Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ADT/DenseMap.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/ADT/SetOperations.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/EHPersonalities.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/TargetTransformInfo.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/IR/CFG.h"
     27 #include "llvm/IR/ConstantRange.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/IRBuilder.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/LLVMContext.h"
     36 #include "llvm/IR/MDBuilder.h"
     37 #include "llvm/IR/Metadata.h"
     38 #include "llvm/IR/Module.h"
     39 #include "llvm/IR/NoFolder.h"
     40 #include "llvm/IR/Operator.h"
     41 #include "llvm/IR/PatternMatch.h"
     42 #include "llvm/IR/Type.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     47 #include "llvm/Transforms/Utils/Local.h"
     48 #include "llvm/Transforms/Utils/ValueMapper.h"
     49 #include <algorithm>
     50 #include <map>
     51 #include <set>
     52 using namespace llvm;
     53 using namespace PatternMatch;
     54 
     55 #define DEBUG_TYPE "simplifycfg"
     56 
     57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
     58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
     59 // To catch this, we need to fold a compare and a select, hence '2' being the
     60 // minimum reasonable default.
     61 static cl::opt<unsigned> PHINodeFoldingThreshold(
     62     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
     63     cl::desc(
     64         "Control the amount of phi node folding to perform (default = 2)"));
     65 
     66 static cl::opt<bool> DupRet(
     67     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     68     cl::desc("Duplicate return instructions into unconditional branches"));
     69 
     70 static cl::opt<bool>
     71     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
     72                cl::desc("Sink common instructions down to the end block"));
     73 
     74 static cl::opt<bool> HoistCondStores(
     75     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
     76     cl::desc("Hoist conditional stores if an unconditional store precedes"));
     77 
     78 static cl::opt<bool> MergeCondStores(
     79     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
     80     cl::desc("Hoist conditional stores even if an unconditional store does not "
     81              "precede - hoist multiple conditional stores into a single "
     82              "predicated store"));
     83 
     84 static cl::opt<bool> MergeCondStoresAggressively(
     85     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
     86     cl::desc("When merging conditional stores, do so even if the resultant "
     87              "basic blocks are unlikely to be if-converted as a result"));
     88 
     89 static cl::opt<bool> SpeculateOneExpensiveInst(
     90     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
     91     cl::desc("Allow exactly one expensive instruction to be speculatively "
     92              "executed"));
     93 
     94 static cl::opt<unsigned> MaxSpeculationDepth(
     95     "max-speculation-depth", cl::Hidden, cl::init(10),
     96     cl::desc("Limit maximum recursion depth when calculating costs of "
     97              "speculatively executed instructions"));
     98 
     99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
    100 STATISTIC(NumLinearMaps,
    101           "Number of switch instructions turned into linear mapping");
    102 STATISTIC(NumLookupTables,
    103           "Number of switch instructions turned into lookup tables");
    104 STATISTIC(
    105     NumLookupTablesHoles,
    106     "Number of switch instructions turned into lookup tables (holes checked)");
    107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
    108 STATISTIC(NumSinkCommons,
    109           "Number of common instructions sunk down to the end block");
    110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
    111 
    112 namespace {
    113 // The first field contains the value that the switch produces when a certain
    114 // case group is selected, and the second field is a vector containing the
    115 // cases composing the case group.
    116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
    117     SwitchCaseResultVectorTy;
    118 // The first field contains the phi node that generates a result of the switch
    119 // and the second field contains the value generated for a certain case in the
    120 // switch for that PHI.
    121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
    122 
    123 /// ValueEqualityComparisonCase - Represents a case of a switch.
    124 struct ValueEqualityComparisonCase {
    125   ConstantInt *Value;
    126   BasicBlock *Dest;
    127 
    128   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
    129       : Value(Value), Dest(Dest) {}
    130 
    131   bool operator<(ValueEqualityComparisonCase RHS) const {
    132     // Comparing pointers is ok as we only rely on the order for uniquing.
    133     return Value < RHS.Value;
    134   }
    135 
    136   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
    137 };
    138 
    139 class SimplifyCFGOpt {
    140   const TargetTransformInfo &TTI;
    141   const DataLayout &DL;
    142   unsigned BonusInstThreshold;
    143   AssumptionCache *AC;
    144   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
    145   Value *isValueEqualityComparison(TerminatorInst *TI);
    146   BasicBlock *GetValueEqualityComparisonCases(
    147       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
    148   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    149                                                      BasicBlock *Pred,
    150                                                      IRBuilder<> &Builder);
    151   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    152                                            IRBuilder<> &Builder);
    153 
    154   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
    155   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
    156   bool SimplifySingleResume(ResumeInst *RI);
    157   bool SimplifyCommonResume(ResumeInst *RI);
    158   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
    159   bool SimplifyUnreachable(UnreachableInst *UI);
    160   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
    161   bool SimplifyIndirectBr(IndirectBrInst *IBI);
    162   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
    163   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
    164 
    165 public:
    166   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
    167                  unsigned BonusInstThreshold, AssumptionCache *AC,
    168                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
    169       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
    170         LoopHeaders(LoopHeaders) {}
    171   bool run(BasicBlock *BB);
    172 };
    173 }
    174 
    175 /// Return true if it is safe to merge these two
    176 /// terminator instructions together.
    177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
    178   if (SI1 == SI2)
    179     return false; // Can't merge with self!
    180 
    181   // It is not safe to merge these two switch instructions if they have a common
    182   // successor, and if that successor has a PHI node, and if *that* PHI node has
    183   // conflicting incoming values from the two switch blocks.
    184   BasicBlock *SI1BB = SI1->getParent();
    185   BasicBlock *SI2BB = SI2->getParent();
    186   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    187 
    188   for (BasicBlock *Succ : successors(SI2BB))
    189     if (SI1Succs.count(Succ))
    190       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
    191         PHINode *PN = cast<PHINode>(BBI);
    192         if (PN->getIncomingValueForBlock(SI1BB) !=
    193             PN->getIncomingValueForBlock(SI2BB))
    194           return false;
    195       }
    196 
    197   return true;
    198 }
    199 
    200 /// Return true if it is safe and profitable to merge these two terminator
    201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
    202 /// store all PHI nodes in common successors.
    203 static bool
    204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
    205                                 Instruction *Cond,
    206                                 SmallVectorImpl<PHINode *> &PhiNodes) {
    207   if (SI1 == SI2)
    208     return false; // Can't merge with self!
    209   assert(SI1->isUnconditional() && SI2->isConditional());
    210 
    211   // We fold the unconditional branch if we can easily update all PHI nodes in
    212   // common successors:
    213   // 1> We have a constant incoming value for the conditional branch;
    214   // 2> We have "Cond" as the incoming value for the unconditional branch;
    215   // 3> SI2->getCondition() and Cond have same operands.
    216   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
    217   if (!Ci2)
    218     return false;
    219   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
    220         Cond->getOperand(1) == Ci2->getOperand(1)) &&
    221       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
    222         Cond->getOperand(1) == Ci2->getOperand(0)))
    223     return false;
    224 
    225   BasicBlock *SI1BB = SI1->getParent();
    226   BasicBlock *SI2BB = SI2->getParent();
    227   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
    228   for (BasicBlock *Succ : successors(SI2BB))
    229     if (SI1Succs.count(Succ))
    230       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
    231         PHINode *PN = cast<PHINode>(BBI);
    232         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
    233             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
    234           return false;
    235         PhiNodes.push_back(PN);
    236       }
    237   return true;
    238 }
    239 
    240 /// Update PHI nodes in Succ to indicate that there will now be entries in it
    241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
    242 /// will be the same as those coming in from ExistPred, an existing predecessor
    243 /// of Succ.
    244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    245                                   BasicBlock *ExistPred) {
    246   if (!isa<PHINode>(Succ->begin()))
    247     return; // Quick exit if nothing to do
    248 
    249   PHINode *PN;
    250   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    251     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    252 }
    253 
    254 /// Compute an abstract "cost" of speculating the given instruction,
    255 /// which is assumed to be safe to speculate. TCC_Free means cheap,
    256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
    257 /// expensive.
    258 static unsigned ComputeSpeculationCost(const User *I,
    259                                        const TargetTransformInfo &TTI) {
    260   assert(isSafeToSpeculativelyExecute(I) &&
    261          "Instruction is not safe to speculatively execute!");
    262   return TTI.getUserCost(I);
    263 }
    264 
    265 /// If we have a merge point of an "if condition" as accepted above,
    266 /// return true if the specified value dominates the block.  We
    267 /// don't handle the true generality of domination here, just a special case
    268 /// which works well enough for us.
    269 ///
    270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    271 /// see if V (which must be an instruction) and its recursive operands
    272 /// that do not dominate BB have a combined cost lower than CostRemaining and
    273 /// are non-trapping.  If both are true, the instruction is inserted into the
    274 /// set and true is returned.
    275 ///
    276 /// The cost for most non-trapping instructions is defined as 1 except for
    277 /// Select whose cost is 2.
    278 ///
    279 /// After this function returns, CostRemaining is decreased by the cost of
    280 /// V plus its non-dominating operands.  If that cost is greater than
    281 /// CostRemaining, false is returned and CostRemaining is undefined.
    282 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    283                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
    284                                 unsigned &CostRemaining,
    285                                 const TargetTransformInfo &TTI,
    286                                 unsigned Depth = 0) {
    287   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
    288   // so limit the recursion depth.
    289   // TODO: While this recursion limit does prevent pathological behavior, it
    290   // would be better to track visited instructions to avoid cycles.
    291   if (Depth == MaxSpeculationDepth)
    292     return false;
    293 
    294   Instruction *I = dyn_cast<Instruction>(V);
    295   if (!I) {
    296     // Non-instructions all dominate instructions, but not all constantexprs
    297     // can be executed unconditionally.
    298     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    299       if (C->canTrap())
    300         return false;
    301     return true;
    302   }
    303   BasicBlock *PBB = I->getParent();
    304 
    305   // We don't want to allow weird loops that might have the "if condition" in
    306   // the bottom of this block.
    307   if (PBB == BB)
    308     return false;
    309 
    310   // If this instruction is defined in a block that contains an unconditional
    311   // branch to BB, then it must be in the 'conditional' part of the "if
    312   // statement".  If not, it definitely dominates the region.
    313   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    314   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
    315     return true;
    316 
    317   // If we aren't allowing aggressive promotion anymore, then don't consider
    318   // instructions in the 'if region'.
    319   if (!AggressiveInsts)
    320     return false;
    321 
    322   // If we have seen this instruction before, don't count it again.
    323   if (AggressiveInsts->count(I))
    324     return true;
    325 
    326   // Okay, it looks like the instruction IS in the "condition".  Check to
    327   // see if it's a cheap instruction to unconditionally compute, and if it
    328   // only uses stuff defined outside of the condition.  If so, hoist it out.
    329   if (!isSafeToSpeculativelyExecute(I))
    330     return false;
    331 
    332   unsigned Cost = ComputeSpeculationCost(I, TTI);
    333 
    334   // Allow exactly one instruction to be speculated regardless of its cost
    335   // (as long as it is safe to do so).
    336   // This is intended to flatten the CFG even if the instruction is a division
    337   // or other expensive operation. The speculation of an expensive instruction
    338   // is expected to be undone in CodeGenPrepare if the speculation has not
    339   // enabled further IR optimizations.
    340   if (Cost > CostRemaining &&
    341       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
    342     return false;
    343 
    344   // Avoid unsigned wrap.
    345   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
    346 
    347   // Okay, we can only really hoist these out if their operands do
    348   // not take us over the cost threshold.
    349   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    350     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
    351                              Depth + 1))
    352       return false;
    353   // Okay, it's safe to do this!  Remember this instruction.
    354   AggressiveInsts->insert(I);
    355   return true;
    356 }
    357 
    358 /// Extract ConstantInt from value, looking through IntToPtr
    359 /// and PointerNullValue. Return NULL if value is not a constant int.
    360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
    361   // Normal constant int.
    362   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    363   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
    364     return CI;
    365 
    366   // This is some kind of pointer constant. Turn it into a pointer-sized
    367   // ConstantInt if possible.
    368   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
    369 
    370   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    371   if (isa<ConstantPointerNull>(V))
    372     return ConstantInt::get(PtrTy, 0);
    373 
    374   // IntToPtr const int.
    375   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    376     if (CE->getOpcode() == Instruction::IntToPtr)
    377       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    378         // The constant is very likely to have the right type already.
    379         if (CI->getType() == PtrTy)
    380           return CI;
    381         else
    382           return cast<ConstantInt>(
    383               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    384       }
    385   return nullptr;
    386 }
    387 
    388 namespace {
    389 
    390 /// Given a chain of or (||) or and (&&) comparison of a value against a
    391 /// constant, this will try to recover the information required for a switch
    392 /// structure.
    393 /// It will depth-first traverse the chain of comparison, seeking for patterns
    394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
    395 /// representing the different cases for the switch.
    396 /// Note that if the chain is composed of '||' it will build the set of elements
    397 /// that matches the comparisons (i.e. any of this value validate the chain)
    398 /// while for a chain of '&&' it will build the set elements that make the test
    399 /// fail.
    400 struct ConstantComparesGatherer {
    401   const DataLayout &DL;
    402   Value *CompValue; /// Value found for the switch comparison
    403   Value *Extra;     /// Extra clause to be checked before the switch
    404   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
    405   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
    406 
    407   /// Construct and compute the result for the comparison instruction Cond
    408   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
    409       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
    410     gather(Cond);
    411   }
    412 
    413   /// Prevent copy
    414   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
    415   ConstantComparesGatherer &
    416   operator=(const ConstantComparesGatherer &) = delete;
    417 
    418 private:
    419   /// Try to set the current value used for the comparison, it succeeds only if
    420   /// it wasn't set before or if the new value is the same as the old one
    421   bool setValueOnce(Value *NewVal) {
    422     if (CompValue && CompValue != NewVal)
    423       return false;
    424     CompValue = NewVal;
    425     return (CompValue != nullptr);
    426   }
    427 
    428   /// Try to match Instruction "I" as a comparison against a constant and
    429   /// populates the array Vals with the set of values that match (or do not
    430   /// match depending on isEQ).
    431   /// Return false on failure. On success, the Value the comparison matched
    432   /// against is placed in CompValue.
    433   /// If CompValue is already set, the function is expected to fail if a match
    434   /// is found but the value compared to is different.
    435   bool matchInstruction(Instruction *I, bool isEQ) {
    436     // If this is an icmp against a constant, handle this as one of the cases.
    437     ICmpInst *ICI;
    438     ConstantInt *C;
    439     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
    440           (C = GetConstantInt(I->getOperand(1), DL)))) {
    441       return false;
    442     }
    443 
    444     Value *RHSVal;
    445     const APInt *RHSC;
    446 
    447     // Pattern match a special case
    448     // (x & ~2^z) == y --> x == y || x == y|2^z
    449     // This undoes a transformation done by instcombine to fuse 2 compares.
    450     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
    451 
    452       // It's a little bit hard to see why the following transformations are
    453       // correct. Here is a CVC3 program to verify them for 64-bit values:
    454 
    455       /*
    456          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
    457          x    : BITVECTOR(64);
    458          y    : BITVECTOR(64);
    459          z    : BITVECTOR(64);
    460          mask : BITVECTOR(64) = BVSHL(ONE, z);
    461          QUERY( (y & ~mask = y) =>
    462                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
    463          );
    464          QUERY( (y |  mask = y) =>
    465                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
    466          );
    467       */
    468 
    469       // Please note that each pattern must be a dual implication (<--> or
    470       // iff). One directional implication can create spurious matches. If the
    471       // implication is only one-way, an unsatisfiable condition on the left
    472       // side can imply a satisfiable condition on the right side. Dual
    473       // implication ensures that satisfiable conditions are transformed to
    474       // other satisfiable conditions and unsatisfiable conditions are
    475       // transformed to other unsatisfiable conditions.
    476 
    477       // Here is a concrete example of a unsatisfiable condition on the left
    478       // implying a satisfiable condition on the right:
    479       //
    480       // mask = (1 << z)
    481       // (x & ~mask) == y  --> (x == y || x == (y | mask))
    482       //
    483       // Substituting y = 3, z = 0 yields:
    484       // (x & -2) == 3 --> (x == 3 || x == 2)
    485 
    486       // Pattern match a special case:
    487       /*
    488         QUERY( (y & ~mask = y) =>
    489                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
    490         );
    491       */
    492       if (match(ICI->getOperand(0),
    493                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
    494         APInt Mask = ~*RHSC;
    495         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
    496           // If we already have a value for the switch, it has to match!
    497           if (!setValueOnce(RHSVal))
    498             return false;
    499 
    500           Vals.push_back(C);
    501           Vals.push_back(
    502               ConstantInt::get(C->getContext(),
    503                                C->getValue() | Mask));
    504           UsedICmps++;
    505           return true;
    506         }
    507       }
    508 
    509       // Pattern match a special case:
    510       /*
    511         QUERY( (y |  mask = y) =>
    512                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
    513         );
    514       */
    515       if (match(ICI->getOperand(0),
    516                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
    517         APInt Mask = *RHSC;
    518         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
    519           // If we already have a value for the switch, it has to match!
    520           if (!setValueOnce(RHSVal))
    521             return false;
    522 
    523           Vals.push_back(C);
    524           Vals.push_back(ConstantInt::get(C->getContext(),
    525                                           C->getValue() & ~Mask));
    526           UsedICmps++;
    527           return true;
    528         }
    529       }
    530 
    531       // If we already have a value for the switch, it has to match!
    532       if (!setValueOnce(ICI->getOperand(0)))
    533         return false;
    534 
    535       UsedICmps++;
    536       Vals.push_back(C);
    537       return ICI->getOperand(0);
    538     }
    539 
    540     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
    541     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
    542         ICI->getPredicate(), C->getValue());
    543 
    544     // Shift the range if the compare is fed by an add. This is the range
    545     // compare idiom as emitted by instcombine.
    546     Value *CandidateVal = I->getOperand(0);
    547     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
    548       Span = Span.subtract(*RHSC);
    549       CandidateVal = RHSVal;
    550     }
    551 
    552     // If this is an and/!= check, then we are looking to build the set of
    553     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
    554     // x != 0 && x != 1.
    555     if (!isEQ)
    556       Span = Span.inverse();
    557 
    558     // If there are a ton of values, we don't want to make a ginormous switch.
    559     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
    560       return false;
    561     }
    562 
    563     // If we already have a value for the switch, it has to match!
    564     if (!setValueOnce(CandidateVal))
    565       return false;
    566 
    567     // Add all values from the range to the set
    568     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    569       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
    570 
    571     UsedICmps++;
    572     return true;
    573   }
    574 
    575   /// Given a potentially 'or'd or 'and'd together collection of icmp
    576   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
    577   /// the value being compared, and stick the list constants into the Vals
    578   /// vector.
    579   /// One "Extra" case is allowed to differ from the other.
    580   void gather(Value *V) {
    581     Instruction *I = dyn_cast<Instruction>(V);
    582     bool isEQ = (I->getOpcode() == Instruction::Or);
    583 
    584     // Keep a stack (SmallVector for efficiency) for depth-first traversal
    585     SmallVector<Value *, 8> DFT;
    586     SmallPtrSet<Value *, 8> Visited;
    587 
    588     // Initialize
    589     Visited.insert(V);
    590     DFT.push_back(V);
    591 
    592     while (!DFT.empty()) {
    593       V = DFT.pop_back_val();
    594 
    595       if (Instruction *I = dyn_cast<Instruction>(V)) {
    596         // If it is a || (or && depending on isEQ), process the operands.
    597         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
    598           if (Visited.insert(I->getOperand(1)).second)
    599             DFT.push_back(I->getOperand(1));
    600           if (Visited.insert(I->getOperand(0)).second)
    601             DFT.push_back(I->getOperand(0));
    602           continue;
    603         }
    604 
    605         // Try to match the current instruction
    606         if (matchInstruction(I, isEQ))
    607           // Match succeed, continue the loop
    608           continue;
    609       }
    610 
    611       // One element of the sequence of || (or &&) could not be match as a
    612       // comparison against the same value as the others.
    613       // We allow only one "Extra" case to be checked before the switch
    614       if (!Extra) {
    615         Extra = V;
    616         continue;
    617       }
    618       // Failed to parse a proper sequence, abort now
    619       CompValue = nullptr;
    620       break;
    621     }
    622   }
    623 };
    624 }
    625 
    626 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    627   Instruction *Cond = nullptr;
    628   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    629     Cond = dyn_cast<Instruction>(SI->getCondition());
    630   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    631     if (BI->isConditional())
    632       Cond = dyn_cast<Instruction>(BI->getCondition());
    633   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    634     Cond = dyn_cast<Instruction>(IBI->getAddress());
    635   }
    636 
    637   TI->eraseFromParent();
    638   if (Cond)
    639     RecursivelyDeleteTriviallyDeadInstructions(Cond);
    640 }
    641 
    642 /// Return true if the specified terminator checks
    643 /// to see if a value is equal to constant integer value.
    644 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    645   Value *CV = nullptr;
    646   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    647     // Do not permit merging of large switch instructions into their
    648     // predecessors unless there is only one predecessor.
    649     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
    650                                                pred_end(SI->getParent())) <=
    651         128)
    652       CV = SI->getCondition();
    653   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    654     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    655       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
    656         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
    657           CV = ICI->getOperand(0);
    658       }
    659 
    660   // Unwrap any lossless ptrtoint cast.
    661   if (CV) {
    662     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
    663       Value *Ptr = PTII->getPointerOperand();
    664       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
    665         CV = Ptr;
    666     }
    667   }
    668   return CV;
    669 }
    670 
    671 /// Given a value comparison instruction,
    672 /// decode all of the 'cases' that it represents and return the 'default' block.
    673 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
    674     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
    675   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    676     Cases.reserve(SI->getNumCases());
    677     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
    678          ++i)
    679       Cases.push_back(
    680           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
    681     return SI->getDefaultDest();
    682   }
    683 
    684   BranchInst *BI = cast<BranchInst>(TI);
    685   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    686   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
    687   Cases.push_back(ValueEqualityComparisonCase(
    688       GetConstantInt(ICI->getOperand(1), DL), Succ));
    689   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    690 }
    691 
    692 /// Given a vector of bb/value pairs, remove any entries
    693 /// in the list that match the specified block.
    694 static void
    695 EliminateBlockCases(BasicBlock *BB,
    696                     std::vector<ValueEqualityComparisonCase> &Cases) {
    697   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
    698 }
    699 
    700 /// Return true if there are any keys in C1 that exist in C2 as well.
    701 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
    702                           std::vector<ValueEqualityComparisonCase> &C2) {
    703   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
    704 
    705   // Make V1 be smaller than V2.
    706   if (V1->size() > V2->size())
    707     std::swap(V1, V2);
    708 
    709   if (V1->size() == 0)
    710     return false;
    711   if (V1->size() == 1) {
    712     // Just scan V2.
    713     ConstantInt *TheVal = (*V1)[0].Value;
    714     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    715       if (TheVal == (*V2)[i].Value)
    716         return true;
    717   }
    718 
    719   // Otherwise, just sort both lists and compare element by element.
    720   array_pod_sort(V1->begin(), V1->end());
    721   array_pod_sort(V2->begin(), V2->end());
    722   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    723   while (i1 != e1 && i2 != e2) {
    724     if ((*V1)[i1].Value == (*V2)[i2].Value)
    725       return true;
    726     if ((*V1)[i1].Value < (*V2)[i2].Value)
    727       ++i1;
    728     else
    729       ++i2;
    730   }
    731   return false;
    732 }
    733 
    734 /// If TI is known to be a terminator instruction and its block is known to
    735 /// only have a single predecessor block, check to see if that predecessor is
    736 /// also a value comparison with the same value, and if that comparison
    737 /// determines the outcome of this comparison. If so, simplify TI. This does a
    738 /// very limited form of jump threading.
    739 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
    740     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
    741   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    742   if (!PredVal)
    743     return false; // Not a value comparison in predecessor.
    744 
    745   Value *ThisVal = isValueEqualityComparison(TI);
    746   assert(ThisVal && "This isn't a value comparison!!");
    747   if (ThisVal != PredVal)
    748     return false; // Different predicates.
    749 
    750   // TODO: Preserve branch weight metadata, similarly to how
    751   // FoldValueComparisonIntoPredecessors preserves it.
    752 
    753   // Find out information about when control will move from Pred to TI's block.
    754   std::vector<ValueEqualityComparisonCase> PredCases;
    755   BasicBlock *PredDef =
    756       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
    757   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
    758 
    759   // Find information about how control leaves this block.
    760   std::vector<ValueEqualityComparisonCase> ThisCases;
    761   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    762   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
    763 
    764   // If TI's block is the default block from Pred's comparison, potentially
    765   // simplify TI based on this knowledge.
    766   if (PredDef == TI->getParent()) {
    767     // If we are here, we know that the value is none of those cases listed in
    768     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    769     // can simplify TI.
    770     if (!ValuesOverlap(PredCases, ThisCases))
    771       return false;
    772 
    773     if (isa<BranchInst>(TI)) {
    774       // Okay, one of the successors of this condbr is dead.  Convert it to a
    775       // uncond br.
    776       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    777       // Insert the new branch.
    778       Instruction *NI = Builder.CreateBr(ThisDef);
    779       (void)NI;
    780 
    781       // Remove PHI node entries for the dead edge.
    782       ThisCases[0].Dest->removePredecessor(TI->getParent());
    783 
    784       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    785                    << "Through successor TI: " << *TI << "Leaving: " << *NI
    786                    << "\n");
    787 
    788       EraseTerminatorInstAndDCECond(TI);
    789       return true;
    790     }
    791 
    792     SwitchInst *SI = cast<SwitchInst>(TI);
    793     // Okay, TI has cases that are statically dead, prune them away.
    794     SmallPtrSet<Constant *, 16> DeadCases;
    795     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    796       DeadCases.insert(PredCases[i].Value);
    797 
    798     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    799                  << "Through successor TI: " << *TI);
    800 
    801     // Collect branch weights into a vector.
    802     SmallVector<uint32_t, 8> Weights;
    803     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    804     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    805     if (HasWeight)
    806       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    807            ++MD_i) {
    808         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
    809         Weights.push_back(CI->getValue().getZExtValue());
    810       }
    811     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    812       --i;
    813       if (DeadCases.count(i.getCaseValue())) {
    814         if (HasWeight) {
    815           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
    816           Weights.pop_back();
    817         }
    818         i.getCaseSuccessor()->removePredecessor(TI->getParent());
    819         SI->removeCase(i);
    820       }
    821     }
    822     if (HasWeight && Weights.size() >= 2)
    823       SI->setMetadata(LLVMContext::MD_prof,
    824                       MDBuilder(SI->getParent()->getContext())
    825                           .createBranchWeights(Weights));
    826 
    827     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    828     return true;
    829   }
    830 
    831   // Otherwise, TI's block must correspond to some matched value.  Find out
    832   // which value (or set of values) this is.
    833   ConstantInt *TIV = nullptr;
    834   BasicBlock *TIBB = TI->getParent();
    835   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    836     if (PredCases[i].Dest == TIBB) {
    837       if (TIV)
    838         return false; // Cannot handle multiple values coming to this block.
    839       TIV = PredCases[i].Value;
    840     }
    841   assert(TIV && "No edge from pred to succ?");
    842 
    843   // Okay, we found the one constant that our value can be if we get into TI's
    844   // BB.  Find out which successor will unconditionally be branched to.
    845   BasicBlock *TheRealDest = nullptr;
    846   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    847     if (ThisCases[i].Value == TIV) {
    848       TheRealDest = ThisCases[i].Dest;
    849       break;
    850     }
    851 
    852   // If not handled by any explicit cases, it is handled by the default case.
    853   if (!TheRealDest)
    854     TheRealDest = ThisDef;
    855 
    856   // Remove PHI node entries for dead edges.
    857   BasicBlock *CheckEdge = TheRealDest;
    858   for (BasicBlock *Succ : successors(TIBB))
    859     if (Succ != CheckEdge)
    860       Succ->removePredecessor(TIBB);
    861     else
    862       CheckEdge = nullptr;
    863 
    864   // Insert the new branch.
    865   Instruction *NI = Builder.CreateBr(TheRealDest);
    866   (void)NI;
    867 
    868   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    869                << "Through successor TI: " << *TI << "Leaving: " << *NI
    870                << "\n");
    871 
    872   EraseTerminatorInstAndDCECond(TI);
    873   return true;
    874 }
    875 
    876 namespace {
    877 /// This class implements a stable ordering of constant
    878 /// integers that does not depend on their address.  This is important for
    879 /// applications that sort ConstantInt's to ensure uniqueness.
    880 struct ConstantIntOrdering {
    881   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    882     return LHS->getValue().ult(RHS->getValue());
    883   }
    884 };
    885 }
    886 
    887 static int ConstantIntSortPredicate(ConstantInt *const *P1,
    888                                     ConstantInt *const *P2) {
    889   const ConstantInt *LHS = *P1;
    890   const ConstantInt *RHS = *P2;
    891   if (LHS == RHS)
    892     return 0;
    893   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
    894 }
    895 
    896 static inline bool HasBranchWeights(const Instruction *I) {
    897   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
    898   if (ProfMD && ProfMD->getOperand(0))
    899     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
    900       return MDS->getString().equals("branch_weights");
    901 
    902   return false;
    903 }
    904 
    905 /// Get Weights of a given TerminatorInst, the default weight is at the front
    906 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
    907 /// metadata.
    908 static void GetBranchWeights(TerminatorInst *TI,
    909                              SmallVectorImpl<uint64_t> &Weights) {
    910   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
    911   assert(MD);
    912   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    913     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
    914     Weights.push_back(CI->getValue().getZExtValue());
    915   }
    916 
    917   // If TI is a conditional eq, the default case is the false case,
    918   // and the corresponding branch-weight data is at index 2. We swap the
    919   // default weight to be the first entry.
    920   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    921     assert(Weights.size() == 2);
    922     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    923     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    924       std::swap(Weights.front(), Weights.back());
    925   }
    926 }
    927 
    928 /// Keep halving the weights until all can fit in uint32_t.
    929 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
    930   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
    931   if (Max > UINT_MAX) {
    932     unsigned Offset = 32 - countLeadingZeros(Max);
    933     for (uint64_t &I : Weights)
    934       I >>= Offset;
    935   }
    936 }
    937 
    938 /// The specified terminator is a value equality comparison instruction
    939 /// (either a switch or a branch on "X == c").
    940 /// See if any of the predecessors of the terminator block are value comparisons
    941 /// on the same value.  If so, and if safe to do so, fold them together.
    942 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    943                                                          IRBuilder<> &Builder) {
    944   BasicBlock *BB = TI->getParent();
    945   Value *CV = isValueEqualityComparison(TI); // CondVal
    946   assert(CV && "Not a comparison?");
    947   bool Changed = false;
    948 
    949   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
    950   while (!Preds.empty()) {
    951     BasicBlock *Pred = Preds.pop_back_val();
    952 
    953     // See if the predecessor is a comparison with the same value.
    954     TerminatorInst *PTI = Pred->getTerminator();
    955     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
    956 
    957     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    958       // Figure out which 'cases' to copy from SI to PSI.
    959       std::vector<ValueEqualityComparisonCase> BBCases;
    960       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    961 
    962       std::vector<ValueEqualityComparisonCase> PredCases;
    963       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    964 
    965       // Based on whether the default edge from PTI goes to BB or not, fill in
    966       // PredCases and PredDefault with the new switch cases we would like to
    967       // build.
    968       SmallVector<BasicBlock *, 8> NewSuccessors;
    969 
    970       // Update the branch weight metadata along the way
    971       SmallVector<uint64_t, 8> Weights;
    972       bool PredHasWeights = HasBranchWeights(PTI);
    973       bool SuccHasWeights = HasBranchWeights(TI);
    974 
    975       if (PredHasWeights) {
    976         GetBranchWeights(PTI, Weights);
    977         // branch-weight metadata is inconsistent here.
    978         if (Weights.size() != 1 + PredCases.size())
    979           PredHasWeights = SuccHasWeights = false;
    980       } else if (SuccHasWeights)
    981         // If there are no predecessor weights but there are successor weights,
    982         // populate Weights with 1, which will later be scaled to the sum of
    983         // successor's weights
    984         Weights.assign(1 + PredCases.size(), 1);
    985 
    986       SmallVector<uint64_t, 8> SuccWeights;
    987       if (SuccHasWeights) {
    988         GetBranchWeights(TI, SuccWeights);
    989         // branch-weight metadata is inconsistent here.
    990         if (SuccWeights.size() != 1 + BBCases.size())
    991           PredHasWeights = SuccHasWeights = false;
    992       } else if (PredHasWeights)
    993         SuccWeights.assign(1 + BBCases.size(), 1);
    994 
    995       if (PredDefault == BB) {
    996         // If this is the default destination from PTI, only the edges in TI
    997         // that don't occur in PTI, or that branch to BB will be activated.
    998         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
    999         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
   1000           if (PredCases[i].Dest != BB)
   1001             PTIHandled.insert(PredCases[i].Value);
   1002           else {
   1003             // The default destination is BB, we don't need explicit targets.
   1004             std::swap(PredCases[i], PredCases.back());
   1005 
   1006             if (PredHasWeights || SuccHasWeights) {
   1007               // Increase weight for the default case.
   1008               Weights[0] += Weights[i + 1];
   1009               std::swap(Weights[i + 1], Weights.back());
   1010               Weights.pop_back();
   1011             }
   1012 
   1013             PredCases.pop_back();
   1014             --i;
   1015             --e;
   1016           }
   1017 
   1018         // Reconstruct the new switch statement we will be building.
   1019         if (PredDefault != BBDefault) {
   1020           PredDefault->removePredecessor(Pred);
   1021           PredDefault = BBDefault;
   1022           NewSuccessors.push_back(BBDefault);
   1023         }
   1024 
   1025         unsigned CasesFromPred = Weights.size();
   1026         uint64_t ValidTotalSuccWeight = 0;
   1027         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
   1028           if (!PTIHandled.count(BBCases[i].Value) &&
   1029               BBCases[i].Dest != BBDefault) {
   1030             PredCases.push_back(BBCases[i]);
   1031             NewSuccessors.push_back(BBCases[i].Dest);
   1032             if (SuccHasWeights || PredHasWeights) {
   1033               // The default weight is at index 0, so weight for the ith case
   1034               // should be at index i+1. Scale the cases from successor by
   1035               // PredDefaultWeight (Weights[0]).
   1036               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
   1037               ValidTotalSuccWeight += SuccWeights[i + 1];
   1038             }
   1039           }
   1040 
   1041         if (SuccHasWeights || PredHasWeights) {
   1042           ValidTotalSuccWeight += SuccWeights[0];
   1043           // Scale the cases from predecessor by ValidTotalSuccWeight.
   1044           for (unsigned i = 1; i < CasesFromPred; ++i)
   1045             Weights[i] *= ValidTotalSuccWeight;
   1046           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
   1047           Weights[0] *= SuccWeights[0];
   1048         }
   1049       } else {
   1050         // If this is not the default destination from PSI, only the edges
   1051         // in SI that occur in PSI with a destination of BB will be
   1052         // activated.
   1053         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
   1054         std::map<ConstantInt *, uint64_t> WeightsForHandled;
   1055         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
   1056           if (PredCases[i].Dest == BB) {
   1057             PTIHandled.insert(PredCases[i].Value);
   1058 
   1059             if (PredHasWeights || SuccHasWeights) {
   1060               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
   1061               std::swap(Weights[i + 1], Weights.back());
   1062               Weights.pop_back();
   1063             }
   1064 
   1065             std::swap(PredCases[i], PredCases.back());
   1066             PredCases.pop_back();
   1067             --i;
   1068             --e;
   1069           }
   1070 
   1071         // Okay, now we know which constants were sent to BB from the
   1072         // predecessor.  Figure out where they will all go now.
   1073         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
   1074           if (PTIHandled.count(BBCases[i].Value)) {
   1075             // If this is one we are capable of getting...
   1076             if (PredHasWeights || SuccHasWeights)
   1077               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
   1078             PredCases.push_back(BBCases[i]);
   1079             NewSuccessors.push_back(BBCases[i].Dest);
   1080             PTIHandled.erase(
   1081                 BBCases[i].Value); // This constant is taken care of
   1082           }
   1083 
   1084         // If there are any constants vectored to BB that TI doesn't handle,
   1085         // they must go to the default destination of TI.
   1086         for (ConstantInt *I : PTIHandled) {
   1087           if (PredHasWeights || SuccHasWeights)
   1088             Weights.push_back(WeightsForHandled[I]);
   1089           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
   1090           NewSuccessors.push_back(BBDefault);
   1091         }
   1092       }
   1093 
   1094       // Okay, at this point, we know which new successor Pred will get.  Make
   1095       // sure we update the number of entries in the PHI nodes for these
   1096       // successors.
   1097       for (BasicBlock *NewSuccessor : NewSuccessors)
   1098         AddPredecessorToBlock(NewSuccessor, Pred, BB);
   1099 
   1100       Builder.SetInsertPoint(PTI);
   1101       // Convert pointer to int before we switch.
   1102       if (CV->getType()->isPointerTy()) {
   1103         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
   1104                                     "magicptr");
   1105       }
   1106 
   1107       // Now that the successors are updated, create the new Switch instruction.
   1108       SwitchInst *NewSI =
   1109           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
   1110       NewSI->setDebugLoc(PTI->getDebugLoc());
   1111       for (ValueEqualityComparisonCase &V : PredCases)
   1112         NewSI->addCase(V.Value, V.Dest);
   1113 
   1114       if (PredHasWeights || SuccHasWeights) {
   1115         // Halve the weights if any of them cannot fit in an uint32_t
   1116         FitWeights(Weights);
   1117 
   1118         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   1119 
   1120         NewSI->setMetadata(
   1121             LLVMContext::MD_prof,
   1122             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
   1123       }
   1124 
   1125       EraseTerminatorInstAndDCECond(PTI);
   1126 
   1127       // Okay, last check.  If BB is still a successor of PSI, then we must
   1128       // have an infinite loop case.  If so, add an infinitely looping block
   1129       // to handle the case to preserve the behavior of the code.
   1130       BasicBlock *InfLoopBlock = nullptr;
   1131       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
   1132         if (NewSI->getSuccessor(i) == BB) {
   1133           if (!InfLoopBlock) {
   1134             // Insert it at the end of the function, because it's either code,
   1135             // or it won't matter if it's hot. :)
   1136             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
   1137                                               BB->getParent());
   1138             BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1139           }
   1140           NewSI->setSuccessor(i, InfLoopBlock);
   1141         }
   1142 
   1143       Changed = true;
   1144     }
   1145   }
   1146   return Changed;
   1147 }
   1148 
   1149 // If we would need to insert a select that uses the value of this invoke
   1150 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
   1151 // can't hoist the invoke, as there is nowhere to put the select in this case.
   1152 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
   1153                                 Instruction *I1, Instruction *I2) {
   1154   for (BasicBlock *Succ : successors(BB1)) {
   1155     PHINode *PN;
   1156     for (BasicBlock::iterator BBI = Succ->begin();
   1157          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1158       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1159       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1160       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
   1161         return false;
   1162       }
   1163     }
   1164   }
   1165   return true;
   1166 }
   1167 
   1168 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
   1169 
   1170 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
   1171 /// in the two blocks up into the branch block. The caller of this function
   1172 /// guarantees that BI's block dominates BB1 and BB2.
   1173 static bool HoistThenElseCodeToIf(BranchInst *BI,
   1174                                   const TargetTransformInfo &TTI) {
   1175   // This does very trivial matching, with limited scanning, to find identical
   1176   // instructions in the two blocks.  In particular, we don't want to get into
   1177   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
   1178   // such, we currently just scan for obviously identical instructions in an
   1179   // identical order.
   1180   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
   1181   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
   1182 
   1183   BasicBlock::iterator BB1_Itr = BB1->begin();
   1184   BasicBlock::iterator BB2_Itr = BB2->begin();
   1185 
   1186   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
   1187   // Skip debug info if it is not identical.
   1188   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1189   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1190   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1191     while (isa<DbgInfoIntrinsic>(I1))
   1192       I1 = &*BB1_Itr++;
   1193     while (isa<DbgInfoIntrinsic>(I2))
   1194       I2 = &*BB2_Itr++;
   1195   }
   1196   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
   1197       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
   1198     return false;
   1199 
   1200   BasicBlock *BIParent = BI->getParent();
   1201 
   1202   bool Changed = false;
   1203   do {
   1204     // If we are hoisting the terminator instruction, don't move one (making a
   1205     // broken BB), instead clone it, and remove BI.
   1206     if (isa<TerminatorInst>(I1))
   1207       goto HoistTerminator;
   1208 
   1209     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
   1210       return Changed;
   1211 
   1212     // For a normal instruction, we just move one to right before the branch,
   1213     // then replace all uses of the other with the first.  Finally, we remove
   1214     // the now redundant second instruction.
   1215     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
   1216     if (!I2->use_empty())
   1217       I2->replaceAllUsesWith(I1);
   1218     I1->intersectOptionalDataWith(I2);
   1219     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
   1220                            LLVMContext::MD_range,
   1221                            LLVMContext::MD_fpmath,
   1222                            LLVMContext::MD_invariant_load,
   1223                            LLVMContext::MD_nonnull,
   1224                            LLVMContext::MD_invariant_group,
   1225                            LLVMContext::MD_align,
   1226                            LLVMContext::MD_dereferenceable,
   1227                            LLVMContext::MD_dereferenceable_or_null,
   1228                            LLVMContext::MD_mem_parallel_loop_access};
   1229     combineMetadata(I1, I2, KnownIDs);
   1230     I2->eraseFromParent();
   1231     Changed = true;
   1232 
   1233     I1 = &*BB1_Itr++;
   1234     I2 = &*BB2_Itr++;
   1235     // Skip debug info if it is not identical.
   1236     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
   1237     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
   1238     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
   1239       while (isa<DbgInfoIntrinsic>(I1))
   1240         I1 = &*BB1_Itr++;
   1241       while (isa<DbgInfoIntrinsic>(I2))
   1242         I2 = &*BB2_Itr++;
   1243     }
   1244   } while (I1->isIdenticalToWhenDefined(I2));
   1245 
   1246   return true;
   1247 
   1248 HoistTerminator:
   1249   // It may not be possible to hoist an invoke.
   1250   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
   1251     return Changed;
   1252 
   1253   for (BasicBlock *Succ : successors(BB1)) {
   1254     PHINode *PN;
   1255     for (BasicBlock::iterator BBI = Succ->begin();
   1256          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1257       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1258       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1259       if (BB1V == BB2V)
   1260         continue;
   1261 
   1262       // Check for passingValueIsAlwaysUndefined here because we would rather
   1263       // eliminate undefined control flow then converting it to a select.
   1264       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
   1265           passingValueIsAlwaysUndefined(BB2V, PN))
   1266         return Changed;
   1267 
   1268       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
   1269         return Changed;
   1270       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
   1271         return Changed;
   1272     }
   1273   }
   1274 
   1275   // Okay, it is safe to hoist the terminator.
   1276   Instruction *NT = I1->clone();
   1277   BIParent->getInstList().insert(BI->getIterator(), NT);
   1278   if (!NT->getType()->isVoidTy()) {
   1279     I1->replaceAllUsesWith(NT);
   1280     I2->replaceAllUsesWith(NT);
   1281     NT->takeName(I1);
   1282   }
   1283 
   1284   IRBuilder<NoFolder> Builder(NT);
   1285   // Hoisting one of the terminators from our successor is a great thing.
   1286   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
   1287   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
   1288   // nodes, so we insert select instruction to compute the final result.
   1289   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
   1290   for (BasicBlock *Succ : successors(BB1)) {
   1291     PHINode *PN;
   1292     for (BasicBlock::iterator BBI = Succ->begin();
   1293          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
   1294       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1295       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1296       if (BB1V == BB2V)
   1297         continue;
   1298 
   1299       // These values do not agree.  Insert a select instruction before NT
   1300       // that determines the right value.
   1301       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
   1302       if (!SI)
   1303         SI = cast<SelectInst>(
   1304             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
   1305                                  BB1V->getName() + "." + BB2V->getName(), BI));
   1306 
   1307       // Make the PHI node use the select for all incoming values for BB1/BB2
   1308       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1309         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
   1310           PN->setIncomingValue(i, SI);
   1311     }
   1312   }
   1313 
   1314   // Update any PHI nodes in our new successors.
   1315   for (BasicBlock *Succ : successors(BB1))
   1316     AddPredecessorToBlock(Succ, BIParent, BB1);
   1317 
   1318   EraseTerminatorInstAndDCECond(BI);
   1319   return true;
   1320 }
   1321 
   1322 /// Given an unconditional branch that goes to BBEnd,
   1323 /// check whether BBEnd has only two predecessors and the other predecessor
   1324 /// ends with an unconditional branch. If it is true, sink any common code
   1325 /// in the two predecessors to BBEnd.
   1326 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
   1327   assert(BI1->isUnconditional());
   1328   BasicBlock *BB1 = BI1->getParent();
   1329   BasicBlock *BBEnd = BI1->getSuccessor(0);
   1330 
   1331   // Check that BBEnd has two predecessors and the other predecessor ends with
   1332   // an unconditional branch.
   1333   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
   1334   BasicBlock *Pred0 = *PI++;
   1335   if (PI == PE) // Only one predecessor.
   1336     return false;
   1337   BasicBlock *Pred1 = *PI++;
   1338   if (PI != PE) // More than two predecessors.
   1339     return false;
   1340   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
   1341   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
   1342   if (!BI2 || !BI2->isUnconditional())
   1343     return false;
   1344 
   1345   // Gather the PHI nodes in BBEnd.
   1346   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
   1347   Instruction *FirstNonPhiInBBEnd = nullptr;
   1348   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
   1349     if (PHINode *PN = dyn_cast<PHINode>(I)) {
   1350       Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1351       Value *BB2V = PN->getIncomingValueForBlock(BB2);
   1352       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
   1353     } else {
   1354       FirstNonPhiInBBEnd = &*I;
   1355       break;
   1356     }
   1357   }
   1358   if (!FirstNonPhiInBBEnd)
   1359     return false;
   1360 
   1361   // This does very trivial matching, with limited scanning, to find identical
   1362   // instructions in the two blocks.  We scan backward for obviously identical
   1363   // instructions in an identical order.
   1364   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
   1365                                              RE1 = BB1->getInstList().rend(),
   1366                                              RI2 = BB2->getInstList().rbegin(),
   1367                                              RE2 = BB2->getInstList().rend();
   1368   // Skip debug info.
   1369   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
   1370     ++RI1;
   1371   if (RI1 == RE1)
   1372     return false;
   1373   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
   1374     ++RI2;
   1375   if (RI2 == RE2)
   1376     return false;
   1377   // Skip the unconditional branches.
   1378   ++RI1;
   1379   ++RI2;
   1380 
   1381   bool Changed = false;
   1382   while (RI1 != RE1 && RI2 != RE2) {
   1383     // Skip debug info.
   1384     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
   1385       ++RI1;
   1386     if (RI1 == RE1)
   1387       return Changed;
   1388     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
   1389       ++RI2;
   1390     if (RI2 == RE2)
   1391       return Changed;
   1392 
   1393     Instruction *I1 = &*RI1, *I2 = &*RI2;
   1394     auto InstPair = std::make_pair(I1, I2);
   1395     // I1 and I2 should have a single use in the same PHI node, and they
   1396     // perform the same operation.
   1397     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1398     if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) ||
   1399         isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() ||
   1400         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
   1401         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
   1402         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
   1403         !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair))
   1404       return Changed;
   1405 
   1406     // Check whether we should swap the operands of ICmpInst.
   1407     // TODO: Add support of communativity.
   1408     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
   1409     bool SwapOpnds = false;
   1410     if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
   1411         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
   1412         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
   1413          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
   1414       ICmp2->swapOperands();
   1415       SwapOpnds = true;
   1416     }
   1417     if (!I1->isSameOperationAs(I2)) {
   1418       if (SwapOpnds)
   1419         ICmp2->swapOperands();
   1420       return Changed;
   1421     }
   1422 
   1423     // The operands should be either the same or they need to be generated
   1424     // with a PHI node after sinking. We only handle the case where there is
   1425     // a single pair of different operands.
   1426     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
   1427     unsigned Op1Idx = ~0U;
   1428     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
   1429       if (I1->getOperand(I) == I2->getOperand(I))
   1430         continue;
   1431       // Early exit if we have more-than one pair of different operands or if
   1432       // we need a PHI node to replace a constant.
   1433       if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) ||
   1434           isa<Constant>(I2->getOperand(I))) {
   1435         // If we can't sink the instructions, undo the swapping.
   1436         if (SwapOpnds)
   1437           ICmp2->swapOperands();
   1438         return Changed;
   1439       }
   1440       DifferentOp1 = I1->getOperand(I);
   1441       Op1Idx = I;
   1442       DifferentOp2 = I2->getOperand(I);
   1443     }
   1444 
   1445     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
   1446     DEBUG(dbgs() << "                         " << *I2 << "\n");
   1447 
   1448     // We insert the pair of different operands to JointValueMap and
   1449     // remove (I1, I2) from JointValueMap.
   1450     if (Op1Idx != ~0U) {
   1451       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
   1452       if (!NewPN) {
   1453         NewPN =
   1454             PHINode::Create(DifferentOp1->getType(), 2,
   1455                             DifferentOp1->getName() + ".sink", &BBEnd->front());
   1456         NewPN->addIncoming(DifferentOp1, BB1);
   1457         NewPN->addIncoming(DifferentOp2, BB2);
   1458         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
   1459       }
   1460       // I1 should use NewPN instead of DifferentOp1.
   1461       I1->setOperand(Op1Idx, NewPN);
   1462     }
   1463     PHINode *OldPN = JointValueMap[InstPair];
   1464     JointValueMap.erase(InstPair);
   1465 
   1466     // We need to update RE1 and RE2 if we are going to sink the first
   1467     // instruction in the basic block down.
   1468     bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
   1469     // Sink the instruction.
   1470     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
   1471                                 BB1->getInstList(), I1);
   1472     if (!OldPN->use_empty())
   1473       OldPN->replaceAllUsesWith(I1);
   1474     OldPN->eraseFromParent();
   1475 
   1476     if (!I2->use_empty())
   1477       I2->replaceAllUsesWith(I1);
   1478     I1->intersectOptionalDataWith(I2);
   1479     // TODO: Use combineMetadata here to preserve what metadata we can
   1480     // (analogous to the hoisting case above).
   1481     I2->eraseFromParent();
   1482 
   1483     if (UpdateRE1)
   1484       RE1 = BB1->getInstList().rend();
   1485     if (UpdateRE2)
   1486       RE2 = BB2->getInstList().rend();
   1487     FirstNonPhiInBBEnd = &*I1;
   1488     NumSinkCommons++;
   1489     Changed = true;
   1490   }
   1491   return Changed;
   1492 }
   1493 
   1494 /// \brief Determine if we can hoist sink a sole store instruction out of a
   1495 /// conditional block.
   1496 ///
   1497 /// We are looking for code like the following:
   1498 ///   BrBB:
   1499 ///     store i32 %add, i32* %arrayidx2
   1500 ///     ... // No other stores or function calls (we could be calling a memory
   1501 ///     ... // function).
   1502 ///     %cmp = icmp ult %x, %y
   1503 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1504 ///   ThenBB:
   1505 ///     store i32 %add5, i32* %arrayidx2
   1506 ///     br label EndBB
   1507 ///   EndBB:
   1508 ///     ...
   1509 ///   We are going to transform this into:
   1510 ///   BrBB:
   1511 ///     store i32 %add, i32* %arrayidx2
   1512 ///     ... //
   1513 ///     %cmp = icmp ult %x, %y
   1514 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
   1515 ///     store i32 %add.add5, i32* %arrayidx2
   1516 ///     ...
   1517 ///
   1518 /// \return The pointer to the value of the previous store if the store can be
   1519 ///         hoisted into the predecessor block. 0 otherwise.
   1520 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
   1521                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
   1522   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
   1523   if (!StoreToHoist)
   1524     return nullptr;
   1525 
   1526   // Volatile or atomic.
   1527   if (!StoreToHoist->isSimple())
   1528     return nullptr;
   1529 
   1530   Value *StorePtr = StoreToHoist->getPointerOperand();
   1531 
   1532   // Look for a store to the same pointer in BrBB.
   1533   unsigned MaxNumInstToLookAt = 9;
   1534   for (Instruction &CurI : reverse(*BrBB)) {
   1535     if (!MaxNumInstToLookAt)
   1536       break;
   1537     // Skip debug info.
   1538     if (isa<DbgInfoIntrinsic>(CurI))
   1539       continue;
   1540     --MaxNumInstToLookAt;
   1541 
   1542     // Could be calling an instruction that effects memory like free().
   1543     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
   1544       return nullptr;
   1545 
   1546     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
   1547       // Found the previous store make sure it stores to the same location.
   1548       if (SI->getPointerOperand() == StorePtr)
   1549         // Found the previous store, return its value operand.
   1550         return SI->getValueOperand();
   1551       return nullptr; // Unknown store.
   1552     }
   1553   }
   1554 
   1555   return nullptr;
   1556 }
   1557 
   1558 /// \brief Speculate a conditional basic block flattening the CFG.
   1559 ///
   1560 /// Note that this is a very risky transform currently. Speculating
   1561 /// instructions like this is most often not desirable. Instead, there is an MI
   1562 /// pass which can do it with full awareness of the resource constraints.
   1563 /// However, some cases are "obvious" and we should do directly. An example of
   1564 /// this is speculating a single, reasonably cheap instruction.
   1565 ///
   1566 /// There is only one distinct advantage to flattening the CFG at the IR level:
   1567 /// it makes very common but simplistic optimizations such as are common in
   1568 /// instcombine and the DAG combiner more powerful by removing CFG edges and
   1569 /// modeling their effects with easier to reason about SSA value graphs.
   1570 ///
   1571 ///
   1572 /// An illustration of this transform is turning this IR:
   1573 /// \code
   1574 ///   BB:
   1575 ///     %cmp = icmp ult %x, %y
   1576 ///     br i1 %cmp, label %EndBB, label %ThenBB
   1577 ///   ThenBB:
   1578 ///     %sub = sub %x, %y
   1579 ///     br label BB2
   1580 ///   EndBB:
   1581 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
   1582 ///     ...
   1583 /// \endcode
   1584 ///
   1585 /// Into this IR:
   1586 /// \code
   1587 ///   BB:
   1588 ///     %cmp = icmp ult %x, %y
   1589 ///     %sub = sub %x, %y
   1590 ///     %cond = select i1 %cmp, 0, %sub
   1591 ///     ...
   1592 /// \endcode
   1593 ///
   1594 /// \returns true if the conditional block is removed.
   1595 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
   1596                                    const TargetTransformInfo &TTI) {
   1597   // Be conservative for now. FP select instruction can often be expensive.
   1598   Value *BrCond = BI->getCondition();
   1599   if (isa<FCmpInst>(BrCond))
   1600     return false;
   1601 
   1602   BasicBlock *BB = BI->getParent();
   1603   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
   1604 
   1605   // If ThenBB is actually on the false edge of the conditional branch, remember
   1606   // to swap the select operands later.
   1607   bool Invert = false;
   1608   if (ThenBB != BI->getSuccessor(0)) {
   1609     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
   1610     Invert = true;
   1611   }
   1612   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
   1613 
   1614   // Keep a count of how many times instructions are used within CondBB when
   1615   // they are candidates for sinking into CondBB. Specifically:
   1616   // - They are defined in BB, and
   1617   // - They have no side effects, and
   1618   // - All of their uses are in CondBB.
   1619   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
   1620 
   1621   unsigned SpeculationCost = 0;
   1622   Value *SpeculatedStoreValue = nullptr;
   1623   StoreInst *SpeculatedStore = nullptr;
   1624   for (BasicBlock::iterator BBI = ThenBB->begin(),
   1625                             BBE = std::prev(ThenBB->end());
   1626        BBI != BBE; ++BBI) {
   1627     Instruction *I = &*BBI;
   1628     // Skip debug info.
   1629     if (isa<DbgInfoIntrinsic>(I))
   1630       continue;
   1631 
   1632     // Only speculatively execute a single instruction (not counting the
   1633     // terminator) for now.
   1634     ++SpeculationCost;
   1635     if (SpeculationCost > 1)
   1636       return false;
   1637 
   1638     // Don't hoist the instruction if it's unsafe or expensive.
   1639     if (!isSafeToSpeculativelyExecute(I) &&
   1640         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
   1641                                   I, BB, ThenBB, EndBB))))
   1642       return false;
   1643     if (!SpeculatedStoreValue &&
   1644         ComputeSpeculationCost(I, TTI) >
   1645             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
   1646       return false;
   1647 
   1648     // Store the store speculation candidate.
   1649     if (SpeculatedStoreValue)
   1650       SpeculatedStore = cast<StoreInst>(I);
   1651 
   1652     // Do not hoist the instruction if any of its operands are defined but not
   1653     // used in BB. The transformation will prevent the operand from
   1654     // being sunk into the use block.
   1655     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
   1656       Instruction *OpI = dyn_cast<Instruction>(*i);
   1657       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
   1658         continue; // Not a candidate for sinking.
   1659 
   1660       ++SinkCandidateUseCounts[OpI];
   1661     }
   1662   }
   1663 
   1664   // Consider any sink candidates which are only used in CondBB as costs for
   1665   // speculation. Note, while we iterate over a DenseMap here, we are summing
   1666   // and so iteration order isn't significant.
   1667   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
   1668            I = SinkCandidateUseCounts.begin(),
   1669            E = SinkCandidateUseCounts.end();
   1670        I != E; ++I)
   1671     if (I->first->getNumUses() == I->second) {
   1672       ++SpeculationCost;
   1673       if (SpeculationCost > 1)
   1674         return false;
   1675     }
   1676 
   1677   // Check that the PHI nodes can be converted to selects.
   1678   bool HaveRewritablePHIs = false;
   1679   for (BasicBlock::iterator I = EndBB->begin();
   1680        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1681     Value *OrigV = PN->getIncomingValueForBlock(BB);
   1682     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
   1683 
   1684     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
   1685     // Skip PHIs which are trivial.
   1686     if (ThenV == OrigV)
   1687       continue;
   1688 
   1689     // Don't convert to selects if we could remove undefined behavior instead.
   1690     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
   1691         passingValueIsAlwaysUndefined(ThenV, PN))
   1692       return false;
   1693 
   1694     HaveRewritablePHIs = true;
   1695     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
   1696     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
   1697     if (!OrigCE && !ThenCE)
   1698       continue; // Known safe and cheap.
   1699 
   1700     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
   1701         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
   1702       return false;
   1703     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
   1704     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
   1705     unsigned MaxCost =
   1706         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
   1707     if (OrigCost + ThenCost > MaxCost)
   1708       return false;
   1709 
   1710     // Account for the cost of an unfolded ConstantExpr which could end up
   1711     // getting expanded into Instructions.
   1712     // FIXME: This doesn't account for how many operations are combined in the
   1713     // constant expression.
   1714     ++SpeculationCost;
   1715     if (SpeculationCost > 1)
   1716       return false;
   1717   }
   1718 
   1719   // If there are no PHIs to process, bail early. This helps ensure idempotence
   1720   // as well.
   1721   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
   1722     return false;
   1723 
   1724   // If we get here, we can hoist the instruction and if-convert.
   1725   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
   1726 
   1727   // Insert a select of the value of the speculated store.
   1728   if (SpeculatedStoreValue) {
   1729     IRBuilder<NoFolder> Builder(BI);
   1730     Value *TrueV = SpeculatedStore->getValueOperand();
   1731     Value *FalseV = SpeculatedStoreValue;
   1732     if (Invert)
   1733       std::swap(TrueV, FalseV);
   1734     Value *S = Builder.CreateSelect(
   1735         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
   1736     SpeculatedStore->setOperand(0, S);
   1737   }
   1738 
   1739   // Metadata can be dependent on the condition we are hoisting above.
   1740   // Conservatively strip all metadata on the instruction.
   1741   for (auto &I : *ThenBB)
   1742     I.dropUnknownNonDebugMetadata();
   1743 
   1744   // Hoist the instructions.
   1745   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
   1746                            ThenBB->begin(), std::prev(ThenBB->end()));
   1747 
   1748   // Insert selects and rewrite the PHI operands.
   1749   IRBuilder<NoFolder> Builder(BI);
   1750   for (BasicBlock::iterator I = EndBB->begin();
   1751        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1752     unsigned OrigI = PN->getBasicBlockIndex(BB);
   1753     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
   1754     Value *OrigV = PN->getIncomingValue(OrigI);
   1755     Value *ThenV = PN->getIncomingValue(ThenI);
   1756 
   1757     // Skip PHIs which are trivial.
   1758     if (OrigV == ThenV)
   1759       continue;
   1760 
   1761     // Create a select whose true value is the speculatively executed value and
   1762     // false value is the preexisting value. Swap them if the branch
   1763     // destinations were inverted.
   1764     Value *TrueV = ThenV, *FalseV = OrigV;
   1765     if (Invert)
   1766       std::swap(TrueV, FalseV);
   1767     Value *V = Builder.CreateSelect(
   1768         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
   1769     PN->setIncomingValue(OrigI, V);
   1770     PN->setIncomingValue(ThenI, V);
   1771   }
   1772 
   1773   ++NumSpeculations;
   1774   return true;
   1775 }
   1776 
   1777 /// Return true if we can thread a branch across this block.
   1778 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1779   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1780   unsigned Size = 0;
   1781 
   1782   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1783     if (isa<DbgInfoIntrinsic>(BBI))
   1784       continue;
   1785     if (Size > 10)
   1786       return false; // Don't clone large BB's.
   1787     ++Size;
   1788 
   1789     // We can only support instructions that do not define values that are
   1790     // live outside of the current basic block.
   1791     for (User *U : BBI->users()) {
   1792       Instruction *UI = cast<Instruction>(U);
   1793       if (UI->getParent() != BB || isa<PHINode>(UI))
   1794         return false;
   1795     }
   1796 
   1797     // Looks ok, continue checking.
   1798   }
   1799 
   1800   return true;
   1801 }
   1802 
   1803 /// If we have a conditional branch on a PHI node value that is defined in the
   1804 /// same block as the branch and if any PHI entries are constants, thread edges
   1805 /// corresponding to that entry to be branches to their ultimate destination.
   1806 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
   1807   BasicBlock *BB = BI->getParent();
   1808   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1809   // NOTE: we currently cannot transform this case if the PHI node is used
   1810   // outside of the block.
   1811   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1812     return false;
   1813 
   1814   // Degenerate case of a single entry PHI.
   1815   if (PN->getNumIncomingValues() == 1) {
   1816     FoldSingleEntryPHINodes(PN->getParent());
   1817     return true;
   1818   }
   1819 
   1820   // Now we know that this block has multiple preds and two succs.
   1821   if (!BlockIsSimpleEnoughToThreadThrough(BB))
   1822     return false;
   1823 
   1824   // Can't fold blocks that contain noduplicate or convergent calls.
   1825   if (llvm::any_of(*BB, [](const Instruction &I) {
   1826         const CallInst *CI = dyn_cast<CallInst>(&I);
   1827         return CI && (CI->cannotDuplicate() || CI->isConvergent());
   1828       }))
   1829     return false;
   1830 
   1831   // Okay, this is a simple enough basic block.  See if any phi values are
   1832   // constants.
   1833   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1834     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1835     if (!CB || !CB->getType()->isIntegerTy(1))
   1836       continue;
   1837 
   1838     // Okay, we now know that all edges from PredBB should be revectored to
   1839     // branch to RealDest.
   1840     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1841     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1842 
   1843     if (RealDest == BB)
   1844       continue; // Skip self loops.
   1845     // Skip if the predecessor's terminator is an indirect branch.
   1846     if (isa<IndirectBrInst>(PredBB->getTerminator()))
   1847       continue;
   1848 
   1849     // The dest block might have PHI nodes, other predecessors and other
   1850     // difficult cases.  Instead of being smart about this, just insert a new
   1851     // block that jumps to the destination block, effectively splitting
   1852     // the edge we are about to create.
   1853     BasicBlock *EdgeBB =
   1854         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
   1855                            RealDest->getParent(), RealDest);
   1856     BranchInst::Create(RealDest, EdgeBB);
   1857 
   1858     // Update PHI nodes.
   1859     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1860 
   1861     // BB may have instructions that are being threaded over.  Clone these
   1862     // instructions into EdgeBB.  We know that there will be no uses of the
   1863     // cloned instructions outside of EdgeBB.
   1864     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1865     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
   1866     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1867       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1868         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1869         continue;
   1870       }
   1871       // Clone the instruction.
   1872       Instruction *N = BBI->clone();
   1873       if (BBI->hasName())
   1874         N->setName(BBI->getName() + ".c");
   1875 
   1876       // Update operands due to translation.
   1877       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
   1878         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
   1879         if (PI != TranslateMap.end())
   1880           *i = PI->second;
   1881       }
   1882 
   1883       // Check for trivial simplification.
   1884       if (Value *V = SimplifyInstruction(N, DL)) {
   1885         if (!BBI->use_empty())
   1886           TranslateMap[&*BBI] = V;
   1887         if (!N->mayHaveSideEffects()) {
   1888           delete N; // Instruction folded away, don't need actual inst
   1889           N = nullptr;
   1890         }
   1891       } else {
   1892         if (!BBI->use_empty())
   1893           TranslateMap[&*BBI] = N;
   1894       }
   1895       // Insert the new instruction into its new home.
   1896       if (N)
   1897         EdgeBB->getInstList().insert(InsertPt, N);
   1898     }
   1899 
   1900     // Loop over all of the edges from PredBB to BB, changing them to branch
   1901     // to EdgeBB instead.
   1902     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1903     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1904       if (PredBBTI->getSuccessor(i) == BB) {
   1905         BB->removePredecessor(PredBB);
   1906         PredBBTI->setSuccessor(i, EdgeBB);
   1907       }
   1908 
   1909     // Recurse, simplifying any other constants.
   1910     return FoldCondBranchOnPHI(BI, DL) | true;
   1911   }
   1912 
   1913   return false;
   1914 }
   1915 
   1916 /// Given a BB that starts with the specified two-entry PHI node,
   1917 /// see if we can eliminate it.
   1918 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
   1919                                 const DataLayout &DL) {
   1920   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1921   // statement", which has a very simple dominance structure.  Basically, we
   1922   // are trying to find the condition that is being branched on, which
   1923   // subsequently causes this merge to happen.  We really want control
   1924   // dependence information for this check, but simplifycfg can't keep it up
   1925   // to date, and this catches most of the cases we care about anyway.
   1926   BasicBlock *BB = PN->getParent();
   1927   BasicBlock *IfTrue, *IfFalse;
   1928   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1929   if (!IfCond ||
   1930       // Don't bother if the branch will be constant folded trivially.
   1931       isa<ConstantInt>(IfCond))
   1932     return false;
   1933 
   1934   // Okay, we found that we can merge this two-entry phi node into a select.
   1935   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1936   // At some point this becomes non-profitable (particularly if the target
   1937   // doesn't support cmov's).  Only do this transformation if there are two or
   1938   // fewer PHI nodes in this block.
   1939   unsigned NumPhis = 0;
   1940   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1941     if (NumPhis > 2)
   1942       return false;
   1943 
   1944   // Loop over the PHI's seeing if we can promote them all to select
   1945   // instructions.  While we are at it, keep track of the instructions
   1946   // that need to be moved to the dominating block.
   1947   SmallPtrSet<Instruction *, 4> AggressiveInsts;
   1948   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1949            MaxCostVal1 = PHINodeFoldingThreshold;
   1950   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
   1951   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
   1952 
   1953   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1954     PHINode *PN = cast<PHINode>(II++);
   1955     if (Value *V = SimplifyInstruction(PN, DL)) {
   1956       PN->replaceAllUsesWith(V);
   1957       PN->eraseFromParent();
   1958       continue;
   1959     }
   1960 
   1961     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1962                              MaxCostVal0, TTI) ||
   1963         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1964                              MaxCostVal1, TTI))
   1965       return false;
   1966   }
   1967 
   1968   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
   1969   // we ran out of PHIs then we simplified them all.
   1970   PN = dyn_cast<PHINode>(BB->begin());
   1971   if (!PN)
   1972     return true;
   1973 
   1974   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1975   // often be turned into switches and other things.
   1976   if (PN->getType()->isIntegerTy(1) &&
   1977       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1978        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1979        isa<BinaryOperator>(IfCond)))
   1980     return false;
   1981 
   1982   // If all PHI nodes are promotable, check to make sure that all instructions
   1983   // in the predecessor blocks can be promoted as well. If not, we won't be able
   1984   // to get rid of the control flow, so it's not worth promoting to select
   1985   // instructions.
   1986   BasicBlock *DomBlock = nullptr;
   1987   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1988   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1989   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1990     IfBlock1 = nullptr;
   1991   } else {
   1992     DomBlock = *pred_begin(IfBlock1);
   1993     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
   1994          ++I)
   1995       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
   1996         // This is not an aggressive instruction that we can promote.
   1997         // Because of this, we won't be able to get rid of the control flow, so
   1998         // the xform is not worth it.
   1999         return false;
   2000       }
   2001   }
   2002 
   2003   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   2004     IfBlock2 = nullptr;
   2005   } else {
   2006     DomBlock = *pred_begin(IfBlock2);
   2007     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
   2008          ++I)
   2009       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
   2010         // This is not an aggressive instruction that we can promote.
   2011         // Because of this, we won't be able to get rid of the control flow, so
   2012         // the xform is not worth it.
   2013         return false;
   2014       }
   2015   }
   2016 
   2017   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   2018                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   2019 
   2020   // If we can still promote the PHI nodes after this gauntlet of tests,
   2021   // do all of the PHI's now.
   2022   Instruction *InsertPt = DomBlock->getTerminator();
   2023   IRBuilder<NoFolder> Builder(InsertPt);
   2024 
   2025   // Move all 'aggressive' instructions, which are defined in the
   2026   // conditional parts of the if's up to the dominating block.
   2027   if (IfBlock1)
   2028     DomBlock->getInstList().splice(InsertPt->getIterator(),
   2029                                    IfBlock1->getInstList(), IfBlock1->begin(),
   2030                                    IfBlock1->getTerminator()->getIterator());
   2031   if (IfBlock2)
   2032     DomBlock->getInstList().splice(InsertPt->getIterator(),
   2033                                    IfBlock2->getInstList(), IfBlock2->begin(),
   2034                                    IfBlock2->getTerminator()->getIterator());
   2035 
   2036   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   2037     // Change the PHI node into a select instruction.
   2038     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   2039     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   2040 
   2041     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
   2042     PN->replaceAllUsesWith(Sel);
   2043     Sel->takeName(PN);
   2044     PN->eraseFromParent();
   2045   }
   2046 
   2047   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   2048   // has been flattened.  Change DomBlock to jump directly to our new block to
   2049   // avoid other simplifycfg's kicking in on the diamond.
   2050   TerminatorInst *OldTI = DomBlock->getTerminator();
   2051   Builder.SetInsertPoint(OldTI);
   2052   Builder.CreateBr(BB);
   2053   OldTI->eraseFromParent();
   2054   return true;
   2055 }
   2056 
   2057 /// If we found a conditional branch that goes to two returning blocks,
   2058 /// try to merge them together into one return,
   2059 /// introducing a select if the return values disagree.
   2060 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   2061                                            IRBuilder<> &Builder) {
   2062   assert(BI->isConditional() && "Must be a conditional branch");
   2063   BasicBlock *TrueSucc = BI->getSuccessor(0);
   2064   BasicBlock *FalseSucc = BI->getSuccessor(1);
   2065   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   2066   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   2067 
   2068   // Check to ensure both blocks are empty (just a return) or optionally empty
   2069   // with PHI nodes.  If there are other instructions, merging would cause extra
   2070   // computation on one path or the other.
   2071   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   2072     return false;
   2073   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   2074     return false;
   2075 
   2076   Builder.SetInsertPoint(BI);
   2077   // Okay, we found a branch that is going to two return nodes.  If
   2078   // there is no return value for this function, just change the
   2079   // branch into a return.
   2080   if (FalseRet->getNumOperands() == 0) {
   2081     TrueSucc->removePredecessor(BI->getParent());
   2082     FalseSucc->removePredecessor(BI->getParent());
   2083     Builder.CreateRetVoid();
   2084     EraseTerminatorInstAndDCECond(BI);
   2085     return true;
   2086   }
   2087 
   2088   // Otherwise, figure out what the true and false return values are
   2089   // so we can insert a new select instruction.
   2090   Value *TrueValue = TrueRet->getReturnValue();
   2091   Value *FalseValue = FalseRet->getReturnValue();
   2092 
   2093   // Unwrap any PHI nodes in the return blocks.
   2094   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   2095     if (TVPN->getParent() == TrueSucc)
   2096       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   2097   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   2098     if (FVPN->getParent() == FalseSucc)
   2099       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   2100 
   2101   // In order for this transformation to be safe, we must be able to
   2102   // unconditionally execute both operands to the return.  This is
   2103   // normally the case, but we could have a potentially-trapping
   2104   // constant expression that prevents this transformation from being
   2105   // safe.
   2106   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   2107     if (TCV->canTrap())
   2108       return false;
   2109   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   2110     if (FCV->canTrap())
   2111       return false;
   2112 
   2113   // Okay, we collected all the mapped values and checked them for sanity, and
   2114   // defined to really do this transformation.  First, update the CFG.
   2115   TrueSucc->removePredecessor(BI->getParent());
   2116   FalseSucc->removePredecessor(BI->getParent());
   2117 
   2118   // Insert select instructions where needed.
   2119   Value *BrCond = BI->getCondition();
   2120   if (TrueValue) {
   2121     // Insert a select if the results differ.
   2122     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   2123     } else if (isa<UndefValue>(TrueValue)) {
   2124       TrueValue = FalseValue;
   2125     } else {
   2126       TrueValue =
   2127           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
   2128     }
   2129   }
   2130 
   2131   Value *RI =
   2132       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   2133 
   2134   (void)RI;
   2135 
   2136   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   2137                << "\n  " << *BI << "NewRet = " << *RI
   2138                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
   2139 
   2140   EraseTerminatorInstAndDCECond(BI);
   2141 
   2142   return true;
   2143 }
   2144 
   2145 /// Return true if the given instruction is available
   2146 /// in its predecessor block. If yes, the instruction will be removed.
   2147 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
   2148   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
   2149     return false;
   2150   for (Instruction &I : *PB) {
   2151     Instruction *PBI = &I;
   2152     // Check whether Inst and PBI generate the same value.
   2153     if (Inst->isIdenticalTo(PBI)) {
   2154       Inst->replaceAllUsesWith(PBI);
   2155       Inst->eraseFromParent();
   2156       return true;
   2157     }
   2158   }
   2159   return false;
   2160 }
   2161 
   2162 /// Return true if either PBI or BI has branch weight available, and store
   2163 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
   2164 /// not have branch weight, use 1:1 as its weight.
   2165 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
   2166                                    uint64_t &PredTrueWeight,
   2167                                    uint64_t &PredFalseWeight,
   2168                                    uint64_t &SuccTrueWeight,
   2169                                    uint64_t &SuccFalseWeight) {
   2170   bool PredHasWeights =
   2171       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
   2172   bool SuccHasWeights =
   2173       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
   2174   if (PredHasWeights || SuccHasWeights) {
   2175     if (!PredHasWeights)
   2176       PredTrueWeight = PredFalseWeight = 1;
   2177     if (!SuccHasWeights)
   2178       SuccTrueWeight = SuccFalseWeight = 1;
   2179     return true;
   2180   } else {
   2181     return false;
   2182   }
   2183 }
   2184 
   2185 /// If this basic block is simple enough, and if a predecessor branches to us
   2186 /// and one of our successors, fold the block into the predecessor and use
   2187 /// logical operations to pick the right destination.
   2188 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
   2189   BasicBlock *BB = BI->getParent();
   2190 
   2191   Instruction *Cond = nullptr;
   2192   if (BI->isConditional())
   2193     Cond = dyn_cast<Instruction>(BI->getCondition());
   2194   else {
   2195     // For unconditional branch, check for a simple CFG pattern, where
   2196     // BB has a single predecessor and BB's successor is also its predecessor's
   2197     // successor. If such pattern exisits, check for CSE between BB and its
   2198     // predecessor.
   2199     if (BasicBlock *PB = BB->getSinglePredecessor())
   2200       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
   2201         if (PBI->isConditional() &&
   2202             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
   2203              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
   2204           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
   2205             Instruction *Curr = &*I++;
   2206             if (isa<CmpInst>(Curr)) {
   2207               Cond = Curr;
   2208               break;
   2209             }
   2210             // Quit if we can't remove this instruction.
   2211             if (!checkCSEInPredecessor(Curr, PB))
   2212               return false;
   2213           }
   2214         }
   2215 
   2216     if (!Cond)
   2217       return false;
   2218   }
   2219 
   2220   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   2221       Cond->getParent() != BB || !Cond->hasOneUse())
   2222     return false;
   2223 
   2224   // Make sure the instruction after the condition is the cond branch.
   2225   BasicBlock::iterator CondIt = ++Cond->getIterator();
   2226 
   2227   // Ignore dbg intrinsics.
   2228   while (isa<DbgInfoIntrinsic>(CondIt))
   2229     ++CondIt;
   2230 
   2231   if (&*CondIt != BI)
   2232     return false;
   2233 
   2234   // Only allow this transformation if computing the condition doesn't involve
   2235   // too many instructions and these involved instructions can be executed
   2236   // unconditionally. We denote all involved instructions except the condition
   2237   // as "bonus instructions", and only allow this transformation when the
   2238   // number of the bonus instructions does not exceed a certain threshold.
   2239   unsigned NumBonusInsts = 0;
   2240   for (auto I = BB->begin(); Cond != &*I; ++I) {
   2241     // Ignore dbg intrinsics.
   2242     if (isa<DbgInfoIntrinsic>(I))
   2243       continue;
   2244     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
   2245       return false;
   2246     // I has only one use and can be executed unconditionally.
   2247     Instruction *User = dyn_cast<Instruction>(I->user_back());
   2248     if (User == nullptr || User->getParent() != BB)
   2249       return false;
   2250     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
   2251     // to use any other instruction, User must be an instruction between next(I)
   2252     // and Cond.
   2253     ++NumBonusInsts;
   2254     // Early exits once we reach the limit.
   2255     if (NumBonusInsts > BonusInstThreshold)
   2256       return false;
   2257   }
   2258 
   2259   // Cond is known to be a compare or binary operator.  Check to make sure that
   2260   // neither operand is a potentially-trapping constant expression.
   2261   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   2262     if (CE->canTrap())
   2263       return false;
   2264   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   2265     if (CE->canTrap())
   2266       return false;
   2267 
   2268   // Finally, don't infinitely unroll conditional loops.
   2269   BasicBlock *TrueDest = BI->getSuccessor(0);
   2270   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
   2271   if (TrueDest == BB || FalseDest == BB)
   2272     return false;
   2273 
   2274   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2275     BasicBlock *PredBlock = *PI;
   2276     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   2277 
   2278     // Check that we have two conditional branches.  If there is a PHI node in
   2279     // the common successor, verify that the same value flows in from both
   2280     // blocks.
   2281     SmallVector<PHINode *, 4> PHIs;
   2282     if (!PBI || PBI->isUnconditional() ||
   2283         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
   2284         (!BI->isConditional() &&
   2285          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
   2286       continue;
   2287 
   2288     // Determine if the two branches share a common destination.
   2289     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
   2290     bool InvertPredCond = false;
   2291 
   2292     if (BI->isConditional()) {
   2293       if (PBI->getSuccessor(0) == TrueDest) {
   2294         Opc = Instruction::Or;
   2295       } else if (PBI->getSuccessor(1) == FalseDest) {
   2296         Opc = Instruction::And;
   2297       } else if (PBI->getSuccessor(0) == FalseDest) {
   2298         Opc = Instruction::And;
   2299         InvertPredCond = true;
   2300       } else if (PBI->getSuccessor(1) == TrueDest) {
   2301         Opc = Instruction::Or;
   2302         InvertPredCond = true;
   2303       } else {
   2304         continue;
   2305       }
   2306     } else {
   2307       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
   2308         continue;
   2309     }
   2310 
   2311     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   2312     IRBuilder<> Builder(PBI);
   2313 
   2314     // If we need to invert the condition in the pred block to match, do so now.
   2315     if (InvertPredCond) {
   2316       Value *NewCond = PBI->getCondition();
   2317 
   2318       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   2319         CmpInst *CI = cast<CmpInst>(NewCond);
   2320         CI->setPredicate(CI->getInversePredicate());
   2321       } else {
   2322         NewCond =
   2323             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
   2324       }
   2325 
   2326       PBI->setCondition(NewCond);
   2327       PBI->swapSuccessors();
   2328     }
   2329 
   2330     // If we have bonus instructions, clone them into the predecessor block.
   2331     // Note that there may be multiple predecessor blocks, so we cannot move
   2332     // bonus instructions to a predecessor block.
   2333     ValueToValueMapTy VMap; // maps original values to cloned values
   2334     // We already make sure Cond is the last instruction before BI. Therefore,
   2335     // all instructions before Cond other than DbgInfoIntrinsic are bonus
   2336     // instructions.
   2337     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
   2338       if (isa<DbgInfoIntrinsic>(BonusInst))
   2339         continue;
   2340       Instruction *NewBonusInst = BonusInst->clone();
   2341       RemapInstruction(NewBonusInst, VMap,
   2342                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
   2343       VMap[&*BonusInst] = NewBonusInst;
   2344 
   2345       // If we moved a load, we cannot any longer claim any knowledge about
   2346       // its potential value. The previous information might have been valid
   2347       // only given the branch precondition.
   2348       // For an analogous reason, we must also drop all the metadata whose
   2349       // semantics we don't understand.
   2350       NewBonusInst->dropUnknownNonDebugMetadata();
   2351 
   2352       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
   2353       NewBonusInst->takeName(&*BonusInst);
   2354       BonusInst->setName(BonusInst->getName() + ".old");
   2355     }
   2356 
   2357     // Clone Cond into the predecessor basic block, and or/and the
   2358     // two conditions together.
   2359     Instruction *New = Cond->clone();
   2360     RemapInstruction(New, VMap,
   2361                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
   2362     PredBlock->getInstList().insert(PBI->getIterator(), New);
   2363     New->takeName(Cond);
   2364     Cond->setName(New->getName() + ".old");
   2365 
   2366     if (BI->isConditional()) {
   2367       Instruction *NewCond = cast<Instruction>(
   2368           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
   2369       PBI->setCondition(NewCond);
   2370 
   2371       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2372       bool HasWeights =
   2373           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
   2374                                  SuccTrueWeight, SuccFalseWeight);
   2375       SmallVector<uint64_t, 8> NewWeights;
   2376 
   2377       if (PBI->getSuccessor(0) == BB) {
   2378         if (HasWeights) {
   2379           // PBI: br i1 %x, BB, FalseDest
   2380           // BI:  br i1 %y, TrueDest, FalseDest
   2381           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
   2382           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
   2383           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
   2384           //               TrueWeight for PBI * FalseWeight for BI.
   2385           // We assume that total weights of a BranchInst can fit into 32 bits.
   2386           // Therefore, we will not have overflow using 64-bit arithmetic.
   2387           NewWeights.push_back(PredFalseWeight *
   2388                                    (SuccFalseWeight + SuccTrueWeight) +
   2389                                PredTrueWeight * SuccFalseWeight);
   2390         }
   2391         AddPredecessorToBlock(TrueDest, PredBlock, BB);
   2392         PBI->setSuccessor(0, TrueDest);
   2393       }
   2394       if (PBI->getSuccessor(1) == BB) {
   2395         if (HasWeights) {
   2396           // PBI: br i1 %x, TrueDest, BB
   2397           // BI:  br i1 %y, TrueDest, FalseDest
   2398           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
   2399           //              FalseWeight for PBI * TrueWeight for BI.
   2400           NewWeights.push_back(PredTrueWeight *
   2401                                    (SuccFalseWeight + SuccTrueWeight) +
   2402                                PredFalseWeight * SuccTrueWeight);
   2403           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
   2404           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
   2405         }
   2406         AddPredecessorToBlock(FalseDest, PredBlock, BB);
   2407         PBI->setSuccessor(1, FalseDest);
   2408       }
   2409       if (NewWeights.size() == 2) {
   2410         // Halve the weights if any of them cannot fit in an uint32_t
   2411         FitWeights(NewWeights);
   2412 
   2413         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
   2414                                            NewWeights.end());
   2415         PBI->setMetadata(
   2416             LLVMContext::MD_prof,
   2417             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
   2418       } else
   2419         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
   2420     } else {
   2421       // Update PHI nodes in the common successors.
   2422       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   2423         ConstantInt *PBI_C = cast<ConstantInt>(
   2424             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
   2425         assert(PBI_C->getType()->isIntegerTy(1));
   2426         Instruction *MergedCond = nullptr;
   2427         if (PBI->getSuccessor(0) == TrueDest) {
   2428           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
   2429           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
   2430           //       is false: !PBI_Cond and BI_Value
   2431           Instruction *NotCond = cast<Instruction>(
   2432               Builder.CreateNot(PBI->getCondition(), "not.cond"));
   2433           MergedCond = cast<Instruction>(
   2434               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
   2435           if (PBI_C->isOne())
   2436             MergedCond = cast<Instruction>(Builder.CreateBinOp(
   2437                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
   2438         } else {
   2439           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
   2440           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
   2441           //       is false: PBI_Cond and BI_Value
   2442           MergedCond = cast<Instruction>(Builder.CreateBinOp(
   2443               Instruction::And, PBI->getCondition(), New, "and.cond"));
   2444           if (PBI_C->isOne()) {
   2445             Instruction *NotCond = cast<Instruction>(
   2446                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
   2447             MergedCond = cast<Instruction>(Builder.CreateBinOp(
   2448                 Instruction::Or, NotCond, MergedCond, "or.cond"));
   2449           }
   2450         }
   2451         // Update PHI Node.
   2452         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
   2453                                   MergedCond);
   2454       }
   2455       // Change PBI from Conditional to Unconditional.
   2456       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
   2457       EraseTerminatorInstAndDCECond(PBI);
   2458       PBI = New_PBI;
   2459     }
   2460 
   2461     // TODO: If BB is reachable from all paths through PredBlock, then we
   2462     // could replace PBI's branch probabilities with BI's.
   2463 
   2464     // Copy any debug value intrinsics into the end of PredBlock.
   2465     for (Instruction &I : *BB)
   2466       if (isa<DbgInfoIntrinsic>(I))
   2467         I.clone()->insertBefore(PBI);
   2468 
   2469     return true;
   2470   }
   2471   return false;
   2472 }
   2473 
   2474 // If there is only one store in BB1 and BB2, return it, otherwise return
   2475 // nullptr.
   2476 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
   2477   StoreInst *S = nullptr;
   2478   for (auto *BB : {BB1, BB2}) {
   2479     if (!BB)
   2480       continue;
   2481     for (auto &I : *BB)
   2482       if (auto *SI = dyn_cast<StoreInst>(&I)) {
   2483         if (S)
   2484           // Multiple stores seen.
   2485           return nullptr;
   2486         else
   2487           S = SI;
   2488       }
   2489   }
   2490   return S;
   2491 }
   2492 
   2493 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
   2494                                               Value *AlternativeV = nullptr) {
   2495   // PHI is going to be a PHI node that allows the value V that is defined in
   2496   // BB to be referenced in BB's only successor.
   2497   //
   2498   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
   2499   // doesn't matter to us what the other operand is (it'll never get used). We
   2500   // could just create a new PHI with an undef incoming value, but that could
   2501   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
   2502   // other PHI. So here we directly look for some PHI in BB's successor with V
   2503   // as an incoming operand. If we find one, we use it, else we create a new
   2504   // one.
   2505   //
   2506   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
   2507   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
   2508   // where OtherBB is the single other predecessor of BB's only successor.
   2509   PHINode *PHI = nullptr;
   2510   BasicBlock *Succ = BB->getSingleSuccessor();
   2511 
   2512   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
   2513     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
   2514       PHI = cast<PHINode>(I);
   2515       if (!AlternativeV)
   2516         break;
   2517 
   2518       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
   2519       auto PredI = pred_begin(Succ);
   2520       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
   2521       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
   2522         break;
   2523       PHI = nullptr;
   2524     }
   2525   if (PHI)
   2526     return PHI;
   2527 
   2528   // If V is not an instruction defined in BB, just return it.
   2529   if (!AlternativeV &&
   2530       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
   2531     return V;
   2532 
   2533   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
   2534   PHI->addIncoming(V, BB);
   2535   for (BasicBlock *PredBB : predecessors(Succ))
   2536     if (PredBB != BB)
   2537       PHI->addIncoming(
   2538           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
   2539   return PHI;
   2540 }
   2541 
   2542 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
   2543                                            BasicBlock *QTB, BasicBlock *QFB,
   2544                                            BasicBlock *PostBB, Value *Address,
   2545                                            bool InvertPCond, bool InvertQCond) {
   2546   auto IsaBitcastOfPointerType = [](const Instruction &I) {
   2547     return Operator::getOpcode(&I) == Instruction::BitCast &&
   2548            I.getType()->isPointerTy();
   2549   };
   2550 
   2551   // If we're not in aggressive mode, we only optimize if we have some
   2552   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
   2553   auto IsWorthwhile = [&](BasicBlock *BB) {
   2554     if (!BB)
   2555       return true;
   2556     // Heuristic: if the block can be if-converted/phi-folded and the
   2557     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
   2558     // thread this store.
   2559     unsigned N = 0;
   2560     for (auto &I : *BB) {
   2561       // Cheap instructions viable for folding.
   2562       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
   2563           isa<StoreInst>(I))
   2564         ++N;
   2565       // Free instructions.
   2566       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
   2567                IsaBitcastOfPointerType(I))
   2568         continue;
   2569       else
   2570         return false;
   2571     }
   2572     return N <= PHINodeFoldingThreshold;
   2573   };
   2574 
   2575   if (!MergeCondStoresAggressively &&
   2576       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
   2577        !IsWorthwhile(QFB)))
   2578     return false;
   2579 
   2580   // For every pointer, there must be exactly two stores, one coming from
   2581   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
   2582   // store (to any address) in PTB,PFB or QTB,QFB.
   2583   // FIXME: We could relax this restriction with a bit more work and performance
   2584   // testing.
   2585   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
   2586   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
   2587   if (!PStore || !QStore)
   2588     return false;
   2589 
   2590   // Now check the stores are compatible.
   2591   if (!QStore->isUnordered() || !PStore->isUnordered())
   2592     return false;
   2593 
   2594   // Check that sinking the store won't cause program behavior changes. Sinking
   2595   // the store out of the Q blocks won't change any behavior as we're sinking
   2596   // from a block to its unconditional successor. But we're moving a store from
   2597   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
   2598   // So we need to check that there are no aliasing loads or stores in
   2599   // QBI, QTB and QFB. We also need to check there are no conflicting memory
   2600   // operations between PStore and the end of its parent block.
   2601   //
   2602   // The ideal way to do this is to query AliasAnalysis, but we don't
   2603   // preserve AA currently so that is dangerous. Be super safe and just
   2604   // check there are no other memory operations at all.
   2605   for (auto &I : *QFB->getSinglePredecessor())
   2606     if (I.mayReadOrWriteMemory())
   2607       return false;
   2608   for (auto &I : *QFB)
   2609     if (&I != QStore && I.mayReadOrWriteMemory())
   2610       return false;
   2611   if (QTB)
   2612     for (auto &I : *QTB)
   2613       if (&I != QStore && I.mayReadOrWriteMemory())
   2614         return false;
   2615   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
   2616        I != E; ++I)
   2617     if (&*I != PStore && I->mayReadOrWriteMemory())
   2618       return false;
   2619 
   2620   // OK, we're going to sink the stores to PostBB. The store has to be
   2621   // conditional though, so first create the predicate.
   2622   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
   2623                      ->getCondition();
   2624   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
   2625                      ->getCondition();
   2626 
   2627   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
   2628                                                 PStore->getParent());
   2629   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
   2630                                                 QStore->getParent(), PPHI);
   2631 
   2632   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
   2633 
   2634   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
   2635   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
   2636 
   2637   if (InvertPCond)
   2638     PPred = QB.CreateNot(PPred);
   2639   if (InvertQCond)
   2640     QPred = QB.CreateNot(QPred);
   2641   Value *CombinedPred = QB.CreateOr(PPred, QPred);
   2642 
   2643   auto *T =
   2644       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
   2645   QB.SetInsertPoint(T);
   2646   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
   2647   AAMDNodes AAMD;
   2648   PStore->getAAMetadata(AAMD, /*Merge=*/false);
   2649   PStore->getAAMetadata(AAMD, /*Merge=*/true);
   2650   SI->setAAMetadata(AAMD);
   2651 
   2652   QStore->eraseFromParent();
   2653   PStore->eraseFromParent();
   2654 
   2655   return true;
   2656 }
   2657 
   2658 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
   2659   // The intention here is to find diamonds or triangles (see below) where each
   2660   // conditional block contains a store to the same address. Both of these
   2661   // stores are conditional, so they can't be unconditionally sunk. But it may
   2662   // be profitable to speculatively sink the stores into one merged store at the
   2663   // end, and predicate the merged store on the union of the two conditions of
   2664   // PBI and QBI.
   2665   //
   2666   // This can reduce the number of stores executed if both of the conditions are
   2667   // true, and can allow the blocks to become small enough to be if-converted.
   2668   // This optimization will also chain, so that ladders of test-and-set
   2669   // sequences can be if-converted away.
   2670   //
   2671   // We only deal with simple diamonds or triangles:
   2672   //
   2673   //     PBI       or      PBI        or a combination of the two
   2674   //    /   \               | \
   2675   //   PTB  PFB             |  PFB
   2676   //    \   /               | /
   2677   //     QBI                QBI
   2678   //    /  \                | \
   2679   //   QTB  QFB             |  QFB
   2680   //    \  /                | /
   2681   //    PostBB            PostBB
   2682   //
   2683   // We model triangles as a type of diamond with a nullptr "true" block.
   2684   // Triangles are canonicalized so that the fallthrough edge is represented by
   2685   // a true condition, as in the diagram above.
   2686   //
   2687   BasicBlock *PTB = PBI->getSuccessor(0);
   2688   BasicBlock *PFB = PBI->getSuccessor(1);
   2689   BasicBlock *QTB = QBI->getSuccessor(0);
   2690   BasicBlock *QFB = QBI->getSuccessor(1);
   2691   BasicBlock *PostBB = QFB->getSingleSuccessor();
   2692 
   2693   bool InvertPCond = false, InvertQCond = false;
   2694   // Canonicalize fallthroughs to the true branches.
   2695   if (PFB == QBI->getParent()) {
   2696     std::swap(PFB, PTB);
   2697     InvertPCond = true;
   2698   }
   2699   if (QFB == PostBB) {
   2700     std::swap(QFB, QTB);
   2701     InvertQCond = true;
   2702   }
   2703 
   2704   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
   2705   // and QFB may not. Model fallthroughs as a nullptr block.
   2706   if (PTB == QBI->getParent())
   2707     PTB = nullptr;
   2708   if (QTB == PostBB)
   2709     QTB = nullptr;
   2710 
   2711   // Legality bailouts. We must have at least the non-fallthrough blocks and
   2712   // the post-dominating block, and the non-fallthroughs must only have one
   2713   // predecessor.
   2714   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
   2715     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
   2716   };
   2717   if (!PostBB ||
   2718       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
   2719       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
   2720     return false;
   2721   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
   2722       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
   2723     return false;
   2724   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
   2725     return false;
   2726 
   2727   // OK, this is a sequence of two diamonds or triangles.
   2728   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
   2729   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
   2730   for (auto *BB : {PTB, PFB}) {
   2731     if (!BB)
   2732       continue;
   2733     for (auto &I : *BB)
   2734       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
   2735         PStoreAddresses.insert(SI->getPointerOperand());
   2736   }
   2737   for (auto *BB : {QTB, QFB}) {
   2738     if (!BB)
   2739       continue;
   2740     for (auto &I : *BB)
   2741       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
   2742         QStoreAddresses.insert(SI->getPointerOperand());
   2743   }
   2744 
   2745   set_intersect(PStoreAddresses, QStoreAddresses);
   2746   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
   2747   // clear what it contains.
   2748   auto &CommonAddresses = PStoreAddresses;
   2749 
   2750   bool Changed = false;
   2751   for (auto *Address : CommonAddresses)
   2752     Changed |= mergeConditionalStoreToAddress(
   2753         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
   2754   return Changed;
   2755 }
   2756 
   2757 /// If we have a conditional branch as a predecessor of another block,
   2758 /// this function tries to simplify it.  We know
   2759 /// that PBI and BI are both conditional branches, and BI is in one of the
   2760 /// successor blocks of PBI - PBI branches to BI.
   2761 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
   2762                                            const DataLayout &DL) {
   2763   assert(PBI->isConditional() && BI->isConditional());
   2764   BasicBlock *BB = BI->getParent();
   2765 
   2766   // If this block ends with a branch instruction, and if there is a
   2767   // predecessor that ends on a branch of the same condition, make
   2768   // this conditional branch redundant.
   2769   if (PBI->getCondition() == BI->getCondition() &&
   2770       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2771     // Okay, the outcome of this conditional branch is statically
   2772     // knowable.  If this block had a single pred, handle specially.
   2773     if (BB->getSinglePredecessor()) {
   2774       // Turn this into a branch on constant.
   2775       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2776       BI->setCondition(
   2777           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
   2778       return true; // Nuke the branch on constant.
   2779     }
   2780 
   2781     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   2782     // in the constant and simplify the block result.  Subsequent passes of
   2783     // simplifycfg will thread the block.
   2784     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   2785       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   2786       PHINode *NewPN = PHINode::Create(
   2787           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
   2788           BI->getCondition()->getName() + ".pr", &BB->front());
   2789       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   2790       // predecessor, compute the PHI'd conditional value for all of the preds.
   2791       // Any predecessor where the condition is not computable we keep symbolic.
   2792       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2793         BasicBlock *P = *PI;
   2794         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
   2795             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
   2796             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   2797           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   2798           NewPN->addIncoming(
   2799               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
   2800               P);
   2801         } else {
   2802           NewPN->addIncoming(BI->getCondition(), P);
   2803         }
   2804       }
   2805 
   2806       BI->setCondition(NewPN);
   2807       return true;
   2808     }
   2809   }
   2810 
   2811   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   2812     if (CE->canTrap())
   2813       return false;
   2814 
   2815   // If both branches are conditional and both contain stores to the same
   2816   // address, remove the stores from the conditionals and create a conditional
   2817   // merged store at the end.
   2818   if (MergeCondStores && mergeConditionalStores(PBI, BI))
   2819     return true;
   2820 
   2821   // If this is a conditional branch in an empty block, and if any
   2822   // predecessors are a conditional branch to one of our destinations,
   2823   // fold the conditions into logical ops and one cond br.
   2824   BasicBlock::iterator BBI = BB->begin();
   2825   // Ignore dbg intrinsics.
   2826   while (isa<DbgInfoIntrinsic>(BBI))
   2827     ++BBI;
   2828   if (&*BBI != BI)
   2829     return false;
   2830 
   2831   int PBIOp, BIOp;
   2832   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
   2833     PBIOp = 0;
   2834     BIOp = 0;
   2835   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
   2836     PBIOp = 0;
   2837     BIOp = 1;
   2838   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
   2839     PBIOp = 1;
   2840     BIOp = 0;
   2841   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
   2842     PBIOp = 1;
   2843     BIOp = 1;
   2844   } else {
   2845     return false;
   2846   }
   2847 
   2848   // Check to make sure that the other destination of this branch
   2849   // isn't BB itself.  If so, this is an infinite loop that will
   2850   // keep getting unwound.
   2851   if (PBI->getSuccessor(PBIOp) == BB)
   2852     return false;
   2853 
   2854   // Do not perform this transformation if it would require
   2855   // insertion of a large number of select instructions. For targets
   2856   // without predication/cmovs, this is a big pessimization.
   2857 
   2858   // Also do not perform this transformation if any phi node in the common
   2859   // destination block can trap when reached by BB or PBB (PR17073). In that
   2860   // case, it would be unsafe to hoist the operation into a select instruction.
   2861 
   2862   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   2863   unsigned NumPhis = 0;
   2864   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
   2865        ++II, ++NumPhis) {
   2866     if (NumPhis > 2) // Disable this xform.
   2867       return false;
   2868 
   2869     PHINode *PN = cast<PHINode>(II);
   2870     Value *BIV = PN->getIncomingValueForBlock(BB);
   2871     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
   2872       if (CE->canTrap())
   2873         return false;
   2874 
   2875     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2876     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2877     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
   2878       if (CE->canTrap())
   2879         return false;
   2880   }
   2881 
   2882   // Finally, if everything is ok, fold the branches to logical ops.
   2883   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
   2884 
   2885   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   2886                << "AND: " << *BI->getParent());
   2887 
   2888   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   2889   // branch in it, where one edge (OtherDest) goes back to itself but the other
   2890   // exits.  We don't *know* that the program avoids the infinite loop
   2891   // (even though that seems likely).  If we do this xform naively, we'll end up
   2892   // recursively unpeeling the loop.  Since we know that (after the xform is
   2893   // done) that the block *is* infinite if reached, we just make it an obviously
   2894   // infinite loop with no cond branch.
   2895   if (OtherDest == BB) {
   2896     // Insert it at the end of the function, because it's either code,
   2897     // or it won't matter if it's hot. :)
   2898     BasicBlock *InfLoopBlock =
   2899         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
   2900     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   2901     OtherDest = InfLoopBlock;
   2902   }
   2903 
   2904   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2905 
   2906   // BI may have other predecessors.  Because of this, we leave
   2907   // it alone, but modify PBI.
   2908 
   2909   // Make sure we get to CommonDest on True&True directions.
   2910   Value *PBICond = PBI->getCondition();
   2911   IRBuilder<NoFolder> Builder(PBI);
   2912   if (PBIOp)
   2913     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
   2914 
   2915   Value *BICond = BI->getCondition();
   2916   if (BIOp)
   2917     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
   2918 
   2919   // Merge the conditions.
   2920   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   2921 
   2922   // Modify PBI to branch on the new condition to the new dests.
   2923   PBI->setCondition(Cond);
   2924   PBI->setSuccessor(0, CommonDest);
   2925   PBI->setSuccessor(1, OtherDest);
   2926 
   2927   // Update branch weight for PBI.
   2928   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
   2929   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
   2930   bool HasWeights =
   2931       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
   2932                              SuccTrueWeight, SuccFalseWeight);
   2933   if (HasWeights) {
   2934     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   2935     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
   2936     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   2937     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   2938     // The weight to CommonDest should be PredCommon * SuccTotal +
   2939     //                                    PredOther * SuccCommon.
   2940     // The weight to OtherDest should be PredOther * SuccOther.
   2941     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
   2942                                   PredOther * SuccCommon,
   2943                               PredOther * SuccOther};
   2944     // Halve the weights if any of them cannot fit in an uint32_t
   2945     FitWeights(NewWeights);
   2946 
   2947     PBI->setMetadata(LLVMContext::MD_prof,
   2948                      MDBuilder(BI->getContext())
   2949                          .createBranchWeights(NewWeights[0], NewWeights[1]));
   2950   }
   2951 
   2952   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   2953   // block that are identical to the entries for BI's block.
   2954   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   2955 
   2956   // We know that the CommonDest already had an edge from PBI to
   2957   // it.  If it has PHIs though, the PHIs may have different
   2958   // entries for BB and PBI's BB.  If so, insert a select to make
   2959   // them agree.
   2960   PHINode *PN;
   2961   for (BasicBlock::iterator II = CommonDest->begin();
   2962        (PN = dyn_cast<PHINode>(II)); ++II) {
   2963     Value *BIV = PN->getIncomingValueForBlock(BB);
   2964     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   2965     Value *PBIV = PN->getIncomingValue(PBBIdx);
   2966     if (BIV != PBIV) {
   2967       // Insert a select in PBI to pick the right value.
   2968       SelectInst *NV = cast<SelectInst>(
   2969           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
   2970       PN->setIncomingValue(PBBIdx, NV);
   2971       // Although the select has the same condition as PBI, the original branch
   2972       // weights for PBI do not apply to the new select because the select's
   2973       // 'logical' edges are incoming edges of the phi that is eliminated, not
   2974       // the outgoing edges of PBI.
   2975       if (HasWeights) {
   2976         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
   2977         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
   2978         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
   2979         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
   2980         // The weight to PredCommonDest should be PredCommon * SuccTotal.
   2981         // The weight to PredOtherDest should be PredOther * SuccCommon.
   2982         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
   2983                                   PredOther * SuccCommon};
   2984 
   2985         FitWeights(NewWeights);
   2986 
   2987         NV->setMetadata(LLVMContext::MD_prof,
   2988                         MDBuilder(BI->getContext())
   2989                             .createBranchWeights(NewWeights[0], NewWeights[1]));
   2990       }
   2991     }
   2992   }
   2993 
   2994   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   2995   DEBUG(dbgs() << *PBI->getParent()->getParent());
   2996 
   2997   // This basic block is probably dead.  We know it has at least
   2998   // one fewer predecessor.
   2999   return true;
   3000 }
   3001 
   3002 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
   3003 // true or to FalseBB if Cond is false.
   3004 // Takes care of updating the successors and removing the old terminator.
   3005 // Also makes sure not to introduce new successors by assuming that edges to
   3006 // non-successor TrueBBs and FalseBBs aren't reachable.
   3007 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   3008                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
   3009                                        uint32_t TrueWeight,
   3010                                        uint32_t FalseWeight) {
   3011   // Remove any superfluous successor edges from the CFG.
   3012   // First, figure out which successors to preserve.
   3013   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   3014   // successor.
   3015   BasicBlock *KeepEdge1 = TrueBB;
   3016   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
   3017 
   3018   // Then remove the rest.
   3019   for (BasicBlock *Succ : OldTerm->successors()) {
   3020     // Make sure only to keep exactly one copy of each edge.
   3021     if (Succ == KeepEdge1)
   3022       KeepEdge1 = nullptr;
   3023     else if (Succ == KeepEdge2)
   3024       KeepEdge2 = nullptr;
   3025     else
   3026       Succ->removePredecessor(OldTerm->getParent(),
   3027                               /*DontDeleteUselessPHIs=*/true);
   3028   }
   3029 
   3030   IRBuilder<> Builder(OldTerm);
   3031   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   3032 
   3033   // Insert an appropriate new terminator.
   3034   if (!KeepEdge1 && !KeepEdge2) {
   3035     if (TrueBB == FalseBB)
   3036       // We were only looking for one successor, and it was present.
   3037       // Create an unconditional branch to it.
   3038       Builder.CreateBr(TrueBB);
   3039     else {
   3040       // We found both of the successors we were looking for.
   3041       // Create a conditional branch sharing the condition of the select.
   3042       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   3043       if (TrueWeight != FalseWeight)
   3044         NewBI->setMetadata(LLVMContext::MD_prof,
   3045                            MDBuilder(OldTerm->getContext())
   3046                                .createBranchWeights(TrueWeight, FalseWeight));
   3047     }
   3048   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   3049     // Neither of the selected blocks were successors, so this
   3050     // terminator must be unreachable.
   3051     new UnreachableInst(OldTerm->getContext(), OldTerm);
   3052   } else {
   3053     // One of the selected values was a successor, but the other wasn't.
   3054     // Insert an unconditional branch to the one that was found;
   3055     // the edge to the one that wasn't must be unreachable.
   3056     if (!KeepEdge1)
   3057       // Only TrueBB was found.
   3058       Builder.CreateBr(TrueBB);
   3059     else
   3060       // Only FalseBB was found.
   3061       Builder.CreateBr(FalseBB);
   3062   }
   3063 
   3064   EraseTerminatorInstAndDCECond(OldTerm);
   3065   return true;
   3066 }
   3067 
   3068 // Replaces
   3069 //   (switch (select cond, X, Y)) on constant X, Y
   3070 // with a branch - conditional if X and Y lead to distinct BBs,
   3071 // unconditional otherwise.
   3072 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   3073   // Check for constant integer values in the select.
   3074   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   3075   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   3076   if (!TrueVal || !FalseVal)
   3077     return false;
   3078 
   3079   // Find the relevant condition and destinations.
   3080   Value *Condition = Select->getCondition();
   3081   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
   3082   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
   3083 
   3084   // Get weight for TrueBB and FalseBB.
   3085   uint32_t TrueWeight = 0, FalseWeight = 0;
   3086   SmallVector<uint64_t, 8> Weights;
   3087   bool HasWeights = HasBranchWeights(SI);
   3088   if (HasWeights) {
   3089     GetBranchWeights(SI, Weights);
   3090     if (Weights.size() == 1 + SI->getNumCases()) {
   3091       TrueWeight =
   3092           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
   3093       FalseWeight =
   3094           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
   3095     }
   3096   }
   3097 
   3098   // Perform the actual simplification.
   3099   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
   3100                                     FalseWeight);
   3101 }
   3102 
   3103 // Replaces
   3104 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   3105 //                             blockaddress(@fn, BlockB)))
   3106 // with
   3107 //   (br cond, BlockA, BlockB).
   3108 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   3109   // Check that both operands of the select are block addresses.
   3110   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   3111   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   3112   if (!TBA || !FBA)
   3113     return false;
   3114 
   3115   // Extract the actual blocks.
   3116   BasicBlock *TrueBB = TBA->getBasicBlock();
   3117   BasicBlock *FalseBB = FBA->getBasicBlock();
   3118 
   3119   // Perform the actual simplification.
   3120   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
   3121                                     0);
   3122 }
   3123 
   3124 /// This is called when we find an icmp instruction
   3125 /// (a seteq/setne with a constant) as the only instruction in a
   3126 /// block that ends with an uncond branch.  We are looking for a very specific
   3127 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   3128 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   3129 /// default value goes to an uncond block with a seteq in it, we get something
   3130 /// like:
   3131 ///
   3132 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   3133 /// DEFAULT:
   3134 ///   %tmp = icmp eq i8 %A, 92
   3135 ///   br label %end
   3136 /// end:
   3137 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   3138 ///
   3139 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   3140 /// the PHI, merging the third icmp into the switch.
   3141 static bool TryToSimplifyUncondBranchWithICmpInIt(
   3142     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
   3143     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
   3144     AssumptionCache *AC) {
   3145   BasicBlock *BB = ICI->getParent();
   3146 
   3147   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   3148   // complex.
   3149   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
   3150     return false;
   3151 
   3152   Value *V = ICI->getOperand(0);
   3153   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   3154 
   3155   // The pattern we're looking for is where our only predecessor is a switch on
   3156   // 'V' and this block is the default case for the switch.  In this case we can
   3157   // fold the compared value into the switch to simplify things.
   3158   BasicBlock *Pred = BB->getSinglePredecessor();
   3159   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
   3160     return false;
   3161 
   3162   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   3163   if (SI->getCondition() != V)
   3164     return false;
   3165 
   3166   // If BB is reachable on a non-default case, then we simply know the value of
   3167   // V in this block.  Substitute it and constant fold the icmp instruction
   3168   // away.
   3169   if (SI->getDefaultDest() != BB) {
   3170     ConstantInt *VVal = SI->findCaseDest(BB);
   3171     assert(VVal && "Should have a unique destination value");
   3172     ICI->setOperand(0, VVal);
   3173 
   3174     if (Value *V = SimplifyInstruction(ICI, DL)) {
   3175       ICI->replaceAllUsesWith(V);
   3176       ICI->eraseFromParent();
   3177     }
   3178     // BB is now empty, so it is likely to simplify away.
   3179     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   3180   }
   3181 
   3182   // Ok, the block is reachable from the default dest.  If the constant we're
   3183   // comparing exists in one of the other edges, then we can constant fold ICI
   3184   // and zap it.
   3185   if (SI->findCaseValue(Cst) != SI->case_default()) {
   3186     Value *V;
   3187     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   3188       V = ConstantInt::getFalse(BB->getContext());
   3189     else
   3190       V = ConstantInt::getTrue(BB->getContext());
   3191 
   3192     ICI->replaceAllUsesWith(V);
   3193     ICI->eraseFromParent();
   3194     // BB is now empty, so it is likely to simplify away.
   3195     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   3196   }
   3197 
   3198   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   3199   // the block.
   3200   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   3201   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
   3202   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
   3203       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   3204     return false;
   3205 
   3206   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   3207   // true in the PHI.
   3208   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   3209   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
   3210 
   3211   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   3212     std::swap(DefaultCst, NewCst);
   3213 
   3214   // Replace ICI (which is used by the PHI for the default value) with true or
   3215   // false depending on if it is EQ or NE.
   3216   ICI->replaceAllUsesWith(DefaultCst);
   3217   ICI->eraseFromParent();
   3218 
   3219   // Okay, the switch goes to this block on a default value.  Add an edge from
   3220   // the switch to the merge point on the compared value.
   3221   BasicBlock *NewBB =
   3222       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
   3223   SmallVector<uint64_t, 8> Weights;
   3224   bool HasWeights = HasBranchWeights(SI);
   3225   if (HasWeights) {
   3226     GetBranchWeights(SI, Weights);
   3227     if (Weights.size() == 1 + SI->getNumCases()) {
   3228       // Split weight for default case to case for "Cst".
   3229       Weights[0] = (Weights[0] + 1) >> 1;
   3230       Weights.push_back(Weights[0]);
   3231 
   3232       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   3233       SI->setMetadata(
   3234           LLVMContext::MD_prof,
   3235           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
   3236     }
   3237   }
   3238   SI->addCase(Cst, NewBB);
   3239 
   3240   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   3241   Builder.SetInsertPoint(NewBB);
   3242   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   3243   Builder.CreateBr(SuccBlock);
   3244   PHIUse->addIncoming(NewCst, NewBB);
   3245   return true;
   3246 }
   3247 
   3248 /// The specified branch is a conditional branch.
   3249 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   3250 /// fold it into a switch instruction if so.
   3251 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
   3252                                       const DataLayout &DL) {
   3253   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   3254   if (!Cond)
   3255     return false;
   3256 
   3257   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   3258   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   3259   // 'setne's and'ed together, collect them.
   3260 
   3261   // Try to gather values from a chain of and/or to be turned into a switch
   3262   ConstantComparesGatherer ConstantCompare(Cond, DL);
   3263   // Unpack the result
   3264   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
   3265   Value *CompVal = ConstantCompare.CompValue;
   3266   unsigned UsedICmps = ConstantCompare.UsedICmps;
   3267   Value *ExtraCase = ConstantCompare.Extra;
   3268 
   3269   // If we didn't have a multiply compared value, fail.
   3270   if (!CompVal)
   3271     return false;
   3272 
   3273   // Avoid turning single icmps into a switch.
   3274   if (UsedICmps <= 1)
   3275     return false;
   3276 
   3277   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
   3278 
   3279   // There might be duplicate constants in the list, which the switch
   3280   // instruction can't handle, remove them now.
   3281   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   3282   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   3283 
   3284   // If Extra was used, we require at least two switch values to do the
   3285   // transformation.  A switch with one value is just a conditional branch.
   3286   if (ExtraCase && Values.size() < 2)
   3287     return false;
   3288 
   3289   // TODO: Preserve branch weight metadata, similarly to how
   3290   // FoldValueComparisonIntoPredecessors preserves it.
   3291 
   3292   // Figure out which block is which destination.
   3293   BasicBlock *DefaultBB = BI->getSuccessor(1);
   3294   BasicBlock *EdgeBB = BI->getSuccessor(0);
   3295   if (!TrueWhenEqual)
   3296     std::swap(DefaultBB, EdgeBB);
   3297 
   3298   BasicBlock *BB = BI->getParent();
   3299 
   3300   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   3301                << " cases into SWITCH.  BB is:\n"
   3302                << *BB);
   3303 
   3304   // If there are any extra values that couldn't be folded into the switch
   3305   // then we evaluate them with an explicit branch first.  Split the block
   3306   // right before the condbr to handle it.
   3307   if (ExtraCase) {
   3308     BasicBlock *NewBB =
   3309         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
   3310     // Remove the uncond branch added to the old block.
   3311     TerminatorInst *OldTI = BB->getTerminator();
   3312     Builder.SetInsertPoint(OldTI);
   3313 
   3314     if (TrueWhenEqual)
   3315       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   3316     else
   3317       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   3318 
   3319     OldTI->eraseFromParent();
   3320 
   3321     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   3322     // for the edge we just added.
   3323     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   3324 
   3325     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   3326                  << "\nEXTRABB = " << *BB);
   3327     BB = NewBB;
   3328   }
   3329 
   3330   Builder.SetInsertPoint(BI);
   3331   // Convert pointer to int before we switch.
   3332   if (CompVal->getType()->isPointerTy()) {
   3333     CompVal = Builder.CreatePtrToInt(
   3334         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
   3335   }
   3336 
   3337   // Create the new switch instruction now.
   3338   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   3339 
   3340   // Add all of the 'cases' to the switch instruction.
   3341   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   3342     New->addCase(Values[i], EdgeBB);
   3343 
   3344   // We added edges from PI to the EdgeBB.  As such, if there were any
   3345   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   3346   // the number of edges added.
   3347   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
   3348     PHINode *PN = cast<PHINode>(BBI);
   3349     Value *InVal = PN->getIncomingValueForBlock(BB);
   3350     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
   3351       PN->addIncoming(InVal, BB);
   3352   }
   3353 
   3354   // Erase the old branch instruction.
   3355   EraseTerminatorInstAndDCECond(BI);
   3356 
   3357   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   3358   return true;
   3359 }
   3360 
   3361 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   3362   if (isa<PHINode>(RI->getValue()))
   3363     return SimplifyCommonResume(RI);
   3364   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
   3365            RI->getValue() == RI->getParent()->getFirstNonPHI())
   3366     // The resume must unwind the exception that caused control to branch here.
   3367     return SimplifySingleResume(RI);
   3368 
   3369   return false;
   3370 }
   3371 
   3372 // Simplify resume that is shared by several landing pads (phi of landing pad).
   3373 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
   3374   BasicBlock *BB = RI->getParent();
   3375 
   3376   // Check that there are no other instructions except for debug intrinsics
   3377   // between the phi of landing pads (RI->getValue()) and resume instruction.
   3378   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
   3379                        E = RI->getIterator();
   3380   while (++I != E)
   3381     if (!isa<DbgInfoIntrinsic>(I))
   3382       return false;
   3383 
   3384   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
   3385   auto *PhiLPInst = cast<PHINode>(RI->getValue());
   3386 
   3387   // Check incoming blocks to see if any of them are trivial.
   3388   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
   3389        Idx++) {
   3390     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
   3391     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
   3392 
   3393     // If the block has other successors, we can not delete it because
   3394     // it has other dependents.
   3395     if (IncomingBB->getUniqueSuccessor() != BB)
   3396       continue;
   3397 
   3398     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
   3399     // Not the landing pad that caused the control to branch here.
   3400     if (IncomingValue != LandingPad)
   3401       continue;
   3402 
   3403     bool isTrivial = true;
   3404 
   3405     I = IncomingBB->getFirstNonPHI()->getIterator();
   3406     E = IncomingBB->getTerminator()->getIterator();
   3407     while (++I != E)
   3408       if (!isa<DbgInfoIntrinsic>(I)) {
   3409         isTrivial = false;
   3410         break;
   3411       }
   3412 
   3413     if (isTrivial)
   3414       TrivialUnwindBlocks.insert(IncomingBB);
   3415   }
   3416 
   3417   // If no trivial unwind blocks, don't do any simplifications.
   3418   if (TrivialUnwindBlocks.empty())
   3419     return false;
   3420 
   3421   // Turn all invokes that unwind here into calls.
   3422   for (auto *TrivialBB : TrivialUnwindBlocks) {
   3423     // Blocks that will be simplified should be removed from the phi node.
   3424     // Note there could be multiple edges to the resume block, and we need
   3425     // to remove them all.
   3426     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
   3427       BB->removePredecessor(TrivialBB, true);
   3428 
   3429     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
   3430          PI != PE;) {
   3431       BasicBlock *Pred = *PI++;
   3432       removeUnwindEdge(Pred);
   3433     }
   3434 
   3435     // In each SimplifyCFG run, only the current processed block can be erased.
   3436     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
   3437     // of erasing TrivialBB, we only remove the branch to the common resume
   3438     // block so that we can later erase the resume block since it has no
   3439     // predecessors.
   3440     TrivialBB->getTerminator()->eraseFromParent();
   3441     new UnreachableInst(RI->getContext(), TrivialBB);
   3442   }
   3443 
   3444   // Delete the resume block if all its predecessors have been removed.
   3445   if (pred_empty(BB))
   3446     BB->eraseFromParent();
   3447 
   3448   return !TrivialUnwindBlocks.empty();
   3449 }
   3450 
   3451 // Simplify resume that is only used by a single (non-phi) landing pad.
   3452 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
   3453   BasicBlock *BB = RI->getParent();
   3454   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   3455   assert(RI->getValue() == LPInst &&
   3456          "Resume must unwind the exception that caused control to here");
   3457 
   3458   // Check that there are no other instructions except for debug intrinsics.
   3459   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
   3460   while (++I != E)
   3461     if (!isa<DbgInfoIntrinsic>(I))
   3462       return false;
   3463 
   3464   // Turn all invokes that unwind here into calls and delete the basic block.
   3465   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   3466     BasicBlock *Pred = *PI++;
   3467     removeUnwindEdge(Pred);
   3468   }
   3469 
   3470   // The landingpad is now unreachable.  Zap it.
   3471   BB->eraseFromParent();
   3472   if (LoopHeaders)
   3473     LoopHeaders->erase(BB);
   3474   return true;
   3475 }
   3476 
   3477 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
   3478   // If this is a trivial cleanup pad that executes no instructions, it can be
   3479   // eliminated.  If the cleanup pad continues to the caller, any predecessor
   3480   // that is an EH pad will be updated to continue to the caller and any
   3481   // predecessor that terminates with an invoke instruction will have its invoke
   3482   // instruction converted to a call instruction.  If the cleanup pad being
   3483   // simplified does not continue to the caller, each predecessor will be
   3484   // updated to continue to the unwind destination of the cleanup pad being
   3485   // simplified.
   3486   BasicBlock *BB = RI->getParent();
   3487   CleanupPadInst *CPInst = RI->getCleanupPad();
   3488   if (CPInst->getParent() != BB)
   3489     // This isn't an empty cleanup.
   3490     return false;
   3491 
   3492   // We cannot kill the pad if it has multiple uses.  This typically arises
   3493   // from unreachable basic blocks.
   3494   if (!CPInst->hasOneUse())
   3495     return false;
   3496 
   3497   // Check that there are no other instructions except for benign intrinsics.
   3498   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
   3499   while (++I != E) {
   3500     auto *II = dyn_cast<IntrinsicInst>(I);
   3501     if (!II)
   3502       return false;
   3503 
   3504     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
   3505     switch (IntrinsicID) {
   3506     case Intrinsic::dbg_declare:
   3507     case Intrinsic::dbg_value:
   3508     case Intrinsic::lifetime_end:
   3509       break;
   3510     default:
   3511       return false;
   3512     }
   3513   }
   3514 
   3515   // If the cleanup return we are simplifying unwinds to the caller, this will
   3516   // set UnwindDest to nullptr.
   3517   BasicBlock *UnwindDest = RI->getUnwindDest();
   3518   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
   3519 
   3520   // We're about to remove BB from the control flow.  Before we do, sink any
   3521   // PHINodes into the unwind destination.  Doing this before changing the
   3522   // control flow avoids some potentially slow checks, since we can currently
   3523   // be certain that UnwindDest and BB have no common predecessors (since they
   3524   // are both EH pads).
   3525   if (UnwindDest) {
   3526     // First, go through the PHI nodes in UnwindDest and update any nodes that
   3527     // reference the block we are removing
   3528     for (BasicBlock::iterator I = UnwindDest->begin(),
   3529                               IE = DestEHPad->getIterator();
   3530          I != IE; ++I) {
   3531       PHINode *DestPN = cast<PHINode>(I);
   3532 
   3533       int Idx = DestPN->getBasicBlockIndex(BB);
   3534       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
   3535       assert(Idx != -1);
   3536       // This PHI node has an incoming value that corresponds to a control
   3537       // path through the cleanup pad we are removing.  If the incoming
   3538       // value is in the cleanup pad, it must be a PHINode (because we
   3539       // verified above that the block is otherwise empty).  Otherwise, the
   3540       // value is either a constant or a value that dominates the cleanup
   3541       // pad being removed.
   3542       //
   3543       // Because BB and UnwindDest are both EH pads, all of their
   3544       // predecessors must unwind to these blocks, and since no instruction
   3545       // can have multiple unwind destinations, there will be no overlap in
   3546       // incoming blocks between SrcPN and DestPN.
   3547       Value *SrcVal = DestPN->getIncomingValue(Idx);
   3548       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
   3549 
   3550       // Remove the entry for the block we are deleting.
   3551       DestPN->removeIncomingValue(Idx, false);
   3552 
   3553       if (SrcPN && SrcPN->getParent() == BB) {
   3554         // If the incoming value was a PHI node in the cleanup pad we are
   3555         // removing, we need to merge that PHI node's incoming values into
   3556         // DestPN.
   3557         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
   3558              SrcIdx != SrcE; ++SrcIdx) {
   3559           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
   3560                               SrcPN->getIncomingBlock(SrcIdx));
   3561         }
   3562       } else {
   3563         // Otherwise, the incoming value came from above BB and
   3564         // so we can just reuse it.  We must associate all of BB's
   3565         // predecessors with this value.
   3566         for (auto *pred : predecessors(BB)) {
   3567           DestPN->addIncoming(SrcVal, pred);
   3568         }
   3569       }
   3570     }
   3571 
   3572     // Sink any remaining PHI nodes directly into UnwindDest.
   3573     Instruction *InsertPt = DestEHPad;
   3574     for (BasicBlock::iterator I = BB->begin(),
   3575                               IE = BB->getFirstNonPHI()->getIterator();
   3576          I != IE;) {
   3577       // The iterator must be incremented here because the instructions are
   3578       // being moved to another block.
   3579       PHINode *PN = cast<PHINode>(I++);
   3580       if (PN->use_empty())
   3581         // If the PHI node has no uses, just leave it.  It will be erased
   3582         // when we erase BB below.
   3583         continue;
   3584 
   3585       // Otherwise, sink this PHI node into UnwindDest.
   3586       // Any predecessors to UnwindDest which are not already represented
   3587       // must be back edges which inherit the value from the path through
   3588       // BB.  In this case, the PHI value must reference itself.
   3589       for (auto *pred : predecessors(UnwindDest))
   3590         if (pred != BB)
   3591           PN->addIncoming(PN, pred);
   3592       PN->moveBefore(InsertPt);
   3593     }
   3594   }
   3595 
   3596   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   3597     // The iterator must be updated here because we are removing this pred.
   3598     BasicBlock *PredBB = *PI++;
   3599     if (UnwindDest == nullptr) {
   3600       removeUnwindEdge(PredBB);
   3601     } else {
   3602       TerminatorInst *TI = PredBB->getTerminator();
   3603       TI->replaceUsesOfWith(BB, UnwindDest);
   3604     }
   3605   }
   3606 
   3607   // The cleanup pad is now unreachable.  Zap it.
   3608   BB->eraseFromParent();
   3609   return true;
   3610 }
   3611 
   3612 // Try to merge two cleanuppads together.
   3613 static bool mergeCleanupPad(CleanupReturnInst *RI) {
   3614   // Skip any cleanuprets which unwind to caller, there is nothing to merge
   3615   // with.
   3616   BasicBlock *UnwindDest = RI->getUnwindDest();
   3617   if (!UnwindDest)
   3618     return false;
   3619 
   3620   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
   3621   // be safe to merge without code duplication.
   3622   if (UnwindDest->getSinglePredecessor() != RI->getParent())
   3623     return false;
   3624 
   3625   // Verify that our cleanuppad's unwind destination is another cleanuppad.
   3626   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
   3627   if (!SuccessorCleanupPad)
   3628     return false;
   3629 
   3630   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
   3631   // Replace any uses of the successor cleanupad with the predecessor pad
   3632   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
   3633   // funclet bundle operands.
   3634   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
   3635   // Remove the old cleanuppad.
   3636   SuccessorCleanupPad->eraseFromParent();
   3637   // Now, we simply replace the cleanupret with a branch to the unwind
   3638   // destination.
   3639   BranchInst::Create(UnwindDest, RI->getParent());
   3640   RI->eraseFromParent();
   3641 
   3642   return true;
   3643 }
   3644 
   3645 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
   3646   // It is possible to transiantly have an undef cleanuppad operand because we
   3647   // have deleted some, but not all, dead blocks.
   3648   // Eventually, this block will be deleted.
   3649   if (isa<UndefValue>(RI->getOperand(0)))
   3650     return false;
   3651 
   3652   if (mergeCleanupPad(RI))
   3653     return true;
   3654 
   3655   if (removeEmptyCleanup(RI))
   3656     return true;
   3657 
   3658   return false;
   3659 }
   3660 
   3661 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   3662   BasicBlock *BB = RI->getParent();
   3663   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
   3664     return false;
   3665 
   3666   // Find predecessors that end with branches.
   3667   SmallVector<BasicBlock *, 8> UncondBranchPreds;
   3668   SmallVector<BranchInst *, 8> CondBranchPreds;
   3669   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   3670     BasicBlock *P = *PI;
   3671     TerminatorInst *PTI = P->getTerminator();
   3672     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   3673       if (BI->isUnconditional())
   3674         UncondBranchPreds.push_back(P);
   3675       else
   3676         CondBranchPreds.push_back(BI);
   3677     }
   3678   }
   3679 
   3680   // If we found some, do the transformation!
   3681   if (!UncondBranchPreds.empty() && DupRet) {
   3682     while (!UncondBranchPreds.empty()) {
   3683       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   3684       DEBUG(dbgs() << "FOLDING: " << *BB
   3685                    << "INTO UNCOND BRANCH PRED: " << *Pred);
   3686       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   3687     }
   3688 
   3689     // If we eliminated all predecessors of the block, delete the block now.
   3690     if (pred_empty(BB)) {
   3691       // We know there are no successors, so just nuke the block.
   3692       BB->eraseFromParent();
   3693       if (LoopHeaders)
   3694         LoopHeaders->erase(BB);
   3695     }
   3696 
   3697     return true;
   3698   }
   3699 
   3700   // Check out all of the conditional branches going to this return
   3701   // instruction.  If any of them just select between returns, change the
   3702   // branch itself into a select/return pair.
   3703   while (!CondBranchPreds.empty()) {
   3704     BranchInst *BI = CondBranchPreds.pop_back_val();
   3705 
   3706     // Check to see if the non-BB successor is also a return block.
   3707     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   3708         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   3709         SimplifyCondBranchToTwoReturns(BI, Builder))
   3710       return true;
   3711   }
   3712   return false;
   3713 }
   3714 
   3715 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   3716   BasicBlock *BB = UI->getParent();
   3717 
   3718   bool Changed = false;
   3719 
   3720   // If there are any instructions immediately before the unreachable that can
   3721   // be removed, do so.
   3722   while (UI->getIterator() != BB->begin()) {
   3723     BasicBlock::iterator BBI = UI->getIterator();
   3724     --BBI;
   3725     // Do not delete instructions that can have side effects which might cause
   3726     // the unreachable to not be reachable; specifically, calls and volatile
   3727     // operations may have this effect.
   3728     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
   3729       break;
   3730 
   3731     if (BBI->mayHaveSideEffects()) {
   3732       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
   3733         if (SI->isVolatile())
   3734           break;
   3735       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
   3736         if (LI->isVolatile())
   3737           break;
   3738       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   3739         if (RMWI->isVolatile())
   3740           break;
   3741       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   3742         if (CXI->isVolatile())
   3743           break;
   3744       } else if (isa<CatchPadInst>(BBI)) {
   3745         // A catchpad may invoke exception object constructors and such, which
   3746         // in some languages can be arbitrary code, so be conservative by
   3747         // default.
   3748         // For CoreCLR, it just involves a type test, so can be removed.
   3749         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
   3750             EHPersonality::CoreCLR)
   3751           break;
   3752       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   3753                  !isa<LandingPadInst>(BBI)) {
   3754         break;
   3755       }
   3756       // Note that deleting LandingPad's here is in fact okay, although it
   3757       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   3758       // all the predecessors of this block will be the unwind edges of Invokes,
   3759       // and we can therefore guarantee this block will be erased.
   3760     }
   3761 
   3762     // Delete this instruction (any uses are guaranteed to be dead)
   3763     if (!BBI->use_empty())
   3764       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   3765     BBI->eraseFromParent();
   3766     Changed = true;
   3767   }
   3768 
   3769   // If the unreachable instruction is the first in the block, take a gander
   3770   // at all of the predecessors of this instruction, and simplify them.
   3771   if (&BB->front() != UI)
   3772     return Changed;
   3773 
   3774   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
   3775   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   3776     TerminatorInst *TI = Preds[i]->getTerminator();
   3777     IRBuilder<> Builder(TI);
   3778     if (auto *BI = dyn_cast<BranchInst>(TI)) {
   3779       if (BI->isUnconditional()) {
   3780         if (BI->getSuccessor(0) == BB) {
   3781           new UnreachableInst(TI->getContext(), TI);
   3782           TI->eraseFromParent();
   3783           Changed = true;
   3784         }
   3785       } else {
   3786         if (BI->getSuccessor(0) == BB) {
   3787           Builder.CreateBr(BI->getSuccessor(1));
   3788           EraseTerminatorInstAndDCECond(BI);
   3789         } else if (BI->getSuccessor(1) == BB) {
   3790           Builder.CreateBr(BI->getSuccessor(0));
   3791           EraseTerminatorInstAndDCECond(BI);
   3792           Changed = true;
   3793         }
   3794       }
   3795     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
   3796       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
   3797            ++i)
   3798         if (i.getCaseSuccessor() == BB) {
   3799           BB->removePredecessor(SI->getParent());
   3800           SI->removeCase(i);
   3801           --i;
   3802           --e;
   3803           Changed = true;
   3804         }
   3805     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
   3806       if (II->getUnwindDest() == BB) {
   3807         removeUnwindEdge(TI->getParent());
   3808         Changed = true;
   3809       }
   3810     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
   3811       if (CSI->getUnwindDest() == BB) {
   3812         removeUnwindEdge(TI->getParent());
   3813         Changed = true;
   3814         continue;
   3815       }
   3816 
   3817       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
   3818                                              E = CSI->handler_end();
   3819            I != E; ++I) {
   3820         if (*I == BB) {
   3821           CSI->removeHandler(I);
   3822           --I;
   3823           --E;
   3824           Changed = true;
   3825         }
   3826       }
   3827       if (CSI->getNumHandlers() == 0) {
   3828         BasicBlock *CatchSwitchBB = CSI->getParent();
   3829         if (CSI->hasUnwindDest()) {
   3830           // Redirect preds to the unwind dest
   3831           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
   3832         } else {
   3833           // Rewrite all preds to unwind to caller (or from invoke to call).
   3834           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
   3835           for (BasicBlock *EHPred : EHPreds)
   3836             removeUnwindEdge(EHPred);
   3837         }
   3838         // The catchswitch is no longer reachable.
   3839         new UnreachableInst(CSI->getContext(), CSI);
   3840         CSI->eraseFromParent();
   3841         Changed = true;
   3842       }
   3843     } else if (isa<CleanupReturnInst>(TI)) {
   3844       new UnreachableInst(TI->getContext(), TI);
   3845       TI->eraseFromParent();
   3846       Changed = true;
   3847     }
   3848   }
   3849 
   3850   // If this block is now dead, remove it.
   3851   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
   3852     // We know there are no successors, so just nuke the block.
   3853     BB->eraseFromParent();
   3854     if (LoopHeaders)
   3855       LoopHeaders->erase(BB);
   3856     return true;
   3857   }
   3858 
   3859   return Changed;
   3860 }
   3861 
   3862 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
   3863   assert(Cases.size() >= 1);
   3864 
   3865   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   3866   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
   3867     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
   3868       return false;
   3869   }
   3870   return true;
   3871 }
   3872 
   3873 /// Turn a switch with two reachable destinations into an integer range
   3874 /// comparison and branch.
   3875 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   3876   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   3877 
   3878   bool HasDefault =
   3879       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   3880 
   3881   // Partition the cases into two sets with different destinations.
   3882   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
   3883   BasicBlock *DestB = nullptr;
   3884   SmallVector<ConstantInt *, 16> CasesA;
   3885   SmallVector<ConstantInt *, 16> CasesB;
   3886 
   3887   for (SwitchInst::CaseIt I : SI->cases()) {
   3888     BasicBlock *Dest = I.getCaseSuccessor();
   3889     if (!DestA)
   3890       DestA = Dest;
   3891     if (Dest == DestA) {
   3892       CasesA.push_back(I.getCaseValue());
   3893       continue;
   3894     }
   3895     if (!DestB)
   3896       DestB = Dest;
   3897     if (Dest == DestB) {
   3898       CasesB.push_back(I.getCaseValue());
   3899       continue;
   3900     }
   3901     return false; // More than two destinations.
   3902   }
   3903 
   3904   assert(DestA && DestB &&
   3905          "Single-destination switch should have been folded.");
   3906   assert(DestA != DestB);
   3907   assert(DestB != SI->getDefaultDest());
   3908   assert(!CasesB.empty() && "There must be non-default cases.");
   3909   assert(!CasesA.empty() || HasDefault);
   3910 
   3911   // Figure out if one of the sets of cases form a contiguous range.
   3912   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
   3913   BasicBlock *ContiguousDest = nullptr;
   3914   BasicBlock *OtherDest = nullptr;
   3915   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
   3916     ContiguousCases = &CasesA;
   3917     ContiguousDest = DestA;
   3918     OtherDest = DestB;
   3919   } else if (CasesAreContiguous(CasesB)) {
   3920     ContiguousCases = &CasesB;
   3921     ContiguousDest = DestB;
   3922     OtherDest = DestA;
   3923   } else
   3924     return false;
   3925 
   3926   // Start building the compare and branch.
   3927 
   3928   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
   3929   Constant *NumCases =
   3930       ConstantInt::get(Offset->getType(), ContiguousCases->size());
   3931 
   3932   Value *Sub = SI->getCondition();
   3933   if (!Offset->isNullValue())
   3934     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
   3935 
   3936   Value *Cmp;
   3937   // If NumCases overflowed, then all possible values jump to the successor.
   3938   if (NumCases->isNullValue() && !ContiguousCases->empty())
   3939     Cmp = ConstantInt::getTrue(SI->getContext());
   3940   else
   3941     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   3942   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
   3943 
   3944   // Update weight for the newly-created conditional branch.
   3945   if (HasBranchWeights(SI)) {
   3946     SmallVector<uint64_t, 8> Weights;
   3947     GetBranchWeights(SI, Weights);
   3948     if (Weights.size() == 1 + SI->getNumCases()) {
   3949       uint64_t TrueWeight = 0;
   3950       uint64_t FalseWeight = 0;
   3951       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
   3952         if (SI->getSuccessor(I) == ContiguousDest)
   3953           TrueWeight += Weights[I];
   3954         else
   3955           FalseWeight += Weights[I];
   3956       }
   3957       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
   3958         TrueWeight /= 2;
   3959         FalseWeight /= 2;
   3960       }
   3961       NewBI->setMetadata(LLVMContext::MD_prof,
   3962                          MDBuilder(SI->getContext())
   3963                              .createBranchWeights((uint32_t)TrueWeight,
   3964                                                   (uint32_t)FalseWeight));
   3965     }
   3966   }
   3967 
   3968   // Prune obsolete incoming values off the successors' PHI nodes.
   3969   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
   3970     unsigned PreviousEdges = ContiguousCases->size();
   3971     if (ContiguousDest == SI->getDefaultDest())
   3972       ++PreviousEdges;
   3973     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   3974       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3975   }
   3976   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
   3977     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
   3978     if (OtherDest == SI->getDefaultDest())
   3979       ++PreviousEdges;
   3980     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
   3981       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   3982   }
   3983 
   3984   // Drop the switch.
   3985   SI->eraseFromParent();
   3986 
   3987   return true;
   3988 }
   3989 
   3990 /// Compute masked bits for the condition of a switch
   3991 /// and use it to remove dead cases.
   3992 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
   3993                                      const DataLayout &DL) {
   3994   Value *Cond = SI->getCondition();
   3995   unsigned Bits = Cond->getType()->getIntegerBitWidth();
   3996   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   3997   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
   3998 
   3999   // We can also eliminate cases by determining that their values are outside of
   4000   // the limited range of the condition based on how many significant (non-sign)
   4001   // bits are in the condition value.
   4002   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
   4003   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
   4004 
   4005   // Gather dead cases.
   4006   SmallVector<ConstantInt *, 8> DeadCases;
   4007   for (auto &Case : SI->cases()) {
   4008     APInt CaseVal = Case.getCaseValue()->getValue();
   4009     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
   4010         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
   4011       DeadCases.push_back(Case.getCaseValue());
   4012       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
   4013     }
   4014   }
   4015 
   4016   // If we can prove that the cases must cover all possible values, the
   4017   // default destination becomes dead and we can remove it.  If we know some
   4018   // of the bits in the value, we can use that to more precisely compute the
   4019   // number of possible unique case values.
   4020   bool HasDefault =
   4021       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   4022   const unsigned NumUnknownBits =
   4023       Bits - (KnownZero.Or(KnownOne)).countPopulation();
   4024   assert(NumUnknownBits <= Bits);
   4025   if (HasDefault && DeadCases.empty() &&
   4026       NumUnknownBits < 64 /* avoid overflow */ &&
   4027       SI->getNumCases() == (1ULL << NumUnknownBits)) {
   4028     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
   4029     BasicBlock *NewDefault =
   4030         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
   4031     SI->setDefaultDest(&*NewDefault);
   4032     SplitBlock(&*NewDefault, &NewDefault->front());
   4033     auto *OldTI = NewDefault->getTerminator();
   4034     new UnreachableInst(SI->getContext(), OldTI);
   4035     EraseTerminatorInstAndDCECond(OldTI);
   4036     return true;
   4037   }
   4038 
   4039   SmallVector<uint64_t, 8> Weights;
   4040   bool HasWeight = HasBranchWeights(SI);
   4041   if (HasWeight) {
   4042     GetBranchWeights(SI, Weights);
   4043     HasWeight = (Weights.size() == 1 + SI->getNumCases());
   4044   }
   4045 
   4046   // Remove dead cases from the switch.
   4047   for (ConstantInt *DeadCase : DeadCases) {
   4048     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
   4049     assert(Case != SI->case_default() &&
   4050            "Case was not found. Probably mistake in DeadCases forming.");
   4051     if (HasWeight) {
   4052       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
   4053       Weights.pop_back();
   4054     }
   4055 
   4056     // Prune unused values from PHI nodes.
   4057     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
   4058     SI->removeCase(Case);
   4059   }
   4060   if (HasWeight && Weights.size() >= 2) {
   4061     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
   4062     SI->setMetadata(LLVMContext::MD_prof,
   4063                     MDBuilder(SI->getParent()->getContext())
   4064                         .createBranchWeights(MDWeights));
   4065   }
   4066 
   4067   return !DeadCases.empty();
   4068 }
   4069 
   4070 /// If BB would be eligible for simplification by
   4071 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   4072 /// by an unconditional branch), look at the phi node for BB in the successor
   4073 /// block and see if the incoming value is equal to CaseValue. If so, return
   4074 /// the phi node, and set PhiIndex to BB's index in the phi node.
   4075 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   4076                                               BasicBlock *BB, int *PhiIndex) {
   4077   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   4078     return nullptr; // BB must be empty to be a candidate for simplification.
   4079   if (!BB->getSinglePredecessor())
   4080     return nullptr; // BB must be dominated by the switch.
   4081 
   4082   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   4083   if (!Branch || !Branch->isUnconditional())
   4084     return nullptr; // Terminator must be unconditional branch.
   4085 
   4086   BasicBlock *Succ = Branch->getSuccessor(0);
   4087 
   4088   BasicBlock::iterator I = Succ->begin();
   4089   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   4090     int Idx = PHI->getBasicBlockIndex(BB);
   4091     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   4092 
   4093     Value *InValue = PHI->getIncomingValue(Idx);
   4094     if (InValue != CaseValue)
   4095       continue;
   4096 
   4097     *PhiIndex = Idx;
   4098     return PHI;
   4099   }
   4100 
   4101   return nullptr;
   4102 }
   4103 
   4104 /// Try to forward the condition of a switch instruction to a phi node
   4105 /// dominated by the switch, if that would mean that some of the destination
   4106 /// blocks of the switch can be folded away.
   4107 /// Returns true if a change is made.
   4108 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   4109   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
   4110   ForwardingNodesMap ForwardingNodes;
   4111 
   4112   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
   4113        ++I) {
   4114     ConstantInt *CaseValue = I.getCaseValue();
   4115     BasicBlock *CaseDest = I.getCaseSuccessor();
   4116 
   4117     int PhiIndex;
   4118     PHINode *PHI =
   4119         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
   4120     if (!PHI)
   4121       continue;
   4122 
   4123     ForwardingNodes[PHI].push_back(PhiIndex);
   4124   }
   4125 
   4126   bool Changed = false;
   4127 
   4128   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   4129                                     E = ForwardingNodes.end();
   4130        I != E; ++I) {
   4131     PHINode *Phi = I->first;
   4132     SmallVectorImpl<int> &Indexes = I->second;
   4133 
   4134     if (Indexes.size() < 2)
   4135       continue;
   4136 
   4137     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   4138       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   4139     Changed = true;
   4140   }
   4141 
   4142   return Changed;
   4143 }
   4144 
   4145 /// Return true if the backend will be able to handle
   4146 /// initializing an array of constants like C.
   4147 static bool ValidLookupTableConstant(Constant *C) {
   4148   if (C->isThreadDependent())
   4149     return false;
   4150   if (C->isDLLImportDependent())
   4151     return false;
   4152 
   4153   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   4154     return CE->isGEPWithNoNotionalOverIndexing();
   4155 
   4156   return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
   4157          isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
   4158          isa<UndefValue>(C);
   4159 }
   4160 
   4161 /// If V is a Constant, return it. Otherwise, try to look up
   4162 /// its constant value in ConstantPool, returning 0 if it's not there.
   4163 static Constant *
   4164 LookupConstant(Value *V,
   4165                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
   4166   if (Constant *C = dyn_cast<Constant>(V))
   4167     return C;
   4168   return ConstantPool.lookup(V);
   4169 }
   4170 
   4171 /// Try to fold instruction I into a constant. This works for
   4172 /// simple instructions such as binary operations where both operands are
   4173 /// constant or can be replaced by constants from the ConstantPool. Returns the
   4174 /// resulting constant on success, 0 otherwise.
   4175 static Constant *
   4176 ConstantFold(Instruction *I, const DataLayout &DL,
   4177              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
   4178   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
   4179     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
   4180     if (!A)
   4181       return nullptr;
   4182     if (A->isAllOnesValue())
   4183       return LookupConstant(Select->getTrueValue(), ConstantPool);
   4184     if (A->isNullValue())
   4185       return LookupConstant(Select->getFalseValue(), ConstantPool);
   4186     return nullptr;
   4187   }
   4188 
   4189   SmallVector<Constant *, 4> COps;
   4190   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
   4191     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
   4192       COps.push_back(A);
   4193     else
   4194       return nullptr;
   4195   }
   4196 
   4197   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
   4198     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
   4199                                            COps[1], DL);
   4200   }
   4201 
   4202   return ConstantFoldInstOperands(I, COps, DL);
   4203 }
   4204 
   4205 /// Try to determine the resulting constant values in phi nodes
   4206 /// at the common destination basic block, *CommonDest, for one of the case
   4207 /// destionations CaseDest corresponding to value CaseVal (0 for the default
   4208 /// case), of a switch instruction SI.
   4209 static bool
   4210 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
   4211                BasicBlock **CommonDest,
   4212                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
   4213                const DataLayout &DL) {
   4214   // The block from which we enter the common destination.
   4215   BasicBlock *Pred = SI->getParent();
   4216 
   4217   // If CaseDest is empty except for some side-effect free instructions through
   4218   // which we can constant-propagate the CaseVal, continue to its successor.
   4219   SmallDenseMap<Value *, Constant *> ConstantPool;
   4220   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
   4221   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
   4222        ++I) {
   4223     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
   4224       // If the terminator is a simple branch, continue to the next block.
   4225       if (T->getNumSuccessors() != 1)
   4226         return false;
   4227       Pred = CaseDest;
   4228       CaseDest = T->getSuccessor(0);
   4229     } else if (isa<DbgInfoIntrinsic>(I)) {
   4230       // Skip debug intrinsic.
   4231       continue;
   4232     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
   4233       // Instruction is side-effect free and constant.
   4234 
   4235       // If the instruction has uses outside this block or a phi node slot for
   4236       // the block, it is not safe to bypass the instruction since it would then
   4237       // no longer dominate all its uses.
   4238       for (auto &Use : I->uses()) {
   4239         User *User = Use.getUser();
   4240         if (Instruction *I = dyn_cast<Instruction>(User))
   4241           if (I->getParent() == CaseDest)
   4242             continue;
   4243         if (PHINode *Phi = dyn_cast<PHINode>(User))
   4244           if (Phi->getIncomingBlock(Use) == CaseDest)
   4245             continue;
   4246         return false;
   4247       }
   4248 
   4249       ConstantPool.insert(std::make_pair(&*I, C));
   4250     } else {
   4251       break;
   4252     }
   4253   }
   4254 
   4255   // If we did not have a CommonDest before, use the current one.
   4256   if (!*CommonDest)
   4257     *CommonDest = CaseDest;
   4258   // If the destination isn't the common one, abort.
   4259   if (CaseDest != *CommonDest)
   4260     return false;
   4261 
   4262   // Get the values for this case from phi nodes in the destination block.
   4263   BasicBlock::iterator I = (*CommonDest)->begin();
   4264   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   4265     int Idx = PHI->getBasicBlockIndex(Pred);
   4266     if (Idx == -1)
   4267       continue;
   4268 
   4269     Constant *ConstVal =
   4270         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
   4271     if (!ConstVal)
   4272       return false;
   4273 
   4274     // Be conservative about which kinds of constants we support.
   4275     if (!ValidLookupTableConstant(ConstVal))
   4276       return false;
   4277 
   4278     Res.push_back(std::make_pair(PHI, ConstVal));
   4279   }
   4280 
   4281   return Res.size() > 0;
   4282 }
   4283 
   4284 // Helper function used to add CaseVal to the list of cases that generate
   4285 // Result.
   4286 static void MapCaseToResult(ConstantInt *CaseVal,
   4287                             SwitchCaseResultVectorTy &UniqueResults,
   4288                             Constant *Result) {
   4289   for (auto &I : UniqueResults) {
   4290     if (I.first == Result) {
   4291       I.second.push_back(CaseVal);
   4292       return;
   4293     }
   4294   }
   4295   UniqueResults.push_back(
   4296       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
   4297 }
   4298 
   4299 // Helper function that initializes a map containing
   4300 // results for the PHI node of the common destination block for a switch
   4301 // instruction. Returns false if multiple PHI nodes have been found or if
   4302 // there is not a common destination block for the switch.
   4303 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
   4304                                   BasicBlock *&CommonDest,
   4305                                   SwitchCaseResultVectorTy &UniqueResults,
   4306                                   Constant *&DefaultResult,
   4307                                   const DataLayout &DL) {
   4308   for (auto &I : SI->cases()) {
   4309     ConstantInt *CaseVal = I.getCaseValue();
   4310 
   4311     // Resulting value at phi nodes for this case value.
   4312     SwitchCaseResultsTy Results;
   4313     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
   4314                         DL))
   4315       return false;
   4316 
   4317     // Only one value per case is permitted
   4318     if (Results.size() > 1)
   4319       return false;
   4320     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
   4321 
   4322     // Check the PHI consistency.
   4323     if (!PHI)
   4324       PHI = Results[0].first;
   4325     else if (PHI != Results[0].first)
   4326       return false;
   4327   }
   4328   // Find the default result value.
   4329   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
   4330   BasicBlock *DefaultDest = SI->getDefaultDest();
   4331   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
   4332                  DL);
   4333   // If the default value is not found abort unless the default destination
   4334   // is unreachable.
   4335   DefaultResult =
   4336       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
   4337   if ((!DefaultResult &&
   4338        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
   4339     return false;
   4340 
   4341   return true;
   4342 }
   4343 
   4344 // Helper function that checks if it is possible to transform a switch with only
   4345 // two cases (or two cases + default) that produces a result into a select.
   4346 // Example:
   4347 // switch (a) {
   4348 //   case 10:                %0 = icmp eq i32 %a, 10
   4349 //     return 10;            %1 = select i1 %0, i32 10, i32 4
   4350 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
   4351 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
   4352 //   default:
   4353 //     return 4;
   4354 // }
   4355 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
   4356                                    Constant *DefaultResult, Value *Condition,
   4357                                    IRBuilder<> &Builder) {
   4358   assert(ResultVector.size() == 2 &&
   4359          "We should have exactly two unique results at this point");
   4360   // If we are selecting between only two cases transform into a simple
   4361   // select or a two-way select if default is possible.
   4362   if (ResultVector[0].second.size() == 1 &&
   4363       ResultVector[1].second.size() == 1) {
   4364     ConstantInt *const FirstCase = ResultVector[0].second[0];
   4365     ConstantInt *const SecondCase = ResultVector[1].second[0];
   4366 
   4367     bool DefaultCanTrigger = DefaultResult;
   4368     Value *SelectValue = ResultVector[1].first;
   4369     if (DefaultCanTrigger) {
   4370       Value *const ValueCompare =
   4371           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
   4372       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
   4373                                          DefaultResult, "switch.select");
   4374     }
   4375     Value *const ValueCompare =
   4376         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
   4377     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
   4378                                 SelectValue, "switch.select");
   4379   }
   4380 
   4381   return nullptr;
   4382 }
   4383 
   4384 // Helper function to cleanup a switch instruction that has been converted into
   4385 // a select, fixing up PHI nodes and basic blocks.
   4386 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
   4387                                               Value *SelectValue,
   4388                                               IRBuilder<> &Builder) {
   4389   BasicBlock *SelectBB = SI->getParent();
   4390   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
   4391     PHI->removeIncomingValue(SelectBB);
   4392   PHI->addIncoming(SelectValue, SelectBB);
   4393 
   4394   Builder.CreateBr(PHI->getParent());
   4395 
   4396   // Remove the switch.
   4397   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   4398     BasicBlock *Succ = SI->getSuccessor(i);
   4399 
   4400     if (Succ == PHI->getParent())
   4401       continue;
   4402     Succ->removePredecessor(SelectBB);
   4403   }
   4404   SI->eraseFromParent();
   4405 }
   4406 
   4407 /// If the switch is only used to initialize one or more
   4408 /// phi nodes in a common successor block with only two different
   4409 /// constant values, replace the switch with select.
   4410 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
   4411                            AssumptionCache *AC, const DataLayout &DL) {
   4412   Value *const Cond = SI->getCondition();
   4413   PHINode *PHI = nullptr;
   4414   BasicBlock *CommonDest = nullptr;
   4415   Constant *DefaultResult;
   4416   SwitchCaseResultVectorTy UniqueResults;
   4417   // Collect all the cases that will deliver the same value from the switch.
   4418   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
   4419                              DL))
   4420     return false;
   4421   // Selects choose between maximum two values.
   4422   if (UniqueResults.size() != 2)
   4423     return false;
   4424   assert(PHI != nullptr && "PHI for value select not found");
   4425 
   4426   Builder.SetInsertPoint(SI);
   4427   Value *SelectValue =
   4428       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
   4429   if (SelectValue) {
   4430     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
   4431     return true;
   4432   }
   4433   // The switch couldn't be converted into a select.
   4434   return false;
   4435 }
   4436 
   4437 namespace {
   4438 /// This class represents a lookup table that can be used to replace a switch.
   4439 class SwitchLookupTable {
   4440 public:
   4441   /// Create a lookup table to use as a switch replacement with the contents
   4442   /// of Values, using DefaultValue to fill any holes in the table.
   4443   SwitchLookupTable(
   4444       Module &M, uint64_t TableSize, ConstantInt *Offset,
   4445       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   4446       Constant *DefaultValue, const DataLayout &DL);
   4447 
   4448   /// Build instructions with Builder to retrieve the value at
   4449   /// the position given by Index in the lookup table.
   4450   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
   4451 
   4452   /// Return true if a table with TableSize elements of
   4453   /// type ElementType would fit in a target-legal register.
   4454   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
   4455                                  Type *ElementType);
   4456 
   4457 private:
   4458   // Depending on the contents of the table, it can be represented in
   4459   // different ways.
   4460   enum {
   4461     // For tables where each element contains the same value, we just have to
   4462     // store that single value and return it for each lookup.
   4463     SingleValueKind,
   4464 
   4465     // For tables where there is a linear relationship between table index
   4466     // and values. We calculate the result with a simple multiplication
   4467     // and addition instead of a table lookup.
   4468     LinearMapKind,
   4469 
   4470     // For small tables with integer elements, we can pack them into a bitmap
   4471     // that fits into a target-legal register. Values are retrieved by
   4472     // shift and mask operations.
   4473     BitMapKind,
   4474 
   4475     // The table is stored as an array of values. Values are retrieved by load
   4476     // instructions from the table.
   4477     ArrayKind
   4478   } Kind;
   4479 
   4480   // For SingleValueKind, this is the single value.
   4481   Constant *SingleValue;
   4482 
   4483   // For BitMapKind, this is the bitmap.
   4484   ConstantInt *BitMap;
   4485   IntegerType *BitMapElementTy;
   4486 
   4487   // For LinearMapKind, these are the constants used to derive the value.
   4488   ConstantInt *LinearOffset;
   4489   ConstantInt *LinearMultiplier;
   4490 
   4491   // For ArrayKind, this is the array.
   4492   GlobalVariable *Array;
   4493 };
   4494 }
   4495 
   4496 SwitchLookupTable::SwitchLookupTable(
   4497     Module &M, uint64_t TableSize, ConstantInt *Offset,
   4498     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
   4499     Constant *DefaultValue, const DataLayout &DL)
   4500     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
   4501       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
   4502   assert(Values.size() && "Can't build lookup table without values!");
   4503   assert(TableSize >= Values.size() && "Can't fit values in table!");
   4504 
   4505   // If all values in the table are equal, this is that value.
   4506   SingleValue = Values.begin()->second;
   4507 
   4508   Type *ValueType = Values.begin()->second->getType();
   4509 
   4510   // Build up the table contents.
   4511   SmallVector<Constant *, 64> TableContents(TableSize);
   4512   for (size_t I = 0, E = Values.size(); I != E; ++I) {
   4513     ConstantInt *CaseVal = Values[I].first;
   4514     Constant *CaseRes = Values[I].second;
   4515     assert(CaseRes->getType() == ValueType);
   4516 
   4517     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
   4518     TableContents[Idx] = CaseRes;
   4519 
   4520     if (CaseRes != SingleValue)
   4521       SingleValue = nullptr;
   4522   }
   4523 
   4524   // Fill in any holes in the table with the default result.
   4525   if (Values.size() < TableSize) {
   4526     assert(DefaultValue &&
   4527            "Need a default value to fill the lookup table holes.");
   4528     assert(DefaultValue->getType() == ValueType);
   4529     for (uint64_t I = 0; I < TableSize; ++I) {
   4530       if (!TableContents[I])
   4531         TableContents[I] = DefaultValue;
   4532     }
   4533 
   4534     if (DefaultValue != SingleValue)
   4535       SingleValue = nullptr;
   4536   }
   4537 
   4538   // If each element in the table contains the same value, we only need to store
   4539   // that single value.
   4540   if (SingleValue) {
   4541     Kind = SingleValueKind;
   4542     return;
   4543   }
   4544 
   4545   // Check if we can derive the value with a linear transformation from the
   4546   // table index.
   4547   if (isa<IntegerType>(ValueType)) {
   4548     bool LinearMappingPossible = true;
   4549     APInt PrevVal;
   4550     APInt DistToPrev;
   4551     assert(TableSize >= 2 && "Should be a SingleValue table.");
   4552     // Check if there is the same distance between two consecutive values.
   4553     for (uint64_t I = 0; I < TableSize; ++I) {
   4554       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
   4555       if (!ConstVal) {
   4556         // This is an undef. We could deal with it, but undefs in lookup tables
   4557         // are very seldom. It's probably not worth the additional complexity.
   4558         LinearMappingPossible = false;
   4559         break;
   4560       }
   4561       APInt Val = ConstVal->getValue();
   4562       if (I != 0) {
   4563         APInt Dist = Val - PrevVal;
   4564         if (I == 1) {
   4565           DistToPrev = Dist;
   4566         } else if (Dist != DistToPrev) {
   4567           LinearMappingPossible = false;
   4568           break;
   4569         }
   4570       }
   4571       PrevVal = Val;
   4572     }
   4573     if (LinearMappingPossible) {
   4574       LinearOffset = cast<ConstantInt>(TableContents[0]);
   4575       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
   4576       Kind = LinearMapKind;
   4577       ++NumLinearMaps;
   4578       return;
   4579     }
   4580   }
   4581 
   4582   // If the type is integer and the table fits in a register, build a bitmap.
   4583   if (WouldFitInRegister(DL, TableSize, ValueType)) {
   4584     IntegerType *IT = cast<IntegerType>(ValueType);
   4585     APInt TableInt(TableSize * IT->getBitWidth(), 0);
   4586     for (uint64_t I = TableSize; I > 0; --I) {
   4587       TableInt <<= IT->getBitWidth();
   4588       // Insert values into the bitmap. Undef values are set to zero.
   4589       if (!isa<UndefValue>(TableContents[I - 1])) {
   4590         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
   4591         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
   4592       }
   4593     }
   4594     BitMap = ConstantInt::get(M.getContext(), TableInt);
   4595     BitMapElementTy = IT;
   4596     Kind = BitMapKind;
   4597     ++NumBitMaps;
   4598     return;
   4599   }
   4600 
   4601   // Store the table in an array.
   4602   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
   4603   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
   4604 
   4605   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
   4606                              GlobalVariable::PrivateLinkage, Initializer,
   4607                              "switch.table");
   4608   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
   4609   Kind = ArrayKind;
   4610 }
   4611 
   4612 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
   4613   switch (Kind) {
   4614   case SingleValueKind:
   4615     return SingleValue;
   4616   case LinearMapKind: {
   4617     // Derive the result value from the input value.
   4618     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
   4619                                           false, "switch.idx.cast");
   4620     if (!LinearMultiplier->isOne())
   4621       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
   4622     if (!LinearOffset->isZero())
   4623       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
   4624     return Result;
   4625   }
   4626   case BitMapKind: {
   4627     // Type of the bitmap (e.g. i59).
   4628     IntegerType *MapTy = BitMap->getType();
   4629 
   4630     // Cast Index to the same type as the bitmap.
   4631     // Note: The Index is <= the number of elements in the table, so
   4632     // truncating it to the width of the bitmask is safe.
   4633     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
   4634 
   4635     // Multiply the shift amount by the element width.
   4636     ShiftAmt = Builder.CreateMul(
   4637         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
   4638         "switch.shiftamt");
   4639 
   4640     // Shift down.
   4641     Value *DownShifted =
   4642         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
   4643     // Mask off.
   4644     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
   4645   }
   4646   case ArrayKind: {
   4647     // Make sure the table index will not overflow when treated as signed.
   4648     IntegerType *IT = cast<IntegerType>(Index->getType());
   4649     uint64_t TableSize =
   4650         Array->getInitializer()->getType()->getArrayNumElements();
   4651     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
   4652       Index = Builder.CreateZExt(
   4653           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
   4654           "switch.tableidx.zext");
   4655 
   4656     Value *GEPIndices[] = {Builder.getInt32(0), Index};
   4657     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
   4658                                            GEPIndices, "switch.gep");
   4659     return Builder.CreateLoad(GEP, "switch.load");
   4660   }
   4661   }
   4662   llvm_unreachable("Unknown lookup table kind!");
   4663 }
   4664 
   4665 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
   4666                                            uint64_t TableSize,
   4667                                            Type *ElementType) {
   4668   auto *IT = dyn_cast<IntegerType>(ElementType);
   4669   if (!IT)
   4670     return false;
   4671   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
   4672   // are <= 15, we could try to narrow the type.
   4673 
   4674   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
   4675   if (TableSize >= UINT_MAX / IT->getBitWidth())
   4676     return false;
   4677   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
   4678 }
   4679 
   4680 /// Determine whether a lookup table should be built for this switch, based on
   4681 /// the number of cases, size of the table, and the types of the results.
   4682 static bool
   4683 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
   4684                        const TargetTransformInfo &TTI, const DataLayout &DL,
   4685                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
   4686   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
   4687     return false; // TableSize overflowed, or mul below might overflow.
   4688 
   4689   bool AllTablesFitInRegister = true;
   4690   bool HasIllegalType = false;
   4691   for (const auto &I : ResultTypes) {
   4692     Type *Ty = I.second;
   4693 
   4694     // Saturate this flag to true.
   4695     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
   4696 
   4697     // Saturate this flag to false.
   4698     AllTablesFitInRegister =
   4699         AllTablesFitInRegister &&
   4700         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
   4701 
   4702     // If both flags saturate, we're done. NOTE: This *only* works with
   4703     // saturating flags, and all flags have to saturate first due to the
   4704     // non-deterministic behavior of iterating over a dense map.
   4705     if (HasIllegalType && !AllTablesFitInRegister)
   4706       break;
   4707   }
   4708 
   4709   // If each table would fit in a register, we should build it anyway.
   4710   if (AllTablesFitInRegister)
   4711     return true;
   4712 
   4713   // Don't build a table that doesn't fit in-register if it has illegal types.
   4714   if (HasIllegalType)
   4715     return false;
   4716 
   4717   // The table density should be at least 40%. This is the same criterion as for
   4718   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
   4719   // FIXME: Find the best cut-off.
   4720   return SI->getNumCases() * 10 >= TableSize * 4;
   4721 }
   4722 
   4723 /// Try to reuse the switch table index compare. Following pattern:
   4724 /// \code
   4725 ///     if (idx < tablesize)
   4726 ///        r = table[idx]; // table does not contain default_value
   4727 ///     else
   4728 ///        r = default_value;
   4729 ///     if (r != default_value)
   4730 ///        ...
   4731 /// \endcode
   4732 /// Is optimized to:
   4733 /// \code
   4734 ///     cond = idx < tablesize;
   4735 ///     if (cond)
   4736 ///        r = table[idx];
   4737 ///     else
   4738 ///        r = default_value;
   4739 ///     if (cond)
   4740 ///        ...
   4741 /// \endcode
   4742 /// Jump threading will then eliminate the second if(cond).
   4743 static void reuseTableCompare(
   4744     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
   4745     Constant *DefaultValue,
   4746     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
   4747 
   4748   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
   4749   if (!CmpInst)
   4750     return;
   4751 
   4752   // We require that the compare is in the same block as the phi so that jump
   4753   // threading can do its work afterwards.
   4754   if (CmpInst->getParent() != PhiBlock)
   4755     return;
   4756 
   4757   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
   4758   if (!CmpOp1)
   4759     return;
   4760 
   4761   Value *RangeCmp = RangeCheckBranch->getCondition();
   4762   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
   4763   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
   4764 
   4765   // Check if the compare with the default value is constant true or false.
   4766   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   4767                                                  DefaultValue, CmpOp1, true);
   4768   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
   4769     return;
   4770 
   4771   // Check if the compare with the case values is distinct from the default
   4772   // compare result.
   4773   for (auto ValuePair : Values) {
   4774     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
   4775                                                 ValuePair.second, CmpOp1, true);
   4776     if (!CaseConst || CaseConst == DefaultConst)
   4777       return;
   4778     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
   4779            "Expect true or false as compare result.");
   4780   }
   4781 
   4782   // Check if the branch instruction dominates the phi node. It's a simple
   4783   // dominance check, but sufficient for our needs.
   4784   // Although this check is invariant in the calling loops, it's better to do it
   4785   // at this late stage. Practically we do it at most once for a switch.
   4786   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
   4787   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
   4788     BasicBlock *Pred = *PI;
   4789     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
   4790       return;
   4791   }
   4792 
   4793   if (DefaultConst == FalseConst) {
   4794     // The compare yields the same result. We can replace it.
   4795     CmpInst->replaceAllUsesWith(RangeCmp);
   4796     ++NumTableCmpReuses;
   4797   } else {
   4798     // The compare yields the same result, just inverted. We can replace it.
   4799     Value *InvertedTableCmp = BinaryOperator::CreateXor(
   4800         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
   4801         RangeCheckBranch);
   4802     CmpInst->replaceAllUsesWith(InvertedTableCmp);
   4803     ++NumTableCmpReuses;
   4804   }
   4805 }
   4806 
   4807 /// If the switch is only used to initialize one or more phi nodes in a common
   4808 /// successor block with different constant values, replace the switch with
   4809 /// lookup tables.
   4810 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
   4811                                 const DataLayout &DL,
   4812                                 const TargetTransformInfo &TTI) {
   4813   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   4814 
   4815   // Only build lookup table when we have a target that supports it.
   4816   if (!TTI.shouldBuildLookupTables())
   4817     return false;
   4818 
   4819   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
   4820   // split off a dense part and build a lookup table for that.
   4821 
   4822   // FIXME: This creates arrays of GEPs to constant strings, which means each
   4823   // GEP needs a runtime relocation in PIC code. We should just build one big
   4824   // string and lookup indices into that.
   4825 
   4826   // Ignore switches with less than three cases. Lookup tables will not make
   4827   // them
   4828   // faster, so we don't analyze them.
   4829   if (SI->getNumCases() < 3)
   4830     return false;
   4831 
   4832   // Figure out the corresponding result for each case value and phi node in the
   4833   // common destination, as well as the min and max case values.
   4834   assert(SI->case_begin() != SI->case_end());
   4835   SwitchInst::CaseIt CI = SI->case_begin();
   4836   ConstantInt *MinCaseVal = CI.getCaseValue();
   4837   ConstantInt *MaxCaseVal = CI.getCaseValue();
   4838 
   4839   BasicBlock *CommonDest = nullptr;
   4840   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
   4841   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
   4842   SmallDenseMap<PHINode *, Constant *> DefaultResults;
   4843   SmallDenseMap<PHINode *, Type *> ResultTypes;
   4844   SmallVector<PHINode *, 4> PHIs;
   4845 
   4846   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
   4847     ConstantInt *CaseVal = CI.getCaseValue();
   4848     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
   4849       MinCaseVal = CaseVal;
   4850     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
   4851       MaxCaseVal = CaseVal;
   4852 
   4853     // Resulting value at phi nodes for this case value.
   4854     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
   4855     ResultsTy Results;
   4856     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
   4857                         Results, DL))
   4858       return false;
   4859 
   4860     // Append the result from this case to the list for each phi.
   4861     for (const auto &I : Results) {
   4862       PHINode *PHI = I.first;
   4863       Constant *Value = I.second;
   4864       if (!ResultLists.count(PHI))
   4865         PHIs.push_back(PHI);
   4866       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
   4867     }
   4868   }
   4869 
   4870   // Keep track of the result types.
   4871   for (PHINode *PHI : PHIs) {
   4872     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
   4873   }
   4874 
   4875   uint64_t NumResults = ResultLists[PHIs[0]].size();
   4876   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
   4877   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
   4878   bool TableHasHoles = (NumResults < TableSize);
   4879 
   4880   // If the table has holes, we need a constant result for the default case
   4881   // or a bitmask that fits in a register.
   4882   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
   4883   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
   4884                                           &CommonDest, DefaultResultsList, DL);
   4885 
   4886   bool NeedMask = (TableHasHoles && !HasDefaultResults);
   4887   if (NeedMask) {
   4888     // As an extra penalty for the validity test we require more cases.
   4889     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
   4890       return false;
   4891     if (!DL.fitsInLegalInteger(TableSize))
   4892       return false;
   4893   }
   4894 
   4895   for (const auto &I : DefaultResultsList) {
   4896     PHINode *PHI = I.first;
   4897     Constant *Result = I.second;
   4898     DefaultResults[PHI] = Result;
   4899   }
   4900 
   4901   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
   4902     return false;
   4903 
   4904   // Create the BB that does the lookups.
   4905   Module &Mod = *CommonDest->getParent()->getParent();
   4906   BasicBlock *LookupBB = BasicBlock::Create(
   4907       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
   4908 
   4909   // Compute the table index value.
   4910   Builder.SetInsertPoint(SI);
   4911   Value *TableIndex =
   4912       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
   4913 
   4914   // Compute the maximum table size representable by the integer type we are
   4915   // switching upon.
   4916   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
   4917   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
   4918   assert(MaxTableSize >= TableSize &&
   4919          "It is impossible for a switch to have more entries than the max "
   4920          "representable value of its input integer type's size.");
   4921 
   4922   // If the default destination is unreachable, or if the lookup table covers
   4923   // all values of the conditional variable, branch directly to the lookup table
   4924   // BB. Otherwise, check that the condition is within the case range.
   4925   const bool DefaultIsReachable =
   4926       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
   4927   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
   4928   BranchInst *RangeCheckBranch = nullptr;
   4929 
   4930   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
   4931     Builder.CreateBr(LookupBB);
   4932     // Note: We call removeProdecessor later since we need to be able to get the
   4933     // PHI value for the default case in case we're using a bit mask.
   4934   } else {
   4935     Value *Cmp = Builder.CreateICmpULT(
   4936         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
   4937     RangeCheckBranch =
   4938         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
   4939   }
   4940 
   4941   // Populate the BB that does the lookups.
   4942   Builder.SetInsertPoint(LookupBB);
   4943 
   4944   if (NeedMask) {
   4945     // Before doing the lookup we do the hole check.
   4946     // The LookupBB is therefore re-purposed to do the hole check
   4947     // and we create a new LookupBB.
   4948     BasicBlock *MaskBB = LookupBB;
   4949     MaskBB->setName("switch.hole_check");
   4950     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
   4951                                   CommonDest->getParent(), CommonDest);
   4952 
   4953     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
   4954     // unnecessary illegal types.
   4955     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
   4956     APInt MaskInt(TableSizePowOf2, 0);
   4957     APInt One(TableSizePowOf2, 1);
   4958     // Build bitmask; fill in a 1 bit for every case.
   4959     const ResultListTy &ResultList = ResultLists[PHIs[0]];
   4960     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
   4961       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
   4962                          .getLimitedValue();
   4963       MaskInt |= One << Idx;
   4964     }
   4965     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
   4966 
   4967     // Get the TableIndex'th bit of the bitmask.
   4968     // If this bit is 0 (meaning hole) jump to the default destination,
   4969     // else continue with table lookup.
   4970     IntegerType *MapTy = TableMask->getType();
   4971     Value *MaskIndex =
   4972         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
   4973     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
   4974     Value *LoBit = Builder.CreateTrunc(
   4975         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
   4976     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
   4977 
   4978     Builder.SetInsertPoint(LookupBB);
   4979     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
   4980   }
   4981 
   4982   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
   4983     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
   4984     // do not delete PHINodes here.
   4985     SI->getDefaultDest()->removePredecessor(SI->getParent(),
   4986                                             /*DontDeleteUselessPHIs=*/true);
   4987   }
   4988 
   4989   bool ReturnedEarly = false;
   4990   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
   4991     PHINode *PHI = PHIs[I];
   4992     const ResultListTy &ResultList = ResultLists[PHI];
   4993 
   4994     // If using a bitmask, use any value to fill the lookup table holes.
   4995     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
   4996     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
   4997 
   4998     Value *Result = Table.BuildLookup(TableIndex, Builder);
   4999 
   5000     // If the result is used to return immediately from the function, we want to
   5001     // do that right here.
   5002     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
   5003         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
   5004       Builder.CreateRet(Result);
   5005       ReturnedEarly = true;
   5006       break;
   5007     }
   5008 
   5009     // Do a small peephole optimization: re-use the switch table compare if
   5010     // possible.
   5011     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
   5012       BasicBlock *PhiBlock = PHI->getParent();
   5013       // Search for compare instructions which use the phi.
   5014       for (auto *User : PHI->users()) {
   5015         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
   5016       }
   5017     }
   5018 
   5019     PHI->addIncoming(Result, LookupBB);
   5020   }
   5021 
   5022   if (!ReturnedEarly)
   5023     Builder.CreateBr(CommonDest);
   5024 
   5025   // Remove the switch.
   5026   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
   5027     BasicBlock *Succ = SI->getSuccessor(i);
   5028 
   5029     if (Succ == SI->getDefaultDest())
   5030       continue;
   5031     Succ->removePredecessor(SI->getParent());
   5032   }
   5033   SI->eraseFromParent();
   5034 
   5035   ++NumLookupTables;
   5036   if (NeedMask)
   5037     ++NumLookupTablesHoles;
   5038   return true;
   5039 }
   5040 
   5041 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   5042   BasicBlock *BB = SI->getParent();
   5043 
   5044   if (isValueEqualityComparison(SI)) {
   5045     // If we only have one predecessor, and if it is a branch on this value,
   5046     // see if that predecessor totally determines the outcome of this switch.
   5047     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   5048       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   5049         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5050 
   5051     Value *Cond = SI->getCondition();
   5052     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   5053       if (SimplifySwitchOnSelect(SI, Select))
   5054         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5055 
   5056     // If the block only contains the switch, see if we can fold the block
   5057     // away into any preds.
   5058     BasicBlock::iterator BBI = BB->begin();
   5059     // Ignore dbg intrinsics.
   5060     while (isa<DbgInfoIntrinsic>(BBI))
   5061       ++BBI;
   5062     if (SI == &*BBI)
   5063       if (FoldValueComparisonIntoPredecessors(SI, Builder))
   5064         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5065   }
   5066 
   5067   // Try to transform the switch into an icmp and a branch.
   5068   if (TurnSwitchRangeIntoICmp(SI, Builder))
   5069     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5070 
   5071   // Remove unreachable cases.
   5072   if (EliminateDeadSwitchCases(SI, AC, DL))
   5073     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5074 
   5075   if (SwitchToSelect(SI, Builder, AC, DL))
   5076     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5077 
   5078   if (ForwardSwitchConditionToPHI(SI))
   5079     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5080 
   5081   if (SwitchToLookupTable(SI, Builder, DL, TTI))
   5082     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5083 
   5084   return false;
   5085 }
   5086 
   5087 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   5088   BasicBlock *BB = IBI->getParent();
   5089   bool Changed = false;
   5090 
   5091   // Eliminate redundant destinations.
   5092   SmallPtrSet<Value *, 8> Succs;
   5093   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   5094     BasicBlock *Dest = IBI->getDestination(i);
   5095     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
   5096       Dest->removePredecessor(BB);
   5097       IBI->removeDestination(i);
   5098       --i;
   5099       --e;
   5100       Changed = true;
   5101     }
   5102   }
   5103 
   5104   if (IBI->getNumDestinations() == 0) {
   5105     // If the indirectbr has no successors, change it to unreachable.
   5106     new UnreachableInst(IBI->getContext(), IBI);
   5107     EraseTerminatorInstAndDCECond(IBI);
   5108     return true;
   5109   }
   5110 
   5111   if (IBI->getNumDestinations() == 1) {
   5112     // If the indirectbr has one successor, change it to a direct branch.
   5113     BranchInst::Create(IBI->getDestination(0), IBI);
   5114     EraseTerminatorInstAndDCECond(IBI);
   5115     return true;
   5116   }
   5117 
   5118   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   5119     if (SimplifyIndirectBrOnSelect(IBI, SI))
   5120       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5121   }
   5122   return Changed;
   5123 }
   5124 
   5125 /// Given an block with only a single landing pad and a unconditional branch
   5126 /// try to find another basic block which this one can be merged with.  This
   5127 /// handles cases where we have multiple invokes with unique landing pads, but
   5128 /// a shared handler.
   5129 ///
   5130 /// We specifically choose to not worry about merging non-empty blocks
   5131 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
   5132 /// practice, the optimizer produces empty landing pad blocks quite frequently
   5133 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
   5134 /// sinking in this file)
   5135 ///
   5136 /// This is primarily a code size optimization.  We need to avoid performing
   5137 /// any transform which might inhibit optimization (such as our ability to
   5138 /// specialize a particular handler via tail commoning).  We do this by not
   5139 /// merging any blocks which require us to introduce a phi.  Since the same
   5140 /// values are flowing through both blocks, we don't loose any ability to
   5141 /// specialize.  If anything, we make such specialization more likely.
   5142 ///
   5143 /// TODO - This transformation could remove entries from a phi in the target
   5144 /// block when the inputs in the phi are the same for the two blocks being
   5145 /// merged.  In some cases, this could result in removal of the PHI entirely.
   5146 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
   5147                                  BasicBlock *BB) {
   5148   auto Succ = BB->getUniqueSuccessor();
   5149   assert(Succ);
   5150   // If there's a phi in the successor block, we'd likely have to introduce
   5151   // a phi into the merged landing pad block.
   5152   if (isa<PHINode>(*Succ->begin()))
   5153     return false;
   5154 
   5155   for (BasicBlock *OtherPred : predecessors(Succ)) {
   5156     if (BB == OtherPred)
   5157       continue;
   5158     BasicBlock::iterator I = OtherPred->begin();
   5159     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
   5160     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
   5161       continue;
   5162     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
   5163     }
   5164     BranchInst *BI2 = dyn_cast<BranchInst>(I);
   5165     if (!BI2 || !BI2->isIdenticalTo(BI))
   5166       continue;
   5167 
   5168     // We've found an identical block.  Update our predecessors to take that
   5169     // path instead and make ourselves dead.
   5170     SmallSet<BasicBlock *, 16> Preds;
   5171     Preds.insert(pred_begin(BB), pred_end(BB));
   5172     for (BasicBlock *Pred : Preds) {
   5173       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
   5174       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
   5175              "unexpected successor");
   5176       II->setUnwindDest(OtherPred);
   5177     }
   5178 
   5179     // The debug info in OtherPred doesn't cover the merged control flow that
   5180     // used to go through BB.  We need to delete it or update it.
   5181     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
   5182       Instruction &Inst = *I;
   5183       I++;
   5184       if (isa<DbgInfoIntrinsic>(Inst))
   5185         Inst.eraseFromParent();
   5186     }
   5187 
   5188     SmallSet<BasicBlock *, 16> Succs;
   5189     Succs.insert(succ_begin(BB), succ_end(BB));
   5190     for (BasicBlock *Succ : Succs) {
   5191       Succ->removePredecessor(BB);
   5192     }
   5193 
   5194     IRBuilder<> Builder(BI);
   5195     Builder.CreateUnreachable();
   5196     BI->eraseFromParent();
   5197     return true;
   5198   }
   5199   return false;
   5200 }
   5201 
   5202 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
   5203                                           IRBuilder<> &Builder) {
   5204   BasicBlock *BB = BI->getParent();
   5205 
   5206   if (SinkCommon && SinkThenElseCodeToEnd(BI))
   5207     return true;
   5208 
   5209   // If the Terminator is the only non-phi instruction, simplify the block.
   5210   // if LoopHeader is provided, check if the block is a loop header
   5211   // (This is for early invocations before loop simplify and vectorization
   5212   // to keep canonical loop forms for nested loops.
   5213   // These blocks can be eliminated when the pass is invoked later
   5214   // in the back-end.)
   5215   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
   5216   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   5217       (!LoopHeaders || !LoopHeaders->count(BB)) &&
   5218       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   5219     return true;
   5220 
   5221   // If the only instruction in the block is a seteq/setne comparison
   5222   // against a constant, try to simplify the block.
   5223   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   5224     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   5225       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   5226         ;
   5227       if (I->isTerminator() &&
   5228           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
   5229                                                 BonusInstThreshold, AC))
   5230         return true;
   5231     }
   5232 
   5233   // See if we can merge an empty landing pad block with another which is
   5234   // equivalent.
   5235   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
   5236     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
   5237     }
   5238     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
   5239       return true;
   5240   }
   5241 
   5242   // If this basic block is ONLY a compare and a branch, and if a predecessor
   5243   // branches to us and our successor, fold the comparison into the
   5244   // predecessor and use logical operations to update the incoming value
   5245   // for PHI nodes in common successor.
   5246   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
   5247     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5248   return false;
   5249 }
   5250 
   5251 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
   5252   BasicBlock *PredPred = nullptr;
   5253   for (auto *P : predecessors(BB)) {
   5254     BasicBlock *PPred = P->getSinglePredecessor();
   5255     if (!PPred || (PredPred && PredPred != PPred))
   5256       return nullptr;
   5257     PredPred = PPred;
   5258   }
   5259   return PredPred;
   5260 }
   5261 
   5262 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   5263   BasicBlock *BB = BI->getParent();
   5264 
   5265   // Conditional branch
   5266   if (isValueEqualityComparison(BI)) {
   5267     // If we only have one predecessor, and if it is a branch on this value,
   5268     // see if that predecessor totally determines the outcome of this
   5269     // switch.
   5270     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   5271       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   5272         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5273 
   5274     // This block must be empty, except for the setcond inst, if it exists.
   5275     // Ignore dbg intrinsics.
   5276     BasicBlock::iterator I = BB->begin();
   5277     // Ignore dbg intrinsics.
   5278     while (isa<DbgInfoIntrinsic>(I))
   5279       ++I;
   5280     if (&*I == BI) {
   5281       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   5282         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5283     } else if (&*I == cast<Instruction>(BI->getCondition())) {
   5284       ++I;
   5285       // Ignore dbg intrinsics.
   5286       while (isa<DbgInfoIntrinsic>(I))
   5287         ++I;
   5288       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   5289         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5290     }
   5291   }
   5292 
   5293   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   5294   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
   5295     return true;
   5296 
   5297   // If this basic block has a single dominating predecessor block and the
   5298   // dominating block's condition implies BI's condition, we know the direction
   5299   // of the BI branch.
   5300   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
   5301     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
   5302     if (PBI && PBI->isConditional() &&
   5303         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
   5304         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
   5305       bool CondIsFalse = PBI->getSuccessor(1) == BB;
   5306       Optional<bool> Implication = isImpliedCondition(
   5307           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
   5308       if (Implication) {
   5309         // Turn this into a branch on constant.
   5310         auto *OldCond = BI->getCondition();
   5311         ConstantInt *CI = *Implication
   5312                               ? ConstantInt::getTrue(BB->getContext())
   5313                               : ConstantInt::getFalse(BB->getContext());
   5314         BI->setCondition(CI);
   5315         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
   5316         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5317       }
   5318     }
   5319   }
   5320 
   5321   // If this basic block is ONLY a compare and a branch, and if a predecessor
   5322   // branches to us and one of our successors, fold the comparison into the
   5323   // predecessor and use logical operations to pick the right destination.
   5324   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
   5325     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5326 
   5327   // We have a conditional branch to two blocks that are only reachable
   5328   // from BI.  We know that the condbr dominates the two blocks, so see if
   5329   // there is any identical code in the "then" and "else" blocks.  If so, we
   5330   // can hoist it up to the branching block.
   5331   if (BI->getSuccessor(0)->getSinglePredecessor()) {
   5332     if (BI->getSuccessor(1)->getSinglePredecessor()) {
   5333       if (HoistThenElseCodeToIf(BI, TTI))
   5334         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5335     } else {
   5336       // If Successor #1 has multiple preds, we may be able to conditionally
   5337       // execute Successor #0 if it branches to Successor #1.
   5338       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   5339       if (Succ0TI->getNumSuccessors() == 1 &&
   5340           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   5341         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
   5342           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5343     }
   5344   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
   5345     // If Successor #0 has multiple preds, we may be able to conditionally
   5346     // execute Successor #1 if it branches to Successor #0.
   5347     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   5348     if (Succ1TI->getNumSuccessors() == 1 &&
   5349         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   5350       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
   5351         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5352   }
   5353 
   5354   // If this is a branch on a phi node in the current block, thread control
   5355   // through this block if any PHI node entries are constants.
   5356   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   5357     if (PN->getParent() == BI->getParent())
   5358       if (FoldCondBranchOnPHI(BI, DL))
   5359         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5360 
   5361   // Scan predecessor blocks for conditional branches.
   5362   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   5363     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   5364       if (PBI != BI && PBI->isConditional())
   5365         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
   5366           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5367 
   5368   // Look for diamond patterns.
   5369   if (MergeCondStores)
   5370     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
   5371       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
   5372         if (PBI != BI && PBI->isConditional())
   5373           if (mergeConditionalStores(PBI, BI))
   5374             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
   5375 
   5376   return false;
   5377 }
   5378 
   5379 /// Check if passing a value to an instruction will cause undefined behavior.
   5380 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   5381   Constant *C = dyn_cast<Constant>(V);
   5382   if (!C)
   5383     return false;
   5384 
   5385   if (I->use_empty())
   5386     return false;
   5387 
   5388   if (C->isNullValue() || isa<UndefValue>(C)) {
   5389     // Only look at the first use, avoid hurting compile time with long uselists
   5390     User *Use = *I->user_begin();
   5391 
   5392     // Now make sure that there are no instructions in between that can alter
   5393     // control flow (eg. calls)
   5394     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   5395       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   5396         return false;
   5397 
   5398     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   5399     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   5400       if (GEP->getPointerOperand() == I)
   5401         return passingValueIsAlwaysUndefined(V, GEP);
   5402 
   5403     // Look through bitcasts.
   5404     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   5405       return passingValueIsAlwaysUndefined(V, BC);
   5406 
   5407     // Load from null is undefined.
   5408     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   5409       if (!LI->isVolatile())
   5410         return LI->getPointerAddressSpace() == 0;
   5411 
   5412     // Store to null is undefined.
   5413     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   5414       if (!SI->isVolatile())
   5415         return SI->getPointerAddressSpace() == 0 &&
   5416                SI->getPointerOperand() == I;
   5417 
   5418     // A call to null is undefined.
   5419     if (auto CS = CallSite(Use))
   5420       return CS.getCalledValue() == I;
   5421   }
   5422   return false;
   5423 }
   5424 
   5425 /// If BB has an incoming value that will always trigger undefined behavior
   5426 /// (eg. null pointer dereference), remove the branch leading here.
   5427 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   5428   for (BasicBlock::iterator i = BB->begin();
   5429        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   5430     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   5431       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   5432         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   5433         IRBuilder<> Builder(T);
   5434         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   5435           BB->removePredecessor(PHI->getIncomingBlock(i));
   5436           // Turn uncoditional branches into unreachables and remove the dead
   5437           // destination from conditional branches.
   5438           if (BI->isUnconditional())
   5439             Builder.CreateUnreachable();
   5440           else
   5441             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
   5442                                                        : BI->getSuccessor(0));
   5443           BI->eraseFromParent();
   5444           return true;
   5445         }
   5446         // TODO: SwitchInst.
   5447       }
   5448 
   5449   return false;
   5450 }
   5451 
   5452 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   5453   bool Changed = false;
   5454 
   5455   assert(BB && BB->getParent() && "Block not embedded in function!");
   5456   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   5457 
   5458   // Remove basic blocks that have no predecessors (except the entry block)...
   5459   // or that just have themself as a predecessor.  These are unreachable.
   5460   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
   5461       BB->getSinglePredecessor() == BB) {
   5462     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   5463     DeleteDeadBlock(BB);
   5464     return true;
   5465   }
   5466 
   5467   // Check to see if we can constant propagate this terminator instruction
   5468   // away...
   5469   Changed |= ConstantFoldTerminator(BB, true);
   5470 
   5471   // Check for and eliminate duplicate PHI nodes in this block.
   5472   Changed |= EliminateDuplicatePHINodes(BB);
   5473 
   5474   // Check for and remove branches that will always cause undefined behavior.
   5475   Changed |= removeUndefIntroducingPredecessor(BB);
   5476 
   5477   // Merge basic blocks into their predecessor if there is only one distinct
   5478   // pred, and if there is only one distinct successor of the predecessor, and
   5479   // if there are no PHI nodes.
   5480   //
   5481   if (MergeBlockIntoPredecessor(BB))
   5482     return true;
   5483 
   5484   IRBuilder<> Builder(BB);
   5485 
   5486   // If there is a trivial two-entry PHI node in this basic block, and we can
   5487   // eliminate it, do so now.
   5488   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   5489     if (PN->getNumIncomingValues() == 2)
   5490       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
   5491 
   5492   Builder.SetInsertPoint(BB->getTerminator());
   5493   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   5494     if (BI->isUnconditional()) {
   5495       if (SimplifyUncondBranch(BI, Builder))
   5496         return true;
   5497     } else {
   5498       if (SimplifyCondBranch(BI, Builder))
   5499         return true;
   5500     }
   5501   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   5502     if (SimplifyReturn(RI, Builder))
   5503       return true;
   5504   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   5505     if (SimplifyResume(RI, Builder))
   5506       return true;
   5507   } else if (CleanupReturnInst *RI =
   5508                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
   5509     if (SimplifyCleanupReturn(RI))
   5510       return true;
   5511   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   5512     if (SimplifySwitch(SI, Builder))
   5513       return true;
   5514   } else if (UnreachableInst *UI =
   5515                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
   5516     if (SimplifyUnreachable(UI))
   5517       return true;
   5518   } else if (IndirectBrInst *IBI =
   5519                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   5520     if (SimplifyIndirectBr(IBI))
   5521       return true;
   5522   }
   5523 
   5524   return Changed;
   5525 }
   5526 
   5527 /// This function is used to do simplification of a CFG.
   5528 /// For example, it adjusts branches to branches to eliminate the extra hop,
   5529 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   5530 /// of the CFG.  It returns true if a modification was made.
   5531 ///
   5532 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
   5533                        unsigned BonusInstThreshold, AssumptionCache *AC,
   5534                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
   5535   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
   5536                         BonusInstThreshold, AC, LoopHeaders)
   5537       .run(BB);
   5538 }
   5539