1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/GCMetadata.h" 22 #include "llvm/CodeGen/GCStrategy.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/StackMaps.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "statepoint-lowering" 35 36 STATISTIC(NumSlotsAllocatedForStatepoints, 37 "Number of stack slots allocated for statepoints"); 38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 39 STATISTIC(StatepointMaxSlotsRequired, 40 "Maximum number of stack slots required for a singe statepoint"); 41 42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 43 SelectionDAGBuilder &Builder, uint64_t Value) { 44 SDLoc L = Builder.getCurSDLoc(); 45 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 46 MVT::i64)); 47 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 48 } 49 50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 51 // Consistency check 52 assert(PendingGCRelocateCalls.empty() && 53 "Trying to visit statepoint before finished processing previous one"); 54 Locations.clear(); 55 NextSlotToAllocate = 0; 56 // Need to resize this on each safepoint - we need the two to stay in sync and 57 // the clear patterns of a SelectionDAGBuilder have no relation to 58 // FunctionLoweringInfo. SmallBitVector::reset initializes all bits to false. 59 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 60 } 61 62 void StatepointLoweringState::clear() { 63 Locations.clear(); 64 AllocatedStackSlots.clear(); 65 assert(PendingGCRelocateCalls.empty() && 66 "cleared before statepoint sequence completed"); 67 } 68 69 SDValue 70 StatepointLoweringState::allocateStackSlot(EVT ValueType, 71 SelectionDAGBuilder &Builder) { 72 NumSlotsAllocatedForStatepoints++; 73 auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 74 75 unsigned SpillSize = ValueType.getSizeInBits() / 8; 76 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 77 78 // First look for a previously created stack slot which is not in 79 // use (accounting for the fact arbitrary slots may already be 80 // reserved), or to create a new stack slot and use it. 81 82 const size_t NumSlots = AllocatedStackSlots.size(); 83 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 84 85 // The stack slots in StatepointStackSlots beyond the first NumSlots were 86 // added in this instance of StatepointLoweringState, and cannot be re-used. 87 assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() && 88 "Broken invariant"); 89 90 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 91 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 92 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 93 if (MFI->getObjectSize(FI) == SpillSize) { 94 AllocatedStackSlots.set(NextSlotToAllocate); 95 return Builder.DAG.getFrameIndex(FI, ValueType); 96 } 97 } 98 } 99 100 // Couldn't find a free slot, so create a new one: 101 102 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 103 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 104 MFI->markAsStatepointSpillSlotObjectIndex(FI); 105 106 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 107 108 StatepointMaxSlotsRequired = std::max<unsigned long>( 109 StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size()); 110 111 return SpillSlot; 112 } 113 114 /// Utility function for reservePreviousStackSlotForValue. Tries to find 115 /// stack slot index to which we have spilled value for previous statepoints. 116 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 117 static Optional<int> findPreviousSpillSlot(const Value *Val, 118 SelectionDAGBuilder &Builder, 119 int LookUpDepth) { 120 // Can not look any further - give up now 121 if (LookUpDepth <= 0) 122 return None; 123 124 // Spill location is known for gc relocates 125 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 126 const auto &SpillMap = 127 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 128 129 auto It = SpillMap.find(Relocate->getDerivedPtr()); 130 if (It == SpillMap.end()) 131 return None; 132 133 return It->second; 134 } 135 136 // Look through bitcast instructions. 137 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 138 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 139 140 // Look through phi nodes 141 // All incoming values should have same known stack slot, otherwise result 142 // is unknown. 143 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 144 Optional<int> MergedResult = None; 145 146 for (auto &IncomingValue : Phi->incoming_values()) { 147 Optional<int> SpillSlot = 148 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 149 if (!SpillSlot.hasValue()) 150 return None; 151 152 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 153 return None; 154 155 MergedResult = SpillSlot; 156 } 157 return MergedResult; 158 } 159 160 // TODO: We can do better for PHI nodes. In cases like this: 161 // ptr = phi(relocated_pointer, not_relocated_pointer) 162 // statepoint(ptr) 163 // We will return that stack slot for ptr is unknown. And later we might 164 // assign different stack slots for ptr and relocated_pointer. This limits 165 // llvm's ability to remove redundant stores. 166 // Unfortunately it's hard to accomplish in current infrastructure. 167 // We use this function to eliminate spill store completely, while 168 // in example we still need to emit store, but instead of any location 169 // we need to use special "preferred" location. 170 171 // TODO: handle simple updates. If a value is modified and the original 172 // value is no longer live, it would be nice to put the modified value in the 173 // same slot. This allows folding of the memory accesses for some 174 // instructions types (like an increment). 175 // statepoint (i) 176 // i1 = i+1 177 // statepoint (i1) 178 // However we need to be careful for cases like this: 179 // statepoint(i) 180 // i1 = i+1 181 // statepoint(i, i1) 182 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 183 // put handling of simple modifications in this function like it's done 184 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 185 // which we visit values is unspecified. 186 187 // Don't know any information about this instruction 188 return None; 189 } 190 191 /// Try to find existing copies of the incoming values in stack slots used for 192 /// statepoint spilling. If we can find a spill slot for the incoming value, 193 /// mark that slot as allocated, and reuse the same slot for this safepoint. 194 /// This helps to avoid series of loads and stores that only serve to reshuffle 195 /// values on the stack between calls. 196 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 197 SelectionDAGBuilder &Builder) { 198 199 SDValue Incoming = Builder.getValue(IncomingValue); 200 201 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 202 // We won't need to spill this, so no need to check for previously 203 // allocated stack slots 204 return; 205 } 206 207 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 208 if (OldLocation.getNode()) 209 // Duplicates in input 210 return; 211 212 const int LookUpDepth = 6; 213 Optional<int> Index = 214 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 215 if (!Index.hasValue()) 216 return; 217 218 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 219 220 auto SlotIt = find(StatepointSlots, *Index); 221 assert(SlotIt != StatepointSlots.end() && 222 "Value spilled to the unknown stack slot"); 223 224 // This is one of our dedicated lowering slots 225 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 226 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 227 // stack slot already assigned to someone else, can't use it! 228 // TODO: currently we reserve space for gc arguments after doing 229 // normal allocation for deopt arguments. We should reserve for 230 // _all_ deopt and gc arguments, then start allocating. This 231 // will prevent some moves being inserted when vm state changes, 232 // but gc state doesn't between two calls. 233 return; 234 } 235 // Reserve this stack slot 236 Builder.StatepointLowering.reserveStackSlot(Offset); 237 238 // Cache this slot so we find it when going through the normal 239 // assignment loop. 240 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 241 Builder.StatepointLowering.setLocation(Incoming, Loc); 242 } 243 244 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 245 /// is not required for correctness. It's purpose is to reduce the size of 246 /// StackMap section. It has no effect on the number of spill slots required 247 /// or the actual lowering. 248 static void 249 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 250 SmallVectorImpl<const Value *> &Ptrs, 251 SmallVectorImpl<const GCRelocateInst *> &Relocs, 252 SelectionDAGBuilder &Builder, 253 FunctionLoweringInfo::StatepointSpillMap &SSM) { 254 DenseMap<SDValue, const Value *> Seen; 255 256 SmallVector<const Value *, 64> NewBases, NewPtrs; 257 SmallVector<const GCRelocateInst *, 64> NewRelocs; 258 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 259 SDValue SD = Builder.getValue(Ptrs[i]); 260 auto SeenIt = Seen.find(SD); 261 262 if (SeenIt == Seen.end()) { 263 // Only add non-duplicates 264 NewBases.push_back(Bases[i]); 265 NewPtrs.push_back(Ptrs[i]); 266 NewRelocs.push_back(Relocs[i]); 267 Seen[SD] = Ptrs[i]; 268 } else { 269 // Duplicate pointer found, note in SSM and move on: 270 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 271 } 272 } 273 assert(Bases.size() >= NewBases.size()); 274 assert(Ptrs.size() >= NewPtrs.size()); 275 assert(Relocs.size() >= NewRelocs.size()); 276 Bases = NewBases; 277 Ptrs = NewPtrs; 278 Relocs = NewRelocs; 279 assert(Ptrs.size() == Bases.size()); 280 assert(Ptrs.size() == Relocs.size()); 281 } 282 283 /// Extract call from statepoint, lower it and return pointer to the 284 /// call node. Also update NodeMap so that getValue(statepoint) will 285 /// reference lowered call result 286 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 287 SelectionDAGBuilder::StatepointLoweringInfo &SI, 288 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 289 290 SDValue ReturnValue, CallEndVal; 291 std::tie(ReturnValue, CallEndVal) = 292 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 293 SDNode *CallEnd = CallEndVal.getNode(); 294 295 // Get a call instruction from the call sequence chain. Tail calls are not 296 // allowed. The following code is essentially reverse engineering X86's 297 // LowerCallTo. 298 // 299 // We are expecting DAG to have the following form: 300 // 301 // ch = eh_label (only in case of invoke statepoint) 302 // ch, glue = callseq_start ch 303 // ch, glue = X86::Call ch, glue 304 // ch, glue = callseq_end ch, glue 305 // get_return_value ch, glue 306 // 307 // get_return_value can either be a sequence of CopyFromReg instructions 308 // to grab the return value from the return register(s), or it can be a LOAD 309 // to load a value returned by reference via a stack slot. 310 311 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 312 if (HasDef) { 313 if (CallEnd->getOpcode() == ISD::LOAD) 314 CallEnd = CallEnd->getOperand(0).getNode(); 315 else 316 while (CallEnd->getOpcode() == ISD::CopyFromReg) 317 CallEnd = CallEnd->getOperand(0).getNode(); 318 } 319 320 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 321 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 322 } 323 324 /// Spill a value incoming to the statepoint. It might be either part of 325 /// vmstate 326 /// or gcstate. In both cases unconditionally spill it on the stack unless it 327 /// is a null constant. Return pair with first element being frame index 328 /// containing saved value and second element with outgoing chain from the 329 /// emitted store 330 static std::pair<SDValue, SDValue> 331 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 332 SelectionDAGBuilder &Builder) { 333 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 334 335 // Emit new store if we didn't do it for this ptr before 336 if (!Loc.getNode()) { 337 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 338 Builder); 339 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 340 // We use TargetFrameIndex so that isel will not select it into LEA 341 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 342 343 // TODO: We can create TokenFactor node instead of 344 // chaining stores one after another, this may allow 345 // a bit more optimal scheduling for them 346 347 #ifndef NDEBUG 348 // Right now we always allocate spill slots that are of the same 349 // size as the value we're about to spill (the size of spillee can 350 // vary since we spill vectors of pointers too). At some point we 351 // can consider allowing spills of smaller values to larger slots 352 // (i.e. change the '==' in the assert below to a '>='). 353 auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 354 assert((MFI->getObjectSize(Index) * 8) == 355 Incoming.getValueType().getSizeInBits() && 356 "Bad spill: stack slot does not match!"); 357 #endif 358 359 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 360 MachinePointerInfo::getFixedStack( 361 Builder.DAG.getMachineFunction(), Index), 362 false, false, 0); 363 364 Builder.StatepointLowering.setLocation(Incoming, Loc); 365 } 366 367 assert(Loc.getNode()); 368 return std::make_pair(Loc, Chain); 369 } 370 371 /// Lower a single value incoming to a statepoint node. This value can be 372 /// either a deopt value or a gc value, the handling is the same. We special 373 /// case constants and allocas, then fall back to spilling if required. 374 static void lowerIncomingStatepointValue(SDValue Incoming, 375 SmallVectorImpl<SDValue> &Ops, 376 SelectionDAGBuilder &Builder) { 377 SDValue Chain = Builder.getRoot(); 378 379 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 380 // If the original value was a constant, make sure it gets recorded as 381 // such in the stackmap. This is required so that the consumer can 382 // parse any internal format to the deopt state. It also handles null 383 // pointers and other constant pointers in GC states. Note the constant 384 // vectors do not appear to actually hit this path and that anything larger 385 // than an i64 value (not type!) will fail asserts here. 386 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 387 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 388 // This handles allocas as arguments to the statepoint (this is only 389 // really meaningful for a deopt value. For GC, we'd be trying to 390 // relocate the address of the alloca itself?) 391 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 392 Incoming.getValueType())); 393 } else { 394 // Otherwise, locate a spill slot and explicitly spill it so it 395 // can be found by the runtime later. We currently do not support 396 // tracking values through callee saved registers to their eventual 397 // spill location. This would be a useful optimization, but would 398 // need to be optional since it requires a lot of complexity on the 399 // runtime side which not all would support. 400 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 401 Ops.push_back(Res.first); 402 Chain = Res.second; 403 } 404 405 Builder.DAG.setRoot(Chain); 406 } 407 408 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 409 /// lowering is described in lowerIncomingStatepointValue. This function is 410 /// responsible for lowering everything in the right position and playing some 411 /// tricks to avoid redundant stack manipulation where possible. On 412 /// completion, 'Ops' will contain ready to use operands for machine code 413 /// statepoint. The chain nodes will have already been created and the DAG root 414 /// will be set to the last value spilled (if any were). 415 static void 416 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 417 SelectionDAGBuilder::StatepointLoweringInfo &SI, 418 SelectionDAGBuilder &Builder) { 419 // Lower the deopt and gc arguments for this statepoint. Layout will be: 420 // deopt argument length, deopt arguments.., gc arguments... 421 #ifndef NDEBUG 422 if (auto *GFI = Builder.GFI) { 423 // Check that each of the gc pointer and bases we've gotten out of the 424 // safepoint is something the strategy thinks might be a pointer (or vector 425 // of pointers) into the GC heap. This is basically just here to help catch 426 // errors during statepoint insertion. TODO: This should actually be in the 427 // Verifier, but we can't get to the GCStrategy from there (yet). 428 GCStrategy &S = GFI->getStrategy(); 429 for (const Value *V : SI.Bases) { 430 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 431 if (Opt.hasValue()) { 432 assert(Opt.getValue() && 433 "non gc managed base pointer found in statepoint"); 434 } 435 } 436 for (const Value *V : SI.Ptrs) { 437 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 438 if (Opt.hasValue()) { 439 assert(Opt.getValue() && 440 "non gc managed derived pointer found in statepoint"); 441 } 442 } 443 } else { 444 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 445 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 446 } 447 #endif 448 449 // Before we actually start lowering (and allocating spill slots for values), 450 // reserve any stack slots which we judge to be profitable to reuse for a 451 // particular value. This is purely an optimization over the code below and 452 // doesn't change semantics at all. It is important for performance that we 453 // reserve slots for both deopt and gc values before lowering either. 454 for (const Value *V : SI.DeoptState) { 455 reservePreviousStackSlotForValue(V, Builder); 456 } 457 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 458 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 459 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 460 } 461 462 // First, prefix the list with the number of unique values to be 463 // lowered. Note that this is the number of *Values* not the 464 // number of SDValues required to lower them. 465 const int NumVMSArgs = SI.DeoptState.size(); 466 pushStackMapConstant(Ops, Builder, NumVMSArgs); 467 468 // The vm state arguments are lowered in an opaque manner. We do not know 469 // what type of values are contained within. 470 for (const Value *V : SI.DeoptState) { 471 SDValue Incoming = Builder.getValue(V); 472 lowerIncomingStatepointValue(Incoming, Ops, Builder); 473 } 474 475 // Finally, go ahead and lower all the gc arguments. There's no prefixed 476 // length for this one. After lowering, we'll have the base and pointer 477 // arrays interwoven with each (lowered) base pointer immediately followed by 478 // it's (lowered) derived pointer. i.e 479 // (base[0], ptr[0], base[1], ptr[1], ...) 480 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 481 const Value *Base = SI.Bases[i]; 482 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 483 484 const Value *Ptr = SI.Ptrs[i]; 485 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 486 } 487 488 // If there are any explicit spill slots passed to the statepoint, record 489 // them, but otherwise do not do anything special. These are user provided 490 // allocas and give control over placement to the consumer. In this case, 491 // it is the contents of the slot which may get updated, not the pointer to 492 // the alloca 493 for (Value *V : SI.GCArgs) { 494 SDValue Incoming = Builder.getValue(V); 495 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 496 // This handles allocas as arguments to the statepoint 497 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 498 Incoming.getValueType())); 499 } 500 } 501 502 // Record computed locations for all lowered values. 503 // This can not be embedded in lowering loops as we need to record *all* 504 // values, while previous loops account only values with unique SDValues. 505 const Instruction *StatepointInstr = SI.StatepointInstr; 506 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 507 508 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 509 const Value *V = Relocate->getDerivedPtr(); 510 SDValue SDV = Builder.getValue(V); 511 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 512 513 if (Loc.getNode()) { 514 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 515 } else { 516 // Record value as visited, but not spilled. This is case for allocas 517 // and constants. For this values we can avoid emitting spill load while 518 // visiting corresponding gc_relocate. 519 // Actually we do not need to record them in this map at all. 520 // We do this only to check that we are not relocating any unvisited 521 // value. 522 SpillMap.SlotMap[V] = None; 523 524 // Default llvm mechanisms for exporting values which are used in 525 // different basic blocks does not work for gc relocates. 526 // Note that it would be incorrect to teach llvm that all relocates are 527 // uses of the corresponding values so that it would automatically 528 // export them. Relocates of the spilled values does not use original 529 // value. 530 if (Relocate->getParent() != StatepointInstr->getParent()) 531 Builder.ExportFromCurrentBlock(V); 532 } 533 } 534 } 535 536 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 537 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 538 // The basic scheme here is that information about both the original call and 539 // the safepoint is encoded in the CallInst. We create a temporary call and 540 // lower it, then reverse engineer the calling sequence. 541 542 NumOfStatepoints++; 543 // Clear state 544 StatepointLowering.startNewStatepoint(*this); 545 546 #ifndef NDEBUG 547 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 548 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 549 for (auto *Reloc : SI.GCRelocates) 550 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 551 StatepointLowering.scheduleRelocCall(*Reloc); 552 #endif 553 554 // Remove any redundant llvm::Values which map to the same SDValue as another 555 // input. Also has the effect of removing duplicates in the original 556 // llvm::Value input list as well. This is a useful optimization for 557 // reducing the size of the StackMap section. It has no other impact. 558 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 559 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 560 assert(SI.Bases.size() == SI.Ptrs.size() && 561 SI.Ptrs.size() == SI.GCRelocates.size()); 562 563 // Lower statepoint vmstate and gcstate arguments 564 SmallVector<SDValue, 10> LoweredMetaArgs; 565 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 566 567 // Now that we've emitted the spills, we need to update the root so that the 568 // call sequence is ordered correctly. 569 SI.CLI.setChain(getRoot()); 570 571 // Get call node, we will replace it later with statepoint 572 SDValue ReturnVal; 573 SDNode *CallNode; 574 std::tie(ReturnVal, CallNode) = 575 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 576 577 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 578 // nodes with all the appropriate arguments and return values. 579 580 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 581 SDValue Chain = CallNode->getOperand(0); 582 583 SDValue Glue; 584 bool CallHasIncomingGlue = CallNode->getGluedNode(); 585 if (CallHasIncomingGlue) { 586 // Glue is always last operand 587 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 588 } 589 590 // Build the GC_TRANSITION_START node if necessary. 591 // 592 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 593 // order in which they appear in the call to the statepoint intrinsic. If 594 // any of the operands is a pointer-typed, that operand is immediately 595 // followed by a SRCVALUE for the pointer that may be used during lowering 596 // (e.g. to form MachinePointerInfo values for loads/stores). 597 const bool IsGCTransition = 598 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 599 (uint64_t)StatepointFlags::GCTransition; 600 if (IsGCTransition) { 601 SmallVector<SDValue, 8> TSOps; 602 603 // Add chain 604 TSOps.push_back(Chain); 605 606 // Add GC transition arguments 607 for (const Value *V : SI.GCTransitionArgs) { 608 TSOps.push_back(getValue(V)); 609 if (V->getType()->isPointerTy()) 610 TSOps.push_back(DAG.getSrcValue(V)); 611 } 612 613 // Add glue if necessary 614 if (CallHasIncomingGlue) 615 TSOps.push_back(Glue); 616 617 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 618 619 SDValue GCTransitionStart = 620 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 621 622 Chain = GCTransitionStart.getValue(0); 623 Glue = GCTransitionStart.getValue(1); 624 } 625 626 // TODO: Currently, all of these operands are being marked as read/write in 627 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 628 // and flags to be read-only. 629 SmallVector<SDValue, 40> Ops; 630 631 // Add the <id> and <numBytes> constants. 632 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 633 Ops.push_back( 634 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 635 636 // Calculate and push starting position of vmstate arguments 637 // Get number of arguments incoming directly into call node 638 unsigned NumCallRegArgs = 639 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 640 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 641 642 // Add call target 643 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 644 Ops.push_back(CallTarget); 645 646 // Add call arguments 647 // Get position of register mask in the call 648 SDNode::op_iterator RegMaskIt; 649 if (CallHasIncomingGlue) 650 RegMaskIt = CallNode->op_end() - 2; 651 else 652 RegMaskIt = CallNode->op_end() - 1; 653 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 654 655 // Add a constant argument for the calling convention 656 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 657 658 // Add a constant argument for the flags 659 uint64_t Flags = SI.StatepointFlags; 660 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 661 "Unknown flag used"); 662 pushStackMapConstant(Ops, *this, Flags); 663 664 // Insert all vmstate and gcstate arguments 665 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 666 667 // Add register mask from call node 668 Ops.push_back(*RegMaskIt); 669 670 // Add chain 671 Ops.push_back(Chain); 672 673 // Same for the glue, but we add it only if original call had it 674 if (Glue.getNode()) 675 Ops.push_back(Glue); 676 677 // Compute return values. Provide a glue output since we consume one as 678 // input. This allows someone else to chain off us as needed. 679 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 680 681 SDNode *StatepointMCNode = 682 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 683 684 SDNode *SinkNode = StatepointMCNode; 685 686 // Build the GC_TRANSITION_END node if necessary. 687 // 688 // See the comment above regarding GC_TRANSITION_START for the layout of 689 // the operands to the GC_TRANSITION_END node. 690 if (IsGCTransition) { 691 SmallVector<SDValue, 8> TEOps; 692 693 // Add chain 694 TEOps.push_back(SDValue(StatepointMCNode, 0)); 695 696 // Add GC transition arguments 697 for (const Value *V : SI.GCTransitionArgs) { 698 TEOps.push_back(getValue(V)); 699 if (V->getType()->isPointerTy()) 700 TEOps.push_back(DAG.getSrcValue(V)); 701 } 702 703 // Add glue 704 TEOps.push_back(SDValue(StatepointMCNode, 1)); 705 706 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 707 708 SDValue GCTransitionStart = 709 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 710 711 SinkNode = GCTransitionStart.getNode(); 712 } 713 714 // Replace original call 715 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 716 // Remove original call node 717 DAG.DeleteNode(CallNode); 718 719 // DON'T set the root - under the assumption that it's already set past the 720 // inserted node we created. 721 722 // TODO: A better future implementation would be to emit a single variable 723 // argument, variable return value STATEPOINT node here and then hookup the 724 // return value of each gc.relocate to the respective output of the 725 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 726 // to actually be possible today. 727 728 return ReturnVal; 729 } 730 731 void 732 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 733 const BasicBlock *EHPadBB /*= nullptr*/) { 734 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 735 "anyregcc is not supported on statepoints!"); 736 737 #ifndef NDEBUG 738 // If this is a malformed statepoint, report it early to simplify debugging. 739 // This should catch any IR level mistake that's made when constructing or 740 // transforming statepoints. 741 ISP.verify(); 742 743 // Check that the associated GCStrategy expects to encounter statepoints. 744 assert(GFI->getStrategy().useStatepoints() && 745 "GCStrategy does not expect to encounter statepoints"); 746 #endif 747 748 SDValue ActualCallee; 749 750 if (ISP.getNumPatchBytes() > 0) { 751 // If we've been asked to emit a nop sequence instead of a call instruction 752 // for this statepoint then don't lower the call target, but use a constant 753 // `null` instead. Not lowering the call target lets statepoint clients get 754 // away without providing a physical address for the symbolic call target at 755 // link time. 756 757 const auto &TLI = DAG.getTargetLoweringInfo(); 758 const auto &DL = DAG.getDataLayout(); 759 760 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 761 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 762 } else { 763 ActualCallee = getValue(ISP.getCalledValue()); 764 } 765 766 StatepointLoweringInfo SI(DAG); 767 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 768 ImmutableStatepoint::CallArgsBeginPos, 769 ISP.getNumCallArgs(), ActualCallee, 770 ISP.getActualReturnType(), false /* IsPatchPoint */); 771 772 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 773 SI.GCRelocates.push_back(Relocate); 774 SI.Bases.push_back(Relocate->getBasePtr()); 775 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 776 } 777 778 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 779 SI.StatepointInstr = ISP.getInstruction(); 780 SI.GCTransitionArgs = 781 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 782 SI.ID = ISP.getID(); 783 SI.DeoptState = ArrayRef<const Use>(ISP.vm_state_begin(), ISP.vm_state_end()); 784 SI.StatepointFlags = ISP.getFlags(); 785 SI.NumPatchBytes = ISP.getNumPatchBytes(); 786 SI.EHPadBB = EHPadBB; 787 788 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 789 790 // Export the result value if needed 791 const GCResultInst *GCResult = ISP.getGCResult(); 792 Type *RetTy = ISP.getActualReturnType(); 793 if (!RetTy->isVoidTy() && GCResult) { 794 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 795 // Result value will be used in a different basic block so we need to 796 // export it now. Default exporting mechanism will not work here because 797 // statepoint call has a different type than the actual call. It means 798 // that by default llvm will create export register of the wrong type 799 // (always i32 in our case). So instead we need to create export register 800 // with correct type manually. 801 // TODO: To eliminate this problem we can remove gc.result intrinsics 802 // completely and make statepoint call to return a tuple. 803 unsigned Reg = FuncInfo.CreateRegs(RetTy); 804 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 805 DAG.getDataLayout(), Reg, RetTy); 806 SDValue Chain = DAG.getEntryNode(); 807 808 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 809 PendingExports.push_back(Chain); 810 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 811 } else { 812 // Result value will be used in a same basic block. Don't export it or 813 // perform any explicit register copies. 814 // We'll replace the actuall call node shortly. gc_result will grab 815 // this value. 816 setValue(ISP.getInstruction(), ReturnValue); 817 } 818 } else { 819 // The token value is never used from here on, just generate a poison value 820 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 821 } 822 } 823 824 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 825 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 826 bool VarArgDisallowed, bool ForceVoidReturnTy) { 827 StatepointLoweringInfo SI(DAG); 828 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 829 populateCallLoweringInfo( 830 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 831 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 832 false); 833 if (!VarArgDisallowed) 834 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 835 836 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 837 838 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 839 840 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 841 SI.ID = SD.StatepointID.getValueOr(DefaultID); 842 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 843 844 SI.DeoptState = 845 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 846 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 847 SI.EHPadBB = EHPadBB; 848 849 // NB! The GC arguments are deliberately left empty. 850 851 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 852 const Instruction *Inst = CS.getInstruction(); 853 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 854 setValue(Inst, ReturnVal); 855 } 856 } 857 858 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 859 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 860 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 861 /* VarArgDisallowed = */ false, 862 /* ForceVoidReturnTy = */ false); 863 } 864 865 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 866 // The result value of the gc_result is simply the result of the actual 867 // call. We've already emitted this, so just grab the value. 868 const Instruction *I = CI.getStatepoint(); 869 870 if (I->getParent() != CI.getParent()) { 871 // Statepoint is in different basic block so we should have stored call 872 // result in a virtual register. 873 // We can not use default getValue() functionality to copy value from this 874 // register because statepoint and actual call return types can be 875 // different, and getValue() will use CopyFromReg of the wrong type, 876 // which is always i32 in our case. 877 PointerType *CalleeType = cast<PointerType>( 878 ImmutableStatepoint(I).getCalledValue()->getType()); 879 Type *RetTy = 880 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 881 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 882 883 assert(CopyFromReg.getNode()); 884 setValue(&CI, CopyFromReg); 885 } else { 886 setValue(&CI, getValue(I)); 887 } 888 } 889 890 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 891 #ifndef NDEBUG 892 // Consistency check 893 // We skip this check for relocates not in the same basic block as thier 894 // statepoint. It would be too expensive to preserve validation info through 895 // different basic blocks. 896 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 897 StatepointLowering.relocCallVisited(Relocate); 898 899 auto *Ty = Relocate.getType()->getScalarType(); 900 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 901 assert(*IsManaged && "Non gc managed pointer relocated!"); 902 #endif 903 904 const Value *DerivedPtr = Relocate.getDerivedPtr(); 905 SDValue SD = getValue(DerivedPtr); 906 907 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 908 auto SlotIt = SpillMap.find(DerivedPtr); 909 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 910 Optional<int> DerivedPtrLocation = SlotIt->second; 911 912 // We didn't need to spill these special cases (constants and allocas). 913 // See the handling in spillIncomingValueForStatepoint for detail. 914 if (!DerivedPtrLocation) { 915 setValue(&Relocate, SD); 916 return; 917 } 918 919 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 920 SD.getValueType()); 921 922 // Be conservative: flush all pending loads 923 // TODO: Probably we can be less restrictive on this, 924 // it may allow more scheduling opportunities. 925 SDValue Chain = getRoot(); 926 927 SDValue SpillLoad = 928 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 929 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 930 *DerivedPtrLocation), 931 false, false, false, 0); 932 933 // Again, be conservative, don't emit pending loads 934 DAG.setRoot(SpillLoad.getValue(1)); 935 936 assert(SpillLoad.getNode()); 937 setValue(&Relocate, SpillLoad); 938 } 939 940 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 941 const auto &TLI = DAG.getTargetLoweringInfo(); 942 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 943 TLI.getPointerTy(DAG.getDataLayout())); 944 945 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 946 // call. We also do not lower the return value to any virtual register, and 947 // change the immediately following return to a trap instruction. 948 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 949 /* VarArgDisallowed = */ true, 950 /* ForceVoidReturnTy = */ true); 951 } 952 953 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 954 // We do not lower the return value from llvm.deoptimize to any virtual 955 // register, and change the immediately following return to a trap 956 // instruction. 957 if (DAG.getTarget().Options.TrapUnreachable) 958 DAG.setRoot( 959 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 960 } 961