1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 155 SourceLocation Loc, bool TreatBooleanAsSigned); 156 157 /// Emit a conversion from the specified complex type to the specified 158 /// destination type, where the destination type is an LLVM scalar type. 159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 160 QualType SrcTy, QualType DstTy, 161 SourceLocation Loc); 162 163 /// EmitNullValue - Emit a value that corresponds to null for the given type. 164 Value *EmitNullValue(QualType Ty); 165 166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 167 Value *EmitFloatToBoolConversion(Value *V) { 168 // Compare against 0.0 for fp scalars. 169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 170 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 171 } 172 173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 174 Value *EmitPointerToBoolConversion(Value *V) { 175 Value *Zero = llvm::ConstantPointerNull::get( 176 cast<llvm::PointerType>(V->getType())); 177 return Builder.CreateICmpNE(V, Zero, "tobool"); 178 } 179 180 Value *EmitIntToBoolConversion(Value *V) { 181 // Because of the type rules of C, we often end up computing a 182 // logical value, then zero extending it to int, then wanting it 183 // as a logical value again. Optimize this common case. 184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 186 Value *Result = ZI->getOperand(0); 187 // If there aren't any more uses, zap the instruction to save space. 188 // Note that there can be more uses, for example if this 189 // is the result of an assignment. 190 if (ZI->use_empty()) 191 ZI->eraseFromParent(); 192 return Result; 193 } 194 } 195 196 return Builder.CreateIsNotNull(V, "tobool"); 197 } 198 199 //===--------------------------------------------------------------------===// 200 // Visitor Methods 201 //===--------------------------------------------------------------------===// 202 203 Value *Visit(Expr *E) { 204 ApplyDebugLocation DL(CGF, E); 205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 206 } 207 208 Value *VisitStmt(Stmt *S) { 209 S->dump(CGF.getContext().getSourceManager()); 210 llvm_unreachable("Stmt can't have complex result type!"); 211 } 212 Value *VisitExpr(Expr *S); 213 214 Value *VisitParenExpr(ParenExpr *PE) { 215 return Visit(PE->getSubExpr()); 216 } 217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 218 return Visit(E->getReplacement()); 219 } 220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 221 return Visit(GE->getResultExpr()); 222 } 223 224 // Leaves. 225 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 226 return Builder.getInt(E->getValue()); 227 } 228 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 229 return llvm::ConstantFP::get(VMContext, E->getValue()); 230 } 231 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 239 } 240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 244 return EmitNullValue(E->getType()); 245 } 246 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 250 return Builder.CreateBitCast(V, ConvertType(E->getType())); 251 } 252 253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 255 } 256 257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 258 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 259 } 260 261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 262 if (E->isGLValue()) 263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 264 265 // Otherwise, assume the mapping is the scalar directly. 266 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 267 } 268 269 // l-values. 270 Value *VisitDeclRefExpr(DeclRefExpr *E) { 271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 272 if (result.isReference()) 273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 274 E->getExprLoc()); 275 return result.getValue(); 276 } 277 return EmitLoadOfLValue(E); 278 } 279 280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 281 return CGF.EmitObjCSelectorExpr(E); 282 } 283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 284 return CGF.EmitObjCProtocolExpr(E); 285 } 286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 287 return EmitLoadOfLValue(E); 288 } 289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 290 if (E->getMethodDecl() && 291 E->getMethodDecl()->getReturnType()->isReferenceType()) 292 return EmitLoadOfLValue(E); 293 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 294 } 295 296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 297 LValue LV = CGF.EmitObjCIsaExpr(E); 298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 299 return V; 300 } 301 302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 305 Value *VisitMemberExpr(MemberExpr *E); 306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 308 return EmitLoadOfLValue(E); 309 } 310 311 Value *VisitInitListExpr(InitListExpr *E); 312 313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 314 return EmitNullValue(E->getType()); 315 } 316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 317 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 318 return VisitCastExpr(E); 319 } 320 Value *VisitCastExpr(CastExpr *E); 321 322 Value *VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 324 return EmitLoadOfLValue(E); 325 326 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 327 328 EmitLValueAlignmentAssumption(E, V); 329 return V; 330 } 331 332 Value *VisitStmtExpr(const StmtExpr *E); 333 334 // Unary Operators. 335 Value *VisitUnaryPostDec(const UnaryOperator *E) { 336 LValue LV = EmitLValue(E->getSubExpr()); 337 return EmitScalarPrePostIncDec(E, LV, false, false); 338 } 339 Value *VisitUnaryPostInc(const UnaryOperator *E) { 340 LValue LV = EmitLValue(E->getSubExpr()); 341 return EmitScalarPrePostIncDec(E, LV, true, false); 342 } 343 Value *VisitUnaryPreDec(const UnaryOperator *E) { 344 LValue LV = EmitLValue(E->getSubExpr()); 345 return EmitScalarPrePostIncDec(E, LV, false, true); 346 } 347 Value *VisitUnaryPreInc(const UnaryOperator *E) { 348 LValue LV = EmitLValue(E->getSubExpr()); 349 return EmitScalarPrePostIncDec(E, LV, true, true); 350 } 351 352 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 353 llvm::Value *InVal, 354 bool IsInc); 355 356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 357 bool isInc, bool isPre); 358 359 360 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 361 if (isa<MemberPointerType>(E->getType())) // never sugared 362 return CGF.CGM.getMemberPointerConstant(E); 363 364 return EmitLValue(E->getSubExpr()).getPointer(); 365 } 366 Value *VisitUnaryDeref(const UnaryOperator *E) { 367 if (E->getType()->isVoidType()) 368 return Visit(E->getSubExpr()); // the actual value should be unused 369 return EmitLoadOfLValue(E); 370 } 371 Value *VisitUnaryPlus(const UnaryOperator *E) { 372 // This differs from gcc, though, most likely due to a bug in gcc. 373 TestAndClearIgnoreResultAssign(); 374 return Visit(E->getSubExpr()); 375 } 376 Value *VisitUnaryMinus (const UnaryOperator *E); 377 Value *VisitUnaryNot (const UnaryOperator *E); 378 Value *VisitUnaryLNot (const UnaryOperator *E); 379 Value *VisitUnaryReal (const UnaryOperator *E); 380 Value *VisitUnaryImag (const UnaryOperator *E); 381 Value *VisitUnaryExtension(const UnaryOperator *E) { 382 return Visit(E->getSubExpr()); 383 } 384 385 // C++ 386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 387 return EmitLoadOfLValue(E); 388 } 389 390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 391 return Visit(DAE->getExpr()); 392 } 393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 395 return Visit(DIE->getExpr()); 396 } 397 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 398 return CGF.LoadCXXThis(); 399 } 400 401 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 402 CGF.enterFullExpression(E); 403 CodeGenFunction::RunCleanupsScope Scope(CGF); 404 return Visit(E->getSubExpr()); 405 } 406 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 407 return CGF.EmitCXXNewExpr(E); 408 } 409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 410 CGF.EmitCXXDeleteExpr(E); 411 return nullptr; 412 } 413 414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 420 } 421 422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 424 } 425 426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 427 // C++ [expr.pseudo]p1: 428 // The result shall only be used as the operand for the function call 429 // operator (), and the result of such a call has type void. The only 430 // effect is the evaluation of the postfix-expression before the dot or 431 // arrow. 432 CGF.EmitScalarExpr(E->getBase()); 433 return nullptr; 434 } 435 436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 437 return EmitNullValue(E->getType()); 438 } 439 440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 441 CGF.EmitCXXThrowExpr(E); 442 return nullptr; 443 } 444 445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 446 return Builder.getInt1(E->getValue()); 447 } 448 449 // Binary Operators. 450 Value *EmitMul(const BinOpInfo &Ops) { 451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 453 case LangOptions::SOB_Defined: 454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 455 case LangOptions::SOB_Undefined: 456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 458 // Fall through. 459 case LangOptions::SOB_Trapping: 460 return EmitOverflowCheckedBinOp(Ops); 461 } 462 } 463 464 if (Ops.Ty->isUnsignedIntegerType() && 465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 466 return EmitOverflowCheckedBinOp(Ops); 467 468 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 471 } 472 /// Create a binary op that checks for overflow. 473 /// Currently only supports +, - and *. 474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 475 476 // Check for undefined division and modulus behaviors. 477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 478 llvm::Value *Zero,bool isDiv); 479 // Common helper for getting how wide LHS of shift is. 480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 481 Value *EmitDiv(const BinOpInfo &Ops); 482 Value *EmitRem(const BinOpInfo &Ops); 483 Value *EmitAdd(const BinOpInfo &Ops); 484 Value *EmitSub(const BinOpInfo &Ops); 485 Value *EmitShl(const BinOpInfo &Ops); 486 Value *EmitShr(const BinOpInfo &Ops); 487 Value *EmitAnd(const BinOpInfo &Ops) { 488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 489 } 490 Value *EmitXor(const BinOpInfo &Ops) { 491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 492 } 493 Value *EmitOr (const BinOpInfo &Ops) { 494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 495 } 496 497 BinOpInfo EmitBinOps(const BinaryOperator *E); 498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 500 Value *&Result); 501 502 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 504 505 // Binary operators and binary compound assignment operators. 506 #define HANDLEBINOP(OP) \ 507 Value *VisitBin ## OP(const BinaryOperator *E) { \ 508 return Emit ## OP(EmitBinOps(E)); \ 509 } \ 510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 512 } 513 HANDLEBINOP(Mul) 514 HANDLEBINOP(Div) 515 HANDLEBINOP(Rem) 516 HANDLEBINOP(Add) 517 HANDLEBINOP(Sub) 518 HANDLEBINOP(Shl) 519 HANDLEBINOP(Shr) 520 HANDLEBINOP(And) 521 HANDLEBINOP(Xor) 522 HANDLEBINOP(Or) 523 #undef HANDLEBINOP 524 525 // Comparisons. 526 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 527 llvm::CmpInst::Predicate SICmpOpc, 528 llvm::CmpInst::Predicate FCmpOpc); 529 #define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539 #undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569 }; 570 } // end anonymous namespace. 571 572 //===----------------------------------------------------------------------===// 573 // Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// EmitConversionToBool - Convert the specified expression value to a 577 /// boolean (i1) truth value. This is equivalent to "Val != 0". 578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595 } 596 597 void ScalarExprEmitter::EmitFloatConversionCheck( 598 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 599 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 600 CodeGenFunction::SanitizerScope SanScope(&CGF); 601 using llvm::APFloat; 602 using llvm::APSInt; 603 604 llvm::Type *SrcTy = Src->getType(); 605 606 llvm::Value *Check = nullptr; 607 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 608 // Integer to floating-point. This can fail for unsigned short -> __half 609 // or unsigned __int128 -> float. 610 assert(DstType->isFloatingType()); 611 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 612 613 APFloat LargestFloat = 614 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 615 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 616 617 bool IsExact; 618 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 619 &IsExact) != APFloat::opOK) 620 // The range of representable values of this floating point type includes 621 // all values of this integer type. Don't need an overflow check. 622 return; 623 624 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 625 if (SrcIsUnsigned) 626 Check = Builder.CreateICmpULE(Src, Max); 627 else { 628 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 629 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 630 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 631 Check = Builder.CreateAnd(GE, LE); 632 } 633 } else { 634 const llvm::fltSemantics &SrcSema = 635 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 636 if (isa<llvm::IntegerType>(DstTy)) { 637 // Floating-point to integer. This has undefined behavior if the source is 638 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 639 // to an integer). 640 unsigned Width = CGF.getContext().getIntWidth(DstType); 641 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 642 643 APSInt Min = APSInt::getMinValue(Width, Unsigned); 644 APFloat MinSrc(SrcSema, APFloat::uninitialized); 645 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 646 APFloat::opOverflow) 647 // Don't need an overflow check for lower bound. Just check for 648 // -Inf/NaN. 649 MinSrc = APFloat::getInf(SrcSema, true); 650 else 651 // Find the largest value which is too small to represent (before 652 // truncation toward zero). 653 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 654 655 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 656 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 657 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 658 APFloat::opOverflow) 659 // Don't need an overflow check for upper bound. Just check for 660 // +Inf/NaN. 661 MaxSrc = APFloat::getInf(SrcSema, false); 662 else 663 // Find the smallest value which is too large to represent (before 664 // truncation toward zero). 665 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 666 667 // If we're converting from __half, convert the range to float to match 668 // the type of src. 669 if (OrigSrcType->isHalfType()) { 670 const llvm::fltSemantics &Sema = 671 CGF.getContext().getFloatTypeSemantics(SrcType); 672 bool IsInexact; 673 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 674 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 675 } 676 677 llvm::Value *GE = 678 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 679 llvm::Value *LE = 680 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 681 Check = Builder.CreateAnd(GE, LE); 682 } else { 683 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 684 // 685 // Floating-point to floating-point. This has undefined behavior if the 686 // source is not in the range of representable values of the destination 687 // type. The C and C++ standards are spectacularly unclear here. We 688 // diagnose finite out-of-range conversions, but allow infinities and NaNs 689 // to convert to the corresponding value in the smaller type. 690 // 691 // C11 Annex F gives all such conversions defined behavior for IEC 60559 692 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 693 // does not. 694 695 // Converting from a lower rank to a higher rank can never have 696 // undefined behavior, since higher-rank types must have a superset 697 // of values of lower-rank types. 698 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 699 return; 700 701 assert(!OrigSrcType->isHalfType() && 702 "should not check conversion from __half, it has the lowest rank"); 703 704 const llvm::fltSemantics &DstSema = 705 CGF.getContext().getFloatTypeSemantics(DstType); 706 APFloat MinBad = APFloat::getLargest(DstSema, false); 707 APFloat MaxBad = APFloat::getInf(DstSema, false); 708 709 bool IsInexact; 710 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 711 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 712 713 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 714 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 715 llvm::Value *GE = 716 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 717 llvm::Value *LE = 718 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 719 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 720 } 721 } 722 723 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 724 CGF.EmitCheckTypeDescriptor(OrigSrcType), 725 CGF.EmitCheckTypeDescriptor(DstType)}; 726 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 727 "float_cast_overflow", StaticArgs, OrigSrc); 728 } 729 730 /// Emit a conversion from the specified type to the specified destination type, 731 /// both of which are LLVM scalar types. 732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 733 QualType DstType, 734 SourceLocation Loc) { 735 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 736 } 737 738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 739 QualType DstType, 740 SourceLocation Loc, 741 bool TreatBooleanAsSigned) { 742 SrcType = CGF.getContext().getCanonicalType(SrcType); 743 DstType = CGF.getContext().getCanonicalType(DstType); 744 if (SrcType == DstType) return Src; 745 746 if (DstType->isVoidType()) return nullptr; 747 748 llvm::Value *OrigSrc = Src; 749 QualType OrigSrcType = SrcType; 750 llvm::Type *SrcTy = Src->getType(); 751 752 // Handle conversions to bool first, they are special: comparisons against 0. 753 if (DstType->isBooleanType()) 754 return EmitConversionToBool(Src, SrcType); 755 756 llvm::Type *DstTy = ConvertType(DstType); 757 758 // Cast from half through float if half isn't a native type. 759 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 760 // Cast to FP using the intrinsic if the half type itself isn't supported. 761 if (DstTy->isFloatingPointTy()) { 762 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 763 return Builder.CreateCall( 764 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 765 Src); 766 } else { 767 // Cast to other types through float, using either the intrinsic or FPExt, 768 // depending on whether the half type itself is supported 769 // (as opposed to operations on half, available with NativeHalfType). 770 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 771 Src = Builder.CreateCall( 772 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 773 CGF.CGM.FloatTy), 774 Src); 775 } else { 776 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 777 } 778 SrcType = CGF.getContext().FloatTy; 779 SrcTy = CGF.FloatTy; 780 } 781 } 782 783 // Ignore conversions like int -> uint. 784 if (SrcTy == DstTy) 785 return Src; 786 787 // Handle pointer conversions next: pointers can only be converted to/from 788 // other pointers and integers. Check for pointer types in terms of LLVM, as 789 // some native types (like Obj-C id) may map to a pointer type. 790 if (isa<llvm::PointerType>(DstTy)) { 791 // The source value may be an integer, or a pointer. 792 if (isa<llvm::PointerType>(SrcTy)) 793 return Builder.CreateBitCast(Src, DstTy, "conv"); 794 795 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 796 // First, convert to the correct width so that we control the kind of 797 // extension. 798 llvm::Type *MiddleTy = CGF.IntPtrTy; 799 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 800 llvm::Value* IntResult = 801 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 802 // Then, cast to pointer. 803 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 804 } 805 806 if (isa<llvm::PointerType>(SrcTy)) { 807 // Must be an ptr to int cast. 808 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 809 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 810 } 811 812 // A scalar can be splatted to an extended vector of the same element type 813 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 814 // Sema should add casts to make sure that the source expression's type is 815 // the same as the vector's element type (sans qualifiers) 816 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 817 SrcType.getTypePtr() && 818 "Splatted expr doesn't match with vector element type?"); 819 820 // Splat the element across to all elements 821 unsigned NumElements = DstTy->getVectorNumElements(); 822 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 823 } 824 825 // Allow bitcast from vector to integer/fp of the same size. 826 if (isa<llvm::VectorType>(SrcTy) || 827 isa<llvm::VectorType>(DstTy)) 828 return Builder.CreateBitCast(Src, DstTy, "conv"); 829 830 // Finally, we have the arithmetic types: real int/float. 831 Value *Res = nullptr; 832 llvm::Type *ResTy = DstTy; 833 834 // An overflowing conversion has undefined behavior if either the source type 835 // or the destination type is a floating-point type. 836 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 837 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 838 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 839 Loc); 840 841 // Cast to half through float if half isn't a native type. 842 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 843 // Make sure we cast in a single step if from another FP type. 844 if (SrcTy->isFloatingPointTy()) { 845 // Use the intrinsic if the half type itself isn't supported 846 // (as opposed to operations on half, available with NativeHalfType). 847 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 848 return Builder.CreateCall( 849 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 850 // If the half type is supported, just use an fptrunc. 851 return Builder.CreateFPTrunc(Src, DstTy); 852 } 853 DstTy = CGF.FloatTy; 854 } 855 856 if (isa<llvm::IntegerType>(SrcTy)) { 857 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 858 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 859 InputSigned = true; 860 } 861 if (isa<llvm::IntegerType>(DstTy)) 862 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 863 else if (InputSigned) 864 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 865 else 866 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 867 } else if (isa<llvm::IntegerType>(DstTy)) { 868 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 869 if (DstType->isSignedIntegerOrEnumerationType()) 870 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 871 else 872 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 873 } else { 874 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 875 "Unknown real conversion"); 876 if (DstTy->getTypeID() < SrcTy->getTypeID()) 877 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 878 else 879 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 880 } 881 882 if (DstTy != ResTy) { 883 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 884 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 885 Res = Builder.CreateCall( 886 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 887 Res); 888 } else { 889 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 890 } 891 } 892 893 return Res; 894 } 895 896 /// Emit a conversion from the specified complex type to the specified 897 /// destination type, where the destination type is an LLVM scalar type. 898 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 899 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 900 SourceLocation Loc) { 901 // Get the source element type. 902 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 903 904 // Handle conversions to bool first, they are special: comparisons against 0. 905 if (DstTy->isBooleanType()) { 906 // Complex != 0 -> (Real != 0) | (Imag != 0) 907 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 908 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 909 return Builder.CreateOr(Src.first, Src.second, "tobool"); 910 } 911 912 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 913 // the imaginary part of the complex value is discarded and the value of the 914 // real part is converted according to the conversion rules for the 915 // corresponding real type. 916 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 917 } 918 919 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 920 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 921 } 922 923 /// \brief Emit a sanitization check for the given "binary" operation (which 924 /// might actually be a unary increment which has been lowered to a binary 925 /// operation). The check passes if all values in \p Checks (which are \c i1), 926 /// are \c true. 927 void ScalarExprEmitter::EmitBinOpCheck( 928 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 929 assert(CGF.IsSanitizerScope); 930 StringRef CheckName; 931 SmallVector<llvm::Constant *, 4> StaticData; 932 SmallVector<llvm::Value *, 2> DynamicData; 933 934 BinaryOperatorKind Opcode = Info.Opcode; 935 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 936 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 937 938 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 939 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 940 if (UO && UO->getOpcode() == UO_Minus) { 941 CheckName = "negate_overflow"; 942 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 943 DynamicData.push_back(Info.RHS); 944 } else { 945 if (BinaryOperator::isShiftOp(Opcode)) { 946 // Shift LHS negative or too large, or RHS out of bounds. 947 CheckName = "shift_out_of_bounds"; 948 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 949 StaticData.push_back( 950 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 951 StaticData.push_back( 952 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 953 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 954 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 955 CheckName = "divrem_overflow"; 956 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 957 } else { 958 // Arithmetic overflow (+, -, *). 959 switch (Opcode) { 960 case BO_Add: CheckName = "add_overflow"; break; 961 case BO_Sub: CheckName = "sub_overflow"; break; 962 case BO_Mul: CheckName = "mul_overflow"; break; 963 default: llvm_unreachable("unexpected opcode for bin op check"); 964 } 965 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 966 } 967 DynamicData.push_back(Info.LHS); 968 DynamicData.push_back(Info.RHS); 969 } 970 971 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 972 } 973 974 //===----------------------------------------------------------------------===// 975 // Visitor Methods 976 //===----------------------------------------------------------------------===// 977 978 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 979 CGF.ErrorUnsupported(E, "scalar expression"); 980 if (E->getType()->isVoidType()) 981 return nullptr; 982 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 983 } 984 985 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 986 // Vector Mask Case 987 if (E->getNumSubExprs() == 2) { 988 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 989 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 990 Value *Mask; 991 992 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 993 unsigned LHSElts = LTy->getNumElements(); 994 995 Mask = RHS; 996 997 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 998 999 // Mask off the high bits of each shuffle index. 1000 Value *MaskBits = 1001 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1002 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1003 1004 // newv = undef 1005 // mask = mask & maskbits 1006 // for each elt 1007 // n = extract mask i 1008 // x = extract val n 1009 // newv = insert newv, x, i 1010 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1011 MTy->getNumElements()); 1012 Value* NewV = llvm::UndefValue::get(RTy); 1013 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1014 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1015 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1016 1017 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1018 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1019 } 1020 return NewV; 1021 } 1022 1023 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1024 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1025 1026 SmallVector<llvm::Constant*, 32> indices; 1027 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1028 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1029 // Check for -1 and output it as undef in the IR. 1030 if (Idx.isSigned() && Idx.isAllOnesValue()) 1031 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1032 else 1033 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1034 } 1035 1036 Value *SV = llvm::ConstantVector::get(indices); 1037 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1038 } 1039 1040 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1041 QualType SrcType = E->getSrcExpr()->getType(), 1042 DstType = E->getType(); 1043 1044 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1045 1046 SrcType = CGF.getContext().getCanonicalType(SrcType); 1047 DstType = CGF.getContext().getCanonicalType(DstType); 1048 if (SrcType == DstType) return Src; 1049 1050 assert(SrcType->isVectorType() && 1051 "ConvertVector source type must be a vector"); 1052 assert(DstType->isVectorType() && 1053 "ConvertVector destination type must be a vector"); 1054 1055 llvm::Type *SrcTy = Src->getType(); 1056 llvm::Type *DstTy = ConvertType(DstType); 1057 1058 // Ignore conversions like int -> uint. 1059 if (SrcTy == DstTy) 1060 return Src; 1061 1062 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1063 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1064 1065 assert(SrcTy->isVectorTy() && 1066 "ConvertVector source IR type must be a vector"); 1067 assert(DstTy->isVectorTy() && 1068 "ConvertVector destination IR type must be a vector"); 1069 1070 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1071 *DstEltTy = DstTy->getVectorElementType(); 1072 1073 if (DstEltType->isBooleanType()) { 1074 assert((SrcEltTy->isFloatingPointTy() || 1075 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1076 1077 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1078 if (SrcEltTy->isFloatingPointTy()) { 1079 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1080 } else { 1081 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1082 } 1083 } 1084 1085 // We have the arithmetic types: real int/float. 1086 Value *Res = nullptr; 1087 1088 if (isa<llvm::IntegerType>(SrcEltTy)) { 1089 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1090 if (isa<llvm::IntegerType>(DstEltTy)) 1091 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1092 else if (InputSigned) 1093 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1094 else 1095 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1096 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1097 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1098 if (DstEltType->isSignedIntegerOrEnumerationType()) 1099 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1100 else 1101 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1102 } else { 1103 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1104 "Unknown real conversion"); 1105 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1106 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1107 else 1108 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1109 } 1110 1111 return Res; 1112 } 1113 1114 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1115 llvm::APSInt Value; 1116 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1117 if (E->isArrow()) 1118 CGF.EmitScalarExpr(E->getBase()); 1119 else 1120 EmitLValue(E->getBase()); 1121 return Builder.getInt(Value); 1122 } 1123 1124 return EmitLoadOfLValue(E); 1125 } 1126 1127 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1128 TestAndClearIgnoreResultAssign(); 1129 1130 // Emit subscript expressions in rvalue context's. For most cases, this just 1131 // loads the lvalue formed by the subscript expr. However, we have to be 1132 // careful, because the base of a vector subscript is occasionally an rvalue, 1133 // so we can't get it as an lvalue. 1134 if (!E->getBase()->getType()->isVectorType()) 1135 return EmitLoadOfLValue(E); 1136 1137 // Handle the vector case. The base must be a vector, the index must be an 1138 // integer value. 1139 Value *Base = Visit(E->getBase()); 1140 Value *Idx = Visit(E->getIdx()); 1141 QualType IdxTy = E->getIdx()->getType(); 1142 1143 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1144 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1145 1146 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1147 } 1148 1149 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1150 unsigned Off, llvm::Type *I32Ty) { 1151 int MV = SVI->getMaskValue(Idx); 1152 if (MV == -1) 1153 return llvm::UndefValue::get(I32Ty); 1154 return llvm::ConstantInt::get(I32Ty, Off+MV); 1155 } 1156 1157 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1158 if (C->getBitWidth() != 32) { 1159 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1160 C->getZExtValue()) && 1161 "Index operand too large for shufflevector mask!"); 1162 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1163 } 1164 return C; 1165 } 1166 1167 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1168 bool Ignore = TestAndClearIgnoreResultAssign(); 1169 (void)Ignore; 1170 assert (Ignore == false && "init list ignored"); 1171 unsigned NumInitElements = E->getNumInits(); 1172 1173 if (E->hadArrayRangeDesignator()) 1174 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1175 1176 llvm::VectorType *VType = 1177 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1178 1179 if (!VType) { 1180 if (NumInitElements == 0) { 1181 // C++11 value-initialization for the scalar. 1182 return EmitNullValue(E->getType()); 1183 } 1184 // We have a scalar in braces. Just use the first element. 1185 return Visit(E->getInit(0)); 1186 } 1187 1188 unsigned ResElts = VType->getNumElements(); 1189 1190 // Loop over initializers collecting the Value for each, and remembering 1191 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1192 // us to fold the shuffle for the swizzle into the shuffle for the vector 1193 // initializer, since LLVM optimizers generally do not want to touch 1194 // shuffles. 1195 unsigned CurIdx = 0; 1196 bool VIsUndefShuffle = false; 1197 llvm::Value *V = llvm::UndefValue::get(VType); 1198 for (unsigned i = 0; i != NumInitElements; ++i) { 1199 Expr *IE = E->getInit(i); 1200 Value *Init = Visit(IE); 1201 SmallVector<llvm::Constant*, 16> Args; 1202 1203 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1204 1205 // Handle scalar elements. If the scalar initializer is actually one 1206 // element of a different vector of the same width, use shuffle instead of 1207 // extract+insert. 1208 if (!VVT) { 1209 if (isa<ExtVectorElementExpr>(IE)) { 1210 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1211 1212 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1213 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1214 Value *LHS = nullptr, *RHS = nullptr; 1215 if (CurIdx == 0) { 1216 // insert into undef -> shuffle (src, undef) 1217 // shufflemask must use an i32 1218 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1219 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1220 1221 LHS = EI->getVectorOperand(); 1222 RHS = V; 1223 VIsUndefShuffle = true; 1224 } else if (VIsUndefShuffle) { 1225 // insert into undefshuffle && size match -> shuffle (v, src) 1226 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1227 for (unsigned j = 0; j != CurIdx; ++j) 1228 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1229 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1230 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1231 1232 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1233 RHS = EI->getVectorOperand(); 1234 VIsUndefShuffle = false; 1235 } 1236 if (!Args.empty()) { 1237 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1238 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1239 ++CurIdx; 1240 continue; 1241 } 1242 } 1243 } 1244 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1245 "vecinit"); 1246 VIsUndefShuffle = false; 1247 ++CurIdx; 1248 continue; 1249 } 1250 1251 unsigned InitElts = VVT->getNumElements(); 1252 1253 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1254 // input is the same width as the vector being constructed, generate an 1255 // optimized shuffle of the swizzle input into the result. 1256 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1257 if (isa<ExtVectorElementExpr>(IE)) { 1258 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1259 Value *SVOp = SVI->getOperand(0); 1260 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1261 1262 if (OpTy->getNumElements() == ResElts) { 1263 for (unsigned j = 0; j != CurIdx; ++j) { 1264 // If the current vector initializer is a shuffle with undef, merge 1265 // this shuffle directly into it. 1266 if (VIsUndefShuffle) { 1267 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1268 CGF.Int32Ty)); 1269 } else { 1270 Args.push_back(Builder.getInt32(j)); 1271 } 1272 } 1273 for (unsigned j = 0, je = InitElts; j != je; ++j) 1274 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1275 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1276 1277 if (VIsUndefShuffle) 1278 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1279 1280 Init = SVOp; 1281 } 1282 } 1283 1284 // Extend init to result vector length, and then shuffle its contribution 1285 // to the vector initializer into V. 1286 if (Args.empty()) { 1287 for (unsigned j = 0; j != InitElts; ++j) 1288 Args.push_back(Builder.getInt32(j)); 1289 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1290 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1291 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1292 Mask, "vext"); 1293 1294 Args.clear(); 1295 for (unsigned j = 0; j != CurIdx; ++j) 1296 Args.push_back(Builder.getInt32(j)); 1297 for (unsigned j = 0; j != InitElts; ++j) 1298 Args.push_back(Builder.getInt32(j+Offset)); 1299 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1300 } 1301 1302 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1303 // merging subsequent shuffles into this one. 1304 if (CurIdx == 0) 1305 std::swap(V, Init); 1306 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1307 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1308 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1309 CurIdx += InitElts; 1310 } 1311 1312 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1313 // Emit remaining default initializers. 1314 llvm::Type *EltTy = VType->getElementType(); 1315 1316 // Emit remaining default initializers 1317 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1318 Value *Idx = Builder.getInt32(CurIdx); 1319 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1320 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1321 } 1322 return V; 1323 } 1324 1325 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1326 const Expr *E = CE->getSubExpr(); 1327 1328 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1329 return false; 1330 1331 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1332 // We always assume that 'this' is never null. 1333 return false; 1334 } 1335 1336 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1337 // And that glvalue casts are never null. 1338 if (ICE->getValueKind() != VK_RValue) 1339 return false; 1340 } 1341 1342 return true; 1343 } 1344 1345 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1346 // have to handle a more broad range of conversions than explicit casts, as they 1347 // handle things like function to ptr-to-function decay etc. 1348 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1349 Expr *E = CE->getSubExpr(); 1350 QualType DestTy = CE->getType(); 1351 CastKind Kind = CE->getCastKind(); 1352 1353 // These cases are generally not written to ignore the result of 1354 // evaluating their sub-expressions, so we clear this now. 1355 bool Ignored = TestAndClearIgnoreResultAssign(); 1356 1357 // Since almost all cast kinds apply to scalars, this switch doesn't have 1358 // a default case, so the compiler will warn on a missing case. The cases 1359 // are in the same order as in the CastKind enum. 1360 switch (Kind) { 1361 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1362 case CK_BuiltinFnToFnPtr: 1363 llvm_unreachable("builtin functions are handled elsewhere"); 1364 1365 case CK_LValueBitCast: 1366 case CK_ObjCObjectLValueCast: { 1367 Address Addr = EmitLValue(E).getAddress(); 1368 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1369 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1370 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1371 } 1372 1373 case CK_CPointerToObjCPointerCast: 1374 case CK_BlockPointerToObjCPointerCast: 1375 case CK_AnyPointerToBlockPointerCast: 1376 case CK_BitCast: { 1377 Value *Src = Visit(const_cast<Expr*>(E)); 1378 llvm::Type *SrcTy = Src->getType(); 1379 llvm::Type *DstTy = ConvertType(DestTy); 1380 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1381 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1382 llvm_unreachable("wrong cast for pointers in different address spaces" 1383 "(must be an address space cast)!"); 1384 } 1385 1386 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1387 if (auto PT = DestTy->getAs<PointerType>()) 1388 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1389 /*MayBeNull=*/true, 1390 CodeGenFunction::CFITCK_UnrelatedCast, 1391 CE->getLocStart()); 1392 } 1393 1394 return Builder.CreateBitCast(Src, DstTy); 1395 } 1396 case CK_AddressSpaceConversion: { 1397 Value *Src = Visit(const_cast<Expr*>(E)); 1398 // Since target may map different address spaces in AST to the same address 1399 // space, an address space conversion may end up as a bitcast. 1400 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 1401 ConvertType(DestTy)); 1402 } 1403 case CK_AtomicToNonAtomic: 1404 case CK_NonAtomicToAtomic: 1405 case CK_NoOp: 1406 case CK_UserDefinedConversion: 1407 return Visit(const_cast<Expr*>(E)); 1408 1409 case CK_BaseToDerived: { 1410 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1411 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1412 1413 Address Base = CGF.EmitPointerWithAlignment(E); 1414 Address Derived = 1415 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1416 CE->path_begin(), CE->path_end(), 1417 CGF.ShouldNullCheckClassCastValue(CE)); 1418 1419 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1420 // performed and the object is not of the derived type. 1421 if (CGF.sanitizePerformTypeCheck()) 1422 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1423 Derived.getPointer(), DestTy->getPointeeType()); 1424 1425 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1426 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1427 Derived.getPointer(), 1428 /*MayBeNull=*/true, 1429 CodeGenFunction::CFITCK_DerivedCast, 1430 CE->getLocStart()); 1431 1432 return Derived.getPointer(); 1433 } 1434 case CK_UncheckedDerivedToBase: 1435 case CK_DerivedToBase: { 1436 // The EmitPointerWithAlignment path does this fine; just discard 1437 // the alignment. 1438 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1439 } 1440 1441 case CK_Dynamic: { 1442 Address V = CGF.EmitPointerWithAlignment(E); 1443 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1444 return CGF.EmitDynamicCast(V, DCE); 1445 } 1446 1447 case CK_ArrayToPointerDecay: 1448 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1449 case CK_FunctionToPointerDecay: 1450 return EmitLValue(E).getPointer(); 1451 1452 case CK_NullToPointer: 1453 if (MustVisitNullValue(E)) 1454 (void) Visit(E); 1455 1456 return llvm::ConstantPointerNull::get( 1457 cast<llvm::PointerType>(ConvertType(DestTy))); 1458 1459 case CK_NullToMemberPointer: { 1460 if (MustVisitNullValue(E)) 1461 (void) Visit(E); 1462 1463 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1464 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1465 } 1466 1467 case CK_ReinterpretMemberPointer: 1468 case CK_BaseToDerivedMemberPointer: 1469 case CK_DerivedToBaseMemberPointer: { 1470 Value *Src = Visit(E); 1471 1472 // Note that the AST doesn't distinguish between checked and 1473 // unchecked member pointer conversions, so we always have to 1474 // implement checked conversions here. This is inefficient when 1475 // actual control flow may be required in order to perform the 1476 // check, which it is for data member pointers (but not member 1477 // function pointers on Itanium and ARM). 1478 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1479 } 1480 1481 case CK_ARCProduceObject: 1482 return CGF.EmitARCRetainScalarExpr(E); 1483 case CK_ARCConsumeObject: 1484 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1485 case CK_ARCReclaimReturnedObject: 1486 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1487 case CK_ARCExtendBlockObject: 1488 return CGF.EmitARCExtendBlockObject(E); 1489 1490 case CK_CopyAndAutoreleaseBlockObject: 1491 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1492 1493 case CK_FloatingRealToComplex: 1494 case CK_FloatingComplexCast: 1495 case CK_IntegralRealToComplex: 1496 case CK_IntegralComplexCast: 1497 case CK_IntegralComplexToFloatingComplex: 1498 case CK_FloatingComplexToIntegralComplex: 1499 case CK_ConstructorConversion: 1500 case CK_ToUnion: 1501 llvm_unreachable("scalar cast to non-scalar value"); 1502 1503 case CK_LValueToRValue: 1504 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1505 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1506 return Visit(const_cast<Expr*>(E)); 1507 1508 case CK_IntegralToPointer: { 1509 Value *Src = Visit(const_cast<Expr*>(E)); 1510 1511 // First, convert to the correct width so that we control the kind of 1512 // extension. 1513 llvm::Type *MiddleTy = CGF.IntPtrTy; 1514 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1515 llvm::Value* IntResult = 1516 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1517 1518 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1519 } 1520 case CK_PointerToIntegral: 1521 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1522 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1523 1524 case CK_ToVoid: { 1525 CGF.EmitIgnoredExpr(E); 1526 return nullptr; 1527 } 1528 case CK_VectorSplat: { 1529 llvm::Type *DstTy = ConvertType(DestTy); 1530 Value *Elt = Visit(const_cast<Expr*>(E)); 1531 // Splat the element across to all elements 1532 unsigned NumElements = DstTy->getVectorNumElements(); 1533 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1534 } 1535 1536 case CK_IntegralCast: 1537 case CK_IntegralToFloating: 1538 case CK_FloatingToIntegral: 1539 case CK_FloatingCast: 1540 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1541 CE->getExprLoc()); 1542 case CK_BooleanToSignedIntegral: 1543 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1544 CE->getExprLoc(), 1545 /*TreatBooleanAsSigned=*/true); 1546 case CK_IntegralToBoolean: 1547 return EmitIntToBoolConversion(Visit(E)); 1548 case CK_PointerToBoolean: 1549 return EmitPointerToBoolConversion(Visit(E)); 1550 case CK_FloatingToBoolean: 1551 return EmitFloatToBoolConversion(Visit(E)); 1552 case CK_MemberPointerToBoolean: { 1553 llvm::Value *MemPtr = Visit(E); 1554 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1555 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1556 } 1557 1558 case CK_FloatingComplexToReal: 1559 case CK_IntegralComplexToReal: 1560 return CGF.EmitComplexExpr(E, false, true).first; 1561 1562 case CK_FloatingComplexToBoolean: 1563 case CK_IntegralComplexToBoolean: { 1564 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1565 1566 // TODO: kill this function off, inline appropriate case here 1567 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1568 CE->getExprLoc()); 1569 } 1570 1571 case CK_ZeroToOCLEvent: { 1572 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1573 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1574 } 1575 1576 } 1577 1578 llvm_unreachable("unknown scalar cast"); 1579 } 1580 1581 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1582 CodeGenFunction::StmtExprEvaluation eval(CGF); 1583 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1584 !E->getType()->isVoidType()); 1585 if (!RetAlloca.isValid()) 1586 return nullptr; 1587 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1588 E->getExprLoc()); 1589 } 1590 1591 //===----------------------------------------------------------------------===// 1592 // Unary Operators 1593 //===----------------------------------------------------------------------===// 1594 1595 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1596 llvm::Value *InVal, bool IsInc) { 1597 BinOpInfo BinOp; 1598 BinOp.LHS = InVal; 1599 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1600 BinOp.Ty = E->getType(); 1601 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1602 BinOp.FPContractable = false; 1603 BinOp.E = E; 1604 return BinOp; 1605 } 1606 1607 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1608 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1609 llvm::Value *Amount = 1610 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1611 StringRef Name = IsInc ? "inc" : "dec"; 1612 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1613 case LangOptions::SOB_Defined: 1614 return Builder.CreateAdd(InVal, Amount, Name); 1615 case LangOptions::SOB_Undefined: 1616 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1617 return Builder.CreateNSWAdd(InVal, Amount, Name); 1618 // Fall through. 1619 case LangOptions::SOB_Trapping: 1620 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1621 } 1622 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1623 } 1624 1625 llvm::Value * 1626 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1627 bool isInc, bool isPre) { 1628 1629 QualType type = E->getSubExpr()->getType(); 1630 llvm::PHINode *atomicPHI = nullptr; 1631 llvm::Value *value; 1632 llvm::Value *input; 1633 1634 int amount = (isInc ? 1 : -1); 1635 1636 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1637 type = atomicTy->getValueType(); 1638 if (isInc && type->isBooleanType()) { 1639 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1640 if (isPre) { 1641 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1642 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1643 return Builder.getTrue(); 1644 } 1645 // For atomic bool increment, we just store true and return it for 1646 // preincrement, do an atomic swap with true for postincrement 1647 return Builder.CreateAtomicRMW( 1648 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1649 llvm::AtomicOrdering::SequentiallyConsistent); 1650 } 1651 // Special case for atomic increment / decrement on integers, emit 1652 // atomicrmw instructions. We skip this if we want to be doing overflow 1653 // checking, and fall into the slow path with the atomic cmpxchg loop. 1654 if (!type->isBooleanType() && type->isIntegerType() && 1655 !(type->isUnsignedIntegerType() && 1656 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1657 CGF.getLangOpts().getSignedOverflowBehavior() != 1658 LangOptions::SOB_Trapping) { 1659 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1660 llvm::AtomicRMWInst::Sub; 1661 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1662 llvm::Instruction::Sub; 1663 llvm::Value *amt = CGF.EmitToMemory( 1664 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1665 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1666 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1667 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1668 } 1669 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1670 input = value; 1671 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1672 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1673 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1674 value = CGF.EmitToMemory(value, type); 1675 Builder.CreateBr(opBB); 1676 Builder.SetInsertPoint(opBB); 1677 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1678 atomicPHI->addIncoming(value, startBB); 1679 value = atomicPHI; 1680 } else { 1681 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1682 input = value; 1683 } 1684 1685 // Special case of integer increment that we have to check first: bool++. 1686 // Due to promotion rules, we get: 1687 // bool++ -> bool = bool + 1 1688 // -> bool = (int)bool + 1 1689 // -> bool = ((int)bool + 1 != 0) 1690 // An interesting aspect of this is that increment is always true. 1691 // Decrement does not have this property. 1692 if (isInc && type->isBooleanType()) { 1693 value = Builder.getTrue(); 1694 1695 // Most common case by far: integer increment. 1696 } else if (type->isIntegerType()) { 1697 // Note that signed integer inc/dec with width less than int can't 1698 // overflow because of promotion rules; we're just eliding a few steps here. 1699 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1700 CGF.IntTy->getIntegerBitWidth(); 1701 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1702 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1703 } else if (CanOverflow && type->isUnsignedIntegerType() && 1704 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1705 value = 1706 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1707 } else { 1708 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1709 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1710 } 1711 1712 // Next most common: pointer increment. 1713 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1714 QualType type = ptr->getPointeeType(); 1715 1716 // VLA types don't have constant size. 1717 if (const VariableArrayType *vla 1718 = CGF.getContext().getAsVariableArrayType(type)) { 1719 llvm::Value *numElts = CGF.getVLASize(vla).first; 1720 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1721 if (CGF.getLangOpts().isSignedOverflowDefined()) 1722 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1723 else 1724 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1725 1726 // Arithmetic on function pointers (!) is just +-1. 1727 } else if (type->isFunctionType()) { 1728 llvm::Value *amt = Builder.getInt32(amount); 1729 1730 value = CGF.EmitCastToVoidPtr(value); 1731 if (CGF.getLangOpts().isSignedOverflowDefined()) 1732 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1733 else 1734 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1735 value = Builder.CreateBitCast(value, input->getType()); 1736 1737 // For everything else, we can just do a simple increment. 1738 } else { 1739 llvm::Value *amt = Builder.getInt32(amount); 1740 if (CGF.getLangOpts().isSignedOverflowDefined()) 1741 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1742 else 1743 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1744 } 1745 1746 // Vector increment/decrement. 1747 } else if (type->isVectorType()) { 1748 if (type->hasIntegerRepresentation()) { 1749 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1750 1751 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1752 } else { 1753 value = Builder.CreateFAdd( 1754 value, 1755 llvm::ConstantFP::get(value->getType(), amount), 1756 isInc ? "inc" : "dec"); 1757 } 1758 1759 // Floating point. 1760 } else if (type->isRealFloatingType()) { 1761 // Add the inc/dec to the real part. 1762 llvm::Value *amt; 1763 1764 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1765 // Another special case: half FP increment should be done via float 1766 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1767 value = Builder.CreateCall( 1768 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1769 CGF.CGM.FloatTy), 1770 input, "incdec.conv"); 1771 } else { 1772 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1773 } 1774 } 1775 1776 if (value->getType()->isFloatTy()) 1777 amt = llvm::ConstantFP::get(VMContext, 1778 llvm::APFloat(static_cast<float>(amount))); 1779 else if (value->getType()->isDoubleTy()) 1780 amt = llvm::ConstantFP::get(VMContext, 1781 llvm::APFloat(static_cast<double>(amount))); 1782 else { 1783 // Remaining types are Half, LongDouble or __float128. Convert from float. 1784 llvm::APFloat F(static_cast<float>(amount)); 1785 bool ignored; 1786 const llvm::fltSemantics *FS; 1787 // Don't use getFloatTypeSemantics because Half isn't 1788 // necessarily represented using the "half" LLVM type. 1789 if (value->getType()->isFP128Ty()) 1790 FS = &CGF.getTarget().getFloat128Format(); 1791 else if (value->getType()->isHalfTy()) 1792 FS = &CGF.getTarget().getHalfFormat(); 1793 else 1794 FS = &CGF.getTarget().getLongDoubleFormat(); 1795 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 1796 amt = llvm::ConstantFP::get(VMContext, F); 1797 } 1798 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1799 1800 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1801 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1802 value = Builder.CreateCall( 1803 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1804 CGF.CGM.FloatTy), 1805 value, "incdec.conv"); 1806 } else { 1807 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1808 } 1809 } 1810 1811 // Objective-C pointer types. 1812 } else { 1813 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1814 value = CGF.EmitCastToVoidPtr(value); 1815 1816 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1817 if (!isInc) size = -size; 1818 llvm::Value *sizeValue = 1819 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1820 1821 if (CGF.getLangOpts().isSignedOverflowDefined()) 1822 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1823 else 1824 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1825 value = Builder.CreateBitCast(value, input->getType()); 1826 } 1827 1828 if (atomicPHI) { 1829 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1830 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1831 auto Pair = CGF.EmitAtomicCompareExchange( 1832 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1833 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1834 llvm::Value *success = Pair.second; 1835 atomicPHI->addIncoming(old, opBB); 1836 Builder.CreateCondBr(success, contBB, opBB); 1837 Builder.SetInsertPoint(contBB); 1838 return isPre ? value : input; 1839 } 1840 1841 // Store the updated result through the lvalue. 1842 if (LV.isBitField()) 1843 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1844 else 1845 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1846 1847 // If this is a postinc, return the value read from memory, otherwise use the 1848 // updated value. 1849 return isPre ? value : input; 1850 } 1851 1852 1853 1854 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1855 TestAndClearIgnoreResultAssign(); 1856 // Emit unary minus with EmitSub so we handle overflow cases etc. 1857 BinOpInfo BinOp; 1858 BinOp.RHS = Visit(E->getSubExpr()); 1859 1860 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1861 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1862 else 1863 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1864 BinOp.Ty = E->getType(); 1865 BinOp.Opcode = BO_Sub; 1866 BinOp.FPContractable = false; 1867 BinOp.E = E; 1868 return EmitSub(BinOp); 1869 } 1870 1871 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1872 TestAndClearIgnoreResultAssign(); 1873 Value *Op = Visit(E->getSubExpr()); 1874 return Builder.CreateNot(Op, "neg"); 1875 } 1876 1877 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1878 // Perform vector logical not on comparison with zero vector. 1879 if (E->getType()->isExtVectorType()) { 1880 Value *Oper = Visit(E->getSubExpr()); 1881 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1882 Value *Result; 1883 if (Oper->getType()->isFPOrFPVectorTy()) 1884 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1885 else 1886 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1887 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1888 } 1889 1890 // Compare operand to zero. 1891 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1892 1893 // Invert value. 1894 // TODO: Could dynamically modify easy computations here. For example, if 1895 // the operand is an icmp ne, turn into icmp eq. 1896 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1897 1898 // ZExt result to the expr type. 1899 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1900 } 1901 1902 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1903 // Try folding the offsetof to a constant. 1904 llvm::APSInt Value; 1905 if (E->EvaluateAsInt(Value, CGF.getContext())) 1906 return Builder.getInt(Value); 1907 1908 // Loop over the components of the offsetof to compute the value. 1909 unsigned n = E->getNumComponents(); 1910 llvm::Type* ResultType = ConvertType(E->getType()); 1911 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1912 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1913 for (unsigned i = 0; i != n; ++i) { 1914 OffsetOfNode ON = E->getComponent(i); 1915 llvm::Value *Offset = nullptr; 1916 switch (ON.getKind()) { 1917 case OffsetOfNode::Array: { 1918 // Compute the index 1919 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1920 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1921 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1922 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1923 1924 // Save the element type 1925 CurrentType = 1926 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1927 1928 // Compute the element size 1929 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1930 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1931 1932 // Multiply out to compute the result 1933 Offset = Builder.CreateMul(Idx, ElemSize); 1934 break; 1935 } 1936 1937 case OffsetOfNode::Field: { 1938 FieldDecl *MemberDecl = ON.getField(); 1939 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1940 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1941 1942 // Compute the index of the field in its parent. 1943 unsigned i = 0; 1944 // FIXME: It would be nice if we didn't have to loop here! 1945 for (RecordDecl::field_iterator Field = RD->field_begin(), 1946 FieldEnd = RD->field_end(); 1947 Field != FieldEnd; ++Field, ++i) { 1948 if (*Field == MemberDecl) 1949 break; 1950 } 1951 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1952 1953 // Compute the offset to the field 1954 int64_t OffsetInt = RL.getFieldOffset(i) / 1955 CGF.getContext().getCharWidth(); 1956 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1957 1958 // Save the element type. 1959 CurrentType = MemberDecl->getType(); 1960 break; 1961 } 1962 1963 case OffsetOfNode::Identifier: 1964 llvm_unreachable("dependent __builtin_offsetof"); 1965 1966 case OffsetOfNode::Base: { 1967 if (ON.getBase()->isVirtual()) { 1968 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1969 continue; 1970 } 1971 1972 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1973 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1974 1975 // Save the element type. 1976 CurrentType = ON.getBase()->getType(); 1977 1978 // Compute the offset to the base. 1979 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1980 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1981 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1982 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1983 break; 1984 } 1985 } 1986 Result = Builder.CreateAdd(Result, Offset); 1987 } 1988 return Result; 1989 } 1990 1991 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1992 /// argument of the sizeof expression as an integer. 1993 Value * 1994 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1995 const UnaryExprOrTypeTraitExpr *E) { 1996 QualType TypeToSize = E->getTypeOfArgument(); 1997 if (E->getKind() == UETT_SizeOf) { 1998 if (const VariableArrayType *VAT = 1999 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2000 if (E->isArgumentType()) { 2001 // sizeof(type) - make sure to emit the VLA size. 2002 CGF.EmitVariablyModifiedType(TypeToSize); 2003 } else { 2004 // C99 6.5.3.4p2: If the argument is an expression of type 2005 // VLA, it is evaluated. 2006 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2007 } 2008 2009 QualType eltType; 2010 llvm::Value *numElts; 2011 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2012 2013 llvm::Value *size = numElts; 2014 2015 // Scale the number of non-VLA elements by the non-VLA element size. 2016 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2017 if (!eltSize.isOne()) 2018 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2019 2020 return size; 2021 } 2022 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2023 auto Alignment = 2024 CGF.getContext() 2025 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2026 E->getTypeOfArgument()->getPointeeType())) 2027 .getQuantity(); 2028 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2029 } 2030 2031 // If this isn't sizeof(vla), the result must be constant; use the constant 2032 // folding logic so we don't have to duplicate it here. 2033 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2034 } 2035 2036 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2037 Expr *Op = E->getSubExpr(); 2038 if (Op->getType()->isAnyComplexType()) { 2039 // If it's an l-value, load through the appropriate subobject l-value. 2040 // Note that we have to ask E because Op might be an l-value that 2041 // this won't work for, e.g. an Obj-C property. 2042 if (E->isGLValue()) 2043 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2044 E->getExprLoc()).getScalarVal(); 2045 2046 // Otherwise, calculate and project. 2047 return CGF.EmitComplexExpr(Op, false, true).first; 2048 } 2049 2050 return Visit(Op); 2051 } 2052 2053 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2054 Expr *Op = E->getSubExpr(); 2055 if (Op->getType()->isAnyComplexType()) { 2056 // If it's an l-value, load through the appropriate subobject l-value. 2057 // Note that we have to ask E because Op might be an l-value that 2058 // this won't work for, e.g. an Obj-C property. 2059 if (Op->isGLValue()) 2060 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2061 E->getExprLoc()).getScalarVal(); 2062 2063 // Otherwise, calculate and project. 2064 return CGF.EmitComplexExpr(Op, true, false).second; 2065 } 2066 2067 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2068 // effects are evaluated, but not the actual value. 2069 if (Op->isGLValue()) 2070 CGF.EmitLValue(Op); 2071 else 2072 CGF.EmitScalarExpr(Op, true); 2073 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2074 } 2075 2076 //===----------------------------------------------------------------------===// 2077 // Binary Operators 2078 //===----------------------------------------------------------------------===// 2079 2080 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2081 TestAndClearIgnoreResultAssign(); 2082 BinOpInfo Result; 2083 Result.LHS = Visit(E->getLHS()); 2084 Result.RHS = Visit(E->getRHS()); 2085 Result.Ty = E->getType(); 2086 Result.Opcode = E->getOpcode(); 2087 Result.FPContractable = E->isFPContractable(); 2088 Result.E = E; 2089 return Result; 2090 } 2091 2092 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2093 const CompoundAssignOperator *E, 2094 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2095 Value *&Result) { 2096 QualType LHSTy = E->getLHS()->getType(); 2097 BinOpInfo OpInfo; 2098 2099 if (E->getComputationResultType()->isAnyComplexType()) 2100 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2101 2102 // Emit the RHS first. __block variables need to have the rhs evaluated 2103 // first, plus this should improve codegen a little. 2104 OpInfo.RHS = Visit(E->getRHS()); 2105 OpInfo.Ty = E->getComputationResultType(); 2106 OpInfo.Opcode = E->getOpcode(); 2107 OpInfo.FPContractable = E->isFPContractable(); 2108 OpInfo.E = E; 2109 // Load/convert the LHS. 2110 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2111 2112 llvm::PHINode *atomicPHI = nullptr; 2113 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2114 QualType type = atomicTy->getValueType(); 2115 if (!type->isBooleanType() && type->isIntegerType() && 2116 !(type->isUnsignedIntegerType() && 2117 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2118 CGF.getLangOpts().getSignedOverflowBehavior() != 2119 LangOptions::SOB_Trapping) { 2120 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2121 switch (OpInfo.Opcode) { 2122 // We don't have atomicrmw operands for *, %, /, <<, >> 2123 case BO_MulAssign: case BO_DivAssign: 2124 case BO_RemAssign: 2125 case BO_ShlAssign: 2126 case BO_ShrAssign: 2127 break; 2128 case BO_AddAssign: 2129 aop = llvm::AtomicRMWInst::Add; 2130 break; 2131 case BO_SubAssign: 2132 aop = llvm::AtomicRMWInst::Sub; 2133 break; 2134 case BO_AndAssign: 2135 aop = llvm::AtomicRMWInst::And; 2136 break; 2137 case BO_XorAssign: 2138 aop = llvm::AtomicRMWInst::Xor; 2139 break; 2140 case BO_OrAssign: 2141 aop = llvm::AtomicRMWInst::Or; 2142 break; 2143 default: 2144 llvm_unreachable("Invalid compound assignment type"); 2145 } 2146 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2147 llvm::Value *amt = CGF.EmitToMemory( 2148 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2149 E->getExprLoc()), 2150 LHSTy); 2151 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2152 llvm::AtomicOrdering::SequentiallyConsistent); 2153 return LHSLV; 2154 } 2155 } 2156 // FIXME: For floating point types, we should be saving and restoring the 2157 // floating point environment in the loop. 2158 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2159 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2160 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2161 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2162 Builder.CreateBr(opBB); 2163 Builder.SetInsertPoint(opBB); 2164 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2165 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2166 OpInfo.LHS = atomicPHI; 2167 } 2168 else 2169 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2170 2171 SourceLocation Loc = E->getExprLoc(); 2172 OpInfo.LHS = 2173 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2174 2175 // Expand the binary operator. 2176 Result = (this->*Func)(OpInfo); 2177 2178 // Convert the result back to the LHS type. 2179 Result = 2180 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2181 2182 if (atomicPHI) { 2183 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2184 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2185 auto Pair = CGF.EmitAtomicCompareExchange( 2186 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2187 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2188 llvm::Value *success = Pair.second; 2189 atomicPHI->addIncoming(old, opBB); 2190 Builder.CreateCondBr(success, contBB, opBB); 2191 Builder.SetInsertPoint(contBB); 2192 return LHSLV; 2193 } 2194 2195 // Store the result value into the LHS lvalue. Bit-fields are handled 2196 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2197 // 'An assignment expression has the value of the left operand after the 2198 // assignment...'. 2199 if (LHSLV.isBitField()) 2200 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2201 else 2202 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2203 2204 return LHSLV; 2205 } 2206 2207 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2208 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2209 bool Ignore = TestAndClearIgnoreResultAssign(); 2210 Value *RHS; 2211 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2212 2213 // If the result is clearly ignored, return now. 2214 if (Ignore) 2215 return nullptr; 2216 2217 // The result of an assignment in C is the assigned r-value. 2218 if (!CGF.getLangOpts().CPlusPlus) 2219 return RHS; 2220 2221 // If the lvalue is non-volatile, return the computed value of the assignment. 2222 if (!LHS.isVolatileQualified()) 2223 return RHS; 2224 2225 // Otherwise, reload the value. 2226 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2227 } 2228 2229 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2230 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2231 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2232 2233 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2234 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2235 SanitizerKind::IntegerDivideByZero)); 2236 } 2237 2238 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2239 Ops.Ty->hasSignedIntegerRepresentation()) { 2240 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2241 2242 llvm::Value *IntMin = 2243 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2244 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2245 2246 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2247 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2248 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2249 Checks.push_back( 2250 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2251 } 2252 2253 if (Checks.size() > 0) 2254 EmitBinOpCheck(Checks, Ops); 2255 } 2256 2257 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2258 { 2259 CodeGenFunction::SanitizerScope SanScope(&CGF); 2260 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2261 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2262 Ops.Ty->isIntegerType()) { 2263 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2264 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2265 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2266 Ops.Ty->isRealFloatingType()) { 2267 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2268 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2269 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2270 Ops); 2271 } 2272 } 2273 2274 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2275 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2276 if (CGF.getLangOpts().OpenCL) { 2277 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2278 llvm::Type *ValTy = Val->getType(); 2279 if (ValTy->isFloatTy() || 2280 (isa<llvm::VectorType>(ValTy) && 2281 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2282 CGF.SetFPAccuracy(Val, 2.5); 2283 } 2284 return Val; 2285 } 2286 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2287 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2288 else 2289 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2290 } 2291 2292 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2293 // Rem in C can't be a floating point type: C99 6.5.5p2. 2294 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2295 CodeGenFunction::SanitizerScope SanScope(&CGF); 2296 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2297 2298 if (Ops.Ty->isIntegerType()) 2299 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2300 } 2301 2302 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2303 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2304 else 2305 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2306 } 2307 2308 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2309 unsigned IID; 2310 unsigned OpID = 0; 2311 2312 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2313 switch (Ops.Opcode) { 2314 case BO_Add: 2315 case BO_AddAssign: 2316 OpID = 1; 2317 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2318 llvm::Intrinsic::uadd_with_overflow; 2319 break; 2320 case BO_Sub: 2321 case BO_SubAssign: 2322 OpID = 2; 2323 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2324 llvm::Intrinsic::usub_with_overflow; 2325 break; 2326 case BO_Mul: 2327 case BO_MulAssign: 2328 OpID = 3; 2329 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2330 llvm::Intrinsic::umul_with_overflow; 2331 break; 2332 default: 2333 llvm_unreachable("Unsupported operation for overflow detection"); 2334 } 2335 OpID <<= 1; 2336 if (isSigned) 2337 OpID |= 1; 2338 2339 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2340 2341 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2342 2343 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2344 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2345 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2346 2347 // Handle overflow with llvm.trap if no custom handler has been specified. 2348 const std::string *handlerName = 2349 &CGF.getLangOpts().OverflowHandler; 2350 if (handlerName->empty()) { 2351 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2352 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2353 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2354 CodeGenFunction::SanitizerScope SanScope(&CGF); 2355 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2356 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2357 : SanitizerKind::UnsignedIntegerOverflow; 2358 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2359 } else 2360 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2361 return result; 2362 } 2363 2364 // Branch in case of overflow. 2365 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2366 llvm::Function::iterator insertPt = initialBB->getIterator(); 2367 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2368 &*std::next(insertPt)); 2369 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2370 2371 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2372 2373 // If an overflow handler is set, then we want to call it and then use its 2374 // result, if it returns. 2375 Builder.SetInsertPoint(overflowBB); 2376 2377 // Get the overflow handler. 2378 llvm::Type *Int8Ty = CGF.Int8Ty; 2379 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2380 llvm::FunctionType *handlerTy = 2381 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2382 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2383 2384 // Sign extend the args to 64-bit, so that we can use the same handler for 2385 // all types of overflow. 2386 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2387 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2388 2389 // Call the handler with the two arguments, the operation, and the size of 2390 // the result. 2391 llvm::Value *handlerArgs[] = { 2392 lhs, 2393 rhs, 2394 Builder.getInt8(OpID), 2395 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2396 }; 2397 llvm::Value *handlerResult = 2398 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2399 2400 // Truncate the result back to the desired size. 2401 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2402 Builder.CreateBr(continueBB); 2403 2404 Builder.SetInsertPoint(continueBB); 2405 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2406 phi->addIncoming(result, initialBB); 2407 phi->addIncoming(handlerResult, overflowBB); 2408 2409 return phi; 2410 } 2411 2412 /// Emit pointer + index arithmetic. 2413 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2414 const BinOpInfo &op, 2415 bool isSubtraction) { 2416 // Must have binary (not unary) expr here. Unary pointer 2417 // increment/decrement doesn't use this path. 2418 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2419 2420 Value *pointer = op.LHS; 2421 Expr *pointerOperand = expr->getLHS(); 2422 Value *index = op.RHS; 2423 Expr *indexOperand = expr->getRHS(); 2424 2425 // In a subtraction, the LHS is always the pointer. 2426 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2427 std::swap(pointer, index); 2428 std::swap(pointerOperand, indexOperand); 2429 } 2430 2431 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2432 if (width != CGF.PointerWidthInBits) { 2433 // Zero-extend or sign-extend the pointer value according to 2434 // whether the index is signed or not. 2435 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2436 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2437 "idx.ext"); 2438 } 2439 2440 // If this is subtraction, negate the index. 2441 if (isSubtraction) 2442 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2443 2444 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2445 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2446 /*Accessed*/ false); 2447 2448 const PointerType *pointerType 2449 = pointerOperand->getType()->getAs<PointerType>(); 2450 if (!pointerType) { 2451 QualType objectType = pointerOperand->getType() 2452 ->castAs<ObjCObjectPointerType>() 2453 ->getPointeeType(); 2454 llvm::Value *objectSize 2455 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2456 2457 index = CGF.Builder.CreateMul(index, objectSize); 2458 2459 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2460 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2461 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2462 } 2463 2464 QualType elementType = pointerType->getPointeeType(); 2465 if (const VariableArrayType *vla 2466 = CGF.getContext().getAsVariableArrayType(elementType)) { 2467 // The element count here is the total number of non-VLA elements. 2468 llvm::Value *numElements = CGF.getVLASize(vla).first; 2469 2470 // Effectively, the multiply by the VLA size is part of the GEP. 2471 // GEP indexes are signed, and scaling an index isn't permitted to 2472 // signed-overflow, so we use the same semantics for our explicit 2473 // multiply. We suppress this if overflow is not undefined behavior. 2474 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2475 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2476 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2477 } else { 2478 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2479 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2480 } 2481 return pointer; 2482 } 2483 2484 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2485 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2486 // future proof. 2487 if (elementType->isVoidType() || elementType->isFunctionType()) { 2488 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2489 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2490 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2491 } 2492 2493 if (CGF.getLangOpts().isSignedOverflowDefined()) 2494 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2495 2496 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2497 } 2498 2499 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2500 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2501 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2502 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2503 // efficient operations. 2504 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2505 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2506 bool negMul, bool negAdd) { 2507 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2508 2509 Value *MulOp0 = MulOp->getOperand(0); 2510 Value *MulOp1 = MulOp->getOperand(1); 2511 if (negMul) { 2512 MulOp0 = 2513 Builder.CreateFSub( 2514 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2515 "neg"); 2516 } else if (negAdd) { 2517 Addend = 2518 Builder.CreateFSub( 2519 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2520 "neg"); 2521 } 2522 2523 Value *FMulAdd = Builder.CreateCall( 2524 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2525 {MulOp0, MulOp1, Addend}); 2526 MulOp->eraseFromParent(); 2527 2528 return FMulAdd; 2529 } 2530 2531 // Check whether it would be legal to emit an fmuladd intrinsic call to 2532 // represent op and if so, build the fmuladd. 2533 // 2534 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2535 // Does NOT check the type of the operation - it's assumed that this function 2536 // will be called from contexts where it's known that the type is contractable. 2537 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2538 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2539 bool isSub=false) { 2540 2541 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2542 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2543 "Only fadd/fsub can be the root of an fmuladd."); 2544 2545 // Check whether this op is marked as fusable. 2546 if (!op.FPContractable) 2547 return nullptr; 2548 2549 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2550 // either disabled, or handled entirely by the LLVM backend). 2551 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2552 return nullptr; 2553 2554 // We have a potentially fusable op. Look for a mul on one of the operands. 2555 // Also, make sure that the mul result isn't used directly. In that case, 2556 // there's no point creating a muladd operation. 2557 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2558 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2559 LHSBinOp->use_empty()) 2560 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2561 } 2562 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2563 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2564 RHSBinOp->use_empty()) 2565 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2566 } 2567 2568 return nullptr; 2569 } 2570 2571 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2572 if (op.LHS->getType()->isPointerTy() || 2573 op.RHS->getType()->isPointerTy()) 2574 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2575 2576 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2577 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2578 case LangOptions::SOB_Defined: 2579 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2580 case LangOptions::SOB_Undefined: 2581 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2582 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2583 // Fall through. 2584 case LangOptions::SOB_Trapping: 2585 return EmitOverflowCheckedBinOp(op); 2586 } 2587 } 2588 2589 if (op.Ty->isUnsignedIntegerType() && 2590 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2591 return EmitOverflowCheckedBinOp(op); 2592 2593 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2594 // Try to form an fmuladd. 2595 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2596 return FMulAdd; 2597 2598 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2599 } 2600 2601 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2602 } 2603 2604 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2605 // The LHS is always a pointer if either side is. 2606 if (!op.LHS->getType()->isPointerTy()) { 2607 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2608 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2609 case LangOptions::SOB_Defined: 2610 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2611 case LangOptions::SOB_Undefined: 2612 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2613 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2614 // Fall through. 2615 case LangOptions::SOB_Trapping: 2616 return EmitOverflowCheckedBinOp(op); 2617 } 2618 } 2619 2620 if (op.Ty->isUnsignedIntegerType() && 2621 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2622 return EmitOverflowCheckedBinOp(op); 2623 2624 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2625 // Try to form an fmuladd. 2626 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2627 return FMulAdd; 2628 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2629 } 2630 2631 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2632 } 2633 2634 // If the RHS is not a pointer, then we have normal pointer 2635 // arithmetic. 2636 if (!op.RHS->getType()->isPointerTy()) 2637 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2638 2639 // Otherwise, this is a pointer subtraction. 2640 2641 // Do the raw subtraction part. 2642 llvm::Value *LHS 2643 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2644 llvm::Value *RHS 2645 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2646 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2647 2648 // Okay, figure out the element size. 2649 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2650 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2651 2652 llvm::Value *divisor = nullptr; 2653 2654 // For a variable-length array, this is going to be non-constant. 2655 if (const VariableArrayType *vla 2656 = CGF.getContext().getAsVariableArrayType(elementType)) { 2657 llvm::Value *numElements; 2658 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2659 2660 divisor = numElements; 2661 2662 // Scale the number of non-VLA elements by the non-VLA element size. 2663 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2664 if (!eltSize.isOne()) 2665 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2666 2667 // For everything elese, we can just compute it, safe in the 2668 // assumption that Sema won't let anything through that we can't 2669 // safely compute the size of. 2670 } else { 2671 CharUnits elementSize; 2672 // Handle GCC extension for pointer arithmetic on void* and 2673 // function pointer types. 2674 if (elementType->isVoidType() || elementType->isFunctionType()) 2675 elementSize = CharUnits::One(); 2676 else 2677 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2678 2679 // Don't even emit the divide for element size of 1. 2680 if (elementSize.isOne()) 2681 return diffInChars; 2682 2683 divisor = CGF.CGM.getSize(elementSize); 2684 } 2685 2686 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2687 // pointer difference in C is only defined in the case where both operands 2688 // are pointing to elements of an array. 2689 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2690 } 2691 2692 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2693 llvm::IntegerType *Ty; 2694 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2695 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2696 else 2697 Ty = cast<llvm::IntegerType>(LHS->getType()); 2698 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2699 } 2700 2701 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2702 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2703 // RHS to the same size as the LHS. 2704 Value *RHS = Ops.RHS; 2705 if (Ops.LHS->getType() != RHS->getType()) 2706 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2707 2708 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2709 Ops.Ty->hasSignedIntegerRepresentation(); 2710 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2711 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2712 if (CGF.getLangOpts().OpenCL) 2713 RHS = 2714 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2715 else if ((SanitizeBase || SanitizeExponent) && 2716 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2717 CodeGenFunction::SanitizerScope SanScope(&CGF); 2718 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2719 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2720 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2721 2722 if (SanitizeExponent) { 2723 Checks.push_back( 2724 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2725 } 2726 2727 if (SanitizeBase) { 2728 // Check whether we are shifting any non-zero bits off the top of the 2729 // integer. We only emit this check if exponent is valid - otherwise 2730 // instructions below will have undefined behavior themselves. 2731 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2732 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2733 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2734 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2735 CGF.EmitBlock(CheckShiftBase); 2736 llvm::Value *BitsShiftedOff = 2737 Builder.CreateLShr(Ops.LHS, 2738 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2739 /*NUW*/true, /*NSW*/true), 2740 "shl.check"); 2741 if (CGF.getLangOpts().CPlusPlus) { 2742 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2743 // Under C++11's rules, shifting a 1 bit into the sign bit is 2744 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2745 // define signed left shifts, so we use the C99 and C++11 rules there). 2746 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2747 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2748 } 2749 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2750 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2751 CGF.EmitBlock(Cont); 2752 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2753 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2754 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2755 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2756 } 2757 2758 assert(!Checks.empty()); 2759 EmitBinOpCheck(Checks, Ops); 2760 } 2761 2762 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2763 } 2764 2765 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2766 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2767 // RHS to the same size as the LHS. 2768 Value *RHS = Ops.RHS; 2769 if (Ops.LHS->getType() != RHS->getType()) 2770 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2771 2772 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2773 if (CGF.getLangOpts().OpenCL) 2774 RHS = 2775 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2776 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2777 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2778 CodeGenFunction::SanitizerScope SanScope(&CGF); 2779 llvm::Value *Valid = 2780 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2781 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2782 } 2783 2784 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2785 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2786 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2787 } 2788 2789 enum IntrinsicType { VCMPEQ, VCMPGT }; 2790 // return corresponding comparison intrinsic for given vector type 2791 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2792 BuiltinType::Kind ElemKind) { 2793 switch (ElemKind) { 2794 default: llvm_unreachable("unexpected element type"); 2795 case BuiltinType::Char_U: 2796 case BuiltinType::UChar: 2797 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2798 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2799 case BuiltinType::Char_S: 2800 case BuiltinType::SChar: 2801 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2802 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2803 case BuiltinType::UShort: 2804 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2805 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2806 case BuiltinType::Short: 2807 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2808 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2809 case BuiltinType::UInt: 2810 case BuiltinType::ULong: 2811 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2812 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2813 case BuiltinType::Int: 2814 case BuiltinType::Long: 2815 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2816 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2817 case BuiltinType::Float: 2818 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2819 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2820 } 2821 } 2822 2823 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 2824 llvm::CmpInst::Predicate UICmpOpc, 2825 llvm::CmpInst::Predicate SICmpOpc, 2826 llvm::CmpInst::Predicate FCmpOpc) { 2827 TestAndClearIgnoreResultAssign(); 2828 Value *Result; 2829 QualType LHSTy = E->getLHS()->getType(); 2830 QualType RHSTy = E->getRHS()->getType(); 2831 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2832 assert(E->getOpcode() == BO_EQ || 2833 E->getOpcode() == BO_NE); 2834 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2835 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2836 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2837 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2838 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2839 Value *LHS = Visit(E->getLHS()); 2840 Value *RHS = Visit(E->getRHS()); 2841 2842 // If AltiVec, the comparison results in a numeric type, so we use 2843 // intrinsics comparing vectors and giving 0 or 1 as a result 2844 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2845 // constants for mapping CR6 register bits to predicate result 2846 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2847 2848 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2849 2850 // in several cases vector arguments order will be reversed 2851 Value *FirstVecArg = LHS, 2852 *SecondVecArg = RHS; 2853 2854 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2855 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2856 BuiltinType::Kind ElementKind = BTy->getKind(); 2857 2858 switch(E->getOpcode()) { 2859 default: llvm_unreachable("is not a comparison operation"); 2860 case BO_EQ: 2861 CR6 = CR6_LT; 2862 ID = GetIntrinsic(VCMPEQ, ElementKind); 2863 break; 2864 case BO_NE: 2865 CR6 = CR6_EQ; 2866 ID = GetIntrinsic(VCMPEQ, ElementKind); 2867 break; 2868 case BO_LT: 2869 CR6 = CR6_LT; 2870 ID = GetIntrinsic(VCMPGT, ElementKind); 2871 std::swap(FirstVecArg, SecondVecArg); 2872 break; 2873 case BO_GT: 2874 CR6 = CR6_LT; 2875 ID = GetIntrinsic(VCMPGT, ElementKind); 2876 break; 2877 case BO_LE: 2878 if (ElementKind == BuiltinType::Float) { 2879 CR6 = CR6_LT; 2880 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2881 std::swap(FirstVecArg, SecondVecArg); 2882 } 2883 else { 2884 CR6 = CR6_EQ; 2885 ID = GetIntrinsic(VCMPGT, ElementKind); 2886 } 2887 break; 2888 case BO_GE: 2889 if (ElementKind == BuiltinType::Float) { 2890 CR6 = CR6_LT; 2891 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2892 } 2893 else { 2894 CR6 = CR6_EQ; 2895 ID = GetIntrinsic(VCMPGT, ElementKind); 2896 std::swap(FirstVecArg, SecondVecArg); 2897 } 2898 break; 2899 } 2900 2901 Value *CR6Param = Builder.getInt32(CR6); 2902 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2903 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2904 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2905 E->getExprLoc()); 2906 } 2907 2908 if (LHS->getType()->isFPOrFPVectorTy()) { 2909 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 2910 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2911 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 2912 } else { 2913 // Unsigned integers and pointers. 2914 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 2915 } 2916 2917 // If this is a vector comparison, sign extend the result to the appropriate 2918 // vector integer type and return it (don't convert to bool). 2919 if (LHSTy->isVectorType()) 2920 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2921 2922 } else { 2923 // Complex Comparison: can only be an equality comparison. 2924 CodeGenFunction::ComplexPairTy LHS, RHS; 2925 QualType CETy; 2926 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2927 LHS = CGF.EmitComplexExpr(E->getLHS()); 2928 CETy = CTy->getElementType(); 2929 } else { 2930 LHS.first = Visit(E->getLHS()); 2931 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2932 CETy = LHSTy; 2933 } 2934 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2935 RHS = CGF.EmitComplexExpr(E->getRHS()); 2936 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2937 CTy->getElementType()) && 2938 "The element types must always match."); 2939 (void)CTy; 2940 } else { 2941 RHS.first = Visit(E->getRHS()); 2942 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2943 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2944 "The element types must always match."); 2945 } 2946 2947 Value *ResultR, *ResultI; 2948 if (CETy->isRealFloatingType()) { 2949 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 2950 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 2951 } else { 2952 // Complex comparisons can only be equality comparisons. As such, signed 2953 // and unsigned opcodes are the same. 2954 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 2955 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 2956 } 2957 2958 if (E->getOpcode() == BO_EQ) { 2959 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2960 } else { 2961 assert(E->getOpcode() == BO_NE && 2962 "Complex comparison other than == or != ?"); 2963 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2964 } 2965 } 2966 2967 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2968 E->getExprLoc()); 2969 } 2970 2971 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2972 bool Ignore = TestAndClearIgnoreResultAssign(); 2973 2974 Value *RHS; 2975 LValue LHS; 2976 2977 switch (E->getLHS()->getType().getObjCLifetime()) { 2978 case Qualifiers::OCL_Strong: 2979 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2980 break; 2981 2982 case Qualifiers::OCL_Autoreleasing: 2983 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2984 break; 2985 2986 case Qualifiers::OCL_ExplicitNone: 2987 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 2988 break; 2989 2990 case Qualifiers::OCL_Weak: 2991 RHS = Visit(E->getRHS()); 2992 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2993 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2994 break; 2995 2996 case Qualifiers::OCL_None: 2997 // __block variables need to have the rhs evaluated first, plus 2998 // this should improve codegen just a little. 2999 RHS = Visit(E->getRHS()); 3000 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3001 3002 // Store the value into the LHS. Bit-fields are handled specially 3003 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3004 // 'An assignment expression has the value of the left operand after 3005 // the assignment...'. 3006 if (LHS.isBitField()) 3007 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3008 else 3009 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3010 } 3011 3012 // If the result is clearly ignored, return now. 3013 if (Ignore) 3014 return nullptr; 3015 3016 // The result of an assignment in C is the assigned r-value. 3017 if (!CGF.getLangOpts().CPlusPlus) 3018 return RHS; 3019 3020 // If the lvalue is non-volatile, return the computed value of the assignment. 3021 if (!LHS.isVolatileQualified()) 3022 return RHS; 3023 3024 // Otherwise, reload the value. 3025 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3026 } 3027 3028 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3029 // Perform vector logical and on comparisons with zero vectors. 3030 if (E->getType()->isVectorType()) { 3031 CGF.incrementProfileCounter(E); 3032 3033 Value *LHS = Visit(E->getLHS()); 3034 Value *RHS = Visit(E->getRHS()); 3035 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3036 if (LHS->getType()->isFPOrFPVectorTy()) { 3037 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3038 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3039 } else { 3040 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3041 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3042 } 3043 Value *And = Builder.CreateAnd(LHS, RHS); 3044 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3045 } 3046 3047 llvm::Type *ResTy = ConvertType(E->getType()); 3048 3049 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3050 // If we have 1 && X, just emit X without inserting the control flow. 3051 bool LHSCondVal; 3052 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3053 if (LHSCondVal) { // If we have 1 && X, just emit X. 3054 CGF.incrementProfileCounter(E); 3055 3056 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3057 // ZExt result to int or bool. 3058 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3059 } 3060 3061 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3062 if (!CGF.ContainsLabel(E->getRHS())) 3063 return llvm::Constant::getNullValue(ResTy); 3064 } 3065 3066 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3067 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3068 3069 CodeGenFunction::ConditionalEvaluation eval(CGF); 3070 3071 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3072 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3073 CGF.getProfileCount(E->getRHS())); 3074 3075 // Any edges into the ContBlock are now from an (indeterminate number of) 3076 // edges from this first condition. All of these values will be false. Start 3077 // setting up the PHI node in the Cont Block for this. 3078 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3079 "", ContBlock); 3080 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3081 PI != PE; ++PI) 3082 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3083 3084 eval.begin(CGF); 3085 CGF.EmitBlock(RHSBlock); 3086 CGF.incrementProfileCounter(E); 3087 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3088 eval.end(CGF); 3089 3090 // Reaquire the RHS block, as there may be subblocks inserted. 3091 RHSBlock = Builder.GetInsertBlock(); 3092 3093 // Emit an unconditional branch from this block to ContBlock. 3094 { 3095 // There is no need to emit line number for unconditional branch. 3096 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3097 CGF.EmitBlock(ContBlock); 3098 } 3099 // Insert an entry into the phi node for the edge with the value of RHSCond. 3100 PN->addIncoming(RHSCond, RHSBlock); 3101 3102 // ZExt result to int. 3103 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3104 } 3105 3106 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3107 // Perform vector logical or on comparisons with zero vectors. 3108 if (E->getType()->isVectorType()) { 3109 CGF.incrementProfileCounter(E); 3110 3111 Value *LHS = Visit(E->getLHS()); 3112 Value *RHS = Visit(E->getRHS()); 3113 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3114 if (LHS->getType()->isFPOrFPVectorTy()) { 3115 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3116 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3117 } else { 3118 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3119 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3120 } 3121 Value *Or = Builder.CreateOr(LHS, RHS); 3122 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3123 } 3124 3125 llvm::Type *ResTy = ConvertType(E->getType()); 3126 3127 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3128 // If we have 0 || X, just emit X without inserting the control flow. 3129 bool LHSCondVal; 3130 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3131 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3132 CGF.incrementProfileCounter(E); 3133 3134 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3135 // ZExt result to int or bool. 3136 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3137 } 3138 3139 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3140 if (!CGF.ContainsLabel(E->getRHS())) 3141 return llvm::ConstantInt::get(ResTy, 1); 3142 } 3143 3144 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3145 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3146 3147 CodeGenFunction::ConditionalEvaluation eval(CGF); 3148 3149 // Branch on the LHS first. If it is true, go to the success (cont) block. 3150 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3151 CGF.getCurrentProfileCount() - 3152 CGF.getProfileCount(E->getRHS())); 3153 3154 // Any edges into the ContBlock are now from an (indeterminate number of) 3155 // edges from this first condition. All of these values will be true. Start 3156 // setting up the PHI node in the Cont Block for this. 3157 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3158 "", ContBlock); 3159 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3160 PI != PE; ++PI) 3161 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3162 3163 eval.begin(CGF); 3164 3165 // Emit the RHS condition as a bool value. 3166 CGF.EmitBlock(RHSBlock); 3167 CGF.incrementProfileCounter(E); 3168 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3169 3170 eval.end(CGF); 3171 3172 // Reaquire the RHS block, as there may be subblocks inserted. 3173 RHSBlock = Builder.GetInsertBlock(); 3174 3175 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3176 // into the phi node for the edge with the value of RHSCond. 3177 CGF.EmitBlock(ContBlock); 3178 PN->addIncoming(RHSCond, RHSBlock); 3179 3180 // ZExt result to int. 3181 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3182 } 3183 3184 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3185 CGF.EmitIgnoredExpr(E->getLHS()); 3186 CGF.EnsureInsertPoint(); 3187 return Visit(E->getRHS()); 3188 } 3189 3190 //===----------------------------------------------------------------------===// 3191 // Other Operators 3192 //===----------------------------------------------------------------------===// 3193 3194 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3195 /// expression is cheap enough and side-effect-free enough to evaluate 3196 /// unconditionally instead of conditionally. This is used to convert control 3197 /// flow into selects in some cases. 3198 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3199 CodeGenFunction &CGF) { 3200 // Anything that is an integer or floating point constant is fine. 3201 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3202 3203 // Even non-volatile automatic variables can't be evaluated unconditionally. 3204 // Referencing a thread_local may cause non-trivial initialization work to 3205 // occur. If we're inside a lambda and one of the variables is from the scope 3206 // outside the lambda, that function may have returned already. Reading its 3207 // locals is a bad idea. Also, these reads may introduce races there didn't 3208 // exist in the source-level program. 3209 } 3210 3211 3212 Value *ScalarExprEmitter:: 3213 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3214 TestAndClearIgnoreResultAssign(); 3215 3216 // Bind the common expression if necessary. 3217 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3218 3219 Expr *condExpr = E->getCond(); 3220 Expr *lhsExpr = E->getTrueExpr(); 3221 Expr *rhsExpr = E->getFalseExpr(); 3222 3223 // If the condition constant folds and can be elided, try to avoid emitting 3224 // the condition and the dead arm. 3225 bool CondExprBool; 3226 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3227 Expr *live = lhsExpr, *dead = rhsExpr; 3228 if (!CondExprBool) std::swap(live, dead); 3229 3230 // If the dead side doesn't have labels we need, just emit the Live part. 3231 if (!CGF.ContainsLabel(dead)) { 3232 if (CondExprBool) 3233 CGF.incrementProfileCounter(E); 3234 Value *Result = Visit(live); 3235 3236 // If the live part is a throw expression, it acts like it has a void 3237 // type, so evaluating it returns a null Value*. However, a conditional 3238 // with non-void type must return a non-null Value*. 3239 if (!Result && !E->getType()->isVoidType()) 3240 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3241 3242 return Result; 3243 } 3244 } 3245 3246 // OpenCL: If the condition is a vector, we can treat this condition like 3247 // the select function. 3248 if (CGF.getLangOpts().OpenCL 3249 && condExpr->getType()->isVectorType()) { 3250 CGF.incrementProfileCounter(E); 3251 3252 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3253 llvm::Value *LHS = Visit(lhsExpr); 3254 llvm::Value *RHS = Visit(rhsExpr); 3255 3256 llvm::Type *condType = ConvertType(condExpr->getType()); 3257 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3258 3259 unsigned numElem = vecTy->getNumElements(); 3260 llvm::Type *elemType = vecTy->getElementType(); 3261 3262 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3263 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3264 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3265 llvm::VectorType::get(elemType, 3266 numElem), 3267 "sext"); 3268 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3269 3270 // Cast float to int to perform ANDs if necessary. 3271 llvm::Value *RHSTmp = RHS; 3272 llvm::Value *LHSTmp = LHS; 3273 bool wasCast = false; 3274 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3275 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3276 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3277 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3278 wasCast = true; 3279 } 3280 3281 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3282 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3283 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3284 if (wasCast) 3285 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3286 3287 return tmp5; 3288 } 3289 3290 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3291 // select instead of as control flow. We can only do this if it is cheap and 3292 // safe to evaluate the LHS and RHS unconditionally. 3293 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3294 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3295 CGF.incrementProfileCounter(E); 3296 3297 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3298 llvm::Value *LHS = Visit(lhsExpr); 3299 llvm::Value *RHS = Visit(rhsExpr); 3300 if (!LHS) { 3301 // If the conditional has void type, make sure we return a null Value*. 3302 assert(!RHS && "LHS and RHS types must match"); 3303 return nullptr; 3304 } 3305 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3306 } 3307 3308 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3309 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3310 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3311 3312 CodeGenFunction::ConditionalEvaluation eval(CGF); 3313 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3314 CGF.getProfileCount(lhsExpr)); 3315 3316 CGF.EmitBlock(LHSBlock); 3317 CGF.incrementProfileCounter(E); 3318 eval.begin(CGF); 3319 Value *LHS = Visit(lhsExpr); 3320 eval.end(CGF); 3321 3322 LHSBlock = Builder.GetInsertBlock(); 3323 Builder.CreateBr(ContBlock); 3324 3325 CGF.EmitBlock(RHSBlock); 3326 eval.begin(CGF); 3327 Value *RHS = Visit(rhsExpr); 3328 eval.end(CGF); 3329 3330 RHSBlock = Builder.GetInsertBlock(); 3331 CGF.EmitBlock(ContBlock); 3332 3333 // If the LHS or RHS is a throw expression, it will be legitimately null. 3334 if (!LHS) 3335 return RHS; 3336 if (!RHS) 3337 return LHS; 3338 3339 // Create a PHI node for the real part. 3340 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3341 PN->addIncoming(LHS, LHSBlock); 3342 PN->addIncoming(RHS, RHSBlock); 3343 return PN; 3344 } 3345 3346 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3347 return Visit(E->getChosenSubExpr()); 3348 } 3349 3350 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3351 QualType Ty = VE->getType(); 3352 3353 if (Ty->isVariablyModifiedType()) 3354 CGF.EmitVariablyModifiedType(Ty); 3355 3356 Address ArgValue = Address::invalid(); 3357 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3358 3359 llvm::Type *ArgTy = ConvertType(VE->getType()); 3360 3361 // If EmitVAArg fails, emit an error. 3362 if (!ArgPtr.isValid()) { 3363 CGF.ErrorUnsupported(VE, "va_arg expression"); 3364 return llvm::UndefValue::get(ArgTy); 3365 } 3366 3367 // FIXME Volatility. 3368 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3369 3370 // If EmitVAArg promoted the type, we must truncate it. 3371 if (ArgTy != Val->getType()) { 3372 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3373 Val = Builder.CreateIntToPtr(Val, ArgTy); 3374 else 3375 Val = Builder.CreateTrunc(Val, ArgTy); 3376 } 3377 3378 return Val; 3379 } 3380 3381 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3382 return CGF.EmitBlockLiteral(block); 3383 } 3384 3385 // Convert a vec3 to vec4, or vice versa. 3386 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3387 Value *Src, unsigned NumElementsDst) { 3388 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3389 SmallVector<llvm::Constant*, 4> Args; 3390 Args.push_back(Builder.getInt32(0)); 3391 Args.push_back(Builder.getInt32(1)); 3392 Args.push_back(Builder.getInt32(2)); 3393 if (NumElementsDst == 4) 3394 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3395 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3396 return Builder.CreateShuffleVector(Src, UnV, Mask); 3397 } 3398 3399 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3400 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3401 llvm::Type *DstTy = ConvertType(E->getType()); 3402 3403 llvm::Type *SrcTy = Src->getType(); 3404 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3405 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3406 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3407 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3408 3409 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3410 // vector to get a vec4, then a bitcast if the target type is different. 3411 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3412 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3413 Src = Builder.CreateBitCast(Src, DstTy); 3414 Src->setName("astype"); 3415 return Src; 3416 } 3417 3418 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3419 // to vec4 if the original type is not vec4, then a shuffle vector to 3420 // get a vec3. 3421 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3422 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3423 Src = Builder.CreateBitCast(Src, Vec4Ty); 3424 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3425 Src->setName("astype"); 3426 return Src; 3427 } 3428 3429 return Builder.CreateBitCast(Src, DstTy, "astype"); 3430 } 3431 3432 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3433 return CGF.EmitAtomicExpr(E).getScalarVal(); 3434 } 3435 3436 //===----------------------------------------------------------------------===// 3437 // Entry Point into this File 3438 //===----------------------------------------------------------------------===// 3439 3440 /// Emit the computation of the specified expression of scalar type, ignoring 3441 /// the result. 3442 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3443 assert(E && hasScalarEvaluationKind(E->getType()) && 3444 "Invalid scalar expression to emit"); 3445 3446 return ScalarExprEmitter(*this, IgnoreResultAssign) 3447 .Visit(const_cast<Expr *>(E)); 3448 } 3449 3450 /// Emit a conversion from the specified type to the specified destination type, 3451 /// both of which are LLVM scalar types. 3452 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3453 QualType DstTy, 3454 SourceLocation Loc) { 3455 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3456 "Invalid scalar expression to emit"); 3457 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3458 } 3459 3460 /// Emit a conversion from the specified complex type to the specified 3461 /// destination type, where the destination type is an LLVM scalar type. 3462 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3463 QualType SrcTy, 3464 QualType DstTy, 3465 SourceLocation Loc) { 3466 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3467 "Invalid complex -> scalar conversion"); 3468 return ScalarExprEmitter(*this) 3469 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3470 } 3471 3472 3473 llvm::Value *CodeGenFunction:: 3474 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3475 bool isInc, bool isPre) { 3476 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3477 } 3478 3479 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3480 // object->isa or (*object).isa 3481 // Generate code as for: *(Class*)object 3482 3483 Expr *BaseExpr = E->getBase(); 3484 Address Addr = Address::invalid(); 3485 if (BaseExpr->isRValue()) { 3486 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3487 } else { 3488 Addr = EmitLValue(BaseExpr).getAddress(); 3489 } 3490 3491 // Cast the address to Class*. 3492 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3493 return MakeAddrLValue(Addr, E->getType()); 3494 } 3495 3496 3497 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3498 const CompoundAssignOperator *E) { 3499 ScalarExprEmitter Scalar(*this); 3500 Value *Result = nullptr; 3501 switch (E->getOpcode()) { 3502 #define COMPOUND_OP(Op) \ 3503 case BO_##Op##Assign: \ 3504 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3505 Result) 3506 COMPOUND_OP(Mul); 3507 COMPOUND_OP(Div); 3508 COMPOUND_OP(Rem); 3509 COMPOUND_OP(Add); 3510 COMPOUND_OP(Sub); 3511 COMPOUND_OP(Shl); 3512 COMPOUND_OP(Shr); 3513 COMPOUND_OP(And); 3514 COMPOUND_OP(Xor); 3515 COMPOUND_OP(Or); 3516 #undef COMPOUND_OP 3517 3518 case BO_PtrMemD: 3519 case BO_PtrMemI: 3520 case BO_Mul: 3521 case BO_Div: 3522 case BO_Rem: 3523 case BO_Add: 3524 case BO_Sub: 3525 case BO_Shl: 3526 case BO_Shr: 3527 case BO_LT: 3528 case BO_GT: 3529 case BO_LE: 3530 case BO_GE: 3531 case BO_EQ: 3532 case BO_NE: 3533 case BO_And: 3534 case BO_Xor: 3535 case BO_Or: 3536 case BO_LAnd: 3537 case BO_LOr: 3538 case BO_Assign: 3539 case BO_Comma: 3540 llvm_unreachable("Not valid compound assignment operators"); 3541 } 3542 3543 llvm_unreachable("Unhandled compound assignment operator"); 3544 } 3545