Home | History | Annotate | Download | only in program
      1 /*
      2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
      3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
      4  * Copyright  2010 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     23  * DEALINGS IN THE SOFTWARE.
     24  */
     25 
     26 /**
     27  * \file ir_to_mesa.cpp
     28  *
     29  * Translate GLSL IR to Mesa's gl_program representation.
     30  */
     31 
     32 #include <stdio.h>
     33 #include "main/compiler.h"
     34 #include "main/macros.h"
     35 #include "main/mtypes.h"
     36 #include "main/shaderapi.h"
     37 #include "main/shaderobj.h"
     38 #include "main/uniforms.h"
     39 #include "compiler/glsl/ast.h"
     40 #include "compiler/glsl/ir.h"
     41 #include "compiler/glsl/ir_expression_flattening.h"
     42 #include "compiler/glsl/ir_visitor.h"
     43 #include "compiler/glsl/ir_optimization.h"
     44 #include "compiler/glsl/ir_uniform.h"
     45 #include "compiler/glsl/glsl_parser_extras.h"
     46 #include "compiler/glsl_types.h"
     47 #include "compiler/glsl/linker.h"
     48 #include "compiler/glsl/program.h"
     49 #include "program/prog_instruction.h"
     50 #include "program/prog_optimize.h"
     51 #include "program/prog_print.h"
     52 #include "program/program.h"
     53 #include "program/prog_parameter.h"
     54 #include "util/string_to_uint_map.h"
     55 
     56 
     57 static int swizzle_for_size(int size);
     58 
     59 namespace {
     60 
     61 class src_reg;
     62 class dst_reg;
     63 
     64 /**
     65  * This struct is a corresponding struct to Mesa prog_src_register, with
     66  * wider fields.
     67  */
     68 class src_reg {
     69 public:
     70    src_reg(gl_register_file file, int index, const glsl_type *type)
     71    {
     72       this->file = file;
     73       this->index = index;
     74       if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
     75 	 this->swizzle = swizzle_for_size(type->vector_elements);
     76       else
     77 	 this->swizzle = SWIZZLE_XYZW;
     78       this->negate = 0;
     79       this->reladdr = NULL;
     80    }
     81 
     82    src_reg()
     83    {
     84       this->file = PROGRAM_UNDEFINED;
     85       this->index = 0;
     86       this->swizzle = 0;
     87       this->negate = 0;
     88       this->reladdr = NULL;
     89    }
     90 
     91    explicit src_reg(dst_reg reg);
     92 
     93    gl_register_file file; /**< PROGRAM_* from Mesa */
     94    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
     95    GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
     96    int negate; /**< NEGATE_XYZW mask from mesa */
     97    /** Register index should be offset by the integer in this reg. */
     98    src_reg *reladdr;
     99 };
    100 
    101 class dst_reg {
    102 public:
    103    dst_reg(gl_register_file file, int writemask)
    104    {
    105       this->file = file;
    106       this->index = 0;
    107       this->writemask = writemask;
    108       this->reladdr = NULL;
    109    }
    110 
    111    dst_reg()
    112    {
    113       this->file = PROGRAM_UNDEFINED;
    114       this->index = 0;
    115       this->writemask = 0;
    116       this->reladdr = NULL;
    117    }
    118 
    119    explicit dst_reg(src_reg reg);
    120 
    121    gl_register_file file; /**< PROGRAM_* from Mesa */
    122    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
    123    int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
    124    /** Register index should be offset by the integer in this reg. */
    125    src_reg *reladdr;
    126 };
    127 
    128 } /* anonymous namespace */
    129 
    130 src_reg::src_reg(dst_reg reg)
    131 {
    132    this->file = reg.file;
    133    this->index = reg.index;
    134    this->swizzle = SWIZZLE_XYZW;
    135    this->negate = 0;
    136    this->reladdr = reg.reladdr;
    137 }
    138 
    139 dst_reg::dst_reg(src_reg reg)
    140 {
    141    this->file = reg.file;
    142    this->index = reg.index;
    143    this->writemask = WRITEMASK_XYZW;
    144    this->reladdr = reg.reladdr;
    145 }
    146 
    147 namespace {
    148 
    149 class ir_to_mesa_instruction : public exec_node {
    150 public:
    151    DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
    152 
    153    enum prog_opcode op;
    154    dst_reg dst;
    155    src_reg src[3];
    156    /** Pointer to the ir source this tree came from for debugging */
    157    ir_instruction *ir;
    158    bool saturate;
    159    int sampler; /**< sampler index */
    160    int tex_target; /**< One of TEXTURE_*_INDEX */
    161    GLboolean tex_shadow;
    162 };
    163 
    164 class variable_storage : public exec_node {
    165 public:
    166    variable_storage(ir_variable *var, gl_register_file file, int index)
    167       : file(file), index(index), var(var)
    168    {
    169       /* empty */
    170    }
    171 
    172    gl_register_file file;
    173    int index;
    174    ir_variable *var; /* variable that maps to this, if any */
    175 };
    176 
    177 class function_entry : public exec_node {
    178 public:
    179    ir_function_signature *sig;
    180 
    181    /**
    182     * identifier of this function signature used by the program.
    183     *
    184     * At the point that Mesa instructions for function calls are
    185     * generated, we don't know the address of the first instruction of
    186     * the function body.  So we make the BranchTarget that is called a
    187     * small integer and rewrite them during set_branchtargets().
    188     */
    189    int sig_id;
    190 
    191    /**
    192     * Pointer to first instruction of the function body.
    193     *
    194     * Set during function body emits after main() is processed.
    195     */
    196    ir_to_mesa_instruction *bgn_inst;
    197 
    198    /**
    199     * Index of the first instruction of the function body in actual
    200     * Mesa IR.
    201     *
    202     * Set after convertion from ir_to_mesa_instruction to prog_instruction.
    203     */
    204    int inst;
    205 
    206    /** Storage for the return value. */
    207    src_reg return_reg;
    208 };
    209 
    210 class ir_to_mesa_visitor : public ir_visitor {
    211 public:
    212    ir_to_mesa_visitor();
    213    ~ir_to_mesa_visitor();
    214 
    215    function_entry *current_function;
    216 
    217    struct gl_context *ctx;
    218    struct gl_program *prog;
    219    struct gl_shader_program *shader_program;
    220    struct gl_shader_compiler_options *options;
    221 
    222    int next_temp;
    223 
    224    variable_storage *find_variable_storage(const ir_variable *var);
    225 
    226    src_reg get_temp(const glsl_type *type);
    227    void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
    228 
    229    src_reg src_reg_for_float(float val);
    230 
    231    /**
    232     * \name Visit methods
    233     *
    234     * As typical for the visitor pattern, there must be one \c visit method for
    235     * each concrete subclass of \c ir_instruction.  Virtual base classes within
    236     * the hierarchy should not have \c visit methods.
    237     */
    238    /*@{*/
    239    virtual void visit(ir_variable *);
    240    virtual void visit(ir_loop *);
    241    virtual void visit(ir_loop_jump *);
    242    virtual void visit(ir_function_signature *);
    243    virtual void visit(ir_function *);
    244    virtual void visit(ir_expression *);
    245    virtual void visit(ir_swizzle *);
    246    virtual void visit(ir_dereference_variable  *);
    247    virtual void visit(ir_dereference_array *);
    248    virtual void visit(ir_dereference_record *);
    249    virtual void visit(ir_assignment *);
    250    virtual void visit(ir_constant *);
    251    virtual void visit(ir_call *);
    252    virtual void visit(ir_return *);
    253    virtual void visit(ir_discard *);
    254    virtual void visit(ir_texture *);
    255    virtual void visit(ir_if *);
    256    virtual void visit(ir_emit_vertex *);
    257    virtual void visit(ir_end_primitive *);
    258    virtual void visit(ir_barrier *);
    259    /*@}*/
    260 
    261    src_reg result;
    262 
    263    /** List of variable_storage */
    264    exec_list variables;
    265 
    266    /** List of function_entry */
    267    exec_list function_signatures;
    268    int next_signature_id;
    269 
    270    /** List of ir_to_mesa_instruction */
    271    exec_list instructions;
    272 
    273    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
    274 
    275    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
    276 			        dst_reg dst, src_reg src0);
    277 
    278    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
    279 			        dst_reg dst, src_reg src0, src_reg src1);
    280 
    281    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
    282 			        dst_reg dst,
    283 			        src_reg src0, src_reg src1, src_reg src2);
    284 
    285    /**
    286     * Emit the correct dot-product instruction for the type of arguments
    287     */
    288    ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
    289 				    dst_reg dst,
    290 				    src_reg src0,
    291 				    src_reg src1,
    292 				    unsigned elements);
    293 
    294    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
    295 		    dst_reg dst, src_reg src0);
    296 
    297    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
    298 		    dst_reg dst, src_reg src0, src_reg src1);
    299 
    300    bool try_emit_mad(ir_expression *ir,
    301 			  int mul_operand);
    302    bool try_emit_mad_for_and_not(ir_expression *ir,
    303 				 int mul_operand);
    304 
    305    void emit_swz(ir_expression *ir);
    306 
    307    void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
    308                                  dst_reg dst,
    309                                  const src_reg &src0, const src_reg &src1);
    310 
    311    inline void emit_sne(ir_expression *ir, dst_reg dst,
    312                         const src_reg &src0, const src_reg &src1)
    313    {
    314       emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
    315    }
    316 
    317    inline void emit_seq(ir_expression *ir, dst_reg dst,
    318                         const src_reg &src0, const src_reg &src1)
    319    {
    320       emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
    321    }
    322 
    323    bool process_move_condition(ir_rvalue *ir);
    324 
    325    void copy_propagate(void);
    326 
    327    void *mem_ctx;
    328 };
    329 
    330 } /* anonymous namespace */
    331 
    332 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
    333 
    334 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
    335 
    336 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
    337 
    338 static int
    339 swizzle_for_size(int size)
    340 {
    341    static const int size_swizzles[4] = {
    342       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
    343       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
    344       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
    345       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
    346    };
    347 
    348    assert((size >= 1) && (size <= 4));
    349    return size_swizzles[size - 1];
    350 }
    351 
    352 ir_to_mesa_instruction *
    353 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
    354 			 dst_reg dst,
    355 			 src_reg src0, src_reg src1, src_reg src2)
    356 {
    357    ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
    358    int num_reladdr = 0;
    359 
    360    /* If we have to do relative addressing, we want to load the ARL
    361     * reg directly for one of the regs, and preload the other reladdr
    362     * sources into temps.
    363     */
    364    num_reladdr += dst.reladdr != NULL;
    365    num_reladdr += src0.reladdr != NULL;
    366    num_reladdr += src1.reladdr != NULL;
    367    num_reladdr += src2.reladdr != NULL;
    368 
    369    reladdr_to_temp(ir, &src2, &num_reladdr);
    370    reladdr_to_temp(ir, &src1, &num_reladdr);
    371    reladdr_to_temp(ir, &src0, &num_reladdr);
    372 
    373    if (dst.reladdr) {
    374       emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
    375       num_reladdr--;
    376    }
    377    assert(num_reladdr == 0);
    378 
    379    inst->op = op;
    380    inst->dst = dst;
    381    inst->src[0] = src0;
    382    inst->src[1] = src1;
    383    inst->src[2] = src2;
    384    inst->ir = ir;
    385 
    386    this->instructions.push_tail(inst);
    387 
    388    return inst;
    389 }
    390 
    391 
    392 ir_to_mesa_instruction *
    393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
    394 			 dst_reg dst, src_reg src0, src_reg src1)
    395 {
    396    return emit(ir, op, dst, src0, src1, undef_src);
    397 }
    398 
    399 ir_to_mesa_instruction *
    400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
    401 			 dst_reg dst, src_reg src0)
    402 {
    403    assert(dst.writemask != 0);
    404    return emit(ir, op, dst, src0, undef_src, undef_src);
    405 }
    406 
    407 ir_to_mesa_instruction *
    408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
    409 {
    410    return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
    411 }
    412 
    413 ir_to_mesa_instruction *
    414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
    415 			    dst_reg dst, src_reg src0, src_reg src1,
    416 			    unsigned elements)
    417 {
    418    static const enum prog_opcode dot_opcodes[] = {
    419       OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
    420    };
    421 
    422    return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
    423 }
    424 
    425 /**
    426  * Emits Mesa scalar opcodes to produce unique answers across channels.
    427  *
    428  * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
    429  * channel determines the result across all channels.  So to do a vec4
    430  * of this operation, we want to emit a scalar per source channel used
    431  * to produce dest channels.
    432  */
    433 void
    434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
    435 			        dst_reg dst,
    436 				src_reg orig_src0, src_reg orig_src1)
    437 {
    438    int i, j;
    439    int done_mask = ~dst.writemask;
    440 
    441    /* Mesa RCP is a scalar operation splatting results to all channels,
    442     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
    443     * dst channels.
    444     */
    445    for (i = 0; i < 4; i++) {
    446       GLuint this_mask = (1 << i);
    447       ir_to_mesa_instruction *inst;
    448       src_reg src0 = orig_src0;
    449       src_reg src1 = orig_src1;
    450 
    451       if (done_mask & this_mask)
    452 	 continue;
    453 
    454       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
    455       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
    456       for (j = i + 1; j < 4; j++) {
    457 	 /* If there is another enabled component in the destination that is
    458 	  * derived from the same inputs, generate its value on this pass as
    459 	  * well.
    460 	  */
    461 	 if (!(done_mask & (1 << j)) &&
    462 	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
    463 	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
    464 	    this_mask |= (1 << j);
    465 	 }
    466       }
    467       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
    468 				   src0_swiz, src0_swiz);
    469       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
    470 				  src1_swiz, src1_swiz);
    471 
    472       inst = emit(ir, op, dst, src0, src1);
    473       inst->dst.writemask = this_mask;
    474       done_mask |= this_mask;
    475    }
    476 }
    477 
    478 void
    479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
    480 			        dst_reg dst, src_reg src0)
    481 {
    482    src_reg undef = undef_src;
    483 
    484    undef.swizzle = SWIZZLE_XXXX;
    485 
    486    emit_scalar(ir, op, dst, src0, undef);
    487 }
    488 
    489 src_reg
    490 ir_to_mesa_visitor::src_reg_for_float(float val)
    491 {
    492    src_reg src(PROGRAM_CONSTANT, -1, NULL);
    493 
    494    src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
    495 					  (const gl_constant_value *)&val, 1, &src.swizzle);
    496 
    497    return src;
    498 }
    499 
    500 static int
    501 type_size(const struct glsl_type *type)
    502 {
    503    unsigned int i;
    504    int size;
    505 
    506    switch (type->base_type) {
    507    case GLSL_TYPE_UINT:
    508    case GLSL_TYPE_INT:
    509    case GLSL_TYPE_FLOAT:
    510    case GLSL_TYPE_BOOL:
    511       if (type->is_matrix()) {
    512 	 return type->matrix_columns;
    513       } else {
    514 	 /* Regardless of size of vector, it gets a vec4. This is bad
    515 	  * packing for things like floats, but otherwise arrays become a
    516 	  * mess.  Hopefully a later pass over the code can pack scalars
    517 	  * down if appropriate.
    518 	  */
    519 	 return 1;
    520       }
    521       break;
    522    case GLSL_TYPE_DOUBLE:
    523       if (type->is_matrix()) {
    524          if (type->vector_elements > 2)
    525             return type->matrix_columns * 2;
    526          else
    527             return type->matrix_columns;
    528       } else {
    529          if (type->vector_elements > 2)
    530             return 2;
    531          else
    532             return 1;
    533       }
    534       break;
    535    case GLSL_TYPE_ARRAY:
    536       assert(type->length > 0);
    537       return type_size(type->fields.array) * type->length;
    538    case GLSL_TYPE_STRUCT:
    539       size = 0;
    540       for (i = 0; i < type->length; i++) {
    541 	 size += type_size(type->fields.structure[i].type);
    542       }
    543       return size;
    544    case GLSL_TYPE_SAMPLER:
    545    case GLSL_TYPE_IMAGE:
    546    case GLSL_TYPE_SUBROUTINE:
    547       /* Samplers take up one slot in UNIFORMS[], but they're baked in
    548        * at link time.
    549        */
    550       return 1;
    551    case GLSL_TYPE_ATOMIC_UINT:
    552    case GLSL_TYPE_VOID:
    553    case GLSL_TYPE_ERROR:
    554    case GLSL_TYPE_INTERFACE:
    555    case GLSL_TYPE_FUNCTION:
    556       assert(!"Invalid type in type_size");
    557       break;
    558    }
    559 
    560    return 0;
    561 }
    562 
    563 /**
    564  * In the initial pass of codegen, we assign temporary numbers to
    565  * intermediate results.  (not SSA -- variable assignments will reuse
    566  * storage).  Actual register allocation for the Mesa VM occurs in a
    567  * pass over the Mesa IR later.
    568  */
    569 src_reg
    570 ir_to_mesa_visitor::get_temp(const glsl_type *type)
    571 {
    572    src_reg src;
    573 
    574    src.file = PROGRAM_TEMPORARY;
    575    src.index = next_temp;
    576    src.reladdr = NULL;
    577    next_temp += type_size(type);
    578 
    579    if (type->is_array() || type->is_record()) {
    580       src.swizzle = SWIZZLE_NOOP;
    581    } else {
    582       src.swizzle = swizzle_for_size(type->vector_elements);
    583    }
    584    src.negate = 0;
    585 
    586    return src;
    587 }
    588 
    589 variable_storage *
    590 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
    591 {
    592    foreach_in_list(variable_storage, entry, &this->variables) {
    593       if (entry->var == var)
    594 	 return entry;
    595    }
    596 
    597    return NULL;
    598 }
    599 
    600 void
    601 ir_to_mesa_visitor::visit(ir_variable *ir)
    602 {
    603    if (strcmp(ir->name, "gl_FragCoord") == 0) {
    604       this->prog->OriginUpperLeft = ir->data.origin_upper_left;
    605       this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
    606    }
    607 
    608    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
    609       unsigned int i;
    610       const ir_state_slot *const slots = ir->get_state_slots();
    611       assert(slots != NULL);
    612 
    613       /* Check if this statevar's setup in the STATE file exactly
    614        * matches how we'll want to reference it as a
    615        * struct/array/whatever.  If not, then we need to move it into
    616        * temporary storage and hope that it'll get copy-propagated
    617        * out.
    618        */
    619       for (i = 0; i < ir->get_num_state_slots(); i++) {
    620 	 if (slots[i].swizzle != SWIZZLE_XYZW) {
    621 	    break;
    622 	 }
    623       }
    624 
    625       variable_storage *storage;
    626       dst_reg dst;
    627       if (i == ir->get_num_state_slots()) {
    628 	 /* We'll set the index later. */
    629 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
    630 	 this->variables.push_tail(storage);
    631 
    632 	 dst = undef_dst;
    633       } else {
    634 	 /* The variable_storage constructor allocates slots based on the size
    635 	  * of the type.  However, this had better match the number of state
    636 	  * elements that we're going to copy into the new temporary.
    637 	  */
    638 	 assert((int) ir->get_num_state_slots() == type_size(ir->type));
    639 
    640 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
    641 						 this->next_temp);
    642 	 this->variables.push_tail(storage);
    643 	 this->next_temp += type_size(ir->type);
    644 
    645 	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
    646       }
    647 
    648 
    649       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
    650 	 int index = _mesa_add_state_reference(this->prog->Parameters,
    651 					       (gl_state_index *)slots[i].tokens);
    652 
    653 	 if (storage->file == PROGRAM_STATE_VAR) {
    654 	    if (storage->index == -1) {
    655 	       storage->index = index;
    656 	    } else {
    657 	       assert(index == storage->index + (int)i);
    658 	    }
    659 	 } else {
    660 	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
    661 	    src.swizzle = slots[i].swizzle;
    662 	    emit(ir, OPCODE_MOV, dst, src);
    663 	    /* even a float takes up a whole vec4 reg in a struct/array. */
    664 	    dst.index++;
    665 	 }
    666       }
    667 
    668       if (storage->file == PROGRAM_TEMPORARY &&
    669 	  dst.index != storage->index + (int) ir->get_num_state_slots()) {
    670 	 linker_error(this->shader_program,
    671 		      "failed to load builtin uniform `%s' "
    672 		      "(%d/%d regs loaded)\n",
    673 		      ir->name, dst.index - storage->index,
    674 		      type_size(ir->type));
    675       }
    676    }
    677 }
    678 
    679 void
    680 ir_to_mesa_visitor::visit(ir_loop *ir)
    681 {
    682    emit(NULL, OPCODE_BGNLOOP);
    683 
    684    visit_exec_list(&ir->body_instructions, this);
    685 
    686    emit(NULL, OPCODE_ENDLOOP);
    687 }
    688 
    689 void
    690 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
    691 {
    692    switch (ir->mode) {
    693    case ir_loop_jump::jump_break:
    694       emit(NULL, OPCODE_BRK);
    695       break;
    696    case ir_loop_jump::jump_continue:
    697       emit(NULL, OPCODE_CONT);
    698       break;
    699    }
    700 }
    701 
    702 
    703 void
    704 ir_to_mesa_visitor::visit(ir_function_signature *ir)
    705 {
    706    assert(0);
    707    (void)ir;
    708 }
    709 
    710 void
    711 ir_to_mesa_visitor::visit(ir_function *ir)
    712 {
    713    /* Ignore function bodies other than main() -- we shouldn't see calls to
    714     * them since they should all be inlined before we get to ir_to_mesa.
    715     */
    716    if (strcmp(ir->name, "main") == 0) {
    717       const ir_function_signature *sig;
    718       exec_list empty;
    719 
    720       sig = ir->matching_signature(NULL, &empty, false);
    721 
    722       assert(sig);
    723 
    724       foreach_in_list(ir_instruction, ir, &sig->body) {
    725 	 ir->accept(this);
    726       }
    727    }
    728 }
    729 
    730 bool
    731 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
    732 {
    733    int nonmul_operand = 1 - mul_operand;
    734    src_reg a, b, c;
    735 
    736    ir_expression *expr = ir->operands[mul_operand]->as_expression();
    737    if (!expr || expr->operation != ir_binop_mul)
    738       return false;
    739 
    740    expr->operands[0]->accept(this);
    741    a = this->result;
    742    expr->operands[1]->accept(this);
    743    b = this->result;
    744    ir->operands[nonmul_operand]->accept(this);
    745    c = this->result;
    746 
    747    this->result = get_temp(ir->type);
    748    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
    749 
    750    return true;
    751 }
    752 
    753 /**
    754  * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
    755  *
    756  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
    757  * implemented using multiplication, and logical-or is implemented using
    758  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
    759  * As result, the logical expression (a & !b) can be rewritten as:
    760  *
    761  *     - a * !b
    762  *     - a * (1 - b)
    763  *     - (a * 1) - (a * b)
    764  *     - a + -(a * b)
    765  *     - a + (a * -b)
    766  *
    767  * This final expression can be implemented as a single MAD(a, -b, a)
    768  * instruction.
    769  */
    770 bool
    771 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
    772 {
    773    const int other_operand = 1 - try_operand;
    774    src_reg a, b;
    775 
    776    ir_expression *expr = ir->operands[try_operand]->as_expression();
    777    if (!expr || expr->operation != ir_unop_logic_not)
    778       return false;
    779 
    780    ir->operands[other_operand]->accept(this);
    781    a = this->result;
    782    expr->operands[0]->accept(this);
    783    b = this->result;
    784 
    785    b.negate = ~b.negate;
    786 
    787    this->result = get_temp(ir->type);
    788    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
    789 
    790    return true;
    791 }
    792 
    793 void
    794 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
    795 				    src_reg *reg, int *num_reladdr)
    796 {
    797    if (!reg->reladdr)
    798       return;
    799 
    800    emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
    801 
    802    if (*num_reladdr != 1) {
    803       src_reg temp = get_temp(glsl_type::vec4_type);
    804 
    805       emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
    806       *reg = temp;
    807    }
    808 
    809    (*num_reladdr)--;
    810 }
    811 
    812 void
    813 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
    814 {
    815    /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
    816     * This means that each of the operands is either an immediate value of -1,
    817     * 0, or 1, or is a component from one source register (possibly with
    818     * negation).
    819     */
    820    uint8_t components[4] = { 0 };
    821    bool negate[4] = { false };
    822    ir_variable *var = NULL;
    823 
    824    for (unsigned i = 0; i < ir->type->vector_elements; i++) {
    825       ir_rvalue *op = ir->operands[i];
    826 
    827       assert(op->type->is_scalar());
    828 
    829       while (op != NULL) {
    830 	 switch (op->ir_type) {
    831 	 case ir_type_constant: {
    832 
    833 	    assert(op->type->is_scalar());
    834 
    835 	    const ir_constant *const c = op->as_constant();
    836 	    if (c->is_one()) {
    837 	       components[i] = SWIZZLE_ONE;
    838 	    } else if (c->is_zero()) {
    839 	       components[i] = SWIZZLE_ZERO;
    840 	    } else if (c->is_negative_one()) {
    841 	       components[i] = SWIZZLE_ONE;
    842 	       negate[i] = true;
    843 	    } else {
    844 	       assert(!"SWZ constant must be 0.0 or 1.0.");
    845 	    }
    846 
    847 	    op = NULL;
    848 	    break;
    849 	 }
    850 
    851 	 case ir_type_dereference_variable: {
    852 	    ir_dereference_variable *const deref =
    853 	       (ir_dereference_variable *) op;
    854 
    855 	    assert((var == NULL) || (deref->var == var));
    856 	    components[i] = SWIZZLE_X;
    857 	    var = deref->var;
    858 	    op = NULL;
    859 	    break;
    860 	 }
    861 
    862 	 case ir_type_expression: {
    863 	    ir_expression *const expr = (ir_expression *) op;
    864 
    865 	    assert(expr->operation == ir_unop_neg);
    866 	    negate[i] = true;
    867 
    868 	    op = expr->operands[0];
    869 	    break;
    870 	 }
    871 
    872 	 case ir_type_swizzle: {
    873 	    ir_swizzle *const swiz = (ir_swizzle *) op;
    874 
    875 	    components[i] = swiz->mask.x;
    876 	    op = swiz->val;
    877 	    break;
    878 	 }
    879 
    880 	 default:
    881 	    assert(!"Should not get here.");
    882 	    return;
    883 	 }
    884       }
    885    }
    886 
    887    assert(var != NULL);
    888 
    889    ir_dereference_variable *const deref =
    890       new(mem_ctx) ir_dereference_variable(var);
    891 
    892    this->result.file = PROGRAM_UNDEFINED;
    893    deref->accept(this);
    894    if (this->result.file == PROGRAM_UNDEFINED) {
    895       printf("Failed to get tree for expression operand:\n");
    896       deref->print();
    897       printf("\n");
    898       exit(1);
    899    }
    900 
    901    src_reg src;
    902 
    903    src = this->result;
    904    src.swizzle = MAKE_SWIZZLE4(components[0],
    905 			       components[1],
    906 			       components[2],
    907 			       components[3]);
    908    src.negate = ((unsigned(negate[0]) << 0)
    909 		 | (unsigned(negate[1]) << 1)
    910 		 | (unsigned(negate[2]) << 2)
    911 		 | (unsigned(negate[3]) << 3));
    912 
    913    /* Storage for our result.  Ideally for an assignment we'd be using the
    914     * actual storage for the result here, instead.
    915     */
    916    const src_reg result_src = get_temp(ir->type);
    917    dst_reg result_dst = dst_reg(result_src);
    918 
    919    /* Limit writes to the channels that will be used by result_src later.
    920     * This does limit this temp's use as a temporary for multi-instruction
    921     * sequences.
    922     */
    923    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
    924 
    925    emit(ir, OPCODE_SWZ, result_dst, src);
    926    this->result = result_src;
    927 }
    928 
    929 void
    930 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
    931                                              enum prog_opcode op,
    932                                              dst_reg dst,
    933                                              const src_reg &src0,
    934                                              const src_reg &src1)
    935 {
    936    src_reg difference;
    937    src_reg abs_difference = get_temp(glsl_type::vec4_type);
    938    const src_reg zero = src_reg_for_float(0.0);
    939 
    940    /* x == y is equivalent to -abs(x-y) >= 0.  Since all of the code that
    941     * consumes the generated IR is pretty dumb, take special care when one
    942     * of the operands is zero.
    943     *
    944     * Similarly, x != y is equivalent to -abs(x-y) < 0.
    945     */
    946    if (src0.file == zero.file &&
    947        src0.index == zero.index &&
    948        src0.swizzle == zero.swizzle) {
    949       difference = src1;
    950    } else if (src1.file == zero.file &&
    951               src1.index == zero.index &&
    952               src1.swizzle == zero.swizzle) {
    953       difference = src0;
    954    } else {
    955       difference = get_temp(glsl_type::vec4_type);
    956 
    957       src_reg tmp_src = src0;
    958       tmp_src.negate = ~tmp_src.negate;
    959 
    960       emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
    961    }
    962 
    963    emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
    964 
    965    abs_difference.negate = ~abs_difference.negate;
    966    emit(ir, op, dst, abs_difference, zero);
    967 }
    968 
    969 void
    970 ir_to_mesa_visitor::visit(ir_expression *ir)
    971 {
    972    unsigned int operand;
    973    src_reg op[ARRAY_SIZE(ir->operands)];
    974    src_reg result_src;
    975    dst_reg result_dst;
    976 
    977    /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
    978     */
    979    if (ir->operation == ir_binop_add) {
    980       if (try_emit_mad(ir, 1))
    981 	 return;
    982       if (try_emit_mad(ir, 0))
    983 	 return;
    984    }
    985 
    986    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
    987     */
    988    if (ir->operation == ir_binop_logic_and) {
    989       if (try_emit_mad_for_and_not(ir, 1))
    990 	 return;
    991       if (try_emit_mad_for_and_not(ir, 0))
    992 	 return;
    993    }
    994 
    995    if (ir->operation == ir_quadop_vector) {
    996       this->emit_swz(ir);
    997       return;
    998    }
    999 
   1000    for (operand = 0; operand < ir->get_num_operands(); operand++) {
   1001       this->result.file = PROGRAM_UNDEFINED;
   1002       ir->operands[operand]->accept(this);
   1003       if (this->result.file == PROGRAM_UNDEFINED) {
   1004 	 printf("Failed to get tree for expression operand:\n");
   1005          ir->operands[operand]->print();
   1006          printf("\n");
   1007 	 exit(1);
   1008       }
   1009       op[operand] = this->result;
   1010 
   1011       /* Matrix expression operands should have been broken down to vector
   1012        * operations already.
   1013        */
   1014       assert(!ir->operands[operand]->type->is_matrix());
   1015    }
   1016 
   1017    int vector_elements = ir->operands[0]->type->vector_elements;
   1018    if (ir->operands[1]) {
   1019       vector_elements = MAX2(vector_elements,
   1020 			     ir->operands[1]->type->vector_elements);
   1021    }
   1022 
   1023    this->result.file = PROGRAM_UNDEFINED;
   1024 
   1025    /* Storage for our result.  Ideally for an assignment we'd be using
   1026     * the actual storage for the result here, instead.
   1027     */
   1028    result_src = get_temp(ir->type);
   1029    /* convenience for the emit functions below. */
   1030    result_dst = dst_reg(result_src);
   1031    /* Limit writes to the channels that will be used by result_src later.
   1032     * This does limit this temp's use as a temporary for multi-instruction
   1033     * sequences.
   1034     */
   1035    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
   1036 
   1037    switch (ir->operation) {
   1038    case ir_unop_logic_not:
   1039       /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
   1040        * older GPUs implement SEQ using multiple instructions (i915 uses two
   1041        * SGE instructions and a MUL instruction).  Since our logic values are
   1042        * 0.0 and 1.0, 1-x also implements !x.
   1043        */
   1044       op[0].negate = ~op[0].negate;
   1045       emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
   1046       break;
   1047    case ir_unop_neg:
   1048       op[0].negate = ~op[0].negate;
   1049       result_src = op[0];
   1050       break;
   1051    case ir_unop_abs:
   1052       emit(ir, OPCODE_ABS, result_dst, op[0]);
   1053       break;
   1054    case ir_unop_sign:
   1055       emit(ir, OPCODE_SSG, result_dst, op[0]);
   1056       break;
   1057    case ir_unop_rcp:
   1058       emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
   1059       break;
   1060 
   1061    case ir_unop_exp2:
   1062       emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
   1063       break;
   1064    case ir_unop_exp:
   1065    case ir_unop_log:
   1066       assert(!"not reached: should be handled by ir_explog_to_explog2");
   1067       break;
   1068    case ir_unop_log2:
   1069       emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
   1070       break;
   1071    case ir_unop_sin:
   1072       emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
   1073       break;
   1074    case ir_unop_cos:
   1075       emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
   1076       break;
   1077 
   1078    case ir_unop_dFdx:
   1079       emit(ir, OPCODE_DDX, result_dst, op[0]);
   1080       break;
   1081    case ir_unop_dFdy:
   1082       emit(ir, OPCODE_DDY, result_dst, op[0]);
   1083       break;
   1084 
   1085    case ir_unop_saturate: {
   1086       ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
   1087                                           result_dst, op[0]);
   1088       inst->saturate = true;
   1089       break;
   1090    }
   1091    case ir_unop_noise: {
   1092       const enum prog_opcode opcode =
   1093 	 prog_opcode(OPCODE_NOISE1
   1094 		     + (ir->operands[0]->type->vector_elements) - 1);
   1095       assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
   1096 
   1097       emit(ir, opcode, result_dst, op[0]);
   1098       break;
   1099    }
   1100 
   1101    case ir_binop_add:
   1102       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
   1103       break;
   1104    case ir_binop_sub:
   1105       emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
   1106       break;
   1107 
   1108    case ir_binop_mul:
   1109       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
   1110       break;
   1111    case ir_binop_div:
   1112       assert(!"not reached: should be handled by ir_div_to_mul_rcp");
   1113       break;
   1114    case ir_binop_mod:
   1115       /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
   1116       assert(ir->type->is_integer());
   1117       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
   1118       break;
   1119 
   1120    case ir_binop_less:
   1121       emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
   1122       break;
   1123    case ir_binop_greater:
   1124       /* Negating the operands (as opposed to switching the order of the
   1125        * operands) produces the correct result when both are +/-Inf.
   1126        */
   1127       op[0].negate = ~op[0].negate;
   1128       op[1].negate = ~op[1].negate;
   1129       emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
   1130       break;
   1131    case ir_binop_lequal:
   1132       /* Negating the operands (as opposed to switching the order of the
   1133        * operands) produces the correct result when both are +/-Inf.
   1134        */
   1135       op[0].negate = ~op[0].negate;
   1136       op[1].negate = ~op[1].negate;
   1137       emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
   1138       break;
   1139    case ir_binop_gequal:
   1140       emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
   1141       break;
   1142    case ir_binop_equal:
   1143       emit_seq(ir, result_dst, op[0], op[1]);
   1144       break;
   1145    case ir_binop_nequal:
   1146       emit_sne(ir, result_dst, op[0], op[1]);
   1147       break;
   1148    case ir_binop_all_equal:
   1149       /* "==" operator producing a scalar boolean. */
   1150       if (ir->operands[0]->type->is_vector() ||
   1151 	  ir->operands[1]->type->is_vector()) {
   1152 	 src_reg temp = get_temp(glsl_type::vec4_type);
   1153          emit_sne(ir, dst_reg(temp), op[0], op[1]);
   1154 
   1155 	 /* After the dot-product, the value will be an integer on the
   1156 	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
   1157 	  */
   1158 	 emit_dp(ir, result_dst, temp, temp, vector_elements);
   1159 
   1160 	 /* Negating the result of the dot-product gives values on the range
   1161 	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
   1162 	  * achieved using SGE.
   1163 	  */
   1164 	 src_reg sge_src = result_src;
   1165 	 sge_src.negate = ~sge_src.negate;
   1166 	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
   1167       } else {
   1168          emit_seq(ir, result_dst, op[0], op[1]);
   1169       }
   1170       break;
   1171    case ir_binop_any_nequal:
   1172       /* "!=" operator producing a scalar boolean. */
   1173       if (ir->operands[0]->type->is_vector() ||
   1174 	  ir->operands[1]->type->is_vector()) {
   1175 	 src_reg temp = get_temp(glsl_type::vec4_type);
   1176          if (ir->operands[0]->type->is_boolean() &&
   1177              ir->operands[1]->as_constant() &&
   1178              ir->operands[1]->as_constant()->is_zero()) {
   1179             temp = op[0];
   1180          } else {
   1181             emit_sne(ir, dst_reg(temp), op[0], op[1]);
   1182          }
   1183 
   1184 	 /* After the dot-product, the value will be an integer on the
   1185 	  * range [0,4].  Zero stays zero, and positive values become 1.0.
   1186 	  */
   1187 	 ir_to_mesa_instruction *const dp =
   1188 	    emit_dp(ir, result_dst, temp, temp, vector_elements);
   1189 	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
   1190 	    /* The clamping to [0,1] can be done for free in the fragment
   1191 	     * shader with a saturate.
   1192 	     */
   1193 	    dp->saturate = true;
   1194 	 } else {
   1195 	    /* Negating the result of the dot-product gives values on the range
   1196 	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
   1197 	     * achieved using SLT.
   1198 	     */
   1199 	    src_reg slt_src = result_src;
   1200 	    slt_src.negate = ~slt_src.negate;
   1201 	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
   1202 	 }
   1203       } else {
   1204          emit_sne(ir, result_dst, op[0], op[1]);
   1205       }
   1206       break;
   1207 
   1208    case ir_binop_logic_xor:
   1209       emit_sne(ir, result_dst, op[0], op[1]);
   1210       break;
   1211 
   1212    case ir_binop_logic_or: {
   1213       if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
   1214          /* After the addition, the value will be an integer on the
   1215           * range [0,2].  Zero stays zero, and positive values become 1.0.
   1216           */
   1217          ir_to_mesa_instruction *add =
   1218             emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
   1219 	 add->saturate = true;
   1220       } else {
   1221          /* The Boolean arguments are stored as float 0.0 and 1.0.  If either
   1222           * value is 1.0, the result of the logcal-or should be 1.0.  If both
   1223           * values are 0.0, the result should be 0.0.  This is exactly what
   1224           * MAX does.
   1225           */
   1226          emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
   1227       }
   1228       break;
   1229    }
   1230 
   1231    case ir_binop_logic_and:
   1232       /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
   1233       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
   1234       break;
   1235 
   1236    case ir_binop_dot:
   1237       assert(ir->operands[0]->type->is_vector());
   1238       assert(ir->operands[0]->type == ir->operands[1]->type);
   1239       emit_dp(ir, result_dst, op[0], op[1],
   1240 	      ir->operands[0]->type->vector_elements);
   1241       break;
   1242 
   1243    case ir_unop_sqrt:
   1244       /* sqrt(x) = x * rsq(x). */
   1245       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
   1246       emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
   1247       /* For incoming channels <= 0, set the result to 0. */
   1248       op[0].negate = ~op[0].negate;
   1249       emit(ir, OPCODE_CMP, result_dst,
   1250 			  op[0], result_src, src_reg_for_float(0.0));
   1251       break;
   1252    case ir_unop_rsq:
   1253       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
   1254       break;
   1255    case ir_unop_i2f:
   1256    case ir_unop_u2f:
   1257    case ir_unop_b2f:
   1258    case ir_unop_b2i:
   1259    case ir_unop_i2u:
   1260    case ir_unop_u2i:
   1261       /* Mesa IR lacks types, ints are stored as truncated floats. */
   1262       result_src = op[0];
   1263       break;
   1264    case ir_unop_f2i:
   1265    case ir_unop_f2u:
   1266       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
   1267       break;
   1268    case ir_unop_f2b:
   1269    case ir_unop_i2b:
   1270       emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
   1271       break;
   1272    case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
   1273    case ir_unop_bitcast_f2u:
   1274    case ir_unop_bitcast_i2f:
   1275    case ir_unop_bitcast_u2f:
   1276       break;
   1277    case ir_unop_trunc:
   1278       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
   1279       break;
   1280    case ir_unop_ceil:
   1281       op[0].negate = ~op[0].negate;
   1282       emit(ir, OPCODE_FLR, result_dst, op[0]);
   1283       result_src.negate = ~result_src.negate;
   1284       break;
   1285    case ir_unop_floor:
   1286       emit(ir, OPCODE_FLR, result_dst, op[0]);
   1287       break;
   1288    case ir_unop_fract:
   1289       emit(ir, OPCODE_FRC, result_dst, op[0]);
   1290       break;
   1291    case ir_unop_pack_snorm_2x16:
   1292    case ir_unop_pack_snorm_4x8:
   1293    case ir_unop_pack_unorm_2x16:
   1294    case ir_unop_pack_unorm_4x8:
   1295    case ir_unop_pack_half_2x16:
   1296    case ir_unop_pack_double_2x32:
   1297    case ir_unop_unpack_snorm_2x16:
   1298    case ir_unop_unpack_snorm_4x8:
   1299    case ir_unop_unpack_unorm_2x16:
   1300    case ir_unop_unpack_unorm_4x8:
   1301    case ir_unop_unpack_half_2x16:
   1302    case ir_unop_unpack_double_2x32:
   1303    case ir_unop_bitfield_reverse:
   1304    case ir_unop_bit_count:
   1305    case ir_unop_find_msb:
   1306    case ir_unop_find_lsb:
   1307    case ir_unop_d2f:
   1308    case ir_unop_f2d:
   1309    case ir_unop_d2i:
   1310    case ir_unop_i2d:
   1311    case ir_unop_d2u:
   1312    case ir_unop_u2d:
   1313    case ir_unop_d2b:
   1314    case ir_unop_frexp_sig:
   1315    case ir_unop_frexp_exp:
   1316       assert(!"not supported");
   1317       break;
   1318    case ir_binop_min:
   1319       emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
   1320       break;
   1321    case ir_binop_max:
   1322       emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
   1323       break;
   1324    case ir_binop_pow:
   1325       emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
   1326       break;
   1327 
   1328       /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
   1329        * hardware backends have no way to avoid Mesa IR generation
   1330        * even if they don't use it, we need to emit "something" and
   1331        * continue.
   1332        */
   1333    case ir_binop_lshift:
   1334    case ir_binop_rshift:
   1335    case ir_binop_bit_and:
   1336    case ir_binop_bit_xor:
   1337    case ir_binop_bit_or:
   1338       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
   1339       break;
   1340 
   1341    case ir_unop_bit_not:
   1342    case ir_unop_round_even:
   1343       emit(ir, OPCODE_MOV, result_dst, op[0]);
   1344       break;
   1345 
   1346    case ir_binop_ubo_load:
   1347       assert(!"not supported");
   1348       break;
   1349 
   1350    case ir_triop_lrp:
   1351       /* ir_triop_lrp operands are (x, y, a) while
   1352        * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
   1353        */
   1354       emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
   1355       break;
   1356 
   1357    case ir_binop_vector_extract:
   1358    case ir_triop_fma:
   1359    case ir_triop_bitfield_extract:
   1360    case ir_triop_vector_insert:
   1361    case ir_quadop_bitfield_insert:
   1362    case ir_binop_ldexp:
   1363    case ir_triop_csel:
   1364    case ir_binop_carry:
   1365    case ir_binop_borrow:
   1366    case ir_binop_imul_high:
   1367    case ir_unop_interpolate_at_centroid:
   1368    case ir_binop_interpolate_at_offset:
   1369    case ir_binop_interpolate_at_sample:
   1370    case ir_unop_dFdx_coarse:
   1371    case ir_unop_dFdx_fine:
   1372    case ir_unop_dFdy_coarse:
   1373    case ir_unop_dFdy_fine:
   1374    case ir_unop_subroutine_to_int:
   1375    case ir_unop_get_buffer_size:
   1376    case ir_unop_vote_any:
   1377    case ir_unop_vote_all:
   1378    case ir_unop_vote_eq:
   1379       assert(!"not supported");
   1380       break;
   1381 
   1382    case ir_unop_ssbo_unsized_array_length:
   1383    case ir_quadop_vector:
   1384       /* This operation should have already been handled.
   1385        */
   1386       assert(!"Should not get here.");
   1387       break;
   1388    }
   1389 
   1390    this->result = result_src;
   1391 }
   1392 
   1393 
   1394 void
   1395 ir_to_mesa_visitor::visit(ir_swizzle *ir)
   1396 {
   1397    src_reg src;
   1398    int i;
   1399    int swizzle[4];
   1400 
   1401    /* Note that this is only swizzles in expressions, not those on the left
   1402     * hand side of an assignment, which do write masking.  See ir_assignment
   1403     * for that.
   1404     */
   1405 
   1406    ir->val->accept(this);
   1407    src = this->result;
   1408    assert(src.file != PROGRAM_UNDEFINED);
   1409    assert(ir->type->vector_elements > 0);
   1410 
   1411    for (i = 0; i < 4; i++) {
   1412       if (i < ir->type->vector_elements) {
   1413 	 switch (i) {
   1414 	 case 0:
   1415 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
   1416 	    break;
   1417 	 case 1:
   1418 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
   1419 	    break;
   1420 	 case 2:
   1421 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
   1422 	    break;
   1423 	 case 3:
   1424 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
   1425 	    break;
   1426 	 }
   1427       } else {
   1428 	 /* If the type is smaller than a vec4, replicate the last
   1429 	  * channel out.
   1430 	  */
   1431 	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
   1432       }
   1433    }
   1434 
   1435    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
   1436 
   1437    this->result = src;
   1438 }
   1439 
   1440 void
   1441 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
   1442 {
   1443    variable_storage *entry = find_variable_storage(ir->var);
   1444    ir_variable *var = ir->var;
   1445 
   1446    if (!entry) {
   1447       switch (var->data.mode) {
   1448       case ir_var_uniform:
   1449 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
   1450 					       var->data.param_index);
   1451 	 this->variables.push_tail(entry);
   1452 	 break;
   1453       case ir_var_shader_in:
   1454 	 /* The linker assigns locations for varyings and attributes,
   1455 	  * including deprecated builtins (like gl_Color),
   1456 	  * user-assigned generic attributes (glBindVertexLocation),
   1457 	  * and user-defined varyings.
   1458 	  */
   1459 	 assert(var->data.location != -1);
   1460          entry = new(mem_ctx) variable_storage(var,
   1461                                                PROGRAM_INPUT,
   1462                                                var->data.location);
   1463          break;
   1464       case ir_var_shader_out:
   1465 	 assert(var->data.location != -1);
   1466          entry = new(mem_ctx) variable_storage(var,
   1467                                                PROGRAM_OUTPUT,
   1468                                                var->data.location);
   1469 	 break;
   1470       case ir_var_system_value:
   1471          entry = new(mem_ctx) variable_storage(var,
   1472                                                PROGRAM_SYSTEM_VALUE,
   1473                                                var->data.location);
   1474          break;
   1475       case ir_var_auto:
   1476       case ir_var_temporary:
   1477 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
   1478 					       this->next_temp);
   1479 	 this->variables.push_tail(entry);
   1480 
   1481 	 next_temp += type_size(var->type);
   1482 	 break;
   1483       }
   1484 
   1485       if (!entry) {
   1486 	 printf("Failed to make storage for %s\n", var->name);
   1487 	 exit(1);
   1488       }
   1489    }
   1490 
   1491    this->result = src_reg(entry->file, entry->index, var->type);
   1492 }
   1493 
   1494 void
   1495 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
   1496 {
   1497    ir_constant *index;
   1498    src_reg src;
   1499    int element_size = type_size(ir->type);
   1500 
   1501    index = ir->array_index->constant_expression_value();
   1502 
   1503    ir->array->accept(this);
   1504    src = this->result;
   1505 
   1506    if (index) {
   1507       src.index += index->value.i[0] * element_size;
   1508    } else {
   1509       /* Variable index array dereference.  It eats the "vec4" of the
   1510        * base of the array and an index that offsets the Mesa register
   1511        * index.
   1512        */
   1513       ir->array_index->accept(this);
   1514 
   1515       src_reg index_reg;
   1516 
   1517       if (element_size == 1) {
   1518 	 index_reg = this->result;
   1519       } else {
   1520 	 index_reg = get_temp(glsl_type::float_type);
   1521 
   1522 	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
   1523 	      this->result, src_reg_for_float(element_size));
   1524       }
   1525 
   1526       /* If there was already a relative address register involved, add the
   1527        * new and the old together to get the new offset.
   1528        */
   1529       if (src.reladdr != NULL)  {
   1530 	 src_reg accum_reg = get_temp(glsl_type::float_type);
   1531 
   1532 	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
   1533 	      index_reg, *src.reladdr);
   1534 
   1535 	 index_reg = accum_reg;
   1536       }
   1537 
   1538       src.reladdr = ralloc(mem_ctx, src_reg);
   1539       memcpy(src.reladdr, &index_reg, sizeof(index_reg));
   1540    }
   1541 
   1542    /* If the type is smaller than a vec4, replicate the last channel out. */
   1543    if (ir->type->is_scalar() || ir->type->is_vector())
   1544       src.swizzle = swizzle_for_size(ir->type->vector_elements);
   1545    else
   1546       src.swizzle = SWIZZLE_NOOP;
   1547 
   1548    this->result = src;
   1549 }
   1550 
   1551 void
   1552 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
   1553 {
   1554    unsigned int i;
   1555    const glsl_type *struct_type = ir->record->type;
   1556    int offset = 0;
   1557 
   1558    ir->record->accept(this);
   1559 
   1560    for (i = 0; i < struct_type->length; i++) {
   1561       if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
   1562 	 break;
   1563       offset += type_size(struct_type->fields.structure[i].type);
   1564    }
   1565 
   1566    /* If the type is smaller than a vec4, replicate the last channel out. */
   1567    if (ir->type->is_scalar() || ir->type->is_vector())
   1568       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
   1569    else
   1570       this->result.swizzle = SWIZZLE_NOOP;
   1571 
   1572    this->result.index += offset;
   1573 }
   1574 
   1575 /**
   1576  * We want to be careful in assignment setup to hit the actual storage
   1577  * instead of potentially using a temporary like we might with the
   1578  * ir_dereference handler.
   1579  */
   1580 static dst_reg
   1581 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
   1582 {
   1583    /* The LHS must be a dereference.  If the LHS is a variable indexed array
   1584     * access of a vector, it must be separated into a series conditional moves
   1585     * before reaching this point (see ir_vec_index_to_cond_assign).
   1586     */
   1587    assert(ir->as_dereference());
   1588    ir_dereference_array *deref_array = ir->as_dereference_array();
   1589    if (deref_array) {
   1590       assert(!deref_array->array->type->is_vector());
   1591    }
   1592 
   1593    /* Use the rvalue deref handler for the most part.  We'll ignore
   1594     * swizzles in it and write swizzles using writemask, though.
   1595     */
   1596    ir->accept(v);
   1597    return dst_reg(v->result);
   1598 }
   1599 
   1600 /* Calculate the sampler index and also calculate the base uniform location
   1601  * for struct members.
   1602  */
   1603 static void
   1604 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
   1605                      unsigned *offset, unsigned *array_elements,
   1606                      unsigned *location)
   1607 {
   1608    if (deref->ir_type == ir_type_dereference_variable)
   1609       return;
   1610 
   1611    switch (deref->ir_type) {
   1612    case ir_type_dereference_array: {
   1613       ir_dereference_array *deref_arr = deref->as_dereference_array();
   1614       ir_constant *array_index =
   1615          deref_arr->array_index->constant_expression_value();
   1616 
   1617       if (!array_index) {
   1618 	 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
   1619 	  * while GLSL 1.30 requires that the array indices be
   1620 	  * constant integer expressions.  We don't expect any driver
   1621 	  * to actually work with a really variable array index, so
   1622 	  * all that would work would be an unrolled loop counter that ends
   1623 	  * up being constant above.
   1624 	  */
   1625          ralloc_strcat(&prog->data->InfoLog,
   1626 		       "warning: Variable sampler array index unsupported.\n"
   1627 		       "This feature of the language was removed in GLSL 1.20 "
   1628 		       "and is unlikely to be supported for 1.10 in Mesa.\n");
   1629       } else {
   1630          *offset += array_index->value.u[0] * *array_elements;
   1631       }
   1632 
   1633       *array_elements *= deref_arr->array->type->length;
   1634 
   1635       calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
   1636                            offset, array_elements, location);
   1637       break;
   1638    }
   1639 
   1640    case ir_type_dereference_record: {
   1641       ir_dereference_record *deref_record = deref->as_dereference_record();
   1642       unsigned field_index =
   1643          deref_record->record->type->field_index(deref_record->field);
   1644       *location +=
   1645          deref_record->record->type->record_location_offset(field_index);
   1646       calc_sampler_offsets(prog, deref_record->record->as_dereference(),
   1647                            offset, array_elements, location);
   1648       break;
   1649    }
   1650 
   1651    default:
   1652       unreachable("Invalid deref type");
   1653       break;
   1654    }
   1655 }
   1656 
   1657 static int
   1658 get_sampler_uniform_value(class ir_dereference *sampler,
   1659                           struct gl_shader_program *shader_program,
   1660                           const struct gl_program *prog)
   1661 {
   1662    GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
   1663    ir_variable *var = sampler->variable_referenced();
   1664    unsigned location = var->data.location;
   1665    unsigned array_elements = 1;
   1666    unsigned offset = 0;
   1667 
   1668    calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
   1669                         &location);
   1670 
   1671    assert(shader_program->data->UniformStorage[location].opaque[shader].active);
   1672    return shader_program->data->UniformStorage[location].opaque[shader].index +
   1673           offset;
   1674 }
   1675 
   1676 /**
   1677  * Process the condition of a conditional assignment
   1678  *
   1679  * Examines the condition of a conditional assignment to generate the optimal
   1680  * first operand of a \c CMP instruction.  If the condition is a relational
   1681  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
   1682  * used as the source for the \c CMP instruction.  Otherwise the comparison
   1683  * is processed to a boolean result, and the boolean result is used as the
   1684  * operand to the CMP instruction.
   1685  */
   1686 bool
   1687 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
   1688 {
   1689    ir_rvalue *src_ir = ir;
   1690    bool negate = true;
   1691    bool switch_order = false;
   1692 
   1693    ir_expression *const expr = ir->as_expression();
   1694    if ((expr != NULL) && (expr->get_num_operands() == 2)) {
   1695       bool zero_on_left = false;
   1696 
   1697       if (expr->operands[0]->is_zero()) {
   1698 	 src_ir = expr->operands[1];
   1699 	 zero_on_left = true;
   1700       } else if (expr->operands[1]->is_zero()) {
   1701 	 src_ir = expr->operands[0];
   1702 	 zero_on_left = false;
   1703       }
   1704 
   1705       /*      a is -  0  +            -  0  +
   1706        * (a <  0)  T  F  F  ( a < 0)  T  F  F
   1707        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
   1708        * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
   1709        * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
   1710        * (a >  0)  F  F  T  (-a < 0)  F  F  T
   1711        * (0 >  a)  T  F  F  ( a < 0)  T  F  F
   1712        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
   1713        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
   1714        *
   1715        * Note that exchanging the order of 0 and 'a' in the comparison simply
   1716        * means that the value of 'a' should be negated.
   1717        */
   1718       if (src_ir != ir) {
   1719 	 switch (expr->operation) {
   1720 	 case ir_binop_less:
   1721 	    switch_order = false;
   1722 	    negate = zero_on_left;
   1723 	    break;
   1724 
   1725 	 case ir_binop_greater:
   1726 	    switch_order = false;
   1727 	    negate = !zero_on_left;
   1728 	    break;
   1729 
   1730 	 case ir_binop_lequal:
   1731 	    switch_order = true;
   1732 	    negate = !zero_on_left;
   1733 	    break;
   1734 
   1735 	 case ir_binop_gequal:
   1736 	    switch_order = true;
   1737 	    negate = zero_on_left;
   1738 	    break;
   1739 
   1740 	 default:
   1741 	    /* This isn't the right kind of comparison afterall, so make sure
   1742 	     * the whole condition is visited.
   1743 	     */
   1744 	    src_ir = ir;
   1745 	    break;
   1746 	 }
   1747       }
   1748    }
   1749 
   1750    src_ir->accept(this);
   1751 
   1752    /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
   1753     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
   1754     * choose which value OPCODE_CMP produces without an extra instruction
   1755     * computing the condition.
   1756     */
   1757    if (negate)
   1758       this->result.negate = ~this->result.negate;
   1759 
   1760    return switch_order;
   1761 }
   1762 
   1763 void
   1764 ir_to_mesa_visitor::visit(ir_assignment *ir)
   1765 {
   1766    dst_reg l;
   1767    src_reg r;
   1768    int i;
   1769 
   1770    ir->rhs->accept(this);
   1771    r = this->result;
   1772 
   1773    l = get_assignment_lhs(ir->lhs, this);
   1774 
   1775    /* FINISHME: This should really set to the correct maximal writemask for each
   1776     * FINISHME: component written (in the loops below).  This case can only
   1777     * FINISHME: occur for matrices, arrays, and structures.
   1778     */
   1779    if (ir->write_mask == 0) {
   1780       assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
   1781       l.writemask = WRITEMASK_XYZW;
   1782    } else if (ir->lhs->type->is_scalar()) {
   1783       /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
   1784        * FINISHME: W component of fragment shader output zero, work correctly.
   1785        */
   1786       l.writemask = WRITEMASK_XYZW;
   1787    } else {
   1788       int swizzles[4];
   1789       int first_enabled_chan = 0;
   1790       int rhs_chan = 0;
   1791 
   1792       assert(ir->lhs->type->is_vector());
   1793       l.writemask = ir->write_mask;
   1794 
   1795       for (int i = 0; i < 4; i++) {
   1796 	 if (l.writemask & (1 << i)) {
   1797 	    first_enabled_chan = GET_SWZ(r.swizzle, i);
   1798 	    break;
   1799 	 }
   1800       }
   1801 
   1802       /* Swizzle a small RHS vector into the channels being written.
   1803        *
   1804        * glsl ir treats write_mask as dictating how many channels are
   1805        * present on the RHS while Mesa IR treats write_mask as just
   1806        * showing which channels of the vec4 RHS get written.
   1807        */
   1808       for (int i = 0; i < 4; i++) {
   1809 	 if (l.writemask & (1 << i))
   1810 	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
   1811 	 else
   1812 	    swizzles[i] = first_enabled_chan;
   1813       }
   1814       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
   1815 				swizzles[2], swizzles[3]);
   1816    }
   1817 
   1818    assert(l.file != PROGRAM_UNDEFINED);
   1819    assert(r.file != PROGRAM_UNDEFINED);
   1820 
   1821    if (ir->condition) {
   1822       const bool switch_order = this->process_move_condition(ir->condition);
   1823       src_reg condition = this->result;
   1824 
   1825       for (i = 0; i < type_size(ir->lhs->type); i++) {
   1826 	 if (switch_order) {
   1827 	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
   1828 	 } else {
   1829 	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
   1830 	 }
   1831 
   1832 	 l.index++;
   1833 	 r.index++;
   1834       }
   1835    } else {
   1836       for (i = 0; i < type_size(ir->lhs->type); i++) {
   1837 	 emit(ir, OPCODE_MOV, l, r);
   1838 	 l.index++;
   1839 	 r.index++;
   1840       }
   1841    }
   1842 }
   1843 
   1844 
   1845 void
   1846 ir_to_mesa_visitor::visit(ir_constant *ir)
   1847 {
   1848    src_reg src;
   1849    GLfloat stack_vals[4] = { 0 };
   1850    GLfloat *values = stack_vals;
   1851    unsigned int i;
   1852 
   1853    /* Unfortunately, 4 floats is all we can get into
   1854     * _mesa_add_unnamed_constant.  So, make a temp to store an
   1855     * aggregate constant and move each constant value into it.  If we
   1856     * get lucky, copy propagation will eliminate the extra moves.
   1857     */
   1858 
   1859    if (ir->type->base_type == GLSL_TYPE_STRUCT) {
   1860       src_reg temp_base = get_temp(ir->type);
   1861       dst_reg temp = dst_reg(temp_base);
   1862 
   1863       foreach_in_list(ir_constant, field_value, &ir->components) {
   1864 	 int size = type_size(field_value->type);
   1865 
   1866 	 assert(size > 0);
   1867 
   1868 	 field_value->accept(this);
   1869 	 src = this->result;
   1870 
   1871 	 for (i = 0; i < (unsigned int)size; i++) {
   1872 	    emit(ir, OPCODE_MOV, temp, src);
   1873 
   1874 	    src.index++;
   1875 	    temp.index++;
   1876 	 }
   1877       }
   1878       this->result = temp_base;
   1879       return;
   1880    }
   1881 
   1882    if (ir->type->is_array()) {
   1883       src_reg temp_base = get_temp(ir->type);
   1884       dst_reg temp = dst_reg(temp_base);
   1885       int size = type_size(ir->type->fields.array);
   1886 
   1887       assert(size > 0);
   1888 
   1889       for (i = 0; i < ir->type->length; i++) {
   1890 	 ir->array_elements[i]->accept(this);
   1891 	 src = this->result;
   1892 	 for (int j = 0; j < size; j++) {
   1893 	    emit(ir, OPCODE_MOV, temp, src);
   1894 
   1895 	    src.index++;
   1896 	    temp.index++;
   1897 	 }
   1898       }
   1899       this->result = temp_base;
   1900       return;
   1901    }
   1902 
   1903    if (ir->type->is_matrix()) {
   1904       src_reg mat = get_temp(ir->type);
   1905       dst_reg mat_column = dst_reg(mat);
   1906 
   1907       for (i = 0; i < ir->type->matrix_columns; i++) {
   1908 	 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
   1909 	 values = &ir->value.f[i * ir->type->vector_elements];
   1910 
   1911 	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
   1912 	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
   1913 						(gl_constant_value *) values,
   1914 						ir->type->vector_elements,
   1915 						&src.swizzle);
   1916 	 emit(ir, OPCODE_MOV, mat_column, src);
   1917 
   1918 	 mat_column.index++;
   1919       }
   1920 
   1921       this->result = mat;
   1922       return;
   1923    }
   1924 
   1925    src.file = PROGRAM_CONSTANT;
   1926    switch (ir->type->base_type) {
   1927    case GLSL_TYPE_FLOAT:
   1928       values = &ir->value.f[0];
   1929       break;
   1930    case GLSL_TYPE_UINT:
   1931       for (i = 0; i < ir->type->vector_elements; i++) {
   1932 	 values[i] = ir->value.u[i];
   1933       }
   1934       break;
   1935    case GLSL_TYPE_INT:
   1936       for (i = 0; i < ir->type->vector_elements; i++) {
   1937 	 values[i] = ir->value.i[i];
   1938       }
   1939       break;
   1940    case GLSL_TYPE_BOOL:
   1941       for (i = 0; i < ir->type->vector_elements; i++) {
   1942 	 values[i] = ir->value.b[i];
   1943       }
   1944       break;
   1945    default:
   1946       assert(!"Non-float/uint/int/bool constant");
   1947    }
   1948 
   1949    this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
   1950    this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
   1951 						   (gl_constant_value *) values,
   1952 						   ir->type->vector_elements,
   1953 						   &this->result.swizzle);
   1954 }
   1955 
   1956 void
   1957 ir_to_mesa_visitor::visit(ir_call *)
   1958 {
   1959    assert(!"ir_to_mesa: All function calls should have been inlined by now.");
   1960 }
   1961 
   1962 void
   1963 ir_to_mesa_visitor::visit(ir_texture *ir)
   1964 {
   1965    src_reg result_src, coord, lod_info, projector, dx, dy;
   1966    dst_reg result_dst, coord_dst;
   1967    ir_to_mesa_instruction *inst = NULL;
   1968    prog_opcode opcode = OPCODE_NOP;
   1969 
   1970    if (ir->op == ir_txs)
   1971       this->result = src_reg_for_float(0.0);
   1972    else
   1973       ir->coordinate->accept(this);
   1974 
   1975    /* Put our coords in a temp.  We'll need to modify them for shadow,
   1976     * projection, or LOD, so the only case we'd use it as-is is if
   1977     * we're doing plain old texturing.  Mesa IR optimization should
   1978     * handle cleaning up our mess in that case.
   1979     */
   1980    coord = get_temp(glsl_type::vec4_type);
   1981    coord_dst = dst_reg(coord);
   1982    emit(ir, OPCODE_MOV, coord_dst, this->result);
   1983 
   1984    if (ir->projector) {
   1985       ir->projector->accept(this);
   1986       projector = this->result;
   1987    }
   1988 
   1989    /* Storage for our result.  Ideally for an assignment we'd be using
   1990     * the actual storage for the result here, instead.
   1991     */
   1992    result_src = get_temp(glsl_type::vec4_type);
   1993    result_dst = dst_reg(result_src);
   1994 
   1995    switch (ir->op) {
   1996    case ir_tex:
   1997    case ir_txs:
   1998       opcode = OPCODE_TEX;
   1999       break;
   2000    case ir_txb:
   2001       opcode = OPCODE_TXB;
   2002       ir->lod_info.bias->accept(this);
   2003       lod_info = this->result;
   2004       break;
   2005    case ir_txf:
   2006       /* Pretend to be TXL so the sampler, coordinate, lod are available */
   2007    case ir_txl:
   2008       opcode = OPCODE_TXL;
   2009       ir->lod_info.lod->accept(this);
   2010       lod_info = this->result;
   2011       break;
   2012    case ir_txd:
   2013       opcode = OPCODE_TXD;
   2014       ir->lod_info.grad.dPdx->accept(this);
   2015       dx = this->result;
   2016       ir->lod_info.grad.dPdy->accept(this);
   2017       dy = this->result;
   2018       break;
   2019    case ir_txf_ms:
   2020       assert(!"Unexpected ir_txf_ms opcode");
   2021       break;
   2022    case ir_lod:
   2023       assert(!"Unexpected ir_lod opcode");
   2024       break;
   2025    case ir_tg4:
   2026       assert(!"Unexpected ir_tg4 opcode");
   2027       break;
   2028    case ir_query_levels:
   2029       assert(!"Unexpected ir_query_levels opcode");
   2030       break;
   2031    case ir_samples_identical:
   2032       unreachable("Unexpected ir_samples_identical opcode");
   2033    case ir_texture_samples:
   2034       unreachable("Unexpected ir_texture_samples opcode");
   2035    }
   2036 
   2037    const glsl_type *sampler_type = ir->sampler->type;
   2038 
   2039    if (ir->projector) {
   2040       if (opcode == OPCODE_TEX) {
   2041 	 /* Slot the projector in as the last component of the coord. */
   2042 	 coord_dst.writemask = WRITEMASK_W;
   2043 	 emit(ir, OPCODE_MOV, coord_dst, projector);
   2044 	 coord_dst.writemask = WRITEMASK_XYZW;
   2045 	 opcode = OPCODE_TXP;
   2046       } else {
   2047 	 src_reg coord_w = coord;
   2048 	 coord_w.swizzle = SWIZZLE_WWWW;
   2049 
   2050 	 /* For the other TEX opcodes there's no projective version
   2051 	  * since the last slot is taken up by lod info.  Do the
   2052 	  * projective divide now.
   2053 	  */
   2054 	 coord_dst.writemask = WRITEMASK_W;
   2055 	 emit(ir, OPCODE_RCP, coord_dst, projector);
   2056 
   2057 	 /* In the case where we have to project the coordinates "by hand,"
   2058 	  * the shadow comparator value must also be projected.
   2059 	  */
   2060 	 src_reg tmp_src = coord;
   2061 	 if (ir->shadow_comparator) {
   2062 	    /* Slot the shadow value in as the second to last component of the
   2063 	     * coord.
   2064 	     */
   2065 	    ir->shadow_comparator->accept(this);
   2066 
   2067 	    tmp_src = get_temp(glsl_type::vec4_type);
   2068 	    dst_reg tmp_dst = dst_reg(tmp_src);
   2069 
   2070 	    /* Projective division not allowed for array samplers. */
   2071 	    assert(!sampler_type->sampler_array);
   2072 
   2073 	    tmp_dst.writemask = WRITEMASK_Z;
   2074 	    emit(ir, OPCODE_MOV, tmp_dst, this->result);
   2075 
   2076 	    tmp_dst.writemask = WRITEMASK_XY;
   2077 	    emit(ir, OPCODE_MOV, tmp_dst, coord);
   2078 	 }
   2079 
   2080 	 coord_dst.writemask = WRITEMASK_XYZ;
   2081 	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
   2082 
   2083 	 coord_dst.writemask = WRITEMASK_XYZW;
   2084 	 coord.swizzle = SWIZZLE_XYZW;
   2085       }
   2086    }
   2087 
   2088    /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
   2089     * comparator was put in the correct place (and projected) by the code,
   2090     * above, that handles by-hand projection.
   2091     */
   2092    if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
   2093       /* Slot the shadow value in as the second to last component of the
   2094        * coord.
   2095        */
   2096       ir->shadow_comparator->accept(this);
   2097 
   2098       /* XXX This will need to be updated for cubemap array samplers. */
   2099       if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
   2100           sampler_type->sampler_array) {
   2101          coord_dst.writemask = WRITEMASK_W;
   2102       } else {
   2103          coord_dst.writemask = WRITEMASK_Z;
   2104       }
   2105 
   2106       emit(ir, OPCODE_MOV, coord_dst, this->result);
   2107       coord_dst.writemask = WRITEMASK_XYZW;
   2108    }
   2109 
   2110    if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
   2111       /* Mesa IR stores lod or lod bias in the last channel of the coords. */
   2112       coord_dst.writemask = WRITEMASK_W;
   2113       emit(ir, OPCODE_MOV, coord_dst, lod_info);
   2114       coord_dst.writemask = WRITEMASK_XYZW;
   2115    }
   2116 
   2117    if (opcode == OPCODE_TXD)
   2118       inst = emit(ir, opcode, result_dst, coord, dx, dy);
   2119    else
   2120       inst = emit(ir, opcode, result_dst, coord);
   2121 
   2122    if (ir->shadow_comparator)
   2123       inst->tex_shadow = GL_TRUE;
   2124 
   2125    inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
   2126                                              prog);
   2127 
   2128    switch (sampler_type->sampler_dimensionality) {
   2129    case GLSL_SAMPLER_DIM_1D:
   2130       inst->tex_target = (sampler_type->sampler_array)
   2131 	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
   2132       break;
   2133    case GLSL_SAMPLER_DIM_2D:
   2134       inst->tex_target = (sampler_type->sampler_array)
   2135 	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
   2136       break;
   2137    case GLSL_SAMPLER_DIM_3D:
   2138       inst->tex_target = TEXTURE_3D_INDEX;
   2139       break;
   2140    case GLSL_SAMPLER_DIM_CUBE:
   2141       inst->tex_target = TEXTURE_CUBE_INDEX;
   2142       break;
   2143    case GLSL_SAMPLER_DIM_RECT:
   2144       inst->tex_target = TEXTURE_RECT_INDEX;
   2145       break;
   2146    case GLSL_SAMPLER_DIM_BUF:
   2147       assert(!"FINISHME: Implement ARB_texture_buffer_object");
   2148       break;
   2149    case GLSL_SAMPLER_DIM_EXTERNAL:
   2150       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
   2151       break;
   2152    default:
   2153       assert(!"Should not get here.");
   2154    }
   2155 
   2156    this->result = result_src;
   2157 }
   2158 
   2159 void
   2160 ir_to_mesa_visitor::visit(ir_return *ir)
   2161 {
   2162    /* Non-void functions should have been inlined.  We may still emit RETs
   2163     * from main() unless the EmitNoMainReturn option is set.
   2164     */
   2165    assert(!ir->get_value());
   2166    emit(ir, OPCODE_RET);
   2167 }
   2168 
   2169 void
   2170 ir_to_mesa_visitor::visit(ir_discard *ir)
   2171 {
   2172    if (!ir->condition)
   2173       ir->condition = new(mem_ctx) ir_constant(true);
   2174 
   2175    ir->condition->accept(this);
   2176    this->result.negate = ~this->result.negate;
   2177    emit(ir, OPCODE_KIL, undef_dst, this->result);
   2178 }
   2179 
   2180 void
   2181 ir_to_mesa_visitor::visit(ir_if *ir)
   2182 {
   2183    ir_to_mesa_instruction *if_inst;
   2184 
   2185    ir->condition->accept(this);
   2186    assert(this->result.file != PROGRAM_UNDEFINED);
   2187 
   2188    if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
   2189 
   2190    this->instructions.push_tail(if_inst);
   2191 
   2192    visit_exec_list(&ir->then_instructions, this);
   2193 
   2194    if (!ir->else_instructions.is_empty()) {
   2195       emit(ir->condition, OPCODE_ELSE);
   2196       visit_exec_list(&ir->else_instructions, this);
   2197    }
   2198 
   2199    emit(ir->condition, OPCODE_ENDIF);
   2200 }
   2201 
   2202 void
   2203 ir_to_mesa_visitor::visit(ir_emit_vertex *)
   2204 {
   2205    assert(!"Geometry shaders not supported.");
   2206 }
   2207 
   2208 void
   2209 ir_to_mesa_visitor::visit(ir_end_primitive *)
   2210 {
   2211    assert(!"Geometry shaders not supported.");
   2212 }
   2213 
   2214 void
   2215 ir_to_mesa_visitor::visit(ir_barrier *)
   2216 {
   2217    unreachable("GLSL barrier() not supported.");
   2218 }
   2219 
   2220 ir_to_mesa_visitor::ir_to_mesa_visitor()
   2221 {
   2222    result.file = PROGRAM_UNDEFINED;
   2223    next_temp = 1;
   2224    next_signature_id = 1;
   2225    current_function = NULL;
   2226    mem_ctx = ralloc_context(NULL);
   2227 }
   2228 
   2229 ir_to_mesa_visitor::~ir_to_mesa_visitor()
   2230 {
   2231    ralloc_free(mem_ctx);
   2232 }
   2233 
   2234 static struct prog_src_register
   2235 mesa_src_reg_from_ir_src_reg(src_reg reg)
   2236 {
   2237    struct prog_src_register mesa_reg;
   2238 
   2239    mesa_reg.File = reg.file;
   2240    assert(reg.index < (1 << INST_INDEX_BITS));
   2241    mesa_reg.Index = reg.index;
   2242    mesa_reg.Swizzle = reg.swizzle;
   2243    mesa_reg.RelAddr = reg.reladdr != NULL;
   2244    mesa_reg.Negate = reg.negate;
   2245 
   2246    return mesa_reg;
   2247 }
   2248 
   2249 static void
   2250 set_branchtargets(ir_to_mesa_visitor *v,
   2251 		  struct prog_instruction *mesa_instructions,
   2252 		  int num_instructions)
   2253 {
   2254    int if_count = 0, loop_count = 0;
   2255    int *if_stack, *loop_stack;
   2256    int if_stack_pos = 0, loop_stack_pos = 0;
   2257    int i, j;
   2258 
   2259    for (i = 0; i < num_instructions; i++) {
   2260       switch (mesa_instructions[i].Opcode) {
   2261       case OPCODE_IF:
   2262 	 if_count++;
   2263 	 break;
   2264       case OPCODE_BGNLOOP:
   2265 	 loop_count++;
   2266 	 break;
   2267       case OPCODE_BRK:
   2268       case OPCODE_CONT:
   2269 	 mesa_instructions[i].BranchTarget = -1;
   2270 	 break;
   2271       default:
   2272 	 break;
   2273       }
   2274    }
   2275 
   2276    if_stack = rzalloc_array(v->mem_ctx, int, if_count);
   2277    loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
   2278 
   2279    for (i = 0; i < num_instructions; i++) {
   2280       switch (mesa_instructions[i].Opcode) {
   2281       case OPCODE_IF:
   2282 	 if_stack[if_stack_pos] = i;
   2283 	 if_stack_pos++;
   2284 	 break;
   2285       case OPCODE_ELSE:
   2286 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
   2287 	 if_stack[if_stack_pos - 1] = i;
   2288 	 break;
   2289       case OPCODE_ENDIF:
   2290 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
   2291 	 if_stack_pos--;
   2292 	 break;
   2293       case OPCODE_BGNLOOP:
   2294 	 loop_stack[loop_stack_pos] = i;
   2295 	 loop_stack_pos++;
   2296 	 break;
   2297       case OPCODE_ENDLOOP:
   2298 	 loop_stack_pos--;
   2299 	 /* Rewrite any breaks/conts at this nesting level (haven't
   2300 	  * already had a BranchTarget assigned) to point to the end
   2301 	  * of the loop.
   2302 	  */
   2303 	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
   2304 	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
   2305 		mesa_instructions[j].Opcode == OPCODE_CONT) {
   2306 	       if (mesa_instructions[j].BranchTarget == -1) {
   2307 		  mesa_instructions[j].BranchTarget = i;
   2308 	       }
   2309 	    }
   2310 	 }
   2311 	 /* The loop ends point at each other. */
   2312 	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
   2313 	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
   2314 	 break;
   2315       case OPCODE_CAL:
   2316 	 foreach_in_list(function_entry, entry, &v->function_signatures) {
   2317 	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
   2318 	       mesa_instructions[i].BranchTarget = entry->inst;
   2319 	       break;
   2320 	    }
   2321 	 }
   2322 	 break;
   2323       default:
   2324 	 break;
   2325       }
   2326    }
   2327 }
   2328 
   2329 static void
   2330 print_program(struct prog_instruction *mesa_instructions,
   2331 	      ir_instruction **mesa_instruction_annotation,
   2332 	      int num_instructions)
   2333 {
   2334    ir_instruction *last_ir = NULL;
   2335    int i;
   2336    int indent = 0;
   2337 
   2338    for (i = 0; i < num_instructions; i++) {
   2339       struct prog_instruction *mesa_inst = mesa_instructions + i;
   2340       ir_instruction *ir = mesa_instruction_annotation[i];
   2341 
   2342       fprintf(stdout, "%3d: ", i);
   2343 
   2344       if (last_ir != ir && ir) {
   2345 	 int j;
   2346 
   2347 	 for (j = 0; j < indent; j++) {
   2348 	    fprintf(stdout, " ");
   2349 	 }
   2350 	 ir->print();
   2351 	 printf("\n");
   2352 	 last_ir = ir;
   2353 
   2354 	 fprintf(stdout, "     "); /* line number spacing. */
   2355       }
   2356 
   2357       indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
   2358 					    PROG_PRINT_DEBUG, NULL);
   2359    }
   2360 }
   2361 
   2362 namespace {
   2363 
   2364 class add_uniform_to_shader : public program_resource_visitor {
   2365 public:
   2366    add_uniform_to_shader(struct gl_shader_program *shader_program,
   2367 			 struct gl_program_parameter_list *params,
   2368                          gl_shader_stage shader_type)
   2369       : shader_program(shader_program), params(params), idx(-1),
   2370         shader_type(shader_type)
   2371    {
   2372       /* empty */
   2373    }
   2374 
   2375    void process(ir_variable *var)
   2376    {
   2377       this->idx = -1;
   2378       this->program_resource_visitor::process(var);
   2379       var->data.param_index = this->idx;
   2380    }
   2381 
   2382 private:
   2383    virtual void visit_field(const glsl_type *type, const char *name,
   2384                             bool row_major, const glsl_type *record_type,
   2385                             const enum glsl_interface_packing packing,
   2386                             bool last_field);
   2387 
   2388    struct gl_shader_program *shader_program;
   2389    struct gl_program_parameter_list *params;
   2390    int idx;
   2391    gl_shader_stage shader_type;
   2392 };
   2393 
   2394 } /* anonymous namespace */
   2395 
   2396 void
   2397 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
   2398                                    bool /* row_major */,
   2399                                    const glsl_type * /* record_type */,
   2400                                    const enum glsl_interface_packing,
   2401                                    bool /* last_field */)
   2402 {
   2403    unsigned int size;
   2404 
   2405    /* atomics don't get real storage */
   2406    if (type->contains_atomic())
   2407       return;
   2408 
   2409    if (type->is_vector() || type->is_scalar()) {
   2410       size = type->vector_elements;
   2411       if (type->is_64bit())
   2412          size *= 2;
   2413    } else {
   2414       size = type_size(type) * 4;
   2415    }
   2416 
   2417    gl_register_file file;
   2418    if (type->without_array()->is_sampler()) {
   2419       file = PROGRAM_SAMPLER;
   2420    } else {
   2421       file = PROGRAM_UNIFORM;
   2422    }
   2423 
   2424    int index = _mesa_lookup_parameter_index(params, name);
   2425    if (index < 0) {
   2426       index = _mesa_add_parameter(params, file, name, size, type->gl_type,
   2427 				  NULL, NULL);
   2428 
   2429       /* Sampler uniform values are stored in prog->SamplerUnits,
   2430        * and the entry in that array is selected by this index we
   2431        * store in ParameterValues[].
   2432        */
   2433       if (file == PROGRAM_SAMPLER) {
   2434 	 unsigned location;
   2435 	 const bool found =
   2436 	    this->shader_program->UniformHash->get(location,
   2437 						   params->Parameters[index].Name);
   2438 	 assert(found);
   2439 
   2440 	 if (!found)
   2441 	    return;
   2442 
   2443 	 struct gl_uniform_storage *storage =
   2444             &this->shader_program->data->UniformStorage[location];
   2445 
   2446          assert(storage->type->is_sampler() &&
   2447                 storage->opaque[shader_type].active);
   2448 
   2449 	 for (unsigned int j = 0; j < size / 4; j++)
   2450             params->ParameterValues[index + j][0].f =
   2451                storage->opaque[shader_type].index + j;
   2452       }
   2453    }
   2454 
   2455    /* The first part of the uniform that's processed determines the base
   2456     * location of the whole uniform (for structures).
   2457     */
   2458    if (this->idx < 0)
   2459       this->idx = index;
   2460 }
   2461 
   2462 /**
   2463  * Generate the program parameters list for the user uniforms in a shader
   2464  *
   2465  * \param shader_program Linked shader program.  This is only used to
   2466  *                       emit possible link errors to the info log.
   2467  * \param sh             Shader whose uniforms are to be processed.
   2468  * \param params         Parameter list to be filled in.
   2469  */
   2470 void
   2471 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
   2472 					    *shader_program,
   2473 					    struct gl_linked_shader *sh,
   2474 					    struct gl_program_parameter_list
   2475 					    *params)
   2476 {
   2477    add_uniform_to_shader add(shader_program, params, sh->Stage);
   2478 
   2479    foreach_in_list(ir_instruction, node, sh->ir) {
   2480       ir_variable *var = node->as_variable();
   2481 
   2482       if ((var == NULL) || (var->data.mode != ir_var_uniform)
   2483 	  || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
   2484 	 continue;
   2485 
   2486       add.process(var);
   2487    }
   2488 }
   2489 
   2490 void
   2491 _mesa_associate_uniform_storage(struct gl_context *ctx,
   2492 				struct gl_shader_program *shader_program,
   2493 				struct gl_program_parameter_list *params)
   2494 {
   2495    /* After adding each uniform to the parameter list, connect the storage for
   2496     * the parameter with the tracking structure used by the API for the
   2497     * uniform.
   2498     */
   2499    unsigned last_location = unsigned(~0);
   2500    for (unsigned i = 0; i < params->NumParameters; i++) {
   2501       if (params->Parameters[i].Type != PROGRAM_UNIFORM)
   2502 	 continue;
   2503 
   2504       unsigned location;
   2505       const bool found =
   2506 	 shader_program->UniformHash->get(location, params->Parameters[i].Name);
   2507       assert(found);
   2508 
   2509       if (!found)
   2510 	 continue;
   2511 
   2512       struct gl_uniform_storage *storage =
   2513          &shader_program->data->UniformStorage[location];
   2514 
   2515       /* Do not associate any uniform storage to built-in uniforms */
   2516       if (storage->builtin)
   2517          continue;
   2518 
   2519       if (location != last_location) {
   2520 	 enum gl_uniform_driver_format format = uniform_native;
   2521 
   2522 	 unsigned columns = 0;
   2523 	 int dmul = 4 * sizeof(float);
   2524 	 switch (storage->type->base_type) {
   2525 	 case GLSL_TYPE_UINT:
   2526 	    assert(ctx->Const.NativeIntegers);
   2527 	    format = uniform_native;
   2528 	    columns = 1;
   2529 	    break;
   2530 	 case GLSL_TYPE_INT:
   2531 	    format =
   2532 	       (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
   2533 	    columns = 1;
   2534 	    break;
   2535 
   2536 	 case GLSL_TYPE_DOUBLE:
   2537 	    if (storage->type->vector_elements > 2)
   2538                dmul *= 2;
   2539 	    /* fallthrough */
   2540 	 case GLSL_TYPE_FLOAT:
   2541 	    format = uniform_native;
   2542 	    columns = storage->type->matrix_columns;
   2543 	    break;
   2544 	 case GLSL_TYPE_BOOL:
   2545 	    format = uniform_native;
   2546 	    columns = 1;
   2547 	    break;
   2548 	 case GLSL_TYPE_SAMPLER:
   2549 	 case GLSL_TYPE_IMAGE:
   2550          case GLSL_TYPE_SUBROUTINE:
   2551 	    format = uniform_native;
   2552 	    columns = 1;
   2553 	    break;
   2554          case GLSL_TYPE_ATOMIC_UINT:
   2555          case GLSL_TYPE_ARRAY:
   2556          case GLSL_TYPE_VOID:
   2557          case GLSL_TYPE_STRUCT:
   2558          case GLSL_TYPE_ERROR:
   2559          case GLSL_TYPE_INTERFACE:
   2560          case GLSL_TYPE_FUNCTION:
   2561 	    assert(!"Should not get here.");
   2562 	    break;
   2563 	 }
   2564 
   2565 	 _mesa_uniform_attach_driver_storage(storage,
   2566 					     dmul * columns,
   2567 					     dmul,
   2568 					     format,
   2569 					     &params->ParameterValues[i]);
   2570 
   2571 	 /* After attaching the driver's storage to the uniform, propagate any
   2572 	  * data from the linker's backing store.  This will cause values from
   2573 	  * initializers in the source code to be copied over.
   2574 	  */
   2575 	 _mesa_propagate_uniforms_to_driver_storage(storage,
   2576 						    0,
   2577 						    MAX2(1, storage->array_elements));
   2578 
   2579 	 last_location = location;
   2580       }
   2581    }
   2582 }
   2583 
   2584 /*
   2585  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
   2586  * channels for copy propagation and updates following instructions to
   2587  * use the original versions.
   2588  *
   2589  * The ir_to_mesa_visitor lazily produces code assuming that this pass
   2590  * will occur.  As an example, a TXP production before this pass:
   2591  *
   2592  * 0: MOV TEMP[1], INPUT[4].xyyy;
   2593  * 1: MOV TEMP[1].w, INPUT[4].wwww;
   2594  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
   2595  *
   2596  * and after:
   2597  *
   2598  * 0: MOV TEMP[1], INPUT[4].xyyy;
   2599  * 1: MOV TEMP[1].w, INPUT[4].wwww;
   2600  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
   2601  *
   2602  * which allows for dead code elimination on TEMP[1]'s writes.
   2603  */
   2604 void
   2605 ir_to_mesa_visitor::copy_propagate(void)
   2606 {
   2607    ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
   2608 						    ir_to_mesa_instruction *,
   2609 						    this->next_temp * 4);
   2610    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
   2611    int level = 0;
   2612 
   2613    foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
   2614       assert(inst->dst.file != PROGRAM_TEMPORARY
   2615 	     || inst->dst.index < this->next_temp);
   2616 
   2617       /* First, do any copy propagation possible into the src regs. */
   2618       for (int r = 0; r < 3; r++) {
   2619 	 ir_to_mesa_instruction *first = NULL;
   2620 	 bool good = true;
   2621 	 int acp_base = inst->src[r].index * 4;
   2622 
   2623 	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
   2624 	     inst->src[r].reladdr)
   2625 	    continue;
   2626 
   2627 	 /* See if we can find entries in the ACP consisting of MOVs
   2628 	  * from the same src register for all the swizzled channels
   2629 	  * of this src register reference.
   2630 	  */
   2631 	 for (int i = 0; i < 4; i++) {
   2632 	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
   2633 	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
   2634 
   2635 	    if (!copy_chan) {
   2636 	       good = false;
   2637 	       break;
   2638 	    }
   2639 
   2640 	    assert(acp_level[acp_base + src_chan] <= level);
   2641 
   2642 	    if (!first) {
   2643 	       first = copy_chan;
   2644 	    } else {
   2645 	       if (first->src[0].file != copy_chan->src[0].file ||
   2646 		   first->src[0].index != copy_chan->src[0].index) {
   2647 		  good = false;
   2648 		  break;
   2649 	       }
   2650 	    }
   2651 	 }
   2652 
   2653 	 if (good) {
   2654 	    /* We've now validated that we can copy-propagate to
   2655 	     * replace this src register reference.  Do it.
   2656 	     */
   2657 	    inst->src[r].file = first->src[0].file;
   2658 	    inst->src[r].index = first->src[0].index;
   2659 
   2660 	    int swizzle = 0;
   2661 	    for (int i = 0; i < 4; i++) {
   2662 	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
   2663 	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
   2664 	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
   2665 			   (3 * i));
   2666 	    }
   2667 	    inst->src[r].swizzle = swizzle;
   2668 	 }
   2669       }
   2670 
   2671       switch (inst->op) {
   2672       case OPCODE_BGNLOOP:
   2673       case OPCODE_ENDLOOP:
   2674 	 /* End of a basic block, clear the ACP entirely. */
   2675 	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
   2676 	 break;
   2677 
   2678       case OPCODE_IF:
   2679 	 ++level;
   2680 	 break;
   2681 
   2682       case OPCODE_ENDIF:
   2683       case OPCODE_ELSE:
   2684 	 /* Clear all channels written inside the block from the ACP, but
   2685 	  * leaving those that were not touched.
   2686 	  */
   2687 	 for (int r = 0; r < this->next_temp; r++) {
   2688 	    for (int c = 0; c < 4; c++) {
   2689 	       if (!acp[4 * r + c])
   2690 		  continue;
   2691 
   2692 	       if (acp_level[4 * r + c] >= level)
   2693 		  acp[4 * r + c] = NULL;
   2694 	    }
   2695 	 }
   2696 	 if (inst->op == OPCODE_ENDIF)
   2697 	    --level;
   2698 	 break;
   2699 
   2700       default:
   2701 	 /* Continuing the block, clear any written channels from
   2702 	  * the ACP.
   2703 	  */
   2704 	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
   2705 	    /* Any temporary might be written, so no copy propagation
   2706 	     * across this instruction.
   2707 	     */
   2708 	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
   2709 	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
   2710 		    inst->dst.reladdr) {
   2711 	    /* Any output might be written, so no copy propagation
   2712 	     * from outputs across this instruction.
   2713 	     */
   2714 	    for (int r = 0; r < this->next_temp; r++) {
   2715 	       for (int c = 0; c < 4; c++) {
   2716 		  if (!acp[4 * r + c])
   2717 		     continue;
   2718 
   2719 		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
   2720 		     acp[4 * r + c] = NULL;
   2721 	       }
   2722 	    }
   2723 	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
   2724 		    inst->dst.file == PROGRAM_OUTPUT) {
   2725 	    /* Clear where it's used as dst. */
   2726 	    if (inst->dst.file == PROGRAM_TEMPORARY) {
   2727 	       for (int c = 0; c < 4; c++) {
   2728 		  if (inst->dst.writemask & (1 << c)) {
   2729 		     acp[4 * inst->dst.index + c] = NULL;
   2730 		  }
   2731 	       }
   2732 	    }
   2733 
   2734 	    /* Clear where it's used as src. */
   2735 	    for (int r = 0; r < this->next_temp; r++) {
   2736 	       for (int c = 0; c < 4; c++) {
   2737 		  if (!acp[4 * r + c])
   2738 		     continue;
   2739 
   2740 		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
   2741 
   2742 		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
   2743 		      acp[4 * r + c]->src[0].index == inst->dst.index &&
   2744 		      inst->dst.writemask & (1 << src_chan))
   2745 		  {
   2746 		     acp[4 * r + c] = NULL;
   2747 		  }
   2748 	       }
   2749 	    }
   2750 	 }
   2751 	 break;
   2752       }
   2753 
   2754       /* If this is a copy, add it to the ACP. */
   2755       if (inst->op == OPCODE_MOV &&
   2756 	  inst->dst.file == PROGRAM_TEMPORARY &&
   2757 	  !(inst->dst.file == inst->src[0].file &&
   2758 	    inst->dst.index == inst->src[0].index) &&
   2759 	  !inst->dst.reladdr &&
   2760 	  !inst->saturate &&
   2761 	  !inst->src[0].reladdr &&
   2762 	  !inst->src[0].negate) {
   2763 	 for (int i = 0; i < 4; i++) {
   2764 	    if (inst->dst.writemask & (1 << i)) {
   2765 	       acp[4 * inst->dst.index + i] = inst;
   2766 	       acp_level[4 * inst->dst.index + i] = level;
   2767 	    }
   2768 	 }
   2769       }
   2770    }
   2771 
   2772    ralloc_free(acp_level);
   2773    ralloc_free(acp);
   2774 }
   2775 
   2776 
   2777 /**
   2778  * Convert a shader's GLSL IR into a Mesa gl_program.
   2779  */
   2780 static struct gl_program *
   2781 get_mesa_program(struct gl_context *ctx,
   2782                  struct gl_shader_program *shader_program,
   2783 		 struct gl_linked_shader *shader)
   2784 {
   2785    ir_to_mesa_visitor v;
   2786    struct prog_instruction *mesa_instructions, *mesa_inst;
   2787    ir_instruction **mesa_instruction_annotation;
   2788    int i;
   2789    struct gl_program *prog;
   2790    GLenum target = _mesa_shader_stage_to_program(shader->Stage);
   2791    const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
   2792    struct gl_shader_compiler_options *options =
   2793          &ctx->Const.ShaderCompilerOptions[shader->Stage];
   2794 
   2795    validate_ir_tree(shader->ir);
   2796 
   2797    prog = shader->Program;
   2798    prog->Parameters = _mesa_new_parameter_list();
   2799    v.ctx = ctx;
   2800    v.prog = prog;
   2801    v.shader_program = shader_program;
   2802    v.options = options;
   2803 
   2804    _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
   2805 					       prog->Parameters);
   2806 
   2807    /* Emit Mesa IR for main(). */
   2808    visit_exec_list(shader->ir, &v);
   2809    v.emit(NULL, OPCODE_END);
   2810 
   2811    prog->arb.NumTemporaries = v.next_temp;
   2812 
   2813    unsigned num_instructions = v.instructions.length();
   2814 
   2815    mesa_instructions = rzalloc_array(prog, struct prog_instruction,
   2816                                      num_instructions);
   2817    mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
   2818 					      num_instructions);
   2819 
   2820    v.copy_propagate();
   2821 
   2822    /* Convert ir_mesa_instructions into prog_instructions.
   2823     */
   2824    mesa_inst = mesa_instructions;
   2825    i = 0;
   2826    foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
   2827       mesa_inst->Opcode = inst->op;
   2828       if (inst->saturate)
   2829 	 mesa_inst->Saturate = GL_TRUE;
   2830       mesa_inst->DstReg.File = inst->dst.file;
   2831       mesa_inst->DstReg.Index = inst->dst.index;
   2832       mesa_inst->DstReg.WriteMask = inst->dst.writemask;
   2833       mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
   2834       mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
   2835       mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
   2836       mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
   2837       mesa_inst->TexSrcUnit = inst->sampler;
   2838       mesa_inst->TexSrcTarget = inst->tex_target;
   2839       mesa_inst->TexShadow = inst->tex_shadow;
   2840       mesa_instruction_annotation[i] = inst->ir;
   2841 
   2842       /* Set IndirectRegisterFiles. */
   2843       if (mesa_inst->DstReg.RelAddr)
   2844          prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
   2845 
   2846       /* Update program's bitmask of indirectly accessed register files */
   2847       for (unsigned src = 0; src < 3; src++)
   2848          if (mesa_inst->SrcReg[src].RelAddr)
   2849             prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
   2850 
   2851       switch (mesa_inst->Opcode) {
   2852       case OPCODE_IF:
   2853 	 if (options->MaxIfDepth == 0) {
   2854 	    linker_warning(shader_program,
   2855 			   "Couldn't flatten if-statement.  "
   2856 			   "This will likely result in software "
   2857 			   "rasterization.\n");
   2858 	 }
   2859 	 break;
   2860       case OPCODE_BGNLOOP:
   2861 	 if (options->EmitNoLoops) {
   2862 	    linker_warning(shader_program,
   2863 			   "Couldn't unroll loop.  "
   2864 			   "This will likely result in software "
   2865 			   "rasterization.\n");
   2866 	 }
   2867 	 break;
   2868       case OPCODE_CONT:
   2869 	 if (options->EmitNoCont) {
   2870 	    linker_warning(shader_program,
   2871 			   "Couldn't lower continue-statement.  "
   2872 			   "This will likely result in software "
   2873 			   "rasterization.\n");
   2874 	 }
   2875 	 break;
   2876       case OPCODE_ARL:
   2877          prog->arb.NumAddressRegs = 1;
   2878 	 break;
   2879       default:
   2880 	 break;
   2881       }
   2882 
   2883       mesa_inst++;
   2884       i++;
   2885 
   2886       if (!shader_program->data->LinkStatus)
   2887          break;
   2888    }
   2889 
   2890    if (!shader_program->data->LinkStatus) {
   2891       goto fail_exit;
   2892    }
   2893 
   2894    set_branchtargets(&v, mesa_instructions, num_instructions);
   2895 
   2896    if (ctx->_Shader->Flags & GLSL_DUMP) {
   2897       fprintf(stderr, "\n");
   2898       fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
   2899 	      shader_program->Name);
   2900       _mesa_print_ir(stderr, shader->ir, NULL);
   2901       fprintf(stderr, "\n");
   2902       fprintf(stderr, "\n");
   2903       fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
   2904 	      shader_program->Name);
   2905       print_program(mesa_instructions, mesa_instruction_annotation,
   2906 		    num_instructions);
   2907       fflush(stderr);
   2908    }
   2909 
   2910    prog->arb.Instructions = mesa_instructions;
   2911    prog->arb.NumInstructions = num_instructions;
   2912 
   2913    /* Setting this to NULL prevents a possible double free in the fail_exit
   2914     * path (far below).
   2915     */
   2916    mesa_instructions = NULL;
   2917 
   2918    do_set_program_inouts(shader->ir, prog, shader->Stage);
   2919 
   2920    prog->ShadowSamplers = shader->shadow_samplers;
   2921    prog->ExternalSamplersUsed = gl_external_samplers(prog);
   2922    _mesa_update_shader_textures_used(shader_program, prog);
   2923 
   2924    /* Set the gl_FragDepth layout. */
   2925    if (target == GL_FRAGMENT_PROGRAM_ARB) {
   2926       prog->info.fs.depth_layout = shader_program->FragDepthLayout;
   2927    }
   2928 
   2929    if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
   2930       _mesa_optimize_program(ctx, prog, prog);
   2931    }
   2932 
   2933    /* This has to be done last.  Any operation that can cause
   2934     * prog->ParameterValues to get reallocated (e.g., anything that adds a
   2935     * program constant) has to happen before creating this linkage.
   2936     */
   2937    _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
   2938    if (!shader_program->data->LinkStatus) {
   2939       goto fail_exit;
   2940    }
   2941 
   2942    return prog;
   2943 
   2944 fail_exit:
   2945    ralloc_free(mesa_instructions);
   2946    _mesa_reference_program(ctx, &shader->Program, NULL);
   2947    return NULL;
   2948 }
   2949 
   2950 extern "C" {
   2951 
   2952 /**
   2953  * Link a shader.
   2954  * Called via ctx->Driver.LinkShader()
   2955  * This actually involves converting GLSL IR into Mesa gl_programs with
   2956  * code lowering and other optimizations.
   2957  */
   2958 GLboolean
   2959 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
   2960 {
   2961    assert(prog->data->LinkStatus);
   2962 
   2963    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   2964       if (prog->_LinkedShaders[i] == NULL)
   2965 	 continue;
   2966 
   2967       bool progress;
   2968       exec_list *ir = prog->_LinkedShaders[i]->ir;
   2969       const struct gl_shader_compiler_options *options =
   2970             &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
   2971 
   2972       do {
   2973 	 progress = false;
   2974 
   2975 	 /* Lowering */
   2976 	 do_mat_op_to_vec(ir);
   2977 	 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
   2978 				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
   2979 				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
   2980 
   2981 	 progress = do_common_optimization(ir, true, true,
   2982                                            options, ctx->Const.NativeIntegers)
   2983 	   || progress;
   2984 
   2985 	 progress = lower_quadop_vector(ir, true) || progress;
   2986 
   2987 	 if (options->MaxIfDepth == 0)
   2988 	    progress = lower_discard(ir) || progress;
   2989 
   2990 	 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
   2991                                             options->MaxIfDepth) || progress;
   2992 
   2993          progress = lower_noise(ir) || progress;
   2994 
   2995 	 /* If there are forms of indirect addressing that the driver
   2996 	  * cannot handle, perform the lowering pass.
   2997 	  */
   2998 	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
   2999 	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
   3000 	   progress =
   3001 	     lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
   3002 						 options->EmitNoIndirectInput,
   3003 						 options->EmitNoIndirectOutput,
   3004 						 options->EmitNoIndirectTemp,
   3005 						 options->EmitNoIndirectUniform)
   3006 	     || progress;
   3007 
   3008 	 progress = do_vec_index_to_cond_assign(ir) || progress;
   3009          progress = lower_vector_insert(ir, true) || progress;
   3010       } while (progress);
   3011 
   3012       validate_ir_tree(ir);
   3013    }
   3014 
   3015    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   3016       struct gl_program *linked_prog;
   3017 
   3018       if (prog->_LinkedShaders[i] == NULL)
   3019 	 continue;
   3020 
   3021       linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
   3022 
   3023       if (linked_prog) {
   3024          _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
   3025 
   3026          if (!ctx->Driver.ProgramStringNotify(ctx,
   3027                                               _mesa_shader_stage_to_program(i),
   3028                                               linked_prog)) {
   3029             _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
   3030                                     NULL);
   3031             return GL_FALSE;
   3032          }
   3033       }
   3034    }
   3035 
   3036    build_program_resource_list(ctx, prog);
   3037    return prog->data->LinkStatus;
   3038 }
   3039 
   3040 /**
   3041  * Link a GLSL shader program.  Called via glLinkProgram().
   3042  */
   3043 void
   3044 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
   3045 {
   3046    unsigned int i;
   3047 
   3048    _mesa_clear_shader_program_data(ctx, prog);
   3049 
   3050    prog->data->LinkStatus = GL_TRUE;
   3051 
   3052    for (i = 0; i < prog->NumShaders; i++) {
   3053       if (!prog->Shaders[i]->CompileStatus) {
   3054 	 linker_error(prog, "linking with uncompiled shader");
   3055       }
   3056    }
   3057 
   3058    if (prog->data->LinkStatus) {
   3059       link_shaders(ctx, prog);
   3060    }
   3061 
   3062    if (prog->data->LinkStatus) {
   3063       if (!ctx->Driver.LinkShader(ctx, prog)) {
   3064          prog->data->LinkStatus = GL_FALSE;
   3065       }
   3066    }
   3067 
   3068    if (ctx->_Shader->Flags & GLSL_DUMP) {
   3069       if (!prog->data->LinkStatus) {
   3070 	 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
   3071       }
   3072 
   3073       if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
   3074 	 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
   3075          fprintf(stderr, "%s\n", prog->data->InfoLog);
   3076       }
   3077    }
   3078 }
   3079 
   3080 } /* extern "C" */
   3081