1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a simple pass that applies a variety of small 11 // optimizations for calls to specific well-known function calls (e.g. runtime 12 // library functions). Any optimization that takes the very simple form 13 // "replace call to library function with simpler code that provides the same 14 // result" belongs in this file. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "simplify-libcalls" 19 #include "llvm/Transforms/Scalar.h" 20 #include "llvm/Transforms/Utils/BuildLibCalls.h" 21 #include "llvm/Intrinsics.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Module.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/IRBuilder.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Target/TargetLibraryInfo.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/StringMap.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Config/config.h" // FIXME: Shouldn't depend on host! 36 using namespace llvm; 37 38 STATISTIC(NumSimplified, "Number of library calls simplified"); 39 STATISTIC(NumAnnotated, "Number of attributes added to library functions"); 40 41 //===----------------------------------------------------------------------===// 42 // Optimizer Base Class 43 //===----------------------------------------------------------------------===// 44 45 /// This class is the abstract base class for the set of optimizations that 46 /// corresponds to one library call. 47 namespace { 48 class LibCallOptimization { 49 protected: 50 Function *Caller; 51 const TargetData *TD; 52 const TargetLibraryInfo *TLI; 53 LLVMContext* Context; 54 public: 55 LibCallOptimization() { } 56 virtual ~LibCallOptimization() {} 57 58 /// CallOptimizer - This pure virtual method is implemented by base classes to 59 /// do various optimizations. If this returns null then no transformation was 60 /// performed. If it returns CI, then it transformed the call and CI is to be 61 /// deleted. If it returns something else, replace CI with the new value and 62 /// delete CI. 63 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) 64 =0; 65 66 Value *OptimizeCall(CallInst *CI, const TargetData *TD, 67 const TargetLibraryInfo *TLI, IRBuilder<> &B) { 68 Caller = CI->getParent()->getParent(); 69 this->TD = TD; 70 this->TLI = TLI; 71 if (CI->getCalledFunction()) 72 Context = &CI->getCalledFunction()->getContext(); 73 74 // We never change the calling convention. 75 if (CI->getCallingConv() != llvm::CallingConv::C) 76 return NULL; 77 78 return CallOptimizer(CI->getCalledFunction(), CI, B); 79 } 80 }; 81 } // End anonymous namespace. 82 83 84 //===----------------------------------------------------------------------===// 85 // Helper Functions 86 //===----------------------------------------------------------------------===// 87 88 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 89 /// value is equal or not-equal to zero. 90 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { 91 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 92 UI != E; ++UI) { 93 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 94 if (IC->isEquality()) 95 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 96 if (C->isNullValue()) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool CallHasFloatingPointArgument(const CallInst *CI) { 105 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 106 it != e; ++it) { 107 if ((*it)->getType()->isFloatingPointTy()) 108 return true; 109 } 110 return false; 111 } 112 113 /// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality 114 /// comparisons with With. 115 static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) { 116 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 117 UI != E; ++UI) { 118 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 119 if (IC->isEquality() && IC->getOperand(1) == With) 120 continue; 121 // Unknown instruction. 122 return false; 123 } 124 return true; 125 } 126 127 //===----------------------------------------------------------------------===// 128 // String and Memory LibCall Optimizations 129 //===----------------------------------------------------------------------===// 130 131 //===---------------------------------------===// 132 // 'strcat' Optimizations 133 namespace { 134 struct StrCatOpt : public LibCallOptimization { 135 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 136 // Verify the "strcat" function prototype. 137 FunctionType *FT = Callee->getFunctionType(); 138 if (FT->getNumParams() != 2 || 139 FT->getReturnType() != B.getInt8PtrTy() || 140 FT->getParamType(0) != FT->getReturnType() || 141 FT->getParamType(1) != FT->getReturnType()) 142 return 0; 143 144 // Extract some information from the instruction 145 Value *Dst = CI->getArgOperand(0); 146 Value *Src = CI->getArgOperand(1); 147 148 // See if we can get the length of the input string. 149 uint64_t Len = GetStringLength(Src); 150 if (Len == 0) return 0; 151 --Len; // Unbias length. 152 153 // Handle the simple, do-nothing case: strcat(x, "") -> x 154 if (Len == 0) 155 return Dst; 156 157 // These optimizations require TargetData. 158 if (!TD) return 0; 159 160 EmitStrLenMemCpy(Src, Dst, Len, B); 161 return Dst; 162 } 163 164 void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) { 165 // We need to find the end of the destination string. That's where the 166 // memory is to be moved to. We just generate a call to strlen. 167 Value *DstLen = EmitStrLen(Dst, B, TD); 168 169 // Now that we have the destination's length, we must index into the 170 // destination's pointer to get the actual memcpy destination (end of 171 // the string .. we're concatenating). 172 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); 173 174 // We have enough information to now generate the memcpy call to do the 175 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 176 B.CreateMemCpy(CpyDst, Src, 177 ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1); 178 } 179 }; 180 181 //===---------------------------------------===// 182 // 'strncat' Optimizations 183 184 struct StrNCatOpt : public StrCatOpt { 185 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 186 // Verify the "strncat" function prototype. 187 FunctionType *FT = Callee->getFunctionType(); 188 if (FT->getNumParams() != 3 || 189 FT->getReturnType() != B.getInt8PtrTy() || 190 FT->getParamType(0) != FT->getReturnType() || 191 FT->getParamType(1) != FT->getReturnType() || 192 !FT->getParamType(2)->isIntegerTy()) 193 return 0; 194 195 // Extract some information from the instruction 196 Value *Dst = CI->getArgOperand(0); 197 Value *Src = CI->getArgOperand(1); 198 uint64_t Len; 199 200 // We don't do anything if length is not constant 201 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 202 Len = LengthArg->getZExtValue(); 203 else 204 return 0; 205 206 // See if we can get the length of the input string. 207 uint64_t SrcLen = GetStringLength(Src); 208 if (SrcLen == 0) return 0; 209 --SrcLen; // Unbias length. 210 211 // Handle the simple, do-nothing cases: 212 // strncat(x, "", c) -> x 213 // strncat(x, c, 0) -> x 214 if (SrcLen == 0 || Len == 0) return Dst; 215 216 // These optimizations require TargetData. 217 if (!TD) return 0; 218 219 // We don't optimize this case 220 if (Len < SrcLen) return 0; 221 222 // strncat(x, s, c) -> strcat(x, s) 223 // s is constant so the strcat can be optimized further 224 EmitStrLenMemCpy(Src, Dst, SrcLen, B); 225 return Dst; 226 } 227 }; 228 229 //===---------------------------------------===// 230 // 'strchr' Optimizations 231 232 struct StrChrOpt : public LibCallOptimization { 233 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 234 // Verify the "strchr" function prototype. 235 FunctionType *FT = Callee->getFunctionType(); 236 if (FT->getNumParams() != 2 || 237 FT->getReturnType() != B.getInt8PtrTy() || 238 FT->getParamType(0) != FT->getReturnType() || 239 !FT->getParamType(1)->isIntegerTy(32)) 240 return 0; 241 242 Value *SrcStr = CI->getArgOperand(0); 243 244 // If the second operand is non-constant, see if we can compute the length 245 // of the input string and turn this into memchr. 246 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 247 if (CharC == 0) { 248 // These optimizations require TargetData. 249 if (!TD) return 0; 250 251 uint64_t Len = GetStringLength(SrcStr); 252 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. 253 return 0; 254 255 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 256 ConstantInt::get(TD->getIntPtrType(*Context), Len), 257 B, TD); 258 } 259 260 // Otherwise, the character is a constant, see if the first argument is 261 // a string literal. If so, we can constant fold. 262 std::string Str; 263 if (!GetConstantStringInfo(SrcStr, Str)) 264 return 0; 265 266 // strchr can find the nul character. 267 Str += '\0'; 268 269 // Compute the offset. 270 size_t I = Str.find(CharC->getSExtValue()); 271 if (I == std::string::npos) // Didn't find the char. strchr returns null. 272 return Constant::getNullValue(CI->getType()); 273 274 // strchr(s+n,c) -> gep(s+n+i,c) 275 return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); 276 } 277 }; 278 279 //===---------------------------------------===// 280 // 'strrchr' Optimizations 281 282 struct StrRChrOpt : public LibCallOptimization { 283 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 284 // Verify the "strrchr" function prototype. 285 FunctionType *FT = Callee->getFunctionType(); 286 if (FT->getNumParams() != 2 || 287 FT->getReturnType() != B.getInt8PtrTy() || 288 FT->getParamType(0) != FT->getReturnType() || 289 !FT->getParamType(1)->isIntegerTy(32)) 290 return 0; 291 292 Value *SrcStr = CI->getArgOperand(0); 293 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 294 295 // Cannot fold anything if we're not looking for a constant. 296 if (!CharC) 297 return 0; 298 299 std::string Str; 300 if (!GetConstantStringInfo(SrcStr, Str)) { 301 // strrchr(s, 0) -> strchr(s, 0) 302 if (TD && CharC->isZero()) 303 return EmitStrChr(SrcStr, '\0', B, TD); 304 return 0; 305 } 306 307 // strrchr can find the nul character. 308 Str += '\0'; 309 310 // Compute the offset. 311 size_t I = Str.rfind(CharC->getSExtValue()); 312 if (I == std::string::npos) // Didn't find the char. Return null. 313 return Constant::getNullValue(CI->getType()); 314 315 // strrchr(s+n,c) -> gep(s+n+i,c) 316 return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); 317 } 318 }; 319 320 //===---------------------------------------===// 321 // 'strcmp' Optimizations 322 323 struct StrCmpOpt : public LibCallOptimization { 324 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 325 // Verify the "strcmp" function prototype. 326 FunctionType *FT = Callee->getFunctionType(); 327 if (FT->getNumParams() != 2 || 328 !FT->getReturnType()->isIntegerTy(32) || 329 FT->getParamType(0) != FT->getParamType(1) || 330 FT->getParamType(0) != B.getInt8PtrTy()) 331 return 0; 332 333 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 334 if (Str1P == Str2P) // strcmp(x,x) -> 0 335 return ConstantInt::get(CI->getType(), 0); 336 337 std::string Str1, Str2; 338 bool HasStr1 = GetConstantStringInfo(Str1P, Str1); 339 bool HasStr2 = GetConstantStringInfo(Str2P, Str2); 340 341 // strcmp(x, y) -> cnst (if both x and y are constant strings) 342 if (HasStr1 && HasStr2) 343 return ConstantInt::get(CI->getType(), 344 StringRef(Str1).compare(Str2)); 345 346 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 347 return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), 348 CI->getType())); 349 350 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 351 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 352 353 // strcmp(P, "x") -> memcmp(P, "x", 2) 354 uint64_t Len1 = GetStringLength(Str1P); 355 uint64_t Len2 = GetStringLength(Str2P); 356 if (Len1 && Len2) { 357 // These optimizations require TargetData. 358 if (!TD) return 0; 359 360 return EmitMemCmp(Str1P, Str2P, 361 ConstantInt::get(TD->getIntPtrType(*Context), 362 std::min(Len1, Len2)), B, TD); 363 } 364 365 return 0; 366 } 367 }; 368 369 //===---------------------------------------===// 370 // 'strncmp' Optimizations 371 372 struct StrNCmpOpt : public LibCallOptimization { 373 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 374 // Verify the "strncmp" function prototype. 375 FunctionType *FT = Callee->getFunctionType(); 376 if (FT->getNumParams() != 3 || 377 !FT->getReturnType()->isIntegerTy(32) || 378 FT->getParamType(0) != FT->getParamType(1) || 379 FT->getParamType(0) != B.getInt8PtrTy() || 380 !FT->getParamType(2)->isIntegerTy()) 381 return 0; 382 383 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 384 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 385 return ConstantInt::get(CI->getType(), 0); 386 387 // Get the length argument if it is constant. 388 uint64_t Length; 389 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 390 Length = LengthArg->getZExtValue(); 391 else 392 return 0; 393 394 if (Length == 0) // strncmp(x,y,0) -> 0 395 return ConstantInt::get(CI->getType(), 0); 396 397 if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 398 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD); 399 400 std::string Str1, Str2; 401 bool HasStr1 = GetConstantStringInfo(Str1P, Str1); 402 bool HasStr2 = GetConstantStringInfo(Str2P, Str2); 403 404 // strncmp(x, y) -> cnst (if both x and y are constant strings) 405 if (HasStr1 && HasStr2) { 406 StringRef SubStr1 = StringRef(Str1).substr(0, Length); 407 StringRef SubStr2 = StringRef(Str2).substr(0, Length); 408 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 409 } 410 411 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 412 return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), 413 CI->getType())); 414 415 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 416 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 417 418 return 0; 419 } 420 }; 421 422 423 //===---------------------------------------===// 424 // 'strcpy' Optimizations 425 426 struct StrCpyOpt : public LibCallOptimization { 427 bool OptChkCall; // True if it's optimizing a __strcpy_chk libcall. 428 429 StrCpyOpt(bool c) : OptChkCall(c) {} 430 431 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 432 // Verify the "strcpy" function prototype. 433 unsigned NumParams = OptChkCall ? 3 : 2; 434 FunctionType *FT = Callee->getFunctionType(); 435 if (FT->getNumParams() != NumParams || 436 FT->getReturnType() != FT->getParamType(0) || 437 FT->getParamType(0) != FT->getParamType(1) || 438 FT->getParamType(0) != B.getInt8PtrTy()) 439 return 0; 440 441 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 442 if (Dst == Src) // strcpy(x,x) -> x 443 return Src; 444 445 // These optimizations require TargetData. 446 if (!TD) return 0; 447 448 // See if we can get the length of the input string. 449 uint64_t Len = GetStringLength(Src); 450 if (Len == 0) return 0; 451 452 // We have enough information to now generate the memcpy call to do the 453 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 454 if (OptChkCall) 455 EmitMemCpyChk(Dst, Src, 456 ConstantInt::get(TD->getIntPtrType(*Context), Len), 457 CI->getArgOperand(2), B, TD); 458 else 459 B.CreateMemCpy(Dst, Src, 460 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); 461 return Dst; 462 } 463 }; 464 465 //===---------------------------------------===// 466 // 'strncpy' Optimizations 467 468 struct StrNCpyOpt : public LibCallOptimization { 469 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 470 FunctionType *FT = Callee->getFunctionType(); 471 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 472 FT->getParamType(0) != FT->getParamType(1) || 473 FT->getParamType(0) != B.getInt8PtrTy() || 474 !FT->getParamType(2)->isIntegerTy()) 475 return 0; 476 477 Value *Dst = CI->getArgOperand(0); 478 Value *Src = CI->getArgOperand(1); 479 Value *LenOp = CI->getArgOperand(2); 480 481 // See if we can get the length of the input string. 482 uint64_t SrcLen = GetStringLength(Src); 483 if (SrcLen == 0) return 0; 484 --SrcLen; 485 486 if (SrcLen == 0) { 487 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 488 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 489 return Dst; 490 } 491 492 uint64_t Len; 493 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 494 Len = LengthArg->getZExtValue(); 495 else 496 return 0; 497 498 if (Len == 0) return Dst; // strncpy(x, y, 0) -> x 499 500 // These optimizations require TargetData. 501 if (!TD) return 0; 502 503 // Let strncpy handle the zero padding 504 if (Len > SrcLen+1) return 0; 505 506 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 507 B.CreateMemCpy(Dst, Src, 508 ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); 509 510 return Dst; 511 } 512 }; 513 514 //===---------------------------------------===// 515 // 'strlen' Optimizations 516 517 struct StrLenOpt : public LibCallOptimization { 518 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 519 FunctionType *FT = Callee->getFunctionType(); 520 if (FT->getNumParams() != 1 || 521 FT->getParamType(0) != B.getInt8PtrTy() || 522 !FT->getReturnType()->isIntegerTy()) 523 return 0; 524 525 Value *Src = CI->getArgOperand(0); 526 527 // Constant folding: strlen("xyz") -> 3 528 if (uint64_t Len = GetStringLength(Src)) 529 return ConstantInt::get(CI->getType(), Len-1); 530 531 // strlen(x) != 0 --> *x != 0 532 // strlen(x) == 0 --> *x == 0 533 if (IsOnlyUsedInZeroEqualityComparison(CI)) 534 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 535 return 0; 536 } 537 }; 538 539 540 //===---------------------------------------===// 541 // 'strpbrk' Optimizations 542 543 struct StrPBrkOpt : public LibCallOptimization { 544 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 545 FunctionType *FT = Callee->getFunctionType(); 546 if (FT->getNumParams() != 2 || 547 FT->getParamType(0) != B.getInt8PtrTy() || 548 FT->getParamType(1) != FT->getParamType(0) || 549 FT->getReturnType() != FT->getParamType(0)) 550 return 0; 551 552 std::string S1, S2; 553 bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); 554 bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); 555 556 // strpbrk(s, "") -> NULL 557 // strpbrk("", s) -> NULL 558 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 559 return Constant::getNullValue(CI->getType()); 560 561 // Constant folding. 562 if (HasS1 && HasS2) { 563 size_t I = S1.find_first_of(S2); 564 if (I == std::string::npos) // No match. 565 return Constant::getNullValue(CI->getType()); 566 567 return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 568 } 569 570 // strpbrk(s, "a") -> strchr(s, 'a') 571 if (TD && HasS2 && S2.size() == 1) 572 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD); 573 574 return 0; 575 } 576 }; 577 578 //===---------------------------------------===// 579 // 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc. 580 581 struct StrToOpt : public LibCallOptimization { 582 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 583 FunctionType *FT = Callee->getFunctionType(); 584 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 585 !FT->getParamType(0)->isPointerTy() || 586 !FT->getParamType(1)->isPointerTy()) 587 return 0; 588 589 Value *EndPtr = CI->getArgOperand(1); 590 if (isa<ConstantPointerNull>(EndPtr)) { 591 // With a null EndPtr, this function won't capture the main argument. 592 // It would be readonly too, except that it still may write to errno. 593 CI->addAttribute(1, Attribute::NoCapture); 594 } 595 596 return 0; 597 } 598 }; 599 600 //===---------------------------------------===// 601 // 'strspn' Optimizations 602 603 struct StrSpnOpt : public LibCallOptimization { 604 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 605 FunctionType *FT = Callee->getFunctionType(); 606 if (FT->getNumParams() != 2 || 607 FT->getParamType(0) != B.getInt8PtrTy() || 608 FT->getParamType(1) != FT->getParamType(0) || 609 !FT->getReturnType()->isIntegerTy()) 610 return 0; 611 612 std::string S1, S2; 613 bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); 614 bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); 615 616 // strspn(s, "") -> 0 617 // strspn("", s) -> 0 618 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 619 return Constant::getNullValue(CI->getType()); 620 621 // Constant folding. 622 if (HasS1 && HasS2) 623 return ConstantInt::get(CI->getType(), strspn(S1.c_str(), S2.c_str())); 624 625 return 0; 626 } 627 }; 628 629 //===---------------------------------------===// 630 // 'strcspn' Optimizations 631 632 struct StrCSpnOpt : public LibCallOptimization { 633 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 634 FunctionType *FT = Callee->getFunctionType(); 635 if (FT->getNumParams() != 2 || 636 FT->getParamType(0) != B.getInt8PtrTy() || 637 FT->getParamType(1) != FT->getParamType(0) || 638 !FT->getReturnType()->isIntegerTy()) 639 return 0; 640 641 std::string S1, S2; 642 bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); 643 bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); 644 645 // strcspn("", s) -> 0 646 if (HasS1 && S1.empty()) 647 return Constant::getNullValue(CI->getType()); 648 649 // Constant folding. 650 if (HasS1 && HasS2) 651 return ConstantInt::get(CI->getType(), strcspn(S1.c_str(), S2.c_str())); 652 653 // strcspn(s, "") -> strlen(s) 654 if (TD && HasS2 && S2.empty()) 655 return EmitStrLen(CI->getArgOperand(0), B, TD); 656 657 return 0; 658 } 659 }; 660 661 //===---------------------------------------===// 662 // 'strstr' Optimizations 663 664 struct StrStrOpt : public LibCallOptimization { 665 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 666 FunctionType *FT = Callee->getFunctionType(); 667 if (FT->getNumParams() != 2 || 668 !FT->getParamType(0)->isPointerTy() || 669 !FT->getParamType(1)->isPointerTy() || 670 !FT->getReturnType()->isPointerTy()) 671 return 0; 672 673 // fold strstr(x, x) -> x. 674 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 675 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 676 677 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 678 if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 679 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD); 680 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 681 StrLen, B, TD); 682 for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end(); 683 UI != UE; ) { 684 ICmpInst *Old = cast<ICmpInst>(*UI++); 685 Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, 686 ConstantInt::getNullValue(StrNCmp->getType()), 687 "cmp"); 688 Old->replaceAllUsesWith(Cmp); 689 Old->eraseFromParent(); 690 } 691 return CI; 692 } 693 694 // See if either input string is a constant string. 695 std::string SearchStr, ToFindStr; 696 bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr); 697 bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr); 698 699 // fold strstr(x, "") -> x. 700 if (HasStr2 && ToFindStr.empty()) 701 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 702 703 // If both strings are known, constant fold it. 704 if (HasStr1 && HasStr2) { 705 std::string::size_type Offset = SearchStr.find(ToFindStr); 706 707 if (Offset == std::string::npos) // strstr("foo", "bar") -> null 708 return Constant::getNullValue(CI->getType()); 709 710 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 711 Value *Result = CastToCStr(CI->getArgOperand(0), B); 712 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 713 return B.CreateBitCast(Result, CI->getType()); 714 } 715 716 // fold strstr(x, "y") -> strchr(x, 'y'). 717 if (HasStr2 && ToFindStr.size() == 1) 718 return B.CreateBitCast(EmitStrChr(CI->getArgOperand(0), 719 ToFindStr[0], B, TD), CI->getType()); 720 return 0; 721 } 722 }; 723 724 725 //===---------------------------------------===// 726 // 'memcmp' Optimizations 727 728 struct MemCmpOpt : public LibCallOptimization { 729 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 730 FunctionType *FT = Callee->getFunctionType(); 731 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 732 !FT->getParamType(1)->isPointerTy() || 733 !FT->getReturnType()->isIntegerTy(32)) 734 return 0; 735 736 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 737 738 if (LHS == RHS) // memcmp(s,s,x) -> 0 739 return Constant::getNullValue(CI->getType()); 740 741 // Make sure we have a constant length. 742 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 743 if (!LenC) return 0; 744 uint64_t Len = LenC->getZExtValue(); 745 746 if (Len == 0) // memcmp(s1,s2,0) -> 0 747 return Constant::getNullValue(CI->getType()); 748 749 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 750 if (Len == 1) { 751 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 752 CI->getType(), "lhsv"); 753 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 754 CI->getType(), "rhsv"); 755 return B.CreateSub(LHSV, RHSV, "chardiff"); 756 } 757 758 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 759 std::string LHSStr, RHSStr; 760 if (GetConstantStringInfo(LHS, LHSStr) && 761 GetConstantStringInfo(RHS, RHSStr)) { 762 // Make sure we're not reading out-of-bounds memory. 763 if (Len > LHSStr.length() || Len > RHSStr.length()) 764 return 0; 765 uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len); 766 return ConstantInt::get(CI->getType(), Ret); 767 } 768 769 return 0; 770 } 771 }; 772 773 //===---------------------------------------===// 774 // 'memcpy' Optimizations 775 776 struct MemCpyOpt : public LibCallOptimization { 777 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 778 // These optimizations require TargetData. 779 if (!TD) return 0; 780 781 FunctionType *FT = Callee->getFunctionType(); 782 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 783 !FT->getParamType(0)->isPointerTy() || 784 !FT->getParamType(1)->isPointerTy() || 785 FT->getParamType(2) != TD->getIntPtrType(*Context)) 786 return 0; 787 788 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 789 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 790 CI->getArgOperand(2), 1); 791 return CI->getArgOperand(0); 792 } 793 }; 794 795 //===---------------------------------------===// 796 // 'memmove' Optimizations 797 798 struct MemMoveOpt : public LibCallOptimization { 799 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 800 // These optimizations require TargetData. 801 if (!TD) return 0; 802 803 FunctionType *FT = Callee->getFunctionType(); 804 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 805 !FT->getParamType(0)->isPointerTy() || 806 !FT->getParamType(1)->isPointerTy() || 807 FT->getParamType(2) != TD->getIntPtrType(*Context)) 808 return 0; 809 810 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 811 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 812 CI->getArgOperand(2), 1); 813 return CI->getArgOperand(0); 814 } 815 }; 816 817 //===---------------------------------------===// 818 // 'memset' Optimizations 819 820 struct MemSetOpt : public LibCallOptimization { 821 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 822 // These optimizations require TargetData. 823 if (!TD) return 0; 824 825 FunctionType *FT = Callee->getFunctionType(); 826 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 827 !FT->getParamType(0)->isPointerTy() || 828 !FT->getParamType(1)->isIntegerTy() || 829 FT->getParamType(2) != TD->getIntPtrType(*Context)) 830 return 0; 831 832 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 833 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 834 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 835 return CI->getArgOperand(0); 836 } 837 }; 838 839 //===----------------------------------------------------------------------===// 840 // Math Library Optimizations 841 //===----------------------------------------------------------------------===// 842 843 //===---------------------------------------===// 844 // 'pow*' Optimizations 845 846 struct PowOpt : public LibCallOptimization { 847 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 848 FunctionType *FT = Callee->getFunctionType(); 849 // Just make sure this has 2 arguments of the same FP type, which match the 850 // result type. 851 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 852 FT->getParamType(0) != FT->getParamType(1) || 853 !FT->getParamType(0)->isFloatingPointTy()) 854 return 0; 855 856 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 857 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 858 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 859 return Op1C; 860 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x) 861 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); 862 } 863 864 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 865 if (Op2C == 0) return 0; 866 867 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 868 return ConstantFP::get(CI->getType(), 1.0); 869 870 if (Op2C->isExactlyValue(0.5)) { 871 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 872 // This is faster than calling pow, and still handles negative zero 873 // and negative infinite correctly. 874 // TODO: In fast-math mode, this could be just sqrt(x). 875 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 876 Value *Inf = ConstantFP::getInfinity(CI->getType()); 877 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 878 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, 879 Callee->getAttributes()); 880 Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, 881 Callee->getAttributes()); 882 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 883 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 884 return Sel; 885 } 886 887 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 888 return Op1; 889 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 890 return B.CreateFMul(Op1, Op1, "pow2"); 891 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 892 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), 893 Op1, "powrecip"); 894 return 0; 895 } 896 }; 897 898 //===---------------------------------------===// 899 // 'exp2' Optimizations 900 901 struct Exp2Opt : public LibCallOptimization { 902 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 903 FunctionType *FT = Callee->getFunctionType(); 904 // Just make sure this has 1 argument of FP type, which matches the 905 // result type. 906 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 907 !FT->getParamType(0)->isFloatingPointTy()) 908 return 0; 909 910 Value *Op = CI->getArgOperand(0); 911 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 912 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 913 Value *LdExpArg = 0; 914 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 915 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 916 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 917 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 918 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 919 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 920 } 921 922 if (LdExpArg) { 923 const char *Name; 924 if (Op->getType()->isFloatTy()) 925 Name = "ldexpf"; 926 else if (Op->getType()->isDoubleTy()) 927 Name = "ldexp"; 928 else 929 Name = "ldexpl"; 930 931 Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); 932 if (!Op->getType()->isFloatTy()) 933 One = ConstantExpr::getFPExtend(One, Op->getType()); 934 935 Module *M = Caller->getParent(); 936 Value *Callee = M->getOrInsertFunction(Name, Op->getType(), 937 Op->getType(), 938 B.getInt32Ty(), NULL); 939 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); 940 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 941 CI->setCallingConv(F->getCallingConv()); 942 943 return CI; 944 } 945 return 0; 946 } 947 }; 948 949 //===---------------------------------------===// 950 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 951 952 struct UnaryDoubleFPOpt : public LibCallOptimization { 953 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 954 FunctionType *FT = Callee->getFunctionType(); 955 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 956 !FT->getParamType(0)->isDoubleTy()) 957 return 0; 958 959 // If this is something like 'floor((double)floatval)', convert to floorf. 960 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); 961 if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy()) 962 return 0; 963 964 // floor((double)floatval) -> (double)floorf(floatval) 965 Value *V = Cast->getOperand(0); 966 V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B, 967 Callee->getAttributes()); 968 return B.CreateFPExt(V, B.getDoubleTy()); 969 } 970 }; 971 972 //===----------------------------------------------------------------------===// 973 // Integer Optimizations 974 //===----------------------------------------------------------------------===// 975 976 //===---------------------------------------===// 977 // 'ffs*' Optimizations 978 979 struct FFSOpt : public LibCallOptimization { 980 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 981 FunctionType *FT = Callee->getFunctionType(); 982 // Just make sure this has 2 arguments of the same FP type, which match the 983 // result type. 984 if (FT->getNumParams() != 1 || 985 !FT->getReturnType()->isIntegerTy(32) || 986 !FT->getParamType(0)->isIntegerTy()) 987 return 0; 988 989 Value *Op = CI->getArgOperand(0); 990 991 // Constant fold. 992 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 993 if (CI->getValue() == 0) // ffs(0) -> 0. 994 return Constant::getNullValue(CI->getType()); 995 // ffs(c) -> cttz(c)+1 996 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 997 } 998 999 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1000 Type *ArgType = Op->getType(); 1001 Value *F = Intrinsic::getDeclaration(Callee->getParent(), 1002 Intrinsic::cttz, ArgType); 1003 Value *V = B.CreateCall(F, Op, "cttz"); 1004 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1005 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1006 1007 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1008 return B.CreateSelect(Cond, V, B.getInt32(0)); 1009 } 1010 }; 1011 1012 //===---------------------------------------===// 1013 // 'isdigit' Optimizations 1014 1015 struct IsDigitOpt : public LibCallOptimization { 1016 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1017 FunctionType *FT = Callee->getFunctionType(); 1018 // We require integer(i32) 1019 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1020 !FT->getParamType(0)->isIntegerTy(32)) 1021 return 0; 1022 1023 // isdigit(c) -> (c-'0') <u 10 1024 Value *Op = CI->getArgOperand(0); 1025 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1026 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1027 return B.CreateZExt(Op, CI->getType()); 1028 } 1029 }; 1030 1031 //===---------------------------------------===// 1032 // 'isascii' Optimizations 1033 1034 struct IsAsciiOpt : public LibCallOptimization { 1035 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1036 FunctionType *FT = Callee->getFunctionType(); 1037 // We require integer(i32) 1038 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1039 !FT->getParamType(0)->isIntegerTy(32)) 1040 return 0; 1041 1042 // isascii(c) -> c <u 128 1043 Value *Op = CI->getArgOperand(0); 1044 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1045 return B.CreateZExt(Op, CI->getType()); 1046 } 1047 }; 1048 1049 //===---------------------------------------===// 1050 // 'abs', 'labs', 'llabs' Optimizations 1051 1052 struct AbsOpt : public LibCallOptimization { 1053 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1054 FunctionType *FT = Callee->getFunctionType(); 1055 // We require integer(integer) where the types agree. 1056 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1057 FT->getParamType(0) != FT->getReturnType()) 1058 return 0; 1059 1060 // abs(x) -> x >s -1 ? x : -x 1061 Value *Op = CI->getArgOperand(0); 1062 Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), 1063 "ispos"); 1064 Value *Neg = B.CreateNeg(Op, "neg"); 1065 return B.CreateSelect(Pos, Op, Neg); 1066 } 1067 }; 1068 1069 1070 //===---------------------------------------===// 1071 // 'toascii' Optimizations 1072 1073 struct ToAsciiOpt : public LibCallOptimization { 1074 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1075 FunctionType *FT = Callee->getFunctionType(); 1076 // We require i32(i32) 1077 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1078 !FT->getParamType(0)->isIntegerTy(32)) 1079 return 0; 1080 1081 // isascii(c) -> c & 0x7f 1082 return B.CreateAnd(CI->getArgOperand(0), 1083 ConstantInt::get(CI->getType(),0x7F)); 1084 } 1085 }; 1086 1087 //===----------------------------------------------------------------------===// 1088 // Formatting and IO Optimizations 1089 //===----------------------------------------------------------------------===// 1090 1091 //===---------------------------------------===// 1092 // 'printf' Optimizations 1093 1094 struct PrintFOpt : public LibCallOptimization { 1095 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, 1096 IRBuilder<> &B) { 1097 // Check for a fixed format string. 1098 std::string FormatStr; 1099 if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1100 return 0; 1101 1102 // Empty format string -> noop. 1103 if (FormatStr.empty()) // Tolerate printf's declared void. 1104 return CI->use_empty() ? (Value*)CI : 1105 ConstantInt::get(CI->getType(), 0); 1106 1107 // Do not do any of the following transformations if the printf return value 1108 // is used, in general the printf return value is not compatible with either 1109 // putchar() or puts(). 1110 if (!CI->use_empty()) 1111 return 0; 1112 1113 // printf("x") -> putchar('x'), even for '%'. 1114 if (FormatStr.size() == 1) { 1115 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD); 1116 if (CI->use_empty()) return CI; 1117 return B.CreateIntCast(Res, CI->getType(), true); 1118 } 1119 1120 // printf("foo\n") --> puts("foo") 1121 if (FormatStr[FormatStr.size()-1] == '\n' && 1122 FormatStr.find('%') == std::string::npos) { // no format characters. 1123 // Create a string literal with no \n on it. We expect the constant merge 1124 // pass to be run after this pass, to merge duplicate strings. 1125 FormatStr.erase(FormatStr.end()-1); 1126 Constant *C = ConstantArray::get(*Context, FormatStr, true); 1127 C = new GlobalVariable(*Callee->getParent(), C->getType(), true, 1128 GlobalVariable::InternalLinkage, C, "str"); 1129 EmitPutS(C, B, TD); 1130 return CI->use_empty() ? (Value*)CI : 1131 ConstantInt::get(CI->getType(), FormatStr.size()+1); 1132 } 1133 1134 // Optimize specific format strings. 1135 // printf("%c", chr) --> putchar(chr) 1136 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1137 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1138 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD); 1139 1140 if (CI->use_empty()) return CI; 1141 return B.CreateIntCast(Res, CI->getType(), true); 1142 } 1143 1144 // printf("%s\n", str) --> puts(str) 1145 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1146 CI->getArgOperand(1)->getType()->isPointerTy()) { 1147 EmitPutS(CI->getArgOperand(1), B, TD); 1148 return CI; 1149 } 1150 return 0; 1151 } 1152 1153 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1154 // Require one fixed pointer argument and an integer/void result. 1155 FunctionType *FT = Callee->getFunctionType(); 1156 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1157 !(FT->getReturnType()->isIntegerTy() || 1158 FT->getReturnType()->isVoidTy())) 1159 return 0; 1160 1161 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { 1162 return V; 1163 } 1164 1165 // printf(format, ...) -> iprintf(format, ...) if no floating point 1166 // arguments. 1167 if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) { 1168 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1169 Constant *IPrintFFn = 1170 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1171 CallInst *New = cast<CallInst>(CI->clone()); 1172 New->setCalledFunction(IPrintFFn); 1173 B.Insert(New); 1174 return New; 1175 } 1176 return 0; 1177 } 1178 }; 1179 1180 //===---------------------------------------===// 1181 // 'sprintf' Optimizations 1182 1183 struct SPrintFOpt : public LibCallOptimization { 1184 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, 1185 IRBuilder<> &B) { 1186 // Check for a fixed format string. 1187 std::string FormatStr; 1188 if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1189 return 0; 1190 1191 // If we just have a format string (nothing else crazy) transform it. 1192 if (CI->getNumArgOperands() == 2) { 1193 // Make sure there's no % in the constant array. We could try to handle 1194 // %% -> % in the future if we cared. 1195 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1196 if (FormatStr[i] == '%') 1197 return 0; // we found a format specifier, bail out. 1198 1199 // These optimizations require TargetData. 1200 if (!TD) return 0; 1201 1202 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1203 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1204 ConstantInt::get(TD->getIntPtrType(*Context), // Copy the 1205 FormatStr.size() + 1), 1); // nul byte. 1206 return ConstantInt::get(CI->getType(), FormatStr.size()); 1207 } 1208 1209 // The remaining optimizations require the format string to be "%s" or "%c" 1210 // and have an extra operand. 1211 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1212 CI->getNumArgOperands() < 3) 1213 return 0; 1214 1215 // Decode the second character of the format string. 1216 if (FormatStr[1] == 'c') { 1217 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1218 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; 1219 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1220 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1221 B.CreateStore(V, Ptr); 1222 Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); 1223 B.CreateStore(B.getInt8(0), Ptr); 1224 1225 return ConstantInt::get(CI->getType(), 1); 1226 } 1227 1228 if (FormatStr[1] == 's') { 1229 // These optimizations require TargetData. 1230 if (!TD) return 0; 1231 1232 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1233 if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0; 1234 1235 Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD); 1236 Value *IncLen = B.CreateAdd(Len, 1237 ConstantInt::get(Len->getType(), 1), 1238 "leninc"); 1239 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1240 1241 // The sprintf result is the unincremented number of bytes in the string. 1242 return B.CreateIntCast(Len, CI->getType(), false); 1243 } 1244 return 0; 1245 } 1246 1247 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1248 // Require two fixed pointer arguments and an integer result. 1249 FunctionType *FT = Callee->getFunctionType(); 1250 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1251 !FT->getParamType(1)->isPointerTy() || 1252 !FT->getReturnType()->isIntegerTy()) 1253 return 0; 1254 1255 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { 1256 return V; 1257 } 1258 1259 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1260 // point arguments. 1261 if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) { 1262 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1263 Constant *SIPrintFFn = 1264 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1265 CallInst *New = cast<CallInst>(CI->clone()); 1266 New->setCalledFunction(SIPrintFFn); 1267 B.Insert(New); 1268 return New; 1269 } 1270 return 0; 1271 } 1272 }; 1273 1274 //===---------------------------------------===// 1275 // 'fwrite' Optimizations 1276 1277 struct FWriteOpt : public LibCallOptimization { 1278 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1279 // Require a pointer, an integer, an integer, a pointer, returning integer. 1280 FunctionType *FT = Callee->getFunctionType(); 1281 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1282 !FT->getParamType(1)->isIntegerTy() || 1283 !FT->getParamType(2)->isIntegerTy() || 1284 !FT->getParamType(3)->isPointerTy() || 1285 !FT->getReturnType()->isIntegerTy()) 1286 return 0; 1287 1288 // Get the element size and count. 1289 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1290 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1291 if (!SizeC || !CountC) return 0; 1292 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); 1293 1294 // If this is writing zero records, remove the call (it's a noop). 1295 if (Bytes == 0) 1296 return ConstantInt::get(CI->getType(), 0); 1297 1298 // If this is writing one byte, turn it into fputc. 1299 if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1300 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1301 EmitFPutC(Char, CI->getArgOperand(3), B, TD); 1302 return ConstantInt::get(CI->getType(), 1); 1303 } 1304 1305 return 0; 1306 } 1307 }; 1308 1309 //===---------------------------------------===// 1310 // 'fputs' Optimizations 1311 1312 struct FPutsOpt : public LibCallOptimization { 1313 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1314 // These optimizations require TargetData. 1315 if (!TD) return 0; 1316 1317 // Require two pointers. Also, we can't optimize if return value is used. 1318 FunctionType *FT = Callee->getFunctionType(); 1319 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1320 !FT->getParamType(1)->isPointerTy() || 1321 !CI->use_empty()) 1322 return 0; 1323 1324 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1325 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1326 if (!Len) return 0; 1327 EmitFWrite(CI->getArgOperand(0), 1328 ConstantInt::get(TD->getIntPtrType(*Context), Len-1), 1329 CI->getArgOperand(1), B, TD); 1330 return CI; // Known to have no uses (see above). 1331 } 1332 }; 1333 1334 //===---------------------------------------===// 1335 // 'fprintf' Optimizations 1336 1337 struct FPrintFOpt : public LibCallOptimization { 1338 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, 1339 IRBuilder<> &B) { 1340 // All the optimizations depend on the format string. 1341 std::string FormatStr; 1342 if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1343 return 0; 1344 1345 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1346 if (CI->getNumArgOperands() == 2) { 1347 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1348 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1349 return 0; // We found a format specifier. 1350 1351 // These optimizations require TargetData. 1352 if (!TD) return 0; 1353 1354 EmitFWrite(CI->getArgOperand(1), 1355 ConstantInt::get(TD->getIntPtrType(*Context), 1356 FormatStr.size()), 1357 CI->getArgOperand(0), B, TD); 1358 return ConstantInt::get(CI->getType(), FormatStr.size()); 1359 } 1360 1361 // The remaining optimizations require the format string to be "%s" or "%c" 1362 // and have an extra operand. 1363 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1364 CI->getNumArgOperands() < 3) 1365 return 0; 1366 1367 // Decode the second character of the format string. 1368 if (FormatStr[1] == 'c') { 1369 // fprintf(F, "%c", chr) --> fputc(chr, F) 1370 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; 1371 EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD); 1372 return ConstantInt::get(CI->getType(), 1); 1373 } 1374 1375 if (FormatStr[1] == 's') { 1376 // fprintf(F, "%s", str) --> fputs(str, F) 1377 if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty()) 1378 return 0; 1379 EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD); 1380 return CI; 1381 } 1382 return 0; 1383 } 1384 1385 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1386 // Require two fixed paramters as pointers and integer result. 1387 FunctionType *FT = Callee->getFunctionType(); 1388 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1389 !FT->getParamType(1)->isPointerTy() || 1390 !FT->getReturnType()->isIntegerTy()) 1391 return 0; 1392 1393 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { 1394 return V; 1395 } 1396 1397 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1398 // floating point arguments. 1399 if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) { 1400 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1401 Constant *FIPrintFFn = 1402 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1403 CallInst *New = cast<CallInst>(CI->clone()); 1404 New->setCalledFunction(FIPrintFFn); 1405 B.Insert(New); 1406 return New; 1407 } 1408 return 0; 1409 } 1410 }; 1411 1412 //===---------------------------------------===// 1413 // 'puts' Optimizations 1414 1415 struct PutsOpt : public LibCallOptimization { 1416 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { 1417 // Require one fixed pointer argument and an integer/void result. 1418 FunctionType *FT = Callee->getFunctionType(); 1419 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1420 !(FT->getReturnType()->isIntegerTy() || 1421 FT->getReturnType()->isVoidTy())) 1422 return 0; 1423 1424 // Check for a constant string. 1425 std::string Str; 1426 if (!GetConstantStringInfo(CI->getArgOperand(0), Str)) 1427 return 0; 1428 1429 if (Str.empty() && CI->use_empty()) { 1430 // puts("") -> putchar('\n') 1431 Value *Res = EmitPutChar(B.getInt32('\n'), B, TD); 1432 if (CI->use_empty()) return CI; 1433 return B.CreateIntCast(Res, CI->getType(), true); 1434 } 1435 1436 return 0; 1437 } 1438 }; 1439 1440 } // end anonymous namespace. 1441 1442 //===----------------------------------------------------------------------===// 1443 // SimplifyLibCalls Pass Implementation 1444 //===----------------------------------------------------------------------===// 1445 1446 namespace { 1447 /// This pass optimizes well known library functions from libc and libm. 1448 /// 1449 class SimplifyLibCalls : public FunctionPass { 1450 TargetLibraryInfo *TLI; 1451 1452 StringMap<LibCallOptimization*> Optimizations; 1453 // String and Memory LibCall Optimizations 1454 StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr; 1455 StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrCpyOpt StrCpyChk; 1456 StrNCpyOpt StrNCpy; StrLenOpt StrLen; StrPBrkOpt StrPBrk; 1457 StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr; 1458 MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet; 1459 // Math Library Optimizations 1460 PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP; 1461 // Integer Optimizations 1462 FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; 1463 ToAsciiOpt ToAscii; 1464 // Formatting and IO Optimizations 1465 SPrintFOpt SPrintF; PrintFOpt PrintF; 1466 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF; 1467 PutsOpt Puts; 1468 1469 bool Modified; // This is only used by doInitialization. 1470 public: 1471 static char ID; // Pass identification 1472 SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) { 1473 initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 1474 } 1475 void InitOptimizations(); 1476 bool runOnFunction(Function &F); 1477 1478 void setDoesNotAccessMemory(Function &F); 1479 void setOnlyReadsMemory(Function &F); 1480 void setDoesNotThrow(Function &F); 1481 void setDoesNotCapture(Function &F, unsigned n); 1482 void setDoesNotAlias(Function &F, unsigned n); 1483 bool doInitialization(Module &M); 1484 1485 void inferPrototypeAttributes(Function &F); 1486 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1487 AU.addRequired<TargetLibraryInfo>(); 1488 } 1489 }; 1490 } // end anonymous namespace. 1491 1492 char SimplifyLibCalls::ID = 0; 1493 1494 INITIALIZE_PASS_BEGIN(SimplifyLibCalls, "simplify-libcalls", 1495 "Simplify well-known library calls", false, false) 1496 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 1497 INITIALIZE_PASS_END(SimplifyLibCalls, "simplify-libcalls", 1498 "Simplify well-known library calls", false, false) 1499 1500 // Public interface to the Simplify LibCalls pass. 1501 FunctionPass *llvm::createSimplifyLibCallsPass() { 1502 return new SimplifyLibCalls(); 1503 } 1504 1505 /// Optimizations - Populate the Optimizations map with all the optimizations 1506 /// we know. 1507 void SimplifyLibCalls::InitOptimizations() { 1508 // String and Memory LibCall Optimizations 1509 Optimizations["strcat"] = &StrCat; 1510 Optimizations["strncat"] = &StrNCat; 1511 Optimizations["strchr"] = &StrChr; 1512 Optimizations["strrchr"] = &StrRChr; 1513 Optimizations["strcmp"] = &StrCmp; 1514 Optimizations["strncmp"] = &StrNCmp; 1515 Optimizations["strcpy"] = &StrCpy; 1516 Optimizations["strncpy"] = &StrNCpy; 1517 Optimizations["strlen"] = &StrLen; 1518 Optimizations["strpbrk"] = &StrPBrk; 1519 Optimizations["strtol"] = &StrTo; 1520 Optimizations["strtod"] = &StrTo; 1521 Optimizations["strtof"] = &StrTo; 1522 Optimizations["strtoul"] = &StrTo; 1523 Optimizations["strtoll"] = &StrTo; 1524 Optimizations["strtold"] = &StrTo; 1525 Optimizations["strtoull"] = &StrTo; 1526 Optimizations["strspn"] = &StrSpn; 1527 Optimizations["strcspn"] = &StrCSpn; 1528 Optimizations["strstr"] = &StrStr; 1529 Optimizations["memcmp"] = &MemCmp; 1530 if (TLI->has(LibFunc::memcpy)) Optimizations["memcpy"] = &MemCpy; 1531 Optimizations["memmove"] = &MemMove; 1532 if (TLI->has(LibFunc::memset)) Optimizations["memset"] = &MemSet; 1533 1534 // _chk variants of String and Memory LibCall Optimizations. 1535 Optimizations["__strcpy_chk"] = &StrCpyChk; 1536 1537 // Math Library Optimizations 1538 Optimizations["powf"] = &Pow; 1539 Optimizations["pow"] = &Pow; 1540 Optimizations["powl"] = &Pow; 1541 Optimizations["llvm.pow.f32"] = &Pow; 1542 Optimizations["llvm.pow.f64"] = &Pow; 1543 Optimizations["llvm.pow.f80"] = &Pow; 1544 Optimizations["llvm.pow.f128"] = &Pow; 1545 Optimizations["llvm.pow.ppcf128"] = &Pow; 1546 Optimizations["exp2l"] = &Exp2; 1547 Optimizations["exp2"] = &Exp2; 1548 Optimizations["exp2f"] = &Exp2; 1549 Optimizations["llvm.exp2.ppcf128"] = &Exp2; 1550 Optimizations["llvm.exp2.f128"] = &Exp2; 1551 Optimizations["llvm.exp2.f80"] = &Exp2; 1552 Optimizations["llvm.exp2.f64"] = &Exp2; 1553 Optimizations["llvm.exp2.f32"] = &Exp2; 1554 1555 #ifdef HAVE_FLOORF 1556 Optimizations["floor"] = &UnaryDoubleFP; 1557 #endif 1558 #ifdef HAVE_CEILF 1559 Optimizations["ceil"] = &UnaryDoubleFP; 1560 #endif 1561 #ifdef HAVE_ROUNDF 1562 Optimizations["round"] = &UnaryDoubleFP; 1563 #endif 1564 #ifdef HAVE_RINTF 1565 Optimizations["rint"] = &UnaryDoubleFP; 1566 #endif 1567 #ifdef HAVE_NEARBYINTF 1568 Optimizations["nearbyint"] = &UnaryDoubleFP; 1569 #endif 1570 1571 // Integer Optimizations 1572 Optimizations["ffs"] = &FFS; 1573 Optimizations["ffsl"] = &FFS; 1574 Optimizations["ffsll"] = &FFS; 1575 Optimizations["abs"] = &Abs; 1576 Optimizations["labs"] = &Abs; 1577 Optimizations["llabs"] = &Abs; 1578 Optimizations["isdigit"] = &IsDigit; 1579 Optimizations["isascii"] = &IsAscii; 1580 Optimizations["toascii"] = &ToAscii; 1581 1582 // Formatting and IO Optimizations 1583 Optimizations["sprintf"] = &SPrintF; 1584 Optimizations["printf"] = &PrintF; 1585 Optimizations["fwrite"] = &FWrite; 1586 Optimizations["fputs"] = &FPuts; 1587 Optimizations["fprintf"] = &FPrintF; 1588 Optimizations["puts"] = &Puts; 1589 } 1590 1591 1592 /// runOnFunction - Top level algorithm. 1593 /// 1594 bool SimplifyLibCalls::runOnFunction(Function &F) { 1595 TLI = &getAnalysis<TargetLibraryInfo>(); 1596 1597 if (Optimizations.empty()) 1598 InitOptimizations(); 1599 1600 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1601 1602 IRBuilder<> Builder(F.getContext()); 1603 1604 bool Changed = false; 1605 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1606 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 1607 // Ignore non-calls. 1608 CallInst *CI = dyn_cast<CallInst>(I++); 1609 if (!CI) continue; 1610 1611 // Ignore indirect calls and calls to non-external functions. 1612 Function *Callee = CI->getCalledFunction(); 1613 if (Callee == 0 || !Callee->isDeclaration() || 1614 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage())) 1615 continue; 1616 1617 // Ignore unknown calls. 1618 LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); 1619 if (!LCO) continue; 1620 1621 // Set the builder to the instruction after the call. 1622 Builder.SetInsertPoint(BB, I); 1623 1624 // Use debug location of CI for all new instructions. 1625 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1626 1627 // Try to optimize this call. 1628 Value *Result = LCO->OptimizeCall(CI, TD, TLI, Builder); 1629 if (Result == 0) continue; 1630 1631 DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI; 1632 dbgs() << " into: " << *Result << "\n"); 1633 1634 // Something changed! 1635 Changed = true; 1636 ++NumSimplified; 1637 1638 // Inspect the instruction after the call (which was potentially just 1639 // added) next. 1640 I = CI; ++I; 1641 1642 if (CI != Result && !CI->use_empty()) { 1643 CI->replaceAllUsesWith(Result); 1644 if (!Result->hasName()) 1645 Result->takeName(CI); 1646 } 1647 CI->eraseFromParent(); 1648 } 1649 } 1650 return Changed; 1651 } 1652 1653 // Utility methods for doInitialization. 1654 1655 void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) { 1656 if (!F.doesNotAccessMemory()) { 1657 F.setDoesNotAccessMemory(); 1658 ++NumAnnotated; 1659 Modified = true; 1660 } 1661 } 1662 void SimplifyLibCalls::setOnlyReadsMemory(Function &F) { 1663 if (!F.onlyReadsMemory()) { 1664 F.setOnlyReadsMemory(); 1665 ++NumAnnotated; 1666 Modified = true; 1667 } 1668 } 1669 void SimplifyLibCalls::setDoesNotThrow(Function &F) { 1670 if (!F.doesNotThrow()) { 1671 F.setDoesNotThrow(); 1672 ++NumAnnotated; 1673 Modified = true; 1674 } 1675 } 1676 void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) { 1677 if (!F.doesNotCapture(n)) { 1678 F.setDoesNotCapture(n); 1679 ++NumAnnotated; 1680 Modified = true; 1681 } 1682 } 1683 void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) { 1684 if (!F.doesNotAlias(n)) { 1685 F.setDoesNotAlias(n); 1686 ++NumAnnotated; 1687 Modified = true; 1688 } 1689 } 1690 1691 1692 void SimplifyLibCalls::inferPrototypeAttributes(Function &F) { 1693 FunctionType *FTy = F.getFunctionType(); 1694 1695 StringRef Name = F.getName(); 1696 switch (Name[0]) { 1697 case 's': 1698 if (Name == "strlen") { 1699 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 1700 return; 1701 setOnlyReadsMemory(F); 1702 setDoesNotThrow(F); 1703 setDoesNotCapture(F, 1); 1704 } else if (Name == "strchr" || 1705 Name == "strrchr") { 1706 if (FTy->getNumParams() != 2 || 1707 !FTy->getParamType(0)->isPointerTy() || 1708 !FTy->getParamType(1)->isIntegerTy()) 1709 return; 1710 setOnlyReadsMemory(F); 1711 setDoesNotThrow(F); 1712 } else if (Name == "strcpy" || 1713 Name == "stpcpy" || 1714 Name == "strcat" || 1715 Name == "strtol" || 1716 Name == "strtod" || 1717 Name == "strtof" || 1718 Name == "strtoul" || 1719 Name == "strtoll" || 1720 Name == "strtold" || 1721 Name == "strncat" || 1722 Name == "strncpy" || 1723 Name == "strtoull") { 1724 if (FTy->getNumParams() < 2 || 1725 !FTy->getParamType(1)->isPointerTy()) 1726 return; 1727 setDoesNotThrow(F); 1728 setDoesNotCapture(F, 2); 1729 } else if (Name == "strxfrm") { 1730 if (FTy->getNumParams() != 3 || 1731 !FTy->getParamType(0)->isPointerTy() || 1732 !FTy->getParamType(1)->isPointerTy()) 1733 return; 1734 setDoesNotThrow(F); 1735 setDoesNotCapture(F, 1); 1736 setDoesNotCapture(F, 2); 1737 } else if (Name == "strcmp" || 1738 Name == "strspn" || 1739 Name == "strncmp" || 1740 Name == "strcspn" || 1741 Name == "strcoll" || 1742 Name == "strcasecmp" || 1743 Name == "strncasecmp") { 1744 if (FTy->getNumParams() < 2 || 1745 !FTy->getParamType(0)->isPointerTy() || 1746 !FTy->getParamType(1)->isPointerTy()) 1747 return; 1748 setOnlyReadsMemory(F); 1749 setDoesNotThrow(F); 1750 setDoesNotCapture(F, 1); 1751 setDoesNotCapture(F, 2); 1752 } else if (Name == "strstr" || 1753 Name == "strpbrk") { 1754 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 1755 return; 1756 setOnlyReadsMemory(F); 1757 setDoesNotThrow(F); 1758 setDoesNotCapture(F, 2); 1759 } else if (Name == "strtok" || 1760 Name == "strtok_r") { 1761 if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) 1762 return; 1763 setDoesNotThrow(F); 1764 setDoesNotCapture(F, 2); 1765 } else if (Name == "scanf" || 1766 Name == "setbuf" || 1767 Name == "setvbuf") { 1768 if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) 1769 return; 1770 setDoesNotThrow(F); 1771 setDoesNotCapture(F, 1); 1772 } else if (Name == "strdup" || 1773 Name == "strndup") { 1774 if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() || 1775 !FTy->getParamType(0)->isPointerTy()) 1776 return; 1777 setDoesNotThrow(F); 1778 setDoesNotAlias(F, 0); 1779 setDoesNotCapture(F, 1); 1780 } else if (Name == "stat" || 1781 Name == "sscanf" || 1782 Name == "sprintf" || 1783 Name == "statvfs") { 1784 if (FTy->getNumParams() < 2 || 1785 !FTy->getParamType(0)->isPointerTy() || 1786 !FTy->getParamType(1)->isPointerTy()) 1787 return; 1788 setDoesNotThrow(F); 1789 setDoesNotCapture(F, 1); 1790 setDoesNotCapture(F, 2); 1791 } else if (Name == "snprintf") { 1792 if (FTy->getNumParams() != 3 || 1793 !FTy->getParamType(0)->isPointerTy() || 1794 !FTy->getParamType(2)->isPointerTy()) 1795 return; 1796 setDoesNotThrow(F); 1797 setDoesNotCapture(F, 1); 1798 setDoesNotCapture(F, 3); 1799 } else if (Name == "setitimer") { 1800 if (FTy->getNumParams() != 3 || 1801 !FTy->getParamType(1)->isPointerTy() || 1802 !FTy->getParamType(2)->isPointerTy()) 1803 return; 1804 setDoesNotThrow(F); 1805 setDoesNotCapture(F, 2); 1806 setDoesNotCapture(F, 3); 1807 } else if (Name == "system") { 1808 if (FTy->getNumParams() != 1 || 1809 !FTy->getParamType(0)->isPointerTy()) 1810 return; 1811 // May throw; "system" is a valid pthread cancellation point. 1812 setDoesNotCapture(F, 1); 1813 } 1814 break; 1815 case 'm': 1816 if (Name == "malloc") { 1817 if (FTy->getNumParams() != 1 || 1818 !FTy->getReturnType()->isPointerTy()) 1819 return; 1820 setDoesNotThrow(F); 1821 setDoesNotAlias(F, 0); 1822 } else if (Name == "memcmp") { 1823 if (FTy->getNumParams() != 3 || 1824 !FTy->getParamType(0)->isPointerTy() || 1825 !FTy->getParamType(1)->isPointerTy()) 1826 return; 1827 setOnlyReadsMemory(F); 1828 setDoesNotThrow(F); 1829 setDoesNotCapture(F, 1); 1830 setDoesNotCapture(F, 2); 1831 } else if (Name == "memchr" || 1832 Name == "memrchr") { 1833 if (FTy->getNumParams() != 3) 1834 return; 1835 setOnlyReadsMemory(F); 1836 setDoesNotThrow(F); 1837 } else if (Name == "modf" || 1838 Name == "modff" || 1839 Name == "modfl" || 1840 Name == "memcpy" || 1841 Name == "memccpy" || 1842 Name == "memmove") { 1843 if (FTy->getNumParams() < 2 || 1844 !FTy->getParamType(1)->isPointerTy()) 1845 return; 1846 setDoesNotThrow(F); 1847 setDoesNotCapture(F, 2); 1848 } else if (Name == "memalign") { 1849 if (!FTy->getReturnType()->isPointerTy()) 1850 return; 1851 setDoesNotAlias(F, 0); 1852 } else if (Name == "mkdir" || 1853 Name == "mktime") { 1854 if (FTy->getNumParams() == 0 || 1855 !FTy->getParamType(0)->isPointerTy()) 1856 return; 1857 setDoesNotThrow(F); 1858 setDoesNotCapture(F, 1); 1859 } 1860 break; 1861 case 'r': 1862 if (Name == "realloc") { 1863 if (FTy->getNumParams() != 2 || 1864 !FTy->getParamType(0)->isPointerTy() || 1865 !FTy->getReturnType()->isPointerTy()) 1866 return; 1867 setDoesNotThrow(F); 1868 setDoesNotAlias(F, 0); 1869 setDoesNotCapture(F, 1); 1870 } else if (Name == "read") { 1871 if (FTy->getNumParams() != 3 || 1872 !FTy->getParamType(1)->isPointerTy()) 1873 return; 1874 // May throw; "read" is a valid pthread cancellation point. 1875 setDoesNotCapture(F, 2); 1876 } else if (Name == "rmdir" || 1877 Name == "rewind" || 1878 Name == "remove" || 1879 Name == "realpath") { 1880 if (FTy->getNumParams() < 1 || 1881 !FTy->getParamType(0)->isPointerTy()) 1882 return; 1883 setDoesNotThrow(F); 1884 setDoesNotCapture(F, 1); 1885 } else if (Name == "rename" || 1886 Name == "readlink") { 1887 if (FTy->getNumParams() < 2 || 1888 !FTy->getParamType(0)->isPointerTy() || 1889 !FTy->getParamType(1)->isPointerTy()) 1890 return; 1891 setDoesNotThrow(F); 1892 setDoesNotCapture(F, 1); 1893 setDoesNotCapture(F, 2); 1894 } 1895 break; 1896 case 'w': 1897 if (Name == "write") { 1898 if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) 1899 return; 1900 // May throw; "write" is a valid pthread cancellation point. 1901 setDoesNotCapture(F, 2); 1902 } 1903 break; 1904 case 'b': 1905 if (Name == "bcopy") { 1906 if (FTy->getNumParams() != 3 || 1907 !FTy->getParamType(0)->isPointerTy() || 1908 !FTy->getParamType(1)->isPointerTy()) 1909 return; 1910 setDoesNotThrow(F); 1911 setDoesNotCapture(F, 1); 1912 setDoesNotCapture(F, 2); 1913 } else if (Name == "bcmp") { 1914 if (FTy->getNumParams() != 3 || 1915 !FTy->getParamType(0)->isPointerTy() || 1916 !FTy->getParamType(1)->isPointerTy()) 1917 return; 1918 setDoesNotThrow(F); 1919 setOnlyReadsMemory(F); 1920 setDoesNotCapture(F, 1); 1921 setDoesNotCapture(F, 2); 1922 } else if (Name == "bzero") { 1923 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) 1924 return; 1925 setDoesNotThrow(F); 1926 setDoesNotCapture(F, 1); 1927 } 1928 break; 1929 case 'c': 1930 if (Name == "calloc") { 1931 if (FTy->getNumParams() != 2 || 1932 !FTy->getReturnType()->isPointerTy()) 1933 return; 1934 setDoesNotThrow(F); 1935 setDoesNotAlias(F, 0); 1936 } else if (Name == "chmod" || 1937 Name == "chown" || 1938 Name == "ctermid" || 1939 Name == "clearerr" || 1940 Name == "closedir") { 1941 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 1942 return; 1943 setDoesNotThrow(F); 1944 setDoesNotCapture(F, 1); 1945 } 1946 break; 1947 case 'a': 1948 if (Name == "atoi" || 1949 Name == "atol" || 1950 Name == "atof" || 1951 Name == "atoll") { 1952 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 1953 return; 1954 setDoesNotThrow(F); 1955 setOnlyReadsMemory(F); 1956 setDoesNotCapture(F, 1); 1957 } else if (Name == "access") { 1958 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) 1959 return; 1960 setDoesNotThrow(F); 1961 setDoesNotCapture(F, 1); 1962 } 1963 break; 1964 case 'f': 1965 if (Name == "fopen") { 1966 if (FTy->getNumParams() != 2 || 1967 !FTy->getReturnType()->isPointerTy() || 1968 !FTy->getParamType(0)->isPointerTy() || 1969 !FTy->getParamType(1)->isPointerTy()) 1970 return; 1971 setDoesNotThrow(F); 1972 setDoesNotAlias(F, 0); 1973 setDoesNotCapture(F, 1); 1974 setDoesNotCapture(F, 2); 1975 } else if (Name == "fdopen") { 1976 if (FTy->getNumParams() != 2 || 1977 !FTy->getReturnType()->isPointerTy() || 1978 !FTy->getParamType(1)->isPointerTy()) 1979 return; 1980 setDoesNotThrow(F); 1981 setDoesNotAlias(F, 0); 1982 setDoesNotCapture(F, 2); 1983 } else if (Name == "feof" || 1984 Name == "free" || 1985 Name == "fseek" || 1986 Name == "ftell" || 1987 Name == "fgetc" || 1988 Name == "fseeko" || 1989 Name == "ftello" || 1990 Name == "fileno" || 1991 Name == "fflush" || 1992 Name == "fclose" || 1993 Name == "fsetpos" || 1994 Name == "flockfile" || 1995 Name == "funlockfile" || 1996 Name == "ftrylockfile") { 1997 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 1998 return; 1999 setDoesNotThrow(F); 2000 setDoesNotCapture(F, 1); 2001 } else if (Name == "ferror") { 2002 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2003 return; 2004 setDoesNotThrow(F); 2005 setDoesNotCapture(F, 1); 2006 setOnlyReadsMemory(F); 2007 } else if (Name == "fputc" || 2008 Name == "fstat" || 2009 Name == "frexp" || 2010 Name == "frexpf" || 2011 Name == "frexpl" || 2012 Name == "fstatvfs") { 2013 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2014 return; 2015 setDoesNotThrow(F); 2016 setDoesNotCapture(F, 2); 2017 } else if (Name == "fgets") { 2018 if (FTy->getNumParams() != 3 || 2019 !FTy->getParamType(0)->isPointerTy() || 2020 !FTy->getParamType(2)->isPointerTy()) 2021 return; 2022 setDoesNotThrow(F); 2023 setDoesNotCapture(F, 3); 2024 } else if (Name == "fread" || 2025 Name == "fwrite") { 2026 if (FTy->getNumParams() != 4 || 2027 !FTy->getParamType(0)->isPointerTy() || 2028 !FTy->getParamType(3)->isPointerTy()) 2029 return; 2030 setDoesNotThrow(F); 2031 setDoesNotCapture(F, 1); 2032 setDoesNotCapture(F, 4); 2033 } else if (Name == "fputs" || 2034 Name == "fscanf" || 2035 Name == "fprintf" || 2036 Name == "fgetpos") { 2037 if (FTy->getNumParams() < 2 || 2038 !FTy->getParamType(0)->isPointerTy() || 2039 !FTy->getParamType(1)->isPointerTy()) 2040 return; 2041 setDoesNotThrow(F); 2042 setDoesNotCapture(F, 1); 2043 setDoesNotCapture(F, 2); 2044 } 2045 break; 2046 case 'g': 2047 if (Name == "getc" || 2048 Name == "getlogin_r" || 2049 Name == "getc_unlocked") { 2050 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 2051 return; 2052 setDoesNotThrow(F); 2053 setDoesNotCapture(F, 1); 2054 } else if (Name == "getenv") { 2055 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2056 return; 2057 setDoesNotThrow(F); 2058 setOnlyReadsMemory(F); 2059 setDoesNotCapture(F, 1); 2060 } else if (Name == "gets" || 2061 Name == "getchar") { 2062 setDoesNotThrow(F); 2063 } else if (Name == "getitimer") { 2064 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2065 return; 2066 setDoesNotThrow(F); 2067 setDoesNotCapture(F, 2); 2068 } else if (Name == "getpwnam") { 2069 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2070 return; 2071 setDoesNotThrow(F); 2072 setDoesNotCapture(F, 1); 2073 } 2074 break; 2075 case 'u': 2076 if (Name == "ungetc") { 2077 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2078 return; 2079 setDoesNotThrow(F); 2080 setDoesNotCapture(F, 2); 2081 } else if (Name == "uname" || 2082 Name == "unlink" || 2083 Name == "unsetenv") { 2084 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2085 return; 2086 setDoesNotThrow(F); 2087 setDoesNotCapture(F, 1); 2088 } else if (Name == "utime" || 2089 Name == "utimes") { 2090 if (FTy->getNumParams() != 2 || 2091 !FTy->getParamType(0)->isPointerTy() || 2092 !FTy->getParamType(1)->isPointerTy()) 2093 return; 2094 setDoesNotThrow(F); 2095 setDoesNotCapture(F, 1); 2096 setDoesNotCapture(F, 2); 2097 } 2098 break; 2099 case 'p': 2100 if (Name == "putc") { 2101 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2102 return; 2103 setDoesNotThrow(F); 2104 setDoesNotCapture(F, 2); 2105 } else if (Name == "puts" || 2106 Name == "printf" || 2107 Name == "perror") { 2108 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2109 return; 2110 setDoesNotThrow(F); 2111 setDoesNotCapture(F, 1); 2112 } else if (Name == "pread" || 2113 Name == "pwrite") { 2114 if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy()) 2115 return; 2116 // May throw; these are valid pthread cancellation points. 2117 setDoesNotCapture(F, 2); 2118 } else if (Name == "putchar") { 2119 setDoesNotThrow(F); 2120 } else if (Name == "popen") { 2121 if (FTy->getNumParams() != 2 || 2122 !FTy->getReturnType()->isPointerTy() || 2123 !FTy->getParamType(0)->isPointerTy() || 2124 !FTy->getParamType(1)->isPointerTy()) 2125 return; 2126 setDoesNotThrow(F); 2127 setDoesNotAlias(F, 0); 2128 setDoesNotCapture(F, 1); 2129 setDoesNotCapture(F, 2); 2130 } else if (Name == "pclose") { 2131 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2132 return; 2133 setDoesNotThrow(F); 2134 setDoesNotCapture(F, 1); 2135 } 2136 break; 2137 case 'v': 2138 if (Name == "vscanf") { 2139 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2140 return; 2141 setDoesNotThrow(F); 2142 setDoesNotCapture(F, 1); 2143 } else if (Name == "vsscanf" || 2144 Name == "vfscanf") { 2145 if (FTy->getNumParams() != 3 || 2146 !FTy->getParamType(1)->isPointerTy() || 2147 !FTy->getParamType(2)->isPointerTy()) 2148 return; 2149 setDoesNotThrow(F); 2150 setDoesNotCapture(F, 1); 2151 setDoesNotCapture(F, 2); 2152 } else if (Name == "valloc") { 2153 if (!FTy->getReturnType()->isPointerTy()) 2154 return; 2155 setDoesNotThrow(F); 2156 setDoesNotAlias(F, 0); 2157 } else if (Name == "vprintf") { 2158 if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) 2159 return; 2160 setDoesNotThrow(F); 2161 setDoesNotCapture(F, 1); 2162 } else if (Name == "vfprintf" || 2163 Name == "vsprintf") { 2164 if (FTy->getNumParams() != 3 || 2165 !FTy->getParamType(0)->isPointerTy() || 2166 !FTy->getParamType(1)->isPointerTy()) 2167 return; 2168 setDoesNotThrow(F); 2169 setDoesNotCapture(F, 1); 2170 setDoesNotCapture(F, 2); 2171 } else if (Name == "vsnprintf") { 2172 if (FTy->getNumParams() != 4 || 2173 !FTy->getParamType(0)->isPointerTy() || 2174 !FTy->getParamType(2)->isPointerTy()) 2175 return; 2176 setDoesNotThrow(F); 2177 setDoesNotCapture(F, 1); 2178 setDoesNotCapture(F, 3); 2179 } 2180 break; 2181 case 'o': 2182 if (Name == "open") { 2183 if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) 2184 return; 2185 // May throw; "open" is a valid pthread cancellation point. 2186 setDoesNotCapture(F, 1); 2187 } else if (Name == "opendir") { 2188 if (FTy->getNumParams() != 1 || 2189 !FTy->getReturnType()->isPointerTy() || 2190 !FTy->getParamType(0)->isPointerTy()) 2191 return; 2192 setDoesNotThrow(F); 2193 setDoesNotAlias(F, 0); 2194 setDoesNotCapture(F, 1); 2195 } 2196 break; 2197 case 't': 2198 if (Name == "tmpfile") { 2199 if (!FTy->getReturnType()->isPointerTy()) 2200 return; 2201 setDoesNotThrow(F); 2202 setDoesNotAlias(F, 0); 2203 } else if (Name == "times") { 2204 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2205 return; 2206 setDoesNotThrow(F); 2207 setDoesNotCapture(F, 1); 2208 } 2209 break; 2210 case 'h': 2211 if (Name == "htonl" || 2212 Name == "htons") { 2213 setDoesNotThrow(F); 2214 setDoesNotAccessMemory(F); 2215 } 2216 break; 2217 case 'n': 2218 if (Name == "ntohl" || 2219 Name == "ntohs") { 2220 setDoesNotThrow(F); 2221 setDoesNotAccessMemory(F); 2222 } 2223 break; 2224 case 'l': 2225 if (Name == "lstat") { 2226 if (FTy->getNumParams() != 2 || 2227 !FTy->getParamType(0)->isPointerTy() || 2228 !FTy->getParamType(1)->isPointerTy()) 2229 return; 2230 setDoesNotThrow(F); 2231 setDoesNotCapture(F, 1); 2232 setDoesNotCapture(F, 2); 2233 } else if (Name == "lchown") { 2234 if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy()) 2235 return; 2236 setDoesNotThrow(F); 2237 setDoesNotCapture(F, 1); 2238 } 2239 break; 2240 case 'q': 2241 if (Name == "qsort") { 2242 if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy()) 2243 return; 2244 // May throw; places call through function pointer. 2245 setDoesNotCapture(F, 4); 2246 } 2247 break; 2248 case '_': 2249 if (Name == "__strdup" || 2250 Name == "__strndup") { 2251 if (FTy->getNumParams() < 1 || 2252 !FTy->getReturnType()->isPointerTy() || 2253 !FTy->getParamType(0)->isPointerTy()) 2254 return; 2255 setDoesNotThrow(F); 2256 setDoesNotAlias(F, 0); 2257 setDoesNotCapture(F, 1); 2258 } else if (Name == "__strtok_r") { 2259 if (FTy->getNumParams() != 3 || 2260 !FTy->getParamType(1)->isPointerTy()) 2261 return; 2262 setDoesNotThrow(F); 2263 setDoesNotCapture(F, 2); 2264 } else if (Name == "_IO_getc") { 2265 if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) 2266 return; 2267 setDoesNotThrow(F); 2268 setDoesNotCapture(F, 1); 2269 } else if (Name == "_IO_putc") { 2270 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2271 return; 2272 setDoesNotThrow(F); 2273 setDoesNotCapture(F, 2); 2274 } 2275 break; 2276 case 1: 2277 if (Name == "\1__isoc99_scanf") { 2278 if (FTy->getNumParams() < 1 || 2279 !FTy->getParamType(0)->isPointerTy()) 2280 return; 2281 setDoesNotThrow(F); 2282 setDoesNotCapture(F, 1); 2283 } else if (Name == "\1stat64" || 2284 Name == "\1lstat64" || 2285 Name == "\1statvfs64" || 2286 Name == "\1__isoc99_sscanf") { 2287 if (FTy->getNumParams() < 1 || 2288 !FTy->getParamType(0)->isPointerTy() || 2289 !FTy->getParamType(1)->isPointerTy()) 2290 return; 2291 setDoesNotThrow(F); 2292 setDoesNotCapture(F, 1); 2293 setDoesNotCapture(F, 2); 2294 } else if (Name == "\1fopen64") { 2295 if (FTy->getNumParams() != 2 || 2296 !FTy->getReturnType()->isPointerTy() || 2297 !FTy->getParamType(0)->isPointerTy() || 2298 !FTy->getParamType(1)->isPointerTy()) 2299 return; 2300 setDoesNotThrow(F); 2301 setDoesNotAlias(F, 0); 2302 setDoesNotCapture(F, 1); 2303 setDoesNotCapture(F, 2); 2304 } else if (Name == "\1fseeko64" || 2305 Name == "\1ftello64") { 2306 if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) 2307 return; 2308 setDoesNotThrow(F); 2309 setDoesNotCapture(F, 1); 2310 } else if (Name == "\1tmpfile64") { 2311 if (!FTy->getReturnType()->isPointerTy()) 2312 return; 2313 setDoesNotThrow(F); 2314 setDoesNotAlias(F, 0); 2315 } else if (Name == "\1fstat64" || 2316 Name == "\1fstatvfs64") { 2317 if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) 2318 return; 2319 setDoesNotThrow(F); 2320 setDoesNotCapture(F, 2); 2321 } else if (Name == "\1open64") { 2322 if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) 2323 return; 2324 // May throw; "open" is a valid pthread cancellation point. 2325 setDoesNotCapture(F, 1); 2326 } 2327 break; 2328 } 2329 } 2330 2331 /// doInitialization - Add attributes to well-known functions. 2332 /// 2333 bool SimplifyLibCalls::doInitialization(Module &M) { 2334 Modified = false; 2335 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 2336 Function &F = *I; 2337 if (F.isDeclaration() && F.hasName()) 2338 inferPrototypeAttributes(F); 2339 } 2340 return Modified; 2341 } 2342 2343 // TODO: 2344 // Additional cases that we need to add to this file: 2345 // 2346 // cbrt: 2347 // * cbrt(expN(X)) -> expN(x/3) 2348 // * cbrt(sqrt(x)) -> pow(x,1/6) 2349 // * cbrt(sqrt(x)) -> pow(x,1/9) 2350 // 2351 // cos, cosf, cosl: 2352 // * cos(-x) -> cos(x) 2353 // 2354 // exp, expf, expl: 2355 // * exp(log(x)) -> x 2356 // 2357 // log, logf, logl: 2358 // * log(exp(x)) -> x 2359 // * log(x**y) -> y*log(x) 2360 // * log(exp(y)) -> y*log(e) 2361 // * log(exp2(y)) -> y*log(2) 2362 // * log(exp10(y)) -> y*log(10) 2363 // * log(sqrt(x)) -> 0.5*log(x) 2364 // * log(pow(x,y)) -> y*log(x) 2365 // 2366 // lround, lroundf, lroundl: 2367 // * lround(cnst) -> cnst' 2368 // 2369 // pow, powf, powl: 2370 // * pow(exp(x),y) -> exp(x*y) 2371 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2372 // * pow(pow(x,y),z)-> pow(x,y*z) 2373 // 2374 // round, roundf, roundl: 2375 // * round(cnst) -> cnst' 2376 // 2377 // signbit: 2378 // * signbit(cnst) -> cnst' 2379 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2380 // 2381 // sqrt, sqrtf, sqrtl: 2382 // * sqrt(expN(x)) -> expN(x*0.5) 2383 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2384 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2385 // 2386 // stpcpy: 2387 // * stpcpy(str, "literal") -> 2388 // llvm.memcpy(str,"literal",strlen("literal")+1,1) 2389 // 2390 // tan, tanf, tanl: 2391 // * tan(atan(x)) -> x 2392 // 2393 // trunc, truncf, truncl: 2394 // * trunc(cnst) -> cnst' 2395 // 2396 // 2397