Home | History | Annotate | Download | only in functional
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program OpenGL ES 3.1 Module
      3  * -------------------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Common built-in function tests.
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "es31fShaderCommonFunctionTests.hpp"
     25 #include "gluContextInfo.hpp"
     26 #include "glsShaderExecUtil.hpp"
     27 #include "tcuTestLog.hpp"
     28 #include "tcuFormatUtil.hpp"
     29 #include "tcuFloat.hpp"
     30 #include "tcuInterval.hpp"
     31 #include "tcuFloatFormat.hpp"
     32 #include "deRandom.hpp"
     33 #include "deMath.h"
     34 #include "deString.h"
     35 #include "deArrayUtil.hpp"
     36 
     37 namespace deqp
     38 {
     39 namespace gles31
     40 {
     41 namespace Functional
     42 {
     43 
     44 using std::vector;
     45 using std::string;
     46 using tcu::TestLog;
     47 using namespace gls::ShaderExecUtil;
     48 
     49 using tcu::Vec2;
     50 using tcu::Vec3;
     51 using tcu::Vec4;
     52 using tcu::IVec2;
     53 using tcu::IVec3;
     54 using tcu::IVec4;
     55 
     56 // Utilities
     57 
     58 template<typename T, int Size>
     59 struct VecArrayAccess
     60 {
     61 public:
     62 									VecArrayAccess	(const void* ptr) : m_array((tcu::Vector<T, Size>*)ptr) {}
     63 									~VecArrayAccess	(void) {}
     64 
     65 	const tcu::Vector<T, Size>&		operator[]		(size_t offset) const	{ return m_array[offset];	}
     66 	tcu::Vector<T, Size>&			operator[]		(size_t offset)			{ return m_array[offset];	}
     67 
     68 private:
     69 	tcu::Vector<T, Size>*			m_array;
     70 };
     71 
     72 template<typename T>	T			randomScalar	(de::Random& rnd, T minValue, T maxValue);
     73 template<> inline		float		randomScalar	(de::Random& rnd, float minValue, float maxValue)		{ return rnd.getFloat(minValue, maxValue);	}
     74 template<> inline		deInt32		randomScalar	(de::Random& rnd, deInt32 minValue, deInt32 maxValue)	{ return rnd.getInt(minValue, maxValue);	}
     75 template<> inline		deUint32	randomScalar	(de::Random& rnd, deUint32 minValue, deUint32 maxValue)	{ return minValue + rnd.getUint32() % (maxValue - minValue + 1); }
     76 
     77 template<typename T, int Size>
     78 inline tcu::Vector<T, Size> randomVector (de::Random& rnd, const tcu::Vector<T, Size>& minValue, const tcu::Vector<T, Size>& maxValue)
     79 {
     80 	tcu::Vector<T, Size> res;
     81 	for (int ndx = 0; ndx < Size; ndx++)
     82 		res[ndx] = randomScalar<T>(rnd, minValue[ndx], maxValue[ndx]);
     83 	return res;
     84 }
     85 
     86 template<typename T, int Size>
     87 static void fillRandomVectors (de::Random& rnd, const tcu::Vector<T, Size>& minValue, const tcu::Vector<T, Size>& maxValue, void* dst, int numValues, int offset = 0)
     88 {
     89 	VecArrayAccess<T, Size> access(dst);
     90 	for (int ndx = 0; ndx < numValues; ndx++)
     91 		access[offset + ndx] = randomVector<T, Size>(rnd, minValue, maxValue);
     92 }
     93 
     94 template<typename T>
     95 static void fillRandomScalars (de::Random& rnd, T minValue, T maxValue, void* dst, int numValues, int offset = 0)
     96 {
     97 	T* typedPtr = (T*)dst;
     98 	for (int ndx = 0; ndx < numValues; ndx++)
     99 		typedPtr[offset + ndx] = randomScalar<T>(rnd, minValue, maxValue);
    100 }
    101 
    102 inline int numBitsLostInOp (float input, float output)
    103 {
    104 	const int	inExp		= tcu::Float32(input).exponent();
    105 	const int	outExp		= tcu::Float32(output).exponent();
    106 
    107 	return de::max(0, inExp-outExp); // Lost due to mantissa shift.
    108 }
    109 
    110 inline deUint32 getUlpDiff (float a, float b)
    111 {
    112 	const deUint32	aBits	= tcu::Float32(a).bits();
    113 	const deUint32	bBits	= tcu::Float32(b).bits();
    114 	return aBits > bBits ? aBits - bBits : bBits - aBits;
    115 }
    116 
    117 inline deUint32 getUlpDiffIgnoreZeroSign (float a, float b)
    118 {
    119 	if (tcu::Float32(a).isZero())
    120 		return getUlpDiff(tcu::Float32::construct(tcu::Float32(b).sign(), 0, 0).asFloat(), b);
    121 	else if (tcu::Float32(b).isZero())
    122 		return getUlpDiff(a, tcu::Float32::construct(tcu::Float32(a).sign(), 0, 0).asFloat());
    123 	else
    124 		return getUlpDiff(a, b);
    125 }
    126 
    127 inline bool supportsSignedZero (glu::Precision precision)
    128 {
    129 	// \note GLSL ES 3.1 doesn't really require support for -0, but we require it for highp
    130 	//		 as it is very widely supported.
    131 	return precision == glu::PRECISION_HIGHP;
    132 }
    133 
    134 inline float getEpsFromMaxUlpDiff (float value, deUint32 ulpDiff)
    135 {
    136 	const int exp = tcu::Float32(value).exponent();
    137 	return tcu::Float32::construct(+1, exp, (1u<<23) | ulpDiff).asFloat() - tcu::Float32::construct(+1, exp, 1u<<23).asFloat();
    138 }
    139 
    140 inline deUint32 getMaxUlpDiffFromBits (int numAccurateBits)
    141 {
    142 	const int		numGarbageBits	= 23-numAccurateBits;
    143 	const deUint32	mask			= (1u<<numGarbageBits)-1u;
    144 
    145 	return mask;
    146 }
    147 
    148 inline float getEpsFromBits (float value, int numAccurateBits)
    149 {
    150 	return getEpsFromMaxUlpDiff(value, getMaxUlpDiffFromBits(numAccurateBits));
    151 }
    152 
    153 static int getMinMantissaBits (glu::Precision precision)
    154 {
    155 	const int bits[] =
    156 	{
    157 		7,		// lowp
    158 		10,		// mediump
    159 		23		// highp
    160 	};
    161 	DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(bits) == glu::PRECISION_LAST);
    162 	DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(bits)));
    163 	return bits[precision];
    164 }
    165 
    166 static int getMaxNormalizedValueExponent (glu::Precision precision)
    167 {
    168 	const int exponent[] =
    169 	{
    170 		0,		// lowp
    171 		13,		// mediump
    172 		127		// highp
    173 	};
    174 	DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(exponent) == glu::PRECISION_LAST);
    175 	DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(exponent)));
    176 	return exponent[precision];
    177 }
    178 
    179 static int getMinNormalizedValueExponent (glu::Precision precision)
    180 {
    181 	const int exponent[] =
    182 	{
    183 		-7,		// lowp
    184 		-13,	// mediump
    185 		-126	// highp
    186 	};
    187 	DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(exponent) == glu::PRECISION_LAST);
    188 	DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(exponent)));
    189 	return exponent[precision];
    190 }
    191 
    192 static float makeFloatRepresentable (float f, glu::Precision precision)
    193 {
    194 	if (precision == glu::PRECISION_HIGHP)
    195 	{
    196 		// \note: assuming f is not extended-precision
    197 		return f;
    198 	}
    199 	else
    200 	{
    201 		const int			numMantissaBits				= getMinMantissaBits(precision);
    202 		const int			maxNormalizedValueExponent	= getMaxNormalizedValueExponent(precision);
    203 		const int			minNormalizedValueExponent	= getMinNormalizedValueExponent(precision);
    204 		const deUint32		representableMantissaMask	= ((deUint32(1) << numMantissaBits) - 1) << (23 - (deUint32)numMantissaBits);
    205 		const float			largestRepresentableValue	= tcu::Float32::constructBits(+1, maxNormalizedValueExponent, ((1u << numMantissaBits) - 1u) << (23u - (deUint32)numMantissaBits)).asFloat();
    206 		const bool			zeroNotRepresentable		= (precision == glu::PRECISION_LOWP);
    207 
    208 		// if zero is not required to be representable, use smallest positive non-subnormal value
    209 		const float			zeroValue					= (zeroNotRepresentable) ? (tcu::Float32::constructBits(+1, minNormalizedValueExponent, 1).asFloat()) : (0.0f);
    210 
    211 		const tcu::Float32	float32Representation		(f);
    212 
    213 		if (float32Representation.exponent() < minNormalizedValueExponent)
    214 		{
    215 			// flush too small values to zero
    216 			return zeroValue;
    217 		}
    218 		else if (float32Representation.exponent() > maxNormalizedValueExponent)
    219 		{
    220 			// clamp too large values
    221 			return (float32Representation.sign() == +1) ? (largestRepresentableValue) : (-largestRepresentableValue);
    222 		}
    223 		else
    224 		{
    225 			// remove unrepresentable mantissa bits
    226 			const tcu::Float32 targetRepresentation(tcu::Float32::constructBits(float32Representation.sign(),
    227 													float32Representation.exponent(),
    228 													float32Representation.mantissaBits() & representableMantissaMask));
    229 
    230 			return targetRepresentation.asFloat();
    231 		}
    232 	}
    233 }
    234 
    235 // CommonFunctionCase
    236 
    237 class CommonFunctionCase : public TestCase
    238 {
    239 public:
    240 							CommonFunctionCase		(Context& context, const char* name, const char* description, glu::ShaderType shaderType);
    241 							~CommonFunctionCase		(void);
    242 
    243 	void					init					(void);
    244 	void					deinit					(void);
    245 	IterateResult			iterate					(void);
    246 
    247 protected:
    248 							CommonFunctionCase		(const CommonFunctionCase& other);
    249 	CommonFunctionCase&		operator=				(const CommonFunctionCase& other);
    250 
    251 	virtual void			getInputValues			(int numValues, void* const* values) const = 0;
    252 	virtual bool			compare					(const void* const* inputs, const void* const* outputs) = 0;
    253 
    254 	glu::ShaderType			m_shaderType;
    255 	ShaderSpec				m_spec;
    256 	int						m_numValues;
    257 
    258 	std::ostringstream		m_failMsg;				//!< Comparison failure help message.
    259 
    260 private:
    261 	ShaderExecutor*			m_executor;
    262 };
    263 
    264 CommonFunctionCase::CommonFunctionCase (Context& context, const char* name, const char* description, glu::ShaderType shaderType)
    265 	: TestCase		(context, name, description)
    266 	, m_shaderType	(shaderType)
    267 	, m_numValues	(100)
    268 	, m_executor	(DE_NULL)
    269 {
    270 }
    271 
    272 CommonFunctionCase::~CommonFunctionCase (void)
    273 {
    274 	CommonFunctionCase::deinit();
    275 }
    276 
    277 void CommonFunctionCase::init (void)
    278 {
    279 	DE_ASSERT(!m_executor);
    280 
    281 	m_spec.version = contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) ? glu::GLSL_VERSION_320_ES : glu::GLSL_VERSION_310_ES;
    282 
    283 	m_executor = createExecutor(m_context.getRenderContext(), m_shaderType, m_spec);
    284 	m_testCtx.getLog() << m_executor;
    285 
    286 	if (!m_executor->isOk())
    287 		throw tcu::TestError("Compile failed");
    288 }
    289 
    290 void CommonFunctionCase::deinit (void)
    291 {
    292 	delete m_executor;
    293 	m_executor = DE_NULL;
    294 }
    295 
    296 static vector<int> getScalarSizes (const vector<Symbol>& symbols)
    297 {
    298 	vector<int> sizes(symbols.size());
    299 	for (int ndx = 0; ndx < (int)symbols.size(); ++ndx)
    300 		sizes[ndx] = symbols[ndx].varType.getScalarSize();
    301 	return sizes;
    302 }
    303 
    304 static int computeTotalScalarSize (const vector<Symbol>& symbols)
    305 {
    306 	int totalSize = 0;
    307 	for (vector<Symbol>::const_iterator sym = symbols.begin(); sym != symbols.end(); ++sym)
    308 		totalSize += sym->varType.getScalarSize();
    309 	return totalSize;
    310 }
    311 
    312 static vector<void*> getInputOutputPointers (const vector<Symbol>& symbols, vector<deUint32>& data, const int numValues)
    313 {
    314 	vector<void*>	pointers		(symbols.size());
    315 	int				curScalarOffset	= 0;
    316 
    317 	for (int varNdx = 0; varNdx < (int)symbols.size(); ++varNdx)
    318 	{
    319 		const Symbol&	var				= symbols[varNdx];
    320 		const int		scalarSize		= var.varType.getScalarSize();
    321 
    322 		// Uses planar layout as input/output specs do not support strides.
    323 		pointers[varNdx] = &data[curScalarOffset];
    324 		curScalarOffset += scalarSize*numValues;
    325 	}
    326 
    327 	DE_ASSERT(curScalarOffset == (int)data.size());
    328 
    329 	return pointers;
    330 }
    331 
    332 // \todo [2013-08-08 pyry] Make generic utility and move to glu?
    333 
    334 struct HexFloat
    335 {
    336 	const float value;
    337 	HexFloat (const float value_) : value(value_) {}
    338 };
    339 
    340 std::ostream& operator<< (std::ostream& str, const HexFloat& v)
    341 {
    342 	return str << v.value << " / " << tcu::toHex(tcu::Float32(v.value).bits());
    343 }
    344 
    345 struct HexBool
    346 {
    347 	const deUint32 value;
    348 	HexBool (const deUint32 value_) : value(value_) {}
    349 };
    350 
    351 std::ostream& operator<< (std::ostream& str, const HexBool& v)
    352 {
    353 	return str << (v.value ? "true" : "false") << " / " << tcu::toHex(v.value);
    354 }
    355 
    356 struct VarValue
    357 {
    358 	const glu::VarType&	type;
    359 	const void*			value;
    360 
    361 	VarValue (const glu::VarType& type_, const void* value_) : type(type_), value(value_) {}
    362 };
    363 
    364 std::ostream& operator<< (std::ostream& str, const VarValue& varValue)
    365 {
    366 	DE_ASSERT(varValue.type.isBasicType());
    367 
    368 	const glu::DataType		basicType		= varValue.type.getBasicType();
    369 	const glu::DataType		scalarType		= glu::getDataTypeScalarType(basicType);
    370 	const int				numComponents	= glu::getDataTypeScalarSize(basicType);
    371 
    372 	if (numComponents > 1)
    373 		str << glu::getDataTypeName(basicType) << "(";
    374 
    375 	for (int compNdx = 0; compNdx < numComponents; compNdx++)
    376 	{
    377 		if (compNdx != 0)
    378 			str << ", ";
    379 
    380 		switch (scalarType)
    381 		{
    382 			case glu::TYPE_FLOAT:	str << HexFloat(((const float*)varValue.value)[compNdx]);			break;
    383 			case glu::TYPE_INT:		str << ((const deInt32*)varValue.value)[compNdx];					break;
    384 			case glu::TYPE_UINT:	str << tcu::toHex(((const deUint32*)varValue.value)[compNdx]);		break;
    385 			case glu::TYPE_BOOL:	str << HexBool(((const deUint32*)varValue.value)[compNdx]);			break;
    386 
    387 			default:
    388 				DE_ASSERT(false);
    389 		}
    390 	}
    391 
    392 	if (numComponents > 1)
    393 		str << ")";
    394 
    395 	return str;
    396 }
    397 
    398 CommonFunctionCase::IterateResult CommonFunctionCase::iterate (void)
    399 {
    400 	const int				numInputScalars			= computeTotalScalarSize(m_spec.inputs);
    401 	const int				numOutputScalars		= computeTotalScalarSize(m_spec.outputs);
    402 	vector<deUint32>		inputData				(numInputScalars * m_numValues);
    403 	vector<deUint32>		outputData				(numOutputScalars * m_numValues);
    404 	const vector<void*>		inputPointers			= getInputOutputPointers(m_spec.inputs, inputData, m_numValues);
    405 	const vector<void*>		outputPointers			= getInputOutputPointers(m_spec.outputs, outputData, m_numValues);
    406 
    407 	// Initialize input data.
    408 	getInputValues(m_numValues, &inputPointers[0]);
    409 
    410 	// Execute shader.
    411 	m_executor->useProgram();
    412 	m_executor->execute(m_numValues, &inputPointers[0], &outputPointers[0]);
    413 
    414 	// Compare results.
    415 	{
    416 		const vector<int>		inScalarSizes		= getScalarSizes(m_spec.inputs);
    417 		const vector<int>		outScalarSizes		= getScalarSizes(m_spec.outputs);
    418 		vector<void*>			curInputPtr			(inputPointers.size());
    419 		vector<void*>			curOutputPtr		(outputPointers.size());
    420 		int						numFailed			= 0;
    421 
    422 		for (int valNdx = 0; valNdx < m_numValues; valNdx++)
    423 		{
    424 			// Set up pointers for comparison.
    425 			for (int inNdx = 0; inNdx < (int)curInputPtr.size(); ++inNdx)
    426 				curInputPtr[inNdx] = (deUint32*)inputPointers[inNdx] + inScalarSizes[inNdx]*valNdx;
    427 
    428 			for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); ++outNdx)
    429 				curOutputPtr[outNdx] = (deUint32*)outputPointers[outNdx] + outScalarSizes[outNdx]*valNdx;
    430 
    431 			if (!compare(&curInputPtr[0], &curOutputPtr[0]))
    432 			{
    433 				// \todo [2013-08-08 pyry] We probably want to log reference value as well?
    434 
    435 				m_testCtx.getLog() << TestLog::Message << "ERROR: comparison failed for value " << valNdx << ":\n  " << m_failMsg.str() << TestLog::EndMessage;
    436 
    437 				m_testCtx.getLog() << TestLog::Message << "  inputs:" << TestLog::EndMessage;
    438 				for (int inNdx = 0; inNdx < (int)curInputPtr.size(); inNdx++)
    439 					m_testCtx.getLog() << TestLog::Message << "    " << m_spec.inputs[inNdx].name << " = "
    440 														   << VarValue(m_spec.inputs[inNdx].varType, curInputPtr[inNdx])
    441 									   << TestLog::EndMessage;
    442 
    443 				m_testCtx.getLog() << TestLog::Message << "  outputs:" << TestLog::EndMessage;
    444 				for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); outNdx++)
    445 					m_testCtx.getLog() << TestLog::Message << "    " << m_spec.outputs[outNdx].name << " = "
    446 														   << VarValue(m_spec.outputs[outNdx].varType, curOutputPtr[outNdx])
    447 									   << TestLog::EndMessage;
    448 
    449 				m_failMsg.str("");
    450 				m_failMsg.clear();
    451 				numFailed += 1;
    452 			}
    453 		}
    454 
    455 		m_testCtx.getLog() << TestLog::Message << (m_numValues - numFailed) << " / " << m_numValues << " values passed" << TestLog::EndMessage;
    456 
    457 		m_testCtx.setTestResult(numFailed == 0 ? QP_TEST_RESULT_PASS	: QP_TEST_RESULT_FAIL,
    458 								numFailed == 0 ? "Pass"					: "Result comparison failed");
    459 	}
    460 
    461 	return STOP;
    462 }
    463 
    464 static const char* getPrecisionPostfix (glu::Precision precision)
    465 {
    466 	static const char* s_postfix[] =
    467 	{
    468 		"_lowp",
    469 		"_mediump",
    470 		"_highp"
    471 	};
    472 	DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_postfix) == glu::PRECISION_LAST);
    473 	DE_ASSERT(de::inBounds<int>(precision, 0, DE_LENGTH_OF_ARRAY(s_postfix)));
    474 	return s_postfix[precision];
    475 }
    476 
    477 static const char* getShaderTypePostfix (glu::ShaderType shaderType)
    478 {
    479 	static const char* s_postfix[] =
    480 	{
    481 		"_vertex",
    482 		"_fragment",
    483 		"_geometry",
    484 		"_tess_control",
    485 		"_tess_eval",
    486 		"_compute"
    487 	};
    488 	DE_ASSERT(de::inBounds<int>(shaderType, 0, DE_LENGTH_OF_ARRAY(s_postfix)));
    489 	return s_postfix[shaderType];
    490 }
    491 
    492 static std::string getCommonFuncCaseName (glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
    493 {
    494 	return string(glu::getDataTypeName(baseType)) + getPrecisionPostfix(precision) + getShaderTypePostfix(shaderType);
    495 }
    496 
    497 class AbsCase : public CommonFunctionCase
    498 {
    499 public:
    500 	AbsCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
    501 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "abs", shaderType)
    502 	{
    503 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
    504 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
    505 		m_spec.source = "out0 = abs(in0);";
    506 	}
    507 
    508 	void getInputValues (int numValues, void* const* values) const
    509 	{
    510 		const Vec2 floatRanges[] =
    511 		{
    512 			Vec2(-2.0f,		2.0f),	// lowp
    513 			Vec2(-1e3f,		1e3f),	// mediump
    514 			Vec2(-1e7f,		1e7f)	// highp
    515 		};
    516 		const IVec2 intRanges[] =
    517 		{
    518 			IVec2(-(1<<7)+1,	(1<<7)-1),
    519 			IVec2(-(1<<15)+1,	(1<<15)-1),
    520 			IVec2(0x80000001,	0x7fffffff)
    521 		};
    522 
    523 		de::Random				rnd			(deStringHash(getName()) ^ 0x235facu);
    524 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
    525 		const glu::Precision	precision	= m_spec.inputs[0].varType.getPrecision();
    526 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
    527 
    528 		if (glu::isDataTypeFloatOrVec(type))
    529 			fillRandomScalars(rnd, floatRanges[precision].x(), floatRanges[precision].y(), values[0], numValues*scalarSize);
    530 		else
    531 			fillRandomScalars(rnd, intRanges[precision].x(), intRanges[precision].y(), values[0], numValues*scalarSize);
    532 	}
    533 
    534 	bool compare (const void* const* inputs, const void* const* outputs)
    535 	{
    536 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    537 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    538 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    539 
    540 		if (glu::isDataTypeFloatOrVec(type))
    541 		{
    542 			const int		mantissaBits	= getMinMantissaBits(precision);
    543 			const deUint32	maxUlpDiff		= (1u<<(23-mantissaBits))-1u;
    544 
    545 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    546 			{
    547 				const float		in0			= ((const float*)inputs[0])[compNdx];
    548 				const float		out0		= ((const float*)outputs[0])[compNdx];
    549 				const float		ref0		= de::abs(in0);
    550 				const deUint32	ulpDiff0	= getUlpDiff(out0, ref0);
    551 
    552 				if (ulpDiff0 > maxUlpDiff)
    553 				{
    554 					m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref0) << " with ULP threshold " << maxUlpDiff << ", got ULP diff " << ulpDiff0;
    555 					return false;
    556 				}
    557 			}
    558 		}
    559 		else
    560 		{
    561 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    562 			{
    563 				const int	in0		= ((const int*)inputs[0])[compNdx];
    564 				const int	out0	= ((const int*)outputs[0])[compNdx];
    565 				const int	ref0	= de::abs(in0);
    566 
    567 				if (out0 != ref0)
    568 				{
    569 					m_failMsg << "Expected [" << compNdx << "] = " << ref0;
    570 					return false;
    571 				}
    572 			}
    573 		}
    574 
    575 		return true;
    576 	}
    577 };
    578 
    579 class SignCase : public CommonFunctionCase
    580 {
    581 public:
    582 	SignCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
    583 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "sign", shaderType)
    584 	{
    585 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
    586 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
    587 		m_spec.source = "out0 = sign(in0);";
    588 	}
    589 
    590 	void getInputValues (int numValues, void* const* values) const
    591 	{
    592 		const Vec2 floatRanges[] =
    593 		{
    594 			Vec2(-2.0f,		2.0f),	// lowp
    595 			Vec2(-1e4f,		1e4f),	// mediump	- note: may end up as inf
    596 			Vec2(-1e8f,		1e8f)	// highp	- note: may end up as inf
    597 		};
    598 		const IVec2 intRanges[] =
    599 		{
    600 			IVec2(-(1<<7),		(1<<7)-1),
    601 			IVec2(-(1<<15),		(1<<15)-1),
    602 			IVec2(0x80000000,	0x7fffffff)
    603 		};
    604 
    605 		de::Random				rnd			(deStringHash(getName()) ^ 0x324u);
    606 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
    607 		const glu::Precision	precision	= m_spec.inputs[0].varType.getPrecision();
    608 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
    609 
    610 		if (glu::isDataTypeFloatOrVec(type))
    611 		{
    612 			// Special cases.
    613 			std::fill((float*)values[0],				(float*)values[0] + scalarSize,		+1.0f);
    614 			std::fill((float*)values[0] + scalarSize*1,	(float*)values[0] + scalarSize*2,	-1.0f);
    615 			std::fill((float*)values[0] + scalarSize*2,	(float*)values[0] + scalarSize*3,	0.0f);
    616 			fillRandomScalars(rnd, floatRanges[precision].x(), floatRanges[precision].y(), (float*)values[0] + scalarSize*3, (numValues-3)*scalarSize);
    617 		}
    618 		else
    619 		{
    620 			std::fill((int*)values[0],					(int*)values[0] + scalarSize,		+1);
    621 			std::fill((int*)values[0] + scalarSize*1,	(int*)values[0] + scalarSize*2,		-1);
    622 			std::fill((int*)values[0] + scalarSize*2,	(int*)values[0] + scalarSize*3,		0);
    623 			fillRandomScalars(rnd, intRanges[precision].x(), intRanges[precision].y(), (int*)values[0] + scalarSize*3, (numValues-3)*scalarSize);
    624 		}
    625 	}
    626 
    627 	bool compare (const void* const* inputs, const void* const* outputs)
    628 	{
    629 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    630 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    631 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    632 
    633 		if (glu::isDataTypeFloatOrVec(type))
    634 		{
    635 			// Both highp and mediump should be able to represent -1, 0, and +1 exactly
    636 			const deUint32 maxUlpDiff = precision == glu::PRECISION_LOWP ? getMaxUlpDiffFromBits(getMinMantissaBits(precision)) : 0;
    637 
    638 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    639 			{
    640 				const float		in0			= ((const float*)inputs[0])[compNdx];
    641 				const float		out0		= ((const float*)outputs[0])[compNdx];
    642 				const float		ref0		= in0 < 0.0f ? -1.0f :
    643 											  in0 > 0.0f ? +1.0f : 0.0f;
    644 				const deUint32	ulpDiff0	= getUlpDiff(out0, ref0);
    645 
    646 				if (ulpDiff0 > maxUlpDiff)
    647 				{
    648 					m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref0) << " with ULP threshold " << maxUlpDiff << ", got ULP diff " << ulpDiff0;
    649 					return false;
    650 				}
    651 			}
    652 		}
    653 		else
    654 		{
    655 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    656 			{
    657 				const int	in0		= ((const int*)inputs[0])[compNdx];
    658 				const int	out0	= ((const int*)outputs[0])[compNdx];
    659 				const int	ref0	= in0 < 0 ? -1 :
    660 									  in0 > 0 ? +1 : 0;
    661 
    662 				if (out0 != ref0)
    663 				{
    664 					m_failMsg << "Expected [" << compNdx << "] = " << ref0;
    665 					return false;
    666 				}
    667 			}
    668 		}
    669 
    670 		return true;
    671 	}
    672 };
    673 
    674 static float roundEven (float v)
    675 {
    676 	const float		q			= deFloatFrac(v);
    677 	const int		truncated	= int(v-q);
    678 	const int		rounded		= (q > 0.5f)							? (truncated + 1) :	// Rounded up
    679 									(q == 0.5f && (truncated % 2 != 0))	? (truncated + 1) :	// Round to nearest even at 0.5
    680 									truncated;												// Rounded down
    681 
    682 	return float(rounded);
    683 }
    684 
    685 class RoundEvenCase : public CommonFunctionCase
    686 {
    687 public:
    688 	RoundEvenCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
    689 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "roundEven", shaderType)
    690 	{
    691 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
    692 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
    693 		m_spec.source = "out0 = roundEven(in0);";
    694 	}
    695 
    696 	void getInputValues (int numValues, void* const* values) const
    697 	{
    698 		const Vec2 ranges[] =
    699 		{
    700 			Vec2(-2.0f,		2.0f),	// lowp
    701 			Vec2(-1e3f,		1e3f),	// mediump
    702 			Vec2(-1e7f,		1e7f)	// highp
    703 		};
    704 
    705 		de::Random				rnd				(deStringHash(getName()) ^ 0xac23fu);
    706 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    707 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    708 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    709 		int						numSpecialCases	= 0;
    710 
    711 		// Special cases.
    712 		if (precision != glu::PRECISION_LOWP)
    713 		{
    714 			DE_ASSERT(numValues >= 20);
    715 			for (int ndx = 0; ndx < 20; ndx++)
    716 			{
    717 				const float v = de::clamp(float(ndx) - 10.5f, ranges[precision].x(), ranges[precision].y());
    718 				std::fill((float*)values[0], (float*)values[0] + scalarSize, v);
    719 				numSpecialCases += 1;
    720 			}
    721 		}
    722 
    723 		// Random cases.
    724 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + numSpecialCases*scalarSize, (numValues-numSpecialCases)*scalarSize);
    725 
    726 		// If precision is mediump, make sure values can be represented in fp16 exactly
    727 		if (precision == glu::PRECISION_MEDIUMP)
    728 		{
    729 			for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
    730 				((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
    731 		}
    732 	}
    733 
    734 	bool compare (const void* const* inputs, const void* const* outputs)
    735 	{
    736 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    737 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    738 		const bool				hasSignedZero	= supportsSignedZero(precision);
    739 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    740 
    741 		if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
    742 		{
    743 			// Require exact rounding result.
    744 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    745 			{
    746 				const float		in0			= ((const float*)inputs[0])[compNdx];
    747 				const float		out0		= ((const float*)outputs[0])[compNdx];
    748 				const float		ref			= roundEven(in0);
    749 
    750 				const deUint32	ulpDiff		= hasSignedZero ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
    751 
    752 				if (ulpDiff > 0)
    753 				{
    754 					m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
    755 					return false;
    756 				}
    757 			}
    758 		}
    759 		else
    760 		{
    761 			const int		mantissaBits	= getMinMantissaBits(precision);
    762 			const deUint32	maxUlpDiff		= getMaxUlpDiffFromBits(mantissaBits);	// ULP diff for rounded integer value.
    763 			const float		eps				= getEpsFromBits(1.0f, mantissaBits);	// epsilon for rounding bounds
    764 
    765 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    766 			{
    767 				const float		in0			= ((const float*)inputs[0])[compNdx];
    768 				const float		out0		= ((const float*)outputs[0])[compNdx];
    769 				const int		minRes		= int(roundEven(in0-eps));
    770 				const int		maxRes		= int(roundEven(in0+eps));
    771 				bool			anyOk		= false;
    772 
    773 				for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
    774 				{
    775 					const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
    776 
    777 					if (ulpDiff <= maxUlpDiff)
    778 					{
    779 						anyOk = true;
    780 						break;
    781 					}
    782 				}
    783 
    784 				if (!anyOk)
    785 				{
    786 					m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
    787 					return false;
    788 				}
    789 			}
    790 		}
    791 
    792 		return true;
    793 	}
    794 };
    795 
    796 class ModfCase : public CommonFunctionCase
    797 {
    798 public:
    799 	ModfCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
    800 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "modf", shaderType)
    801 	{
    802 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
    803 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
    804 		m_spec.outputs.push_back(Symbol("out1", glu::VarType(baseType, precision)));
    805 		m_spec.source = "out0 = modf(in0, out1);";
    806 	}
    807 
    808 	void getInputValues (int numValues, void* const* values) const
    809 	{
    810 		const Vec2 ranges[] =
    811 		{
    812 			Vec2(-2.0f,		2.0f),	// lowp
    813 			Vec2(-1e3f,		1e3f),	// mediump
    814 			Vec2(-1e7f,		1e7f)	// highp
    815 		};
    816 
    817 		de::Random				rnd			(deStringHash(getName()) ^ 0xac23fu);
    818 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
    819 		const glu::Precision	precision	= m_spec.inputs[0].varType.getPrecision();
    820 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
    821 
    822 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), values[0], numValues*scalarSize);
    823 	}
    824 
    825 	bool compare (const void* const* inputs, const void* const* outputs)
    826 	{
    827 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    828 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    829 		const bool				hasZeroSign		= supportsSignedZero(precision);
    830 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    831 
    832 		const int				mantissaBits	= getMinMantissaBits(precision);
    833 
    834 		for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    835 		{
    836 			const float		in0			= ((const float*)inputs[0])[compNdx];
    837 			const float		out0		= ((const float*)outputs[0])[compNdx];
    838 			const float		out1		= ((const float*)outputs[1])[compNdx];
    839 
    840 			const float		refOut1		= float(int(in0));
    841 			const float		refOut0		= in0 - refOut1;
    842 
    843 			const int		bitsLost	= precision != glu::PRECISION_HIGHP ? numBitsLostInOp(in0, refOut0) : 0;
    844 			const deUint32	maxUlpDiff	= getMaxUlpDiffFromBits(de::max(mantissaBits - bitsLost, 0));
    845 
    846 			const float		resSum		= out0 + out1;
    847 
    848 			const deUint32	ulpDiff		= hasZeroSign ? getUlpDiff(resSum, in0) : getUlpDiffIgnoreZeroSign(resSum, in0);
    849 
    850 			if (ulpDiff > maxUlpDiff)
    851 			{
    852 				m_failMsg << "Expected [" << compNdx << "] = (" << HexFloat(refOut0) << ") + (" << HexFloat(refOut1) << ") = " << HexFloat(in0) << " with ULP threshold "
    853 							<< tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff);
    854 				return false;
    855 			}
    856 		}
    857 
    858 		return true;
    859 	}
    860 };
    861 
    862 class IsnanCase : public CommonFunctionCase
    863 {
    864 public:
    865 	IsnanCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
    866 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "isnan", shaderType)
    867 	{
    868 		DE_ASSERT(glu::isDataTypeFloatOrVec(baseType));
    869 
    870 		const int			vecSize		= glu::getDataTypeScalarSize(baseType);
    871 		const glu::DataType	boolType	= vecSize > 1 ? glu::getDataTypeBoolVec(vecSize) : glu::TYPE_BOOL;
    872 
    873 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
    874 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(boolType, glu::PRECISION_LAST)));
    875 		m_spec.source = "out0 = isnan(in0);";
    876 	}
    877 
    878 	void getInputValues (int numValues, void* const* values) const
    879 	{
    880 		de::Random				rnd				(deStringHash(getName()) ^ 0xc2a39fu);
    881 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    882 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    883 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    884 		const int				mantissaBits	= getMinMantissaBits(precision);
    885 		const deUint32			mantissaMask	= ~getMaxUlpDiffFromBits(mantissaBits) & ((1u<<23)-1u);
    886 
    887 		for (int valNdx = 0; valNdx < numValues*scalarSize; valNdx++)
    888 		{
    889 			const bool		isNan		= rnd.getFloat() > 0.3f;
    890 			const bool		isInf		= !isNan && rnd.getFloat() > 0.4f;
    891 			const deUint32	mantissa	= !isInf ? ((1u<<22) | (rnd.getUint32() & mantissaMask)) : 0;
    892 			const deUint32	exp			= !isNan && !isInf ? (rnd.getUint32() & 0x7fu) : 0xffu;
    893 			const deUint32	sign		= rnd.getUint32() & 0x1u;
    894 			const deUint32	value		= (sign << 31) | (exp << 23) | mantissa;
    895 
    896 			DE_ASSERT(tcu::Float32(value).isInf() == isInf && tcu::Float32(value).isNaN() == isNan);
    897 
    898 			((deUint32*)values[0])[valNdx] = value;
    899 		}
    900 	}
    901 
    902 	bool compare (const void* const* inputs, const void* const* outputs)
    903 	{
    904 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    905 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    906 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    907 
    908 		if (precision == glu::PRECISION_HIGHP)
    909 		{
    910 			// Only highp is required to support inf/nan
    911 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    912 			{
    913 				const float		in0		= ((const float*)inputs[0])[compNdx];
    914 				const bool		out0	= ((const deUint32*)outputs[0])[compNdx] != 0;
    915 				const bool		ref		= tcu::Float32(in0).isNaN();
    916 
    917 				if (out0 != ref)
    918 				{
    919 					m_failMsg << "Expected [" << compNdx << "] = " << (ref ? "true" : "false");
    920 					return false;
    921 				}
    922 			}
    923 		}
    924 		else if (precision == glu::PRECISION_MEDIUMP || precision == glu::PRECISION_LOWP)
    925 		{
    926 			// NaN support is optional, check that inputs that are not NaN don't result in true.
    927 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    928 			{
    929 				const float		in0		= ((const float*)inputs[0])[compNdx];
    930 				const bool		out0	= ((const deUint32*)outputs[0])[compNdx] != 0;
    931 				const bool		ref		= tcu::Float32(in0).isNaN();
    932 
    933 				if (!ref && out0)
    934 				{
    935 					m_failMsg << "Expected [" << compNdx << "] = " << (ref ? "true" : "false");
    936 					return false;
    937 				}
    938 			}
    939 		}
    940 
    941 		return true;
    942 	}
    943 };
    944 
    945 class IsinfCase : public CommonFunctionCase
    946 {
    947 public:
    948 	IsinfCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
    949 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "isinf", shaderType)
    950 	{
    951 		DE_ASSERT(glu::isDataTypeFloatOrVec(baseType));
    952 
    953 		const int			vecSize		= glu::getDataTypeScalarSize(baseType);
    954 		const glu::DataType	boolType	= vecSize > 1 ? glu::getDataTypeBoolVec(vecSize) : glu::TYPE_BOOL;
    955 
    956 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
    957 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(boolType, glu::PRECISION_LAST)));
    958 		m_spec.source = "out0 = isinf(in0);";
    959 	}
    960 
    961 	void getInputValues (int numValues, void* const* values) const
    962 	{
    963 		de::Random				rnd				(deStringHash(getName()) ^ 0xc2a39fu);
    964 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    965 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    966 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    967 		const int				mantissaBits	= getMinMantissaBits(precision);
    968 		const deUint32			mantissaMask	= ~getMaxUlpDiffFromBits(mantissaBits) & ((1u<<23)-1u);
    969 
    970 		for (int valNdx = 0; valNdx < numValues*scalarSize; valNdx++)
    971 		{
    972 			const bool		isInf		= rnd.getFloat() > 0.3f;
    973 			const bool		isNan		= !isInf && rnd.getFloat() > 0.4f;
    974 			const deUint32	mantissa	= !isInf ? ((1u<<22) | (rnd.getUint32() & mantissaMask)) : 0;
    975 			const deUint32	exp			= !isNan && !isInf ? (rnd.getUint32() & 0x7fu) : 0xffu;
    976 			const deUint32	sign		= rnd.getUint32() & 0x1u;
    977 			const deUint32	value		= (sign << 31) | (exp << 23) | mantissa;
    978 
    979 			DE_ASSERT(tcu::Float32(value).isInf() == isInf && tcu::Float32(value).isNaN() == isNan);
    980 
    981 			((deUint32*)values[0])[valNdx] = value;
    982 		}
    983 	}
    984 
    985 	bool compare (const void* const* inputs, const void* const* outputs)
    986 	{
    987 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
    988 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
    989 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
    990 
    991 		if (precision == glu::PRECISION_HIGHP)
    992 		{
    993 			// Only highp is required to support inf/nan
    994 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
    995 			{
    996 				const float		in0		= ((const float*)inputs[0])[compNdx];
    997 				const bool		out0	= ((const deUint32*)outputs[0])[compNdx] != 0;
    998 				const bool		ref		= tcu::Float32(in0).isInf();
    999 
   1000 				if (out0 != ref)
   1001 				{
   1002 					m_failMsg << "Expected [" << compNdx << "] = " << HexBool(ref);
   1003 					return false;
   1004 				}
   1005 			}
   1006 		}
   1007 		else if (precision == glu::PRECISION_MEDIUMP)
   1008 		{
   1009 			// Inf support is optional, check that inputs that are not Inf in mediump don't result in true.
   1010 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1011 			{
   1012 				const float		in0		= ((const float*)inputs[0])[compNdx];
   1013 				const bool		out0	= ((const deUint32*)outputs[0])[compNdx] != 0;
   1014 				const bool		ref		= tcu::Float16(in0).isInf();
   1015 
   1016 				if (!ref && out0)
   1017 				{
   1018 					m_failMsg << "Expected [" << compNdx << "] = " << (ref ? "true" : "false");
   1019 					return false;
   1020 				}
   1021 			}
   1022 		}
   1023 		// else: no verification can be performed
   1024 
   1025 		return true;
   1026 	}
   1027 };
   1028 
   1029 class FloatBitsToUintIntCase : public CommonFunctionCase
   1030 {
   1031 public:
   1032 	FloatBitsToUintIntCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType, bool outIsSigned)
   1033 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), outIsSigned ? "floatBitsToInt" : "floatBitsToUint", shaderType)
   1034 	{
   1035 		const int			vecSize		= glu::getDataTypeScalarSize(baseType);
   1036 		const glu::DataType	intType		= outIsSigned ? (vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT)
   1037 													  : (vecSize > 1 ? glu::getDataTypeUintVec(vecSize) : glu::TYPE_UINT);
   1038 
   1039 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1040 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(intType, glu::PRECISION_HIGHP)));
   1041 		m_spec.source = outIsSigned ? "out0 = floatBitsToInt(in0);" : "out0 = floatBitsToUint(in0);";
   1042 	}
   1043 
   1044 	void getInputValues (int numValues, void* const* values) const
   1045 	{
   1046 		const Vec2 ranges[] =
   1047 		{
   1048 			Vec2(-2.0f,		2.0f),	// lowp
   1049 			Vec2(-1e3f,		1e3f),	// mediump
   1050 			Vec2(-1e7f,		1e7f)	// highp
   1051 		};
   1052 
   1053 		de::Random				rnd			(deStringHash(getName()) ^ 0x2790au);
   1054 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
   1055 		const glu::Precision	precision	= m_spec.inputs[0].varType.getPrecision();
   1056 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
   1057 
   1058 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), values[0], numValues*scalarSize);
   1059 	}
   1060 
   1061 	bool compare (const void* const* inputs, const void* const* outputs)
   1062 	{
   1063 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1064 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1065 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1066 
   1067 		const int				mantissaBits	= getMinMantissaBits(precision);
   1068 		const int				maxUlpDiff		= getMaxUlpDiffFromBits(mantissaBits);
   1069 
   1070 		for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1071 		{
   1072 			const float		in0			= ((const float*)inputs[0])[compNdx];
   1073 			const deUint32	out0		= ((const deUint32*)outputs[0])[compNdx];
   1074 			const deUint32	refOut0		= tcu::Float32(in0).bits();
   1075 			const int		ulpDiff		= de::abs((int)out0 - (int)refOut0);
   1076 
   1077 			if (ulpDiff > maxUlpDiff)
   1078 			{
   1079 				m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(refOut0) << " with threshold "
   1080 							<< tcu::toHex(maxUlpDiff) << ", got diff " << tcu::toHex(ulpDiff);
   1081 				return false;
   1082 			}
   1083 		}
   1084 
   1085 		return true;
   1086 	}
   1087 };
   1088 
   1089 class FloatBitsToIntCase : public FloatBitsToUintIntCase
   1090 {
   1091 public:
   1092 	FloatBitsToIntCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1093 		: FloatBitsToUintIntCase(context, baseType, precision, shaderType, true)
   1094 	{
   1095 	}
   1096 };
   1097 
   1098 class FloatBitsToUintCase : public FloatBitsToUintIntCase
   1099 {
   1100 public:
   1101 	FloatBitsToUintCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1102 		: FloatBitsToUintIntCase(context, baseType, precision, shaderType, false)
   1103 	{
   1104 	}
   1105 };
   1106 
   1107 class BitsToFloatCase : public CommonFunctionCase
   1108 {
   1109 public:
   1110 	BitsToFloatCase (Context& context, glu::DataType baseType, glu::ShaderType shaderType)
   1111 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, glu::PRECISION_HIGHP, shaderType).c_str(), glu::isDataTypeIntOrIVec(baseType) ? "intBitsToFloat" : "uintBitsToFloat", shaderType)
   1112 	{
   1113 		const bool			inIsSigned	= glu::isDataTypeIntOrIVec(baseType);
   1114 		const int			vecSize		= glu::getDataTypeScalarSize(baseType);
   1115 		const glu::DataType	floatType	= vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
   1116 
   1117 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, glu::PRECISION_HIGHP)));
   1118 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(floatType, glu::PRECISION_HIGHP)));
   1119 		m_spec.source = inIsSigned ? "out0 = intBitsToFloat(in0);" : "out0 = uintBitsToFloat(in0);";
   1120 	}
   1121 
   1122 	void getInputValues (int numValues, void* const* values) const
   1123 	{
   1124 		de::Random				rnd			(deStringHash(getName()) ^ 0xbbb225u);
   1125 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
   1126 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
   1127 		const Vec2				range		(-1e8f, +1e8f);
   1128 
   1129 		// \note Filled as floats.
   1130 		fillRandomScalars(rnd, range.x(), range.y(), values[0], numValues*scalarSize);
   1131 	}
   1132 
   1133 	bool compare (const void* const* inputs, const void* const* outputs)
   1134 	{
   1135 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1136 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1137 		const deUint32			maxUlpDiff		= 0;
   1138 
   1139 		for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1140 		{
   1141 			const float		in0			= ((const float*)inputs[0])[compNdx];
   1142 			const float		out0		= ((const float*)outputs[0])[compNdx];
   1143 			const deUint32	ulpDiff		= getUlpDiff(in0, out0);
   1144 
   1145 			if (ulpDiff > maxUlpDiff)
   1146 			{
   1147 				m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(tcu::Float32(in0).bits()) << " with ULP threshold "
   1148 							<< tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff);
   1149 				return false;
   1150 			}
   1151 		}
   1152 
   1153 		return true;
   1154 	}
   1155 };
   1156 
   1157 class FloorCase : public CommonFunctionCase
   1158 {
   1159 public:
   1160 	FloorCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1161 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "floor", shaderType)
   1162 	{
   1163 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1164 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
   1165 		m_spec.source = "out0 = floor(in0);";
   1166 	}
   1167 
   1168 	void getInputValues (int numValues, void* const* values) const
   1169 	{
   1170 		const Vec2 ranges[] =
   1171 		{
   1172 			Vec2(-2.0f,		2.0f),	// lowp
   1173 			Vec2(-1e3f,		1e3f),	// mediump
   1174 			Vec2(-1e7f,		1e7f)	// highp
   1175 		};
   1176 
   1177 		de::Random				rnd			(deStringHash(getName()) ^ 0xac23fu);
   1178 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
   1179 		const glu::Precision	precision	= m_spec.inputs[0].varType.getPrecision();
   1180 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
   1181 		// Random cases.
   1182 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0], numValues*scalarSize);
   1183 
   1184 		// If precision is mediump, make sure values can be represented in fp16 exactly
   1185 		if (precision == glu::PRECISION_MEDIUMP)
   1186 		{
   1187 			for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
   1188 				((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
   1189 		}
   1190 	}
   1191 
   1192 	bool compare (const void* const* inputs, const void* const* outputs)
   1193 	{
   1194 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1195 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1196 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1197 
   1198 		if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
   1199 		{
   1200 			// Require exact result.
   1201 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1202 			{
   1203 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1204 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1205 				const float		ref			= deFloatFloor(in0);
   1206 
   1207 				const deUint32	ulpDiff		= getUlpDiff(out0, ref);
   1208 
   1209 				if (ulpDiff > 0)
   1210 				{
   1211 					m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
   1212 					return false;
   1213 				}
   1214 			}
   1215 		}
   1216 		else
   1217 		{
   1218 			const int		mantissaBits	= getMinMantissaBits(precision);
   1219 			const deUint32	maxUlpDiff		= getMaxUlpDiffFromBits(mantissaBits);	// ULP diff for rounded integer value.
   1220 			const float		eps				= getEpsFromBits(1.0f, mantissaBits);	// epsilon for rounding bounds
   1221 
   1222 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1223 			{
   1224 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1225 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1226 				const int		minRes		= int(deFloatFloor(in0-eps));
   1227 				const int		maxRes		= int(deFloatFloor(in0+eps));
   1228 				bool			anyOk		= false;
   1229 
   1230 				for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
   1231 				{
   1232 					const deUint32 ulpDiff = getUlpDiff(out0, float(roundedVal));
   1233 
   1234 					if (ulpDiff <= maxUlpDiff)
   1235 					{
   1236 						anyOk = true;
   1237 						break;
   1238 					}
   1239 				}
   1240 
   1241 				if (!anyOk)
   1242 				{
   1243 					m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
   1244 					return false;
   1245 				}
   1246 			}
   1247 		}
   1248 
   1249 		return true;
   1250 	}
   1251 };
   1252 
   1253 class TruncCase : public CommonFunctionCase
   1254 {
   1255 public:
   1256 	TruncCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1257 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "trunc", shaderType)
   1258 	{
   1259 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1260 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
   1261 		m_spec.source = "out0 = trunc(in0);";
   1262 	}
   1263 
   1264 	void getInputValues (int numValues, void* const* values) const
   1265 	{
   1266 		const Vec2 ranges[] =
   1267 		{
   1268 			Vec2(-2.0f,		2.0f),	// lowp
   1269 			Vec2(-1e3f,		1e3f),	// mediump
   1270 			Vec2(-1e7f,		1e7f)	// highp
   1271 		};
   1272 
   1273 		de::Random				rnd				(deStringHash(getName()) ^ 0xac23fu);
   1274 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1275 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1276 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1277 		const float				specialCases[]	= { 0.0f, -0.0f, -0.9f, 0.9f, 1.0f, -1.0f };
   1278 		const int				numSpecialCases	= DE_LENGTH_OF_ARRAY(specialCases);
   1279 
   1280 		// Special cases
   1281 		for (int caseNdx = 0; caseNdx < numSpecialCases; caseNdx++)
   1282 		{
   1283 			for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
   1284 				((float*)values[0])[caseNdx*scalarSize + scalarNdx] = specialCases[caseNdx];
   1285 		}
   1286 
   1287 		// Random cases.
   1288 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + scalarSize*numSpecialCases, (numValues-numSpecialCases)*scalarSize);
   1289 
   1290 		// If precision is mediump, make sure values can be represented in fp16 exactly
   1291 		if (precision == glu::PRECISION_MEDIUMP)
   1292 		{
   1293 			for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
   1294 				((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
   1295 		}
   1296 	}
   1297 
   1298 	bool compare (const void* const* inputs, const void* const* outputs)
   1299 	{
   1300 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1301 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1302 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1303 
   1304 		if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
   1305 		{
   1306 			// Require exact result.
   1307 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1308 			{
   1309 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1310 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1311 				const bool		isNeg		= tcu::Float32(in0).sign() < 0;
   1312 				const float		ref			= isNeg ? (-float(int(-in0))) : float(int(in0));
   1313 
   1314 				// \note: trunc() function definition is a bit broad on negative zeros. Ignore result sign if zero.
   1315 				const deUint32	ulpDiff		= getUlpDiffIgnoreZeroSign(out0, ref);
   1316 
   1317 				if (ulpDiff > 0)
   1318 				{
   1319 					m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
   1320 					return false;
   1321 				}
   1322 			}
   1323 		}
   1324 		else
   1325 		{
   1326 			const int		mantissaBits	= getMinMantissaBits(precision);
   1327 			const deUint32	maxUlpDiff		= getMaxUlpDiffFromBits(mantissaBits);	// ULP diff for rounded integer value.
   1328 			const float		eps				= getEpsFromBits(1.0f, mantissaBits);	// epsilon for rounding bounds
   1329 
   1330 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1331 			{
   1332 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1333 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1334 				const int		minRes		= int(in0-eps);
   1335 				const int		maxRes		= int(in0+eps);
   1336 				bool			anyOk		= false;
   1337 
   1338 				for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
   1339 				{
   1340 					const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
   1341 
   1342 					if (ulpDiff <= maxUlpDiff)
   1343 					{
   1344 						anyOk = true;
   1345 						break;
   1346 					}
   1347 				}
   1348 
   1349 				if (!anyOk)
   1350 				{
   1351 					m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
   1352 					return false;
   1353 				}
   1354 			}
   1355 		}
   1356 
   1357 		return true;
   1358 	}
   1359 };
   1360 
   1361 class RoundCase : public CommonFunctionCase
   1362 {
   1363 public:
   1364 	RoundCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1365 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "round", shaderType)
   1366 	{
   1367 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1368 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
   1369 		m_spec.source = "out0 = round(in0);";
   1370 	}
   1371 
   1372 	void getInputValues (int numValues, void* const* values) const
   1373 	{
   1374 		const Vec2 ranges[] =
   1375 		{
   1376 			Vec2(-2.0f,		2.0f),	// lowp
   1377 			Vec2(-1e3f,		1e3f),	// mediump
   1378 			Vec2(-1e7f,		1e7f)	// highp
   1379 		};
   1380 
   1381 		de::Random				rnd				(deStringHash(getName()) ^ 0xac23fu);
   1382 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1383 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1384 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1385 		int						numSpecialCases	= 0;
   1386 
   1387 		// Special cases.
   1388 		if (precision != glu::PRECISION_LOWP)
   1389 		{
   1390 			DE_ASSERT(numValues >= 10);
   1391 			for (int ndx = 0; ndx < 10; ndx++)
   1392 			{
   1393 				const float v = de::clamp(float(ndx) - 5.5f, ranges[precision].x(), ranges[precision].y());
   1394 				std::fill((float*)values[0], (float*)values[0] + scalarSize, v);
   1395 				numSpecialCases += 1;
   1396 			}
   1397 		}
   1398 
   1399 		// Random cases.
   1400 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + numSpecialCases*scalarSize, (numValues-numSpecialCases)*scalarSize);
   1401 
   1402 		// If precision is mediump, make sure values can be represented in fp16 exactly
   1403 		if (precision == glu::PRECISION_MEDIUMP)
   1404 		{
   1405 			for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
   1406 				((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
   1407 		}
   1408 	}
   1409 
   1410 	bool compare (const void* const* inputs, const void* const* outputs)
   1411 	{
   1412 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1413 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1414 		const bool				hasZeroSign		= supportsSignedZero(precision);
   1415 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1416 
   1417 		if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
   1418 		{
   1419 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1420 			{
   1421 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1422 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1423 
   1424 				if (deFloatFrac(in0) == 0.5f)
   1425 				{
   1426 					// Allow both ceil(in) and floor(in)
   1427 					const float		ref0		= deFloatFloor(in0);
   1428 					const float		ref1		= deFloatCeil(in0);
   1429 					const deUint32	ulpDiff0	= hasZeroSign ? getUlpDiff(out0, ref0) : getUlpDiffIgnoreZeroSign(out0, ref0);
   1430 					const deUint32	ulpDiff1	= hasZeroSign ? getUlpDiff(out0, ref1) : getUlpDiffIgnoreZeroSign(out0, ref1);
   1431 
   1432 					if (ulpDiff0 > 0 && ulpDiff1 > 0)
   1433 					{
   1434 						m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref0) << " or " << HexFloat(ref1) << ", got ULP diff " << tcu::toHex(de::min(ulpDiff0, ulpDiff1));
   1435 						return false;
   1436 					}
   1437 				}
   1438 				else
   1439 				{
   1440 					// Require exact result
   1441 					const float		ref		= roundEven(in0);
   1442 					const deUint32	ulpDiff	= hasZeroSign ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
   1443 
   1444 					if (ulpDiff > 0)
   1445 					{
   1446 						m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
   1447 						return false;
   1448 					}
   1449 				}
   1450 			}
   1451 		}
   1452 		else
   1453 		{
   1454 			const int		mantissaBits	= getMinMantissaBits(precision);
   1455 			const deUint32	maxUlpDiff		= getMaxUlpDiffFromBits(mantissaBits);	// ULP diff for rounded integer value.
   1456 			const float		eps				= getEpsFromBits(1.0f, mantissaBits);	// epsilon for rounding bounds
   1457 
   1458 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1459 			{
   1460 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1461 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1462 				const int		minRes		= int(roundEven(in0-eps));
   1463 				const int		maxRes		= int(roundEven(in0+eps));
   1464 				bool			anyOk		= false;
   1465 
   1466 				for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
   1467 				{
   1468 					const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
   1469 
   1470 					if (ulpDiff <= maxUlpDiff)
   1471 					{
   1472 						anyOk = true;
   1473 						break;
   1474 					}
   1475 				}
   1476 
   1477 				if (!anyOk)
   1478 				{
   1479 					m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
   1480 					return false;
   1481 				}
   1482 			}
   1483 		}
   1484 
   1485 		return true;
   1486 	}
   1487 };
   1488 
   1489 class CeilCase : public CommonFunctionCase
   1490 {
   1491 public:
   1492 	CeilCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1493 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "ceil", shaderType)
   1494 	{
   1495 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1496 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
   1497 		m_spec.source = "out0 = ceil(in0);";
   1498 	}
   1499 
   1500 	void getInputValues (int numValues, void* const* values) const
   1501 	{
   1502 		const Vec2 ranges[] =
   1503 		{
   1504 			Vec2(-2.0f,		2.0f),	// lowp
   1505 			Vec2(-1e3f,		1e3f),	// mediump
   1506 			Vec2(-1e7f,		1e7f)	// highp
   1507 		};
   1508 
   1509 		de::Random				rnd			(deStringHash(getName()) ^ 0xac23fu);
   1510 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
   1511 		const glu::Precision	precision	= m_spec.inputs[0].varType.getPrecision();
   1512 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
   1513 
   1514 		// Random cases.
   1515 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0], numValues*scalarSize);
   1516 
   1517 		// If precision is mediump, make sure values can be represented in fp16 exactly
   1518 		if (precision == glu::PRECISION_MEDIUMP)
   1519 		{
   1520 			for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
   1521 				((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
   1522 		}
   1523 	}
   1524 
   1525 	bool compare (const void* const* inputs, const void* const* outputs)
   1526 	{
   1527 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1528 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1529 		const bool				hasZeroSign		= supportsSignedZero(precision);
   1530 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1531 
   1532 		if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
   1533 		{
   1534 			// Require exact result.
   1535 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1536 			{
   1537 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1538 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1539 				const float		ref			= deFloatCeil(in0);
   1540 
   1541 				const deUint32	ulpDiff		= hasZeroSign ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
   1542 
   1543 				if (ulpDiff > 0)
   1544 				{
   1545 					m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
   1546 					return false;
   1547 				}
   1548 			}
   1549 		}
   1550 		else
   1551 		{
   1552 			const int		mantissaBits	= getMinMantissaBits(precision);
   1553 			const deUint32	maxUlpDiff		= getMaxUlpDiffFromBits(mantissaBits);	// ULP diff for rounded integer value.
   1554 			const float		eps				= getEpsFromBits(1.0f, mantissaBits);	// epsilon for rounding bounds
   1555 
   1556 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1557 			{
   1558 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1559 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1560 				const int		minRes		= int(deFloatCeil(in0-eps));
   1561 				const int		maxRes		= int(deFloatCeil(in0+eps));
   1562 				bool			anyOk		= false;
   1563 
   1564 				for (int roundedVal = minRes; roundedVal <= maxRes; roundedVal++)
   1565 				{
   1566 					const deUint32 ulpDiff = getUlpDiffIgnoreZeroSign(out0, float(roundedVal));
   1567 
   1568 					if (ulpDiff <= maxUlpDiff)
   1569 					{
   1570 						anyOk = true;
   1571 						break;
   1572 					}
   1573 				}
   1574 
   1575 				if (!anyOk && de::inRange(0, minRes, maxRes))
   1576 				{
   1577 					// Allow -0 as well.
   1578 					const int ulpDiff = de::abs((int)tcu::Float32(out0).bits() - (int)0x80000000u);
   1579 					anyOk = ((deUint32)ulpDiff <= maxUlpDiff);
   1580 				}
   1581 
   1582 				if (!anyOk)
   1583 				{
   1584 					m_failMsg << "Expected [" << compNdx << "] = [" << minRes << ", " << maxRes << "] with ULP threshold " << tcu::toHex(maxUlpDiff);
   1585 					return false;
   1586 				}
   1587 			}
   1588 		}
   1589 
   1590 		return true;
   1591 	}
   1592 };
   1593 
   1594 class FractCase : public CommonFunctionCase
   1595 {
   1596 public:
   1597 	FractCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1598 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "fract", shaderType)
   1599 	{
   1600 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1601 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, precision)));
   1602 		m_spec.source = "out0 = fract(in0);";
   1603 	}
   1604 
   1605 	void getInputValues (int numValues, void* const* values) const
   1606 	{
   1607 		const Vec2 ranges[] =
   1608 		{
   1609 			Vec2(-2.0f,		2.0f),	// lowp
   1610 			Vec2(-1e3f,		1e3f),	// mediump
   1611 			Vec2(-1e7f,		1e7f)	// highp
   1612 		};
   1613 
   1614 		de::Random				rnd				(deStringHash(getName()) ^ 0xac23fu);
   1615 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1616 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1617 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1618 		int						numSpecialCases	= 0;
   1619 
   1620 		// Special cases.
   1621 		if (precision != glu::PRECISION_LOWP)
   1622 		{
   1623 			DE_ASSERT(numValues >= 10);
   1624 			for (int ndx = 0; ndx < 10; ndx++)
   1625 			{
   1626 				const float v = de::clamp(float(ndx) - 5.5f, ranges[precision].x(), ranges[precision].y());
   1627 				std::fill((float*)values[0], (float*)values[0] + scalarSize, v);
   1628 				numSpecialCases += 1;
   1629 			}
   1630 		}
   1631 
   1632 		// Random cases.
   1633 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + numSpecialCases*scalarSize, (numValues-numSpecialCases)*scalarSize);
   1634 
   1635 		// If precision is mediump, make sure values can be represented in fp16 exactly
   1636 		if (precision == glu::PRECISION_MEDIUMP)
   1637 		{
   1638 			for (int ndx = 0; ndx < numValues*scalarSize; ndx++)
   1639 				((float*)values[0])[ndx] = tcu::Float16(((float*)values[0])[ndx]).asFloat();
   1640 		}
   1641 	}
   1642 
   1643 	bool compare (const void* const* inputs, const void* const* outputs)
   1644 	{
   1645 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1646 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1647 		const bool				hasZeroSign		= supportsSignedZero(precision);
   1648 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1649 
   1650 		if (precision == glu::PRECISION_HIGHP || precision == glu::PRECISION_MEDIUMP)
   1651 		{
   1652 			// Require exact result.
   1653 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1654 			{
   1655 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1656 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1657 				const float		ref			= deFloatFrac(in0);
   1658 
   1659 				const deUint32	ulpDiff		= hasZeroSign ? getUlpDiff(out0, ref) : getUlpDiffIgnoreZeroSign(out0, ref);
   1660 
   1661 				if (ulpDiff > 0)
   1662 				{
   1663 					m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << ", got ULP diff " << tcu::toHex(ulpDiff);
   1664 					return false;
   1665 				}
   1666 			}
   1667 		}
   1668 		else
   1669 		{
   1670 			const int		mantissaBits	= getMinMantissaBits(precision);
   1671 			const float		eps				= getEpsFromBits(1.0f, mantissaBits);	// epsilon for rounding bounds
   1672 
   1673 			for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1674 			{
   1675 				const float		in0			= ((const float*)inputs[0])[compNdx];
   1676 				const float		out0		= ((const float*)outputs[0])[compNdx];
   1677 
   1678 				if (int(deFloatFloor(in0-eps)) == int(deFloatFloor(in0+eps)))
   1679 				{
   1680 					const float		ref			= deFloatFrac(in0);
   1681 					const int		bitsLost	= numBitsLostInOp(in0, ref);
   1682 					const deUint32	maxUlpDiff	= getMaxUlpDiffFromBits(de::max(0, mantissaBits-bitsLost));	// ULP diff for rounded integer value.
   1683 					const deUint32	ulpDiff		= getUlpDiffIgnoreZeroSign(out0, ref);
   1684 
   1685 					if (ulpDiff > maxUlpDiff)
   1686 					{
   1687 						m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(ref) << " with ULP threshold " << tcu::toHex(maxUlpDiff) << ", got diff " << tcu::toHex(ulpDiff);
   1688 						return false;
   1689 					}
   1690 				}
   1691 				else
   1692 				{
   1693 					if (out0 >= 1.0f)
   1694 					{
   1695 						m_failMsg << "Expected [" << compNdx << "] < 1.0";
   1696 						return false;
   1697 					}
   1698 				}
   1699 			}
   1700 		}
   1701 
   1702 		return true;
   1703 	}
   1704 };
   1705 
   1706 static inline void frexp (float in, float* significand, int* exponent)
   1707 {
   1708 	const tcu::Float32 fpValue(in);
   1709 
   1710 	if (!fpValue.isZero())
   1711 	{
   1712 		// Construct float that has exactly the mantissa, and exponent of -1.
   1713 		*significand	= tcu::Float32::construct(fpValue.sign(), -1, fpValue.mantissa()).asFloat();
   1714 		*exponent		= fpValue.exponent()+1;
   1715 	}
   1716 	else
   1717 	{
   1718 		*significand	= fpValue.sign() < 0 ? -0.0f : 0.0f;
   1719 		*exponent		= 0;
   1720 	}
   1721 }
   1722 
   1723 static inline float ldexp (float significand, int exponent)
   1724 {
   1725 	const tcu::Float32 mant(significand);
   1726 
   1727 	if (exponent == 0 && mant.isZero())
   1728 	{
   1729 		return mant.sign() < 0 ? -0.0f : 0.0f;
   1730 	}
   1731 	else
   1732 	{
   1733 		return tcu::Float32::construct(mant.sign(), exponent+mant.exponent(), mant.mantissa()).asFloat();
   1734 	}
   1735 }
   1736 
   1737 class FrexpCase : public CommonFunctionCase
   1738 {
   1739 public:
   1740 	FrexpCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1741 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "frexp", shaderType)
   1742 	{
   1743 		const int			vecSize		= glu::getDataTypeScalarSize(baseType);
   1744 		const glu::DataType	intType		= vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT;
   1745 
   1746 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1747 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, glu::PRECISION_HIGHP)));
   1748 		m_spec.outputs.push_back(Symbol("out1", glu::VarType(intType, glu::PRECISION_HIGHP)));
   1749 		m_spec.source = "out0 = frexp(in0, out1);";
   1750 	}
   1751 
   1752 	void getInputValues (int numValues, void* const* values) const
   1753 	{
   1754 		const Vec2 ranges[] =
   1755 		{
   1756 			Vec2(-2.0f,		2.0f),	// lowp
   1757 			Vec2(-1e3f,		1e3f),	// mediump
   1758 			Vec2(-1e7f,		1e7f)	// highp
   1759 		};
   1760 
   1761 		de::Random				rnd			(deStringHash(getName()) ^ 0x2790au);
   1762 		const glu::DataType		type		= m_spec.inputs[0].varType.getBasicType();
   1763 		const glu::Precision	precision	= m_spec.inputs[0].varType.getPrecision();
   1764 		const int				scalarSize	= glu::getDataTypeScalarSize(type);
   1765 
   1766 		// Special cases
   1767 		for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1768 		{
   1769 			((float*)values[0])[scalarSize*0 + compNdx] = 0.0f;
   1770 			((float*)values[0])[scalarSize*1 + compNdx] = -0.0f;
   1771 			((float*)values[0])[scalarSize*2 + compNdx] = 0.5f;
   1772 			((float*)values[0])[scalarSize*3 + compNdx] = -0.5f;
   1773 			((float*)values[0])[scalarSize*4 + compNdx] = 1.0f;
   1774 			((float*)values[0])[scalarSize*5 + compNdx] = -1.0f;
   1775 			((float*)values[0])[scalarSize*6 + compNdx] = 2.0f;
   1776 			((float*)values[0])[scalarSize*7 + compNdx] = -2.0f;
   1777 		}
   1778 
   1779 		fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[0] + 8*scalarSize, (numValues-8)*scalarSize);
   1780 
   1781 		// Make sure the values are representable in the target format
   1782 		for (int caseNdx = 0; caseNdx < numValues; ++caseNdx)
   1783 		{
   1784 			for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
   1785 			{
   1786 				float* const valuePtr = &((float*)values[0])[caseNdx * scalarSize + scalarNdx];
   1787 
   1788 				*valuePtr = makeFloatRepresentable(*valuePtr, precision);
   1789 			}
   1790 		}
   1791 	}
   1792 
   1793 	bool compare (const void* const* inputs, const void* const* outputs)
   1794 	{
   1795 		const glu::DataType		type						= m_spec.inputs[0].varType.getBasicType();
   1796 		const glu::Precision	precision					= m_spec.inputs[0].varType.getPrecision();
   1797 		const int				scalarSize					= glu::getDataTypeScalarSize(type);
   1798 		const bool				signedZero					= false;
   1799 
   1800 		const int				mantissaBits				= getMinMantissaBits(precision);
   1801 		const deUint32			maxUlpDiff					= getMaxUlpDiffFromBits(mantissaBits);
   1802 
   1803 		for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1804 		{
   1805 			const float		in0			= ((const float*)inputs[0])[compNdx];
   1806 			const float		out0		= ((const float*)outputs[0])[compNdx];
   1807 			const int		out1		= ((const int*)outputs[1])[compNdx];
   1808 
   1809 			float			refOut0;
   1810 			int				refOut1;
   1811 
   1812 			frexp(in0, &refOut0, &refOut1);
   1813 
   1814 			const deUint32	ulpDiff0	= signedZero ? getUlpDiff(out0, refOut0) : getUlpDiffIgnoreZeroSign(out0, refOut0);
   1815 
   1816 			if (ulpDiff0 > maxUlpDiff || out1 != refOut1)
   1817 			{
   1818 				m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(refOut0) << ", " << refOut1 << " with ULP threshold "
   1819 						  << tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff0);
   1820 				return false;
   1821 			}
   1822 		}
   1823 
   1824 		return true;
   1825 	}
   1826 };
   1827 
   1828 class LdexpCase : public CommonFunctionCase
   1829 {
   1830 public:
   1831 	LdexpCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1832 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "ldexp", shaderType)
   1833 	{
   1834 		const int			vecSize		= glu::getDataTypeScalarSize(baseType);
   1835 		const glu::DataType	intType		= vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT;
   1836 
   1837 		m_spec.inputs.push_back(Symbol("in0", glu::VarType(baseType, precision)));
   1838 		m_spec.inputs.push_back(Symbol("in1", glu::VarType(intType, glu::PRECISION_HIGHP)));
   1839 		m_spec.outputs.push_back(Symbol("out0", glu::VarType(baseType, glu::PRECISION_HIGHP)));
   1840 		m_spec.source = "out0 = ldexp(in0, in1);";
   1841 	}
   1842 
   1843 	void getInputValues (int numValues, void* const* values) const
   1844 	{
   1845 		const Vec2 ranges[] =
   1846 		{
   1847 			Vec2(-2.0f,		2.0f),	// lowp
   1848 			Vec2(-1e3f,		1e3f),	// mediump
   1849 			Vec2(-1e7f,		1e7f)	// highp
   1850 		};
   1851 
   1852 		de::Random				rnd					(deStringHash(getName()) ^ 0x2790au);
   1853 		const glu::DataType		type				= m_spec.inputs[0].varType.getBasicType();
   1854 		const glu::Precision	precision			= m_spec.inputs[0].varType.getPrecision();
   1855 		const int				scalarSize			= glu::getDataTypeScalarSize(type);
   1856 		int						valueNdx			= 0;
   1857 
   1858 		{
   1859 			const float easySpecialCases[] = { 0.0f, -0.0f, 0.5f, -0.5f, 1.0f, -1.0f, 2.0f, -2.0f };
   1860 
   1861 			DE_ASSERT(valueNdx + DE_LENGTH_OF_ARRAY(easySpecialCases) <= numValues);
   1862 			for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(easySpecialCases); caseNdx++)
   1863 			{
   1864 				float	in0;
   1865 				int		in1;
   1866 
   1867 				frexp(easySpecialCases[caseNdx], &in0, &in1);
   1868 
   1869 				for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1870 				{
   1871 					((float*)values[0])[valueNdx*scalarSize + compNdx] = in0;
   1872 					((int*)values[1])[valueNdx*scalarSize + compNdx] = in1;
   1873 				}
   1874 
   1875 				valueNdx += 1;
   1876 			}
   1877 		}
   1878 
   1879 		{
   1880 			// \note lowp and mediump can not necessarily fit the values in hard cases, so we'll use only easy ones.
   1881 			const int numEasyRandomCases = precision == glu::PRECISION_HIGHP ? 50 : (numValues-valueNdx);
   1882 
   1883 			DE_ASSERT(valueNdx + numEasyRandomCases <= numValues);
   1884 			for (int caseNdx = 0; caseNdx < numEasyRandomCases; caseNdx++)
   1885 			{
   1886 				for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1887 				{
   1888 					const float	in	= rnd.getFloat(ranges[precision].x(), ranges[precision].y());
   1889 					float		in0;
   1890 					int			in1;
   1891 
   1892 					frexp(in, &in0, &in1);
   1893 
   1894 					((float*)values[0])[valueNdx*scalarSize + compNdx] = in0;
   1895 					((int*)values[1])[valueNdx*scalarSize + compNdx] = in1;
   1896 				}
   1897 
   1898 				valueNdx += 1;
   1899 			}
   1900 		}
   1901 
   1902 		{
   1903 			const int numHardRandomCases = numValues-valueNdx;
   1904 			DE_ASSERT(numHardRandomCases >= 0 && valueNdx + numHardRandomCases <= numValues);
   1905 
   1906 			for (int caseNdx = 0; caseNdx < numHardRandomCases; caseNdx++)
   1907 			{
   1908 				for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1909 				{
   1910 					const int		fpExp		= rnd.getInt(-126, 127);
   1911 					const int		sign		= rnd.getBool() ? -1 : +1;
   1912 					const deUint32	mantissa	= (1u<<23) | (rnd.getUint32() & ((1u<<23)-1));
   1913 					const int		in1			= rnd.getInt(de::max(-126, -126-fpExp), de::min(127, 127-fpExp));
   1914 					const float		in0			= tcu::Float32::construct(sign, fpExp, mantissa).asFloat();
   1915 
   1916 					DE_ASSERT(de::inRange(in1, -126, 127)); // See Khronos bug 11180
   1917 					DE_ASSERT(de::inRange(in1+fpExp, -126, 127));
   1918 
   1919 					const float		out			= ldexp(in0, in1);
   1920 
   1921 					DE_ASSERT(!tcu::Float32(out).isInf() && !tcu::Float32(out).isDenorm());
   1922 					DE_UNREF(out);
   1923 
   1924 					((float*)values[0])[valueNdx*scalarSize + compNdx] = in0;
   1925 					((int*)values[1])[valueNdx*scalarSize + compNdx] = in1;
   1926 				}
   1927 
   1928 				valueNdx += 1;
   1929 			}
   1930 		}
   1931 	}
   1932 
   1933 	bool compare (const void* const* inputs, const void* const* outputs)
   1934 	{
   1935 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   1936 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   1937 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   1938 
   1939 		const int				mantissaBits	= getMinMantissaBits(precision);
   1940 		const deUint32			maxUlpDiff		= getMaxUlpDiffFromBits(mantissaBits);
   1941 
   1942 		for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   1943 		{
   1944 			const float		in0			= ((const float*)inputs[0])[compNdx];
   1945 			const int		in1			= ((const int*)inputs[1])[compNdx];
   1946 			const float		out0		= ((const float*)outputs[0])[compNdx];
   1947 			const float		refOut0		= ldexp(in0, in1);
   1948 			const deUint32	ulpDiff		= getUlpDiffIgnoreZeroSign(out0, refOut0);
   1949 
   1950 			const int		inExp		= tcu::Float32(in0).exponent();
   1951 
   1952 			if (ulpDiff > maxUlpDiff)
   1953 			{
   1954 				m_failMsg << "Expected [" << compNdx << "] = " << HexFloat(refOut0) << ", (exp = " << inExp << ") with ULP threshold "
   1955 						  << tcu::toHex(maxUlpDiff) << ", got ULP diff " << tcu::toHex(ulpDiff);
   1956 				return false;
   1957 			}
   1958 		}
   1959 
   1960 		return true;
   1961 	}
   1962 };
   1963 
   1964 class FmaCase : public CommonFunctionCase
   1965 {
   1966 public:
   1967 	FmaCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
   1968 		: CommonFunctionCase(context, getCommonFuncCaseName(baseType, precision, shaderType).c_str(), "fma", shaderType)
   1969 	{
   1970 		m_spec.inputs.push_back(Symbol("a", glu::VarType(baseType, precision)));
   1971 		m_spec.inputs.push_back(Symbol("b", glu::VarType(baseType, precision)));
   1972 		m_spec.inputs.push_back(Symbol("c", glu::VarType(baseType, precision)));
   1973 		m_spec.outputs.push_back(Symbol("res", glu::VarType(baseType, precision)));
   1974 		m_spec.source = "res = fma(a, b, c);";
   1975 		m_spec.globalDeclarations = "#extension GL_EXT_gpu_shader5 : require\n";
   1976 	}
   1977 
   1978 	void init (void)
   1979 	{
   1980 		if (!m_context.getContextInfo().isExtensionSupported("GL_EXT_gpu_shader5"))
   1981 			throw tcu::NotSupportedError("GL_EXT_gpu_shader5 not supported");
   1982 
   1983 		CommonFunctionCase::init();
   1984 	}
   1985 
   1986 	void getInputValues (int numValues, void* const* values) const
   1987 	{
   1988 		const Vec2 ranges[] =
   1989 		{
   1990 			Vec2(-2.0f,		2.0f),	// lowp
   1991 			Vec2(-127.f,	127.f),	// mediump
   1992 			Vec2(-1e7f,		1e7f)	// highp
   1993 		};
   1994 
   1995 		de::Random				rnd							(deStringHash(getName()) ^ 0xac23fu);
   1996 		const glu::DataType		type						= m_spec.inputs[0].varType.getBasicType();
   1997 		const glu::Precision	precision					= m_spec.inputs[0].varType.getPrecision();
   1998 		const int				scalarSize					= glu::getDataTypeScalarSize(type);
   1999 		const float				specialCases[][3]			=
   2000 		{
   2001 			// a		b		c
   2002 			{ 0.0f,		0.0f,	0.0f },
   2003 			{ 0.0f,		1.0f,	0.0f },
   2004 			{ 0.0f,		0.0f,	-1.0f },
   2005 			{ 1.0f,		1.0f,	0.0f },
   2006 			{ 1.0f,		1.0f,	1.0f },
   2007 			{ -1.0f,	1.0f,	0.0f },
   2008 			{ 1.0f,		-1.0f,	0.0f },
   2009 			{ -1.0f,	-1.0f,	0.0f },
   2010 			{ -0.0f,	1.0f,	0.0f },
   2011 			{ 1.0f,		-0.0f,	0.0f }
   2012 		};
   2013 		const int				numSpecialCases				= DE_LENGTH_OF_ARRAY(specialCases);
   2014 
   2015 		// Special cases
   2016 		for (int caseNdx = 0; caseNdx < numSpecialCases; caseNdx++)
   2017 		{
   2018 			for (int inputNdx = 0; inputNdx < 3; inputNdx++)
   2019 			{
   2020 				for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
   2021 					((float*)values[inputNdx])[caseNdx*scalarSize + scalarNdx] = specialCases[caseNdx][inputNdx];
   2022 			}
   2023 		}
   2024 
   2025 		// Random cases.
   2026 		{
   2027 			const int	numScalars	= (numValues-numSpecialCases)*scalarSize;
   2028 			const int	offs		= scalarSize*numSpecialCases;
   2029 
   2030 			for (int inputNdx = 0; inputNdx < 3; inputNdx++)
   2031 				fillRandomScalars(rnd, ranges[precision].x(), ranges[precision].y(), (float*)values[inputNdx] + offs, numScalars);
   2032 		}
   2033 
   2034 		// Make sure the values are representable in the target format
   2035 		for (int inputNdx = 0; inputNdx < 3; inputNdx++)
   2036 		{
   2037 			for (int caseNdx = 0; caseNdx < numValues; ++caseNdx)
   2038 			{
   2039 				for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++)
   2040 				{
   2041 					float* const valuePtr = &((float*)values[inputNdx])[caseNdx * scalarSize + scalarNdx];
   2042 
   2043 					*valuePtr = makeFloatRepresentable(*valuePtr, precision);
   2044 				}
   2045 			}
   2046 		}
   2047 	}
   2048 
   2049 	static tcu::Interval fma (glu::Precision precision, float a, float b, float c)
   2050 	{
   2051 		const tcu::FloatFormat formats[] =
   2052 		{
   2053 			//				 minExp		maxExp		mantissa	exact,		subnormals	infinities	NaN
   2054 			tcu::FloatFormat(0,			0,			7,			false,		tcu::YES,	tcu::MAYBE,	tcu::MAYBE),
   2055 			tcu::FloatFormat(-13,		13,			9,			false,		tcu::MAYBE,	tcu::MAYBE,	tcu::MAYBE),
   2056 			tcu::FloatFormat(-126,		127,		23,			true,		tcu::MAYBE, tcu::YES,	tcu::MAYBE)
   2057 		};
   2058 		const tcu::FloatFormat&	format	= de::getSizedArrayElement<glu::PRECISION_LAST>(formats, precision);
   2059 		const tcu::Interval		ia		= format.convert(a);
   2060 		const tcu::Interval		ib		= format.convert(b);
   2061 		const tcu::Interval		ic		= format.convert(c);
   2062 		tcu::Interval			prod0;
   2063 		tcu::Interval			prod1;
   2064 		tcu::Interval			prod2;
   2065 		tcu::Interval			prod3;
   2066 		tcu::Interval			prod;
   2067 		tcu::Interval			res;
   2068 
   2069 		TCU_SET_INTERVAL(prod0, tmp, tmp = ia.lo() * ib.lo());
   2070 		TCU_SET_INTERVAL(prod1, tmp, tmp = ia.lo() * ib.hi());
   2071 		TCU_SET_INTERVAL(prod2, tmp, tmp = ia.hi() * ib.lo());
   2072 		TCU_SET_INTERVAL(prod3, tmp, tmp = ia.hi() * ib.hi());
   2073 
   2074 		prod = format.convert(format.roundOut(prod0 | prod1 | prod2 | prod3, ia.isFinite() && ib.isFinite()));
   2075 
   2076 		TCU_SET_INTERVAL_BOUNDS(res, tmp,
   2077 								tmp = prod.lo() + ic.lo(),
   2078 								tmp = prod.hi() + ic.hi());
   2079 
   2080 		return format.convert(format.roundOut(res, prod.isFinite() && ic.isFinite()));
   2081 	}
   2082 
   2083 	bool compare (const void* const* inputs, const void* const* outputs)
   2084 	{
   2085 		const glu::DataType		type			= m_spec.inputs[0].varType.getBasicType();
   2086 		const glu::Precision	precision		= m_spec.inputs[0].varType.getPrecision();
   2087 		const int				scalarSize		= glu::getDataTypeScalarSize(type);
   2088 
   2089 		for (int compNdx = 0; compNdx < scalarSize; compNdx++)
   2090 		{
   2091 			const float			a			= ((const float*)inputs[0])[compNdx];
   2092 			const float			b			= ((const float*)inputs[1])[compNdx];
   2093 			const float			c			= ((const float*)inputs[2])[compNdx];
   2094 			const float			res			= ((const float*)outputs[0])[compNdx];
   2095 			const tcu::Interval	ref			= fma(precision, a, b, c);
   2096 
   2097 			if (!ref.contains(res))
   2098 			{
   2099 				m_failMsg << "Expected [" << compNdx << "] = " << ref;
   2100 				return false;
   2101 			}
   2102 		}
   2103 
   2104 		return true;
   2105 	}
   2106 };
   2107 
   2108 ShaderCommonFunctionTests::ShaderCommonFunctionTests (Context& context)
   2109 	: TestCaseGroup(context, "common", "Common function tests")
   2110 {
   2111 }
   2112 
   2113 ShaderCommonFunctionTests::~ShaderCommonFunctionTests (void)
   2114 {
   2115 }
   2116 
   2117 template<class TestClass>
   2118 static void addFunctionCases (TestCaseGroup* parent, const char* functionName, bool floatTypes, bool intTypes, bool uintTypes, deUint32 shaderBits)
   2119 {
   2120 	tcu::TestCaseGroup* group = new tcu::TestCaseGroup(parent->getTestContext(), functionName, functionName);
   2121 	parent->addChild(group);
   2122 
   2123 	const glu::DataType scalarTypes[] =
   2124 	{
   2125 		glu::TYPE_FLOAT,
   2126 		glu::TYPE_INT,
   2127 		glu::TYPE_UINT
   2128 	};
   2129 
   2130 	for (int scalarTypeNdx = 0; scalarTypeNdx < DE_LENGTH_OF_ARRAY(scalarTypes); scalarTypeNdx++)
   2131 	{
   2132 		const glu::DataType scalarType = scalarTypes[scalarTypeNdx];
   2133 
   2134 		if ((!floatTypes && scalarType == glu::TYPE_FLOAT)	||
   2135 			(!intTypes && scalarType == glu::TYPE_INT)		||
   2136 			(!uintTypes && scalarType == glu::TYPE_UINT))
   2137 			continue;
   2138 
   2139 		for (int vecSize = 1; vecSize <= 4; vecSize++)
   2140 		{
   2141 			for (int prec = glu::PRECISION_LOWP; prec <= glu::PRECISION_HIGHP; prec++)
   2142 			{
   2143 				for (int shaderTypeNdx = 0; shaderTypeNdx < glu::SHADERTYPE_LAST; shaderTypeNdx++)
   2144 				{
   2145 					if (shaderBits & (1<<shaderTypeNdx))
   2146 						group->addChild(new TestClass(parent->getContext(), glu::DataType(scalarType + vecSize - 1), glu::Precision(prec), glu::ShaderType(shaderTypeNdx)));
   2147 				}
   2148 			}
   2149 		}
   2150 	}
   2151 }
   2152 
   2153 void ShaderCommonFunctionTests::init (void)
   2154 {
   2155 	enum
   2156 	{
   2157 		VS = (1<<glu::SHADERTYPE_VERTEX),
   2158 		TC = (1<<glu::SHADERTYPE_TESSELLATION_CONTROL),
   2159 		TE = (1<<glu::SHADERTYPE_TESSELLATION_EVALUATION),
   2160 		GS = (1<<glu::SHADERTYPE_GEOMETRY),
   2161 		FS = (1<<glu::SHADERTYPE_FRAGMENT),
   2162 		CS = (1<<glu::SHADERTYPE_COMPUTE),
   2163 
   2164 		ALL_SHADERS = VS|TC|TE|GS|FS|CS,
   2165 		NEW_SHADERS = TC|TE|GS|CS,
   2166 	};
   2167 
   2168 	//																	Float?	Int?	Uint?	Shaders
   2169 	addFunctionCases<AbsCase>				(this,	"abs",				true,	true,	false,	NEW_SHADERS);
   2170 	addFunctionCases<SignCase>				(this,	"sign",				true,	true,	false,	NEW_SHADERS);
   2171 	addFunctionCases<FloorCase>				(this,	"floor",			true,	false,	false,	NEW_SHADERS);
   2172 	addFunctionCases<TruncCase>				(this,	"trunc",			true,	false,	false,	NEW_SHADERS);
   2173 	addFunctionCases<RoundCase>				(this,	"round",			true,	false,	false,	NEW_SHADERS);
   2174 	addFunctionCases<RoundEvenCase>			(this,	"roundeven",		true,	false,	false,	NEW_SHADERS);
   2175 	addFunctionCases<CeilCase>				(this,	"ceil",				true,	false,	false,	NEW_SHADERS);
   2176 	addFunctionCases<FractCase>				(this,	"fract",			true,	false,	false,	NEW_SHADERS);
   2177 	// mod
   2178 	addFunctionCases<ModfCase>				(this,	"modf",				true,	false,	false,	NEW_SHADERS);
   2179 	// min
   2180 	// max
   2181 	// clamp
   2182 	// mix
   2183 	// step
   2184 	// smoothstep
   2185 	addFunctionCases<IsnanCase>				(this,	"isnan",			true,	false,	false,	NEW_SHADERS);
   2186 	addFunctionCases<IsinfCase>				(this,	"isinf",			true,	false,	false,	NEW_SHADERS);
   2187 	addFunctionCases<FloatBitsToIntCase>	(this,	"floatbitstoint",	true,	false,	false,	NEW_SHADERS);
   2188 	addFunctionCases<FloatBitsToUintCase>	(this,	"floatbitstouint",	true,	false,	false,	NEW_SHADERS);
   2189 
   2190 	addFunctionCases<FrexpCase>				(this,	"frexp",			true,	false,	false,	ALL_SHADERS);
   2191 	addFunctionCases<LdexpCase>				(this,	"ldexp",			true,	false,	false,	ALL_SHADERS);
   2192 	addFunctionCases<FmaCase>				(this,	"fma",				true,	false,	false,	ALL_SHADERS);
   2193 
   2194 	// (u)intBitsToFloat()
   2195 	{
   2196 		const deUint32		shaderBits	= NEW_SHADERS;
   2197 		tcu::TestCaseGroup* intGroup	= new tcu::TestCaseGroup(m_testCtx, "intbitstofloat",	"intBitsToFloat() Tests");
   2198 		tcu::TestCaseGroup* uintGroup	= new tcu::TestCaseGroup(m_testCtx, "uintbitstofloat",	"uintBitsToFloat() Tests");
   2199 
   2200 		addChild(intGroup);
   2201 		addChild(uintGroup);
   2202 
   2203 		for (int vecSize = 1; vecSize < 4; vecSize++)
   2204 		{
   2205 			const glu::DataType		intType		= vecSize > 1 ? glu::getDataTypeIntVec(vecSize) : glu::TYPE_INT;
   2206 			const glu::DataType		uintType	= vecSize > 1 ? glu::getDataTypeUintVec(vecSize) : glu::TYPE_UINT;
   2207 
   2208 			for (int shaderType = 0; shaderType < glu::SHADERTYPE_LAST; shaderType++)
   2209 			{
   2210 				if (shaderBits & (1<<shaderType))
   2211 				{
   2212 					intGroup->addChild(new BitsToFloatCase(m_context, intType, glu::ShaderType(shaderType)));
   2213 					uintGroup->addChild(new BitsToFloatCase(m_context, uintType, glu::ShaderType(shaderType)));
   2214 				}
   2215 			}
   2216 		}
   2217 	}
   2218 }
   2219 
   2220 } // Functional
   2221 } // gles31
   2222 } // deqp
   2223