1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclOpenMP.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Type.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 void CodeGenFunction::EmitDecl(const Decl &D) { 39 switch (D.getKind()) { 40 case Decl::BuiltinTemplate: 41 case Decl::TranslationUnit: 42 case Decl::ExternCContext: 43 case Decl::Namespace: 44 case Decl::UnresolvedUsingTypename: 45 case Decl::ClassTemplateSpecialization: 46 case Decl::ClassTemplatePartialSpecialization: 47 case Decl::VarTemplateSpecialization: 48 case Decl::VarTemplatePartialSpecialization: 49 case Decl::TemplateTypeParm: 50 case Decl::UnresolvedUsingValue: 51 case Decl::NonTypeTemplateParm: 52 case Decl::CXXMethod: 53 case Decl::CXXConstructor: 54 case Decl::CXXDestructor: 55 case Decl::CXXConversion: 56 case Decl::Field: 57 case Decl::MSProperty: 58 case Decl::IndirectField: 59 case Decl::ObjCIvar: 60 case Decl::ObjCAtDefsField: 61 case Decl::ParmVar: 62 case Decl::ImplicitParam: 63 case Decl::ClassTemplate: 64 case Decl::VarTemplate: 65 case Decl::FunctionTemplate: 66 case Decl::TypeAliasTemplate: 67 case Decl::TemplateTemplateParm: 68 case Decl::ObjCMethod: 69 case Decl::ObjCCategory: 70 case Decl::ObjCProtocol: 71 case Decl::ObjCInterface: 72 case Decl::ObjCCategoryImpl: 73 case Decl::ObjCImplementation: 74 case Decl::ObjCProperty: 75 case Decl::ObjCCompatibleAlias: 76 case Decl::PragmaComment: 77 case Decl::PragmaDetectMismatch: 78 case Decl::AccessSpec: 79 case Decl::LinkageSpec: 80 case Decl::ObjCPropertyImpl: 81 case Decl::FileScopeAsm: 82 case Decl::Friend: 83 case Decl::FriendTemplate: 84 case Decl::Block: 85 case Decl::Captured: 86 case Decl::ClassScopeFunctionSpecialization: 87 case Decl::UsingShadow: 88 case Decl::ConstructorUsingShadow: 89 case Decl::ObjCTypeParam: 90 llvm_unreachable("Declaration should not be in declstmts!"); 91 case Decl::Function: // void X(); 92 case Decl::Record: // struct/union/class X; 93 case Decl::Enum: // enum X; 94 case Decl::EnumConstant: // enum ? { X = ? } 95 case Decl::CXXRecord: // struct/union/class X; [C++] 96 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 97 case Decl::Label: // __label__ x; 98 case Decl::Import: 99 case Decl::OMPThreadPrivate: 100 case Decl::OMPCapturedExpr: 101 case Decl::Empty: 102 // None of these decls require codegen support. 103 return; 104 105 case Decl::NamespaceAlias: 106 if (CGDebugInfo *DI = getDebugInfo()) 107 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 108 return; 109 case Decl::Using: // using X; [C++] 110 if (CGDebugInfo *DI = getDebugInfo()) 111 DI->EmitUsingDecl(cast<UsingDecl>(D)); 112 return; 113 case Decl::UsingDirective: // using namespace X; [C++] 114 if (CGDebugInfo *DI = getDebugInfo()) 115 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 116 return; 117 case Decl::Var: { 118 const VarDecl &VD = cast<VarDecl>(D); 119 assert(VD.isLocalVarDecl() && 120 "Should not see file-scope variables inside a function!"); 121 return EmitVarDecl(VD); 122 } 123 124 case Decl::OMPDeclareReduction: 125 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 126 127 case Decl::Typedef: // typedef int X; 128 case Decl::TypeAlias: { // using X = int; [C++0x] 129 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 130 QualType Ty = TD.getUnderlyingType(); 131 132 if (Ty->isVariablyModifiedType()) 133 EmitVariablyModifiedType(Ty); 134 } 135 } 136 } 137 138 /// EmitVarDecl - This method handles emission of any variable declaration 139 /// inside a function, including static vars etc. 140 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 141 if (D.isStaticLocal()) { 142 llvm::GlobalValue::LinkageTypes Linkage = 143 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 144 145 // FIXME: We need to force the emission/use of a guard variable for 146 // some variables even if we can constant-evaluate them because 147 // we can't guarantee every translation unit will constant-evaluate them. 148 149 return EmitStaticVarDecl(D, Linkage); 150 } 151 152 if (D.hasExternalStorage()) 153 // Don't emit it now, allow it to be emitted lazily on its first use. 154 return; 155 156 if (D.getType().getAddressSpace() == LangAS::opencl_local) 157 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 158 159 assert(D.hasLocalStorage()); 160 return EmitAutoVarDecl(D); 161 } 162 163 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 164 if (CGM.getLangOpts().CPlusPlus) 165 return CGM.getMangledName(&D).str(); 166 167 // If this isn't C++, we don't need a mangled name, just a pretty one. 168 assert(!D.isExternallyVisible() && "name shouldn't matter"); 169 std::string ContextName; 170 const DeclContext *DC = D.getDeclContext(); 171 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 172 DC = cast<DeclContext>(CD->getNonClosureContext()); 173 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 174 ContextName = CGM.getMangledName(FD); 175 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 176 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 177 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 178 ContextName = OMD->getSelector().getAsString(); 179 else 180 llvm_unreachable("Unknown context for static var decl"); 181 182 ContextName += "." + D.getNameAsString(); 183 return ContextName; 184 } 185 186 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 187 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 188 // In general, we don't always emit static var decls once before we reference 189 // them. It is possible to reference them before emitting the function that 190 // contains them, and it is possible to emit the containing function multiple 191 // times. 192 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 193 return ExistingGV; 194 195 QualType Ty = D.getType(); 196 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 197 198 // Use the label if the variable is renamed with the asm-label extension. 199 std::string Name; 200 if (D.hasAttr<AsmLabelAttr>()) 201 Name = getMangledName(&D); 202 else 203 Name = getStaticDeclName(*this, D); 204 205 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 206 unsigned AddrSpace = 207 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 208 209 // Local address space cannot have an initializer. 210 llvm::Constant *Init = nullptr; 211 if (Ty.getAddressSpace() != LangAS::opencl_local) 212 Init = EmitNullConstant(Ty); 213 else 214 Init = llvm::UndefValue::get(LTy); 215 216 llvm::GlobalVariable *GV = 217 new llvm::GlobalVariable(getModule(), LTy, 218 Ty.isConstant(getContext()), Linkage, 219 Init, Name, nullptr, 220 llvm::GlobalVariable::NotThreadLocal, 221 AddrSpace); 222 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 223 setGlobalVisibility(GV, &D); 224 225 if (supportsCOMDAT() && GV->isWeakForLinker()) 226 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 227 228 if (D.getTLSKind()) 229 setTLSMode(GV, D); 230 231 if (D.isExternallyVisible()) { 232 if (D.hasAttr<DLLImportAttr>()) 233 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 234 else if (D.hasAttr<DLLExportAttr>()) 235 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 236 } 237 238 // Make sure the result is of the correct type. 239 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 240 llvm::Constant *Addr = GV; 241 if (AddrSpace != ExpectedAddrSpace) { 242 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 243 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 244 } 245 246 setStaticLocalDeclAddress(&D, Addr); 247 248 // Ensure that the static local gets initialized by making sure the parent 249 // function gets emitted eventually. 250 const Decl *DC = cast<Decl>(D.getDeclContext()); 251 252 // We can't name blocks or captured statements directly, so try to emit their 253 // parents. 254 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 255 DC = DC->getNonClosureContext(); 256 // FIXME: Ensure that global blocks get emitted. 257 if (!DC) 258 return Addr; 259 } 260 261 GlobalDecl GD; 262 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 263 GD = GlobalDecl(CD, Ctor_Base); 264 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 265 GD = GlobalDecl(DD, Dtor_Base); 266 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 267 GD = GlobalDecl(FD); 268 else { 269 // Don't do anything for Obj-C method decls or global closures. We should 270 // never defer them. 271 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 272 } 273 if (GD.getDecl()) 274 (void)GetAddrOfGlobal(GD); 275 276 return Addr; 277 } 278 279 /// hasNontrivialDestruction - Determine whether a type's destruction is 280 /// non-trivial. If so, and the variable uses static initialization, we must 281 /// register its destructor to run on exit. 282 static bool hasNontrivialDestruction(QualType T) { 283 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 284 return RD && !RD->hasTrivialDestructor(); 285 } 286 287 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 288 /// global variable that has already been created for it. If the initializer 289 /// has a different type than GV does, this may free GV and return a different 290 /// one. Otherwise it just returns GV. 291 llvm::GlobalVariable * 292 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 293 llvm::GlobalVariable *GV) { 294 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 295 296 // If constant emission failed, then this should be a C++ static 297 // initializer. 298 if (!Init) { 299 if (!getLangOpts().CPlusPlus) 300 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 301 else if (Builder.GetInsertBlock()) { 302 // Since we have a static initializer, this global variable can't 303 // be constant. 304 GV->setConstant(false); 305 306 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 307 } 308 return GV; 309 } 310 311 // The initializer may differ in type from the global. Rewrite 312 // the global to match the initializer. (We have to do this 313 // because some types, like unions, can't be completely represented 314 // in the LLVM type system.) 315 if (GV->getType()->getElementType() != Init->getType()) { 316 llvm::GlobalVariable *OldGV = GV; 317 318 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 319 OldGV->isConstant(), 320 OldGV->getLinkage(), Init, "", 321 /*InsertBefore*/ OldGV, 322 OldGV->getThreadLocalMode(), 323 CGM.getContext().getTargetAddressSpace(D.getType())); 324 GV->setVisibility(OldGV->getVisibility()); 325 GV->setComdat(OldGV->getComdat()); 326 327 // Steal the name of the old global 328 GV->takeName(OldGV); 329 330 // Replace all uses of the old global with the new global 331 llvm::Constant *NewPtrForOldDecl = 332 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 333 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 334 335 // Erase the old global, since it is no longer used. 336 OldGV->eraseFromParent(); 337 } 338 339 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 340 GV->setInitializer(Init); 341 342 if (hasNontrivialDestruction(D.getType())) { 343 // We have a constant initializer, but a nontrivial destructor. We still 344 // need to perform a guarded "initialization" in order to register the 345 // destructor. 346 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 347 } 348 349 return GV; 350 } 351 352 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 353 llvm::GlobalValue::LinkageTypes Linkage) { 354 // Check to see if we already have a global variable for this 355 // declaration. This can happen when double-emitting function 356 // bodies, e.g. with complete and base constructors. 357 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 358 CharUnits alignment = getContext().getDeclAlign(&D); 359 360 // Store into LocalDeclMap before generating initializer to handle 361 // circular references. 362 setAddrOfLocalVar(&D, Address(addr, alignment)); 363 364 // We can't have a VLA here, but we can have a pointer to a VLA, 365 // even though that doesn't really make any sense. 366 // Make sure to evaluate VLA bounds now so that we have them for later. 367 if (D.getType()->isVariablyModifiedType()) 368 EmitVariablyModifiedType(D.getType()); 369 370 // Save the type in case adding the initializer forces a type change. 371 llvm::Type *expectedType = addr->getType(); 372 373 llvm::GlobalVariable *var = 374 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 375 376 // CUDA's local and local static __shared__ variables should not 377 // have any non-empty initializers. This is ensured by Sema. 378 // Whatever initializer such variable may have when it gets here is 379 // a no-op and should not be emitted. 380 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 381 D.hasAttr<CUDASharedAttr>(); 382 // If this value has an initializer, emit it. 383 if (D.getInit() && !isCudaSharedVar) 384 var = AddInitializerToStaticVarDecl(D, var); 385 386 var->setAlignment(alignment.getQuantity()); 387 388 if (D.hasAttr<AnnotateAttr>()) 389 CGM.AddGlobalAnnotations(&D, var); 390 391 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 392 var->setSection(SA->getName()); 393 394 if (D.hasAttr<UsedAttr>()) 395 CGM.addUsedGlobal(var); 396 397 // We may have to cast the constant because of the initializer 398 // mismatch above. 399 // 400 // FIXME: It is really dangerous to store this in the map; if anyone 401 // RAUW's the GV uses of this constant will be invalid. 402 llvm::Constant *castedAddr = 403 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 404 if (var != castedAddr) 405 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 406 CGM.setStaticLocalDeclAddress(&D, castedAddr); 407 408 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 409 410 // Emit global variable debug descriptor for static vars. 411 CGDebugInfo *DI = getDebugInfo(); 412 if (DI && 413 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 414 DI->setLocation(D.getLocation()); 415 DI->EmitGlobalVariable(var, &D); 416 } 417 } 418 419 namespace { 420 struct DestroyObject final : EHScopeStack::Cleanup { 421 DestroyObject(Address addr, QualType type, 422 CodeGenFunction::Destroyer *destroyer, 423 bool useEHCleanupForArray) 424 : addr(addr), type(type), destroyer(destroyer), 425 useEHCleanupForArray(useEHCleanupForArray) {} 426 427 Address addr; 428 QualType type; 429 CodeGenFunction::Destroyer *destroyer; 430 bool useEHCleanupForArray; 431 432 void Emit(CodeGenFunction &CGF, Flags flags) override { 433 // Don't use an EH cleanup recursively from an EH cleanup. 434 bool useEHCleanupForArray = 435 flags.isForNormalCleanup() && this->useEHCleanupForArray; 436 437 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 438 } 439 }; 440 441 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 442 DestroyNRVOVariable(Address addr, 443 const CXXDestructorDecl *Dtor, 444 llvm::Value *NRVOFlag) 445 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 446 447 const CXXDestructorDecl *Dtor; 448 llvm::Value *NRVOFlag; 449 Address Loc; 450 451 void Emit(CodeGenFunction &CGF, Flags flags) override { 452 // Along the exceptions path we always execute the dtor. 453 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 454 455 llvm::BasicBlock *SkipDtorBB = nullptr; 456 if (NRVO) { 457 // If we exited via NRVO, we skip the destructor call. 458 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 459 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 460 llvm::Value *DidNRVO = 461 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 462 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 463 CGF.EmitBlock(RunDtorBB); 464 } 465 466 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 467 /*ForVirtualBase=*/false, 468 /*Delegating=*/false, 469 Loc); 470 471 if (NRVO) CGF.EmitBlock(SkipDtorBB); 472 } 473 }; 474 475 struct CallStackRestore final : EHScopeStack::Cleanup { 476 Address Stack; 477 CallStackRestore(Address Stack) : Stack(Stack) {} 478 void Emit(CodeGenFunction &CGF, Flags flags) override { 479 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 480 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 481 CGF.Builder.CreateCall(F, V); 482 } 483 }; 484 485 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 486 const VarDecl &Var; 487 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 488 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 // Compute the address of the local variable, in case it's a 491 // byref or something. 492 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 493 Var.getType(), VK_LValue, SourceLocation()); 494 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 495 SourceLocation()); 496 CGF.EmitExtendGCLifetime(value); 497 } 498 }; 499 500 struct CallCleanupFunction final : EHScopeStack::Cleanup { 501 llvm::Constant *CleanupFn; 502 const CGFunctionInfo &FnInfo; 503 const VarDecl &Var; 504 505 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 506 const VarDecl *Var) 507 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 508 509 void Emit(CodeGenFunction &CGF, Flags flags) override { 510 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 511 Var.getType(), VK_LValue, SourceLocation()); 512 // Compute the address of the local variable, in case it's a byref 513 // or something. 514 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 515 516 // In some cases, the type of the function argument will be different from 517 // the type of the pointer. An example of this is 518 // void f(void* arg); 519 // __attribute__((cleanup(f))) void *g; 520 // 521 // To fix this we insert a bitcast here. 522 QualType ArgTy = FnInfo.arg_begin()->type; 523 llvm::Value *Arg = 524 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 525 526 CallArgList Args; 527 Args.add(RValue::get(Arg), 528 CGF.getContext().getPointerType(Var.getType())); 529 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 530 } 531 }; 532 } // end anonymous namespace 533 534 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 535 /// variable with lifetime. 536 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 537 Address addr, 538 Qualifiers::ObjCLifetime lifetime) { 539 switch (lifetime) { 540 case Qualifiers::OCL_None: 541 llvm_unreachable("present but none"); 542 543 case Qualifiers::OCL_ExplicitNone: 544 // nothing to do 545 break; 546 547 case Qualifiers::OCL_Strong: { 548 CodeGenFunction::Destroyer *destroyer = 549 (var.hasAttr<ObjCPreciseLifetimeAttr>() 550 ? CodeGenFunction::destroyARCStrongPrecise 551 : CodeGenFunction::destroyARCStrongImprecise); 552 553 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 554 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 555 cleanupKind & EHCleanup); 556 break; 557 } 558 case Qualifiers::OCL_Autoreleasing: 559 // nothing to do 560 break; 561 562 case Qualifiers::OCL_Weak: 563 // __weak objects always get EH cleanups; otherwise, exceptions 564 // could cause really nasty crashes instead of mere leaks. 565 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 566 CodeGenFunction::destroyARCWeak, 567 /*useEHCleanup*/ true); 568 break; 569 } 570 } 571 572 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 573 if (const Expr *e = dyn_cast<Expr>(s)) { 574 // Skip the most common kinds of expressions that make 575 // hierarchy-walking expensive. 576 s = e = e->IgnoreParenCasts(); 577 578 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 579 return (ref->getDecl() == &var); 580 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 581 const BlockDecl *block = be->getBlockDecl(); 582 for (const auto &I : block->captures()) { 583 if (I.getVariable() == &var) 584 return true; 585 } 586 } 587 } 588 589 for (const Stmt *SubStmt : s->children()) 590 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 591 if (SubStmt && isAccessedBy(var, SubStmt)) 592 return true; 593 594 return false; 595 } 596 597 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 598 if (!decl) return false; 599 if (!isa<VarDecl>(decl)) return false; 600 const VarDecl *var = cast<VarDecl>(decl); 601 return isAccessedBy(*var, e); 602 } 603 604 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 605 const LValue &destLV, const Expr *init) { 606 bool needsCast = false; 607 608 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 609 switch (castExpr->getCastKind()) { 610 // Look through casts that don't require representation changes. 611 case CK_NoOp: 612 case CK_BitCast: 613 case CK_BlockPointerToObjCPointerCast: 614 needsCast = true; 615 break; 616 617 // If we find an l-value to r-value cast from a __weak variable, 618 // emit this operation as a copy or move. 619 case CK_LValueToRValue: { 620 const Expr *srcExpr = castExpr->getSubExpr(); 621 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 622 return false; 623 624 // Emit the source l-value. 625 LValue srcLV = CGF.EmitLValue(srcExpr); 626 627 // Handle a formal type change to avoid asserting. 628 auto srcAddr = srcLV.getAddress(); 629 if (needsCast) { 630 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 631 destLV.getAddress().getElementType()); 632 } 633 634 // If it was an l-value, use objc_copyWeak. 635 if (srcExpr->getValueKind() == VK_LValue) { 636 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 637 } else { 638 assert(srcExpr->getValueKind() == VK_XValue); 639 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 640 } 641 return true; 642 } 643 644 // Stop at anything else. 645 default: 646 return false; 647 } 648 649 init = castExpr->getSubExpr(); 650 } 651 return false; 652 } 653 654 static void drillIntoBlockVariable(CodeGenFunction &CGF, 655 LValue &lvalue, 656 const VarDecl *var) { 657 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 658 } 659 660 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 661 LValue lvalue, bool capturedByInit) { 662 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 663 if (!lifetime) { 664 llvm::Value *value = EmitScalarExpr(init); 665 if (capturedByInit) 666 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 667 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 668 return; 669 } 670 671 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 672 init = DIE->getExpr(); 673 674 // If we're emitting a value with lifetime, we have to do the 675 // initialization *before* we leave the cleanup scopes. 676 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 677 enterFullExpression(ewc); 678 init = ewc->getSubExpr(); 679 } 680 CodeGenFunction::RunCleanupsScope Scope(*this); 681 682 // We have to maintain the illusion that the variable is 683 // zero-initialized. If the variable might be accessed in its 684 // initializer, zero-initialize before running the initializer, then 685 // actually perform the initialization with an assign. 686 bool accessedByInit = false; 687 if (lifetime != Qualifiers::OCL_ExplicitNone) 688 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 689 if (accessedByInit) { 690 LValue tempLV = lvalue; 691 // Drill down to the __block object if necessary. 692 if (capturedByInit) { 693 // We can use a simple GEP for this because it can't have been 694 // moved yet. 695 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 696 cast<VarDecl>(D), 697 /*follow*/ false)); 698 } 699 700 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 701 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 702 703 // If __weak, we want to use a barrier under certain conditions. 704 if (lifetime == Qualifiers::OCL_Weak) 705 EmitARCInitWeak(tempLV.getAddress(), zero); 706 707 // Otherwise just do a simple store. 708 else 709 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 710 } 711 712 // Emit the initializer. 713 llvm::Value *value = nullptr; 714 715 switch (lifetime) { 716 case Qualifiers::OCL_None: 717 llvm_unreachable("present but none"); 718 719 case Qualifiers::OCL_ExplicitNone: 720 value = EmitARCUnsafeUnretainedScalarExpr(init); 721 break; 722 723 case Qualifiers::OCL_Strong: { 724 value = EmitARCRetainScalarExpr(init); 725 break; 726 } 727 728 case Qualifiers::OCL_Weak: { 729 // If it's not accessed by the initializer, try to emit the 730 // initialization with a copy or move. 731 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 732 return; 733 } 734 735 // No way to optimize a producing initializer into this. It's not 736 // worth optimizing for, because the value will immediately 737 // disappear in the common case. 738 value = EmitScalarExpr(init); 739 740 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 741 if (accessedByInit) 742 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 743 else 744 EmitARCInitWeak(lvalue.getAddress(), value); 745 return; 746 } 747 748 case Qualifiers::OCL_Autoreleasing: 749 value = EmitARCRetainAutoreleaseScalarExpr(init); 750 break; 751 } 752 753 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 754 755 // If the variable might have been accessed by its initializer, we 756 // might have to initialize with a barrier. We have to do this for 757 // both __weak and __strong, but __weak got filtered out above. 758 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 759 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 760 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 761 EmitARCRelease(oldValue, ARCImpreciseLifetime); 762 return; 763 } 764 765 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 766 } 767 768 /// EmitScalarInit - Initialize the given lvalue with the given object. 769 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 770 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 771 if (!lifetime) 772 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 773 774 switch (lifetime) { 775 case Qualifiers::OCL_None: 776 llvm_unreachable("present but none"); 777 778 case Qualifiers::OCL_ExplicitNone: 779 // nothing to do 780 break; 781 782 case Qualifiers::OCL_Strong: 783 init = EmitARCRetain(lvalue.getType(), init); 784 break; 785 786 case Qualifiers::OCL_Weak: 787 // Initialize and then skip the primitive store. 788 EmitARCInitWeak(lvalue.getAddress(), init); 789 return; 790 791 case Qualifiers::OCL_Autoreleasing: 792 init = EmitARCRetainAutorelease(lvalue.getType(), init); 793 break; 794 } 795 796 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 797 } 798 799 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 800 /// non-zero parts of the specified initializer with equal or fewer than 801 /// NumStores scalar stores. 802 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 803 unsigned &NumStores) { 804 // Zero and Undef never requires any extra stores. 805 if (isa<llvm::ConstantAggregateZero>(Init) || 806 isa<llvm::ConstantPointerNull>(Init) || 807 isa<llvm::UndefValue>(Init)) 808 return true; 809 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 810 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 811 isa<llvm::ConstantExpr>(Init)) 812 return Init->isNullValue() || NumStores--; 813 814 // See if we can emit each element. 815 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 816 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 817 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 818 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 819 return false; 820 } 821 return true; 822 } 823 824 if (llvm::ConstantDataSequential *CDS = 825 dyn_cast<llvm::ConstantDataSequential>(Init)) { 826 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 827 llvm::Constant *Elt = CDS->getElementAsConstant(i); 828 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 829 return false; 830 } 831 return true; 832 } 833 834 // Anything else is hard and scary. 835 return false; 836 } 837 838 /// emitStoresForInitAfterMemset - For inits that 839 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 840 /// stores that would be required. 841 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 842 bool isVolatile, CGBuilderTy &Builder) { 843 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 844 "called emitStoresForInitAfterMemset for zero or undef value."); 845 846 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 847 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 848 isa<llvm::ConstantExpr>(Init)) { 849 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 850 return; 851 } 852 853 if (llvm::ConstantDataSequential *CDS = 854 dyn_cast<llvm::ConstantDataSequential>(Init)) { 855 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 856 llvm::Constant *Elt = CDS->getElementAsConstant(i); 857 858 // If necessary, get a pointer to the element and emit it. 859 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 860 emitStoresForInitAfterMemset( 861 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 862 isVolatile, Builder); 863 } 864 return; 865 } 866 867 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 868 "Unknown value type!"); 869 870 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 871 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 872 873 // If necessary, get a pointer to the element and emit it. 874 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 875 emitStoresForInitAfterMemset( 876 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 877 isVolatile, Builder); 878 } 879 } 880 881 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 882 /// plus some stores to initialize a local variable instead of using a memcpy 883 /// from a constant global. It is beneficial to use memset if the global is all 884 /// zeros, or mostly zeros and large. 885 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 886 uint64_t GlobalSize) { 887 // If a global is all zeros, always use a memset. 888 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 889 890 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 891 // do it if it will require 6 or fewer scalar stores. 892 // TODO: Should budget depends on the size? Avoiding a large global warrants 893 // plopping in more stores. 894 unsigned StoreBudget = 6; 895 uint64_t SizeLimit = 32; 896 897 return GlobalSize > SizeLimit && 898 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 899 } 900 901 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 902 /// variable declaration with auto, register, or no storage class specifier. 903 /// These turn into simple stack objects, or GlobalValues depending on target. 904 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 905 AutoVarEmission emission = EmitAutoVarAlloca(D); 906 EmitAutoVarInit(emission); 907 EmitAutoVarCleanups(emission); 908 } 909 910 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 911 /// markers. 912 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 913 const LangOptions &LangOpts) { 914 // Asan uses markers for use-after-scope checks. 915 if (CGOpts.SanitizeAddressUseAfterScope) 916 return true; 917 918 // Disable lifetime markers in msan builds. 919 // FIXME: Remove this when msan works with lifetime markers. 920 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 921 return false; 922 923 // For now, only in optimized builds. 924 return CGOpts.OptimizationLevel != 0; 925 } 926 927 /// Emit a lifetime.begin marker if some criteria are satisfied. 928 /// \return a pointer to the temporary size Value if a marker was emitted, null 929 /// otherwise 930 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 931 llvm::Value *Addr) { 932 if (!shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), getLangOpts())) 933 return nullptr; 934 935 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 936 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 937 llvm::CallInst *C = 938 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 939 C->setDoesNotThrow(); 940 return SizeV; 941 } 942 943 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 944 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 945 llvm::CallInst *C = 946 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 947 C->setDoesNotThrow(); 948 } 949 950 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 951 /// local variable. Does not emit initialization or destruction. 952 CodeGenFunction::AutoVarEmission 953 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 954 QualType Ty = D.getType(); 955 956 AutoVarEmission emission(D); 957 958 bool isByRef = D.hasAttr<BlocksAttr>(); 959 emission.IsByRef = isByRef; 960 961 CharUnits alignment = getContext().getDeclAlign(&D); 962 963 // If the type is variably-modified, emit all the VLA sizes for it. 964 if (Ty->isVariablyModifiedType()) 965 EmitVariablyModifiedType(Ty); 966 967 Address address = Address::invalid(); 968 if (Ty->isConstantSizeType()) { 969 bool NRVO = getLangOpts().ElideConstructors && 970 D.isNRVOVariable(); 971 972 // If this value is an array or struct with a statically determinable 973 // constant initializer, there are optimizations we can do. 974 // 975 // TODO: We should constant-evaluate the initializer of any variable, 976 // as long as it is initialized by a constant expression. Currently, 977 // isConstantInitializer produces wrong answers for structs with 978 // reference or bitfield members, and a few other cases, and checking 979 // for POD-ness protects us from some of these. 980 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 981 (D.isConstexpr() || 982 ((Ty.isPODType(getContext()) || 983 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 984 D.getInit()->isConstantInitializer(getContext(), false)))) { 985 986 // If the variable's a const type, and it's neither an NRVO 987 // candidate nor a __block variable and has no mutable members, 988 // emit it as a global instead. 989 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 990 CGM.isTypeConstant(Ty, true)) { 991 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 992 993 // Signal this condition to later callbacks. 994 emission.Addr = Address::invalid(); 995 assert(emission.wasEmittedAsGlobal()); 996 return emission; 997 } 998 999 // Otherwise, tell the initialization code that we're in this case. 1000 emission.IsConstantAggregate = true; 1001 } 1002 1003 // A normal fixed sized variable becomes an alloca in the entry block, 1004 // unless it's an NRVO variable. 1005 1006 if (NRVO) { 1007 // The named return value optimization: allocate this variable in the 1008 // return slot, so that we can elide the copy when returning this 1009 // variable (C++0x [class.copy]p34). 1010 address = ReturnValue; 1011 1012 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1013 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1014 // Create a flag that is used to indicate when the NRVO was applied 1015 // to this variable. Set it to zero to indicate that NRVO was not 1016 // applied. 1017 llvm::Value *Zero = Builder.getFalse(); 1018 Address NRVOFlag = 1019 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1020 EnsureInsertPoint(); 1021 Builder.CreateStore(Zero, NRVOFlag); 1022 1023 // Record the NRVO flag for this variable. 1024 NRVOFlags[&D] = NRVOFlag.getPointer(); 1025 emission.NRVOFlag = NRVOFlag.getPointer(); 1026 } 1027 } 1028 } else { 1029 CharUnits allocaAlignment; 1030 llvm::Type *allocaTy; 1031 if (isByRef) { 1032 auto &byrefInfo = getBlockByrefInfo(&D); 1033 allocaTy = byrefInfo.Type; 1034 allocaAlignment = byrefInfo.ByrefAlignment; 1035 } else { 1036 allocaTy = ConvertTypeForMem(Ty); 1037 allocaAlignment = alignment; 1038 } 1039 1040 // Create the alloca. Note that we set the name separately from 1041 // building the instruction so that it's there even in no-asserts 1042 // builds. 1043 address = CreateTempAlloca(allocaTy, allocaAlignment); 1044 address.getPointer()->setName(D.getName()); 1045 1046 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1047 // the catch parameter starts in the catchpad instruction, and we can't 1048 // insert code in those basic blocks. 1049 bool IsMSCatchParam = 1050 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1051 1052 // Emit a lifetime intrinsic if meaningful. There's no point 1053 // in doing this if we don't have a valid insertion point (?). 1054 if (HaveInsertPoint() && !IsMSCatchParam) { 1055 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1056 emission.SizeForLifetimeMarkers = 1057 EmitLifetimeStart(size, address.getPointer()); 1058 } else { 1059 assert(!emission.useLifetimeMarkers()); 1060 } 1061 } 1062 } else { 1063 EnsureInsertPoint(); 1064 1065 if (!DidCallStackSave) { 1066 // Save the stack. 1067 Address Stack = 1068 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1069 1070 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1071 llvm::Value *V = Builder.CreateCall(F); 1072 Builder.CreateStore(V, Stack); 1073 1074 DidCallStackSave = true; 1075 1076 // Push a cleanup block and restore the stack there. 1077 // FIXME: in general circumstances, this should be an EH cleanup. 1078 pushStackRestore(NormalCleanup, Stack); 1079 } 1080 1081 llvm::Value *elementCount; 1082 QualType elementType; 1083 std::tie(elementCount, elementType) = getVLASize(Ty); 1084 1085 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1086 1087 // Allocate memory for the array. 1088 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1089 vla->setAlignment(alignment.getQuantity()); 1090 1091 address = Address(vla, alignment); 1092 } 1093 1094 setAddrOfLocalVar(&D, address); 1095 emission.Addr = address; 1096 1097 // Emit debug info for local var declaration. 1098 if (HaveInsertPoint()) 1099 if (CGDebugInfo *DI = getDebugInfo()) { 1100 if (CGM.getCodeGenOpts().getDebugInfo() >= 1101 codegenoptions::LimitedDebugInfo) { 1102 DI->setLocation(D.getLocation()); 1103 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1104 } 1105 } 1106 1107 if (D.hasAttr<AnnotateAttr>()) 1108 EmitVarAnnotations(&D, address.getPointer()); 1109 1110 return emission; 1111 } 1112 1113 /// Determines whether the given __block variable is potentially 1114 /// captured by the given expression. 1115 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1116 // Skip the most common kinds of expressions that make 1117 // hierarchy-walking expensive. 1118 e = e->IgnoreParenCasts(); 1119 1120 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1121 const BlockDecl *block = be->getBlockDecl(); 1122 for (const auto &I : block->captures()) { 1123 if (I.getVariable() == &var) 1124 return true; 1125 } 1126 1127 // No need to walk into the subexpressions. 1128 return false; 1129 } 1130 1131 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1132 const CompoundStmt *CS = SE->getSubStmt(); 1133 for (const auto *BI : CS->body()) 1134 if (const auto *E = dyn_cast<Expr>(BI)) { 1135 if (isCapturedBy(var, E)) 1136 return true; 1137 } 1138 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1139 // special case declarations 1140 for (const auto *I : DS->decls()) { 1141 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1142 const Expr *Init = VD->getInit(); 1143 if (Init && isCapturedBy(var, Init)) 1144 return true; 1145 } 1146 } 1147 } 1148 else 1149 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1150 // Later, provide code to poke into statements for capture analysis. 1151 return true; 1152 return false; 1153 } 1154 1155 for (const Stmt *SubStmt : e->children()) 1156 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1157 return true; 1158 1159 return false; 1160 } 1161 1162 /// \brief Determine whether the given initializer is trivial in the sense 1163 /// that it requires no code to be generated. 1164 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1165 if (!Init) 1166 return true; 1167 1168 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1169 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1170 if (Constructor->isTrivial() && 1171 Constructor->isDefaultConstructor() && 1172 !Construct->requiresZeroInitialization()) 1173 return true; 1174 1175 return false; 1176 } 1177 1178 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1179 assert(emission.Variable && "emission was not valid!"); 1180 1181 // If this was emitted as a global constant, we're done. 1182 if (emission.wasEmittedAsGlobal()) return; 1183 1184 const VarDecl &D = *emission.Variable; 1185 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1186 QualType type = D.getType(); 1187 1188 // If this local has an initializer, emit it now. 1189 const Expr *Init = D.getInit(); 1190 1191 // If we are at an unreachable point, we don't need to emit the initializer 1192 // unless it contains a label. 1193 if (!HaveInsertPoint()) { 1194 if (!Init || !ContainsLabel(Init)) return; 1195 EnsureInsertPoint(); 1196 } 1197 1198 // Initialize the structure of a __block variable. 1199 if (emission.IsByRef) 1200 emitByrefStructureInit(emission); 1201 1202 if (isTrivialInitializer(Init)) 1203 return; 1204 1205 // Check whether this is a byref variable that's potentially 1206 // captured and moved by its own initializer. If so, we'll need to 1207 // emit the initializer first, then copy into the variable. 1208 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1209 1210 Address Loc = 1211 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1212 1213 llvm::Constant *constant = nullptr; 1214 if (emission.IsConstantAggregate || D.isConstexpr()) { 1215 assert(!capturedByInit && "constant init contains a capturing block?"); 1216 constant = CGM.EmitConstantInit(D, this); 1217 } 1218 1219 if (!constant) { 1220 LValue lv = MakeAddrLValue(Loc, type); 1221 lv.setNonGC(true); 1222 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1223 } 1224 1225 if (!emission.IsConstantAggregate) { 1226 // For simple scalar/complex initialization, store the value directly. 1227 LValue lv = MakeAddrLValue(Loc, type); 1228 lv.setNonGC(true); 1229 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1230 } 1231 1232 // If this is a simple aggregate initialization, we can optimize it 1233 // in various ways. 1234 bool isVolatile = type.isVolatileQualified(); 1235 1236 llvm::Value *SizeVal = 1237 llvm::ConstantInt::get(IntPtrTy, 1238 getContext().getTypeSizeInChars(type).getQuantity()); 1239 1240 llvm::Type *BP = Int8PtrTy; 1241 if (Loc.getType() != BP) 1242 Loc = Builder.CreateBitCast(Loc, BP); 1243 1244 // If the initializer is all or mostly zeros, codegen with memset then do 1245 // a few stores afterward. 1246 if (shouldUseMemSetPlusStoresToInitialize(constant, 1247 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1248 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1249 isVolatile); 1250 // Zero and undef don't require a stores. 1251 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1252 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1253 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1254 isVolatile, Builder); 1255 } 1256 } else { 1257 // Otherwise, create a temporary global with the initializer then 1258 // memcpy from the global to the alloca. 1259 std::string Name = getStaticDeclName(CGM, D); 1260 llvm::GlobalVariable *GV = 1261 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1262 llvm::GlobalValue::PrivateLinkage, 1263 constant, Name); 1264 GV->setAlignment(Loc.getAlignment().getQuantity()); 1265 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1266 1267 Address SrcPtr = Address(GV, Loc.getAlignment()); 1268 if (SrcPtr.getType() != BP) 1269 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1270 1271 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1272 } 1273 } 1274 1275 /// Emit an expression as an initializer for a variable at the given 1276 /// location. The expression is not necessarily the normal 1277 /// initializer for the variable, and the address is not necessarily 1278 /// its normal location. 1279 /// 1280 /// \param init the initializing expression 1281 /// \param var the variable to act as if we're initializing 1282 /// \param loc the address to initialize; its type is a pointer 1283 /// to the LLVM mapping of the variable's type 1284 /// \param alignment the alignment of the address 1285 /// \param capturedByInit true if the variable is a __block variable 1286 /// whose address is potentially changed by the initializer 1287 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1288 LValue lvalue, bool capturedByInit) { 1289 QualType type = D->getType(); 1290 1291 if (type->isReferenceType()) { 1292 RValue rvalue = EmitReferenceBindingToExpr(init); 1293 if (capturedByInit) 1294 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1295 EmitStoreThroughLValue(rvalue, lvalue, true); 1296 return; 1297 } 1298 switch (getEvaluationKind(type)) { 1299 case TEK_Scalar: 1300 EmitScalarInit(init, D, lvalue, capturedByInit); 1301 return; 1302 case TEK_Complex: { 1303 ComplexPairTy complex = EmitComplexExpr(init); 1304 if (capturedByInit) 1305 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1306 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1307 return; 1308 } 1309 case TEK_Aggregate: 1310 if (type->isAtomicType()) { 1311 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1312 } else { 1313 // TODO: how can we delay here if D is captured by its initializer? 1314 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1315 AggValueSlot::IsDestructed, 1316 AggValueSlot::DoesNotNeedGCBarriers, 1317 AggValueSlot::IsNotAliased)); 1318 } 1319 return; 1320 } 1321 llvm_unreachable("bad evaluation kind"); 1322 } 1323 1324 /// Enter a destroy cleanup for the given local variable. 1325 void CodeGenFunction::emitAutoVarTypeCleanup( 1326 const CodeGenFunction::AutoVarEmission &emission, 1327 QualType::DestructionKind dtorKind) { 1328 assert(dtorKind != QualType::DK_none); 1329 1330 // Note that for __block variables, we want to destroy the 1331 // original stack object, not the possibly forwarded object. 1332 Address addr = emission.getObjectAddress(*this); 1333 1334 const VarDecl *var = emission.Variable; 1335 QualType type = var->getType(); 1336 1337 CleanupKind cleanupKind = NormalAndEHCleanup; 1338 CodeGenFunction::Destroyer *destroyer = nullptr; 1339 1340 switch (dtorKind) { 1341 case QualType::DK_none: 1342 llvm_unreachable("no cleanup for trivially-destructible variable"); 1343 1344 case QualType::DK_cxx_destructor: 1345 // If there's an NRVO flag on the emission, we need a different 1346 // cleanup. 1347 if (emission.NRVOFlag) { 1348 assert(!type->isArrayType()); 1349 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1350 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1351 dtor, emission.NRVOFlag); 1352 return; 1353 } 1354 break; 1355 1356 case QualType::DK_objc_strong_lifetime: 1357 // Suppress cleanups for pseudo-strong variables. 1358 if (var->isARCPseudoStrong()) return; 1359 1360 // Otherwise, consider whether to use an EH cleanup or not. 1361 cleanupKind = getARCCleanupKind(); 1362 1363 // Use the imprecise destroyer by default. 1364 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1365 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1366 break; 1367 1368 case QualType::DK_objc_weak_lifetime: 1369 break; 1370 } 1371 1372 // If we haven't chosen a more specific destroyer, use the default. 1373 if (!destroyer) destroyer = getDestroyer(dtorKind); 1374 1375 // Use an EH cleanup in array destructors iff the destructor itself 1376 // is being pushed as an EH cleanup. 1377 bool useEHCleanup = (cleanupKind & EHCleanup); 1378 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1379 useEHCleanup); 1380 } 1381 1382 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1383 assert(emission.Variable && "emission was not valid!"); 1384 1385 // If this was emitted as a global constant, we're done. 1386 if (emission.wasEmittedAsGlobal()) return; 1387 1388 // If we don't have an insertion point, we're done. Sema prevents 1389 // us from jumping into any of these scopes anyway. 1390 if (!HaveInsertPoint()) return; 1391 1392 const VarDecl &D = *emission.Variable; 1393 1394 // Make sure we call @llvm.lifetime.end. This needs to happen 1395 // *last*, so the cleanup needs to be pushed *first*. 1396 if (emission.useLifetimeMarkers()) 1397 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1398 emission.getAllocatedAddress(), 1399 emission.getSizeForLifetimeMarkers()); 1400 1401 // Check the type for a cleanup. 1402 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1403 emitAutoVarTypeCleanup(emission, dtorKind); 1404 1405 // In GC mode, honor objc_precise_lifetime. 1406 if (getLangOpts().getGC() != LangOptions::NonGC && 1407 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1408 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1409 } 1410 1411 // Handle the cleanup attribute. 1412 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1413 const FunctionDecl *FD = CA->getFunctionDecl(); 1414 1415 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1416 assert(F && "Could not find function!"); 1417 1418 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1419 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1420 } 1421 1422 // If this is a block variable, call _Block_object_destroy 1423 // (on the unforwarded address). 1424 if (emission.IsByRef) 1425 enterByrefCleanup(emission); 1426 } 1427 1428 CodeGenFunction::Destroyer * 1429 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1430 switch (kind) { 1431 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1432 case QualType::DK_cxx_destructor: 1433 return destroyCXXObject; 1434 case QualType::DK_objc_strong_lifetime: 1435 return destroyARCStrongPrecise; 1436 case QualType::DK_objc_weak_lifetime: 1437 return destroyARCWeak; 1438 } 1439 llvm_unreachable("Unknown DestructionKind"); 1440 } 1441 1442 /// pushEHDestroy - Push the standard destructor for the given type as 1443 /// an EH-only cleanup. 1444 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1445 Address addr, QualType type) { 1446 assert(dtorKind && "cannot push destructor for trivial type"); 1447 assert(needsEHCleanup(dtorKind)); 1448 1449 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1450 } 1451 1452 /// pushDestroy - Push the standard destructor for the given type as 1453 /// at least a normal cleanup. 1454 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1455 Address addr, QualType type) { 1456 assert(dtorKind && "cannot push destructor for trivial type"); 1457 1458 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1459 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1460 cleanupKind & EHCleanup); 1461 } 1462 1463 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1464 QualType type, Destroyer *destroyer, 1465 bool useEHCleanupForArray) { 1466 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1467 destroyer, useEHCleanupForArray); 1468 } 1469 1470 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1471 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1472 } 1473 1474 void CodeGenFunction::pushLifetimeExtendedDestroy( 1475 CleanupKind cleanupKind, Address addr, QualType type, 1476 Destroyer *destroyer, bool useEHCleanupForArray) { 1477 assert(!isInConditionalBranch() && 1478 "performing lifetime extension from within conditional"); 1479 1480 // Push an EH-only cleanup for the object now. 1481 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1482 // around in case a temporary's destructor throws an exception. 1483 if (cleanupKind & EHCleanup) 1484 EHStack.pushCleanup<DestroyObject>( 1485 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1486 destroyer, useEHCleanupForArray); 1487 1488 // Remember that we need to push a full cleanup for the object at the 1489 // end of the full-expression. 1490 pushCleanupAfterFullExpr<DestroyObject>( 1491 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1492 } 1493 1494 /// emitDestroy - Immediately perform the destruction of the given 1495 /// object. 1496 /// 1497 /// \param addr - the address of the object; a type* 1498 /// \param type - the type of the object; if an array type, all 1499 /// objects are destroyed in reverse order 1500 /// \param destroyer - the function to call to destroy individual 1501 /// elements 1502 /// \param useEHCleanupForArray - whether an EH cleanup should be 1503 /// used when destroying array elements, in case one of the 1504 /// destructions throws an exception 1505 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1506 Destroyer *destroyer, 1507 bool useEHCleanupForArray) { 1508 const ArrayType *arrayType = getContext().getAsArrayType(type); 1509 if (!arrayType) 1510 return destroyer(*this, addr, type); 1511 1512 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1513 1514 CharUnits elementAlign = 1515 addr.getAlignment() 1516 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1517 1518 // Normally we have to check whether the array is zero-length. 1519 bool checkZeroLength = true; 1520 1521 // But if the array length is constant, we can suppress that. 1522 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1523 // ...and if it's constant zero, we can just skip the entire thing. 1524 if (constLength->isZero()) return; 1525 checkZeroLength = false; 1526 } 1527 1528 llvm::Value *begin = addr.getPointer(); 1529 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1530 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1531 checkZeroLength, useEHCleanupForArray); 1532 } 1533 1534 /// emitArrayDestroy - Destroys all the elements of the given array, 1535 /// beginning from last to first. The array cannot be zero-length. 1536 /// 1537 /// \param begin - a type* denoting the first element of the array 1538 /// \param end - a type* denoting one past the end of the array 1539 /// \param elementType - the element type of the array 1540 /// \param destroyer - the function to call to destroy elements 1541 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1542 /// the remaining elements in case the destruction of a single 1543 /// element throws 1544 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1545 llvm::Value *end, 1546 QualType elementType, 1547 CharUnits elementAlign, 1548 Destroyer *destroyer, 1549 bool checkZeroLength, 1550 bool useEHCleanup) { 1551 assert(!elementType->isArrayType()); 1552 1553 // The basic structure here is a do-while loop, because we don't 1554 // need to check for the zero-element case. 1555 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1556 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1557 1558 if (checkZeroLength) { 1559 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1560 "arraydestroy.isempty"); 1561 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1562 } 1563 1564 // Enter the loop body, making that address the current address. 1565 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1566 EmitBlock(bodyBB); 1567 llvm::PHINode *elementPast = 1568 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1569 elementPast->addIncoming(end, entryBB); 1570 1571 // Shift the address back by one element. 1572 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1573 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1574 "arraydestroy.element"); 1575 1576 if (useEHCleanup) 1577 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1578 destroyer); 1579 1580 // Perform the actual destruction there. 1581 destroyer(*this, Address(element, elementAlign), elementType); 1582 1583 if (useEHCleanup) 1584 PopCleanupBlock(); 1585 1586 // Check whether we've reached the end. 1587 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1588 Builder.CreateCondBr(done, doneBB, bodyBB); 1589 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1590 1591 // Done. 1592 EmitBlock(doneBB); 1593 } 1594 1595 /// Perform partial array destruction as if in an EH cleanup. Unlike 1596 /// emitArrayDestroy, the element type here may still be an array type. 1597 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1598 llvm::Value *begin, llvm::Value *end, 1599 QualType type, CharUnits elementAlign, 1600 CodeGenFunction::Destroyer *destroyer) { 1601 // If the element type is itself an array, drill down. 1602 unsigned arrayDepth = 0; 1603 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1604 // VLAs don't require a GEP index to walk into. 1605 if (!isa<VariableArrayType>(arrayType)) 1606 arrayDepth++; 1607 type = arrayType->getElementType(); 1608 } 1609 1610 if (arrayDepth) { 1611 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1612 1613 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1614 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1615 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1616 } 1617 1618 // Destroy the array. We don't ever need an EH cleanup because we 1619 // assume that we're in an EH cleanup ourselves, so a throwing 1620 // destructor causes an immediate terminate. 1621 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1622 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1623 } 1624 1625 namespace { 1626 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1627 /// array destroy where the end pointer is regularly determined and 1628 /// does not need to be loaded from a local. 1629 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1630 llvm::Value *ArrayBegin; 1631 llvm::Value *ArrayEnd; 1632 QualType ElementType; 1633 CodeGenFunction::Destroyer *Destroyer; 1634 CharUnits ElementAlign; 1635 public: 1636 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1637 QualType elementType, CharUnits elementAlign, 1638 CodeGenFunction::Destroyer *destroyer) 1639 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1640 ElementType(elementType), Destroyer(destroyer), 1641 ElementAlign(elementAlign) {} 1642 1643 void Emit(CodeGenFunction &CGF, Flags flags) override { 1644 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1645 ElementType, ElementAlign, Destroyer); 1646 } 1647 }; 1648 1649 /// IrregularPartialArrayDestroy - a cleanup which performs a 1650 /// partial array destroy where the end pointer is irregularly 1651 /// determined and must be loaded from a local. 1652 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1653 llvm::Value *ArrayBegin; 1654 Address ArrayEndPointer; 1655 QualType ElementType; 1656 CodeGenFunction::Destroyer *Destroyer; 1657 CharUnits ElementAlign; 1658 public: 1659 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1660 Address arrayEndPointer, 1661 QualType elementType, 1662 CharUnits elementAlign, 1663 CodeGenFunction::Destroyer *destroyer) 1664 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1665 ElementType(elementType), Destroyer(destroyer), 1666 ElementAlign(elementAlign) {} 1667 1668 void Emit(CodeGenFunction &CGF, Flags flags) override { 1669 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1670 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1671 ElementType, ElementAlign, Destroyer); 1672 } 1673 }; 1674 } // end anonymous namespace 1675 1676 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1677 /// already-constructed elements of the given array. The cleanup 1678 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1679 /// 1680 /// \param elementType - the immediate element type of the array; 1681 /// possibly still an array type 1682 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1683 Address arrayEndPointer, 1684 QualType elementType, 1685 CharUnits elementAlign, 1686 Destroyer *destroyer) { 1687 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1688 arrayBegin, arrayEndPointer, 1689 elementType, elementAlign, 1690 destroyer); 1691 } 1692 1693 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1694 /// already-constructed elements of the given array. The cleanup 1695 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1696 /// 1697 /// \param elementType - the immediate element type of the array; 1698 /// possibly still an array type 1699 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1700 llvm::Value *arrayEnd, 1701 QualType elementType, 1702 CharUnits elementAlign, 1703 Destroyer *destroyer) { 1704 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1705 arrayBegin, arrayEnd, 1706 elementType, elementAlign, 1707 destroyer); 1708 } 1709 1710 /// Lazily declare the @llvm.lifetime.start intrinsic. 1711 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1712 if (LifetimeStartFn) return LifetimeStartFn; 1713 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1714 llvm::Intrinsic::lifetime_start); 1715 return LifetimeStartFn; 1716 } 1717 1718 /// Lazily declare the @llvm.lifetime.end intrinsic. 1719 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1720 if (LifetimeEndFn) return LifetimeEndFn; 1721 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1722 llvm::Intrinsic::lifetime_end); 1723 return LifetimeEndFn; 1724 } 1725 1726 namespace { 1727 /// A cleanup to perform a release of an object at the end of a 1728 /// function. This is used to balance out the incoming +1 of a 1729 /// ns_consumed argument when we can't reasonably do that just by 1730 /// not doing the initial retain for a __block argument. 1731 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1732 ConsumeARCParameter(llvm::Value *param, 1733 ARCPreciseLifetime_t precise) 1734 : Param(param), Precise(precise) {} 1735 1736 llvm::Value *Param; 1737 ARCPreciseLifetime_t Precise; 1738 1739 void Emit(CodeGenFunction &CGF, Flags flags) override { 1740 CGF.EmitARCRelease(Param, Precise); 1741 } 1742 }; 1743 } // end anonymous namespace 1744 1745 /// Emit an alloca (or GlobalValue depending on target) 1746 /// for the specified parameter and set up LocalDeclMap. 1747 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1748 unsigned ArgNo) { 1749 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1750 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1751 "Invalid argument to EmitParmDecl"); 1752 1753 Arg.getAnyValue()->setName(D.getName()); 1754 1755 QualType Ty = D.getType(); 1756 1757 // Use better IR generation for certain implicit parameters. 1758 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1759 // The only implicit argument a block has is its literal. 1760 // We assume this is always passed directly. 1761 if (BlockInfo) { 1762 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1763 return; 1764 } 1765 } 1766 1767 Address DeclPtr = Address::invalid(); 1768 bool DoStore = false; 1769 bool IsScalar = hasScalarEvaluationKind(Ty); 1770 // If we already have a pointer to the argument, reuse the input pointer. 1771 if (Arg.isIndirect()) { 1772 DeclPtr = Arg.getIndirectAddress(); 1773 // If we have a prettier pointer type at this point, bitcast to that. 1774 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1775 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1776 if (DeclPtr.getType() != IRTy) 1777 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1778 1779 // Push a destructor cleanup for this parameter if the ABI requires it. 1780 // Don't push a cleanup in a thunk for a method that will also emit a 1781 // cleanup. 1782 if (!IsScalar && !CurFuncIsThunk && 1783 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1784 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1785 if (RD && RD->hasNonTrivialDestructor()) 1786 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1787 } 1788 } else { 1789 // Otherwise, create a temporary to hold the value. 1790 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1791 D.getName() + ".addr"); 1792 DoStore = true; 1793 } 1794 1795 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1796 1797 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1798 if (IsScalar) { 1799 Qualifiers qs = Ty.getQualifiers(); 1800 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1801 // We honor __attribute__((ns_consumed)) for types with lifetime. 1802 // For __strong, it's handled by just skipping the initial retain; 1803 // otherwise we have to balance out the initial +1 with an extra 1804 // cleanup to do the release at the end of the function. 1805 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1806 1807 // 'self' is always formally __strong, but if this is not an 1808 // init method then we don't want to retain it. 1809 if (D.isARCPseudoStrong()) { 1810 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1811 assert(&D == method->getSelfDecl()); 1812 assert(lt == Qualifiers::OCL_Strong); 1813 assert(qs.hasConst()); 1814 assert(method->getMethodFamily() != OMF_init); 1815 (void) method; 1816 lt = Qualifiers::OCL_ExplicitNone; 1817 } 1818 1819 if (lt == Qualifiers::OCL_Strong) { 1820 if (!isConsumed) { 1821 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1822 // use objc_storeStrong(&dest, value) for retaining the 1823 // object. But first, store a null into 'dest' because 1824 // objc_storeStrong attempts to release its old value. 1825 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1826 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1827 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1828 DoStore = false; 1829 } 1830 else 1831 // Don't use objc_retainBlock for block pointers, because we 1832 // don't want to Block_copy something just because we got it 1833 // as a parameter. 1834 ArgVal = EmitARCRetainNonBlock(ArgVal); 1835 } 1836 } else { 1837 // Push the cleanup for a consumed parameter. 1838 if (isConsumed) { 1839 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1840 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1841 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1842 precise); 1843 } 1844 1845 if (lt == Qualifiers::OCL_Weak) { 1846 EmitARCInitWeak(DeclPtr, ArgVal); 1847 DoStore = false; // The weak init is a store, no need to do two. 1848 } 1849 } 1850 1851 // Enter the cleanup scope. 1852 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1853 } 1854 } 1855 1856 // Store the initial value into the alloca. 1857 if (DoStore) 1858 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1859 1860 setAddrOfLocalVar(&D, DeclPtr); 1861 1862 // Emit debug info for param declaration. 1863 if (CGDebugInfo *DI = getDebugInfo()) { 1864 if (CGM.getCodeGenOpts().getDebugInfo() >= 1865 codegenoptions::LimitedDebugInfo) { 1866 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1867 } 1868 } 1869 1870 if (D.hasAttr<AnnotateAttr>()) 1871 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1872 } 1873 1874 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1875 CodeGenFunction *CGF) { 1876 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1877 return; 1878 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1879 } 1880