Home | History | Annotate | Download | only in utils
      1 /*
      2 * Copyright 2017 Google Inc.
      3 *
      4 * Use of this source code is governed by a BSD-style license that can be
      5 * found in the LICENSE file.
      6 */
      7 
      8 #include "SkShadowUtils.h"
      9 #include "SkCanvas.h"
     10 #include "SkColorFilter.h"
     11 #include "SkPath.h"
     12 #include "SkRandom.h"
     13 #include "SkResourceCache.h"
     14 #include "SkShadowTessellator.h"
     15 #include "SkString.h"
     16 #include "SkTLazy.h"
     17 #include "SkVertices.h"
     18 #if SK_SUPPORT_GPU
     19 #include "GrShape.h"
     20 #include "effects/GrBlurredEdgeFragmentProcessor.h"
     21 #endif
     22 #include "../../src/effects/shadows/SkAmbientShadowMaskFilter.h"
     23 #include "../../src/effects/shadows/SkSpotShadowMaskFilter.h"
     24 
     25 /**
     26 *  Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
     27 *                           then blends with the color's G value.
     28 *                           Final result is black with alpha of Gaussian(B)*G.
     29 *                           The assumption is that the original color's alpha is 1.
     30 */
     31 class SK_API SkGaussianColorFilter : public SkColorFilter {
     32 public:
     33     static sk_sp<SkColorFilter> Make() {
     34         return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
     35     }
     36 
     37     void filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const override;
     38 
     39 #if SK_SUPPORT_GPU
     40     sk_sp<GrFragmentProcessor> asFragmentProcessor(GrContext*, SkColorSpace*) const override;
     41 #endif
     42 
     43     SK_TO_STRING_OVERRIDE()
     44     SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter)
     45 
     46 protected:
     47     void flatten(SkWriteBuffer&) const override {}
     48 
     49 private:
     50     SkGaussianColorFilter() : INHERITED() {}
     51 
     52     typedef SkColorFilter INHERITED;
     53 };
     54 
     55 void SkGaussianColorFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const {
     56     for (int i = 0; i < count; ++i) {
     57         SkPMColor c = src[i];
     58 
     59         SkScalar factor = SK_Scalar1 - SkGetPackedB32(c) / 255.f;
     60         factor = SkScalarExp(-factor * factor * 4) - 0.018f;
     61 
     62         SkScalar a = factor * SkGetPackedG32(c);
     63         dst[i] = SkPackARGB32(a, a, a, a);
     64     }
     65 }
     66 
     67 sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
     68     return Make();
     69 }
     70 
     71 #ifndef SK_IGNORE_TO_STRING
     72 void SkGaussianColorFilter::toString(SkString* str) const {
     73     str->append("SkGaussianColorFilter ");
     74 }
     75 #endif
     76 
     77 #if SK_SUPPORT_GPU
     78 
     79 sk_sp<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(GrContext*,
     80                                                                       SkColorSpace*) const {
     81     return GrBlurredEdgeFP::Make(GrBlurredEdgeFP::kGaussian_Mode);
     82 }
     83 #endif
     84 
     85 ///////////////////////////////////////////////////////////////////////////////////////////////////
     86 
     87 namespace {
     88 
     89 uint64_t resource_cache_shared_id() {
     90     return 0x2020776f64616873llu;  // 'shadow  '
     91 }
     92 
     93 /** Factory for an ambient shadow mesh with particular shadow properties. */
     94 struct AmbientVerticesFactory {
     95     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
     96     SkScalar fAmbientAlpha;
     97     bool fTransparent;
     98 
     99     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
    100         if (fOccluderHeight != that.fOccluderHeight || fAmbientAlpha != that.fAmbientAlpha ||
    101             fTransparent != that.fTransparent) {
    102             return false;
    103         }
    104         translate->set(0, 0);
    105         return true;
    106     }
    107 
    108     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm) const {
    109         SkScalar z = fOccluderHeight;
    110         return SkShadowTessellator::MakeAmbient(path, ctm,
    111                                                 [z](SkScalar, SkScalar) { return z; },
    112                                                 fAmbientAlpha, fTransparent);
    113     }
    114 };
    115 
    116 /** Factory for an spot shadow mesh with particular shadow properties. */
    117 struct SpotVerticesFactory {
    118     enum class OccluderType {
    119         // The umbra cannot be dropped out because the occluder is not opaque.
    120         kTransparent,
    121         // The umbra can be dropped where it is occluded.
    122         kOpaque,
    123         // It is known that the entire umbra is occluded.
    124         kOpaqueCoversUmbra
    125     };
    126 
    127     SkVector fOffset;
    128     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
    129     SkPoint3 fDevLightPos;
    130     SkScalar fLightRadius;
    131     SkScalar fSpotAlpha;
    132     OccluderType fOccluderType;
    133 
    134     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
    135         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
    136             fLightRadius != that.fLightRadius || fSpotAlpha != that.fSpotAlpha ||
    137             fOccluderType != that.fOccluderType) {
    138             return false;
    139         }
    140         switch (fOccluderType) {
    141             case OccluderType::kTransparent:
    142             case OccluderType::kOpaqueCoversUmbra:
    143                 // 'this' and 'that' will either both have no umbra removed or both have all the
    144                 // umbra removed.
    145                 *translate = that.fOffset - fOffset;
    146                 return true;
    147             case OccluderType::kOpaque:
    148                 // In this case we partially remove the umbra differently for 'this' and 'that'
    149                 // if the offsets don't match.
    150                 if (fOffset == that.fOffset) {
    151                     translate->set(0, 0);
    152                     return true;
    153                 }
    154                 return false;
    155         }
    156         SkFAIL("Uninitialized occluder type?");
    157         return false;
    158     }
    159 
    160     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm) const {
    161         bool transparent = OccluderType::kTransparent == fOccluderType;
    162         SkScalar z = fOccluderHeight;
    163         return SkShadowTessellator::MakeSpot(path, ctm,
    164                                              [z](SkScalar, SkScalar) -> SkScalar { return z; },
    165                                              fDevLightPos, fLightRadius,
    166                                              fSpotAlpha, transparent);
    167     }
    168 };
    169 
    170 /**
    171  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
    172  * records are immutable this is not itself a Rec. When we need to update it we return this on
    173  * the FindVisitor and let the cache destory the Rec. We'll update the tessellations and then add
    174  * a new Rec with an adjusted size for any deletions/additions.
    175  */
    176 class CachedTessellations : public SkRefCnt {
    177 public:
    178     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
    179 
    180     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
    181                            SkVector* translate) const {
    182         return fAmbientSet.find(ambient, matrix, translate);
    183     }
    184 
    185     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
    186                           const SkMatrix& matrix) {
    187         return fAmbientSet.add(devPath, ambient, matrix);
    188     }
    189 
    190     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
    191                            SkVector* translate) const {
    192         return fSpotSet.find(spot, matrix, translate);
    193     }
    194 
    195     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
    196                           const SkMatrix& matrix) {
    197         return fSpotSet.add(devPath, spot, matrix);
    198     }
    199 
    200 private:
    201     template <typename FACTORY, int MAX_ENTRIES>
    202     class Set {
    203     public:
    204         size_t size() const { return fSize; }
    205 
    206         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
    207                                SkVector* translate) const {
    208             for (int i = 0; i < MAX_ENTRIES; ++i) {
    209                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
    210                     const SkMatrix& m = fEntries[i].fMatrix;
    211                     if (matrix.hasPerspective() || m.hasPerspective()) {
    212                         if (matrix != fEntries[i].fMatrix) {
    213                             continue;
    214                         }
    215                     } else if (matrix.getScaleX() != m.getScaleX() ||
    216                                matrix.getSkewX() != m.getSkewX() ||
    217                                matrix.getScaleY() != m.getScaleY() ||
    218                                matrix.getSkewY() != m.getSkewY()) {
    219                         continue;
    220                     }
    221                     *translate += SkVector{matrix.getTranslateX() - m.getTranslateX(),
    222                                            matrix.getTranslateY() - m.getTranslateY()};
    223                     return fEntries[i].fVertices;
    224                 }
    225             }
    226             return nullptr;
    227         }
    228 
    229         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix) {
    230             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix);
    231             if (!vertices) {
    232                 return nullptr;
    233             }
    234             int i;
    235             if (fCount < MAX_ENTRIES) {
    236                 i = fCount++;
    237             } else {
    238                 i = gRandom.nextULessThan(MAX_ENTRIES);
    239                 fSize -= fEntries[i].fVertices->approximateSize();
    240             }
    241             fEntries[i].fFactory = factory;
    242             fEntries[i].fVertices = vertices;
    243             fEntries[i].fMatrix = matrix;
    244             fSize += vertices->approximateSize();
    245             return vertices;
    246         }
    247 
    248     private:
    249         struct Entry {
    250             FACTORY fFactory;
    251             sk_sp<SkVertices> fVertices;
    252             SkMatrix fMatrix;
    253         };
    254         Entry fEntries[MAX_ENTRIES];
    255         int fCount = 0;
    256         size_t fSize = 0;
    257     };
    258 
    259     Set<AmbientVerticesFactory, 4> fAmbientSet;
    260     Set<SpotVerticesFactory, 4> fSpotSet;
    261 
    262     static SkRandom gRandom;
    263 };
    264 
    265 SkRandom CachedTessellations::gRandom;
    266 
    267 /**
    268  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
    269  * path. The key represents the path's geometry and not any shadow params.
    270  */
    271 class CachedTessellationsRec : public SkResourceCache::Rec {
    272 public:
    273     CachedTessellationsRec(const SkResourceCache::Key& key,
    274                            sk_sp<CachedTessellations> tessellations)
    275             : fTessellations(std::move(tessellations)) {
    276         fKey.reset(new uint8_t[key.size()]);
    277         memcpy(fKey.get(), &key, key.size());
    278     }
    279 
    280     const Key& getKey() const override {
    281         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
    282     }
    283 
    284     size_t bytesUsed() const override { return fTessellations->size(); }
    285 
    286     const char* getCategory() const override { return "tessellated shadow masks"; }
    287 
    288     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
    289 
    290     template <typename FACTORY>
    291     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
    292                            SkVector* translate) const {
    293         return fTessellations->find(factory, matrix, translate);
    294     }
    295 
    296 private:
    297     std::unique_ptr<uint8_t[]> fKey;
    298     sk_sp<CachedTessellations> fTessellations;
    299 };
    300 
    301 /**
    302  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
    303  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
    304  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
    305  * to the caller. The caller will update it and reinsert it back into the cache.
    306  */
    307 template <typename FACTORY>
    308 struct FindContext {
    309     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
    310             : fViewMatrix(viewMatrix), fFactory(factory) {}
    311     const SkMatrix* const fViewMatrix;
    312     // If this is valid after Find is called then we found the vertices and they should be drawn
    313     // with fTranslate applied.
    314     sk_sp<SkVertices> fVertices;
    315     SkVector fTranslate = {0, 0};
    316 
    317     // If this is valid after Find then the caller should add the vertices to the tessellation set
    318     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
    319     sk_sp<CachedTessellations> fTessellationsOnFailure;
    320 
    321     const FACTORY* fFactory;
    322 };
    323 
    324 /**
    325  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
    326  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
    327  * necessary translation vector are set on the FindContext.
    328  */
    329 template <typename FACTORY>
    330 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
    331     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
    332     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
    333     findContext->fVertices =
    334             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
    335     if (findContext->fVertices) {
    336         return true;
    337     }
    338     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
    339     // manipulated we will add a new Rec.
    340     findContext->fTessellationsOnFailure = rec.refTessellations();
    341     return false;
    342 }
    343 
    344 class ShadowedPath {
    345 public:
    346     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
    347             : fPath(path)
    348             , fViewMatrix(viewMatrix)
    349 #if SK_SUPPORT_GPU
    350             , fShapeForKey(*path, GrStyle::SimpleFill())
    351 #endif
    352     {}
    353 
    354     const SkPath& path() const { return *fPath; }
    355     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
    356 #if SK_SUPPORT_GPU
    357     /** Negative means the vertices should not be cached for this path. */
    358     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
    359     void writeKey(void* key) const {
    360         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
    361     }
    362     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
    363 #else
    364     int keyBytes() const { return -1; }
    365     void writeKey(void* key) const { SkFAIL("Should never be called"); }
    366     bool isRRect(SkRRect* rrect) { return false; }
    367 #endif
    368 
    369 private:
    370     const SkPath* fPath;
    371     const SkMatrix* fViewMatrix;
    372 #if SK_SUPPORT_GPU
    373     GrShape fShapeForKey;
    374 #endif
    375 };
    376 
    377 // This creates a domain of keys in SkResourceCache used by this file.
    378 static void* kNamespace;
    379 
    380 /**
    381  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
    382  * they are first found in SkResourceCache.
    383  */
    384 template <typename FACTORY>
    385 void draw_shadow(const FACTORY& factory, SkCanvas* canvas, ShadowedPath& path, SkColor color,
    386                  SkResourceCache* cache) {
    387     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
    388 
    389     SkResourceCache::Key* key = nullptr;
    390     SkAutoSTArray<32 * 4, uint8_t> keyStorage;
    391     int keyDataBytes = path.keyBytes();
    392     if (keyDataBytes >= 0) {
    393         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
    394         key = new (keyStorage.begin()) SkResourceCache::Key();
    395         path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
    396         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
    397         if (cache) {
    398             cache->find(*key, FindVisitor<FACTORY>, &context);
    399         } else {
    400             SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
    401         }
    402     }
    403 
    404     sk_sp<SkVertices> vertices;
    405     const SkVector* translate;
    406     static constexpr SkVector kZeroTranslate = {0, 0};
    407     bool foundInCache = SkToBool(context.fVertices);
    408     if (foundInCache) {
    409         vertices = std::move(context.fVertices);
    410         translate = &context.fTranslate;
    411     } else {
    412         // TODO: handle transforming the path as part of the tessellator
    413         if (key) {
    414             // Update or initialize a tessellation set and add it to the cache.
    415             sk_sp<CachedTessellations> tessellations;
    416             if (context.fTessellationsOnFailure) {
    417                 tessellations = std::move(context.fTessellationsOnFailure);
    418             } else {
    419                 tessellations.reset(new CachedTessellations());
    420             }
    421             vertices = tessellations->add(path.path(), factory, path.viewMatrix());
    422             if (!vertices) {
    423                 return;
    424             }
    425             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
    426             if (cache) {
    427                 cache->add(rec);
    428             } else {
    429                 SkResourceCache::Add(rec);
    430             }
    431         } else {
    432             vertices = factory.makeVertices(path.path(), path.viewMatrix());
    433             if (!vertices) {
    434                 return;
    435             }
    436         }
    437         translate = &kZeroTranslate;
    438     }
    439 
    440     SkPaint paint;
    441     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
    442     // that against our 'color' param.
    443     paint.setColorFilter(SkColorFilter::MakeComposeFilter(
    444             SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate),
    445             SkGaussianColorFilter::Make()));
    446     if (translate->fX || translate->fY) {
    447         canvas->save();
    448         canvas->translate(translate->fX, translate->fY);
    449     }
    450     canvas->drawVertices(vertices, SkBlendMode::kModulate, paint);
    451     if (translate->fX || translate->fY) {
    452         canvas->restore();
    453     }
    454 }
    455 }
    456 
    457 // Draw an offset spot shadow and outlining ambient shadow for the given path.
    458 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, SkScalar occluderHeight,
    459                                const SkPoint3& devLightPos, SkScalar lightRadius,
    460                                SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color,
    461                                uint32_t flags, SkResourceCache* cache) {
    462     SkAutoCanvasRestore acr(canvas, true);
    463     SkMatrix viewMatrix = canvas->getTotalMatrix();
    464 
    465     // try circular fast path
    466     SkRect rect;
    467     if (viewMatrix.isSimilarity() &&
    468         path.isOval(&rect) && rect.width() == rect.height()) {
    469         SkPaint newPaint;
    470         newPaint.setColor(color);
    471         if (ambientAlpha > 0) {
    472             newPaint.setMaskFilter(SkAmbientShadowMaskFilter::Make(occluderHeight, ambientAlpha,
    473                                                                    flags));
    474             canvas->drawPath(path, newPaint);
    475         }
    476         if (spotAlpha > 0) {
    477             newPaint.setMaskFilter(SkSpotShadowMaskFilter::Make(occluderHeight, devLightPos,
    478                                                                 lightRadius, spotAlpha, flags));
    479             canvas->drawPath(path, newPaint);
    480         }
    481         return;
    482     }
    483 
    484     canvas->resetMatrix();
    485 
    486     ShadowedPath shadowedPath(&path, &viewMatrix);
    487 
    488     bool transparent = SkToBool(flags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
    489 
    490     if (ambientAlpha > 0) {
    491         ambientAlpha = SkTMin(ambientAlpha, 1.f);
    492         AmbientVerticesFactory factory;
    493         factory.fOccluderHeight = occluderHeight;
    494         factory.fAmbientAlpha = ambientAlpha;
    495         factory.fTransparent = transparent;
    496 
    497         draw_shadow(factory, canvas, shadowedPath, color, cache);
    498     }
    499 
    500     if (spotAlpha > 0) {
    501         spotAlpha = SkTMin(spotAlpha, 1.f);
    502         SpotVerticesFactory factory;
    503         float zRatio = SkTPin(occluderHeight / (devLightPos.fZ - occluderHeight), 0.0f, 0.95f);
    504         SkScalar radius = lightRadius * zRatio;
    505 
    506         // Compute the scale and translation for the spot shadow.
    507         SkScalar scale = devLightPos.fZ / (devLightPos.fZ - occluderHeight);
    508 
    509         SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
    510         viewMatrix.mapPoints(&center, 1);
    511         factory.fOffset = SkVector::Make(zRatio * (center.fX - devLightPos.fX),
    512                                          zRatio * (center.fY - devLightPos.fY));
    513         factory.fOccluderHeight = occluderHeight;
    514         factory.fDevLightPos = devLightPos;
    515         factory.fLightRadius = lightRadius;
    516         factory.fSpotAlpha = spotAlpha;
    517 
    518         SkRRect rrect;
    519         if (transparent) {
    520             factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
    521         } else {
    522             factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaque;
    523             if (shadowedPath.isRRect(&rrect)) {
    524                 SkRRect devRRect;
    525                 if (rrect.transform(viewMatrix, &devRRect)) {
    526                     SkScalar s = 1.f - scale;
    527                     SkScalar w = devRRect.width();
    528                     SkScalar h = devRRect.height();
    529                     SkScalar hw = w / 2.f;
    530                     SkScalar hh = h / 2.f;
    531                     SkScalar umbraInsetX = s * hw + radius;
    532                     SkScalar umbraInsetY = s * hh + radius;
    533                     // The umbra is inset by radius along the diagonal, so adjust for that.
    534                     SkScalar d = 1.f / SkScalarSqrt(hw * hw + hh * hh);
    535                     umbraInsetX *= hw * d;
    536                     umbraInsetY *= hh * d;
    537                     if (umbraInsetX > hw || umbraInsetY > hh) {
    538                         // There is no umbra to occlude.
    539                         factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
    540                     } else if (fabsf(factory.fOffset.fX) < umbraInsetX &&
    541                                fabsf(factory.fOffset.fY) < umbraInsetY) {
    542                         factory.fOccluderType =
    543                                 SpotVerticesFactory::OccluderType::kOpaqueCoversUmbra;
    544                     } else if (factory.fOffset.fX > w - umbraInsetX ||
    545                                factory.fOffset.fY > h - umbraInsetY) {
    546                         // There umbra is fully exposed, there is nothing to omit.
    547                         factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
    548                     }
    549                 }
    550             }
    551         }
    552         if (factory.fOccluderType == SpotVerticesFactory::OccluderType::kOpaque) {
    553             factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
    554         }
    555         draw_shadow(factory, canvas, shadowedPath, color, cache);
    556     }
    557 }
    558 
    559 // Draw an offset spot shadow and outlining ambient shadow for the given path,
    560 // without caching and using a function based on local position to compute the height.
    561 void SkShadowUtils::DrawUncachedShadow(SkCanvas* canvas, const SkPath& path,
    562                                        std::function<SkScalar(SkScalar, SkScalar)> heightFunc,
    563                                        const SkPoint3& lightPos, SkScalar lightRadius,
    564                                        SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color,
    565                                        uint32_t flags) {
    566     SkAutoCanvasRestore acr(canvas, true);
    567     SkMatrix viewMatrix = canvas->getTotalMatrix();
    568     canvas->resetMatrix();
    569 
    570     bool transparent = SkToBool(flags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
    571 
    572     if (ambientAlpha > 0) {
    573         ambientAlpha = SkTMin(ambientAlpha, 1.f);
    574         sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
    575                                                                       heightFunc, ambientAlpha,
    576                                                                       transparent);
    577         SkPaint paint;
    578         // Run the vertex color through a GaussianColorFilter and then modulate the grayscale
    579         // result of that against our 'color' param.
    580         paint.setColorFilter(SkColorFilter::MakeComposeFilter(
    581             SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate),
    582             SkGaussianColorFilter::Make()));
    583         canvas->drawVertices(vertices, SkBlendMode::kModulate, paint);
    584     }
    585 
    586     if (spotAlpha > 0) {
    587         spotAlpha = SkTMin(spotAlpha, 1.f);
    588         sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, heightFunc,
    589                                                                    lightPos, lightRadius,
    590                                                                    spotAlpha, transparent);
    591         SkPaint paint;
    592         // Run the vertex color through a GaussianColorFilter and then modulate the grayscale
    593         // result of that against our 'color' param.
    594         paint.setColorFilter(SkColorFilter::MakeComposeFilter(
    595             SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate),
    596             SkGaussianColorFilter::Make()));
    597         canvas->drawVertices(vertices, SkBlendMode::kModulate, paint);
    598     }
    599 }
    600