Home | History | Annotate | Download | only in arm64
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "linker/arm64/relative_patcher_arm64.h"
     18 
     19 #include "arch/arm64/asm_support_arm64.h"
     20 #include "arch/arm64/instruction_set_features_arm64.h"
     21 #include "art_method.h"
     22 #include "base/bit_utils.h"
     23 #include "compiled_method.h"
     24 #include "driver/compiler_driver.h"
     25 #include "entrypoints/quick/quick_entrypoints_enum.h"
     26 #include "linker/output_stream.h"
     27 #include "lock_word.h"
     28 #include "mirror/object.h"
     29 #include "mirror/array-inl.h"
     30 #include "oat.h"
     31 #include "oat_quick_method_header.h"
     32 #include "read_barrier.h"
     33 #include "utils/arm64/assembler_arm64.h"
     34 
     35 namespace art {
     36 namespace linker {
     37 
     38 namespace {
     39 
     40 // Maximum positive and negative displacement for method call measured from the patch location.
     41 // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from
     42 // the ARM64 PC pointing to the BL.)
     43 constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u;
     44 constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27);
     45 
     46 // Maximum positive and negative displacement for a conditional branch measured from the patch
     47 // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4]
     48 // measured from the ARM64 PC pointing to the B.cond.)
     49 constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u;
     50 constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20);
     51 
     52 // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes.
     53 constexpr uint32_t kAdrpThunkSize = 8u;
     54 
     55 inline bool IsAdrpPatch(const LinkerPatch& patch) {
     56   switch (patch.GetType()) {
     57     case LinkerPatch::Type::kCall:
     58     case LinkerPatch::Type::kCallRelative:
     59     case LinkerPatch::Type::kBakerReadBarrierBranch:
     60       return false;
     61     case LinkerPatch::Type::kMethodRelative:
     62     case LinkerPatch::Type::kMethodBssEntry:
     63     case LinkerPatch::Type::kTypeRelative:
     64     case LinkerPatch::Type::kTypeBssEntry:
     65     case LinkerPatch::Type::kStringRelative:
     66     case LinkerPatch::Type::kStringBssEntry:
     67       return patch.LiteralOffset() == patch.PcInsnOffset();
     68   }
     69 }
     70 
     71 inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) {
     72   if (num_adrp == 0u) {
     73     return 0u;
     74   }
     75   uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, kArm64) - code_size;
     76   return kAdrpThunkSize * num_adrp + alignment_bytes;
     77 }
     78 
     79 }  // anonymous namespace
     80 
     81 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
     82                                            const Arm64InstructionSetFeatures* features)
     83     : ArmBaseRelativePatcher(provider, kArm64),
     84       fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
     85       reserved_adrp_thunks_(0u),
     86       processed_adrp_thunks_(0u) {
     87   if (fix_cortex_a53_843419_) {
     88     adrp_thunk_locations_.reserve(16u);
     89     current_method_thunks_.reserve(16u * kAdrpThunkSize);
     90   }
     91 }
     92 
     93 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
     94                                             const CompiledMethod* compiled_method,
     95                                             MethodReference method_ref) {
     96   if (!fix_cortex_a53_843419_) {
     97     DCHECK(adrp_thunk_locations_.empty());
     98     return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
     99   }
    100 
    101   // Add thunks for previous method if any.
    102   if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
    103     size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
    104     offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
    105     reserved_adrp_thunks_ = adrp_thunk_locations_.size();
    106   }
    107 
    108   // Count the number of ADRP insns as the upper bound on the number of thunks needed
    109   // and use it to reserve space for other linker patches.
    110   size_t num_adrp = 0u;
    111   DCHECK(compiled_method != nullptr);
    112   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
    113     if (IsAdrpPatch(patch)) {
    114       ++num_adrp;
    115     }
    116   }
    117   ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
    118   uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size());
    119   offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space);
    120   if (num_adrp == 0u) {
    121     return offset;
    122   }
    123 
    124   // Now that we have the actual offset where the code will be placed, locate the ADRP insns
    125   // that actually require the thunk.
    126   uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader));
    127   uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
    128   DCHECK(compiled_method != nullptr);
    129   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
    130     if (IsAdrpPatch(patch)) {
    131       uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
    132       if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
    133         adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
    134         thunk_offset += kAdrpThunkSize;
    135       }
    136     }
    137   }
    138   return offset;
    139 }
    140 
    141 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
    142   if (!fix_cortex_a53_843419_) {
    143     DCHECK(adrp_thunk_locations_.empty());
    144   } else {
    145     // Add thunks for the last method if any.
    146     if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
    147       size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
    148       offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
    149       reserved_adrp_thunks_ = adrp_thunk_locations_.size();
    150     }
    151   }
    152   return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
    153 }
    154 
    155 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
    156   if (fix_cortex_a53_843419_) {
    157     if (!current_method_thunks_.empty()) {
    158       uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
    159       if (kIsDebugBuild) {
    160         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
    161         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
    162         CHECK_LE(num_thunks, processed_adrp_thunks_);
    163         for (size_t i = 0u; i != num_thunks; ++i) {
    164           const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
    165           CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
    166         }
    167       }
    168       uint32_t aligned_code_delta = aligned_offset - offset;
    169       if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
    170         return 0u;
    171       }
    172       if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
    173         return 0u;
    174       }
    175       offset = aligned_offset + current_method_thunks_.size();
    176       current_method_thunks_.clear();
    177     }
    178   }
    179   return ArmBaseRelativePatcher::WriteThunks(out, offset);
    180 }
    181 
    182 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
    183                                      uint32_t literal_offset,
    184                                      uint32_t patch_offset, uint32_t
    185                                      target_offset) {
    186   DCHECK_LE(literal_offset + 4u, code->size());
    187   DCHECK_EQ(literal_offset & 3u, 0u);
    188   DCHECK_EQ(patch_offset & 3u, 0u);
    189   DCHECK_EQ(target_offset & 3u, 0u);
    190   uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u);
    191   DCHECK_EQ(displacement & 3u, 0u);
    192   DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u);  // 28-bit signed.
    193   uint32_t insn = (displacement & 0x0fffffffu) >> 2;
    194   insn |= 0x94000000;  // BL
    195 
    196   // Check that we're just overwriting an existing BL.
    197   DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
    198   // Write the new BL.
    199   SetInsn(code, literal_offset, insn);
    200 }
    201 
    202 void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
    203                                                     const LinkerPatch& patch,
    204                                                     uint32_t patch_offset,
    205                                                     uint32_t target_offset) {
    206   DCHECK_EQ(patch_offset & 3u, 0u);
    207   DCHECK_EQ(target_offset & 3u, 0u);
    208   uint32_t literal_offset = patch.LiteralOffset();
    209   uint32_t insn = GetInsn(code, literal_offset);
    210   uint32_t pc_insn_offset = patch.PcInsnOffset();
    211   uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
    212   bool wide = (insn & 0x40000000) != 0;
    213   uint32_t shift = wide ? 3u : 2u;
    214   if (literal_offset == pc_insn_offset) {
    215     // Check it's an ADRP with imm == 0 (unset).
    216     DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
    217         << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
    218     if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
    219         adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
    220       DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
    221                                      literal_offset, patch_offset));
    222       uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
    223       uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
    224       uint32_t adrp = PatchAdrp(insn, adrp_disp);
    225 
    226       uint32_t out_disp = thunk_offset - patch_offset;
    227       DCHECK_EQ(out_disp & 3u, 0u);
    228       DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u);  // 28-bit signed.
    229       insn = (out_disp & 0x0fffffffu) >> shift;
    230       insn |= 0x14000000;  // B <thunk>
    231 
    232       uint32_t back_disp = -out_disp;
    233       DCHECK_EQ(back_disp & 3u, 0u);
    234       DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u);  // 28-bit signed.
    235       uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
    236       b_back |= 0x14000000;  // B <back>
    237       size_t thunks_code_offset = current_method_thunks_.size();
    238       current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
    239       SetInsn(&current_method_thunks_, thunks_code_offset, adrp);
    240       SetInsn(&current_method_thunks_, thunks_code_offset + 4u, b_back);
    241       static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
    242 
    243       processed_adrp_thunks_ += 1u;
    244     } else {
    245       insn = PatchAdrp(insn, disp);
    246     }
    247     // Write the new ADRP (or B to the erratum 843419 thunk).
    248     SetInsn(code, literal_offset, insn);
    249   } else {
    250     if ((insn & 0xfffffc00) == 0x91000000) {
    251       // ADD immediate, 64-bit with imm12 == 0 (unset).
    252       if (!kEmitCompilerReadBarrier) {
    253         DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative ||
    254                patch.GetType() == LinkerPatch::Type::kTypeRelative ||
    255                patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType();
    256       } else {
    257         // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry.
    258         DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative ||
    259                patch.GetType() == LinkerPatch::Type::kTypeRelative ||
    260                patch.GetType() == LinkerPatch::Type::kStringRelative ||
    261                patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
    262                patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
    263       }
    264       shift = 0u;  // No shift for ADD.
    265     } else {
    266       // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset).
    267       DCHECK(patch.GetType() == LinkerPatch::Type::kMethodBssEntry ||
    268              patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
    269              patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
    270       DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn;
    271     }
    272     if (kIsDebugBuild) {
    273       uint32_t adrp = GetInsn(code, pc_insn_offset);
    274       if ((adrp & 0x9f000000u) != 0x90000000u) {
    275         CHECK(fix_cortex_a53_843419_);
    276         CHECK_EQ(adrp & 0xfc000000u, 0x14000000u);  // B <thunk>
    277         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
    278         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
    279         CHECK_LE(num_thunks, processed_adrp_thunks_);
    280         uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
    281         for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
    282           CHECK_NE(i, processed_adrp_thunks_);
    283           if (adrp_thunk_locations_[i].first == b_offset) {
    284             size_t idx = num_thunks - (processed_adrp_thunks_ - i);
    285             adrp = GetInsn(&current_method_thunks_, idx * kAdrpThunkSize);
    286             break;
    287           }
    288         }
    289       }
    290       CHECK_EQ(adrp & 0x9f00001fu,                    // Check that pc_insn_offset points
    291                0x90000000 | ((insn >> 5) & 0x1fu));   // to ADRP with matching register.
    292     }
    293     uint32_t imm12 = (disp & 0xfffu) >> shift;
    294     insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
    295     SetInsn(code, literal_offset, insn);
    296   }
    297 }
    298 
    299 void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code,
    300                                                        const LinkerPatch& patch,
    301                                                        uint32_t patch_offset) {
    302   DCHECK_ALIGNED(patch_offset, 4u);
    303   uint32_t literal_offset = patch.LiteralOffset();
    304   DCHECK_ALIGNED(literal_offset, 4u);
    305   DCHECK_LT(literal_offset, code->size());
    306   uint32_t insn = GetInsn(code, literal_offset);
    307   DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000);  // CBNZ Xt, +0 (unpatched)
    308   ThunkKey key = GetBakerThunkKey(patch);
    309   if (kIsDebugBuild) {
    310     const uint32_t encoded_data = key.GetCustomValue1();
    311     BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
    312     // Check that the next instruction matches the expected LDR.
    313     switch (kind) {
    314       case BakerReadBarrierKind::kField: {
    315         DCHECK_GE(code->size() - literal_offset, 8u);
    316         uint32_t next_insn = GetInsn(code, literal_offset + 4u);
    317         // LDR (immediate) with correct base_reg.
    318         CheckValidReg(next_insn & 0x1fu);  // Check destination register.
    319         const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
    320         CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
    321         break;
    322       }
    323       case BakerReadBarrierKind::kArray: {
    324         DCHECK_GE(code->size() - literal_offset, 8u);
    325         uint32_t next_insn = GetInsn(code, literal_offset + 4u);
    326         // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
    327         // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
    328         CheckValidReg(next_insn & 0x1fu);  // Check destination register.
    329         const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
    330         CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
    331         CheckValidReg((next_insn >> 16) & 0x1f);  // Check index register
    332         break;
    333       }
    334       case BakerReadBarrierKind::kGcRoot: {
    335         DCHECK_GE(literal_offset, 4u);
    336         uint32_t prev_insn = GetInsn(code, literal_offset - 4u);
    337         // LDR (immediate) with correct root_reg.
    338         const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
    339         CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg);
    340         break;
    341       }
    342       default:
    343         LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
    344         UNREACHABLE();
    345     }
    346   }
    347   uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
    348   DCHECK_ALIGNED(target_offset, 4u);
    349   uint32_t disp = target_offset - patch_offset;
    350   DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u);  // 21-bit signed.
    351   insn |= (disp << (5 - 2)) & 0x00ffffe0u;              // Shift bits 2-20 to 5-23.
    352   SetInsn(code, literal_offset, insn);
    353 }
    354 
    355 #define __ assembler.GetVIXLAssembler()->
    356 
    357 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
    358                                      vixl::aarch64::Register base_reg,
    359                                      vixl::aarch64::MemOperand& lock_word,
    360                                      vixl::aarch64::Label* slow_path) {
    361   using namespace vixl::aarch64;  // NOLINT(build/namespaces)
    362   // Load the lock word containing the rb_state.
    363   __ Ldr(ip0.W(), lock_word);
    364   // Given the numeric representation, it's enough to check the low bit of the rb_state.
    365   static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
    366   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
    367   __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
    368   static_assert(
    369       BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
    370       "Field and array LDR offsets must be the same to reuse the same code.");
    371   // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
    372   static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
    373                 "Field LDR must be 1 instruction (4B) before the return address label; "
    374                 " 2 instructions (8B) for heap poisoning.");
    375   __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
    376   // Introduce a dependency on the lock_word including rb_state,
    377   // to prevent load-load reordering, and without using
    378   // a memory barrier (which would be more expensive).
    379   __ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
    380   __ Br(lr);          // And return back to the function.
    381   // Note: The fake dependency is unnecessary for the slow path.
    382 }
    383 
    384 // Load the read barrier introspection entrypoint in register `entrypoint`.
    385 static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
    386                                                        vixl::aarch64::Register entrypoint) {
    387   using vixl::aarch64::MemOperand;
    388   using vixl::aarch64::ip0;
    389   // Thread Register.
    390   const vixl::aarch64::Register tr = vixl::aarch64::x19;
    391 
    392   // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
    393   DCHECK_EQ(ip0.GetCode(), 16u);
    394   const int32_t entry_point_offset =
    395       Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
    396   __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
    397 }
    398 
    399 void Arm64RelativePatcher::CompileBakerReadBarrierThunk(arm64::Arm64Assembler& assembler,
    400                                                         uint32_t encoded_data) {
    401   using namespace vixl::aarch64;  // NOLINT(build/namespaces)
    402   BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
    403   switch (kind) {
    404     case BakerReadBarrierKind::kField: {
    405       // Check if the holder is gray and, if not, add fake dependency to the base register
    406       // and return to the LDR instruction to load the reference. Otherwise, use introspection
    407       // to load the reference and call the entrypoint (in IP1) that performs further checks
    408       // on the reference and marks it if needed.
    409       auto base_reg =
    410           Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
    411       CheckValidReg(base_reg.GetCode());
    412       auto holder_reg =
    413           Register::GetXRegFromCode(BakerReadBarrierSecondRegField::Decode(encoded_data));
    414       CheckValidReg(holder_reg.GetCode());
    415       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
    416       temps.Exclude(ip0, ip1);
    417       // If base_reg differs from holder_reg, the offset was too large and we must have
    418       // emitted an explicit null check before the load. Otherwise, we need to null-check
    419       // the holder as we do not necessarily do that check before going to the thunk.
    420       vixl::aarch64::Label throw_npe;
    421       if (holder_reg.Is(base_reg)) {
    422         __ Cbz(holder_reg.W(), &throw_npe);
    423       }
    424       vixl::aarch64::Label slow_path;
    425       MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
    426       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
    427       __ Bind(&slow_path);
    428       MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
    429       __ Ldr(ip0.W(), ldr_address);         // Load the LDR (immediate) unsigned offset.
    430       LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
    431       __ Ubfx(ip0.W(), ip0.W(), 10, 12);    // Extract the offset.
    432       __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2));   // Load the reference.
    433       // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
    434       __ Br(ip1);                           // Jump to the entrypoint.
    435       if (holder_reg.Is(base_reg)) {
    436         // Add null check slow path. The stack map is at the address pointed to by LR.
    437         __ Bind(&throw_npe);
    438         int32_t offset = GetThreadOffset<kArm64PointerSize>(kQuickThrowNullPointer).Int32Value();
    439         __ Ldr(ip0, MemOperand(/* Thread* */ vixl::aarch64::x19, offset));
    440         __ Br(ip0);
    441       }
    442       break;
    443     }
    444     case BakerReadBarrierKind::kArray: {
    445       auto base_reg =
    446           Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
    447       CheckValidReg(base_reg.GetCode());
    448       DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data));
    449       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
    450       temps.Exclude(ip0, ip1);
    451       vixl::aarch64::Label slow_path;
    452       int32_t data_offset =
    453           mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
    454       MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
    455       DCHECK_LT(lock_word.GetOffset(), 0);
    456       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
    457       __ Bind(&slow_path);
    458       MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
    459       __ Ldr(ip0.W(), ldr_address);         // Load the LDR (register) unsigned offset.
    460       LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
    461       __ Ubfx(ip0, ip0, 16, 6);             // Extract the index register, plus 32 (bit 21 is set).
    462       __ Bfi(ip1, ip0, 3, 6);               // Insert ip0 to the entrypoint address to create
    463                                             // a switch case target based on the index register.
    464       __ Mov(ip0, base_reg);                // Move the base register to ip0.
    465       __ Br(ip1);                           // Jump to the entrypoint's array switch case.
    466       break;
    467     }
    468     case BakerReadBarrierKind::kGcRoot: {
    469       // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
    470       // and it does not have a forwarding address), call the correct introspection entrypoint;
    471       // otherwise return the reference (or the extracted forwarding address).
    472       // There is no gray bit check for GC roots.
    473       auto root_reg =
    474           Register::GetWRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
    475       CheckValidReg(root_reg.GetCode());
    476       DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data));
    477       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
    478       temps.Exclude(ip0, ip1);
    479       vixl::aarch64::Label return_label, not_marked, forwarding_address;
    480       __ Cbz(root_reg, &return_label);
    481       MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
    482       __ Ldr(ip0.W(), lock_word);
    483       __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, &not_marked);
    484       __ Bind(&return_label);
    485       __ Br(lr);
    486       __ Bind(&not_marked);
    487       __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
    488       __ B(&forwarding_address, mi);
    489       LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
    490       // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
    491       // art_quick_read_barrier_mark_introspection_gc_roots.
    492       __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
    493       __ Mov(ip0.W(), root_reg);
    494       __ Br(ip1);
    495       __ Bind(&forwarding_address);
    496       __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
    497       __ Br(lr);
    498       break;
    499     }
    500     default:
    501       LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
    502       UNREACHABLE();
    503   }
    504 }
    505 
    506 std::vector<uint8_t> Arm64RelativePatcher::CompileThunk(const ThunkKey& key) {
    507   ArenaPool pool;
    508   ArenaAllocator arena(&pool);
    509   arm64::Arm64Assembler assembler(&arena);
    510 
    511   switch (key.GetType()) {
    512     case ThunkType::kMethodCall: {
    513       // The thunk just uses the entry point in the ArtMethod. This works even for calls
    514       // to the generic JNI and interpreter trampolines.
    515       Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
    516           kArm64PointerSize).Int32Value());
    517       assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
    518       break;
    519     }
    520     case ThunkType::kBakerReadBarrier: {
    521       CompileBakerReadBarrierThunk(assembler, key.GetCustomValue1());
    522       break;
    523     }
    524   }
    525 
    526   // Ensure we emit the literal pool.
    527   assembler.FinalizeCode();
    528   std::vector<uint8_t> thunk_code(assembler.CodeSize());
    529   MemoryRegion code(thunk_code.data(), thunk_code.size());
    530   assembler.FinalizeInstructions(code);
    531   return thunk_code;
    532 }
    533 
    534 #undef __
    535 
    536 uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(const ThunkKey& key) {
    537   switch (key.GetType()) {
    538     case ThunkType::kMethodCall:
    539       return kMaxMethodCallPositiveDisplacement;
    540     case ThunkType::kBakerReadBarrier:
    541       return kMaxBcondPositiveDisplacement;
    542   }
    543 }
    544 
    545 uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(const ThunkKey& key) {
    546   switch (key.GetType()) {
    547     case ThunkType::kMethodCall:
    548       return kMaxMethodCallNegativeDisplacement;
    549     case ThunkType::kBakerReadBarrier:
    550       return kMaxBcondNegativeDisplacement;
    551   }
    552 }
    553 
    554 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
    555   return (adrp & 0x9f00001fu) |  // Clear offset bits, keep ADRP with destination reg.
    556       // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
    557       ((disp & 0x00003000u) << (29 - 12)) |
    558       // The next 16 bits are encoded in bits 5-22.
    559       ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
    560       // Since the target_offset is based on the beginning of the oat file and the
    561       // image space precedes the oat file, the target_offset into image space will
    562       // be negative yet passed as uint32_t. Therefore we limit the displacement
    563       // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
    564       // the highest bit of the displacement. This is encoded in bit 23.
    565       ((disp & 0x80000000u) >> (31 - 23));
    566 }
    567 
    568 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
    569                                                    uint32_t literal_offset,
    570                                                    uint32_t patch_offset) {
    571   DCHECK_EQ(patch_offset & 0x3u, 0u);
    572   if ((patch_offset & 0xff8) == 0xff8) {  // ...ff8 or ...ffc
    573     uint32_t adrp = GetInsn(code, literal_offset);
    574     DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
    575     uint32_t next_offset = patch_offset + 4u;
    576     uint32_t next_insn = GetInsn(code, literal_offset + 4u);
    577 
    578     // Below we avoid patching sequences where the adrp is followed by a load which can easily
    579     // be proved to be aligned.
    580 
    581     // First check if the next insn is the LDR using the result of the ADRP.
    582     // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
    583     if ((next_insn & 0xffc00000) == 0xb9400000 &&
    584         (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
    585       return false;
    586     }
    587 
    588     // And since LinkerPatch::Type::k{Method,Type,String}Relative is using the result
    589     // of the ADRP for an ADD immediate, check for that as well. We generalize a bit
    590     // to include ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination
    591     // or stores the result to a different register.
    592     if ((next_insn & 0x1f000000) == 0x11000000 &&
    593         ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
    594       return false;
    595     }
    596 
    597     // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
    598     if ((next_insn & 0xff000000) == 0x18000000) {
    599       return false;
    600     }
    601 
    602     // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
    603     if ((next_insn & 0xff000000) == 0x58000000) {
    604       bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
    605       return !is_aligned_load;
    606     }
    607 
    608     // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
    609     // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
    610     if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
    611       return false;
    612     }
    613     return true;
    614   }
    615   return false;
    616 }
    617 
    618 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
    619   DCHECK_LE(offset + 4u, code->size());
    620   DCHECK_EQ(offset & 3u, 0u);
    621   uint8_t* addr = &(*code)[offset];
    622   addr[0] = (value >> 0) & 0xff;
    623   addr[1] = (value >> 8) & 0xff;
    624   addr[2] = (value >> 16) & 0xff;
    625   addr[3] = (value >> 24) & 0xff;
    626 }
    627 
    628 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
    629   DCHECK_LE(offset + 4u, code.size());
    630   DCHECK_EQ(offset & 3u, 0u);
    631   const uint8_t* addr = &code[offset];
    632   return
    633       (static_cast<uint32_t>(addr[0]) << 0) +
    634       (static_cast<uint32_t>(addr[1]) << 8) +
    635       (static_cast<uint32_t>(addr[2]) << 16)+
    636       (static_cast<uint32_t>(addr[3]) << 24);
    637 }
    638 
    639 template <typename Alloc>
    640 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
    641   return GetInsn(ArrayRef<const uint8_t>(*code), offset);
    642 }
    643 
    644 }  // namespace linker
    645 }  // namespace art
    646