Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file includes support code use by SelectionDAGBuilder when lowering a
     11 // statepoint sequence in SelectionDAG IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "StatepointLowering.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     20 #include "llvm/CodeGen/MachineFrameInfo.h"
     21 #include "llvm/CodeGen/GCMetadata.h"
     22 #include "llvm/CodeGen/GCStrategy.h"
     23 #include "llvm/CodeGen/SelectionDAG.h"
     24 #include "llvm/CodeGen/StackMaps.h"
     25 #include "llvm/IR/CallingConv.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/Statepoint.h"
     30 #include "llvm/Target/TargetLowering.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 #define DEBUG_TYPE "statepoint-lowering"
     35 
     36 STATISTIC(NumSlotsAllocatedForStatepoints,
     37           "Number of stack slots allocated for statepoints");
     38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
     39 STATISTIC(StatepointMaxSlotsRequired,
     40           "Maximum number of stack slots required for a singe statepoint");
     41 
     42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
     43                                  SelectionDAGBuilder &Builder, uint64_t Value) {
     44   SDLoc L = Builder.getCurSDLoc();
     45   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
     46                                               MVT::i64));
     47   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
     48 }
     49 
     50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
     51   // Consistency check
     52   assert(PendingGCRelocateCalls.empty() &&
     53          "Trying to visit statepoint before finished processing previous one");
     54   Locations.clear();
     55   NextSlotToAllocate = 0;
     56   // Need to resize this on each safepoint - we need the two to stay in sync and
     57   // the clear patterns of a SelectionDAGBuilder have no relation to
     58   // FunctionLoweringInfo.  SmallBitVector::reset initializes all bits to false.
     59   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
     60 }
     61 
     62 void StatepointLoweringState::clear() {
     63   Locations.clear();
     64   AllocatedStackSlots.clear();
     65   assert(PendingGCRelocateCalls.empty() &&
     66          "cleared before statepoint sequence completed");
     67 }
     68 
     69 SDValue
     70 StatepointLoweringState::allocateStackSlot(EVT ValueType,
     71                                            SelectionDAGBuilder &Builder) {
     72   NumSlotsAllocatedForStatepoints++;
     73   auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
     74 
     75   unsigned SpillSize = ValueType.getSizeInBits() / 8;
     76   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
     77 
     78   // First look for a previously created stack slot which is not in
     79   // use (accounting for the fact arbitrary slots may already be
     80   // reserved), or to create a new stack slot and use it.
     81 
     82   const size_t NumSlots = AllocatedStackSlots.size();
     83   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
     84 
     85   // The stack slots in StatepointStackSlots beyond the first NumSlots were
     86   // added in this instance of StatepointLoweringState, and cannot be re-used.
     87   assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() &&
     88          "Broken invariant");
     89 
     90   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
     91     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
     92       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
     93       if (MFI->getObjectSize(FI) == SpillSize) {
     94         AllocatedStackSlots.set(NextSlotToAllocate);
     95         return Builder.DAG.getFrameIndex(FI, ValueType);
     96       }
     97     }
     98   }
     99 
    100   // Couldn't find a free slot, so create a new one:
    101 
    102   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
    103   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
    104   MFI->markAsStatepointSpillSlotObjectIndex(FI);
    105 
    106   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
    107 
    108   StatepointMaxSlotsRequired = std::max<unsigned long>(
    109       StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size());
    110 
    111   return SpillSlot;
    112 }
    113 
    114 /// Utility function for reservePreviousStackSlotForValue. Tries to find
    115 /// stack slot index to which we have spilled value for previous statepoints.
    116 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
    117 static Optional<int> findPreviousSpillSlot(const Value *Val,
    118                                            SelectionDAGBuilder &Builder,
    119                                            int LookUpDepth) {
    120   // Can not look any further - give up now
    121   if (LookUpDepth <= 0)
    122     return None;
    123 
    124   // Spill location is known for gc relocates
    125   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
    126     const auto &SpillMap =
    127         Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
    128 
    129     auto It = SpillMap.find(Relocate->getDerivedPtr());
    130     if (It == SpillMap.end())
    131       return None;
    132 
    133     return It->second;
    134   }
    135 
    136   // Look through bitcast instructions.
    137   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
    138     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
    139 
    140   // Look through phi nodes
    141   // All incoming values should have same known stack slot, otherwise result
    142   // is unknown.
    143   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
    144     Optional<int> MergedResult = None;
    145 
    146     for (auto &IncomingValue : Phi->incoming_values()) {
    147       Optional<int> SpillSlot =
    148           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
    149       if (!SpillSlot.hasValue())
    150         return None;
    151 
    152       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
    153         return None;
    154 
    155       MergedResult = SpillSlot;
    156     }
    157     return MergedResult;
    158   }
    159 
    160   // TODO: We can do better for PHI nodes. In cases like this:
    161   //   ptr = phi(relocated_pointer, not_relocated_pointer)
    162   //   statepoint(ptr)
    163   // We will return that stack slot for ptr is unknown. And later we might
    164   // assign different stack slots for ptr and relocated_pointer. This limits
    165   // llvm's ability to remove redundant stores.
    166   // Unfortunately it's hard to accomplish in current infrastructure.
    167   // We use this function to eliminate spill store completely, while
    168   // in example we still need to emit store, but instead of any location
    169   // we need to use special "preferred" location.
    170 
    171   // TODO: handle simple updates.  If a value is modified and the original
    172   // value is no longer live, it would be nice to put the modified value in the
    173   // same slot.  This allows folding of the memory accesses for some
    174   // instructions types (like an increment).
    175   //   statepoint (i)
    176   //   i1 = i+1
    177   //   statepoint (i1)
    178   // However we need to be careful for cases like this:
    179   //   statepoint(i)
    180   //   i1 = i+1
    181   //   statepoint(i, i1)
    182   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
    183   // put handling of simple modifications in this function like it's done
    184   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
    185   // which we visit values is unspecified.
    186 
    187   // Don't know any information about this instruction
    188   return None;
    189 }
    190 
    191 /// Try to find existing copies of the incoming values in stack slots used for
    192 /// statepoint spilling.  If we can find a spill slot for the incoming value,
    193 /// mark that slot as allocated, and reuse the same slot for this safepoint.
    194 /// This helps to avoid series of loads and stores that only serve to reshuffle
    195 /// values on the stack between calls.
    196 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
    197                                              SelectionDAGBuilder &Builder) {
    198 
    199   SDValue Incoming = Builder.getValue(IncomingValue);
    200 
    201   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
    202     // We won't need to spill this, so no need to check for previously
    203     // allocated stack slots
    204     return;
    205   }
    206 
    207   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
    208   if (OldLocation.getNode())
    209     // Duplicates in input
    210     return;
    211 
    212   const int LookUpDepth = 6;
    213   Optional<int> Index =
    214       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
    215   if (!Index.hasValue())
    216     return;
    217 
    218   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
    219 
    220   auto SlotIt = find(StatepointSlots, *Index);
    221   assert(SlotIt != StatepointSlots.end() &&
    222          "Value spilled to the unknown stack slot");
    223 
    224   // This is one of our dedicated lowering slots
    225   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
    226   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
    227     // stack slot already assigned to someone else, can't use it!
    228     // TODO: currently we reserve space for gc arguments after doing
    229     // normal allocation for deopt arguments.  We should reserve for
    230     // _all_ deopt and gc arguments, then start allocating.  This
    231     // will prevent some moves being inserted when vm state changes,
    232     // but gc state doesn't between two calls.
    233     return;
    234   }
    235   // Reserve this stack slot
    236   Builder.StatepointLowering.reserveStackSlot(Offset);
    237 
    238   // Cache this slot so we find it when going through the normal
    239   // assignment loop.
    240   SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
    241   Builder.StatepointLowering.setLocation(Incoming, Loc);
    242 }
    243 
    244 /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
    245 /// is not required for correctness.  It's purpose is to reduce the size of
    246 /// StackMap section.  It has no effect on the number of spill slots required
    247 /// or the actual lowering.
    248 static void
    249 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
    250                       SmallVectorImpl<const Value *> &Ptrs,
    251                       SmallVectorImpl<const GCRelocateInst *> &Relocs,
    252                       SelectionDAGBuilder &Builder,
    253                       FunctionLoweringInfo::StatepointSpillMap &SSM) {
    254   DenseMap<SDValue, const Value *> Seen;
    255 
    256   SmallVector<const Value *, 64> NewBases, NewPtrs;
    257   SmallVector<const GCRelocateInst *, 64> NewRelocs;
    258   for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
    259     SDValue SD = Builder.getValue(Ptrs[i]);
    260     auto SeenIt = Seen.find(SD);
    261 
    262     if (SeenIt == Seen.end()) {
    263       // Only add non-duplicates
    264       NewBases.push_back(Bases[i]);
    265       NewPtrs.push_back(Ptrs[i]);
    266       NewRelocs.push_back(Relocs[i]);
    267       Seen[SD] = Ptrs[i];
    268     } else {
    269       // Duplicate pointer found, note in SSM and move on:
    270       SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
    271     }
    272   }
    273   assert(Bases.size() >= NewBases.size());
    274   assert(Ptrs.size() >= NewPtrs.size());
    275   assert(Relocs.size() >= NewRelocs.size());
    276   Bases = NewBases;
    277   Ptrs = NewPtrs;
    278   Relocs = NewRelocs;
    279   assert(Ptrs.size() == Bases.size());
    280   assert(Ptrs.size() == Relocs.size());
    281 }
    282 
    283 /// Extract call from statepoint, lower it and return pointer to the
    284 /// call node. Also update NodeMap so that getValue(statepoint) will
    285 /// reference lowered call result
    286 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
    287     SelectionDAGBuilder::StatepointLoweringInfo &SI,
    288     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
    289 
    290   SDValue ReturnValue, CallEndVal;
    291   std::tie(ReturnValue, CallEndVal) =
    292       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
    293   SDNode *CallEnd = CallEndVal.getNode();
    294 
    295   // Get a call instruction from the call sequence chain.  Tail calls are not
    296   // allowed.  The following code is essentially reverse engineering X86's
    297   // LowerCallTo.
    298   //
    299   // We are expecting DAG to have the following form:
    300   //
    301   // ch = eh_label (only in case of invoke statepoint)
    302   //   ch, glue = callseq_start ch
    303   //   ch, glue = X86::Call ch, glue
    304   //   ch, glue = callseq_end ch, glue
    305   //   get_return_value ch, glue
    306   //
    307   // get_return_value can either be a sequence of CopyFromReg instructions
    308   // to grab the return value from the return register(s), or it can be a LOAD
    309   // to load a value returned by reference via a stack slot.
    310 
    311   bool HasDef = !SI.CLI.RetTy->isVoidTy();
    312   if (HasDef) {
    313     if (CallEnd->getOpcode() == ISD::LOAD)
    314       CallEnd = CallEnd->getOperand(0).getNode();
    315     else
    316       while (CallEnd->getOpcode() == ISD::CopyFromReg)
    317         CallEnd = CallEnd->getOperand(0).getNode();
    318   }
    319 
    320   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
    321   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
    322 }
    323 
    324 /// Spill a value incoming to the statepoint. It might be either part of
    325 /// vmstate
    326 /// or gcstate. In both cases unconditionally spill it on the stack unless it
    327 /// is a null constant. Return pair with first element being frame index
    328 /// containing saved value and second element with outgoing chain from the
    329 /// emitted store
    330 static std::pair<SDValue, SDValue>
    331 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
    332                              SelectionDAGBuilder &Builder) {
    333   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
    334 
    335   // Emit new store if we didn't do it for this ptr before
    336   if (!Loc.getNode()) {
    337     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
    338                                                        Builder);
    339     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
    340     // We use TargetFrameIndex so that isel will not select it into LEA
    341     Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
    342 
    343     // TODO: We can create TokenFactor node instead of
    344     //       chaining stores one after another, this may allow
    345     //       a bit more optimal scheduling for them
    346 
    347 #ifndef NDEBUG
    348     // Right now we always allocate spill slots that are of the same
    349     // size as the value we're about to spill (the size of spillee can
    350     // vary since we spill vectors of pointers too).  At some point we
    351     // can consider allowing spills of smaller values to larger slots
    352     // (i.e. change the '==' in the assert below to a '>=').
    353     auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
    354     assert((MFI->getObjectSize(Index) * 8) ==
    355                Incoming.getValueType().getSizeInBits() &&
    356            "Bad spill:  stack slot does not match!");
    357 #endif
    358 
    359     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
    360                                  MachinePointerInfo::getFixedStack(
    361                                      Builder.DAG.getMachineFunction(), Index),
    362                                  false, false, 0);
    363 
    364     Builder.StatepointLowering.setLocation(Incoming, Loc);
    365   }
    366 
    367   assert(Loc.getNode());
    368   return std::make_pair(Loc, Chain);
    369 }
    370 
    371 /// Lower a single value incoming to a statepoint node.  This value can be
    372 /// either a deopt value or a gc value, the handling is the same.  We special
    373 /// case constants and allocas, then fall back to spilling if required.
    374 static void lowerIncomingStatepointValue(SDValue Incoming,
    375                                          SmallVectorImpl<SDValue> &Ops,
    376                                          SelectionDAGBuilder &Builder) {
    377   SDValue Chain = Builder.getRoot();
    378 
    379   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
    380     // If the original value was a constant, make sure it gets recorded as
    381     // such in the stackmap.  This is required so that the consumer can
    382     // parse any internal format to the deopt state.  It also handles null
    383     // pointers and other constant pointers in GC states.  Note the constant
    384     // vectors do not appear to actually hit this path and that anything larger
    385     // than an i64 value (not type!) will fail asserts here.
    386     pushStackMapConstant(Ops, Builder, C->getSExtValue());
    387   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
    388     // This handles allocas as arguments to the statepoint (this is only
    389     // really meaningful for a deopt value.  For GC, we'd be trying to
    390     // relocate the address of the alloca itself?)
    391     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
    392                                                   Incoming.getValueType()));
    393   } else {
    394     // Otherwise, locate a spill slot and explicitly spill it so it
    395     // can be found by the runtime later.  We currently do not support
    396     // tracking values through callee saved registers to their eventual
    397     // spill location.  This would be a useful optimization, but would
    398     // need to be optional since it requires a lot of complexity on the
    399     // runtime side which not all would support.
    400     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
    401     Ops.push_back(Res.first);
    402     Chain = Res.second;
    403   }
    404 
    405   Builder.DAG.setRoot(Chain);
    406 }
    407 
    408 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
    409 /// lowering is described in lowerIncomingStatepointValue.  This function is
    410 /// responsible for lowering everything in the right position and playing some
    411 /// tricks to avoid redundant stack manipulation where possible.  On
    412 /// completion, 'Ops' will contain ready to use operands for machine code
    413 /// statepoint. The chain nodes will have already been created and the DAG root
    414 /// will be set to the last value spilled (if any were).
    415 static void
    416 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
    417                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
    418                         SelectionDAGBuilder &Builder) {
    419   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
    420   // deopt argument length, deopt arguments.., gc arguments...
    421 #ifndef NDEBUG
    422   if (auto *GFI = Builder.GFI) {
    423     // Check that each of the gc pointer and bases we've gotten out of the
    424     // safepoint is something the strategy thinks might be a pointer (or vector
    425     // of pointers) into the GC heap.  This is basically just here to help catch
    426     // errors during statepoint insertion. TODO: This should actually be in the
    427     // Verifier, but we can't get to the GCStrategy from there (yet).
    428     GCStrategy &S = GFI->getStrategy();
    429     for (const Value *V : SI.Bases) {
    430       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
    431       if (Opt.hasValue()) {
    432         assert(Opt.getValue() &&
    433                "non gc managed base pointer found in statepoint");
    434       }
    435     }
    436     for (const Value *V : SI.Ptrs) {
    437       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
    438       if (Opt.hasValue()) {
    439         assert(Opt.getValue() &&
    440                "non gc managed derived pointer found in statepoint");
    441       }
    442     }
    443   } else {
    444     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
    445     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
    446   }
    447 #endif
    448 
    449   // Before we actually start lowering (and allocating spill slots for values),
    450   // reserve any stack slots which we judge to be profitable to reuse for a
    451   // particular value.  This is purely an optimization over the code below and
    452   // doesn't change semantics at all.  It is important for performance that we
    453   // reserve slots for both deopt and gc values before lowering either.
    454   for (const Value *V : SI.DeoptState) {
    455     reservePreviousStackSlotForValue(V, Builder);
    456   }
    457   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
    458     reservePreviousStackSlotForValue(SI.Bases[i], Builder);
    459     reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
    460   }
    461 
    462   // First, prefix the list with the number of unique values to be
    463   // lowered.  Note that this is the number of *Values* not the
    464   // number of SDValues required to lower them.
    465   const int NumVMSArgs = SI.DeoptState.size();
    466   pushStackMapConstant(Ops, Builder, NumVMSArgs);
    467 
    468   // The vm state arguments are lowered in an opaque manner.  We do not know
    469   // what type of values are contained within.
    470   for (const Value *V : SI.DeoptState) {
    471     SDValue Incoming = Builder.getValue(V);
    472     lowerIncomingStatepointValue(Incoming, Ops, Builder);
    473   }
    474 
    475   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
    476   // length for this one.  After lowering, we'll have the base and pointer
    477   // arrays interwoven with each (lowered) base pointer immediately followed by
    478   // it's (lowered) derived pointer.  i.e
    479   // (base[0], ptr[0], base[1], ptr[1], ...)
    480   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
    481     const Value *Base = SI.Bases[i];
    482     lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
    483 
    484     const Value *Ptr = SI.Ptrs[i];
    485     lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
    486   }
    487 
    488   // If there are any explicit spill slots passed to the statepoint, record
    489   // them, but otherwise do not do anything special.  These are user provided
    490   // allocas and give control over placement to the consumer.  In this case,
    491   // it is the contents of the slot which may get updated, not the pointer to
    492   // the alloca
    493   for (Value *V : SI.GCArgs) {
    494     SDValue Incoming = Builder.getValue(V);
    495     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
    496       // This handles allocas as arguments to the statepoint
    497       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
    498                                                     Incoming.getValueType()));
    499     }
    500   }
    501 
    502   // Record computed locations for all lowered values.
    503   // This can not be embedded in lowering loops as we need to record *all*
    504   // values, while previous loops account only values with unique SDValues.
    505   const Instruction *StatepointInstr = SI.StatepointInstr;
    506   auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
    507 
    508   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
    509     const Value *V = Relocate->getDerivedPtr();
    510     SDValue SDV = Builder.getValue(V);
    511     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
    512 
    513     if (Loc.getNode()) {
    514       SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
    515     } else {
    516       // Record value as visited, but not spilled. This is case for allocas
    517       // and constants. For this values we can avoid emitting spill load while
    518       // visiting corresponding gc_relocate.
    519       // Actually we do not need to record them in this map at all.
    520       // We do this only to check that we are not relocating any unvisited
    521       // value.
    522       SpillMap.SlotMap[V] = None;
    523 
    524       // Default llvm mechanisms for exporting values which are used in
    525       // different basic blocks does not work for gc relocates.
    526       // Note that it would be incorrect to teach llvm that all relocates are
    527       // uses of the corresponding values so that it would automatically
    528       // export them. Relocates of the spilled values does not use original
    529       // value.
    530       if (Relocate->getParent() != StatepointInstr->getParent())
    531         Builder.ExportFromCurrentBlock(V);
    532     }
    533   }
    534 }
    535 
    536 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
    537     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
    538   // The basic scheme here is that information about both the original call and
    539   // the safepoint is encoded in the CallInst.  We create a temporary call and
    540   // lower it, then reverse engineer the calling sequence.
    541 
    542   NumOfStatepoints++;
    543   // Clear state
    544   StatepointLowering.startNewStatepoint(*this);
    545 
    546 #ifndef NDEBUG
    547   // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
    548   // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
    549   for (auto *Reloc : SI.GCRelocates)
    550     if (Reloc->getParent() == SI.StatepointInstr->getParent())
    551       StatepointLowering.scheduleRelocCall(*Reloc);
    552 #endif
    553 
    554   // Remove any redundant llvm::Values which map to the same SDValue as another
    555   // input.  Also has the effect of removing duplicates in the original
    556   // llvm::Value input list as well.  This is a useful optimization for
    557   // reducing the size of the StackMap section.  It has no other impact.
    558   removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
    559                         FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
    560   assert(SI.Bases.size() == SI.Ptrs.size() &&
    561          SI.Ptrs.size() == SI.GCRelocates.size());
    562 
    563   // Lower statepoint vmstate and gcstate arguments
    564   SmallVector<SDValue, 10> LoweredMetaArgs;
    565   lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this);
    566 
    567   // Now that we've emitted the spills, we need to update the root so that the
    568   // call sequence is ordered correctly.
    569   SI.CLI.setChain(getRoot());
    570 
    571   // Get call node, we will replace it later with statepoint
    572   SDValue ReturnVal;
    573   SDNode *CallNode;
    574   std::tie(ReturnVal, CallNode) =
    575       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
    576 
    577   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
    578   // nodes with all the appropriate arguments and return values.
    579 
    580   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
    581   SDValue Chain = CallNode->getOperand(0);
    582 
    583   SDValue Glue;
    584   bool CallHasIncomingGlue = CallNode->getGluedNode();
    585   if (CallHasIncomingGlue) {
    586     // Glue is always last operand
    587     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
    588   }
    589 
    590   // Build the GC_TRANSITION_START node if necessary.
    591   //
    592   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
    593   // order in which they appear in the call to the statepoint intrinsic. If
    594   // any of the operands is a pointer-typed, that operand is immediately
    595   // followed by a SRCVALUE for the pointer that may be used during lowering
    596   // (e.g. to form MachinePointerInfo values for loads/stores).
    597   const bool IsGCTransition =
    598       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
    599       (uint64_t)StatepointFlags::GCTransition;
    600   if (IsGCTransition) {
    601     SmallVector<SDValue, 8> TSOps;
    602 
    603     // Add chain
    604     TSOps.push_back(Chain);
    605 
    606     // Add GC transition arguments
    607     for (const Value *V : SI.GCTransitionArgs) {
    608       TSOps.push_back(getValue(V));
    609       if (V->getType()->isPointerTy())
    610         TSOps.push_back(DAG.getSrcValue(V));
    611     }
    612 
    613     // Add glue if necessary
    614     if (CallHasIncomingGlue)
    615       TSOps.push_back(Glue);
    616 
    617     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    618 
    619     SDValue GCTransitionStart =
    620         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
    621 
    622     Chain = GCTransitionStart.getValue(0);
    623     Glue = GCTransitionStart.getValue(1);
    624   }
    625 
    626   // TODO: Currently, all of these operands are being marked as read/write in
    627   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
    628   // and flags to be read-only.
    629   SmallVector<SDValue, 40> Ops;
    630 
    631   // Add the <id> and <numBytes> constants.
    632   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
    633   Ops.push_back(
    634       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
    635 
    636   // Calculate and push starting position of vmstate arguments
    637   // Get number of arguments incoming directly into call node
    638   unsigned NumCallRegArgs =
    639       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
    640   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
    641 
    642   // Add call target
    643   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
    644   Ops.push_back(CallTarget);
    645 
    646   // Add call arguments
    647   // Get position of register mask in the call
    648   SDNode::op_iterator RegMaskIt;
    649   if (CallHasIncomingGlue)
    650     RegMaskIt = CallNode->op_end() - 2;
    651   else
    652     RegMaskIt = CallNode->op_end() - 1;
    653   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
    654 
    655   // Add a constant argument for the calling convention
    656   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
    657 
    658   // Add a constant argument for the flags
    659   uint64_t Flags = SI.StatepointFlags;
    660   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
    661          "Unknown flag used");
    662   pushStackMapConstant(Ops, *this, Flags);
    663 
    664   // Insert all vmstate and gcstate arguments
    665   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
    666 
    667   // Add register mask from call node
    668   Ops.push_back(*RegMaskIt);
    669 
    670   // Add chain
    671   Ops.push_back(Chain);
    672 
    673   // Same for the glue, but we add it only if original call had it
    674   if (Glue.getNode())
    675     Ops.push_back(Glue);
    676 
    677   // Compute return values.  Provide a glue output since we consume one as
    678   // input.  This allows someone else to chain off us as needed.
    679   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    680 
    681   SDNode *StatepointMCNode =
    682       DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
    683 
    684   SDNode *SinkNode = StatepointMCNode;
    685 
    686   // Build the GC_TRANSITION_END node if necessary.
    687   //
    688   // See the comment above regarding GC_TRANSITION_START for the layout of
    689   // the operands to the GC_TRANSITION_END node.
    690   if (IsGCTransition) {
    691     SmallVector<SDValue, 8> TEOps;
    692 
    693     // Add chain
    694     TEOps.push_back(SDValue(StatepointMCNode, 0));
    695 
    696     // Add GC transition arguments
    697     for (const Value *V : SI.GCTransitionArgs) {
    698       TEOps.push_back(getValue(V));
    699       if (V->getType()->isPointerTy())
    700         TEOps.push_back(DAG.getSrcValue(V));
    701     }
    702 
    703     // Add glue
    704     TEOps.push_back(SDValue(StatepointMCNode, 1));
    705 
    706     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    707 
    708     SDValue GCTransitionStart =
    709         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
    710 
    711     SinkNode = GCTransitionStart.getNode();
    712   }
    713 
    714   // Replace original call
    715   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
    716   // Remove original call node
    717   DAG.DeleteNode(CallNode);
    718 
    719   // DON'T set the root - under the assumption that it's already set past the
    720   // inserted node we created.
    721 
    722   // TODO: A better future implementation would be to emit a single variable
    723   // argument, variable return value STATEPOINT node here and then hookup the
    724   // return value of each gc.relocate to the respective output of the
    725   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
    726   // to actually be possible today.
    727 
    728   return ReturnVal;
    729 }
    730 
    731 void
    732 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
    733                                      const BasicBlock *EHPadBB /*= nullptr*/) {
    734   assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg &&
    735          "anyregcc is not supported on statepoints!");
    736 
    737 #ifndef NDEBUG
    738   // If this is a malformed statepoint, report it early to simplify debugging.
    739   // This should catch any IR level mistake that's made when constructing or
    740   // transforming statepoints.
    741   ISP.verify();
    742 
    743   // Check that the associated GCStrategy expects to encounter statepoints.
    744   assert(GFI->getStrategy().useStatepoints() &&
    745          "GCStrategy does not expect to encounter statepoints");
    746 #endif
    747 
    748   SDValue ActualCallee;
    749 
    750   if (ISP.getNumPatchBytes() > 0) {
    751     // If we've been asked to emit a nop sequence instead of a call instruction
    752     // for this statepoint then don't lower the call target, but use a constant
    753     // `null` instead.  Not lowering the call target lets statepoint clients get
    754     // away without providing a physical address for the symbolic call target at
    755     // link time.
    756 
    757     const auto &TLI = DAG.getTargetLoweringInfo();
    758     const auto &DL = DAG.getDataLayout();
    759 
    760     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
    761     ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
    762   } else {
    763     ActualCallee = getValue(ISP.getCalledValue());
    764   }
    765 
    766   StatepointLoweringInfo SI(DAG);
    767   populateCallLoweringInfo(SI.CLI, ISP.getCallSite(),
    768                            ImmutableStatepoint::CallArgsBeginPos,
    769                            ISP.getNumCallArgs(), ActualCallee,
    770                            ISP.getActualReturnType(), false /* IsPatchPoint */);
    771 
    772   for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
    773     SI.GCRelocates.push_back(Relocate);
    774     SI.Bases.push_back(Relocate->getBasePtr());
    775     SI.Ptrs.push_back(Relocate->getDerivedPtr());
    776   }
    777 
    778   SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
    779   SI.StatepointInstr = ISP.getInstruction();
    780   SI.GCTransitionArgs =
    781       ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
    782   SI.ID = ISP.getID();
    783   SI.DeoptState = ArrayRef<const Use>(ISP.vm_state_begin(), ISP.vm_state_end());
    784   SI.StatepointFlags = ISP.getFlags();
    785   SI.NumPatchBytes = ISP.getNumPatchBytes();
    786   SI.EHPadBB = EHPadBB;
    787 
    788   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
    789 
    790   // Export the result value if needed
    791   const GCResultInst *GCResult = ISP.getGCResult();
    792   Type *RetTy = ISP.getActualReturnType();
    793   if (!RetTy->isVoidTy() && GCResult) {
    794     if (GCResult->getParent() != ISP.getCallSite().getParent()) {
    795       // Result value will be used in a different basic block so we need to
    796       // export it now.  Default exporting mechanism will not work here because
    797       // statepoint call has a different type than the actual call. It means
    798       // that by default llvm will create export register of the wrong type
    799       // (always i32 in our case). So instead we need to create export register
    800       // with correct type manually.
    801       // TODO: To eliminate this problem we can remove gc.result intrinsics
    802       //       completely and make statepoint call to return a tuple.
    803       unsigned Reg = FuncInfo.CreateRegs(RetTy);
    804       RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
    805                        DAG.getDataLayout(), Reg, RetTy);
    806       SDValue Chain = DAG.getEntryNode();
    807 
    808       RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
    809       PendingExports.push_back(Chain);
    810       FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
    811     } else {
    812       // Result value will be used in a same basic block. Don't export it or
    813       // perform any explicit register copies.
    814       // We'll replace the actuall call node shortly. gc_result will grab
    815       // this value.
    816       setValue(ISP.getInstruction(), ReturnValue);
    817     }
    818   } else {
    819     // The token value is never used from here on, just generate a poison value
    820     setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
    821   }
    822 }
    823 
    824 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
    825     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB,
    826     bool VarArgDisallowed, bool ForceVoidReturnTy) {
    827   StatepointLoweringInfo SI(DAG);
    828   unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin();
    829   populateCallLoweringInfo(
    830       SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee,
    831       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(),
    832       false);
    833   if (!VarArgDisallowed)
    834     SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg();
    835 
    836   auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt);
    837 
    838   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
    839 
    840   auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes());
    841   SI.ID = SD.StatepointID.getValueOr(DefaultID);
    842   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
    843 
    844   SI.DeoptState =
    845       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
    846   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
    847   SI.EHPadBB = EHPadBB;
    848 
    849   // NB! The GC arguments are deliberately left empty.
    850 
    851   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
    852     const Instruction *Inst = CS.getInstruction();
    853     ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal);
    854     setValue(Inst, ReturnVal);
    855   }
    856 }
    857 
    858 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
    859     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) {
    860   LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB,
    861                                    /* VarArgDisallowed = */ false,
    862                                    /* ForceVoidReturnTy  = */ false);
    863 }
    864 
    865 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
    866   // The result value of the gc_result is simply the result of the actual
    867   // call.  We've already emitted this, so just grab the value.
    868   const Instruction *I = CI.getStatepoint();
    869 
    870   if (I->getParent() != CI.getParent()) {
    871     // Statepoint is in different basic block so we should have stored call
    872     // result in a virtual register.
    873     // We can not use default getValue() functionality to copy value from this
    874     // register because statepoint and actual call return types can be
    875     // different, and getValue() will use CopyFromReg of the wrong type,
    876     // which is always i32 in our case.
    877     PointerType *CalleeType = cast<PointerType>(
    878         ImmutableStatepoint(I).getCalledValue()->getType());
    879     Type *RetTy =
    880         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
    881     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
    882 
    883     assert(CopyFromReg.getNode());
    884     setValue(&CI, CopyFromReg);
    885   } else {
    886     setValue(&CI, getValue(I));
    887   }
    888 }
    889 
    890 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
    891 #ifndef NDEBUG
    892   // Consistency check
    893   // We skip this check for relocates not in the same basic block as thier
    894   // statepoint. It would be too expensive to preserve validation info through
    895   // different basic blocks.
    896   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
    897     StatepointLowering.relocCallVisited(Relocate);
    898 
    899   auto *Ty = Relocate.getType()->getScalarType();
    900   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
    901     assert(*IsManaged && "Non gc managed pointer relocated!");
    902 #endif
    903 
    904   const Value *DerivedPtr = Relocate.getDerivedPtr();
    905   SDValue SD = getValue(DerivedPtr);
    906 
    907   auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
    908   auto SlotIt = SpillMap.find(DerivedPtr);
    909   assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
    910   Optional<int> DerivedPtrLocation = SlotIt->second;
    911 
    912   // We didn't need to spill these special cases (constants and allocas).
    913   // See the handling in spillIncomingValueForStatepoint for detail.
    914   if (!DerivedPtrLocation) {
    915     setValue(&Relocate, SD);
    916     return;
    917   }
    918 
    919   SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
    920                                               SD.getValueType());
    921 
    922   // Be conservative: flush all pending loads
    923   // TODO: Probably we can be less restrictive on this,
    924   // it may allow more scheduling opportunities.
    925   SDValue Chain = getRoot();
    926 
    927   SDValue SpillLoad =
    928       DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
    929                   MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
    930                                                     *DerivedPtrLocation),
    931                   false, false, false, 0);
    932 
    933   // Again, be conservative, don't emit pending loads
    934   DAG.setRoot(SpillLoad.getValue(1));
    935 
    936   assert(SpillLoad.getNode());
    937   setValue(&Relocate, SpillLoad);
    938 }
    939 
    940 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
    941   const auto &TLI = DAG.getTargetLoweringInfo();
    942   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
    943                                          TLI.getPointerTy(DAG.getDataLayout()));
    944 
    945   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
    946   // call.  We also do not lower the return value to any virtual register, and
    947   // change the immediately following return to a trap instruction.
    948   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
    949                                    /* VarArgDisallowed = */ true,
    950                                    /* ForceVoidReturnTy = */ true);
    951 }
    952 
    953 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
    954   // We do not lower the return value from llvm.deoptimize to any virtual
    955   // register, and change the immediately following return to a trap
    956   // instruction.
    957   if (DAG.getTarget().Options.TrapUnreachable)
    958     DAG.setRoot(
    959         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
    960 }
    961