState.framebuffer);
    993 }
    994 
    995 void Context::bindArrayBuffer(unsigned int buffer)
    996 {
    997 	mResourceManager->checkBufferAllocation(buffer);
    998 
    999 	mState.arrayBuffer = getBuffer(buffer);
   1000 }
   1001 
   1002 void Context::bindElementArrayBuffer(unsigned int buffer)
   1003 {
   1004 	mResourceManager->checkBufferAllocation(buffer);
   1005 
   1006 	mState.elementArrayBuffer = getBuffer(buffer);
   1007 }
   1008 
   1009 void Context::bindTexture2D(GLuint texture)
   1010 {
   1011 	mResourceManager->checkTextureAllocation(texture, TEXTURE_2D);
   1012 
   1013 	mState.samplerTexture[TEXTURE_2D][mState.activeSampler] = getTexture(texture);
   1014 }
   1015 
   1016 void Context::bindTextureExternal(GLuint texture)
   1017 {
   1018 	mResourceManager->checkTextureAllocation(texture, TEXTURE_EXTERNAL);
   1019 
   1020 	mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler] = getTexture(texture);
   1021 }
   1022 
   1023 void Context::bindFramebuffer(GLuint framebuffer)
   1024 {
   1025 	if(!getFramebuffer(framebuffer))
   1026 	{
   1027 		mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
   1028 	}
   1029 
   1030 	mState.framebuffer = framebuffer;
   1031 }
   1032 
   1033 void Context::bindRenderbuffer(GLuint renderbuffer)
   1034 {
   1035 	mResourceManager->checkRenderbufferAllocation(renderbuffer);
   1036 
   1037 	mState.renderbuffer = getRenderbuffer(renderbuffer);
   1038 }
   1039 
   1040 void Context::setFramebufferZero(Framebuffer *buffer)
   1041 {
   1042 	delete mFramebufferNameSpace.remove(0);
   1043 	mFramebufferNameSpace.insert(0, buffer);
   1044 }
   1045 
   1046 void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
   1047 {
   1048 	Renderbuffer *renderbufferObject = mState.renderbuffer;
   1049 	renderbufferObject->setStorage(renderbuffer);
   1050 }
   1051 
   1052 Framebuffer *Context::getFramebuffer(unsigned int handle)
   1053 {
   1054 	return mFramebufferNameSpace.find(handle);
   1055 }
   1056 
   1057 Buffer *Context::getArrayBuffer()
   1058 {
   1059 	return mState.arrayBuffer;
   1060 }
   1061 
   1062 Buffer *Context::getElementArrayBuffer()
   1063 {
   1064 	return mState.elementArrayBuffer;
   1065 }
   1066 
   1067 Texture2D *Context::getTexture2D()
   1068 {
   1069 	return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
   1070 }
   1071 
   1072 TextureExternal *Context::getTextureExternal()
   1073 {
   1074 	return static_cast<TextureExternal*>(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL));
   1075 }
   1076 
   1077 Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type)
   1078 {
   1079 	GLuint texid = mState.samplerTexture[type][sampler].name();
   1080 
   1081 	if(texid == 0)   // Special case: 0 refers to different initial textures based on the target
   1082 	{
   1083 		switch(type)
   1084 		{
   1085 		case TEXTURE_2D: return mTexture2DZero;
   1086 		case TEXTURE_EXTERNAL: return mTextureExternalZero;
   1087 		default: UNREACHABLE(type);
   1088 		}
   1089 	}
   1090 
   1091 	return mState.samplerTexture[type][sampler];
   1092 }
   1093 
   1094 bool Context::getBooleanv(GLenum pname, GLboolean *params)
   1095 {
   1096 	switch(pname)
   1097 	{
   1098 	case GL_SAMPLE_COVERAGE_INVERT:   *params = mState.sampleCoverageInvert;         break;
   1099 	case GL_DEPTH_WRITEMASK:          *params = mState.depthMask;                    break;
   1100 	case GL_COLOR_WRITEMASK:
   1101 		params[0] = mState.colorMaskRed;
   1102 		params[1] = mState.colorMaskGreen;
   1103 		params[2] = mState.colorMaskBlue;
   1104 		params[3] = mState.colorMaskAlpha;
   1105 		break;
   1106 	case GL_CULL_FACE:                *params = mState.cullFaceEnabled;              break;
   1107 	case GL_POLYGON_OFFSET_FILL:      *params = mState.polygonOffsetFillEnabled;     break;
   1108 	case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled; break;
   1109 	case GL_SAMPLE_COVERAGE:          *params = mState.sampleCoverageEnabled;        break;
   1110 	case GL_SCISSOR_TEST:             *params = mState.scissorTestEnabled;           break;
   1111 	case GL_STENCIL_TEST:             *params = mState.stencilTestEnabled;           break;
   1112 	case GL_DEPTH_TEST:               *params = mState.depthTestEnabled;             break;
   1113 	case GL_BLEND:                    *params = mState.blendEnabled;                 break;
   1114 	case GL_DITHER:                   *params = mState.ditherEnabled;                break;
   1115 	case GL_LIGHT_MODEL_TWO_SIDE:     *params = lightModelTwoSide;                   break;
   1116 	default:
   1117 		return false;
   1118 	}
   1119 
   1120 	return true;
   1121 }
   1122 
   1123 bool Context::getFloatv(GLenum pname, GLfloat *params)
   1124 {
   1125 	// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
   1126 	// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
   1127 	// GetIntegerv as its native query function. As it would require conversion in any
   1128 	// case, this should make no difference to the calling application.
   1129 	switch(pname)
   1130 	{
   1131 	case GL_LINE_WIDTH:               *params = mState.lineWidth;            break;
   1132 	case GL_SAMPLE_COVERAGE_VALUE:    *params = mState.sampleCoverageValue;  break;
   1133 	case GL_DEPTH_CLEAR_VALUE:        *params = mState.depthClearValue;      break;
   1134 	case GL_POLYGON_OFFSET_FACTOR:    *params = mState.polygonOffsetFactor;  break;
   1135 	case GL_POLYGON_OFFSET_UNITS:     *params = mState.polygonOffsetUnits;   break;
   1136 	case GL_ALIASED_LINE_WIDTH_RANGE:
   1137 		params[0] = ALIASED_LINE_WIDTH_RANGE_MIN;
   1138 		params[1] = ALIASED_LINE_WIDTH_RANGE_MAX;
   1139 		break;
   1140 	case GL_ALIASED_POINT_SIZE_RANGE:
   1141 		params[0] = ALIASED_POINT_SIZE_RANGE_MIN;
   1142 		params[1] = ALIASED_POINT_SIZE_RANGE_MAX;
   1143 		break;
   1144 	case GL_SMOOTH_LINE_WIDTH_RANGE:
   1145 		params[0] = SMOOTH_LINE_WIDTH_RANGE_MIN;
   1146 		params[1] = SMOOTH_LINE_WIDTH_RANGE_MAX;
   1147 		break;
   1148 	case GL_SMOOTH_POINT_SIZE_RANGE:
   1149 		params[0] = SMOOTH_POINT_SIZE_RANGE_MIN;
   1150 		params[1] = SMOOTH_POINT_SIZE_RANGE_MAX;
   1151 		break;
   1152 	case GL_DEPTH_RANGE:
   1153 		params[0] = mState.zNear;
   1154 		params[1] = mState.zFar;
   1155 		break;
   1156 	case GL_COLOR_CLEAR_VALUE:
   1157 		params[0] = mState.colorClearValue.red;
   1158 		params[1] = mState.colorClearValue.green;
   1159 		params[2] = mState.colorClearValue.blue;
   1160 		params[3] = mState.colorClearValue.alpha;
   1161 		break;
   1162 	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
   1163 		*params = MAX_TEXTURE_MAX_ANISOTROPY;
   1164 		break;
   1165 	case GL_MODELVIEW_MATRIX:
   1166 		for(int i = 0; i < 16; i++)
   1167 		{
   1168 			params[i] = modelViewStack.current()[i % 4][i / 4];
   1169 		}
   1170 		break;
   1171 	case GL_PROJECTION_MATRIX:
   1172 		for(int i = 0; i < 16; i++)
   1173 		{
   1174 			params[i] = projectionStack.current()[i % 4][i / 4];
   1175 		}
   1176 		break;
   1177 	default:
   1178 		return false;
   1179 	}
   1180 
   1181 	return true;
   1182 }
   1183 
   1184 bool Context::getIntegerv(GLenum pname, GLint *params)
   1185 {
   1186 	// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
   1187 	// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
   1188 	// GetIntegerv as its native query function. As it would require conversion in any
   1189 	// case, this should make no difference to the calling application. You may find it in
   1190 	// Context::getFloatv.
   1191 	switch(pname)
   1192 	{
   1193 	case GL_ARRAY_BUFFER_BINDING:             *params = mState.arrayBuffer.name();            break;
   1194 	case GL_ELEMENT_ARRAY_BUFFER_BINDING:     *params = mState.elementArrayBuffer.name();     break;
   1195 	case GL_FRAMEBUFFER_BINDING_OES:          *params = mState.framebuffer;                   break;
   1196 	case GL_RENDERBUFFER_BINDING_OES:         *params = mState.renderbuffer.name();           break;
   1197 	case GL_PACK_ALIGNMENT:                   *params = mState.packAlignment;                 break;
   1198 	case GL_UNPACK_ALIGNMENT:                 *params = mState.unpackAlignment;               break;
   1199 	case GL_GENERATE_MIPMAP_HINT:             *params = mState.generateMipmapHint;            break;
   1200 	case GL_PERSPECTIVE_CORRECTION_HINT:      *params = mState.perspectiveCorrectionHint;     break;
   1201 	case GL_ACTIVE_TEXTURE:                   *params = (mState.activeSampler + GL_TEXTURE0); break;
   1202 	case GL_STENCIL_FUNC:                     *params = mState.stencilFunc;                   break;
   1203 	case GL_STENCIL_REF:                      *params = mState.stencilRef;                    break;
   1204 	case GL_STENCIL_VALUE_MASK:               *params = mState.stencilMask;                   break;
   1205 	case GL_STENCIL_FAIL:                     *params = mState.stencilFail;                   break;
   1206 	case GL_STENCIL_PASS_DEPTH_FAIL:          *params = mState.stencilPassDepthFail;          break;
   1207 	case GL_STENCIL_PASS_DEPTH_PASS:          *params = mState.stencilPassDepthPass;          break;
   1208 	case GL_DEPTH_FUNC:                       *params = mState.depthFunc;                     break;
   1209 	case GL_BLEND_SRC_RGB_OES:                *params = mState.sourceBlendRGB;                break;
   1210 	case GL_BLEND_SRC_ALPHA_OES:              *params = mState.sourceBlendAlpha;              break;
   1211 	case GL_BLEND_DST_RGB_OES:                *params = mState.destBlendRGB;                  break;
   1212 	case GL_BLEND_DST_ALPHA_OES:              *params = mState.destBlendAlpha;                break;
   1213 	case GL_BLEND_EQUATION_RGB_OES:           *params = mState.blendEquationRGB;              break;
   1214 	case GL_BLEND_EQUATION_ALPHA_OES:         *params = mState.blendEquationAlpha;            break;
   1215 	case GL_STENCIL_WRITEMASK:                *params = mState.stencilWritemask;              break;
   1216 	case GL_STENCIL_CLEAR_VALUE:              *params = mState.stencilClearValue;             break;
   1217 	case GL_SUBPIXEL_BITS:                    *params = 4;                                    break;
   1218 	case GL_MAX_TEXTURE_SIZE:                 *params = IMPLEMENTATION_MAX_TEXTURE_SIZE;      break;
   1219 	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:   *params = NUM_COMPRESSED_TEXTURE_FORMATS;       break;
   1220 	case GL_SAMPLE_BUFFERS:
   1221 	case GL_SAMPLES:
   1222 		{
   1223 			Framebuffer *framebuffer = getFramebuffer();
   1224 			int width, height, samples;
   1225 
   1226 			if(framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE_OES)
   1227 			{
   1228 				switch(pname)
   1229 				{
   1230 				case GL_SAMPLE_BUFFERS:
   1231 					if(samples > 1)
   1232 					{
   1233 						*params = 1;
   1234 					}
   1235 					else
   1236 					{
   1237 						*params = 0;
   1238 					}
   1239 					break;
   1240 				case GL_SAMPLES:
   1241 					*params = samples;
   1242 					break;
   1243 				}
   1244 			}
   1245 			else
   1246 			{
   1247 				*params = 0;
   1248 			}
   1249 		}
   1250 		break;
   1251 	case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
   1252 		{
   1253 			Framebuffer *framebuffer = getFramebuffer();
   1254 			*params = framebuffer->getImplementationColorReadType();
   1255 		}
   1256 		break;
   1257 	case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
   1258 		{
   1259 			Framebuffer *framebuffer = getFramebuffer();
   1260 			*params = framebuffer->getImplementationColorReadFormat();
   1261 		}
   1262 		break;
   1263 	case GL_MAX_VIEWPORT_DIMS:
   1264 		{
   1265 			int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE;
   1266 			params[0] = maxDimension;
   1267 			params[1] = maxDimension;
   1268 		}
   1269 		break;
   1270 	case GL_COMPRESSED_TEXTURE_FORMATS:
   1271 		{
   1272 			for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++)
   1273 			{
   1274 				params[i] = compressedTextureFormats[i];
   1275 			}
   1276 		}
   1277 		break;
   1278 	case GL_VIEWPORT:
   1279 		params[0] = mState.viewportX;
   1280 		params[1] = mState.viewportY;
   1281 		params[2] = mState.viewportWidth;
   1282 		params[3] = mState.viewportHeight;
   1283 		break;
   1284 	case GL_SCISSOR_BOX:
   1285 		params[0] = mState.scissorX;
   1286 		params[1] = mState.scissorY;
   1287 		params[2] = mState.scissorWidth;
   1288 		params[3] = mState.scissorHeight;
   1289 		break;
   1290 	case GL_CULL_FACE_MODE:                   *params = mState.cullMode;                 break;
   1291 	case GL_FRONT_FACE:                       *params = mState.frontFace;                break;
   1292 	case GL_RED_BITS:
   1293 	case GL_GREEN_BITS:
   1294 	case GL_BLUE_BITS:
   1295 	case GL_ALPHA_BITS:
   1296 		{
   1297 			Framebuffer *framebuffer = getFramebuffer();
   1298 			Renderbuffer *colorbuffer = framebuffer->getColorbuffer();
   1299 
   1300 			if(colorbuffer)
   1301 			{
   1302 				switch(pname)
   1303 				{
   1304 				case GL_RED_BITS:   *params = colorbuffer->getRedSize();   break;
   1305 				case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
   1306 				case GL_BLUE_BITS:  *params = colorbuffer->getBlueSize();  break;
   1307 				case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
   1308 				}
   1309 			}
   1310 			else
   1311 			{
   1312 				*params = 0;
   1313 			}
   1314 		}
   1315 		break;
   1316 	case GL_DEPTH_BITS:
   1317 		{
   1318 			Framebuffer *framebuffer = getFramebuffer();
   1319 			Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
   1320 
   1321 			if(depthbuffer)
   1322 			{
   1323 				*params = depthbuffer->getDepthSize();
   1324 			}
   1325 			else
   1326 			{
   1327 				*params = 0;
   1328 			}
   1329 		}
   1330 		break;
   1331 	case GL_STENCIL_BITS:
   1332 		{
   1333 			Framebuffer *framebuffer = getFramebuffer();
   1334 			Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
   1335 
   1336 			if(stencilbuffer)
   1337 			{
   1338 				*params = stencilbuffer->getStencilSize();
   1339 			}
   1340 			else
   1341 			{
   1342 				*params = 0;
   1343 			}
   1344 		}
   1345 		break;
   1346 	case GL_TEXTURE_BINDING_2D:                  *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name();                   break;
   1347 	case GL_TEXTURE_BINDING_CUBE_MAP_OES:        *params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name();                 break;
   1348 	case GL_TEXTURE_BINDING_EXTERNAL_OES:        *params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name();             break;
   1349 	case GL_MAX_LIGHTS:                          *params = MAX_LIGHTS;                                                                       break;
   1350 	case GL_MAX_MODELVIEW_STACK_DEPTH:           *params = MAX_MODELVIEW_STACK_DEPTH;                                                        break;
   1351 	case GL_MAX_PROJECTION_STACK_DEPTH:          *params = MAX_PROJECTION_STACK_DEPTH;                                                       break;
   1352 	case GL_MAX_TEXTURE_STACK_DEPTH:             *params = MAX_TEXTURE_STACK_DEPTH;                                                          break;
   1353 	case GL_MAX_TEXTURE_UNITS:                   *params = MAX_TEXTURE_UNITS;                                                                break;
   1354 	case GL_MAX_CLIP_PLANES:                     *params = MAX_CLIP_PLANES;                                                                  break;
   1355 	case GL_POINT_SIZE_ARRAY_TYPE_OES:           *params = mState.vertexAttribute[sw::PointSize].mType;                                      break;
   1356 	case GL_POINT_SIZE_ARRAY_STRIDE_OES:         *params = mState.vertexAttribute[sw::PointSize].mStride;                                    break;
   1357 	case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES: *params = mState.vertexAttribute[sw::PointSize].mBoundBuffer.name();                        break;
   1358 	case GL_VERTEX_ARRAY_SIZE:                   *params = mState.vertexAttribute[sw::Position].mSize;                                       break;
   1359 	case GL_VERTEX_ARRAY_TYPE:                   *params = mState.vertexAttribute[sw::Position].mType;                                       break;
   1360 	case GL_VERTEX_ARRAY_STRIDE:                 *params = mState.vertexAttribute[sw::Position].mStride;                                     break;
   1361 	case GL_VERTEX_ARRAY_BUFFER_BINDING:         *params = mState.vertexAttribute[sw::Position].mBoundBuffer.name();                         break;
   1362 	case GL_NORMAL_ARRAY_TYPE:                   *params = mState.vertexAttribute[sw::Normal].mType;                                         break;
   1363 	case GL_NORMAL_ARRAY_STRIDE:                 *params = mState.vertexAttribute[sw::Normal].mStride;                                       break;
   1364 	case GL_NORMAL_ARRAY_BUFFER_BINDING:         *params = mState.vertexAttribute[sw::Normal].mBoundBuffer.name();                           break;
   1365 	case GL_COLOR_ARRAY_SIZE:                    *params = mState.vertexAttribute[sw::Color0].mSize;                                         break;
   1366 	case GL_COLOR_ARRAY_TYPE:                    *params = mState.vertexAttribute[sw::Color0].mType;                                         break;
   1367 	case GL_COLOR_ARRAY_STRIDE:                  *params = mState.vertexAttribute[sw::Color0].mStride;                                       break;
   1368 	case GL_COLOR_ARRAY_BUFFER_BINDING:          *params = mState.vertexAttribute[sw::Color0].mBoundBuffer.name();                           break;
   1369 	case GL_TEXTURE_COORD_ARRAY_SIZE:            *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mSize;               break;
   1370 	case GL_TEXTURE_COORD_ARRAY_TYPE:            *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mType;               break;
   1371 	case GL_TEXTURE_COORD_ARRAY_STRIDE:          *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mStride;             break;
   1372 	case GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING:  *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mBoundBuffer.name(); break;
   1373 	default:
   1374 		return false;
   1375 	}
   1376 
   1377 	return true;
   1378 }
   1379 
   1380 bool Context::getPointerv(GLenum pname, const GLvoid **params)
   1381 {
   1382 	switch(pname)
   1383 	{
   1384 	case GL_VERTEX_ARRAY_POINTER:         *params = mState.vertexAttribute[sw::Position].mPointer;                         break;
   1385 	case GL_NORMAL_ARRAY_POINTER:         *params = mState.vertexAttribute[sw::Normal].mPointer;                           break;
   1386 	case GL_COLOR_ARRAY_POINTER:          *params = mState.vertexAttribute[sw::Color0].mPointer;                           break;
   1387 	case GL_POINT_SIZE_ARRAY_POINTER_OES: *params = mState.vertexAttribute[sw::PointSize].mPointer;                        break;
   1388 	case GL_TEXTURE_COORD_ARRAY_POINTER:  *params = mState.vertexAttribute[sw::TexCoord0 + mState.activeSampler].mPointer; break;
   1389 	default:
   1390 		return false;
   1391 	}
   1392 
   1393 	return true;
   1394 }
   1395 
   1396 int Context::getQueryParameterNum(GLenum pname)
   1397 {
   1398 	// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
   1399 	// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
   1400 	// to the fact that it is stored internally as a float, and so would require conversion
   1401 	// if returned from Context::getIntegerv. Since this conversion is already implemented
   1402 	// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
   1403 	// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
   1404 	// application.
   1405 	switch(pname)
   1406 	{
   1407 	case GL_COMPRESSED_TEXTURE_FORMATS:
   1408 		return NUM_COMPRESSED_TEXTURE_FORMATS;
   1409 	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
   1410 	case GL_ARRAY_BUFFER_BINDING:
   1411 	case GL_FRAMEBUFFER_BINDING_OES:
   1412 	case GL_RENDERBUFFER_BINDING_OES:
   1413 	case GL_PACK_ALIGNMENT:
   1414 	case GL_UNPACK_ALIGNMENT:
   1415 	case GL_GENERATE_MIPMAP_HINT:
   1416 	case GL_RED_BITS:
   1417 	case GL_GREEN_BITS:
   1418 	case GL_BLUE_BITS:
   1419 	case GL_ALPHA_BITS:
   1420 	case GL_DEPTH_BITS:
   1421 	case GL_STENCIL_BITS:
   1422 	case GL_ELEMENT_ARRAY_BUFFER_BINDING:
   1423 	case GL_CULL_FACE_MODE:
   1424 	case GL_FRONT_FACE:
   1425 	case GL_ACTIVE_TEXTURE:
   1426 	case GL_STENCIL_FUNC:
   1427 	case GL_STENCIL_VALUE_MASK:
   1428 	case GL_STENCIL_REF:
   1429 	case GL_STENCIL_FAIL:
   1430 	case GL_STENCIL_PASS_DEPTH_FAIL:
   1431 	case GL_STENCIL_PASS_DEPTH_PASS:
   1432 	case GL_DEPTH_FUNC:
   1433 	case GL_BLEND_SRC_RGB_OES:
   1434 	case GL_BLEND_SRC_ALPHA_OES:
   1435 	case GL_BLEND_DST_RGB_OES:
   1436 	case GL_BLEND_DST_ALPHA_OES:
   1437 	case GL_BLEND_EQUATION_RGB_OES:
   1438 	case GL_BLEND_EQUATION_ALPHA_OES:
   1439 	case GL_STENCIL_WRITEMASK:
   1440 	case GL_STENCIL_CLEAR_VALUE:
   1441 	case GL_SUBPIXEL_BITS:
   1442 	case GL_MAX_TEXTURE_SIZE:
   1443 	case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES:
   1444 	case GL_SAMPLE_BUFFERS:
   1445 	case GL_SAMPLES:
   1446 	case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
   1447 	case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
   1448 	case GL_TEXTURE_BINDING_2D:
   1449 	case GL_TEXTURE_BINDING_CUBE_MAP_OES:
   1450 	case GL_TEXTURE_BINDING_EXTERNAL_OES:
   1451 		return 1;
   1452 	case GL_MAX_VIEWPORT_DIMS:
   1453 		return 2;
   1454 	case GL_VIEWPORT:
   1455 	case GL_SCISSOR_BOX:
   1456 		return 4;
   1457 	case GL_SAMPLE_COVERAGE_INVERT:
   1458 	case GL_DEPTH_WRITEMASK:
   1459 	case GL_CULL_FACE:                // CULL_FACE through DITHER are natural to IsEnabled,
   1460 	case GL_POLYGON_OFFSET_FILL:      // but can be retrieved through the Get{Type}v queries.
   1461 	case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
   1462 	case GL_SAMPLE_COVERAGE:
   1463 	case GL_SCISSOR_TEST:
   1464 	case GL_STENCIL_TEST:
   1465 	case GL_DEPTH_TEST:
   1466 	case GL_BLEND:
   1467 	case GL_DITHER:
   1468 		return 1;
   1469 	case GL_COLOR_WRITEMASK:
   1470 		return 4;
   1471 	case GL_POLYGON_OFFSET_FACTOR:
   1472 	case GL_POLYGON_OFFSET_UNITS:
   1473 	case GL_SAMPLE_COVERAGE_VALUE:
   1474 	case GL_DEPTH_CLEAR_VALUE:
   1475 	case GL_LINE_WIDTH:
   1476 		return 1;
   1477 	case GL_ALIASED_LINE_WIDTH_RANGE:
   1478 	case GL_ALIASED_POINT_SIZE_RANGE:
   1479 	case GL_DEPTH_RANGE:
   1480 		return 2;
   1481 	case GL_COLOR_CLEAR_VALUE:
   1482 		return 4;
   1483 	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
   1484 	case GL_MAX_LIGHTS:
   1485 	case GL_MAX_MODELVIEW_STACK_DEPTH:
   1486 	case GL_MAX_PROJECTION_STACK_DEPTH:
   1487 	case GL_MAX_TEXTURE_STACK_DEPTH:
   1488 	case GL_MAX_TEXTURE_UNITS:
   1489 	case GL_MAX_CLIP_PLANES:
   1490 	case GL_POINT_SIZE_ARRAY_TYPE_OES:
   1491 	case GL_POINT_SIZE_ARRAY_STRIDE_OES:
   1492 	case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES:
   1493 		return 1;
   1494 	case GL_CURRENT_COLOR:
   1495 		return 4;
   1496 	case GL_CURRENT_NORMAL:
   1497 		return 3;
   1498 	case GL_CURRENT_TEXTURE_COORDS:
   1499 		return 4;
   1500 	case GL_POINT_SIZE:
   1501 	case GL_POINT_SIZE_MIN:
   1502 	case GL_POINT_SIZE_MAX:
   1503 	case GL_POINT_FADE_THRESHOLD_SIZE:
   1504 		return 1;
   1505 	case GL_POINT_DISTANCE_ATTENUATION:
   1506 		return 3;
   1507 	case GL_SMOOTH_POINT_SIZE_RANGE:
   1508 	case GL_SMOOTH_LINE_WIDTH_RANGE:
   1509 		return 2;
   1510 	case GL_SHADE_MODEL:
   1511 	case GL_MATRIX_MODE:
   1512 	case GL_MODELVIEW_STACK_DEPTH:
   1513 	case GL_PROJECTION_STACK_DEPTH:
   1514 	case GL_TEXTURE_STACK_DEPTH:
   1515 		return 1;
   1516 	case GL_MODELVIEW_MATRIX:
   1517 	case GL_PROJECTION_MATRIX:
   1518 	case GL_TEXTURE_MATRIX:
   1519 		return 16;
   1520 	case GL_ALPHA_TEST_FUNC:
   1521 	case GL_ALPHA_TEST_REF:
   1522 	case GL_BLEND_DST:
   1523 	case GL_BLEND_SRC:
   1524 	case GL_LOGIC_OP_MODE:
   1525 	case GL_VERTEX_ARRAY_SIZE:
   1526 	case GL_VERTEX_ARRAY_TYPE:
   1527 	case GL_VERTEX_ARRAY_STRIDE:
   1528 	case GL_NORMAL_ARRAY_TYPE:
   1529 	case GL_NORMAL_ARRAY_STRIDE:
   1530 	case GL_COLOR_ARRAY_SIZE:
   1531 	case GL_COLOR_ARRAY_TYPE:
   1532 	case GL_COLOR_ARRAY_STRIDE:
   1533 	case GL_TEXTURE_COORD_ARRAY_SIZE:
   1534 	case GL_TEXTURE_COORD_ARRAY_TYPE:
   1535 	case GL_TEXTURE_COORD_ARRAY_STRIDE:
   1536 	case GL_VERTEX_ARRAY_POINTER:
   1537 	case GL_NORMAL_ARRAY_POINTER:
   1538 	case GL_COLOR_ARRAY_POINTER:
   1539 	case GL_TEXTURE_COORD_ARRAY_POINTER:
   1540 	case GL_LIGHT_MODEL_TWO_SIDE:
   1541 		return 1;
   1542 	default:
   1543 		UNREACHABLE(pname);
   1544 	}
   1545 
   1546 	return -1;
   1547 }
   1548 
   1549 bool Context::isQueryParameterInt(GLenum pname)
   1550 {
   1551 	// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
   1552 	// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
   1553 	// to the fact that it is stored internally as a float, and so would require conversion
   1554 	// if returned from Context::getIntegerv. Since this conversion is already implemented
   1555 	// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
   1556 	// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
   1557 	// application.
   1558 	switch(pname)
   1559 	{
   1560 	case GL_COMPRESSED_TEXTURE_FORMATS:
   1561 	case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
   1562 	case GL_ARRAY_BUFFER_BINDING:
   1563 	case GL_FRAMEBUFFER_BINDING_OES:
   1564 	case GL_RENDERBUFFER_BINDING_OES:
   1565 	case GL_PACK_ALIGNMENT:
   1566 	case GL_UNPACK_ALIGNMENT:
   1567 	case GL_GENERATE_MIPMAP_HINT:
   1568 	case GL_RED_BITS:
   1569 	case GL_GREEN_BITS:
   1570 	case GL_BLUE_BITS:
   1571 	case GL_ALPHA_BITS:
   1572 	case GL_DEPTH_BITS:
   1573 	case GL_STENCIL_BITS:
   1574 	case GL_ELEMENT_ARRAY_BUFFER_BINDING:
   1575 	case GL_CULL_FACE_MODE:
   1576 	case GL_FRONT_FACE:
   1577 	case GL_ACTIVE_TEXTURE:
   1578 	case GL_STENCIL_FUNC:
   1579 	case GL_STENCIL_VALUE_MASK:
   1580 	case GL_STENCIL_REF:
   1581 	case GL_STENCIL_FAIL:
   1582 	case GL_STENCIL_PASS_DEPTH_FAIL:
   1583 	case GL_STENCIL_PASS_DEPTH_PASS:
   1584 	case GL_DEPTH_FUNC:
   1585 	case GL_BLEND_SRC_RGB_OES:
   1586 	case GL_BLEND_SRC_ALPHA_OES:
   1587 	case GL_BLEND_DST_RGB_OES:
   1588 	case GL_BLEND_DST_ALPHA_OES:
   1589 	case GL_BLEND_EQUATION_RGB_OES:
   1590 	case GL_BLEND_EQUATION_ALPHA_OES:
   1591 	case GL_STENCIL_WRITEMASK:
   1592 	case GL_STENCIL_CLEAR_VALUE:
   1593 	case GL_SUBPIXEL_BITS:
   1594 	case GL_MAX_TEXTURE_SIZE:
   1595 	case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES:
   1596 	case GL_SAMPLE_BUFFERS:
   1597 	case GL_SAMPLES:
   1598 	case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
   1599 	case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
   1600 	case GL_TEXTURE_BINDING_2D:
   1601 	case GL_TEXTURE_BINDING_CUBE_MAP_OES:
   1602 	case GL_TEXTURE_BINDING_EXTERNAL_OES:
   1603 	case GL_MAX_VIEWPORT_DIMS:
   1604 	case GL_VIEWPORT:
   1605 	case GL_SCISSOR_BOX:
   1606 	case GL_MAX_LIGHTS:
   1607 	case GL_MAX_MODELVIEW_STACK_DEPTH:
   1608 	case GL_MAX_PROJECTION_STACK_DEPTH:
   1609 	case GL_MAX_TEXTURE_STACK_DEPTH:
   1610 	case GL_MAX_TEXTURE_UNITS:
   1611 	case GL_MAX_CLIP_PLANES:
   1612 	case GL_POINT_SIZE_ARRAY_TYPE_OES:
   1613 	case GL_POINT_SIZE_ARRAY_STRIDE_OES:
   1614 	case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES:
   1615 		return true;
   1616 	}
   1617 
   1618 	return false;
   1619 }
   1620 
   1621 bool Context::isQueryParameterFloat(GLenum pname)
   1622 {
   1623 	// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
   1624 	// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
   1625 	// to the fact that it is stored internally as a float, and so would require conversion
   1626 	// if returned from Context::getIntegerv. Since this conversion is already implemented
   1627 	// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
   1628 	// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
   1629 	// application.
   1630 	switch(pname)
   1631 	{
   1632 	case GL_POLYGON_OFFSET_FACTOR:
   1633 	case GL_POLYGON_OFFSET_UNITS:
   1634 	case GL_SAMPLE_COVERAGE_VALUE:
   1635 	case GL_DEPTH_CLEAR_VALUE:
   1636 	case GL_LINE_WIDTH:
   1637 	case GL_ALIASED_LINE_WIDTH_RANGE:
   1638 	case GL_ALIASED_POINT_SIZE_RANGE:
   1639 	case GL_SMOOTH_LINE_WIDTH_RANGE:
   1640 	case GL_SMOOTH_POINT_SIZE_RANGE:
   1641 	case GL_DEPTH_RANGE:
   1642 	case GL_COLOR_CLEAR_VALUE:
   1643 	case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
   1644 	case GL_LIGHT_MODEL_AMBIENT:
   1645 	case GL_POINT_SIZE_MIN:
   1646 	case GL_POINT_SIZE_MAX:
   1647 	case GL_POINT_DISTANCE_ATTENUATION:
   1648 	case GL_POINT_FADE_THRESHOLD_SIZE:
   1649 		return true;
   1650 	}
   1651 
   1652 	return false;
   1653 }
   1654 
   1655 bool Context::isQueryParameterBool(GLenum pname)
   1656 {
   1657 	switch(pname)
   1658 	{
   1659 	case GL_SAMPLE_COVERAGE_INVERT:
   1660 	case GL_DEPTH_WRITEMASK:
   1661 	case GL_CULL_FACE:                // CULL_FACE through DITHER are natural to IsEnabled,
   1662 	case GL_POLYGON_OFFSET_FILL:      // but can be retrieved through the Get{Type}v queries.
   1663 	case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
   1664 	case GL_SAMPLE_COVERAGE:
   1665 	case GL_SCISSOR_TEST:
   1666 	case GL_STENCIL_TEST:
   1667 	case GL_DEPTH_TEST:
   1668 	case GL_BLEND:
   1669 	case GL_DITHER:
   1670 	case GL_COLOR_WRITEMASK:
   1671 	case GL_LIGHT_MODEL_TWO_SIDE:
   1672 		return true;
   1673 	}
   1674 
   1675 	return false;
   1676 }
   1677 
   1678 bool Context::isQueryParameterPointer(GLenum pname)
   1679 {
   1680 	switch(pname)
   1681 	{
   1682 	case GL_VERTEX_ARRAY_POINTER:
   1683 	case GL_NORMAL_ARRAY_POINTER:
   1684 	case GL_COLOR_ARRAY_POINTER:
   1685 	case GL_TEXTURE_COORD_ARRAY_POINTER:
   1686 	case GL_POINT_SIZE_ARRAY_POINTER_OES:
   1687 		return true;
   1688 	}
   1689 
   1690 	return false;
   1691 }
   1692 
   1693 // Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle
   1694 bool Context::applyRenderTarget()
   1695 {
   1696 	Framebuffer *framebuffer = getFramebuffer();
   1697 	int width, height, samples;
   1698 
   1699 	if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE_OES)
   1700 	{
   1701 		return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES, false);
   1702 	}
   1703 
   1704 	egl::Image *renderTarget = framebuffer->getRenderTarget();
   1705 	device->setRenderTarget(0, renderTarget);
   1706 	if(renderTarget) renderTarget->release();
   1707 
   1708 	egl::Image *depthBuffer = framebuffer->getDepthBuffer();
   1709 	device->setDepthBuffer(depthBuffer);
   1710 	if(depthBuffer) depthBuffer->release();
   1711 
   1712 	egl::Image *stencilBuffer = framebuffer->getStencilBuffer();
   1713 	device->setStencilBuffer(stencilBuffer);
   1714 	if(stencilBuffer) stencilBuffer->release();
   1715 
   1716 	Viewport viewport;
   1717 	float zNear = clamp01(mState.zNear);
   1718 	float zFar = clamp01(mState.zFar);
   1719 
   1720 	viewport.x0 = mState.viewportX;
   1721 	viewport.y0 = mState.viewportY;
   1722 	viewport.width = mState.viewportWidth;
   1723 	viewport.height = mState.viewportHeight;
   1724 	viewport.minZ = zNear;
   1725 	viewport.maxZ = zFar;
   1726 
   1727 	device->setViewport(viewport);
   1728 
   1729 	if(mState.scissorTestEnabled)
   1730 	{
   1731 		sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight};
   1732 		scissor.clip(0, 0, width, height);
   1733 
   1734 		device->setScissorRect(scissor);
   1735 		device->setScissorEnable(true);
   1736 	}
   1737 	else
   1738 	{
   1739 		device->setScissorEnable(false);
   1740 	}
   1741 
   1742 	return true;
   1743 }
   1744 
   1745 // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc)
   1746 void Context::applyState(GLenum drawMode)
   1747 {
   1748 	Framebuffer *framebuffer = getFramebuffer();
   1749 
   1750 	if(mState.cullFaceEnabled)
   1751 	{
   1752 		device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace));
   1753 	}
   1754 	else
   1755 	{
   1756 		device->setCullMode(sw::CULL_NONE);
   1757 	}
   1758 
   1759 	if(mDepthStateDirty)
   1760 	{
   1761 		if(mState.depthTestEnabled)
   1762 		{
   1763 			device->setDepthBufferEnable(true);
   1764 			device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc));
   1765 		}
   1766 		else
   1767 		{
   1768 			device->setDepthBufferEnable(false);
   1769 		}
   1770 
   1771 		mDepthStateDirty = false;
   1772 	}
   1773 
   1774 	if(mBlendStateDirty)
   1775 	{
   1776 		if(mState.blendEnabled)
   1777 		{
   1778 			device->setAlphaBlendEnable(true);
   1779 			device->setSeparateAlphaBlendEnable(true);
   1780 
   1781 			device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB));
   1782 			device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB));
   1783 			device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB));
   1784 
   1785 			device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha));
   1786 			device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha));
   1787 			device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha));
   1788 		}
   1789 		else
   1790 		{
   1791 			device->setAlphaBlendEnable(false);
   1792 		}
   1793 
   1794 		mBlendStateDirty = false;
   1795 	}
   1796 
   1797 	if(mStencilStateDirty || mFrontFaceDirty)
   1798 	{
   1799 		if(mState.stencilTestEnabled && framebuffer->hasStencil())
   1800 		{
   1801 			device->setStencilEnable(true);
   1802 			device->setTwoSidedStencil(true);
   1803 
   1804 			// get the maximum size of the stencil ref
   1805 			Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
   1806 			GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;
   1807 
   1808 			device->setStencilWriteMask(mState.stencilWritemask);
   1809 			device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc));
   1810 
   1811 			device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
   1812 			device->setStencilMask(mState.stencilMask);
   1813 
   1814 			device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail));
   1815 			device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
   1816 			device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
   1817 
   1818 			device->setStencilWriteMaskCCW(mState.stencilWritemask);
   1819 			device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc));
   1820 
   1821 			device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
   1822 			device->setStencilMaskCCW(mState.stencilMask);
   1823 
   1824 			device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail));
   1825 			device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
   1826 			device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
   1827 		}
   1828 		else
   1829 		{
   1830 			device->setStencilEnable(false);
   1831 		}
   1832 
   1833 		mStencilStateDirty = false;
   1834 		mFrontFaceDirty = false;
   1835 	}
   1836 
   1837 	if(mMaskStateDirty)
   1838 	{
   1839 		device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
   1840 		device->setDepthWriteEnable(mState.depthMask);
   1841 
   1842 		mMaskStateDirty = false;
   1843 	}
   1844 
   1845 	if(mPolygonOffsetStateDirty)
   1846 	{
   1847 		if(mState.polygonOffsetFillEnabled)
   1848 		{
   1849 			Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
   1850 			if(depthbuffer)
   1851 			{
   1852 				device->setSlopeDepthBias(mState.polygonOffsetFactor);
   1853 				float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize()));
   1854 				device->setDepthBias(depthBias);
   1855 			}
   1856 		}
   1857 		else
   1858 		{
   1859 			device->setSlopeDepthBias(0);
   1860 			device->setDepthBias(0);
   1861 		}
   1862 
   1863 		mPolygonOffsetStateDirty = false;
   1864 	}
   1865 
   1866 	if(mSampleStateDirty)
   1867 	{
   1868 		if(mState.sampleAlphaToCoverageEnabled)
   1869 		{
   1870 			device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE);
   1871 		}
   1872 		else
   1873 		{
   1874 			device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE);
   1875 		}
   1876 
   1877 		if(mState.sampleCoverageEnabled)
   1878 		{
   1879 			unsigned int mask = 0;
   1880 			if(mState.sampleCoverageValue != 0)
   1881 			{
   1882 				int width, height, samples;
   1883 				framebuffer->completeness(width, height, samples);
   1884 
   1885 				float threshold = 0.5f;
   1886 
   1887 				for(int i = 0; i < samples; i++)
   1888 				{
   1889 					mask <<= 1;
   1890 
   1891 					if((i + 1) * mState.sampleCoverageValue >= threshold)
   1892 					{
   1893 						threshold += 1.0f;
   1894 						mask |= 1;
   1895 					}
   1896 				}
   1897 			}
   1898 
   1899 			if(mState.sampleCoverageInvert)
   1900 			{
   1901 				mask = ~mask;
   1902 			}
   1903 
   1904 			device->setMultiSampleMask(mask);
   1905 		}
   1906 		else
   1907 		{
   1908 			device->setMultiSampleMask(0xFFFFFFFF);
   1909 		}
   1910 
   1911 		mSampleStateDirty = false;
   1912 	}
   1913 
   1914 	if(mDitherStateDirty)
   1915 	{
   1916 	//	UNIMPLEMENTED();   // FIXME
   1917 
   1918 		mDitherStateDirty = false;
   1919 	}
   1920 
   1921 	switch(mState.shadeModel)
   1922 	{
   1923 	default: UNREACHABLE(mState.shadeModel);
   1924 	case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break;
   1925 	case GL_FLAT:   device->setShadingMode(sw::SHADING_FLAT);    break;
   1926 	}
   1927 
   1928 	device->setLightingEnable(lightingEnabled);
   1929 	device->setGlobalAmbient(sw::Color<float>(globalAmbient.red, globalAmbient.green, globalAmbient.blue, globalAmbient.alpha));
   1930 
   1931 	for(int i = 0; i < MAX_LIGHTS; i++)
   1932 	{
   1933 		device->setLightEnable(i, light[i].enabled);
   1934 		device->setLightAmbient(i, sw::Color<float>(light[i].ambient.red, light[i].ambient.green, light[i].ambient.blue, light[i].ambient.alpha));
   1935 		device->setLightDiffuse(i, sw::Color<float>(light[i].diffuse.red, light[i].diffuse.green, light[i].diffuse.blue, light[i].diffuse.alpha));
   1936 		device->setLightSpecular(i, sw::Color<float>(light[i].specular.red, light[i].specular.green, light[i].specular.blue, light[i].specular.alpha));
   1937 		device->setLightAttenuation(i, light[i].attenuation.constant, light[i].attenuation.linear, light[i].attenuation.quadratic);
   1938 
   1939 		if(light[i].position.w != 0.0f)
   1940 		{
   1941 			device->setLightPosition(i, sw::Point(light[i].position.x / light[i].position.w, light[i].position.y / light[i].position.w, light[i].position.z / light[i].position.w));
   1942 		}
   1943 		else   // Directional light
   1944 		{
   1945 			// Hack: set the position far way
   1946 			float max = sw::max(abs(light[i].position.x), abs(light[i].position.y), abs(light[i].position.z));
   1947 			device->setLightPosition(i, sw::Point(1e10f * (light[i].position.x / max), 1e10f * (light[i].position.y / max), 1e10f * (light[i].position.z / max)));
   1948 		}
   1949 	}
   1950 
   1951 	device->setMaterialAmbient(sw::Color<float>(materialAmbient.red, materialAmbient.green, materialAmbient.blue, materialAmbient.alpha));
   1952 	device->setMaterialDiffuse(sw::Color<float>(materialDiffuse.red, materialDiffuse.green, materialDiffuse.blue, materialDiffuse.alpha));
   1953 	device->setMaterialSpecular(sw::Color<float>(materialSpecular.red, materialSpecular.green, materialSpecular.blue, materialSpecular.alpha));
   1954 	device->setMaterialEmission(sw::Color<float>(materialEmission.red, materialEmission.green, materialEmission.blue, materialEmission.alpha));
   1955 	device->setMaterialShininess(materialShininess);
   1956 
   1957 	device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL);
   1958 	device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL);
   1959 	device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL);
   1960 	device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL);
   1961 
   1962 	device->setProjectionMatrix(projectionStack.current());
   1963 	device->setModelMatrix(modelViewStack.current());
   1964 	device->setTextureMatrix(0, textureStack0.current());
   1965 	device->setTextureMatrix(1, textureStack1.current());
   1966 	device->setTextureTransform(0, textureStack0.isIdentity() ? 0 : 4, false);
   1967 	device->setTextureTransform(1, textureStack1.isIdentity() ? 0 : 4, false);
   1968 	device->setTexGen(0, sw::TEXGEN_NONE);
   1969 	device->setTexGen(1, sw::TEXGEN_NONE);
   1970 
   1971 	device->setAlphaTestEnable(alphaTestEnabled);
   1972 	device->setAlphaCompare(es2sw::ConvertAlphaComparison(alphaTestFunc));
   1973 	device->setAlphaReference(alphaTestRef * 0xFF);
   1974 
   1975 	device->setFogEnable(fogEnabled);
   1976 	device->setFogColor(sw::Color<float>(fogColor.red, fogColor.green, fogColor.blue, fogColor.alpha));
   1977 	device->setFogDensity(fogDensity);
   1978 	device->setFogStart(fogStart);
   1979 	device->setFogEnd(fogEnd);
   1980 
   1981 	switch(fogMode)
   1982 	{
   1983 	case GL_LINEAR: device->setVertexFogMode(sw::FOG_LINEAR); break;
   1984 	case GL_EXP:    device->setVertexFogMode(sw::FOG_EXP);    break;
   1985 	case GL_EXP2:   device->setVertexFogMode(sw::FOG_EXP2);   break;
   1986 	default: UNREACHABLE(fogMode);
   1987 	}
   1988 
   1989 	device->setColorLogicOpEnabled(colorLogicOpEnabled);
   1990 	device->setLogicalOperation(es2sw::ConvertLogicalOperation(logicalOperation));
   1991 
   1992 	device->setNormalizeNormals(normalizeEnabled || rescaleNormalEnabled);
   1993 }
   1994 
   1995 GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count)
   1996 {
   1997 	TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS];
   1998 
   1999 	GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes);
   2000 	if(err != GL_NO_ERROR)
   2001 	{
   2002 		return err;
   2003 	}
   2004 
   2005 	device->resetInputStreams(false);
   2006 
   2007 	for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
   2008 	{
   2009 		sw::Resource *resource = attributes[i].vertexBuffer;
   2010 		const void *buffer = (char*)resource->data() + attributes[i].offset;
   2011 
   2012 		int stride = attributes[i].stride;
   2013 
   2014 		buffer = (char*)buffer + stride * base;
   2015 
   2016 		sw::Stream attribute(resource, buffer, stride);
   2017 
   2018 		attribute.type = attributes[i].type;
   2019 		attribute.count = attributes[i].count;
   2020 		attribute.normalized = attributes[i].normalized;
   2021 
   2022 		device->setInputStream(i, attribute);
   2023 	}
   2024 
   2025 	return GL_NO_ERROR;
   2026 }
   2027 
   2028 // Applies the indices and element array bindings
   2029 GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
   2030 {
   2031 	GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo);
   2032 
   2033 	if(err == GL_NO_ERROR)
   2034 	{
   2035 		device->setIndexBuffer(indexInfo->indexBuffer);
   2036 	}
   2037 
   2038 	return err;
   2039 }
   2040 
   2041 void Context::applyTextures()
   2042 {
   2043 	for(int unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
   2044 	{
   2045 		Texture *texture = nullptr;
   2046 
   2047 		if(textureExternalEnabled[unit])
   2048 		{
   2049 			texture = getSamplerTexture(unit, TEXTURE_EXTERNAL);
   2050 		}
   2051 		else if(texture2Denabled[unit])
   2052 		{
   2053 			texture = getSamplerTexture(unit, TEXTURE_2D);
   2054 		}
   2055 
   2056 		if(texture && texture->isSamplerComplete())
   2057 		{
   2058 			texture->autoGenerateMipmaps();
   2059 
   2060 			GLenum wrapS = texture->getWrapS();
   2061 			GLenum wrapT = texture->getWrapT();
   2062 			GLenum minFilter = texture->getMinFilter();
   2063 			GLenum magFilter = texture->getMagFilter();
   2064 			GLfloat maxAnisotropy = texture->getMaxAnisotropy();
   2065 
   2066 			device->setAddressingModeU(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapS));
   2067 			device->setAddressingModeV(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapT));
   2068 
   2069 			device->setTextureFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy));
   2070 			device->setMipmapFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertMipMapFilter(minFilter));
   2071 			device->setMaxAnisotropy(sw::SAMPLER_PIXEL, unit, maxAnisotropy);
   2072 
   2073 			applyTexture(unit, texture);
   2074 
   2075 			device->setConstantColor(unit, sw::Color<float>(mState.textureUnit[unit].color.red, mState.textureUnit[unit].color.green, mState.textureUnit[unit].color.blue, mState.textureUnit[unit].color.alpha));
   2076 
   2077 			if(mState.textureUnit[unit].environmentMode != GL_COMBINE)
   2078 			{
   2079 				device->setFirstArgument(unit, sw::TextureStage::SOURCE_TEXTURE);    // Cs
   2080 				device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR);
   2081 				device->setSecondArgument(unit, sw::TextureStage::SOURCE_CURRENT);   // Cp
   2082 				device->setSecondModifier(unit, sw::TextureStage::MODIFIER_COLOR);
   2083 				device->setThirdArgument(unit, sw::TextureStage::SOURCE_CONSTANT);   // Cc
   2084 				device->setThirdModifier(unit, sw::TextureStage::MODIFIER_COLOR);
   2085 
   2086 				device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_TEXTURE);    // As
   2087 				device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
   2088 				device->setSecondArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT);   // Ap
   2089 				device->setSecondModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
   2090 				device->setThirdArgumentAlpha(unit, sw::TextureStage::SOURCE_CONSTANT);   // Ac
   2091 				device->setThirdModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
   2092 
   2093 				GLenum texFormat = texture->getFormat(GL_TEXTURE_2D, 0);
   2094 
   2095 				switch(mState.textureUnit[unit].environmentMode)
   2096 				{
   2097 				case GL_REPLACE:
   2098 					if(IsAlpha(texFormat))   // GL_ALPHA
   2099 					{
   2100 						// Cv = Cp, Av = As
   2101 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
   2102 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
   2103 					}
   2104 					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
   2105 					{
   2106 						// Cv = Cs, Av = Ap
   2107 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
   2108 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
   2109 					}
   2110 					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
   2111 					{
   2112 						// Cv = Cs, Av = As
   2113 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
   2114 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
   2115 					}
   2116 					else UNREACHABLE(texFormat);
   2117 					break;
   2118 				case GL_MODULATE:
   2119 					if(IsAlpha(texFormat))   // GL_ALPHA
   2120 					{
   2121 						// Cv = Cp, Av = ApAs
   2122 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
   2123 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
   2124 					}
   2125 					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
   2126 					{
   2127 						// Cv = CpCs, Av = Ap
   2128 						device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE);
   2129 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
   2130 					}
   2131 					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
   2132 					{
   2133 						// Cv = CpCs, Av = ApAs
   2134 						device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE);
   2135 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
   2136 					}
   2137 					else UNREACHABLE(texFormat);
   2138 					break;
   2139 				case GL_DECAL:
   2140 					if(texFormat == GL_ALPHA ||
   2141 					   texFormat == GL_LUMINANCE ||
   2142 					   texFormat == GL_LUMINANCE_ALPHA)
   2143 					{
   2144 						// undefined   // FIXME: Log
   2145 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
   2146 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
   2147 					}
   2148 					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
   2149 					{
   2150 						// Cv = Cs, Av = Ap
   2151 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
   2152 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
   2153 					}
   2154 					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
   2155 					{
   2156 						// Cv = Cp(1 - As) + CsAs, Av = Ap
   2157 						device->setStageOperation(unit, sw::TextureStage::STAGE_BLENDTEXTUREALPHA);   // Alpha * (Arg1 - Arg2) + Arg2
   2158 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
   2159 					}
   2160 					else UNREACHABLE(texFormat);
   2161 					break;
   2162 				case GL_BLEND:
   2163 					if(IsAlpha(texFormat))   // GL_ALPHA
   2164 					{
   2165 						// Cv = Cp, Av = ApAs
   2166 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
   2167 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
   2168 					}
   2169 					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
   2170 					{
   2171 						// Cv = Cp(1 - Cs) + CcCs, Av = Ap
   2172 						device->setStageOperation(unit, sw::TextureStage::STAGE_LERP);   // Arg3 * (Arg1 - Arg2) + Arg2
   2173 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
   2174 					}
   2175 					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
   2176 					{
   2177 						// Cv = Cp(1 - Cs) + CcCs, Av = ApAs
   2178 						device->setStageOperation(unit, sw::TextureStage::STAGE_LERP);   // Arg3 * (Arg1 - Arg2) + Arg2
   2179 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
   2180 					}
   2181 					else UNREACHABLE(texFormat);
   2182 					break;
   2183 				case GL_ADD:
   2184 					if(IsAlpha(texFormat))   // GL_ALPHA
   2185 					{
   2186 						// Cv = Cp, Av = ApAs
   2187 						device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
   2188 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
   2189 					}
   2190 					else if(IsRGB(texFormat))   // GL_LUMINANCE (or 1) / GL_RGB (or 3)
   2191 					{
   2192 						// Cv = Cp + Cs, Av = Ap
   2193 						device->setStageOperation(unit, sw::TextureStage::STAGE_ADD);
   2194 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
   2195 					}
   2196 					else if(IsRGBA(texFormat))   // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4)
   2197 					{
   2198 						// Cv = Cp + Cs, Av = ApAs
   2199 						device->setStageOperation(unit, sw::TextureStage::STAGE_ADD);
   2200 						device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
   2201 					}
   2202 					else UNREACHABLE(texFormat);
   2203 					break;
   2204 				default:
   2205 					UNREACHABLE(mState.textureUnit[unit].environmentMode);
   2206 				}
   2207 			}
   2208 			else   // GL_COMBINE
   2209 			{
   2210 				device->setFirstArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0RGB));
   2211 				device->setFirstModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0RGB));
   2212 				device->setSecondArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1RGB));
   2213 				device->setSecondModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1RGB));
   2214 				device->setThirdArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2RGB));
   2215 				device->setThirdModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2RGB));
   2216 
   2217 				device->setStageOperation(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineRGB));
   2218 
   2219 				device->setFirstArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0Alpha));
   2220 				device->setFirstModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0Alpha));
   2221 				device->setSecondArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1Alpha));
   2222 				device->setSecondModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1Alpha));
   2223 				device->setThirdArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2Alpha));
   2224 				device->setThirdModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2Alpha));
   2225 
   2226 				device->setStageOperationAlpha(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineAlpha));
   2227 			}
   2228 		}
   2229 		else
   2230 		{
   2231 			applyTexture(unit, nullptr);
   2232 
   2233 			device->setFirstArgument(unit, sw::TextureStage::SOURCE_CURRENT);
   2234 			device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR);
   2235 			device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
   2236 
   2237 			device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT);
   2238 			device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
   2239 			device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
   2240 		}
   2241 	}
   2242 }
   2243 
   2244 void Context::setTextureEnvMode(GLenum texEnvMode)
   2245 {
   2246 	mState.textureUnit[mState.activeSampler].environmentMode = texEnvMode;
   2247 }
   2248 
   2249 void Context::setTextureEnvColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
   2250 {
   2251 	mState.textureUnit[mState.activeSampler].color = {red, green, blue, alpha};
   2252 }
   2253 
   2254 void Context::setCombineRGB(GLenum combineRGB)
   2255 {
   2256 	mState.textureUnit[mState.activeSampler].combineRGB = combineRGB;
   2257 }
   2258 
   2259 void Context::setCombineAlpha(GLenum combineAlpha)
   2260 {
   2261 	mState.textureUnit[mState.activeSampler].combineAlpha = combineAlpha;
   2262 }
   2263 
   2264 void Context::setOperand0RGB(GLenum operand)
   2265 {
   2266 	mState.textureUnit[mState.activeSampler].operand0RGB = operand;
   2267 }
   2268 
   2269 void Context::setOperand1RGB(GLenum operand)
   2270 {
   2271 	mState.textureUnit[mState.activeSampler].operand1RGB = operand;
   2272 }
   2273 
   2274 void Context::setOperand2RGB(GLenum operand)
   2275 {
   2276 	mState.textureUnit[mState.activeSampler].operand2RGB = operand;
   2277 }
   2278 
   2279 void Context::setOperand0Alpha(GLenum operand)
   2280 {
   2281 	mState.textureUnit[mState.activeSampler].operand0Alpha = operand;
   2282 }
   2283 
   2284 void Context::setOperand1Alpha(GLenum operand)
   2285 {
   2286 	mState.textureUnit[mState.activeSampler].operand1Alpha = operand;
   2287 }
   2288 
   2289 void Context::setOperand2Alpha(GLenum operand)
   2290 {
   2291 	mState.textureUnit[mState.activeSampler].operand2Alpha = operand;
   2292 }
   2293 
   2294 void Context::setSrc0RGB(GLenum src)
   2295 {
   2296 	mState.textureUnit[mState.activeSampler].src0RGB = src;
   2297 }
   2298 
   2299 void Context::setSrc1RGB(GLenum src)
   2300 {
   2301 	mState.textureUnit[mState.activeSampler].src1RGB = src;
   2302 }
   2303 
   2304 void Context::setSrc2RGB(GLenum src)
   2305 {
   2306 	mState.textureUnit[mState.activeSampler].src2RGB = src;
   2307 }
   2308 
   2309 void Context::setSrc0Alpha(GLenum src)
   2310 {
   2311 	mState.textureUnit[mState.activeSampler].src0Alpha = src;
   2312 }
   2313 
   2314 void Context::setSrc1Alpha(GLenum src)
   2315 {
   2316 	mState.textureUnit[mState.activeSampler].src1Alpha = src;
   2317 }
   2318 
   2319 void Context::setSrc2Alpha(GLenum src)
   2320 {
   2321 	mState.textureUnit[mState.activeSampler].src2Alpha = src;
   2322 }
   2323 
   2324 void Context::applyTexture(int index, Texture *baseTexture)
   2325 {
   2326 	sw::Resource *resource = 0;
   2327 
   2328 	if(baseTexture)
   2329 	{
   2330 		resource = baseTexture->getResource();
   2331 	}
   2332 
   2333 	device->setTextureResource(index, resource);
   2334 
   2335 	if(baseTexture)
   2336 	{
   2337 		int levelCount = baseTexture->getLevelCount();
   2338 
   2339 		if(baseTexture->getTarget() == GL_TEXTURE_2D || baseTexture->getTarget() == GL_TEXTURE_EXTERNAL_OES)
   2340 		{
   2341 			Texture2D *texture = static_cast<Texture2D*>(baseTexture);
   2342 
   2343 			for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
   2344 			{
   2345 				int surfaceLevel = mipmapLevel;
   2346 
   2347 				if(surfaceLevel < 0)
   2348 				{
   2349 					surfaceLevel = 0;
   2350 				}
   2351 				else if(surfaceLevel >= levelCount)
   2352 				{
   2353 					surfaceLevel = levelCount - 1;
   2354 				}
   2355 
   2356 				egl::Image *surface = texture->getImage(surfaceLevel);
   2357 				device->setTextureLevel(index, 0, mipmapLevel, surface, sw::TEXTURE_2D);
   2358 			}
   2359 		}
   2360 		else UNIMPLEMENTED();
   2361 	}
   2362 	else
   2363 	{
   2364 		device->setTextureLevel(index, 0, 0, 0, sw::TEXTURE_NULL);
   2365 	}
   2366 }
   2367 
   2368 void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
   2369                          GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
   2370 {
   2371 	Framebuffer *framebuffer = getFramebuffer();
   2372 	int framebufferWidth, framebufferHeight, framebufferSamples;
   2373 
   2374 	if(framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE_OES)
   2375 	{
   2376 		return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES);
   2377 	}
   2378 
   2379 	if(getFramebufferName() != 0 && framebufferSamples != 0)
   2380 	{
   2381 		return error(GL_INVALID_OPERATION);
   2382 	}
   2383 
   2384 	if(format != GL_RGBA || type != GL_UNSIGNED_BYTE)
   2385 	{
   2386 		if(format != framebuffer->getImplementationColorReadFormat() || type != framebuffer->getImplementationColorReadType())
   2387 		{
   2388 			return error(GL_INVALID_OPERATION);
   2389 		}
   2390 	}
   2391 
   2392 	GLsizei outputPitch = egl::ComputePitch(width, format, type, mState.packAlignment);
   2393 
   2394 	// Sized query sanity check
   2395 	if(bufSize)
   2396 	{
   2397 		int requiredSize = outputPitch * height;
   2398 		if(requiredSize > *bufSize)
   2399 		{
   2400 			return error(GL_INVALID_OPERATION);
   2401 		}
   2402 	}
   2403 
   2404 	egl::Image *renderTarget = framebuffer->getRenderTarget();
   2405 
   2406 	if(!renderTarget)
   2407 	{
   2408 		return error(GL_OUT_OF_MEMORY);
   2409 	}
   2410 
   2411 	sw::Rect rect = {x, y, x + width, y + height};
   2412 	rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
   2413 
   2414 	unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, sw::LOCK_READONLY);
   2415 	unsigned char *dest = (unsigned char*)pixels;
   2416 	int inputPitch = (int)renderTarget->getPitch();
   2417 
   2418 	for(int j = 0; j < rect.y1 - rect.y0; j++)
   2419 	{
   2420 		unsigned short *dest16 = (unsigned short*)dest;
   2421 		unsigned int *dest32 = (unsigned int*)dest;
   2422 
   2423 		if(renderTarget->getInternalFormat() == sw::FORMAT_A8B8G8R8 &&
   2424 		   format == GL_RGBA && type == GL_UNSIGNED_BYTE)
   2425 		{
   2426 			memcpy(dest, source, (rect.x1 - rect.x0) * 4);
   2427 		}
   2428 		else if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 &&
   2429 				format == GL_RGBA && type == GL_UNSIGNED_BYTE)
   2430 		{
   2431 			for(int i = 0; i < rect.x1 - rect.x0; i++)
   2432 			{
   2433 				unsigned int argb = *(unsigned int*)(source + 4 * i);
   2434 
   2435 				dest32[i] = (argb & 0xFF00FF00) | ((argb & 0x000000FF) << 16) | ((argb & 0x00FF0000) >> 16);
   2436 			}
   2437 		}
   2438 		else if(renderTarget->getInternalFormat() == sw::FORMAT_X8R8G8B8 &&
   2439 				format == GL_RGBA && type == GL_UNSIGNED_BYTE)
   2440 		{
   2441 			for(int i = 0; i < rect.x1 - rect.x0; i++)
   2442 			{
   2443 				unsigned int xrgb = *(unsigned int*)(source + 4 * i);
   2444 
   2445 				dest32[i] = (xrgb & 0xFF00FF00) | ((xrgb & 0x000000FF) << 16) | ((xrgb & 0x00FF0000) >> 16) | 0xFF000000;
   2446 			}
   2447 		}
   2448 		else if(renderTarget->getInternalFormat() == sw::FORMAT_X8R8G8B8 &&
   2449 				format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE)
   2450 		{
   2451 			for(int i = 0; i < rect.x1 - rect.x0; i++)
   2452 			{
   2453 				unsigned int xrgb = *(unsigned int*)(source + 4 * i);
   2454 
   2455 				dest32[i] = xrgb | 0xFF000000;
   2456 			}
   2457 		}
   2458 		else if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 &&
   2459 				format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE)
   2460 		{
   2461 			memcpy(dest, source, (rect.x1 - rect.x0) * 4);
   2462 		}
   2463 		else if(renderTarget->getInternalFormat() == sw::FORMAT_A1R5G5B5 &&
   2464 				format == GL_BGRA_EXT && type == GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT)
   2465 		{
   2466 			memcpy(dest, source, (rect.x1 - rect.x0) * 2);
   2467 		}
   2468 		else if(renderTarget->getInternalFormat() == sw::FORMAT_R5G6B5 &&
   2469 				format == 0x80E0 && type == GL_UNSIGNED_SHORT_5_6_5)   // GL_BGR_EXT
   2470 		{
   2471 			memcpy(dest, source, (rect.x1 - rect.x0) * 2);
   2472 		}
   2473 		else
   2474 		{
   2475 			for(int i = 0; i < rect.x1 - rect.x0; i++)
   2476 			{
   2477 				float r;
   2478 				float g;
   2479 				float b;
   2480 				float a;
   2481 
   2482 				switch(renderTarget->getInternalFormat())
   2483 				{
   2484 				case sw::FORMAT_R5G6B5:
   2485 					{
   2486 						unsigned short rgb = *(unsigned short*)(source + 2 * i);
   2487 
   2488 						a = 1.0f;
   2489 						b = (rgb & 0x001F) * (1.0f / 0x001F);
   2490 						g = (rgb & 0x07E0) * (1.0f / 0x07E0);
   2491 						r = (rgb & 0xF800) * (1.0f / 0xF800);
   2492 					}
   2493 					break;
   2494 				case sw::FORMAT_A1R5G5B5:
   2495 					{
   2496 						unsigned short argb = *(unsigned short*)(source + 2 * i);
   2497 
   2498 						a = (argb & 0x8000) ? 1.0f : 0.0f;
   2499 						b = (argb & 0x001F) * (1.0f / 0x001F);
   2500 						g = (argb & 0x03E0) * (1.0f / 0x03E0);
   2501 						r = (argb & 0x7C00) * (1.0f / 0x7C00);
   2502 					}
   2503 					break;
   2504 				case sw::FORMAT_A8R8G8B8:
   2505 					{
   2506 						unsigned int argb = *(unsigned int*)(source + 4 * i);
   2507 
   2508 						a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
   2509 						b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
   2510 						g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
   2511 						r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
   2512 					}
   2513 					break;
   2514 				case sw::FORMAT_A8B8G8R8:
   2515 					{
   2516 						unsigned int abgr = *(unsigned int*)(source + 4 * i);
   2517 
   2518 						a = (abgr & 0xFF000000) * (1.0f / 0xFF000000);
   2519 						b = (abgr & 0x00FF0000) * (1.0f / 0x00FF0000);
   2520 						g = (abgr & 0x0000FF00) * (1.0f / 0x0000FF00);
   2521 						r = (abgr & 0x000000FF) * (1.0f / 0x000000FF);
   2522 					}
   2523 					break;
   2524 				case sw::FORMAT_X8R8G8B8:
   2525 					{
   2526 						unsigned int xrgb = *(unsigned int*)(source + 4 * i);
   2527 
   2528 						a = 1.0f;
   2529 						b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
   2530 						g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
   2531 						r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
   2532 					}
   2533 					break;
   2534 				case sw::FORMAT_X8B8G8R8:
   2535 					{
   2536 						unsigned int xbgr = *(unsigned int*)(source + 4 * i);
   2537 
   2538 						a = 1.0f;
   2539 						b = (xbgr & 0x00FF0000) * (1.0f / 0x00FF0000);
   2540 						g = (xbgr & 0x0000FF00) * (1.0f / 0x0000FF00);
   2541 						r = (xbgr & 0x000000FF) * (1.0f / 0x000000FF);
   2542 					}
   2543 					break;
   2544 				case sw::FORMAT_A2R10G10B10:
   2545 					{
   2546 						unsigned int argb = *(unsigned int*)(source + 4 * i);
   2547 
   2548 						a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
   2549 						b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
   2550 						g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
   2551 						r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
   2552 					}
   2553 					break;
   2554 				default:
   2555 					UNIMPLEMENTED();   // FIXME
   2556 					UNREACHABLE(renderTarget->getInternalFormat());
   2557 				}
   2558 
   2559 				switch(format)
   2560 				{
   2561 				case GL_RGBA:
   2562 					switch(type)
   2563 					{
   2564 					case GL_UNSIGNED_BYTE:
   2565 						dest[4 * i + 0] = (unsigned char)(255 * r + 0.5f);
   2566 						dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f);
   2567 						dest[4 * i + 2] = (unsigned char)(255 * b + 0.5f);
   2568 						dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f);
   2569 						break;
   2570 					default: UNREACHABLE(type);
   2571 					}
   2572 					break;
   2573 				case GL_BGRA_EXT:
   2574 					switch(type)
   2575 					{
   2576 					case GL_UNSIGNED_BYTE:
   2577 						dest[4 * i + 0] = (unsigned char)(255 * b + 0.5f);
   2578 						dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f);
   2579 						dest[4 * i + 2] = (unsigned char)(255 * r + 0.5f);
   2580 						dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f);
   2581 						break;
   2582 					case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
   2583 						// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
   2584 						// this type is packed as follows:
   2585 						//   15   14   13   12   11   10    9    8    7    6    5    4    3    2    1    0
   2586 						//  --------------------------------------------------------------------------------
   2587 						// |       4th         |        3rd         |        2nd        |   1st component   |
   2588 						//  --------------------------------------------------------------------------------
   2589 						// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
   2590 						dest16[i] =
   2591 							((unsigned short)(15 * a + 0.5f) << 12)|
   2592 							((unsigned short)(15 * r + 0.5f) << 8) |
   2593 							((unsigned short)(15 * g + 0.5f) << 4) |
   2594 							((unsigned short)(15 * b + 0.5f) << 0);
   2595 						break;
   2596 					case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
   2597 						// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
   2598 						// this type is packed as follows:
   2599 						//   15   14   13   12   11   10    9    8    7    6    5    4    3    2    1    0
   2600 						//  --------------------------------------------------------------------------------
   2601 						// | 4th |          3rd           |           2nd          |      1st component     |
   2602 						//  --------------------------------------------------------------------------------
   2603 						// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
   2604 						dest16[i] =
   2605 							((unsigned short)(     a + 0.5f) << 15) |
   2606 							((unsigned short)(31 * r + 0.5f) << 10) |
   2607 							((unsigned short)(31 * g + 0.5f) << 5) |
   2608 							((unsigned short)(31 * b + 0.5f) << 0);
   2609 						break;
   2610 					default: UNREACHABLE(type);
   2611 					}
   2612 					break;
   2613 				case GL_RGB:
   2614 					switch(type)
   2615 					{
   2616 					case GL_UNSIGNED_SHORT_5_6_5:
   2617 						dest16[i] =
   2618 							((unsigned short)(31 * b + 0.5f) << 0) |
   2619 							((unsigned short)(63 * g + 0.5f) << 5) |
   2620 							((unsigned short)(31 * r + 0.5f) << 11);
   2621 						break;
   2622 					default: UNREACHABLE(type);
   2623 					}
   2624 					break;
   2625 				default: UNREACHABLE(format);
   2626 				}
   2627 			}
   2628 		}
   2629 
   2630 		source += inputPitch;
   2631 		dest += outputPitch;
   2632 	}
   2633 
   2634 	renderTarget->unlock();
   2635 	renderTarget->release();
   2636 }
   2637 
   2638 void Context::clear(GLbitfield mask)
   2639 {
   2640 	Framebuffer *framebuffer = getFramebuffer();
   2641 
   2642 	if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE_OES)
   2643 	{
   2644 		return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES);
   2645 	}
   2646 
   2647 	if(!applyRenderTarget())
   2648 	{
   2649 		return;
   2650 	}
   2651 
   2652 	float depth = clamp01(mState.depthClearValue);
   2653 	int stencil = mState.stencilClearValue & 0x000000FF;
   2654 
   2655 	if(mask & GL_COLOR_BUFFER_BIT)
   2656 	{
   2657 		unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) |
   2658 		                        (mState.colorMaskGreen ? 0x2 : 0) |
   2659 		                        (mState.colorMaskBlue ? 0x4 : 0) |
   2660 		                        (mState.colorMaskAlpha ? 0x8 : 0);
   2661 
   2662 		if(rgbaMask != 0)
   2663 		{
   2664 			device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask);
   2665 		}
   2666 	}
   2667 
   2668 	if(mask & GL_DEPTH_BUFFER_BIT)
   2669 	{
   2670 		if(mState.depthMask != 0)
   2671 		{
   2672 			device->clearDepth(depth);
   2673 		}
   2674 	}
   2675 
   2676 	if(mask & GL_STENCIL_BUFFER_BIT)
   2677 	{
   2678 		if(mState.stencilWritemask != 0)
   2679 		{
   2680 			device->clearStencil(stencil, mState.stencilWritemask);
   2681 		}
   2682 	}
   2683 }
   2684 
   2685 void Context::drawArrays(GLenum mode, GLint first, GLsizei count)
   2686 {
   2687 	sw::DrawType primitiveType;
   2688 	int primitiveCount;
   2689 
   2690 	if(!es2sw::ConvertPrimitiveType(mode, count, GL_NONE, primitiveType, primitiveCount))
   2691 		return error(GL_INVALID_ENUM);
   2692 
   2693 	if(primitiveCount <= 0)
   2694 	{
   2695 		return;
   2696 	}
   2697 
   2698 	if(!applyRenderTarget())
   2699 	{
   2700 		return;
   2701 	}
   2702 
   2703 	applyState(mode);
   2704 
   2705 	GLenum err = applyVertexBuffer(0, first, count);
   2706 	if(err != GL_NO_ERROR)
   2707 	{
   2708 		return error(err);
   2709 	}
   2710 
   2711 	applyTextures();
   2712 
   2713 	if(!cullSkipsDraw(mode))
   2714 	{
   2715 		device->drawPrimitive(primitiveType, primitiveCount);
   2716 	}
   2717 }
   2718 
   2719 void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices)
   2720 {
   2721 	if(!indices && !mState.elementArrayBuffer)
   2722 	{
   2723 		return error(GL_INVALID_OPERATION);
   2724 	}
   2725 
   2726 	sw::DrawType primitiveType;
   2727 	int primitiveCount;
   2728 
   2729 	if(!es2sw::ConvertPrimitiveType(mode, count, type, primitiveType, primitiveCount))
   2730 		return error(GL_INVALID_ENUM);
   2731 
   2732 	if(primitiveCount <= 0)
   2733 	{
   2734 		return;
   2735 	}
   2736 
   2737 	if(!applyRenderTarget())
   2738 	{
   2739 		return;
   2740 	}
   2741 
   2742 	applyState(mode);
   2743 
   2744 	TranslatedIndexData indexInfo;
   2745 	GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo);
   2746 	if(err != GL_NO_ERROR)
   2747 	{
   2748 		return error(err);
   2749 	}
   2750 
   2751 	GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
   2752 	err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount);
   2753 	if(err != GL_NO_ERROR)
   2754 	{
   2755 		return error(err);
   2756 	}
   2757 
   2758 	applyTextures();
   2759 
   2760 	if(!cullSkipsDraw(mode))
   2761 	{
   2762 		device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount);
   2763 	}
   2764 }
   2765 
   2766 void Context::drawTexture(GLfloat x, GLfloat y, GLfloat z, GLfloat width, GLfloat height)
   2767 {
   2768 	es1::Framebuffer *framebuffer = getFramebuffer();
   2769 	es1::Renderbuffer *renderbuffer = framebuffer->getColorbuffer();
   2770 	float targetWidth = (float)renderbuffer->getWidth();
   2771 	float targetHeight = (float)renderbuffer->getHeight();
   2772 	float x0 = 2.0f * x / targetWidth - 1.0f;
   2773 	float y0 = 2.0f * y / targetHeight - 1.0f;
   2774 	float x1 = 2.0f * (x + width) / targetWidth - 1.0f;
   2775 	float y1 = 2.0f * (y + height) / targetHeight - 1.0f;
   2776 	float Zw = sw::clamp(mState.zNear + z * (mState.zFar - mState.zNear), mState.zNear, mState.zFar);
   2777 
   2778 	float vertices[][3] = {{x0, y0, Zw},
   2779 	                       {x0, y1, Zw},
   2780 	                       {x1, y0, Zw},
   2781 	                       {x1, y1, Zw}};
   2782 
   2783 	ASSERT(mState.samplerTexture[TEXTURE_2D][1].name() == 0);   // Multi-texturing unimplemented
   2784 	es1::Texture *texture = getSamplerTexture(0, TEXTURE_2D);
   2785 	float textureWidth = (float)texture->getWidth(GL_TEXTURE_2D, 0);
   2786 	float textureHeight = (float)texture->getHeight(GL_TEXTURE_2D, 0);
   2787 	int Ucr = texture->getCropRectU();
   2788 	int Vcr = texture->getCropRectV();
   2789 	int Wcr = texture->getCropRectW();
   2790 	int Hcr = texture->getCropRectH();
   2791 
   2792 	float texCoords[][2] = {{Ucr / textureWidth, Vcr / textureHeight},
   2793 	                        {Ucr / textureWidth, (Vcr + Hcr) / textureHeight},
   2794 	                        {(Ucr + Wcr) / textureWidth, Vcr / textureHeight},
   2795 	                        {(Ucr + Wcr) / textureWidth, (Vcr + Hcr) / textureHeight}};
   2796 
   2797 	VertexAttribute oldPositionAttribute = mState.vertexAttribute[sw::Position];
   2798 	VertexAttribute oldTexCoord0Attribute = mState.vertexAttribute[sw::TexCoord0];
   2799 	gl::BindingPointer<Buffer> oldArrayBuffer = mState.arrayBuffer;
   2800 	mState.arrayBuffer = nullptr;
   2801 
   2802 	glVertexPointer(3, GL_FLOAT, 3 * sizeof(float), vertices);
   2803 	glEnableClientState(GL_VERTEX_ARRAY);
   2804 	glTexCoordPointer(2, GL_FLOAT, 2 * sizeof(float), texCoords);
   2805 	glEnableClientState(GL_TEXTURE_COORD_ARRAY);
   2806 
   2807 	sw::Matrix P = projectionStack.current();
   2808 	sw::Matrix M = modelViewStack.current();
   2809 	sw::Matrix T = textureStack0.current();
   2810 
   2811 	projectionStack.identity();
   2812 	modelViewStack.identity();
   2813 	textureStack0.identity();
   2814 
   2815 	drawArrays(GL_TRIANGLE_STRIP, 0, 4);
   2816 
   2817 	// Restore state
   2818 	mState.vertexAttribute[sw::Position] = oldPositionAttribute;
   2819 	mState.vertexAttribute[sw::TexCoord0] = oldTexCoord0Attribute;
   2820 	mState.arrayBuffer = oldArrayBuffer;
   2821 	oldArrayBuffer = nullptr;
   2822 	oldPositionAttribute.mBoundBuffer = nullptr;
   2823 	oldTexCoord0Attribute.mBoundBuffer = nullptr;
   2824 	textureStack0.load(T);
   2825 	modelViewStack.load(M);
   2826 	projectionStack.load(P);
   2827 }
   2828 
   2829 void Context::finish()
   2830 {
   2831 	device->finish();
   2832 }
   2833 
   2834 void Context::flush()
   2835 {
   2836 	// We don't queue anything without processing it as fast as possible
   2837 }
   2838 
   2839 void Context::recordInvalidEnum()
   2840 {
   2841 	mInvalidEnum = true;
   2842 }
   2843 
   2844 void Context::recordInvalidValue()
   2845 {
   2846 	mInvalidValue = true;
   2847 }
   2848 
   2849 void Context::recordInvalidOperation()
   2850 {
   2851 	mInvalidOperation = true;
   2852 }
   2853 
   2854 void Context::recordOutOfMemory()
   2855 {
   2856 	mOutOfMemory = true;
   2857 }
   2858 
   2859 void Context::recordInvalidFramebufferOperation()
   2860 {
   2861 	mInvalidFramebufferOperation = true;
   2862 }
   2863 
   2864 void Context::recordMatrixStackOverflow()
   2865 {
   2866 	mMatrixStackOverflow = true;
   2867 }
   2868 
   2869 void Context::recordMatrixStackUnderflow()
   2870 {
   2871 	mMatrixStackUnderflow = true;
   2872 }
   2873 
   2874 // Get one of the recorded errors and clear its flag, if any.
   2875 // [OpenGL ES 2.0.24] section 2.5 page 13.
   2876 GLenum Context::getError()
   2877 {
   2878 	if(mInvalidEnum)
   2879 	{
   2880 		mInvalidEnum = false;
   2881 
   2882 		return GL_INVALID_ENUM;
   2883 	}
   2884 
   2885 	if(mInvalidValue)
   2886 	{
   2887 		mInvalidValue = false;
   2888 
   2889 		return GL_INVALID_VALUE;
   2890 	}
   2891 
   2892 	if(mInvalidOperation)
   2893 	{
   2894 		mInvalidOperation = false;
   2895 
   2896 		return GL_INVALID_OPERATION;
   2897 	}
   2898 
   2899 	if(mOutOfMemory)
   2900 	{
   2901 		mOutOfMemory = false;
   2902 
   2903 		return GL_OUT_OF_MEMORY;
   2904 	}
   2905 
   2906 	if(mInvalidFramebufferOperation)
   2907 	{
   2908 		mInvalidFramebufferOperation = false;
   2909 
   2910 		return GL_INVALID_FRAMEBUFFER_OPERATION_OES;
   2911 	}
   2912 
   2913 	if(mMatrixStackOverflow)
   2914 	{
   2915 		mMatrixStackOverflow = false;
   2916 
   2917 		return GL_INVALID_FRAMEBUFFER_OPERATION_OES;
   2918 	}
   2919 
   2920 	if(mMatrixStackUnderflow)
   2921 	{
   2922 		mMatrixStackUnderflow = false;
   2923 
   2924 		return GL_INVALID_FRAMEBUFFER_OPERATION_OES;
   2925 	}
   2926 
   2927 	return GL_NO_ERROR;
   2928 }
   2929 
   2930 int Context::getSupportedMultisampleCount(int requested)
   2931 {
   2932 	int supported = 0;
   2933 
   2934 	for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--)
   2935 	{
   2936 		if(supported >= requested)
   2937 		{
   2938 			return supported;
   2939 		}
   2940 
   2941 		supported = multisampleCount[i];
   2942 	}
   2943 
   2944 	return supported;
   2945 }
   2946 
   2947 void Context::detachBuffer(GLuint buffer)
   2948 {
   2949 	// [OpenGL ES 2.0.24] section 2.9 page 22:
   2950 	// If a buffer object is deleted while it is bound, all bindings to that object in the current context
   2951 	// (i.e. in the thread that called Delete-Buffers) are reset to zero.
   2952 
   2953 	if(mState.arrayBuffer.name() == buffer)
   2954 	{
   2955 		mState.arrayBuffer = nullptr;
   2956 	}
   2957 
   2958 	if(mState.elementArrayBuffer.name() == buffer)
   2959 	{
   2960 		mState.elementArrayBuffer = nullptr;
   2961 	}
   2962 
   2963 	for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
   2964 	{
   2965 		if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer)
   2966 		{
   2967 			mState.vertexAttribute[attribute].mBoundBuffer = nullptr;
   2968 		}
   2969 	}
   2970 }
   2971 
   2972 void Context::detachTexture(GLuint texture)
   2973 {
   2974 	// [OpenGL ES 2.0.24] section 3.8 page 84:
   2975 	// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
   2976 	// rebound to texture object zero
   2977 
   2978 	for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
   2979 	{
   2980 		for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++)
   2981 		{
   2982 			if(mState.samplerTexture[type][sampler].name() == texture)
   2983 			{
   2984 				mState.samplerTexture[type][sampler] = nullptr;
   2985 			}
   2986 		}
   2987 	}
   2988 
   2989 	// [OpenGL ES 2.0.24] section 4.4 page 112:
   2990 	// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
   2991 	// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
   2992 	// image was attached in the currently bound framebuffer.
   2993 
   2994 	Framebuffer *framebuffer = getFramebuffer();
   2995 
   2996 	if(framebuffer)
   2997 	{
   2998 		framebuffer->detachTexture(texture);
   2999 	}
   3000 }
   3001 
   3002 void Context::detachFramebuffer(GLuint framebuffer)
   3003 {
   3004 	// [OpenGL ES 2.0.24] section 4.4 page 107:
   3005 	// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
   3006 	// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
   3007 
   3008 	if(mState.framebuffer == framebuffer)
   3009 	{
   3010 		bindFramebuffer(0);
   3011 	}
   3012 }
   3013 
   3014 void Context::detachRenderbuffer(GLuint renderbuffer)
   3015 {
   3016 	// [OpenGL ES 2.0.24] section 4.4 page 109:
   3017 	// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
   3018 	// had been executed with the target RENDERBUFFER and name of zero.
   3019 
   3020 	if(mState.renderbuffer.name() == renderbuffer)
   3021 	{
   3022 		bindRenderbuffer(0);
   3023 	}
   3024 
   3025 	// [OpenGL ES 2.0.24] section 4.4 page 111:
   3026 	// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
   3027 	// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
   3028 	// point to which this image was attached in the currently bound framebuffer.
   3029 
   3030 	Framebuffer *framebuffer = getFramebuffer();
   3031 
   3032 	if(framebuffer)
   3033 	{
   3034 		framebuffer->detachRenderbuffer(renderbuffer);
   3035 	}
   3036 }
   3037 
   3038 bool Context::cullSkipsDraw(GLenum drawMode)
   3039 {
   3040 	return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
   3041 }
   3042 
   3043 bool Context::isTriangleMode(GLenum drawMode)
   3044 {
   3045 	switch(drawMode)
   3046 	{
   3047 	case GL_TRIANGLES:
   3048 	case GL_TRIANGLE_FAN:
   3049 	case GL_TRIANGLE_STRIP:
   3050 		return true;
   3051 	case GL_POINTS:
   3052 	case GL_LINES:
   3053 	case GL_LINE_LOOP:
   3054 	case GL_LINE_STRIP:
   3055 		return false;
   3056 	default: UNREACHABLE(drawMode);
   3057 	}
   3058 
   3059 	return false;
   3060 }
   3061 
   3062 void Context::setVertexAttrib(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
   3063 {
   3064 	ASSERT(index < MAX_VERTEX_ATTRIBS);
   3065 
   3066 	mState.vertexAttribute[index].mCurrentValue[0] = x;
   3067 	mState.vertexAttribute[index].mCurrentValue[1] = y;
   3068 	mState.vertexAttribute[index].mCurrentValue[2] = z;
   3069 	mState.vertexAttribute[index].mCurrentValue[3] = w;
   3070 
   3071 	mVertexDataManager->dirtyCurrentValue(index);
   3072 }
   3073 
   3074 void Context::bindTexImage(egl::Surface *surface)
   3075 {
   3076 	es1::Texture2D *textureObject = getTexture2D();
   3077 
   3078 	if(textureObject)
   3079 	{
   3080 		textureObject->bindTexImage(surface);
   3081 	}
   3082 }
   3083 
   3084 EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
   3085 {
   3086 	switch(target)
   3087 	{
   3088 	case EGL_GL_TEXTURE_2D_KHR:
   3089 		break;
   3090 	case EGL_GL_RENDERBUFFER_KHR:
   3091 		break;
   3092 	default:
   3093 		return EGL_BAD_PARAMETER;
   3094 	}
   3095 
   3096 	if(textureLevel >= IMPLEMENTATION_MAX_TEXTURE_LEVELS)
   3097 	{
   3098 		return EGL_BAD_MATCH;
   3099 	}
   3100 
   3101 	if(target == EGL_GL_TEXTURE_2D_KHR)
   3102 	{
   3103 		Texture *texture = getTexture(name);
   3104 
   3105 		if(!texture || texture->getTarget() != GL_TEXTURE_2D)
   3106 		{
   3107 			return EGL_BAD_PARAMETER;
   3108 		}
   3109 
   3110 		if(texture->isShared(GL_TEXTURE_2D, textureLevel))   // Bound to an EGLSurface or already an EGLImage sibling
   3111 		{
   3112 			return EGL_BAD_ACCESS;
   3113 		}
   3114 
   3115 		if(textureLevel != 0 && !texture->isSamplerComplete())
   3116 		{
   3117 			return EGL_BAD_PARAMETER;
   3118 		}
   3119 
   3120 		if(textureLevel == 0 && !(texture->isSamplerComplete() && texture->getLevelCount() == 1))
   3121 		{
   3122 			return EGL_BAD_PARAMETER;
   3123 		}
   3124 	}
   3125 	else if(target == EGL_GL_RENDERBUFFER_KHR)
   3126 	{
   3127 		Renderbuffer *renderbuffer = getRenderbuffer(name);
   3128 
   3129 		if(!renderbuffer)
   3130 		{
   3131 			return EGL_BAD_PARAMETER;
   3132 		}
   3133 
   3134 		if(renderbuffer->isShared())   // Already an EGLImage sibling
   3135 		{
   3136 			return EGL_BAD_ACCESS;
   3137 		}
   3138 	}
   3139 	else UNREACHABLE(target);
   3140 
   3141 	return EGL_SUCCESS;
   3142 }
   3143 
   3144 egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
   3145 {
   3146 	if(target == EGL_GL_TEXTURE_2D_KHR)
   3147 	{
   3148 		es1::Texture *texture = getTexture(name);
   3149 
   3150 		return texture->createSharedImage(GL_TEXTURE_2D, textureLevel);
   3151 	}
   3152 	else if(target == EGL_GL_RENDERBUFFER_KHR)
   3153 	{
   3154 		es1::Renderbuffer *renderbuffer = getRenderbuffer(name);
   3155 
   3156 		return renderbuffer->createSharedImage();
   3157 	}
   3158 	else UNREACHABLE(target);
   3159 
   3160 	return 0;
   3161 }
   3162 
   3163 Device *Context::getDevice()
   3164 {
   3165 	return device;
   3166 }
   3167 
   3168 void Context::setMatrixMode(GLenum mode)
   3169 {
   3170 	matrixMode = mode;
   3171 }
   3172 
   3173 sw::MatrixStack &Context::currentMatrixStack()
   3174 {
   3175 	switch(matrixMode)
   3176 	{
   3177 	case GL_MODELVIEW:
   3178 		return modelViewStack;
   3179 	case GL_PROJECTION:
   3180 		return projectionStack;
   3181 	case GL_TEXTURE:
   3182 		switch(mState.activeSampler)
   3183 		{
   3184 		case 0: return textureStack0;
   3185 		case 1: return textureStack1;
   3186 		}
   3187 		break;
   3188 	}
   3189 
   3190 	UNREACHABLE(matrixMode);
   3191 	return textureStack0;
   3192 }
   3193 
   3194 void Context::loadIdentity()
   3195 {
   3196 	currentMatrixStack().identity();
   3197 }
   3198 
   3199 void Context::load(const GLfloat *m)
   3200 {
   3201 	currentMatrixStack().load(m);
   3202 }
   3203 
   3204 void Context::pushMatrix()
   3205 {
   3206 	if(!currentMatrixStack().push())
   3207 	{
   3208 		return error(GL_STACK_OVERFLOW);
   3209 	}
   3210 }
   3211 
   3212 void Context::popMatrix()
   3213 {
   3214 	if(!currentMatrixStack().pop())
   3215 	{
   3216 		return error(GL_STACK_OVERFLOW);
   3217 	}
   3218 }
   3219 
   3220 void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
   3221 {
   3222 	currentMatrixStack().rotate(angle, x, y, z);
   3223 }
   3224 
   3225 void Context::translate(GLfloat x, GLfloat y, GLfloat z)
   3226 {
   3227 	currentMatrixStack().translate(x, y, z);
   3228 }
   3229 
   3230 void Context::scale(GLfloat x, GLfloat y, GLfloat z)
   3231 {
   3232 	currentMatrixStack().scale(x, y, z);
   3233 }
   3234 
   3235 void Context::multiply(const GLfloat *m)
   3236 {
   3237 	currentMatrixStack().multiply(m);
   3238 }
   3239 
   3240 void Context::frustum(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar)
   3241 {
   3242 	currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar);
   3243 }
   3244 
   3245 void Context::ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar)
   3246 {
   3247 	currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar);
   3248 }
   3249 
   3250 void Context::setClipPlane(int index, const float plane[4])
   3251 {
   3252 	sw::Plane clipPlane = modelViewStack.current() * sw::Plane(plane);
   3253 	device->setClipPlane(index, &clipPlane.A);
   3254 }
   3255 
   3256 void Context::setClipPlaneEnabled(int index, bool enable)
   3257 {
   3258 	clipFlags = (clipFlags & ~((int)!enable << index)) | ((int)enable << index);
   3259 	device->setClipFlags(clipFlags);
   3260 }
   3261 
   3262 bool Context::isClipPlaneEnabled(int index) const
   3263 {
   3264 	return (clipFlags & (1 << index)) != 0;
   3265 }
   3266 
   3267 void Context::setColorLogicOpEnabled(bool enable)
   3268 {
   3269 	colorLogicOpEnabled = enable;
   3270 }
   3271 
   3272 bool Context::isColorLogicOpEnabled() const
   3273 {
   3274 	return colorLogicOpEnabled;
   3275 }
   3276 
   3277 void Context::setLogicalOperation(GLenum logicOp)
   3278 {
   3279 	logicalOperation = logicOp;
   3280 }
   3281 
   3282 void Context::setLineSmoothEnabled(bool enable)
   3283 {
   3284 	lineSmoothEnabled = enable;
   3285 }
   3286 
   3287 bool Context::isLineSmoothEnabled() const
   3288 {
   3289 	return lineSmoothEnabled;
   3290 }
   3291 
   3292 void Context::setColorMaterialEnabled(bool enable)
   3293 {
   3294 	colorMaterialEnabled = enable;
   3295 }
   3296 
   3297 bool Context::isColorMaterialEnabled() const
   3298 {
   3299 	return colorMaterialEnabled;
   3300 }
   3301 
   3302 void Context::setNormalizeEnabled(bool enable)
   3303 {
   3304 	normalizeEnabled = enable;
   3305 }
   3306 
   3307 bool Context::isNormalizeEnabled() const
   3308 {
   3309 	return normalizeEnabled;
   3310 }
   3311 
   3312 void Context::setRescaleNormalEnabled(bool enable)
   3313 {
   3314 	rescaleNormalEnabled = enable;
   3315 }
   3316 
   3317 bool Context::isRescaleNormalEnabled() const
   3318 {
   3319 	return rescaleNormalEnabled;
   3320 }
   3321 
   3322 void Context::setVertexArrayEnabled(bool enable)
   3323 {
   3324 	mState.vertexAttribute[sw::Position].mArrayEnabled = enable;
   3325 }
   3326 
   3327 bool Context::isVertexArrayEnabled() const
   3328 {
   3329 	return mState.vertexAttribute[sw::Position].mArrayEnabled;
   3330 }
   3331 
   3332 void Context::setNormalArrayEnabled(bool enable)
   3333 {
   3334 	mState.vertexAttribute[sw::Normal].mArrayEnabled = enable;
   3335 }
   3336 
   3337 bool Context::isNormalArrayEnabled() const
   3338 {
   3339 	return mState.vertexAttribute[sw::Normal].mArrayEnabled;
   3340 }
   3341 
   3342 void Context::setColorArrayEnabled(bool enable)
   3343 {
   3344 	mState.vertexAttribute[sw::Color0].mArrayEnabled = enable;
   3345 }
   3346 
   3347 bool Context::isColorArrayEnabled() const
   3348 {
   3349 	return mState.vertexAttribute[sw::Color0].mArrayEnabled;
   3350 }
   3351 
   3352 void Context::setPointSizeArrayEnabled(bool enable)
   3353 {
   3354 	mState.vertexAttribute[sw::PointSize].mArrayEnabled = enable;
   3355 }
   3356 
   3357 bool Context::isPointSizeArrayEnabled() const
   3358 {
   3359 	return mState.vertexAttribute[sw::PointSize].mArrayEnabled;
   3360 }
   3361 
   3362 void Context::setTextureCoordArrayEnabled(bool enable)
   3363 {
   3364 	mState.vertexAttribute[sw::TexCoord0 + clientTexture].mArrayEnabled = enable;
   3365 }
   3366 
   3367 bool Context::isTextureCoordArrayEnabled() const
   3368 {
   3369 	return mState.vertexAttribute[sw::TexCoord0 + clientTexture].mArrayEnabled;
   3370 }
   3371 
   3372 void Context::setMultisampleEnabled(bool enable)
   3373 {
   3374 	multisampleEnabled = enable;
   3375 }
   3376 
   3377 bool Context::isMultisampleEnabled() const
   3378 {
   3379 	return multisampleEnabled;
   3380 }
   3381 
   3382 void Context::setSampleAlphaToOneEnabled(bool enable)
   3383 {
   3384 	sampleAlphaToOneEnabled = enable;
   3385 }
   3386 
   3387 bool Context::isSampleAlphaToOneEnabled() const
   3388 {
   3389 	return sampleAlphaToOneEnabled;
   3390 }
   3391 
   3392 void Context::setPointSpriteEnabled(bool enable)
   3393 {
   3394 	pointSpriteEnabled = enable;
   3395 }
   3396 
   3397 bool Context::isPointSpriteEnabled() const
   3398 {
   3399 	return pointSpriteEnabled;
   3400 }
   3401 
   3402 void Context::setPointSmoothEnabled(bool enable)
   3403 {
   3404 	pointSmoothEnabled = enable;
   3405 }
   3406 
   3407 bool Context::isPointSmoothEnabled() const
   3408 {
   3409 	return pointSmoothEnabled;
   3410 }
   3411 
   3412 void Context::setPointSizeMin(float min)
   3413 {
   3414 	pointSizeMin = min;
   3415 }
   3416 
   3417 void Context::setPointSizeMax(float max)
   3418 {
   3419 	pointSizeMax = max;
   3420 }
   3421 
   3422 void Context::setPointDistanceAttenuation(float a, float b, float c)
   3423 {
   3424 	pointDistanceAttenuation = {a, b, c};
   3425 }
   3426 
   3427 void Context::setPointFadeThresholdSize(float threshold)
   3428 {
   3429 	pointFadeThresholdSize = threshold;
   3430 }
   3431 
   3432 void Context::clientActiveTexture(GLenum texture)
   3433 {
   3434 	clientTexture = texture;
   3435 }
   3436 
   3437 GLenum Context::getClientActiveTexture() const
   3438 {
   3439 	return clientTexture;
   3440 }
   3441 
   3442 unsigned int Context::getActiveTexture() const
   3443 {
   3444 	return mState.activeSampler;
   3445 }
   3446 
   3447 }
   3448 
   3449 egl::Context *es1CreateContext(const egl::Config *config, const egl::Context *shareContext)
   3450 {
   3451 	ASSERT(!shareContext || shareContext->getClientVersion() == 1);   // Should be checked by eglCreateContext
   3452 	return new es1::Context(config, static_cast<const es1::Context*>(shareContext));
   3453 }
   3454