Home | History | Annotate | Download | only in ARM
      1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that splits the constant pool up into 'islands'
     11 // which are scattered through-out the function.  This is required due to the
     12 // limited pc-relative displacements that ARM has.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "arm-cp-islands"
     17 #include "ARM.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "ARMInstrInfo.h"
     20 #include "Thumb2InstrInfo.h"
     21 #include "MCTargetDesc/ARMAddressingModes.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineFunctionPass.h"
     24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     25 #include "llvm/Target/TargetData.h"
     26 #include "llvm/Target/TargetMachine.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/ADT/SmallSet.h"
     31 #include "llvm/ADT/SmallVector.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include <algorithm>
     36 using namespace llvm;
     37 
     38 STATISTIC(NumCPEs,       "Number of constpool entries");
     39 STATISTIC(NumSplit,      "Number of uncond branches inserted");
     40 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
     41 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
     42 STATISTIC(NumTBs,        "Number of table branches generated");
     43 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
     44 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
     45 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
     46 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
     47 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
     48 
     49 
     50 static cl::opt<bool>
     51 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
     52           cl::desc("Adjust basic block layout to better use TB[BH]"));
     53 
     54 namespace {
     55   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
     56   /// requires constant pool entries to be scattered among the instructions
     57   /// inside a function.  To do this, it completely ignores the normal LLVM
     58   /// constant pool; instead, it places constants wherever it feels like with
     59   /// special instructions.
     60   ///
     61   /// The terminology used in this pass includes:
     62   ///   Islands - Clumps of constants placed in the function.
     63   ///   Water   - Potential places where an island could be formed.
     64   ///   CPE     - A constant pool entry that has been placed somewhere, which
     65   ///             tracks a list of users.
     66   class ARMConstantIslands : public MachineFunctionPass {
     67     /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
     68     /// by MBB Number.  The two-byte pads required for Thumb alignment are
     69     /// counted as part of the following block (i.e., the offset and size for
     70     /// a padded block will both be ==2 mod 4).
     71     std::vector<unsigned> BBSizes;
     72 
     73     /// BBOffsets - the offset of each MBB in bytes, starting from 0.
     74     /// The two-byte pads required for Thumb alignment are counted as part of
     75     /// the following block.
     76     std::vector<unsigned> BBOffsets;
     77 
     78     /// WaterList - A sorted list of basic blocks where islands could be placed
     79     /// (i.e. blocks that don't fall through to the following block, due
     80     /// to a return, unreachable, or unconditional branch).
     81     std::vector<MachineBasicBlock*> WaterList;
     82 
     83     /// NewWaterList - The subset of WaterList that was created since the
     84     /// previous iteration by inserting unconditional branches.
     85     SmallSet<MachineBasicBlock*, 4> NewWaterList;
     86 
     87     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
     88 
     89     /// CPUser - One user of a constant pool, keeping the machine instruction
     90     /// pointer, the constant pool being referenced, and the max displacement
     91     /// allowed from the instruction to the CP.  The HighWaterMark records the
     92     /// highest basic block where a new CPEntry can be placed.  To ensure this
     93     /// pass terminates, the CP entries are initially placed at the end of the
     94     /// function and then move monotonically to lower addresses.  The
     95     /// exception to this rule is when the current CP entry for a particular
     96     /// CPUser is out of range, but there is another CP entry for the same
     97     /// constant value in range.  We want to use the existing in-range CP
     98     /// entry, but if it later moves out of range, the search for new water
     99     /// should resume where it left off.  The HighWaterMark is used to record
    100     /// that point.
    101     struct CPUser {
    102       MachineInstr *MI;
    103       MachineInstr *CPEMI;
    104       MachineBasicBlock *HighWaterMark;
    105       unsigned MaxDisp;
    106       bool NegOk;
    107       bool IsSoImm;
    108       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
    109              bool neg, bool soimm)
    110         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
    111         HighWaterMark = CPEMI->getParent();
    112       }
    113     };
    114 
    115     /// CPUsers - Keep track of all of the machine instructions that use various
    116     /// constant pools and their max displacement.
    117     std::vector<CPUser> CPUsers;
    118 
    119     /// CPEntry - One per constant pool entry, keeping the machine instruction
    120     /// pointer, the constpool index, and the number of CPUser's which
    121     /// reference this entry.
    122     struct CPEntry {
    123       MachineInstr *CPEMI;
    124       unsigned CPI;
    125       unsigned RefCount;
    126       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
    127         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
    128     };
    129 
    130     /// CPEntries - Keep track of all of the constant pool entry machine
    131     /// instructions. For each original constpool index (i.e. those that
    132     /// existed upon entry to this pass), it keeps a vector of entries.
    133     /// Original elements are cloned as we go along; the clones are
    134     /// put in the vector of the original element, but have distinct CPIs.
    135     std::vector<std::vector<CPEntry> > CPEntries;
    136 
    137     /// ImmBranch - One per immediate branch, keeping the machine instruction
    138     /// pointer, conditional or unconditional, the max displacement,
    139     /// and (if isCond is true) the corresponding unconditional branch
    140     /// opcode.
    141     struct ImmBranch {
    142       MachineInstr *MI;
    143       unsigned MaxDisp : 31;
    144       bool isCond : 1;
    145       int UncondBr;
    146       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
    147         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
    148     };
    149 
    150     /// ImmBranches - Keep track of all the immediate branch instructions.
    151     ///
    152     std::vector<ImmBranch> ImmBranches;
    153 
    154     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
    155     ///
    156     SmallVector<MachineInstr*, 4> PushPopMIs;
    157 
    158     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
    159     SmallVector<MachineInstr*, 4> T2JumpTables;
    160 
    161     /// HasFarJump - True if any far jump instruction has been emitted during
    162     /// the branch fix up pass.
    163     bool HasFarJump;
    164 
    165     /// HasInlineAsm - True if the function contains inline assembly.
    166     bool HasInlineAsm;
    167 
    168     const ARMInstrInfo *TII;
    169     const ARMSubtarget *STI;
    170     ARMFunctionInfo *AFI;
    171     bool isThumb;
    172     bool isThumb1;
    173     bool isThumb2;
    174   public:
    175     static char ID;
    176     ARMConstantIslands() : MachineFunctionPass(ID) {}
    177 
    178     virtual bool runOnMachineFunction(MachineFunction &MF);
    179 
    180     virtual const char *getPassName() const {
    181       return "ARM constant island placement and branch shortening pass";
    182     }
    183 
    184   private:
    185     void DoInitialPlacement(MachineFunction &MF,
    186                             std::vector<MachineInstr*> &CPEMIs);
    187     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    188     void JumpTableFunctionScan(MachineFunction &MF);
    189     void InitialFunctionScan(MachineFunction &MF,
    190                              const std::vector<MachineInstr*> &CPEMIs);
    191     MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
    192     void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    193     void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
    194     bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
    195     int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
    196     bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
    197     void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
    198                         MachineBasicBlock *&NewMBB);
    199     bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
    200     void RemoveDeadCPEMI(MachineInstr *CPEMI);
    201     bool RemoveUnusedCPEntries();
    202     bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
    203                       MachineInstr *CPEMI, unsigned Disp, bool NegOk,
    204                       bool DoDump = false);
    205     bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
    206                         CPUser &U);
    207     bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
    208                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
    209     bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    210     bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
    211     bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
    212     bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
    213     bool UndoLRSpillRestore();
    214     bool OptimizeThumb2Instructions(MachineFunction &MF);
    215     bool OptimizeThumb2Branches(MachineFunction &MF);
    216     bool ReorderThumb2JumpTables(MachineFunction &MF);
    217     bool OptimizeThumb2JumpTables(MachineFunction &MF);
    218     MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
    219                                                   MachineBasicBlock *JTBB);
    220 
    221     unsigned GetOffsetOf(MachineInstr *MI) const;
    222     void dumpBBs();
    223     void verify(MachineFunction &MF);
    224   };
    225   char ARMConstantIslands::ID = 0;
    226 }
    227 
    228 /// verify - check BBOffsets, BBSizes, alignment of islands
    229 void ARMConstantIslands::verify(MachineFunction &MF) {
    230   assert(BBOffsets.size() == BBSizes.size());
    231   for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
    232     assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
    233   if (!isThumb)
    234     return;
    235 #ifndef NDEBUG
    236   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
    237        MBBI != E; ++MBBI) {
    238     MachineBasicBlock *MBB = MBBI;
    239     if (!MBB->empty() &&
    240         MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
    241       unsigned MBBId = MBB->getNumber();
    242       assert(HasInlineAsm ||
    243              (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
    244              (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
    245     }
    246   }
    247   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
    248     CPUser &U = CPUsers[i];
    249     unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
    250     unsigned CPEOffset  = GetOffsetOf(U.CPEMI);
    251     unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
    252       UserOffset - CPEOffset;
    253     assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
    254   }
    255 #endif
    256 }
    257 
    258 /// print block size and offset information - debugging
    259 void ARMConstantIslands::dumpBBs() {
    260   for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
    261     DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
    262                  << " size " << BBSizes[J] << "\n");
    263   }
    264 }
    265 
    266 /// createARMConstantIslandPass - returns an instance of the constpool
    267 /// island pass.
    268 FunctionPass *llvm::createARMConstantIslandPass() {
    269   return new ARMConstantIslands();
    270 }
    271 
    272 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
    273   MachineConstantPool &MCP = *MF.getConstantPool();
    274 
    275   TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo();
    276   AFI = MF.getInfo<ARMFunctionInfo>();
    277   STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
    278 
    279   isThumb = AFI->isThumbFunction();
    280   isThumb1 = AFI->isThumb1OnlyFunction();
    281   isThumb2 = AFI->isThumb2Function();
    282 
    283   HasFarJump = false;
    284   HasInlineAsm = false;
    285 
    286   // Renumber all of the machine basic blocks in the function, guaranteeing that
    287   // the numbers agree with the position of the block in the function.
    288   MF.RenumberBlocks();
    289 
    290   // Try to reorder and otherwise adjust the block layout to make good use
    291   // of the TB[BH] instructions.
    292   bool MadeChange = false;
    293   if (isThumb2 && AdjustJumpTableBlocks) {
    294     JumpTableFunctionScan(MF);
    295     MadeChange |= ReorderThumb2JumpTables(MF);
    296     // Data is out of date, so clear it. It'll be re-computed later.
    297     T2JumpTables.clear();
    298     // Blocks may have shifted around. Keep the numbering up to date.
    299     MF.RenumberBlocks();
    300   }
    301 
    302   // Thumb1 functions containing constant pools get 4-byte alignment.
    303   // This is so we can keep exact track of where the alignment padding goes.
    304 
    305   // ARM and Thumb2 functions need to be 4-byte aligned.
    306   if (!isThumb1)
    307     MF.EnsureAlignment(2);  // 2 = log2(4)
    308 
    309   // Perform the initial placement of the constant pool entries.  To start with,
    310   // we put them all at the end of the function.
    311   std::vector<MachineInstr*> CPEMIs;
    312   if (!MCP.isEmpty()) {
    313     DoInitialPlacement(MF, CPEMIs);
    314     if (isThumb1)
    315       MF.EnsureAlignment(2);  // 2 = log2(4)
    316   }
    317 
    318   /// The next UID to take is the first unused one.
    319   AFI->initPICLabelUId(CPEMIs.size());
    320 
    321   // Do the initial scan of the function, building up information about the
    322   // sizes of each block, the location of all the water, and finding all of the
    323   // constant pool users.
    324   InitialFunctionScan(MF, CPEMIs);
    325   CPEMIs.clear();
    326   DEBUG(dumpBBs());
    327 
    328 
    329   /// Remove dead constant pool entries.
    330   MadeChange |= RemoveUnusedCPEntries();
    331 
    332   // Iteratively place constant pool entries and fix up branches until there
    333   // is no change.
    334   unsigned NoCPIters = 0, NoBRIters = 0;
    335   while (true) {
    336     bool CPChange = false;
    337     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
    338       CPChange |= HandleConstantPoolUser(MF, i);
    339     if (CPChange && ++NoCPIters > 30)
    340       llvm_unreachable("Constant Island pass failed to converge!");
    341     DEBUG(dumpBBs());
    342 
    343     // Clear NewWaterList now.  If we split a block for branches, it should
    344     // appear as "new water" for the next iteration of constant pool placement.
    345     NewWaterList.clear();
    346 
    347     bool BRChange = false;
    348     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
    349       BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
    350     if (BRChange && ++NoBRIters > 30)
    351       llvm_unreachable("Branch Fix Up pass failed to converge!");
    352     DEBUG(dumpBBs());
    353 
    354     if (!CPChange && !BRChange)
    355       break;
    356     MadeChange = true;
    357   }
    358 
    359   // Shrink 32-bit Thumb2 branch, load, and store instructions.
    360   if (isThumb2 && !STI->prefers32BitThumb())
    361     MadeChange |= OptimizeThumb2Instructions(MF);
    362 
    363   // After a while, this might be made debug-only, but it is not expensive.
    364   verify(MF);
    365 
    366   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
    367   // undo the spill / restore of LR if possible.
    368   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
    369     MadeChange |= UndoLRSpillRestore();
    370 
    371   // Save the mapping between original and cloned constpool entries.
    372   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
    373     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
    374       const CPEntry & CPE = CPEntries[i][j];
    375       AFI->recordCPEClone(i, CPE.CPI);
    376     }
    377   }
    378 
    379   DEBUG(errs() << '\n'; dumpBBs());
    380 
    381   BBSizes.clear();
    382   BBOffsets.clear();
    383   WaterList.clear();
    384   CPUsers.clear();
    385   CPEntries.clear();
    386   ImmBranches.clear();
    387   PushPopMIs.clear();
    388   T2JumpTables.clear();
    389 
    390   return MadeChange;
    391 }
    392 
    393 /// DoInitialPlacement - Perform the initial placement of the constant pool
    394 /// entries.  To start with, we put them all at the end of the function.
    395 void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
    396                                         std::vector<MachineInstr*> &CPEMIs) {
    397   // Create the basic block to hold the CPE's.
    398   MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
    399   MF.push_back(BB);
    400 
    401   // Add all of the constants from the constant pool to the end block, use an
    402   // identity mapping of CPI's to CPE's.
    403   const std::vector<MachineConstantPoolEntry> &CPs =
    404     MF.getConstantPool()->getConstants();
    405 
    406   const TargetData &TD = *MF.getTarget().getTargetData();
    407   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    408     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
    409     // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
    410     // we would have to pad them out or something so that instructions stay
    411     // aligned.
    412     assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
    413     MachineInstr *CPEMI =
    414       BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
    415         .addImm(i).addConstantPoolIndex(i).addImm(Size);
    416     CPEMIs.push_back(CPEMI);
    417 
    418     // Add a new CPEntry, but no corresponding CPUser yet.
    419     std::vector<CPEntry> CPEs;
    420     CPEs.push_back(CPEntry(CPEMI, i));
    421     CPEntries.push_back(CPEs);
    422     ++NumCPEs;
    423     DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
    424                  << "\n");
    425   }
    426 }
    427 
    428 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
    429 /// into the block immediately after it.
    430 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
    431   // Get the next machine basic block in the function.
    432   MachineFunction::iterator MBBI = MBB;
    433   // Can't fall off end of function.
    434   if (llvm::next(MBBI) == MBB->getParent()->end())
    435     return false;
    436 
    437   MachineBasicBlock *NextBB = llvm::next(MBBI);
    438   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
    439        E = MBB->succ_end(); I != E; ++I)
    440     if (*I == NextBB)
    441       return true;
    442 
    443   return false;
    444 }
    445 
    446 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
    447 /// look up the corresponding CPEntry.
    448 ARMConstantIslands::CPEntry
    449 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
    450                                         const MachineInstr *CPEMI) {
    451   std::vector<CPEntry> &CPEs = CPEntries[CPI];
    452   // Number of entries per constpool index should be small, just do a
    453   // linear search.
    454   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    455     if (CPEs[i].CPEMI == CPEMI)
    456       return &CPEs[i];
    457   }
    458   return NULL;
    459 }
    460 
    461 /// JumpTableFunctionScan - Do a scan of the function, building up
    462 /// information about the sizes of each block and the locations of all
    463 /// the jump tables.
    464 void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
    465   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
    466        MBBI != E; ++MBBI) {
    467     MachineBasicBlock &MBB = *MBBI;
    468 
    469     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    470          I != E; ++I)
    471       if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
    472         T2JumpTables.push_back(I);
    473   }
    474 }
    475 
    476 /// InitialFunctionScan - Do the initial scan of the function, building up
    477 /// information about the sizes of each block, the location of all the water,
    478 /// and finding all of the constant pool users.
    479 void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
    480                                  const std::vector<MachineInstr*> &CPEMIs) {
    481   // First thing, see if the function has any inline assembly in it. If so,
    482   // we have to be conservative about alignment assumptions, as we don't
    483   // know for sure the size of any instructions in the inline assembly.
    484   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
    485        MBBI != E; ++MBBI) {
    486     MachineBasicBlock &MBB = *MBBI;
    487     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    488          I != E; ++I)
    489       if (I->getOpcode() == ARM::INLINEASM)
    490         HasInlineAsm = true;
    491   }
    492 
    493   // Now go back through the instructions and build up our data structures.
    494   unsigned Offset = 0;
    495   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
    496        MBBI != E; ++MBBI) {
    497     MachineBasicBlock &MBB = *MBBI;
    498 
    499     // If this block doesn't fall through into the next MBB, then this is
    500     // 'water' that a constant pool island could be placed.
    501     if (!BBHasFallthrough(&MBB))
    502       WaterList.push_back(&MBB);
    503 
    504     unsigned MBBSize = 0;
    505     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    506          I != E; ++I) {
    507       if (I->isDebugValue())
    508         continue;
    509       // Add instruction size to MBBSize.
    510       MBBSize += TII->GetInstSizeInBytes(I);
    511 
    512       int Opc = I->getOpcode();
    513       if (I->getDesc().isBranch()) {
    514         bool isCond = false;
    515         unsigned Bits = 0;
    516         unsigned Scale = 1;
    517         int UOpc = Opc;
    518         switch (Opc) {
    519         default:
    520           continue;  // Ignore other JT branches
    521         case ARM::tBR_JTr:
    522           // A Thumb1 table jump may involve padding; for the offsets to
    523           // be right, functions containing these must be 4-byte aligned.
    524           // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
    525           // table entries. So this code checks whether offset of tBR_JTr + 2
    526           // is aligned.  That is held in Offset+MBBSize, which already has
    527           // 2 added in for the size of the mov pc instruction.
    528           MF.EnsureAlignment(2U);
    529           if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
    530             // FIXME: Add a pseudo ALIGN instruction instead.
    531             MBBSize += 2;           // padding
    532           continue;   // Does not get an entry in ImmBranches
    533         case ARM::t2BR_JT:
    534           T2JumpTables.push_back(I);
    535           continue;   // Does not get an entry in ImmBranches
    536         case ARM::Bcc:
    537           isCond = true;
    538           UOpc = ARM::B;
    539           // Fallthrough
    540         case ARM::B:
    541           Bits = 24;
    542           Scale = 4;
    543           break;
    544         case ARM::tBcc:
    545           isCond = true;
    546           UOpc = ARM::tB;
    547           Bits = 8;
    548           Scale = 2;
    549           break;
    550         case ARM::tB:
    551           Bits = 11;
    552           Scale = 2;
    553           break;
    554         case ARM::t2Bcc:
    555           isCond = true;
    556           UOpc = ARM::t2B;
    557           Bits = 20;
    558           Scale = 2;
    559           break;
    560         case ARM::t2B:
    561           Bits = 24;
    562           Scale = 2;
    563           break;
    564         }
    565 
    566         // Record this immediate branch.
    567         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    568         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
    569       }
    570 
    571       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
    572         PushPopMIs.push_back(I);
    573 
    574       if (Opc == ARM::CONSTPOOL_ENTRY)
    575         continue;
    576 
    577       // Scan the instructions for constant pool operands.
    578       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
    579         if (I->getOperand(op).isCPI()) {
    580           // We found one.  The addressing mode tells us the max displacement
    581           // from the PC that this instruction permits.
    582 
    583           // Basic size info comes from the TSFlags field.
    584           unsigned Bits = 0;
    585           unsigned Scale = 1;
    586           bool NegOk = false;
    587           bool IsSoImm = false;
    588 
    589           switch (Opc) {
    590           default:
    591             llvm_unreachable("Unknown addressing mode for CP reference!");
    592             break;
    593 
    594           // Taking the address of a CP entry.
    595           case ARM::LEApcrel:
    596             // This takes a SoImm, which is 8 bit immediate rotated. We'll
    597             // pretend the maximum offset is 255 * 4. Since each instruction
    598             // 4 byte wide, this is always correct. We'll check for other
    599             // displacements that fits in a SoImm as well.
    600             Bits = 8;
    601             Scale = 4;
    602             NegOk = true;
    603             IsSoImm = true;
    604             break;
    605           case ARM::t2LEApcrel:
    606             Bits = 12;
    607             NegOk = true;
    608             break;
    609           case ARM::tLEApcrel:
    610             Bits = 8;
    611             Scale = 4;
    612             break;
    613 
    614           case ARM::LDRi12:
    615           case ARM::LDRcp:
    616           case ARM::t2LDRpci:
    617             Bits = 12;  // +-offset_12
    618             NegOk = true;
    619             break;
    620 
    621           case ARM::tLDRpci:
    622             Bits = 8;
    623             Scale = 4;  // +(offset_8*4)
    624             break;
    625 
    626           case ARM::VLDRD:
    627           case ARM::VLDRS:
    628             Bits = 8;
    629             Scale = 4;  // +-(offset_8*4)
    630             NegOk = true;
    631             break;
    632           }
    633 
    634           // Remember that this is a user of a CP entry.
    635           unsigned CPI = I->getOperand(op).getIndex();
    636           MachineInstr *CPEMI = CPEMIs[CPI];
    637           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
    638           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
    639 
    640           // Increment corresponding CPEntry reference count.
    641           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
    642           assert(CPE && "Cannot find a corresponding CPEntry!");
    643           CPE->RefCount++;
    644 
    645           // Instructions can only use one CP entry, don't bother scanning the
    646           // rest of the operands.
    647           break;
    648         }
    649     }
    650 
    651     // In thumb mode, if this block is a constpool island, we may need padding
    652     // so it's aligned on 4 byte boundary.
    653     if (isThumb &&
    654         !MBB.empty() &&
    655         MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
    656         ((Offset%4) != 0 || HasInlineAsm))
    657       MBBSize += 2;
    658 
    659     BBSizes.push_back(MBBSize);
    660     BBOffsets.push_back(Offset);
    661     Offset += MBBSize;
    662   }
    663 }
    664 
    665 /// GetOffsetOf - Return the current offset of the specified machine instruction
    666 /// from the start of the function.  This offset changes as stuff is moved
    667 /// around inside the function.
    668 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
    669   MachineBasicBlock *MBB = MI->getParent();
    670 
    671   // The offset is composed of two things: the sum of the sizes of all MBB's
    672   // before this instruction's block, and the offset from the start of the block
    673   // it is in.
    674   unsigned Offset = BBOffsets[MBB->getNumber()];
    675 
    676   // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
    677   // alignment padding, and compensate if so.
    678   if (isThumb &&
    679       MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
    680       (Offset%4 != 0 || HasInlineAsm))
    681     Offset += 2;
    682 
    683   // Sum instructions before MI in MBB.
    684   for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
    685     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    686     if (&*I == MI) return Offset;
    687     Offset += TII->GetInstSizeInBytes(I);
    688   }
    689 }
    690 
    691 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
    692 /// ID.
    693 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
    694                               const MachineBasicBlock *RHS) {
    695   return LHS->getNumber() < RHS->getNumber();
    696 }
    697 
    698 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
    699 /// machine function, it upsets all of the block numbers.  Renumber the blocks
    700 /// and update the arrays that parallel this numbering.
    701 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
    702   // Renumber the MBB's to keep them consecutive.
    703   NewBB->getParent()->RenumberBlocks(NewBB);
    704 
    705   // Insert a size into BBSizes to align it properly with the (newly
    706   // renumbered) block numbers.
    707   BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
    708 
    709   // Likewise for BBOffsets.
    710   BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
    711 
    712   // Next, update WaterList.  Specifically, we need to add NewMBB as having
    713   // available water after it.
    714   water_iterator IP =
    715     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
    716                      CompareMBBNumbers);
    717   WaterList.insert(IP, NewBB);
    718 }
    719 
    720 
    721 /// Split the basic block containing MI into two blocks, which are joined by
    722 /// an unconditional branch.  Update data structures and renumber blocks to
    723 /// account for this change and returns the newly created block.
    724 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
    725   MachineBasicBlock *OrigBB = MI->getParent();
    726   MachineFunction &MF = *OrigBB->getParent();
    727 
    728   // Create a new MBB for the code after the OrigBB.
    729   MachineBasicBlock *NewBB =
    730     MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
    731   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
    732   MF.insert(MBBI, NewBB);
    733 
    734   // Splice the instructions starting with MI over to NewBB.
    735   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
    736 
    737   // Add an unconditional branch from OrigBB to NewBB.
    738   // Note the new unconditional branch is not being recorded.
    739   // There doesn't seem to be meaningful DebugInfo available; this doesn't
    740   // correspond to anything in the source.
    741   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
    742   if (!isThumb)
    743     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
    744   else
    745     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
    746             .addImm(ARMCC::AL).addReg(0);
    747   ++NumSplit;
    748 
    749   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
    750   while (!OrigBB->succ_empty()) {
    751     MachineBasicBlock *Succ = *OrigBB->succ_begin();
    752     OrigBB->removeSuccessor(Succ);
    753     NewBB->addSuccessor(Succ);
    754 
    755     // This pass should be run after register allocation, so there should be no
    756     // PHI nodes to update.
    757     assert((Succ->empty() || !Succ->begin()->isPHI())
    758            && "PHI nodes should be eliminated by now!");
    759   }
    760 
    761   // OrigBB branches to NewBB.
    762   OrigBB->addSuccessor(NewBB);
    763 
    764   // Update internal data structures to account for the newly inserted MBB.
    765   // This is almost the same as UpdateForInsertedWaterBlock, except that
    766   // the Water goes after OrigBB, not NewBB.
    767   MF.RenumberBlocks(NewBB);
    768 
    769   // Insert a size into BBSizes to align it properly with the (newly
    770   // renumbered) block numbers.
    771   BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
    772 
    773   // Likewise for BBOffsets.
    774   BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
    775 
    776   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
    777   // available water after it (but not if it's already there, which happens
    778   // when splitting before a conditional branch that is followed by an
    779   // unconditional branch - in that case we want to insert NewBB).
    780   water_iterator IP =
    781     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
    782                      CompareMBBNumbers);
    783   MachineBasicBlock* WaterBB = *IP;
    784   if (WaterBB == OrigBB)
    785     WaterList.insert(llvm::next(IP), NewBB);
    786   else
    787     WaterList.insert(IP, OrigBB);
    788   NewWaterList.insert(OrigBB);
    789 
    790   unsigned OrigBBI = OrigBB->getNumber();
    791   unsigned NewBBI = NewBB->getNumber();
    792 
    793   int delta = isThumb1 ? 2 : 4;
    794 
    795   // Figure out how large the OrigBB is.  As the first half of the original
    796   // block, it cannot contain a tablejump.  The size includes
    797   // the new jump we added.  (It should be possible to do this without
    798   // recounting everything, but it's very confusing, and this is rarely
    799   // executed.)
    800   unsigned OrigBBSize = 0;
    801   for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end();
    802        I != E; ++I)
    803     OrigBBSize += TII->GetInstSizeInBytes(I);
    804   BBSizes[OrigBBI] = OrigBBSize;
    805 
    806   // ...and adjust BBOffsets for NewBB accordingly.
    807   BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
    808 
    809   // Figure out how large the NewMBB is.  As the second half of the original
    810   // block, it may contain a tablejump.
    811   unsigned NewBBSize = 0;
    812   for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
    813        I != E; ++I)
    814     NewBBSize += TII->GetInstSizeInBytes(I);
    815   // Set the size of NewBB in BBSizes.  It does not include any padding now.
    816   BBSizes[NewBBI] = NewBBSize;
    817 
    818   MachineInstr* ThumbJTMI = prior(NewBB->end());
    819   if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
    820     // We've added another 2-byte instruction before this tablejump, which
    821     // means we will always need padding if we didn't before, and vice versa.
    822 
    823     // The original offset of the jump instruction was:
    824     unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta;
    825     if (OrigOffset%4 == 0) {
    826       // We had padding before and now we don't.  No net change in code size.
    827       delta = 0;
    828     } else {
    829       // We didn't have padding before and now we do.
    830       BBSizes[NewBBI] += 2;
    831       delta = 4;
    832     }
    833   }
    834 
    835   // All BBOffsets following these blocks must be modified.
    836   if (delta)
    837     AdjustBBOffsetsAfter(NewBB, delta);
    838 
    839   return NewBB;
    840 }
    841 
    842 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
    843 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
    844 /// constant pool entry).
    845 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
    846                                          unsigned TrialOffset, unsigned MaxDisp,
    847                                          bool NegativeOK, bool IsSoImm) {
    848   // On Thumb offsets==2 mod 4 are rounded down by the hardware for
    849   // purposes of the displacement computation; compensate for that here.
    850   // Effectively, the valid range of displacements is 2 bytes smaller for such
    851   // references.
    852   unsigned TotalAdj = 0;
    853   if (isThumb && UserOffset%4 !=0) {
    854     UserOffset -= 2;
    855     TotalAdj = 2;
    856   }
    857   // CPEs will be rounded up to a multiple of 4.
    858   if (isThumb && TrialOffset%4 != 0) {
    859     TrialOffset += 2;
    860     TotalAdj += 2;
    861   }
    862 
    863   // In Thumb2 mode, later branch adjustments can shift instructions up and
    864   // cause alignment change. In the worst case scenario this can cause the
    865   // user's effective address to be subtracted by 2 and the CPE's address to
    866   // be plus 2.
    867   if (isThumb2 && TotalAdj != 4)
    868     MaxDisp -= (4 - TotalAdj);
    869 
    870   if (UserOffset <= TrialOffset) {
    871     // User before the Trial.
    872     if (TrialOffset - UserOffset <= MaxDisp)
    873       return true;
    874     // FIXME: Make use full range of soimm values.
    875   } else if (NegativeOK) {
    876     if (UserOffset - TrialOffset <= MaxDisp)
    877       return true;
    878     // FIXME: Make use full range of soimm values.
    879   }
    880   return false;
    881 }
    882 
    883 /// WaterIsInRange - Returns true if a CPE placed after the specified
    884 /// Water (a basic block) will be in range for the specific MI.
    885 
    886 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
    887                                         MachineBasicBlock* Water, CPUser &U) {
    888   unsigned MaxDisp = U.MaxDisp;
    889   unsigned CPEOffset = BBOffsets[Water->getNumber()] +
    890                        BBSizes[Water->getNumber()];
    891 
    892   // If the CPE is to be inserted before the instruction, that will raise
    893   // the offset of the instruction.
    894   if (CPEOffset < UserOffset)
    895     UserOffset += U.CPEMI->getOperand(2).getImm();
    896 
    897   return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
    898 }
    899 
    900 /// CPEIsInRange - Returns true if the distance between specific MI and
    901 /// specific ConstPool entry instruction can fit in MI's displacement field.
    902 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
    903                                       MachineInstr *CPEMI, unsigned MaxDisp,
    904                                       bool NegOk, bool DoDump) {
    905   unsigned CPEOffset  = GetOffsetOf(CPEMI);
    906   assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
    907 
    908   if (DoDump) {
    909     DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
    910                  << " max delta=" << MaxDisp
    911                  << " insn address=" << UserOffset
    912                  << " CPE address=" << CPEOffset
    913                  << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
    914   }
    915 
    916   return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
    917 }
    918 
    919 #ifndef NDEBUG
    920 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
    921 /// unconditionally branches to its only successor.
    922 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
    923   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    924     return false;
    925 
    926   MachineBasicBlock *Succ = *MBB->succ_begin();
    927   MachineBasicBlock *Pred = *MBB->pred_begin();
    928   MachineInstr *PredMI = &Pred->back();
    929   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
    930       || PredMI->getOpcode() == ARM::t2B)
    931     return PredMI->getOperand(0).getMBB() == Succ;
    932   return false;
    933 }
    934 #endif // NDEBUG
    935 
    936 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
    937                                               int delta) {
    938   MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
    939   for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
    940       i < e; ++i) {
    941     BBOffsets[i] += delta;
    942     // If some existing blocks have padding, adjust the padding as needed, a
    943     // bit tricky.  delta can be negative so don't use % on that.
    944     if (!isThumb)
    945       continue;
    946     MachineBasicBlock *MBB = MBBI;
    947     if (!MBB->empty() && !HasInlineAsm) {
    948       // Constant pool entries require padding.
    949       if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
    950         unsigned OldOffset = BBOffsets[i] - delta;
    951         if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
    952           // add new padding
    953           BBSizes[i] += 2;
    954           delta += 2;
    955         } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
    956           // remove existing padding
    957           BBSizes[i] -= 2;
    958           delta -= 2;
    959         }
    960       }
    961       // Thumb1 jump tables require padding.  They should be at the end;
    962       // following unconditional branches are removed by AnalyzeBranch.
    963       // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
    964       // table entries. So this code checks whether offset of tBR_JTr
    965       // is aligned; if it is, the offset of the jump table following the
    966       // instruction will not be aligned, and we need padding.
    967       MachineInstr *ThumbJTMI = prior(MBB->end());
    968       if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
    969         unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
    970         unsigned OldMIOffset = NewMIOffset - delta;
    971         if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
    972           // remove existing padding
    973           BBSizes[i] -= 2;
    974           delta -= 2;
    975         } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
    976           // add new padding
    977           BBSizes[i] += 2;
    978           delta += 2;
    979         }
    980       }
    981       if (delta==0)
    982         return;
    983     }
    984     MBBI = llvm::next(MBBI);
    985   }
    986 }
    987 
    988 /// DecrementOldEntry - find the constant pool entry with index CPI
    989 /// and instruction CPEMI, and decrement its refcount.  If the refcount
    990 /// becomes 0 remove the entry and instruction.  Returns true if we removed
    991 /// the entry, false if we didn't.
    992 
    993 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
    994   // Find the old entry. Eliminate it if it is no longer used.
    995   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
    996   assert(CPE && "Unexpected!");
    997   if (--CPE->RefCount == 0) {
    998     RemoveDeadCPEMI(CPEMI);
    999     CPE->CPEMI = NULL;
   1000     --NumCPEs;
   1001     return true;
   1002   }
   1003   return false;
   1004 }
   1005 
   1006 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1007 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1008 /// change the data structures so the user references the clone.  Returns:
   1009 /// 0 = no existing entry found
   1010 /// 1 = entry found, and there were no code insertions or deletions
   1011 /// 2 = entry found, and there were code insertions or deletions
   1012 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
   1013 {
   1014   MachineInstr *UserMI = U.MI;
   1015   MachineInstr *CPEMI  = U.CPEMI;
   1016 
   1017   // Check to see if the CPE is already in-range.
   1018   if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
   1019     DEBUG(errs() << "In range\n");
   1020     return 1;
   1021   }
   1022 
   1023   // No.  Look for previously created clones of the CPE that are in range.
   1024   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1025   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1026   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1027     // We already tried this one
   1028     if (CPEs[i].CPEMI == CPEMI)
   1029       continue;
   1030     // Removing CPEs can leave empty entries, skip
   1031     if (CPEs[i].CPEMI == NULL)
   1032       continue;
   1033     if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
   1034       DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
   1035                    << CPEs[i].CPI << "\n");
   1036       // Point the CPUser node to the replacement
   1037       U.CPEMI = CPEs[i].CPEMI;
   1038       // Change the CPI in the instruction operand to refer to the clone.
   1039       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1040         if (UserMI->getOperand(j).isCPI()) {
   1041           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1042           break;
   1043         }
   1044       // Adjust the refcount of the clone...
   1045       CPEs[i].RefCount++;
   1046       // ...and the original.  If we didn't remove the old entry, none of the
   1047       // addresses changed, so we don't need another pass.
   1048       return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
   1049     }
   1050   }
   1051   return 0;
   1052 }
   1053 
   1054 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
   1055 /// the specific unconditional branch instruction.
   1056 static inline unsigned getUnconditionalBrDisp(int Opc) {
   1057   switch (Opc) {
   1058   case ARM::tB:
   1059     return ((1<<10)-1)*2;
   1060   case ARM::t2B:
   1061     return ((1<<23)-1)*2;
   1062   default:
   1063     break;
   1064   }
   1065 
   1066   return ((1<<23)-1)*4;
   1067 }
   1068 
   1069 /// LookForWater - Look for an existing entry in the WaterList in which
   1070 /// we can place the CPE referenced from U so it's within range of U's MI.
   1071 /// Returns true if found, false if not.  If it returns true, WaterIter
   1072 /// is set to the WaterList entry.  For Thumb, prefer water that will not
   1073 /// introduce padding to water that will.  To ensure that this pass
   1074 /// terminates, the CPE location for a particular CPUser is only allowed to
   1075 /// move to a lower address, so search backward from the end of the list and
   1076 /// prefer the first water that is in range.
   1077 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
   1078                                       water_iterator &WaterIter) {
   1079   if (WaterList.empty())
   1080     return false;
   1081 
   1082   bool FoundWaterThatWouldPad = false;
   1083   water_iterator IPThatWouldPad;
   1084   for (water_iterator IP = prior(WaterList.end()),
   1085          B = WaterList.begin();; --IP) {
   1086     MachineBasicBlock* WaterBB = *IP;
   1087     // Check if water is in range and is either at a lower address than the
   1088     // current "high water mark" or a new water block that was created since
   1089     // the previous iteration by inserting an unconditional branch.  In the
   1090     // latter case, we want to allow resetting the high water mark back to
   1091     // this new water since we haven't seen it before.  Inserting branches
   1092     // should be relatively uncommon and when it does happen, we want to be
   1093     // sure to take advantage of it for all the CPEs near that block, so that
   1094     // we don't insert more branches than necessary.
   1095     if (WaterIsInRange(UserOffset, WaterBB, U) &&
   1096         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
   1097          NewWaterList.count(WaterBB))) {
   1098       unsigned WBBId = WaterBB->getNumber();
   1099       if (isThumb &&
   1100           (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
   1101         // This is valid Water, but would introduce padding.  Remember
   1102         // it in case we don't find any Water that doesn't do this.
   1103         if (!FoundWaterThatWouldPad) {
   1104           FoundWaterThatWouldPad = true;
   1105           IPThatWouldPad = IP;
   1106         }
   1107       } else {
   1108         WaterIter = IP;
   1109         return true;
   1110       }
   1111     }
   1112     if (IP == B)
   1113       break;
   1114   }
   1115   if (FoundWaterThatWouldPad) {
   1116     WaterIter = IPThatWouldPad;
   1117     return true;
   1118   }
   1119   return false;
   1120 }
   1121 
   1122 /// CreateNewWater - No existing WaterList entry will work for
   1123 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
   1124 /// block is used if in range, and the conditional branch munged so control
   1125 /// flow is correct.  Otherwise the block is split to create a hole with an
   1126 /// unconditional branch around it.  In either case NewMBB is set to a
   1127 /// block following which the new island can be inserted (the WaterList
   1128 /// is not adjusted).
   1129 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
   1130                                         unsigned UserOffset,
   1131                                         MachineBasicBlock *&NewMBB) {
   1132   CPUser &U = CPUsers[CPUserIndex];
   1133   MachineInstr *UserMI = U.MI;
   1134   MachineInstr *CPEMI  = U.CPEMI;
   1135   MachineBasicBlock *UserMBB = UserMI->getParent();
   1136   unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
   1137                                BBSizes[UserMBB->getNumber()];
   1138   assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
   1139 
   1140   // If the block does not end in an unconditional branch already, and if the
   1141   // end of the block is within range, make new water there.  (The addition
   1142   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
   1143   // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
   1144   // inside OffsetIsInRange.
   1145   if (BBHasFallthrough(UserMBB) &&
   1146       OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
   1147                       U.MaxDisp, U.NegOk, U.IsSoImm)) {
   1148     DEBUG(errs() << "Split at end of block\n");
   1149     if (&UserMBB->back() == UserMI)
   1150       assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
   1151     NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
   1152     // Add an unconditional branch from UserMBB to fallthrough block.
   1153     // Record it for branch lengthening; this new branch will not get out of
   1154     // range, but if the preceding conditional branch is out of range, the
   1155     // targets will be exchanged, and the altered branch may be out of
   1156     // range, so the machinery has to know about it.
   1157     int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
   1158     if (!isThumb)
   1159       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
   1160     else
   1161       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
   1162               .addImm(ARMCC::AL).addReg(0);
   1163     unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
   1164     ImmBranches.push_back(ImmBranch(&UserMBB->back(),
   1165                           MaxDisp, false, UncondBr));
   1166     int delta = isThumb1 ? 2 : 4;
   1167     BBSizes[UserMBB->getNumber()] += delta;
   1168     AdjustBBOffsetsAfter(UserMBB, delta);
   1169   } else {
   1170     // What a big block.  Find a place within the block to split it.
   1171     // This is a little tricky on Thumb1 since instructions are 2 bytes
   1172     // and constant pool entries are 4 bytes: if instruction I references
   1173     // island CPE, and instruction I+1 references CPE', it will
   1174     // not work well to put CPE as far forward as possible, since then
   1175     // CPE' cannot immediately follow it (that location is 2 bytes
   1176     // farther away from I+1 than CPE was from I) and we'd need to create
   1177     // a new island.  So, we make a first guess, then walk through the
   1178     // instructions between the one currently being looked at and the
   1179     // possible insertion point, and make sure any other instructions
   1180     // that reference CPEs will be able to use the same island area;
   1181     // if not, we back up the insertion point.
   1182 
   1183     // The 4 in the following is for the unconditional branch we'll be
   1184     // inserting (allows for long branch on Thumb1).  Alignment of the
   1185     // island is handled inside OffsetIsInRange.
   1186     unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
   1187     // This could point off the end of the block if we've already got
   1188     // constant pool entries following this block; only the last one is
   1189     // in the water list.  Back past any possible branches (allow for a
   1190     // conditional and a maximally long unconditional).
   1191     if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
   1192       BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
   1193                               (isThumb1 ? 6 : 8);
   1194     unsigned EndInsertOffset = BaseInsertOffset +
   1195            CPEMI->getOperand(2).getImm();
   1196     MachineBasicBlock::iterator MI = UserMI;
   1197     ++MI;
   1198     unsigned CPUIndex = CPUserIndex+1;
   1199     unsigned NumCPUsers = CPUsers.size();
   1200     MachineInstr *LastIT = 0;
   1201     for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
   1202          Offset < BaseInsertOffset;
   1203          Offset += TII->GetInstSizeInBytes(MI),
   1204            MI = llvm::next(MI)) {
   1205       if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
   1206         CPUser &U = CPUsers[CPUIndex];
   1207         if (!OffsetIsInRange(Offset, EndInsertOffset,
   1208                              U.MaxDisp, U.NegOk, U.IsSoImm)) {
   1209           BaseInsertOffset -= (isThumb1 ? 2 : 4);
   1210           EndInsertOffset  -= (isThumb1 ? 2 : 4);
   1211         }
   1212         // This is overly conservative, as we don't account for CPEMIs
   1213         // being reused within the block, but it doesn't matter much.
   1214         EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
   1215         CPUIndex++;
   1216       }
   1217 
   1218       // Remember the last IT instruction.
   1219       if (MI->getOpcode() == ARM::t2IT)
   1220         LastIT = MI;
   1221     }
   1222 
   1223     DEBUG(errs() << "Split in middle of big block\n");
   1224     --MI;
   1225 
   1226     // Avoid splitting an IT block.
   1227     if (LastIT) {
   1228       unsigned PredReg = 0;
   1229       ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg);
   1230       if (CC != ARMCC::AL)
   1231         MI = LastIT;
   1232     }
   1233     NewMBB = SplitBlockBeforeInstr(MI);
   1234   }
   1235 }
   1236 
   1237 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
   1238 /// is out-of-range.  If so, pick up the constant pool value and move it some
   1239 /// place in-range.  Return true if we changed any addresses (thus must run
   1240 /// another pass of branch lengthening), false otherwise.
   1241 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
   1242                                                 unsigned CPUserIndex) {
   1243   CPUser &U = CPUsers[CPUserIndex];
   1244   MachineInstr *UserMI = U.MI;
   1245   MachineInstr *CPEMI  = U.CPEMI;
   1246   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1247   unsigned Size = CPEMI->getOperand(2).getImm();
   1248   // Compute this only once, it's expensive.  The 4 or 8 is the value the
   1249   // hardware keeps in the PC.
   1250   unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
   1251 
   1252   // See if the current entry is within range, or there is a clone of it
   1253   // in range.
   1254   int result = LookForExistingCPEntry(U, UserOffset);
   1255   if (result==1) return false;
   1256   else if (result==2) return true;
   1257 
   1258   // No existing clone of this CPE is within range.
   1259   // We will be generating a new clone.  Get a UID for it.
   1260   unsigned ID = AFI->createPICLabelUId();
   1261 
   1262   // Look for water where we can place this CPE.
   1263   MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
   1264   MachineBasicBlock *NewMBB;
   1265   water_iterator IP;
   1266   if (LookForWater(U, UserOffset, IP)) {
   1267     DEBUG(errs() << "found water in range\n");
   1268     MachineBasicBlock *WaterBB = *IP;
   1269 
   1270     // If the original WaterList entry was "new water" on this iteration,
   1271     // propagate that to the new island.  This is just keeping NewWaterList
   1272     // updated to match the WaterList, which will be updated below.
   1273     if (NewWaterList.count(WaterBB)) {
   1274       NewWaterList.erase(WaterBB);
   1275       NewWaterList.insert(NewIsland);
   1276     }
   1277     // The new CPE goes before the following block (NewMBB).
   1278     NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
   1279 
   1280   } else {
   1281     // No water found.
   1282     DEBUG(errs() << "No water found\n");
   1283     CreateNewWater(CPUserIndex, UserOffset, NewMBB);
   1284 
   1285     // SplitBlockBeforeInstr adds to WaterList, which is important when it is
   1286     // called while handling branches so that the water will be seen on the
   1287     // next iteration for constant pools, but in this context, we don't want
   1288     // it.  Check for this so it will be removed from the WaterList.
   1289     // Also remove any entry from NewWaterList.
   1290     MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
   1291     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
   1292     if (IP != WaterList.end())
   1293       NewWaterList.erase(WaterBB);
   1294 
   1295     // We are adding new water.  Update NewWaterList.
   1296     NewWaterList.insert(NewIsland);
   1297   }
   1298 
   1299   // Remove the original WaterList entry; we want subsequent insertions in
   1300   // this vicinity to go after the one we're about to insert.  This
   1301   // considerably reduces the number of times we have to move the same CPE
   1302   // more than once and is also important to ensure the algorithm terminates.
   1303   if (IP != WaterList.end())
   1304     WaterList.erase(IP);
   1305 
   1306   // Okay, we know we can put an island before NewMBB now, do it!
   1307   MF.insert(NewMBB, NewIsland);
   1308 
   1309   // Update internal data structures to account for the newly inserted MBB.
   1310   UpdateForInsertedWaterBlock(NewIsland);
   1311 
   1312   // Decrement the old entry, and remove it if refcount becomes 0.
   1313   DecrementOldEntry(CPI, CPEMI);
   1314 
   1315   // Now that we have an island to add the CPE to, clone the original CPE and
   1316   // add it to the island.
   1317   U.HighWaterMark = NewIsland;
   1318   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
   1319                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
   1320   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
   1321   ++NumCPEs;
   1322 
   1323   BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
   1324   // Compensate for .align 2 in thumb mode.
   1325   if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm))
   1326     Size += 2;
   1327   // Increase the size of the island block to account for the new entry.
   1328   BBSizes[NewIsland->getNumber()] += Size;
   1329   AdjustBBOffsetsAfter(NewIsland, Size);
   1330 
   1331   // Finally, change the CPI in the instruction operand to be ID.
   1332   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
   1333     if (UserMI->getOperand(i).isCPI()) {
   1334       UserMI->getOperand(i).setIndex(ID);
   1335       break;
   1336     }
   1337 
   1338   DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
   1339            << '\t' << *UserMI);
   1340 
   1341   return true;
   1342 }
   1343 
   1344 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
   1345 /// sizes and offsets of impacted basic blocks.
   1346 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
   1347   MachineBasicBlock *CPEBB = CPEMI->getParent();
   1348   unsigned Size = CPEMI->getOperand(2).getImm();
   1349   CPEMI->eraseFromParent();
   1350   BBSizes[CPEBB->getNumber()] -= Size;
   1351   // All succeeding offsets have the current size value added in, fix this.
   1352   if (CPEBB->empty()) {
   1353     // In thumb1 mode, the size of island may be padded by two to compensate for
   1354     // the alignment requirement.  Then it will now be 2 when the block is
   1355     // empty, so fix this.
   1356     // All succeeding offsets have the current size value added in, fix this.
   1357     if (BBSizes[CPEBB->getNumber()] != 0) {
   1358       Size += BBSizes[CPEBB->getNumber()];
   1359       BBSizes[CPEBB->getNumber()] = 0;
   1360     }
   1361   }
   1362   AdjustBBOffsetsAfter(CPEBB, -Size);
   1363   // An island has only one predecessor BB and one successor BB. Check if
   1364   // this BB's predecessor jumps directly to this BB's successor. This
   1365   // shouldn't happen currently.
   1366   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
   1367   // FIXME: remove the empty blocks after all the work is done?
   1368 }
   1369 
   1370 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
   1371 /// are zero.
   1372 bool ARMConstantIslands::RemoveUnusedCPEntries() {
   1373   unsigned MadeChange = false;
   1374   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
   1375       std::vector<CPEntry> &CPEs = CPEntries[i];
   1376       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
   1377         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
   1378           RemoveDeadCPEMI(CPEs[j].CPEMI);
   1379           CPEs[j].CPEMI = NULL;
   1380           MadeChange = true;
   1381         }
   1382       }
   1383   }
   1384   return MadeChange;
   1385 }
   1386 
   1387 /// BBIsInRange - Returns true if the distance between specific MI and
   1388 /// specific BB can fit in MI's displacement field.
   1389 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
   1390                                      unsigned MaxDisp) {
   1391   unsigned PCAdj      = isThumb ? 4 : 8;
   1392   unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
   1393   unsigned DestOffset = BBOffsets[DestBB->getNumber()];
   1394 
   1395   DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
   1396                << " from BB#" << MI->getParent()->getNumber()
   1397                << " max delta=" << MaxDisp
   1398                << " from " << GetOffsetOf(MI) << " to " << DestOffset
   1399                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
   1400 
   1401   if (BrOffset <= DestOffset) {
   1402     // Branch before the Dest.
   1403     if (DestOffset-BrOffset <= MaxDisp)
   1404       return true;
   1405   } else {
   1406     if (BrOffset-DestOffset <= MaxDisp)
   1407       return true;
   1408   }
   1409   return false;
   1410 }
   1411 
   1412 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
   1413 /// away to fit in its displacement field.
   1414 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
   1415   MachineInstr *MI = Br.MI;
   1416   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1417 
   1418   // Check to see if the DestBB is already in-range.
   1419   if (BBIsInRange(MI, DestBB, Br.MaxDisp))
   1420     return false;
   1421 
   1422   if (!Br.isCond)
   1423     return FixUpUnconditionalBr(MF, Br);
   1424   return FixUpConditionalBr(MF, Br);
   1425 }
   1426 
   1427 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
   1428 /// too far away to fit in its displacement field. If the LR register has been
   1429 /// spilled in the epilogue, then we can use BL to implement a far jump.
   1430 /// Otherwise, add an intermediate branch instruction to a branch.
   1431 bool
   1432 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
   1433   MachineInstr *MI = Br.MI;
   1434   MachineBasicBlock *MBB = MI->getParent();
   1435   if (!isThumb1)
   1436     llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
   1437 
   1438   // Use BL to implement far jump.
   1439   Br.MaxDisp = (1 << 21) * 2;
   1440   MI->setDesc(TII->get(ARM::tBfar));
   1441   BBSizes[MBB->getNumber()] += 2;
   1442   AdjustBBOffsetsAfter(MBB, 2);
   1443   HasFarJump = true;
   1444   ++NumUBrFixed;
   1445 
   1446   DEBUG(errs() << "  Changed B to long jump " << *MI);
   1447 
   1448   return true;
   1449 }
   1450 
   1451 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
   1452 /// far away to fit in its displacement field. It is converted to an inverse
   1453 /// conditional branch + an unconditional branch to the destination.
   1454 bool
   1455 ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
   1456   MachineInstr *MI = Br.MI;
   1457   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1458 
   1459   // Add an unconditional branch to the destination and invert the branch
   1460   // condition to jump over it:
   1461   // blt L1
   1462   // =>
   1463   // bge L2
   1464   // b   L1
   1465   // L2:
   1466   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
   1467   CC = ARMCC::getOppositeCondition(CC);
   1468   unsigned CCReg = MI->getOperand(2).getReg();
   1469 
   1470   // If the branch is at the end of its MBB and that has a fall-through block,
   1471   // direct the updated conditional branch to the fall-through block. Otherwise,
   1472   // split the MBB before the next instruction.
   1473   MachineBasicBlock *MBB = MI->getParent();
   1474   MachineInstr *BMI = &MBB->back();
   1475   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
   1476 
   1477   ++NumCBrFixed;
   1478   if (BMI != MI) {
   1479     if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
   1480         BMI->getOpcode() == Br.UncondBr) {
   1481       // Last MI in the BB is an unconditional branch. Can we simply invert the
   1482       // condition and swap destinations:
   1483       // beq L1
   1484       // b   L2
   1485       // =>
   1486       // bne L2
   1487       // b   L1
   1488       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
   1489       if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
   1490         DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
   1491                      << *BMI);
   1492         BMI->getOperand(0).setMBB(DestBB);
   1493         MI->getOperand(0).setMBB(NewDest);
   1494         MI->getOperand(1).setImm(CC);
   1495         return true;
   1496       }
   1497     }
   1498   }
   1499 
   1500   if (NeedSplit) {
   1501     SplitBlockBeforeInstr(MI);
   1502     // No need for the branch to the next block. We're adding an unconditional
   1503     // branch to the destination.
   1504     int delta = TII->GetInstSizeInBytes(&MBB->back());
   1505     BBSizes[MBB->getNumber()] -= delta;
   1506     MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
   1507     AdjustBBOffsetsAfter(SplitBB, -delta);
   1508     MBB->back().eraseFromParent();
   1509     // BBOffsets[SplitBB] is wrong temporarily, fixed below
   1510   }
   1511   MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
   1512 
   1513   DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
   1514                << " also invert condition and change dest. to BB#"
   1515                << NextBB->getNumber() << "\n");
   1516 
   1517   // Insert a new conditional branch and a new unconditional branch.
   1518   // Also update the ImmBranch as well as adding a new entry for the new branch.
   1519   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
   1520     .addMBB(NextBB).addImm(CC).addReg(CCReg);
   1521   Br.MI = &MBB->back();
   1522   BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
   1523   if (isThumb)
   1524     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
   1525             .addImm(ARMCC::AL).addReg(0);
   1526   else
   1527     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
   1528   BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
   1529   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
   1530   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
   1531 
   1532   // Remove the old conditional branch.  It may or may not still be in MBB.
   1533   BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
   1534   MI->eraseFromParent();
   1535 
   1536   // The net size change is an addition of one unconditional branch.
   1537   int delta = TII->GetInstSizeInBytes(&MBB->back());
   1538   AdjustBBOffsetsAfter(MBB, delta);
   1539   return true;
   1540 }
   1541 
   1542 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
   1543 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
   1544 /// to do this if tBfar is not used.
   1545 bool ARMConstantIslands::UndoLRSpillRestore() {
   1546   bool MadeChange = false;
   1547   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
   1548     MachineInstr *MI = PushPopMIs[i];
   1549     // First two operands are predicates.
   1550     if (MI->getOpcode() == ARM::tPOP_RET &&
   1551         MI->getOperand(2).getReg() == ARM::PC &&
   1552         MI->getNumExplicitOperands() == 3) {
   1553       // Create the new insn and copy the predicate from the old.
   1554       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
   1555         .addOperand(MI->getOperand(0))
   1556         .addOperand(MI->getOperand(1));
   1557       MI->eraseFromParent();
   1558       MadeChange = true;
   1559     }
   1560   }
   1561   return MadeChange;
   1562 }
   1563 
   1564 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
   1565   bool MadeChange = false;
   1566 
   1567   // Shrink ADR and LDR from constantpool.
   1568   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
   1569     CPUser &U = CPUsers[i];
   1570     unsigned Opcode = U.MI->getOpcode();
   1571     unsigned NewOpc = 0;
   1572     unsigned Scale = 1;
   1573     unsigned Bits = 0;
   1574     switch (Opcode) {
   1575     default: break;
   1576     case ARM::t2LEApcrel:
   1577       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1578         NewOpc = ARM::tLEApcrel;
   1579         Bits = 8;
   1580         Scale = 4;
   1581       }
   1582       break;
   1583     case ARM::t2LDRpci:
   1584       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1585         NewOpc = ARM::tLDRpci;
   1586         Bits = 8;
   1587         Scale = 4;
   1588       }
   1589       break;
   1590     }
   1591 
   1592     if (!NewOpc)
   1593       continue;
   1594 
   1595     unsigned UserOffset = GetOffsetOf(U.MI) + 4;
   1596     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
   1597     // FIXME: Check if offset is multiple of scale if scale is not 4.
   1598     if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
   1599       U.MI->setDesc(TII->get(NewOpc));
   1600       MachineBasicBlock *MBB = U.MI->getParent();
   1601       BBSizes[MBB->getNumber()] -= 2;
   1602       AdjustBBOffsetsAfter(MBB, -2);
   1603       ++NumT2CPShrunk;
   1604       MadeChange = true;
   1605     }
   1606   }
   1607 
   1608   MadeChange |= OptimizeThumb2Branches(MF);
   1609   MadeChange |= OptimizeThumb2JumpTables(MF);
   1610   return MadeChange;
   1611 }
   1612 
   1613 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
   1614   bool MadeChange = false;
   1615 
   1616   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
   1617     ImmBranch &Br = ImmBranches[i];
   1618     unsigned Opcode = Br.MI->getOpcode();
   1619     unsigned NewOpc = 0;
   1620     unsigned Scale = 1;
   1621     unsigned Bits = 0;
   1622     switch (Opcode) {
   1623     default: break;
   1624     case ARM::t2B:
   1625       NewOpc = ARM::tB;
   1626       Bits = 11;
   1627       Scale = 2;
   1628       break;
   1629     case ARM::t2Bcc: {
   1630       NewOpc = ARM::tBcc;
   1631       Bits = 8;
   1632       Scale = 2;
   1633       break;
   1634     }
   1635     }
   1636     if (NewOpc) {
   1637       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
   1638       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1639       if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
   1640         Br.MI->setDesc(TII->get(NewOpc));
   1641         MachineBasicBlock *MBB = Br.MI->getParent();
   1642         BBSizes[MBB->getNumber()] -= 2;
   1643         AdjustBBOffsetsAfter(MBB, -2);
   1644         ++NumT2BrShrunk;
   1645         MadeChange = true;
   1646       }
   1647     }
   1648 
   1649     Opcode = Br.MI->getOpcode();
   1650     if (Opcode != ARM::tBcc)
   1651       continue;
   1652 
   1653     NewOpc = 0;
   1654     unsigned PredReg = 0;
   1655     ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
   1656     if (Pred == ARMCC::EQ)
   1657       NewOpc = ARM::tCBZ;
   1658     else if (Pred == ARMCC::NE)
   1659       NewOpc = ARM::tCBNZ;
   1660     if (!NewOpc)
   1661       continue;
   1662     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1663     // Check if the distance is within 126. Subtract starting offset by 2
   1664     // because the cmp will be eliminated.
   1665     unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
   1666     unsigned DestOffset = BBOffsets[DestBB->getNumber()];
   1667     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
   1668       MachineBasicBlock::iterator CmpMI = Br.MI;
   1669       if (CmpMI != Br.MI->getParent()->begin()) {
   1670         --CmpMI;
   1671         if (CmpMI->getOpcode() == ARM::tCMPi8) {
   1672           unsigned Reg = CmpMI->getOperand(0).getReg();
   1673           Pred = llvm::getInstrPredicate(CmpMI, PredReg);
   1674           if (Pred == ARMCC::AL &&
   1675               CmpMI->getOperand(1).getImm() == 0 &&
   1676               isARMLowRegister(Reg)) {
   1677             MachineBasicBlock *MBB = Br.MI->getParent();
   1678             MachineInstr *NewBR =
   1679               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
   1680               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
   1681             CmpMI->eraseFromParent();
   1682             Br.MI->eraseFromParent();
   1683             Br.MI = NewBR;
   1684             BBSizes[MBB->getNumber()] -= 2;
   1685             AdjustBBOffsetsAfter(MBB, -2);
   1686             ++NumCBZ;
   1687             MadeChange = true;
   1688           }
   1689         }
   1690       }
   1691     }
   1692   }
   1693 
   1694   return MadeChange;
   1695 }
   1696 
   1697 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
   1698 /// jumptables when it's possible.
   1699 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
   1700   bool MadeChange = false;
   1701 
   1702   // FIXME: After the tables are shrunk, can we get rid some of the
   1703   // constantpool tables?
   1704   MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
   1705   if (MJTI == 0) return false;
   1706 
   1707   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1708   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   1709     MachineInstr *MI = T2JumpTables[i];
   1710     const MCInstrDesc &MCID = MI->getDesc();
   1711     unsigned NumOps = MCID.getNumOperands();
   1712     unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
   1713     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   1714     unsigned JTI = JTOP.getIndex();
   1715     assert(JTI < JT.size());
   1716 
   1717     bool ByteOk = true;
   1718     bool HalfWordOk = true;
   1719     unsigned JTOffset = GetOffsetOf(MI) + 4;
   1720     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1721     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   1722       MachineBasicBlock *MBB = JTBBs[j];
   1723       unsigned DstOffset = BBOffsets[MBB->getNumber()];
   1724       // Negative offset is not ok. FIXME: We should change BB layout to make
   1725       // sure all the branches are forward.
   1726       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
   1727         ByteOk = false;
   1728       unsigned TBHLimit = ((1<<16)-1)*2;
   1729       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
   1730         HalfWordOk = false;
   1731       if (!ByteOk && !HalfWordOk)
   1732         break;
   1733     }
   1734 
   1735     if (ByteOk || HalfWordOk) {
   1736       MachineBasicBlock *MBB = MI->getParent();
   1737       unsigned BaseReg = MI->getOperand(0).getReg();
   1738       bool BaseRegKill = MI->getOperand(0).isKill();
   1739       if (!BaseRegKill)
   1740         continue;
   1741       unsigned IdxReg = MI->getOperand(1).getReg();
   1742       bool IdxRegKill = MI->getOperand(1).isKill();
   1743 
   1744       // Scan backwards to find the instruction that defines the base
   1745       // register. Due to post-RA scheduling, we can't count on it
   1746       // immediately preceding the branch instruction.
   1747       MachineBasicBlock::iterator PrevI = MI;
   1748       MachineBasicBlock::iterator B = MBB->begin();
   1749       while (PrevI != B && !PrevI->definesRegister(BaseReg))
   1750         --PrevI;
   1751 
   1752       // If for some reason we didn't find it, we can't do anything, so
   1753       // just skip this one.
   1754       if (!PrevI->definesRegister(BaseReg))
   1755         continue;
   1756 
   1757       MachineInstr *AddrMI = PrevI;
   1758       bool OptOk = true;
   1759       // Examine the instruction that calculates the jumptable entry address.
   1760       // Make sure it only defines the base register and kills any uses
   1761       // other than the index register.
   1762       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
   1763         const MachineOperand &MO = AddrMI->getOperand(k);
   1764         if (!MO.isReg() || !MO.getReg())
   1765           continue;
   1766         if (MO.isDef() && MO.getReg() != BaseReg) {
   1767           OptOk = false;
   1768           break;
   1769         }
   1770         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
   1771           OptOk = false;
   1772           break;
   1773         }
   1774       }
   1775       if (!OptOk)
   1776         continue;
   1777 
   1778       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
   1779       // that gave us the initial base register definition.
   1780       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
   1781         ;
   1782 
   1783       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
   1784       // to delete it as well.
   1785       MachineInstr *LeaMI = PrevI;
   1786       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
   1787            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
   1788           LeaMI->getOperand(0).getReg() != BaseReg)
   1789         OptOk = false;
   1790 
   1791       if (!OptOk)
   1792         continue;
   1793 
   1794       unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
   1795       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
   1796         .addReg(IdxReg, getKillRegState(IdxRegKill))
   1797         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
   1798         .addImm(MI->getOperand(JTOpIdx+1).getImm());
   1799       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
   1800       // is 2-byte aligned. For now, asm printer will fix it up.
   1801       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
   1802       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
   1803       OrigSize += TII->GetInstSizeInBytes(LeaMI);
   1804       OrigSize += TII->GetInstSizeInBytes(MI);
   1805 
   1806       AddrMI->eraseFromParent();
   1807       LeaMI->eraseFromParent();
   1808       MI->eraseFromParent();
   1809 
   1810       int delta = OrigSize - NewSize;
   1811       BBSizes[MBB->getNumber()] -= delta;
   1812       AdjustBBOffsetsAfter(MBB, -delta);
   1813 
   1814       ++NumTBs;
   1815       MadeChange = true;
   1816     }
   1817   }
   1818 
   1819   return MadeChange;
   1820 }
   1821 
   1822 /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
   1823 /// jump tables always branch forwards, since that's what tbb and tbh need.
   1824 bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
   1825   bool MadeChange = false;
   1826 
   1827   MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
   1828   if (MJTI == 0) return false;
   1829 
   1830   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1831   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   1832     MachineInstr *MI = T2JumpTables[i];
   1833     const MCInstrDesc &MCID = MI->getDesc();
   1834     unsigned NumOps = MCID.getNumOperands();
   1835     unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
   1836     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   1837     unsigned JTI = JTOP.getIndex();
   1838     assert(JTI < JT.size());
   1839 
   1840     // We prefer if target blocks for the jump table come after the jump
   1841     // instruction so we can use TB[BH]. Loop through the target blocks
   1842     // and try to adjust them such that that's true.
   1843     int JTNumber = MI->getParent()->getNumber();
   1844     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1845     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   1846       MachineBasicBlock *MBB = JTBBs[j];
   1847       int DTNumber = MBB->getNumber();
   1848 
   1849       if (DTNumber < JTNumber) {
   1850         // The destination precedes the switch. Try to move the block forward
   1851         // so we have a positive offset.
   1852         MachineBasicBlock *NewBB =
   1853           AdjustJTTargetBlockForward(MBB, MI->getParent());
   1854         if (NewBB)
   1855           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
   1856         MadeChange = true;
   1857       }
   1858     }
   1859   }
   1860 
   1861   return MadeChange;
   1862 }
   1863 
   1864 MachineBasicBlock *ARMConstantIslands::
   1865 AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
   1866 {
   1867   MachineFunction &MF = *BB->getParent();
   1868 
   1869   // If the destination block is terminated by an unconditional branch,
   1870   // try to move it; otherwise, create a new block following the jump
   1871   // table that branches back to the actual target. This is a very simple
   1872   // heuristic. FIXME: We can definitely improve it.
   1873   MachineBasicBlock *TBB = 0, *FBB = 0;
   1874   SmallVector<MachineOperand, 4> Cond;
   1875   SmallVector<MachineOperand, 4> CondPrior;
   1876   MachineFunction::iterator BBi = BB;
   1877   MachineFunction::iterator OldPrior = prior(BBi);
   1878 
   1879   // If the block terminator isn't analyzable, don't try to move the block
   1880   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
   1881 
   1882   // If the block ends in an unconditional branch, move it. The prior block
   1883   // has to have an analyzable terminator for us to move this one. Be paranoid
   1884   // and make sure we're not trying to move the entry block of the function.
   1885   if (!B && Cond.empty() && BB != MF.begin() &&
   1886       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
   1887     BB->moveAfter(JTBB);
   1888     OldPrior->updateTerminator();
   1889     BB->updateTerminator();
   1890     // Update numbering to account for the block being moved.
   1891     MF.RenumberBlocks();
   1892     ++NumJTMoved;
   1893     return NULL;
   1894   }
   1895 
   1896   // Create a new MBB for the code after the jump BB.
   1897   MachineBasicBlock *NewBB =
   1898     MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
   1899   MachineFunction::iterator MBBI = JTBB; ++MBBI;
   1900   MF.insert(MBBI, NewBB);
   1901 
   1902   // Add an unconditional branch from NewBB to BB.
   1903   // There doesn't seem to be meaningful DebugInfo available; this doesn't
   1904   // correspond directly to anything in the source.
   1905   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
   1906   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
   1907           .addImm(ARMCC::AL).addReg(0);
   1908 
   1909   // Update internal data structures to account for the newly inserted MBB.
   1910   MF.RenumberBlocks(NewBB);
   1911 
   1912   // Update the CFG.
   1913   NewBB->addSuccessor(BB);
   1914   JTBB->removeSuccessor(BB);
   1915   JTBB->addSuccessor(NewBB);
   1916 
   1917   ++NumJTInserted;
   1918   return NewBB;
   1919 }
   1920