Home | History | Annotate | Download | only in TableGen
      1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits code for use by the "fast" instruction
     11 // selection algorithm. See the comments at the top of
     12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
     13 //
     14 // This file scans through the target's tablegen instruction-info files
     15 // and extracts instructions with obvious-looking patterns, and it emits
     16 // code to look up these instructions by type and operator.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "CodeGenDAGPatterns.h"
     21 #include "llvm/ADT/StringSwitch.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include "llvm/TableGen/Error.h"
     25 #include "llvm/TableGen/Record.h"
     26 #include "llvm/TableGen/TableGenBackend.h"
     27 #include <utility>
     28 using namespace llvm;
     29 
     30 
     31 /// InstructionMemo - This class holds additional information about an
     32 /// instruction needed to emit code for it.
     33 ///
     34 namespace {
     35 struct InstructionMemo {
     36   std::string Name;
     37   const CodeGenRegisterClass *RC;
     38   std::string SubRegNo;
     39   std::vector<std::string>* PhysRegs;
     40   std::string PredicateCheck;
     41 };
     42 } // End anonymous namespace
     43 
     44 /// ImmPredicateSet - This uniques predicates (represented as a string) and
     45 /// gives them unique (small) integer ID's that start at 0.
     46 namespace {
     47 class ImmPredicateSet {
     48   DenseMap<TreePattern *, unsigned> ImmIDs;
     49   std::vector<TreePredicateFn> PredsByName;
     50 public:
     51 
     52   unsigned getIDFor(TreePredicateFn Pred) {
     53     unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
     54     if (Entry == 0) {
     55       PredsByName.push_back(Pred);
     56       Entry = PredsByName.size();
     57     }
     58     return Entry-1;
     59   }
     60 
     61   const TreePredicateFn &getPredicate(unsigned i) {
     62     assert(i < PredsByName.size());
     63     return PredsByName[i];
     64   }
     65 
     66   typedef std::vector<TreePredicateFn>::const_iterator iterator;
     67   iterator begin() const { return PredsByName.begin(); }
     68   iterator end() const { return PredsByName.end(); }
     69 
     70 };
     71 } // End anonymous namespace
     72 
     73 /// OperandsSignature - This class holds a description of a list of operand
     74 /// types. It has utility methods for emitting text based on the operands.
     75 ///
     76 namespace {
     77 struct OperandsSignature {
     78   class OpKind {
     79     enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
     80     char Repr;
     81   public:
     82 
     83     OpKind() : Repr(OK_Invalid) {}
     84 
     85     bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
     86     bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
     87 
     88     static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
     89     static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
     90     static OpKind getImm(unsigned V) {
     91       assert((unsigned)OK_Imm+V < 128 &&
     92              "Too many integer predicates for the 'Repr' char");
     93       OpKind K; K.Repr = OK_Imm+V; return K;
     94     }
     95 
     96     bool isReg() const { return Repr == OK_Reg; }
     97     bool isFP() const  { return Repr == OK_FP; }
     98     bool isImm() const { return Repr >= OK_Imm; }
     99 
    100     unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
    101 
    102     void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
    103                              bool StripImmCodes) const {
    104       if (isReg())
    105         OS << 'r';
    106       else if (isFP())
    107         OS << 'f';
    108       else {
    109         OS << 'i';
    110         if (!StripImmCodes)
    111           if (unsigned Code = getImmCode())
    112             OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
    113       }
    114     }
    115   };
    116 
    117 
    118   SmallVector<OpKind, 3> Operands;
    119 
    120   bool operator<(const OperandsSignature &O) const {
    121     return Operands < O.Operands;
    122   }
    123   bool operator==(const OperandsSignature &O) const {
    124     return Operands == O.Operands;
    125   }
    126 
    127   bool empty() const { return Operands.empty(); }
    128 
    129   bool hasAnyImmediateCodes() const {
    130     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    131       if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
    132         return true;
    133     return false;
    134   }
    135 
    136   /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
    137   /// to zero.
    138   OperandsSignature getWithoutImmCodes() const {
    139     OperandsSignature Result;
    140     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    141       if (!Operands[i].isImm())
    142         Result.Operands.push_back(Operands[i]);
    143       else
    144         Result.Operands.push_back(OpKind::getImm(0));
    145     return Result;
    146   }
    147 
    148   void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
    149     bool EmittedAnything = false;
    150     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    151       if (!Operands[i].isImm()) continue;
    152 
    153       unsigned Code = Operands[i].getImmCode();
    154       if (Code == 0) continue;
    155 
    156       if (EmittedAnything)
    157         OS << " &&\n        ";
    158 
    159       TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
    160 
    161       // Emit the type check.
    162       OS << "VT == "
    163          << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
    164          << " && ";
    165 
    166 
    167       OS << PredFn.getFnName() << "(imm" << i <<')';
    168       EmittedAnything = true;
    169     }
    170   }
    171 
    172   /// initialize - Examine the given pattern and initialize the contents
    173   /// of the Operands array accordingly. Return true if all the operands
    174   /// are supported, false otherwise.
    175   ///
    176   bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
    177                   MVT::SimpleValueType VT,
    178                   ImmPredicateSet &ImmediatePredicates,
    179                   const CodeGenRegisterClass *OrigDstRC) {
    180     if (InstPatNode->isLeaf())
    181       return false;
    182 
    183     if (InstPatNode->getOperator()->getName() == "imm") {
    184       Operands.push_back(OpKind::getImm(0));
    185       return true;
    186     }
    187 
    188     if (InstPatNode->getOperator()->getName() == "fpimm") {
    189       Operands.push_back(OpKind::getFP());
    190       return true;
    191     }
    192 
    193     const CodeGenRegisterClass *DstRC = nullptr;
    194 
    195     for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
    196       TreePatternNode *Op = InstPatNode->getChild(i);
    197 
    198       // Handle imm operands specially.
    199       if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
    200         unsigned PredNo = 0;
    201         if (!Op->getPredicateFns().empty()) {
    202           TreePredicateFn PredFn = Op->getPredicateFns()[0];
    203           // If there is more than one predicate weighing in on this operand
    204           // then we don't handle it.  This doesn't typically happen for
    205           // immediates anyway.
    206           if (Op->getPredicateFns().size() > 1 ||
    207               !PredFn.isImmediatePattern())
    208             return false;
    209           // Ignore any instruction with 'FastIselShouldIgnore', these are
    210           // not needed and just bloat the fast instruction selector.  For
    211           // example, X86 doesn't need to generate code to match ADD16ri8 since
    212           // ADD16ri will do just fine.
    213           Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
    214           if (Rec->getValueAsBit("FastIselShouldIgnore"))
    215             return false;
    216 
    217           PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
    218         }
    219 
    220         // Handle unmatched immediate sizes here.
    221         //if (Op->getType(0) != VT)
    222         //  return false;
    223 
    224         Operands.push_back(OpKind::getImm(PredNo));
    225         continue;
    226       }
    227 
    228 
    229       // For now, filter out any operand with a predicate.
    230       // For now, filter out any operand with multiple values.
    231       if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
    232         return false;
    233 
    234       if (!Op->isLeaf()) {
    235          if (Op->getOperator()->getName() == "fpimm") {
    236           Operands.push_back(OpKind::getFP());
    237           continue;
    238         }
    239         // For now, ignore other non-leaf nodes.
    240         return false;
    241       }
    242 
    243       assert(Op->hasTypeSet(0) && "Type infererence not done?");
    244 
    245       // For now, all the operands must have the same type (if they aren't
    246       // immediates).  Note that this causes us to reject variable sized shifts
    247       // on X86.
    248       if (Op->getType(0) != VT)
    249         return false;
    250 
    251       DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
    252       if (!OpDI)
    253         return false;
    254       Record *OpLeafRec = OpDI->getDef();
    255 
    256       // For now, the only other thing we accept is register operands.
    257       const CodeGenRegisterClass *RC = nullptr;
    258       if (OpLeafRec->isSubClassOf("RegisterOperand"))
    259         OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
    260       if (OpLeafRec->isSubClassOf("RegisterClass"))
    261         RC = &Target.getRegisterClass(OpLeafRec);
    262       else if (OpLeafRec->isSubClassOf("Register"))
    263         RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
    264       else if (OpLeafRec->isSubClassOf("ValueType")) {
    265         RC = OrigDstRC;
    266       } else
    267         return false;
    268 
    269       // For now, this needs to be a register class of some sort.
    270       if (!RC)
    271         return false;
    272 
    273       // For now, all the operands must have the same register class or be
    274       // a strict subclass of the destination.
    275       if (DstRC) {
    276         if (DstRC != RC && !DstRC->hasSubClass(RC))
    277           return false;
    278       } else
    279         DstRC = RC;
    280       Operands.push_back(OpKind::getReg());
    281     }
    282     return true;
    283   }
    284 
    285   void PrintParameters(raw_ostream &OS) const {
    286     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    287       if (Operands[i].isReg()) {
    288         OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
    289       } else if (Operands[i].isImm()) {
    290         OS << "uint64_t imm" << i;
    291       } else if (Operands[i].isFP()) {
    292         OS << "const ConstantFP *f" << i;
    293       } else {
    294         llvm_unreachable("Unknown operand kind!");
    295       }
    296       if (i + 1 != e)
    297         OS << ", ";
    298     }
    299   }
    300 
    301   void PrintArguments(raw_ostream &OS,
    302                       const std::vector<std::string> &PR) const {
    303     assert(PR.size() == Operands.size());
    304     bool PrintedArg = false;
    305     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    306       if (PR[i] != "")
    307         // Implicit physical register operand.
    308         continue;
    309 
    310       if (PrintedArg)
    311         OS << ", ";
    312       if (Operands[i].isReg()) {
    313         OS << "Op" << i << ", Op" << i << "IsKill";
    314         PrintedArg = true;
    315       } else if (Operands[i].isImm()) {
    316         OS << "imm" << i;
    317         PrintedArg = true;
    318       } else if (Operands[i].isFP()) {
    319         OS << "f" << i;
    320         PrintedArg = true;
    321       } else {
    322         llvm_unreachable("Unknown operand kind!");
    323       }
    324     }
    325   }
    326 
    327   void PrintArguments(raw_ostream &OS) const {
    328     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    329       if (Operands[i].isReg()) {
    330         OS << "Op" << i << ", Op" << i << "IsKill";
    331       } else if (Operands[i].isImm()) {
    332         OS << "imm" << i;
    333       } else if (Operands[i].isFP()) {
    334         OS << "f" << i;
    335       } else {
    336         llvm_unreachable("Unknown operand kind!");
    337       }
    338       if (i + 1 != e)
    339         OS << ", ";
    340     }
    341   }
    342 
    343 
    344   void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
    345                            ImmPredicateSet &ImmPredicates,
    346                            bool StripImmCodes = false) const {
    347     for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    348       if (PR[i] != "")
    349         // Implicit physical register operand. e.g. Instruction::Mul expect to
    350         // select to a binary op. On x86, mul may take a single operand with
    351         // the other operand being implicit. We must emit something that looks
    352         // like a binary instruction except for the very inner fastEmitInst_*
    353         // call.
    354         continue;
    355       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    356     }
    357   }
    358 
    359   void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
    360                            bool StripImmCodes = false) const {
    361     for (unsigned i = 0, e = Operands.size(); i != e; ++i)
    362       Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    363   }
    364 };
    365 } // End anonymous namespace
    366 
    367 namespace {
    368 class FastISelMap {
    369   // A multimap is needed instead of a "plain" map because the key is
    370   // the instruction's complexity (an int) and they are not unique.
    371   typedef std::multimap<int, InstructionMemo> PredMap;
    372   typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
    373   typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
    374   typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
    375   typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
    376             OperandsOpcodeTypeRetPredMap;
    377 
    378   OperandsOpcodeTypeRetPredMap SimplePatterns;
    379 
    380   // This is used to check that there are no duplicate predicates
    381   typedef std::multimap<std::string, bool> PredCheckMap;
    382   typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
    383   typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
    384   typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
    385   typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
    386             OperandsOpcodeTypeRetPredCheckMap;
    387 
    388   OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
    389 
    390   std::map<OperandsSignature, std::vector<OperandsSignature> >
    391     SignaturesWithConstantForms;
    392 
    393   std::string InstNS;
    394   ImmPredicateSet ImmediatePredicates;
    395 public:
    396   explicit FastISelMap(std::string InstNS);
    397 
    398   void collectPatterns(CodeGenDAGPatterns &CGP);
    399   void printImmediatePredicates(raw_ostream &OS);
    400   void printFunctionDefinitions(raw_ostream &OS);
    401 private:
    402   void emitInstructionCode(raw_ostream &OS,
    403                            const OperandsSignature &Operands,
    404                            const PredMap &PM,
    405                            const std::string &RetVTName);
    406 };
    407 } // End anonymous namespace
    408 
    409 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
    410   return CGP.getSDNodeInfo(Op).getEnumName();
    411 }
    412 
    413 static std::string getLegalCName(std::string OpName) {
    414   std::string::size_type pos = OpName.find("::");
    415   if (pos != std::string::npos)
    416     OpName.replace(pos, 2, "_");
    417   return OpName;
    418 }
    419 
    420 FastISelMap::FastISelMap(std::string instns) : InstNS(std::move(instns)) {}
    421 
    422 static std::string PhyRegForNode(TreePatternNode *Op,
    423                                  const CodeGenTarget &Target) {
    424   std::string PhysReg;
    425 
    426   if (!Op->isLeaf())
    427     return PhysReg;
    428 
    429   Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
    430   if (!OpLeafRec->isSubClassOf("Register"))
    431     return PhysReg;
    432 
    433   PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
    434                ->getValue();
    435   PhysReg += "::";
    436   PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
    437   return PhysReg;
    438 }
    439 
    440 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
    441   const CodeGenTarget &Target = CGP.getTargetInfo();
    442 
    443   // Determine the target's namespace name.
    444   InstNS = Target.getInstNamespace() + "::";
    445   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
    446 
    447   // Scan through all the patterns and record the simple ones.
    448   for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
    449        E = CGP.ptm_end(); I != E; ++I) {
    450     const PatternToMatch &Pattern = *I;
    451 
    452     // For now, just look at Instructions, so that we don't have to worry
    453     // about emitting multiple instructions for a pattern.
    454     TreePatternNode *Dst = Pattern.getDstPattern();
    455     if (Dst->isLeaf()) continue;
    456     Record *Op = Dst->getOperator();
    457     if (!Op->isSubClassOf("Instruction"))
    458       continue;
    459     CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
    460     if (II.Operands.empty())
    461       continue;
    462 
    463     // For now, ignore multi-instruction patterns.
    464     bool MultiInsts = false;
    465     for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
    466       TreePatternNode *ChildOp = Dst->getChild(i);
    467       if (ChildOp->isLeaf())
    468         continue;
    469       if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
    470         MultiInsts = true;
    471         break;
    472       }
    473     }
    474     if (MultiInsts)
    475       continue;
    476 
    477     // For now, ignore instructions where the first operand is not an
    478     // output register.
    479     const CodeGenRegisterClass *DstRC = nullptr;
    480     std::string SubRegNo;
    481     if (Op->getName() != "EXTRACT_SUBREG") {
    482       Record *Op0Rec = II.Operands[0].Rec;
    483       if (Op0Rec->isSubClassOf("RegisterOperand"))
    484         Op0Rec = Op0Rec->getValueAsDef("RegClass");
    485       if (!Op0Rec->isSubClassOf("RegisterClass"))
    486         continue;
    487       DstRC = &Target.getRegisterClass(Op0Rec);
    488       if (!DstRC)
    489         continue;
    490     } else {
    491       // If this isn't a leaf, then continue since the register classes are
    492       // a bit too complicated for now.
    493       if (!Dst->getChild(1)->isLeaf()) continue;
    494 
    495       DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
    496       if (SR)
    497         SubRegNo = getQualifiedName(SR->getDef());
    498       else
    499         SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
    500     }
    501 
    502     // Inspect the pattern.
    503     TreePatternNode *InstPatNode = Pattern.getSrcPattern();
    504     if (!InstPatNode) continue;
    505     if (InstPatNode->isLeaf()) continue;
    506 
    507     // Ignore multiple result nodes for now.
    508     if (InstPatNode->getNumTypes() > 1) continue;
    509 
    510     Record *InstPatOp = InstPatNode->getOperator();
    511     std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
    512     MVT::SimpleValueType RetVT = MVT::isVoid;
    513     if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
    514     MVT::SimpleValueType VT = RetVT;
    515     if (InstPatNode->getNumChildren()) {
    516       assert(InstPatNode->getChild(0)->getNumTypes() == 1);
    517       VT = InstPatNode->getChild(0)->getType(0);
    518     }
    519 
    520     // For now, filter out any instructions with predicates.
    521     if (!InstPatNode->getPredicateFns().empty())
    522       continue;
    523 
    524     // Check all the operands.
    525     OperandsSignature Operands;
    526     if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
    527                              DstRC))
    528       continue;
    529 
    530     std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
    531     if (InstPatNode->getOperator()->getName() == "imm" ||
    532         InstPatNode->getOperator()->getName() == "fpimm")
    533       PhysRegInputs->push_back("");
    534     else {
    535       // Compute the PhysRegs used by the given pattern, and check that
    536       // the mapping from the src to dst patterns is simple.
    537       bool FoundNonSimplePattern = false;
    538       unsigned DstIndex = 0;
    539       for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
    540         std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
    541         if (PhysReg.empty()) {
    542           if (DstIndex >= Dst->getNumChildren() ||
    543               Dst->getChild(DstIndex)->getName() !=
    544               InstPatNode->getChild(i)->getName()) {
    545             FoundNonSimplePattern = true;
    546             break;
    547           }
    548           ++DstIndex;
    549         }
    550 
    551         PhysRegInputs->push_back(PhysReg);
    552       }
    553 
    554       if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
    555         FoundNonSimplePattern = true;
    556 
    557       if (FoundNonSimplePattern)
    558         continue;
    559     }
    560 
    561     // Check if the operands match one of the patterns handled by FastISel.
    562     std::string ManglingSuffix;
    563     raw_string_ostream SuffixOS(ManglingSuffix);
    564     Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
    565     SuffixOS.flush();
    566     if (!StringSwitch<bool>(ManglingSuffix)
    567         .Cases("", "r", "rr", "ri", "rf", true)
    568         .Cases("rri", "i", "f", true)
    569         .Default(false))
    570       continue;
    571 
    572     // Get the predicate that guards this pattern.
    573     std::string PredicateCheck = Pattern.getPredicateCheck();
    574 
    575     // Ok, we found a pattern that we can handle. Remember it.
    576     InstructionMemo Memo = {
    577       Pattern.getDstPattern()->getOperator()->getName(),
    578       DstRC,
    579       SubRegNo,
    580       PhysRegInputs,
    581       PredicateCheck
    582     };
    583 
    584     int complexity = Pattern.getPatternComplexity(CGP);
    585 
    586     if (SimplePatternsCheck[Operands][OpcodeName][VT]
    587          [RetVT].count(PredicateCheck)) {
    588       PrintFatalError(Pattern.getSrcRecord()->getLoc(),
    589                     "Duplicate predicate in FastISel table!");
    590     }
    591     SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
    592             std::make_pair(PredicateCheck, true));
    593 
    594        // Note: Instructions with the same complexity will appear in the order
    595           // that they are encountered.
    596     SimplePatterns[Operands][OpcodeName][VT][RetVT].insert(
    597       std::make_pair(complexity, Memo));
    598 
    599     // If any of the operands were immediates with predicates on them, strip
    600     // them down to a signature that doesn't have predicates so that we can
    601     // associate them with the stripped predicate version.
    602     if (Operands.hasAnyImmediateCodes()) {
    603       SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
    604         .push_back(Operands);
    605     }
    606   }
    607 }
    608 
    609 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
    610   if (ImmediatePredicates.begin() == ImmediatePredicates.end())
    611     return;
    612 
    613   OS << "\n// FastEmit Immediate Predicate functions.\n";
    614   for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
    615        E = ImmediatePredicates.end(); I != E; ++I) {
    616     OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
    617     OS << I->getImmediatePredicateCode() << "\n}\n";
    618   }
    619 
    620   OS << "\n\n";
    621 }
    622 
    623 void FastISelMap::emitInstructionCode(raw_ostream &OS,
    624                                       const OperandsSignature &Operands,
    625                                       const PredMap &PM,
    626                                       const std::string &RetVTName) {
    627   // Emit code for each possible instruction. There may be
    628   // multiple if there are subtarget concerns.  A reverse iterator
    629   // is used to produce the ones with highest complexity first.
    630 
    631   bool OneHadNoPredicate = false;
    632   for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
    633        PI != PE; ++PI) {
    634     const InstructionMemo &Memo = PI->second;
    635     std::string PredicateCheck = Memo.PredicateCheck;
    636 
    637     if (PredicateCheck.empty()) {
    638       assert(!OneHadNoPredicate &&
    639              "Multiple instructions match and more than one had "
    640              "no predicate!");
    641       OneHadNoPredicate = true;
    642     } else {
    643       if (OneHadNoPredicate) {
    644         // FIXME: This should be a PrintError once the x86 target
    645         // fixes PR21575.
    646         PrintWarning("Multiple instructions match and one with no "
    647                      "predicate came before one with a predicate!  "
    648                      "name:" + Memo.Name + "  predicate: " +
    649                      PredicateCheck);
    650       }
    651       OS << "  if (" + PredicateCheck + ") {\n";
    652       OS << "  ";
    653     }
    654 
    655     for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
    656       if ((*Memo.PhysRegs)[i] != "")
    657         OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
    658            << "TII.get(TargetOpcode::COPY), "
    659            << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
    660     }
    661 
    662     OS << "  return fastEmitInst_";
    663     if (Memo.SubRegNo.empty()) {
    664       Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
    665      ImmediatePredicates, true);
    666       OS << "(" << InstNS << Memo.Name << ", ";
    667       OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
    668       if (!Operands.empty())
    669         OS << ", ";
    670       Operands.PrintArguments(OS, *Memo.PhysRegs);
    671       OS << ");\n";
    672     } else {
    673       OS << "extractsubreg(" << RetVTName
    674          << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
    675     }
    676 
    677     if (!PredicateCheck.empty()) {
    678       OS << "  }\n";
    679     }
    680   }
    681   // Return 0 if all of the possibilities had predicates but none
    682   // were satisfied.
    683   if (!OneHadNoPredicate)
    684     OS << "  return 0;\n";
    685   OS << "}\n";
    686   OS << "\n";
    687 }
    688 
    689 
    690 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
    691   // Now emit code for all the patterns that we collected.
    692   for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
    693        OE = SimplePatterns.end(); OI != OE; ++OI) {
    694     const OperandsSignature &Operands = OI->first;
    695     const OpcodeTypeRetPredMap &OTM = OI->second;
    696 
    697     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
    698          I != E; ++I) {
    699       const std::string &Opcode = I->first;
    700       const TypeRetPredMap &TM = I->second;
    701 
    702       OS << "// FastEmit functions for " << Opcode << ".\n";
    703       OS << "\n";
    704 
    705       // Emit one function for each opcode,type pair.
    706       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
    707            TI != TE; ++TI) {
    708         MVT::SimpleValueType VT = TI->first;
    709         const RetPredMap &RM = TI->second;
    710         if (RM.size() != 1) {
    711           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
    712                RI != RE; ++RI) {
    713             MVT::SimpleValueType RetVT = RI->first;
    714             const PredMap &PM = RI->second;
    715 
    716             OS << "unsigned fastEmit_"
    717                << getLegalCName(Opcode)
    718                << "_" << getLegalCName(getName(VT))
    719                << "_" << getLegalCName(getName(RetVT)) << "_";
    720             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    721             OS << "(";
    722             Operands.PrintParameters(OS);
    723             OS << ") {\n";
    724 
    725             emitInstructionCode(OS, Operands, PM, getName(RetVT));
    726           }
    727 
    728           // Emit one function for the type that demultiplexes on return type.
    729           OS << "unsigned fastEmit_"
    730              << getLegalCName(Opcode) << "_"
    731              << getLegalCName(getName(VT)) << "_";
    732           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    733           OS << "(MVT RetVT";
    734           if (!Operands.empty())
    735             OS << ", ";
    736           Operands.PrintParameters(OS);
    737           OS << ") {\nswitch (RetVT.SimpleTy) {\n";
    738           for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
    739                RI != RE; ++RI) {
    740             MVT::SimpleValueType RetVT = RI->first;
    741             OS << "  case " << getName(RetVT) << ": return fastEmit_"
    742                << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
    743                << "_" << getLegalCName(getName(RetVT)) << "_";
    744             Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    745             OS << "(";
    746             Operands.PrintArguments(OS);
    747             OS << ");\n";
    748           }
    749           OS << "  default: return 0;\n}\n}\n\n";
    750 
    751         } else {
    752           // Non-variadic return type.
    753           OS << "unsigned fastEmit_"
    754              << getLegalCName(Opcode) << "_"
    755              << getLegalCName(getName(VT)) << "_";
    756           Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    757           OS << "(MVT RetVT";
    758           if (!Operands.empty())
    759             OS << ", ";
    760           Operands.PrintParameters(OS);
    761           OS << ") {\n";
    762 
    763           OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
    764              << ")\n    return 0;\n";
    765 
    766           const PredMap &PM = RM.begin()->second;
    767 
    768           emitInstructionCode(OS, Operands, PM, "RetVT");
    769         }
    770       }
    771 
    772       // Emit one function for the opcode that demultiplexes based on the type.
    773       OS << "unsigned fastEmit_"
    774          << getLegalCName(Opcode) << "_";
    775       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    776       OS << "(MVT VT, MVT RetVT";
    777       if (!Operands.empty())
    778         OS << ", ";
    779       Operands.PrintParameters(OS);
    780       OS << ") {\n";
    781       OS << "  switch (VT.SimpleTy) {\n";
    782       for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
    783            TI != TE; ++TI) {
    784         MVT::SimpleValueType VT = TI->first;
    785         std::string TypeName = getName(VT);
    786         OS << "  case " << TypeName << ": return fastEmit_"
    787            << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
    788         Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    789         OS << "(RetVT";
    790         if (!Operands.empty())
    791           OS << ", ";
    792         Operands.PrintArguments(OS);
    793         OS << ");\n";
    794       }
    795       OS << "  default: return 0;\n";
    796       OS << "  }\n";
    797       OS << "}\n";
    798       OS << "\n";
    799     }
    800 
    801     OS << "// Top-level FastEmit function.\n";
    802     OS << "\n";
    803 
    804     // Emit one function for the operand signature that demultiplexes based
    805     // on opcode and type.
    806     OS << "unsigned fastEmit_";
    807     Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    808     OS << "(MVT VT, MVT RetVT, unsigned Opcode";
    809     if (!Operands.empty())
    810       OS << ", ";
    811     Operands.PrintParameters(OS);
    812     OS << ") ";
    813     if (!Operands.hasAnyImmediateCodes())
    814       OS << "override ";
    815     OS << "{\n";
    816 
    817     // If there are any forms of this signature available that operate on
    818     // constrained forms of the immediate (e.g., 32-bit sext immediate in a
    819     // 64-bit operand), check them first.
    820 
    821     std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
    822       = SignaturesWithConstantForms.find(Operands);
    823     if (MI != SignaturesWithConstantForms.end()) {
    824       // Unique any duplicates out of the list.
    825       std::sort(MI->second.begin(), MI->second.end());
    826       MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
    827                        MI->second.end());
    828 
    829       // Check each in order it was seen.  It would be nice to have a good
    830       // relative ordering between them, but we're not going for optimality
    831       // here.
    832       for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
    833         OS << "  if (";
    834         MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
    835         OS << ")\n    if (unsigned Reg = fastEmit_";
    836         MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
    837         OS << "(VT, RetVT, Opcode";
    838         if (!MI->second[i].empty())
    839           OS << ", ";
    840         MI->second[i].PrintArguments(OS);
    841         OS << "))\n      return Reg;\n\n";
    842       }
    843 
    844       // Done with this, remove it.
    845       SignaturesWithConstantForms.erase(MI);
    846     }
    847 
    848     OS << "  switch (Opcode) {\n";
    849     for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
    850          I != E; ++I) {
    851       const std::string &Opcode = I->first;
    852 
    853       OS << "  case " << Opcode << ": return fastEmit_"
    854          << getLegalCName(Opcode) << "_";
    855       Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    856       OS << "(VT, RetVT";
    857       if (!Operands.empty())
    858         OS << ", ";
    859       Operands.PrintArguments(OS);
    860       OS << ");\n";
    861     }
    862     OS << "  default: return 0;\n";
    863     OS << "  }\n";
    864     OS << "}\n";
    865     OS << "\n";
    866   }
    867 
    868   // TODO: SignaturesWithConstantForms should be empty here.
    869 }
    870 
    871 namespace llvm {
    872 
    873 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
    874   CodeGenDAGPatterns CGP(RK);
    875   const CodeGenTarget &Target = CGP.getTargetInfo();
    876   emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
    877                        Target.getName() + " target", OS);
    878 
    879   // Determine the target's namespace name.
    880   std::string InstNS = Target.getInstNamespace() + "::";
    881   assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
    882 
    883   FastISelMap F(InstNS);
    884   F.collectPatterns(CGP);
    885   F.printImmediatePredicates(OS);
    886   F.printFunctionDefinitions(OS);
    887 }
    888 
    889 } // End llvm namespace
    890