Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread_list.h"
     18 
     19 #include <backtrace/BacktraceMap.h>
     20 #include <dirent.h>
     21 #include <ScopedLocalRef.h>
     22 #include <ScopedUtfChars.h>
     23 #include <sys/types.h>
     24 #include <unistd.h>
     25 
     26 #include <sstream>
     27 
     28 #include "android-base/stringprintf.h"
     29 
     30 #include "base/histogram-inl.h"
     31 #include "base/mutex-inl.h"
     32 #include "base/systrace.h"
     33 #include "base/time_utils.h"
     34 #include "base/timing_logger.h"
     35 #include "debugger.h"
     36 #include "gc/collector/concurrent_copying.h"
     37 #include "gc/reference_processor.h"
     38 #include "jni_internal.h"
     39 #include "lock_word.h"
     40 #include "monitor.h"
     41 #include "native_stack_dump.h"
     42 #include "scoped_thread_state_change-inl.h"
     43 #include "thread.h"
     44 #include "trace.h"
     45 #include "well_known_classes.h"
     46 
     47 #if ART_USE_FUTEXES
     48 #include "linux/futex.h"
     49 #include "sys/syscall.h"
     50 #ifndef SYS_futex
     51 #define SYS_futex __NR_futex
     52 #endif
     53 #endif  // ART_USE_FUTEXES
     54 
     55 namespace art {
     56 
     57 using android::base::StringPrintf;
     58 
     59 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
     60 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
     61 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
     62 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
     63 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
     64 
     65 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
     66 // some history.
     67 // Turned off again. b/29248079
     68 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = false;
     69 
     70 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
     71     : suspend_all_count_(0),
     72       debug_suspend_all_count_(0),
     73       unregistering_count_(0),
     74       suspend_all_historam_("suspend all histogram", 16, 64),
     75       long_suspend_(false),
     76       thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
     77       empty_checkpoint_barrier_(new Barrier(0)) {
     78   CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
     79 }
     80 
     81 ThreadList::~ThreadList() {
     82   ScopedTrace trace(__PRETTY_FUNCTION__);
     83   // Detach the current thread if necessary. If we failed to start, there might not be any threads.
     84   // We need to detach the current thread here in case there's another thread waiting to join with
     85   // us.
     86   bool contains = false;
     87   Thread* self = Thread::Current();
     88   {
     89     MutexLock mu(self, *Locks::thread_list_lock_);
     90     contains = Contains(self);
     91   }
     92   if (contains) {
     93     Runtime::Current()->DetachCurrentThread();
     94   }
     95   WaitForOtherNonDaemonThreadsToExit();
     96   // Disable GC and wait for GC to complete in case there are still daemon threads doing
     97   // allocations.
     98   gc::Heap* const heap = Runtime::Current()->GetHeap();
     99   heap->DisableGCForShutdown();
    100   // In case a GC is in progress, wait for it to finish.
    101   heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
    102   // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
    103   //       Thread::Init.
    104   SuspendAllDaemonThreadsForShutdown();
    105 }
    106 
    107 bool ThreadList::Contains(Thread* thread) {
    108   return find(list_.begin(), list_.end(), thread) != list_.end();
    109 }
    110 
    111 bool ThreadList::Contains(pid_t tid) {
    112   for (const auto& thread : list_) {
    113     if (thread->GetTid() == tid) {
    114       return true;
    115     }
    116   }
    117   return false;
    118 }
    119 
    120 pid_t ThreadList::GetLockOwner() {
    121   return Locks::thread_list_lock_->GetExclusiveOwnerTid();
    122 }
    123 
    124 void ThreadList::DumpNativeStacks(std::ostream& os) {
    125   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
    126   std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
    127   for (const auto& thread : list_) {
    128     os << "DUMPING THREAD " << thread->GetTid() << "\n";
    129     DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
    130     os << "\n";
    131   }
    132 }
    133 
    134 void ThreadList::DumpForSigQuit(std::ostream& os) {
    135   {
    136     ScopedObjectAccess soa(Thread::Current());
    137     // Only print if we have samples.
    138     if (suspend_all_historam_.SampleSize() > 0) {
    139       Histogram<uint64_t>::CumulativeData data;
    140       suspend_all_historam_.CreateHistogram(&data);
    141       suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data);  // Dump time to suspend.
    142     }
    143   }
    144   bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
    145   Dump(os, dump_native_stack);
    146   DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
    147 }
    148 
    149 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
    150     NO_THREAD_SAFETY_ANALYSIS {
    151   // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
    152   // refactor DumpState to avoid skipping analysis.
    153   Thread::DumpState(os, nullptr, tid);
    154   DumpKernelStack(os, tid, "  kernel: ", false);
    155   if (dump_native_stack) {
    156     DumpNativeStack(os, tid, nullptr, "  native: ");
    157   }
    158   os << "\n";
    159 }
    160 
    161 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
    162   DIR* d = opendir("/proc/self/task");
    163   if (!d) {
    164     return;
    165   }
    166 
    167   Thread* self = Thread::Current();
    168   dirent* e;
    169   while ((e = readdir(d)) != nullptr) {
    170     char* end;
    171     pid_t tid = strtol(e->d_name, &end, 10);
    172     if (!*end) {
    173       bool contains;
    174       {
    175         MutexLock mu(self, *Locks::thread_list_lock_);
    176         contains = Contains(tid);
    177       }
    178       if (!contains) {
    179         DumpUnattachedThread(os, tid, dump_native_stack);
    180       }
    181     }
    182   }
    183   closedir(d);
    184 }
    185 
    186 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
    187 // overloaded with ANR dumps.
    188 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
    189 
    190 // A closure used by Thread::Dump.
    191 class DumpCheckpoint FINAL : public Closure {
    192  public:
    193   DumpCheckpoint(std::ostream* os, bool dump_native_stack)
    194       : os_(os),
    195         barrier_(0),
    196         backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
    197         dump_native_stack_(dump_native_stack) {}
    198 
    199   void Run(Thread* thread) OVERRIDE {
    200     // Note thread and self may not be equal if thread was already suspended at the point of the
    201     // request.
    202     Thread* self = Thread::Current();
    203     CHECK(self != nullptr);
    204     std::ostringstream local_os;
    205     {
    206       ScopedObjectAccess soa(self);
    207       thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
    208     }
    209     local_os << "\n";
    210     {
    211       // Use the logging lock to ensure serialization when writing to the common ostream.
    212       MutexLock mu(self, *Locks::logging_lock_);
    213       *os_ << local_os.str();
    214     }
    215     barrier_.Pass(self);
    216   }
    217 
    218   void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
    219     Thread* self = Thread::Current();
    220     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    221     bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
    222     if (timed_out) {
    223       // Avoid a recursive abort.
    224       LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
    225           << "Unexpected time out during dump checkpoint.";
    226     }
    227   }
    228 
    229  private:
    230   // The common stream that will accumulate all the dumps.
    231   std::ostream* const os_;
    232   // The barrier to be passed through and for the requestor to wait upon.
    233   Barrier barrier_;
    234   // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
    235   std::unique_ptr<BacktraceMap> backtrace_map_;
    236   // Whether we should dump the native stack.
    237   const bool dump_native_stack_;
    238 };
    239 
    240 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
    241   Thread* self = Thread::Current();
    242   {
    243     MutexLock mu(self, *Locks::thread_list_lock_);
    244     os << "DALVIK THREADS (" << list_.size() << "):\n";
    245   }
    246   if (self != nullptr) {
    247     DumpCheckpoint checkpoint(&os, dump_native_stack);
    248     size_t threads_running_checkpoint;
    249     {
    250       // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
    251       ScopedObjectAccess soa(self);
    252       threads_running_checkpoint = RunCheckpoint(&checkpoint);
    253     }
    254     if (threads_running_checkpoint != 0) {
    255       checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
    256     }
    257   } else {
    258     DumpUnattachedThreads(os, dump_native_stack);
    259   }
    260 }
    261 
    262 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
    263   MutexLock mu(self, *Locks::thread_list_lock_);
    264   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    265   for (const auto& thread : list_) {
    266     if (thread != ignore1 && thread != ignore2) {
    267       CHECK(thread->IsSuspended())
    268             << "\nUnsuspended thread: <<" << *thread << "\n"
    269             << "self: <<" << *Thread::Current();
    270     }
    271   }
    272 }
    273 
    274 #if HAVE_TIMED_RWLOCK
    275 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
    276 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
    277   Runtime* runtime = Runtime::Current();
    278   std::ostringstream ss;
    279   ss << "Thread suspend timeout\n";
    280   Locks::mutator_lock_->Dump(ss);
    281   ss << "\n";
    282   runtime->GetThreadList()->Dump(ss);
    283   LOG(FATAL) << ss.str();
    284   exit(0);
    285 }
    286 #endif
    287 
    288 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
    289 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
    290 // we use sched_yield instead of calling usleep.
    291 static void ThreadSuspendSleep(useconds_t delay_us) {
    292   if (delay_us == 0) {
    293     sched_yield();
    294   } else {
    295     usleep(delay_us);
    296   }
    297 }
    298 
    299 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
    300   Thread* self = Thread::Current();
    301   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
    302   Locks::thread_list_lock_->AssertNotHeld(self);
    303   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    304 
    305   std::vector<Thread*> suspended_count_modified_threads;
    306   size_t count = 0;
    307   {
    308     // Call a checkpoint function for each thread, threads which are suspend get their checkpoint
    309     // manually called.
    310     MutexLock mu(self, *Locks::thread_list_lock_);
    311     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    312     count = list_.size();
    313     for (const auto& thread : list_) {
    314       if (thread != self) {
    315         while (true) {
    316           if (thread->RequestCheckpoint(checkpoint_function)) {
    317             // This thread will run its checkpoint some time in the near future.
    318             break;
    319           } else {
    320             // We are probably suspended, try to make sure that we stay suspended.
    321             // The thread switched back to runnable.
    322             if (thread->GetState() == kRunnable) {
    323               // Spurious fail, try again.
    324               continue;
    325             }
    326             bool updated = thread->ModifySuspendCount(self, +1, nullptr, false);
    327             DCHECK(updated);
    328             suspended_count_modified_threads.push_back(thread);
    329             break;
    330           }
    331         }
    332       }
    333     }
    334     // Run the callback to be called inside this critical section.
    335     if (callback != nullptr) {
    336       callback->Run(self);
    337     }
    338   }
    339 
    340   // Run the checkpoint on ourself while we wait for threads to suspend.
    341   checkpoint_function->Run(self);
    342 
    343   // Run the checkpoint on the suspended threads.
    344   for (const auto& thread : suspended_count_modified_threads) {
    345     if (!thread->IsSuspended()) {
    346       if (ATRACE_ENABLED()) {
    347         std::ostringstream oss;
    348         thread->ShortDump(oss);
    349         ATRACE_BEGIN((std::string("Waiting for suspension of thread ") + oss.str()).c_str());
    350       }
    351       // Busy wait until the thread is suspended.
    352       const uint64_t start_time = NanoTime();
    353       do {
    354         ThreadSuspendSleep(kThreadSuspendInitialSleepUs);
    355       } while (!thread->IsSuspended());
    356       const uint64_t total_delay = NanoTime() - start_time;
    357       // Shouldn't need to wait for longer than 1000 microseconds.
    358       constexpr uint64_t kLongWaitThreshold = MsToNs(1);
    359       ATRACE_END();
    360       if (UNLIKELY(total_delay > kLongWaitThreshold)) {
    361         LOG(WARNING) << "Long wait of " << PrettyDuration(total_delay) << " for "
    362             << *thread << " suspension!";
    363       }
    364     }
    365     // We know for sure that the thread is suspended at this point.
    366     checkpoint_function->Run(thread);
    367     {
    368       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    369       bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
    370       DCHECK(updated);
    371     }
    372   }
    373 
    374   {
    375     // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
    376     // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
    377     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    378     Thread::resume_cond_->Broadcast(self);
    379   }
    380 
    381   return count;
    382 }
    383 
    384 void ThreadList::RunEmptyCheckpoint() {
    385   Thread* self = Thread::Current();
    386   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
    387   Locks::thread_list_lock_->AssertNotHeld(self);
    388   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    389   std::vector<uint32_t> runnable_thread_ids;
    390   size_t count = 0;
    391   Barrier* barrier = empty_checkpoint_barrier_.get();
    392   barrier->Init(self, 0);
    393   {
    394     MutexLock mu(self, *Locks::thread_list_lock_);
    395     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    396     for (Thread* thread : list_) {
    397       if (thread != self) {
    398         while (true) {
    399           if (thread->RequestEmptyCheckpoint()) {
    400             // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
    401             // some time in the near future.
    402             ++count;
    403             if (kIsDebugBuild) {
    404               runnable_thread_ids.push_back(thread->GetThreadId());
    405             }
    406             break;
    407           }
    408           if (thread->GetState() != kRunnable) {
    409             // It's seen suspended, we are done because it must not be in the middle of a mutator
    410             // heap access.
    411             break;
    412           }
    413         }
    414       }
    415     }
    416   }
    417 
    418   // Wake up the threads blocking for weak ref access so that they will respond to the empty
    419   // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
    420   Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
    421   Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint*/true);
    422   {
    423     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    424     uint64_t total_wait_time = 0;
    425     bool first_iter = true;
    426     while (true) {
    427       // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
    428       // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
    429       // and a mutex.) This needs to be done periodically because the thread may be preempted
    430       // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
    431       // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
    432       // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
    433       // handled in the first iteration.
    434       for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
    435         mutex->WakeupToRespondToEmptyCheckpoint();
    436       }
    437       static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100;  // 100ms
    438       static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000;  // 10 minutes.
    439       size_t barrier_count = first_iter ? count : 0;
    440       first_iter = false;  // Don't add to the barrier count from the second iteration on.
    441       bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
    442       if (!timed_out) {
    443         break;  // Success
    444       }
    445       // This is a very rare case.
    446       total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
    447       if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
    448         std::ostringstream ss;
    449         ss << "Empty checkpoint timeout\n";
    450         ss << "Barrier count " << barrier->GetCount(self) << "\n";
    451         ss << "Runnable thread IDs";
    452         for (uint32_t tid : runnable_thread_ids) {
    453           ss << " " << tid;
    454         }
    455         ss << "\n";
    456         Locks::mutator_lock_->Dump(ss);
    457         ss << "\n";
    458         LOG(FATAL_WITHOUT_ABORT) << ss.str();
    459         // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
    460         // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
    461         {
    462           ScopedObjectAccess soa(self);
    463           MutexLock mu1(self, *Locks::thread_list_lock_);
    464           for (Thread* thread : GetList()) {
    465             uint32_t tid = thread->GetThreadId();
    466             bool is_in_runnable_thread_ids =
    467                 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
    468                 runnable_thread_ids.end();
    469             if (is_in_runnable_thread_ids &&
    470                 thread->ReadFlag(kEmptyCheckpointRequest)) {
    471               // Found a runnable thread that hasn't responded to the empty checkpoint request.
    472               // Assume it's stuck and safe to dump its stack.
    473               thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
    474                            /*dump_native_stack*/ true,
    475                            /*backtrace_map*/ nullptr,
    476                            /*force_dump_stack*/ true);
    477             }
    478           }
    479         }
    480         LOG(FATAL_WITHOUT_ABORT)
    481             << "Dumped runnable threads that haven't responded to empty checkpoint.";
    482         // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
    483         Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
    484         LOG(FATAL) << "Dumped all threads.";
    485       }
    486     }
    487   }
    488 }
    489 
    490 // Request that a checkpoint function be run on all active (non-suspended)
    491 // threads.  Returns the number of successful requests.
    492 size_t ThreadList::RunCheckpointOnRunnableThreads(Closure* checkpoint_function) {
    493   Thread* self = Thread::Current();
    494   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
    495   Locks::thread_list_lock_->AssertNotHeld(self);
    496   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    497   CHECK_NE(self->GetState(), kRunnable);
    498 
    499   size_t count = 0;
    500   {
    501     // Call a checkpoint function for each non-suspended thread.
    502     MutexLock mu(self, *Locks::thread_list_lock_);
    503     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    504     for (const auto& thread : list_) {
    505       if (thread != self) {
    506         if (thread->RequestCheckpoint(checkpoint_function)) {
    507           // This thread will run its checkpoint some time in the near future.
    508           count++;
    509         }
    510       }
    511     }
    512   }
    513 
    514   // Return the number of threads that will run the checkpoint function.
    515   return count;
    516 }
    517 
    518 // A checkpoint/suspend-all hybrid to switch thread roots from
    519 // from-space to to-space refs. Used to synchronize threads at a point
    520 // to mark the initiation of marking while maintaining the to-space
    521 // invariant.
    522 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
    523                                    Closure* flip_callback,
    524                                    gc::collector::GarbageCollector* collector) {
    525   TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
    526   Thread* self = Thread::Current();
    527   Locks::mutator_lock_->AssertNotHeld(self);
    528   Locks::thread_list_lock_->AssertNotHeld(self);
    529   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    530   CHECK_NE(self->GetState(), kRunnable);
    531 
    532   collector->GetHeap()->ThreadFlipBegin(self);  // Sync with JNI critical calls.
    533 
    534   // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
    535   // pause.
    536   const uint64_t suspend_start_time = NanoTime();
    537   SuspendAllInternal(self, self, nullptr);
    538 
    539   // Run the flip callback for the collector.
    540   Locks::mutator_lock_->ExclusiveLock(self);
    541   suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
    542   flip_callback->Run(self);
    543   Locks::mutator_lock_->ExclusiveUnlock(self);
    544   collector->RegisterPause(NanoTime() - suspend_start_time);
    545 
    546   // Resume runnable threads.
    547   size_t runnable_thread_count = 0;
    548   std::vector<Thread*> other_threads;
    549   {
    550     TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
    551     MutexLock mu(self, *Locks::thread_list_lock_);
    552     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    553     --suspend_all_count_;
    554     for (const auto& thread : list_) {
    555       // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
    556       // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
    557       // a runnable thread runs it for itself or we run it for a suspended thread below.
    558       thread->SetFlipFunction(thread_flip_visitor);
    559       if (thread == self) {
    560         continue;
    561       }
    562       // Resume early the threads that were runnable but are suspended just for this thread flip or
    563       // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
    564       // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
    565       // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
    566       ThreadState state = thread->GetState();
    567       if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
    568           thread->GetSuspendCount() == 1) {
    569         // The thread will resume right after the broadcast.
    570         bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
    571         DCHECK(updated);
    572         ++runnable_thread_count;
    573       } else {
    574         other_threads.push_back(thread);
    575       }
    576     }
    577     Thread::resume_cond_->Broadcast(self);
    578   }
    579 
    580   collector->GetHeap()->ThreadFlipEnd(self);
    581 
    582   // Run the closure on the other threads and let them resume.
    583   {
    584     TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
    585     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    586     for (const auto& thread : other_threads) {
    587       Closure* flip_func = thread->GetFlipFunction();
    588       if (flip_func != nullptr) {
    589         flip_func->Run(thread);
    590       }
    591     }
    592     // Run it for self.
    593     Closure* flip_func = self->GetFlipFunction();
    594     if (flip_func != nullptr) {
    595       flip_func->Run(self);
    596     }
    597   }
    598 
    599   // Resume other threads.
    600   {
    601     TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
    602     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    603     for (const auto& thread : other_threads) {
    604       bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
    605       DCHECK(updated);
    606     }
    607     Thread::resume_cond_->Broadcast(self);
    608   }
    609 
    610   return runnable_thread_count + other_threads.size() + 1;  // +1 for self.
    611 }
    612 
    613 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
    614   Thread* self = Thread::Current();
    615 
    616   if (self != nullptr) {
    617     VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
    618   } else {
    619     VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
    620   }
    621   {
    622     ScopedTrace trace("Suspending mutator threads");
    623     const uint64_t start_time = NanoTime();
    624 
    625     SuspendAllInternal(self, self);
    626     // All threads are known to have suspended (but a thread may still own the mutator lock)
    627     // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
    628 #if HAVE_TIMED_RWLOCK
    629     while (true) {
    630       if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
    631                                                          NsToMs(thread_suspend_timeout_ns_),
    632                                                          0)) {
    633         break;
    634       } else if (!long_suspend_) {
    635         // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
    636         // could result in a thread suspend timeout.
    637         // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
    638         UnsafeLogFatalForThreadSuspendAllTimeout();
    639       }
    640     }
    641 #else
    642     Locks::mutator_lock_->ExclusiveLock(self);
    643 #endif
    644 
    645     long_suspend_ = long_suspend;
    646 
    647     const uint64_t end_time = NanoTime();
    648     const uint64_t suspend_time = end_time - start_time;
    649     suspend_all_historam_.AdjustAndAddValue(suspend_time);
    650     if (suspend_time > kLongThreadSuspendThreshold) {
    651       LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
    652     }
    653 
    654     if (kDebugLocking) {
    655       // Debug check that all threads are suspended.
    656       AssertThreadsAreSuspended(self, self);
    657     }
    658   }
    659   ATRACE_BEGIN((std::string("Mutator threads suspended for ") + cause).c_str());
    660 
    661   if (self != nullptr) {
    662     VLOG(threads) << *self << " SuspendAll complete";
    663   } else {
    664     VLOG(threads) << "Thread[null] SuspendAll complete";
    665   }
    666 }
    667 
    668 // Ensures all threads running Java suspend and that those not running Java don't start.
    669 // Debugger thread might be set to kRunnable for a short period of time after the
    670 // SuspendAllInternal. This is safe because it will be set back to suspended state before
    671 // the SuspendAll returns.
    672 void ThreadList::SuspendAllInternal(Thread* self,
    673                                     Thread* ignore1,
    674                                     Thread* ignore2,
    675                                     bool debug_suspend) {
    676   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
    677   Locks::thread_list_lock_->AssertNotHeld(self);
    678   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
    679   if (kDebugLocking && self != nullptr) {
    680     CHECK_NE(self->GetState(), kRunnable);
    681   }
    682 
    683   // First request that all threads suspend, then wait for them to suspend before
    684   // returning. This suspension scheme also relies on other behaviour:
    685   // 1. Threads cannot be deleted while they are suspended or have a suspend-
    686   //    request flag set - (see Unregister() below).
    687   // 2. When threads are created, they are created in a suspended state (actually
    688   //    kNative) and will never begin executing Java code without first checking
    689   //    the suspend-request flag.
    690 
    691   // The atomic counter for number of threads that need to pass the barrier.
    692   AtomicInteger pending_threads;
    693   uint32_t num_ignored = 0;
    694   if (ignore1 != nullptr) {
    695     ++num_ignored;
    696   }
    697   if (ignore2 != nullptr && ignore1 != ignore2) {
    698     ++num_ignored;
    699   }
    700   {
    701     MutexLock mu(self, *Locks::thread_list_lock_);
    702     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    703     // Update global suspend all state for attaching threads.
    704     ++suspend_all_count_;
    705     if (debug_suspend) {
    706       ++debug_suspend_all_count_;
    707     }
    708     pending_threads.StoreRelaxed(list_.size() - num_ignored);
    709     // Increment everybody's suspend count (except those that should be ignored).
    710     for (const auto& thread : list_) {
    711       if (thread == ignore1 || thread == ignore2) {
    712         continue;
    713       }
    714       VLOG(threads) << "requesting thread suspend: " << *thread;
    715       bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, debug_suspend);
    716       DCHECK(updated);
    717 
    718       // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
    719       // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
    720       // that can lead a thread to miss a call to PassActiveSuspendBarriers().
    721       if (thread->IsSuspended()) {
    722         // Only clear the counter for the current thread.
    723         thread->ClearSuspendBarrier(&pending_threads);
    724         pending_threads.FetchAndSubSequentiallyConsistent(1);
    725       }
    726     }
    727   }
    728 
    729   // Wait for the barrier to be passed by all runnable threads. This wait
    730   // is done with a timeout so that we can detect problems.
    731 #if ART_USE_FUTEXES
    732   timespec wait_timeout;
    733   InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
    734 #endif
    735   const uint64_t start_time = NanoTime();
    736   while (true) {
    737     int32_t cur_val = pending_threads.LoadRelaxed();
    738     if (LIKELY(cur_val > 0)) {
    739 #if ART_USE_FUTEXES
    740       if (futex(pending_threads.Address(), FUTEX_WAIT, cur_val, &wait_timeout, nullptr, 0) != 0) {
    741         // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    742         if ((errno != EAGAIN) && (errno != EINTR)) {
    743           if (errno == ETIMEDOUT) {
    744             LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
    745                 << "Timed out waiting for threads to suspend, waited for "
    746                 << PrettyDuration(NanoTime() - start_time);
    747           } else {
    748             PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
    749           }
    750         }
    751       }  // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
    752 #else
    753       // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
    754       UNUSED(start_time);
    755 #endif
    756     } else {
    757       CHECK_EQ(cur_val, 0);
    758       break;
    759     }
    760   }
    761 }
    762 
    763 void ThreadList::ResumeAll() {
    764   Thread* self = Thread::Current();
    765 
    766   if (self != nullptr) {
    767     VLOG(threads) << *self << " ResumeAll starting";
    768   } else {
    769     VLOG(threads) << "Thread[null] ResumeAll starting";
    770   }
    771 
    772   ATRACE_END();
    773 
    774   ScopedTrace trace("Resuming mutator threads");
    775 
    776   if (kDebugLocking) {
    777     // Debug check that all threads are suspended.
    778     AssertThreadsAreSuspended(self, self);
    779   }
    780 
    781   long_suspend_ = false;
    782 
    783   Locks::mutator_lock_->ExclusiveUnlock(self);
    784   {
    785     MutexLock mu(self, *Locks::thread_list_lock_);
    786     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    787     // Update global suspend all state for attaching threads.
    788     --suspend_all_count_;
    789     // Decrement the suspend counts for all threads.
    790     for (const auto& thread : list_) {
    791       if (thread == self) {
    792         continue;
    793       }
    794       bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
    795       DCHECK(updated);
    796     }
    797 
    798     // Broadcast a notification to all suspended threads, some or all of
    799     // which may choose to wake up.  No need to wait for them.
    800     if (self != nullptr) {
    801       VLOG(threads) << *self << " ResumeAll waking others";
    802     } else {
    803       VLOG(threads) << "Thread[null] ResumeAll waking others";
    804     }
    805     Thread::resume_cond_->Broadcast(self);
    806   }
    807 
    808   if (self != nullptr) {
    809     VLOG(threads) << *self << " ResumeAll complete";
    810   } else {
    811     VLOG(threads) << "Thread[null] ResumeAll complete";
    812   }
    813 }
    814 
    815 void ThreadList::Resume(Thread* thread, bool for_debugger) {
    816   // This assumes there was an ATRACE_BEGIN when we suspended the thread.
    817   ATRACE_END();
    818 
    819   Thread* self = Thread::Current();
    820   DCHECK_NE(thread, self);
    821   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..."
    822       << (for_debugger ? " (debugger)" : "");
    823 
    824   {
    825     // To check Contains.
    826     MutexLock mu(self, *Locks::thread_list_lock_);
    827     // To check IsSuspended.
    828     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
    829     DCHECK(thread->IsSuspended());
    830     if (!Contains(thread)) {
    831       // We only expect threads within the thread-list to have been suspended otherwise we can't
    832       // stop such threads from delete-ing themselves.
    833       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
    834           << ") thread not within thread list";
    835       return;
    836     }
    837     bool updated = thread->ModifySuspendCount(self, -1, nullptr, for_debugger);
    838     DCHECK(updated);
    839   }
    840 
    841   {
    842     VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
    843     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
    844     Thread::resume_cond_->Broadcast(self);
    845   }
    846 
    847   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
    848 }
    849 
    850 static void ThreadSuspendByPeerWarning(Thread* self,
    851                                        LogSeverity severity,
    852                                        const char* message,
    853                                        jobject peer) {
    854   JNIEnvExt* env = self->GetJniEnv();
    855   ScopedLocalRef<jstring>
    856       scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
    857           peer, WellKnownClasses::java_lang_Thread_name)));
    858   ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
    859   if (scoped_name_chars.c_str() == nullptr) {
    860       LOG(severity) << message << ": " << peer;
    861       env->ExceptionClear();
    862   } else {
    863       LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
    864   }
    865 }
    866 
    867 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
    868                                         bool request_suspension,
    869                                         bool debug_suspension,
    870                                         bool* timed_out) {
    871   const uint64_t start_time = NanoTime();
    872   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
    873   *timed_out = false;
    874   Thread* const self = Thread::Current();
    875   Thread* suspended_thread = nullptr;
    876   VLOG(threads) << "SuspendThreadByPeer starting";
    877   while (true) {
    878     Thread* thread;
    879     {
    880       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
    881       // is requesting another suspend, to avoid deadlock, by requiring this function be called
    882       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
    883       // than request thread suspension, to avoid potential cycles in threads requesting each other
    884       // suspend.
    885       ScopedObjectAccess soa(self);
    886       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
    887       thread = Thread::FromManagedThread(soa, peer);
    888       if (thread == nullptr) {
    889         if (suspended_thread != nullptr) {
    890           MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
    891           // If we incremented the suspend count but the thread reset its peer, we need to
    892           // re-decrement it since it is shutting down and may deadlock the runtime in
    893           // ThreadList::WaitForOtherNonDaemonThreadsToExit.
    894           bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
    895                                                               -1,
    896                                                               nullptr,
    897                                                               debug_suspension);
    898           DCHECK(updated);
    899         }
    900         ThreadSuspendByPeerWarning(self,
    901                                    ::android::base::WARNING,
    902                                     "No such thread for suspend",
    903                                     peer);
    904         return nullptr;
    905       }
    906       if (!Contains(thread)) {
    907         CHECK(suspended_thread == nullptr);
    908         VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
    909             << reinterpret_cast<void*>(thread);
    910         return nullptr;
    911       }
    912       VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
    913       {
    914         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
    915         if (request_suspension) {
    916           if (self->GetSuspendCount() > 0) {
    917             // We hold the suspend count lock but another thread is trying to suspend us. Its not
    918             // safe to try to suspend another thread in case we get a cycle. Start the loop again
    919             // which will allow this thread to be suspended.
    920             continue;
    921           }
    922           CHECK(suspended_thread == nullptr);
    923           suspended_thread = thread;
    924           bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, debug_suspension);
    925           DCHECK(updated);
    926           request_suspension = false;
    927         } else {
    928           // If the caller isn't requesting suspension, a suspension should have already occurred.
    929           CHECK_GT(thread->GetSuspendCount(), 0);
    930         }
    931         // IsSuspended on the current thread will fail as the current thread is changed into
    932         // Runnable above. As the suspend count is now raised if this is the current thread
    933         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
    934         // to just explicitly handle the current thread in the callers to this code.
    935         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
    936         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
    937         // count, or else we've waited and it has self suspended) or is the current thread, we're
    938         // done.
    939         if (thread->IsSuspended()) {
    940           VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
    941           if (ATRACE_ENABLED()) {
    942             std::string name;
    943             thread->GetThreadName(name);
    944             ATRACE_BEGIN(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
    945                                       peer).c_str());
    946           }
    947           return thread;
    948         }
    949         const uint64_t total_delay = NanoTime() - start_time;
    950         if (total_delay >= thread_suspend_timeout_ns_) {
    951           ThreadSuspendByPeerWarning(self,
    952                                      ::android::base::FATAL,
    953                                      "Thread suspension timed out",
    954                                      peer);
    955           if (suspended_thread != nullptr) {
    956             CHECK_EQ(suspended_thread, thread);
    957             bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
    958                                                                 -1,
    959                                                                 nullptr,
    960                                                                 debug_suspension);
    961             DCHECK(updated);
    962           }
    963           *timed_out = true;
    964           return nullptr;
    965         } else if (sleep_us == 0 &&
    966             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
    967           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
    968           // excessive CPU usage.
    969           sleep_us = kThreadSuspendMaxYieldUs / 2;
    970         }
    971       }
    972       // Release locks and come out of runnable state.
    973     }
    974     VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
    975     ThreadSuspendSleep(sleep_us);
    976     // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
    977     // all if possible. This shouldn't be an issue since time to suspend should always be small.
    978     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
    979   }
    980 }
    981 
    982 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
    983                                            const char* message,
    984                                            uint32_t thread_id) {
    985   LOG(severity) << StringPrintf("%s: %d", message, thread_id);
    986 }
    987 
    988 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
    989                                             bool debug_suspension,
    990                                             bool* timed_out) {
    991   const uint64_t start_time = NanoTime();
    992   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
    993   *timed_out = false;
    994   Thread* suspended_thread = nullptr;
    995   Thread* const self = Thread::Current();
    996   CHECK_NE(thread_id, kInvalidThreadId);
    997   VLOG(threads) << "SuspendThreadByThreadId starting";
    998   while (true) {
    999     {
   1000       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
   1001       // is requesting another suspend, to avoid deadlock, by requiring this function be called
   1002       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
   1003       // than request thread suspension, to avoid potential cycles in threads requesting each other
   1004       // suspend.
   1005       ScopedObjectAccess soa(self);
   1006       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
   1007       Thread* thread = nullptr;
   1008       for (const auto& it : list_) {
   1009         if (it->GetThreadId() == thread_id) {
   1010           thread = it;
   1011           break;
   1012         }
   1013       }
   1014       if (thread == nullptr) {
   1015         CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
   1016             << " no longer in thread list";
   1017         // There's a race in inflating a lock and the owner giving up ownership and then dying.
   1018         ThreadSuspendByThreadIdWarning(::android::base::WARNING,
   1019                                        "No such thread id for suspend",
   1020                                        thread_id);
   1021         return nullptr;
   1022       }
   1023       VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
   1024       DCHECK(Contains(thread));
   1025       {
   1026         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
   1027         if (suspended_thread == nullptr) {
   1028           if (self->GetSuspendCount() > 0) {
   1029             // We hold the suspend count lock but another thread is trying to suspend us. Its not
   1030             // safe to try to suspend another thread in case we get a cycle. Start the loop again
   1031             // which will allow this thread to be suspended.
   1032             continue;
   1033           }
   1034           bool updated = thread->ModifySuspendCount(self, +1, nullptr, debug_suspension);
   1035           DCHECK(updated);
   1036           suspended_thread = thread;
   1037         } else {
   1038           CHECK_EQ(suspended_thread, thread);
   1039           // If the caller isn't requesting suspension, a suspension should have already occurred.
   1040           CHECK_GT(thread->GetSuspendCount(), 0);
   1041         }
   1042         // IsSuspended on the current thread will fail as the current thread is changed into
   1043         // Runnable above. As the suspend count is now raised if this is the current thread
   1044         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
   1045         // to just explicitly handle the current thread in the callers to this code.
   1046         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
   1047         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
   1048         // count, or else we've waited and it has self suspended) or is the current thread, we're
   1049         // done.
   1050         if (thread->IsSuspended()) {
   1051           if (ATRACE_ENABLED()) {
   1052             std::string name;
   1053             thread->GetThreadName(name);
   1054             ATRACE_BEGIN(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
   1055                                       name.c_str(), thread_id).c_str());
   1056           }
   1057           VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
   1058           return thread;
   1059         }
   1060         const uint64_t total_delay = NanoTime() - start_time;
   1061         if (total_delay >= thread_suspend_timeout_ns_) {
   1062           ThreadSuspendByThreadIdWarning(::android::base::WARNING,
   1063                                          "Thread suspension timed out",
   1064                                          thread_id);
   1065           if (suspended_thread != nullptr) {
   1066             bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension);
   1067             DCHECK(updated);
   1068           }
   1069           *timed_out = true;
   1070           return nullptr;
   1071         } else if (sleep_us == 0 &&
   1072             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
   1073           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
   1074           // excessive CPU usage.
   1075           sleep_us = kThreadSuspendMaxYieldUs / 2;
   1076         }
   1077       }
   1078       // Release locks and come out of runnable state.
   1079     }
   1080     VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
   1081     ThreadSuspendSleep(sleep_us);
   1082     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
   1083   }
   1084 }
   1085 
   1086 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
   1087   for (const auto& thread : list_) {
   1088     if (thread->GetThreadId() == thread_id) {
   1089       return thread;
   1090     }
   1091   }
   1092   return nullptr;
   1093 }
   1094 
   1095 void ThreadList::SuspendAllForDebugger() {
   1096   Thread* self = Thread::Current();
   1097   Thread* debug_thread = Dbg::GetDebugThread();
   1098 
   1099   VLOG(threads) << *self << " SuspendAllForDebugger starting...";
   1100 
   1101   SuspendAllInternal(self, self, debug_thread, true);
   1102   // Block on the mutator lock until all Runnable threads release their share of access then
   1103   // immediately unlock again.
   1104 #if HAVE_TIMED_RWLOCK
   1105   // Timeout if we wait more than 30 seconds.
   1106   if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) {
   1107     UnsafeLogFatalForThreadSuspendAllTimeout();
   1108   } else {
   1109     Locks::mutator_lock_->ExclusiveUnlock(self);
   1110   }
   1111 #else
   1112   Locks::mutator_lock_->ExclusiveLock(self);
   1113   Locks::mutator_lock_->ExclusiveUnlock(self);
   1114 #endif
   1115   // Disabled for the following race condition:
   1116   // Thread 1 calls SuspendAllForDebugger, gets preempted after pulsing the mutator lock.
   1117   // Thread 2 calls SuspendAll and SetStateUnsafe (perhaps from Dbg::Disconnected).
   1118   // Thread 1 fails assertion that all threads are suspended due to thread 2 being in a runnable
   1119   // state (from SetStateUnsafe).
   1120   // AssertThreadsAreSuspended(self, self, debug_thread);
   1121 
   1122   VLOG(threads) << *self << " SuspendAllForDebugger complete";
   1123 }
   1124 
   1125 void ThreadList::SuspendSelfForDebugger() {
   1126   Thread* const self = Thread::Current();
   1127   self->SetReadyForDebugInvoke(true);
   1128 
   1129   // The debugger thread must not suspend itself due to debugger activity!
   1130   Thread* debug_thread = Dbg::GetDebugThread();
   1131   CHECK(self != debug_thread);
   1132   CHECK_NE(self->GetState(), kRunnable);
   1133   Locks::mutator_lock_->AssertNotHeld(self);
   1134 
   1135   // The debugger may have detached while we were executing an invoke request. In that case, we
   1136   // must not suspend ourself.
   1137   DebugInvokeReq* pReq = self->GetInvokeReq();
   1138   const bool skip_thread_suspension = (pReq != nullptr && !Dbg::IsDebuggerActive());
   1139   if (!skip_thread_suspension) {
   1140     // Collisions with other suspends aren't really interesting. We want
   1141     // to ensure that we're the only one fiddling with the suspend count
   1142     // though.
   1143     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1144     bool updated = self->ModifySuspendCount(self, +1, nullptr, true);
   1145     DCHECK(updated);
   1146     CHECK_GT(self->GetSuspendCount(), 0);
   1147 
   1148     VLOG(threads) << *self << " self-suspending (debugger)";
   1149   } else {
   1150     // We must no longer be subject to debugger suspension.
   1151     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1152     CHECK_EQ(self->GetDebugSuspendCount(), 0) << "Debugger detached without resuming us";
   1153 
   1154     VLOG(threads) << *self << " not self-suspending because debugger detached during invoke";
   1155   }
   1156 
   1157   // If the debugger requested an invoke, we need to send the reply and clear the request.
   1158   if (pReq != nullptr) {
   1159     Dbg::FinishInvokeMethod(pReq);
   1160     self->ClearDebugInvokeReq();
   1161     pReq = nullptr;  // object has been deleted, clear it for safety.
   1162   }
   1163 
   1164   // Tell JDWP that we've completed suspension. The JDWP thread can't
   1165   // tell us to resume before we're fully asleep because we hold the
   1166   // suspend count lock.
   1167   Dbg::ClearWaitForEventThread();
   1168 
   1169   {
   1170     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1171     while (self->GetSuspendCount() != 0) {
   1172       Thread::resume_cond_->Wait(self);
   1173       if (self->GetSuspendCount() != 0) {
   1174         // The condition was signaled but we're still suspended. This
   1175         // can happen when we suspend then resume all threads to
   1176         // update instrumentation or compute monitor info. This can
   1177         // also happen if the debugger lets go while a SIGQUIT thread
   1178         // dump event is pending (assuming SignalCatcher was resumed for
   1179         // just long enough to try to grab the thread-suspend lock).
   1180         VLOG(jdwp) << *self << " still suspended after undo "
   1181                    << "(suspend count=" << self->GetSuspendCount() << ", "
   1182                    << "debug suspend count=" << self->GetDebugSuspendCount() << ")";
   1183       }
   1184     }
   1185     CHECK_EQ(self->GetSuspendCount(), 0);
   1186   }
   1187 
   1188   self->SetReadyForDebugInvoke(false);
   1189   VLOG(threads) << *self << " self-reviving (debugger)";
   1190 }
   1191 
   1192 void ThreadList::ResumeAllForDebugger() {
   1193   Thread* self = Thread::Current();
   1194   Thread* debug_thread = Dbg::GetDebugThread();
   1195 
   1196   VLOG(threads) << *self << " ResumeAllForDebugger starting...";
   1197 
   1198   // Threads can't resume if we exclusively hold the mutator lock.
   1199   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
   1200 
   1201   {
   1202     MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
   1203     {
   1204       MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
   1205       // Update global suspend all state for attaching threads.
   1206       DCHECK_GE(suspend_all_count_, debug_suspend_all_count_);
   1207       if (debug_suspend_all_count_ > 0) {
   1208         --suspend_all_count_;
   1209         --debug_suspend_all_count_;
   1210       } else {
   1211         // We've been asked to resume all threads without being asked to
   1212         // suspend them all before. That may happen if a debugger tries
   1213         // to resume some suspended threads (with suspend count == 1)
   1214         // at once with a VirtualMachine.Resume command. Let's print a
   1215         // warning.
   1216         LOG(WARNING) << "Debugger attempted to resume all threads without "
   1217                      << "having suspended them all before.";
   1218       }
   1219       // Decrement everybody's suspend count (except our own).
   1220       for (const auto& thread : list_) {
   1221         if (thread == self || thread == debug_thread) {
   1222           continue;
   1223         }
   1224         if (thread->GetDebugSuspendCount() == 0) {
   1225           // This thread may have been individually resumed with ThreadReference.Resume.
   1226           continue;
   1227         }
   1228         VLOG(threads) << "requesting thread resume: " << *thread;
   1229         bool updated = thread->ModifySuspendCount(self, -1, nullptr, true);
   1230         DCHECK(updated);
   1231       }
   1232     }
   1233   }
   1234 
   1235   {
   1236     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1237     Thread::resume_cond_->Broadcast(self);
   1238   }
   1239 
   1240   VLOG(threads) << *self << " ResumeAllForDebugger complete";
   1241 }
   1242 
   1243 void ThreadList::UndoDebuggerSuspensions() {
   1244   Thread* self = Thread::Current();
   1245 
   1246   VLOG(threads) << *self << " UndoDebuggerSuspensions starting";
   1247 
   1248   {
   1249     MutexLock mu(self, *Locks::thread_list_lock_);
   1250     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1251     // Update global suspend all state for attaching threads.
   1252     suspend_all_count_ -= debug_suspend_all_count_;
   1253     debug_suspend_all_count_ = 0;
   1254     // Update running threads.
   1255     for (const auto& thread : list_) {
   1256       if (thread == self || thread->GetDebugSuspendCount() == 0) {
   1257         continue;
   1258       }
   1259       bool suspended = thread->ModifySuspendCount(self,
   1260                                                   -thread->GetDebugSuspendCount(),
   1261                                                   nullptr,
   1262                                                   true);
   1263       DCHECK(suspended);
   1264     }
   1265   }
   1266 
   1267   {
   1268     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1269     Thread::resume_cond_->Broadcast(self);
   1270   }
   1271 
   1272   VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete";
   1273 }
   1274 
   1275 void ThreadList::WaitForOtherNonDaemonThreadsToExit() {
   1276   ScopedTrace trace(__PRETTY_FUNCTION__);
   1277   Thread* self = Thread::Current();
   1278   Locks::mutator_lock_->AssertNotHeld(self);
   1279   while (true) {
   1280     {
   1281       // No more threads can be born after we start to shutdown.
   1282       MutexLock mu(self, *Locks::runtime_shutdown_lock_);
   1283       CHECK(Runtime::Current()->IsShuttingDownLocked());
   1284       CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
   1285     }
   1286     MutexLock mu(self, *Locks::thread_list_lock_);
   1287     // Also wait for any threads that are unregistering to finish. This is required so that no
   1288     // threads access the thread list after it is deleted. TODO: This may not work for user daemon
   1289     // threads since they could unregister at the wrong time.
   1290     bool done = unregistering_count_ == 0;
   1291     if (done) {
   1292       for (const auto& thread : list_) {
   1293         if (thread != self && !thread->IsDaemon()) {
   1294           done = false;
   1295           break;
   1296         }
   1297       }
   1298     }
   1299     if (done) {
   1300       break;
   1301     }
   1302     // Wait for another thread to exit before re-checking.
   1303     Locks::thread_exit_cond_->Wait(self);
   1304   }
   1305 }
   1306 
   1307 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
   1308   ScopedTrace trace(__PRETTY_FUNCTION__);
   1309   Thread* self = Thread::Current();
   1310   size_t daemons_left = 0;
   1311   {
   1312     // Tell all the daemons it's time to suspend.
   1313     MutexLock mu(self, *Locks::thread_list_lock_);
   1314     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1315     for (const auto& thread : list_) {
   1316       // This is only run after all non-daemon threads have exited, so the remainder should all be
   1317       // daemons.
   1318       CHECK(thread->IsDaemon()) << *thread;
   1319       if (thread != self) {
   1320         bool updated = thread->ModifySuspendCount(self, +1, nullptr, false);
   1321         DCHECK(updated);
   1322         ++daemons_left;
   1323       }
   1324       // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
   1325       // the sleep forever one.
   1326       thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
   1327     }
   1328   }
   1329   // If we have any daemons left, wait 200ms to ensure they are not stuck in a place where they
   1330   // are about to access runtime state and are not in a runnable state. Examples: Monitor code
   1331   // or waking up from a condition variable. TODO: Try and see if there is a better way to wait
   1332   // for daemon threads to be in a blocked state.
   1333   if (daemons_left > 0) {
   1334     static constexpr size_t kDaemonSleepTime = 200 * 1000;
   1335     usleep(kDaemonSleepTime);
   1336   }
   1337   // Give the threads a chance to suspend, complaining if they're slow.
   1338   bool have_complained = false;
   1339   static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
   1340   static constexpr size_t kSleepMicroseconds = 1000;
   1341   for (size_t i = 0; i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
   1342     bool all_suspended = true;
   1343     {
   1344       MutexLock mu(self, *Locks::thread_list_lock_);
   1345       for (const auto& thread : list_) {
   1346         if (thread != self && thread->GetState() == kRunnable) {
   1347           if (!have_complained) {
   1348             LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
   1349             have_complained = true;
   1350           }
   1351           all_suspended = false;
   1352         }
   1353       }
   1354     }
   1355     if (all_suspended) {
   1356       return;
   1357     }
   1358     usleep(kSleepMicroseconds);
   1359   }
   1360   LOG(WARNING) << "timed out suspending all daemon threads";
   1361 }
   1362 
   1363 void ThreadList::Register(Thread* self) {
   1364   DCHECK_EQ(self, Thread::Current());
   1365 
   1366   if (VLOG_IS_ON(threads)) {
   1367     std::ostringstream oss;
   1368     self->ShortDump(oss);  // We don't hold the mutator_lock_ yet and so cannot call Dump.
   1369     LOG(INFO) << "ThreadList::Register() " << *self  << "\n" << oss.str();
   1370   }
   1371 
   1372   // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
   1373   // SuspendAll requests.
   1374   MutexLock mu(self, *Locks::thread_list_lock_);
   1375   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1376   CHECK_GE(suspend_all_count_, debug_suspend_all_count_);
   1377   // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
   1378   // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
   1379   for (int delta = debug_suspend_all_count_; delta > 0; delta--) {
   1380     bool updated = self->ModifySuspendCount(self, +1, nullptr, true);
   1381     DCHECK(updated);
   1382   }
   1383   for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) {
   1384     bool updated = self->ModifySuspendCount(self, +1, nullptr, false);
   1385     DCHECK(updated);
   1386   }
   1387   CHECK(!Contains(self));
   1388   list_.push_back(self);
   1389   if (kUseReadBarrier) {
   1390     // Initialize according to the state of the CC collector.
   1391     bool is_gc_marking =
   1392         Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsMarking();
   1393     self->SetIsGcMarkingAndUpdateEntrypoints(is_gc_marking);
   1394     bool weak_ref_access_enabled =
   1395         Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsWeakRefAccessEnabled();
   1396     self->SetWeakRefAccessEnabled(weak_ref_access_enabled);
   1397   }
   1398 }
   1399 
   1400 void ThreadList::Unregister(Thread* self) {
   1401   DCHECK_EQ(self, Thread::Current());
   1402   CHECK_NE(self->GetState(), kRunnable);
   1403   Locks::mutator_lock_->AssertNotHeld(self);
   1404 
   1405   VLOG(threads) << "ThreadList::Unregister() " << *self;
   1406 
   1407   {
   1408     MutexLock mu(self, *Locks::thread_list_lock_);
   1409     ++unregistering_count_;
   1410   }
   1411 
   1412   // Any time-consuming destruction, plus anything that can call back into managed code or
   1413   // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
   1414   // causes the threads to join. It is important to do this after incrementing unregistering_count_
   1415   // since we want the runtime to wait for the daemon threads to exit before deleting the thread
   1416   // list.
   1417   self->Destroy();
   1418 
   1419   // If tracing, remember thread id and name before thread exits.
   1420   Trace::StoreExitingThreadInfo(self);
   1421 
   1422   uint32_t thin_lock_id = self->GetThreadId();
   1423   while (true) {
   1424     // Remove and delete the Thread* while holding the thread_list_lock_ and
   1425     // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
   1426     // Note: deliberately not using MutexLock that could hold a stale self pointer.
   1427     MutexLock mu(self, *Locks::thread_list_lock_);
   1428     if (!Contains(self)) {
   1429       std::string thread_name;
   1430       self->GetThreadName(thread_name);
   1431       std::ostringstream os;
   1432       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
   1433       LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
   1434       break;
   1435     } else {
   1436       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1437       if (!self->IsSuspended()) {
   1438         list_.remove(self);
   1439         break;
   1440       }
   1441     }
   1442     // We failed to remove the thread due to a suspend request, loop and try again.
   1443   }
   1444   delete self;
   1445 
   1446   // Release the thread ID after the thread is finished and deleted to avoid cases where we can
   1447   // temporarily have multiple threads with the same thread id. When this occurs, it causes
   1448   // problems in FindThreadByThreadId / SuspendThreadByThreadId.
   1449   ReleaseThreadId(nullptr, thin_lock_id);
   1450 
   1451   // Clear the TLS data, so that the underlying native thread is recognizably detached.
   1452   // (It may wish to reattach later.)
   1453 #ifdef ART_TARGET_ANDROID
   1454   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
   1455 #else
   1456   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
   1457 #endif
   1458 
   1459   // Signal that a thread just detached.
   1460   MutexLock mu(nullptr, *Locks::thread_list_lock_);
   1461   --unregistering_count_;
   1462   Locks::thread_exit_cond_->Broadcast(nullptr);
   1463 }
   1464 
   1465 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
   1466   for (const auto& thread : list_) {
   1467     callback(thread, context);
   1468   }
   1469 }
   1470 
   1471 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
   1472   Thread* const self = Thread::Current();
   1473   std::vector<Thread*> threads_to_visit;
   1474 
   1475   // Tell threads to suspend and copy them into list.
   1476   {
   1477     MutexLock mu(self, *Locks::thread_list_lock_);
   1478     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1479     for (Thread* thread : list_) {
   1480       bool suspended = thread->ModifySuspendCount(self, +1, nullptr, false);
   1481       DCHECK(suspended);
   1482       if (thread == self || thread->IsSuspended()) {
   1483         threads_to_visit.push_back(thread);
   1484       } else {
   1485         bool resumed = thread->ModifySuspendCount(self, -1, nullptr, false);
   1486         DCHECK(resumed);
   1487       }
   1488     }
   1489   }
   1490 
   1491   // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
   1492   // order violations.
   1493   for (Thread* thread : threads_to_visit) {
   1494     thread->VisitRoots(visitor);
   1495   }
   1496 
   1497   // Restore suspend counts.
   1498   {
   1499     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1500     for (Thread* thread : threads_to_visit) {
   1501       bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
   1502       DCHECK(updated);
   1503     }
   1504   }
   1505 }
   1506 
   1507 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
   1508   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
   1509   for (const auto& thread : list_) {
   1510     thread->VisitRoots(visitor, flags);
   1511   }
   1512 }
   1513 
   1514 uint32_t ThreadList::AllocThreadId(Thread* self) {
   1515   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
   1516   for (size_t i = 0; i < allocated_ids_.size(); ++i) {
   1517     if (!allocated_ids_[i]) {
   1518       allocated_ids_.set(i);
   1519       return i + 1;  // Zero is reserved to mean "invalid".
   1520     }
   1521   }
   1522   LOG(FATAL) << "Out of internal thread ids";
   1523   return 0;
   1524 }
   1525 
   1526 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
   1527   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
   1528   --id;  // Zero is reserved to mean "invalid".
   1529   DCHECK(allocated_ids_[id]) << id;
   1530   allocated_ids_.reset(id);
   1531 }
   1532 
   1533 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
   1534   Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
   1535 }
   1536 
   1537 ScopedSuspendAll::~ScopedSuspendAll() {
   1538   Runtime::Current()->GetThreadList()->ResumeAll();
   1539 }
   1540 
   1541 }  // namespace art
   1542