Home | History | Annotate | Download | only in glshared
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program OpenGL (ES) Module
      3  * -----------------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Precision and range tests for GLSL builtins and types.
     22  *
     23  *//*--------------------------------------------------------------------*/
     24 
     25 #include "glsBuiltinPrecisionTests.hpp"
     26 
     27 #include "deMath.h"
     28 #include "deMemory.h"
     29 #include "deDefs.hpp"
     30 #include "deRandom.hpp"
     31 #include "deSTLUtil.hpp"
     32 #include "deStringUtil.hpp"
     33 #include "deUniquePtr.hpp"
     34 #include "deSharedPtr.hpp"
     35 #include "deArrayUtil.hpp"
     36 
     37 #include "tcuCommandLine.hpp"
     38 #include "tcuFloatFormat.hpp"
     39 #include "tcuInterval.hpp"
     40 #include "tcuTestCase.hpp"
     41 #include "tcuTestLog.hpp"
     42 #include "tcuVector.hpp"
     43 #include "tcuMatrix.hpp"
     44 #include "tcuResultCollector.hpp"
     45 
     46 #include "gluContextInfo.hpp"
     47 #include "gluVarType.hpp"
     48 #include "gluRenderContext.hpp"
     49 #include "glwDefs.hpp"
     50 
     51 #include "glsShaderExecUtil.hpp"
     52 
     53 #include <cmath>
     54 #include <string>
     55 #include <sstream>
     56 #include <iostream>
     57 #include <map>
     58 #include <utility>
     59 
     60 // Uncomment this to get evaluation trace dumps to std::cerr
     61 // #define GLS_ENABLE_TRACE
     62 
     63 // set this to true to dump even passing results
     64 #define GLS_LOG_ALL_RESULTS false
     65 
     66 enum
     67 {
     68 	// Computing reference intervals can take a non-trivial amount of time, especially on
     69 	// platforms where toggling floating-point rounding mode is slow (emulated arm on x86).
     70 	// As a workaround watchdog is kept happy by touching it periodically during reference
     71 	// interval computation.
     72 	TOUCH_WATCHDOG_VALUE_FREQUENCY	= 4096
     73 };
     74 
     75 namespace deqp
     76 {
     77 namespace gls
     78 {
     79 namespace BuiltinPrecisionTests
     80 {
     81 
     82 using std::string;
     83 using std::map;
     84 using std::ostream;
     85 using std::ostringstream;
     86 using std::pair;
     87 using std::vector;
     88 using std::set;
     89 
     90 using de::MovePtr;
     91 using de::Random;
     92 using de::SharedPtr;
     93 using de::UniquePtr;
     94 using tcu::Interval;
     95 using tcu::FloatFormat;
     96 using tcu::MessageBuilder;
     97 using tcu::TestCase;
     98 using tcu::TestLog;
     99 using tcu::Vector;
    100 using tcu::Matrix;
    101 namespace matrix = tcu::matrix;
    102 using glu::Precision;
    103 using glu::RenderContext;
    104 using glu::VarType;
    105 using glu::DataType;
    106 using glu::ShaderType;
    107 using glu::ContextInfo;
    108 using gls::ShaderExecUtil::Symbol;
    109 
    110 typedef TestCase::IterateResult IterateResult;
    111 
    112 using namespace glw;
    113 using namespace tcu;
    114 
    115 /*--------------------------------------------------------------------*//*!
    116  * \brief Generic singleton creator.
    117  *
    118  * instance<T>() returns a reference to a unique default-constructed instance
    119  * of T. This is mainly used for our GLSL function implementations: each
    120  * function is implemented by an object, and each of the objects has a
    121  * distinct class. It would be extremely toilsome to maintain a separate
    122  * context object that contained individual instances of the function classes,
    123  * so we have to resort to global singleton instances.
    124  *
    125  *//*--------------------------------------------------------------------*/
    126 template <typename T>
    127 const T& instance (void)
    128 {
    129 	static const T s_instance = T();
    130 	return s_instance;
    131 }
    132 
    133 /*--------------------------------------------------------------------*//*!
    134  * \brief Dummy placeholder type for unused template parameters.
    135  *
    136  * In the precision tests we are dealing with functions of different arities.
    137  * To minimize code duplication, we only define templates with the maximum
    138  * number of arguments, currently four. If a function's arity is less than the
    139  * maximum, Void us used as the type for unused arguments.
    140  *
    141  * Although Voids are not used at run-time, they still must be compilable, so
    142  * they must support all operations that other types do.
    143  *
    144  *//*--------------------------------------------------------------------*/
    145 struct Void
    146 {
    147 	typedef	Void		Element;
    148 	enum
    149 	{
    150 		SIZE = 0,
    151 	};
    152 
    153 	template <typename T>
    154 	explicit			Void			(const T&)		{}
    155 						Void			(void)			{}
    156 						operator double	(void)	const	{ return TCU_NAN; }
    157 
    158 	// These are used to make Voids usable as containers in container-generic code.
    159 	Void&				operator[]		(int)			{ return *this; }
    160 	const Void&			operator[]		(int)	const	{ return *this; }
    161 };
    162 
    163 ostream& operator<< (ostream& os, Void) { return os << "()"; }
    164 
    165 //! Returns true for all other types except Void
    166 template <typename T>	bool isTypeValid		(void)	{ return true;	}
    167 template <>				bool isTypeValid<Void>	(void)	{ return false;	}
    168 
    169 //! Utility function for getting the name of a data type.
    170 //! This is used in vector and matrix constructors.
    171 template <typename T>
    172 const char* dataTypeNameOf (void)
    173 {
    174 	return glu::getDataTypeName(glu::dataTypeOf<T>());
    175 }
    176 
    177 template <>
    178 const char* dataTypeNameOf<Void> (void)
    179 {
    180 	DE_FATAL("Impossible");
    181 	return DE_NULL;
    182 }
    183 
    184 //! A hack to get Void support for VarType.
    185 template <typename T>
    186 VarType getVarTypeOf (Precision prec = glu::PRECISION_LAST)
    187 {
    188 	return glu::varTypeOf<T>(prec);
    189 }
    190 
    191 template <>
    192 VarType getVarTypeOf<Void> (Precision)
    193 {
    194 	DE_FATAL("Impossible");
    195 	return VarType();
    196 }
    197 
    198 /*--------------------------------------------------------------------*//*!
    199  * \brief Type traits for generalized interval types.
    200  *
    201  * We are trying to compute sets of acceptable values not only for
    202  * float-valued expressions but also for compound values: vectors and
    203  * matrices. We approximate a set of vectors as a vector of intervals and
    204  * likewise for matrices.
    205  *
    206  * We now need generalized operations for each type and its interval
    207  * approximation. These are given in the type Traits<T>.
    208  *
    209  * The type Traits<T>::IVal is the approximation of T: it is `Interval` for
    210  * scalar types, and a vector or matrix of intervals for container types.
    211  *
    212  * To allow template inference to take place, there are function wrappers for
    213  * the actual operations in Traits<T>. Hence we can just use:
    214  *
    215  * makeIVal(someFloat)
    216  *
    217  * instead of:
    218  *
    219  * Traits<float>::doMakeIVal(value)
    220  *
    221  *//*--------------------------------------------------------------------*/
    222 
    223 template <typename T> struct Traits;
    224 
    225 //! Create container from elementwise singleton values.
    226 template <typename T>
    227 typename Traits<T>::IVal makeIVal (const T& value)
    228 {
    229 	return Traits<T>::doMakeIVal(value);
    230 }
    231 
    232 //! Elementwise union of intervals.
    233 template <typename T>
    234 typename Traits<T>::IVal unionIVal (const typename Traits<T>::IVal& a,
    235 									const typename Traits<T>::IVal& b)
    236 {
    237 	return Traits<T>::doUnion(a, b);
    238 }
    239 
    240 //! Returns true iff every element of `ival` contains the corresponding element of `value`.
    241 template <typename T>
    242 bool contains (const typename Traits<T>::IVal& ival, const T& value)
    243 {
    244 	return Traits<T>::doContains(ival, value);
    245 }
    246 
    247 //! Print out an interval with the precision of `fmt`.
    248 template <typename T>
    249 void printIVal (const FloatFormat& fmt, const typename Traits<T>::IVal& ival, ostream& os)
    250 {
    251 	Traits<T>::doPrintIVal(fmt, ival, os);
    252 }
    253 
    254 template <typename T>
    255 string intervalToString (const FloatFormat& fmt, const typename Traits<T>::IVal& ival)
    256 {
    257 	ostringstream oss;
    258 	printIVal<T>(fmt, ival, oss);
    259 	return oss.str();
    260 }
    261 
    262 //! Print out a value with the precision of `fmt`.
    263 template <typename T>
    264 void printValue (const FloatFormat& fmt, const T& value, ostream& os)
    265 {
    266 	Traits<T>::doPrintValue(fmt, value, os);
    267 }
    268 
    269 template <typename T>
    270 string valueToString (const FloatFormat& fmt, const T& val)
    271 {
    272 	ostringstream oss;
    273 	printValue(fmt, val, oss);
    274 	return oss.str();
    275 }
    276 
    277 //! Approximate `value` elementwise to the float precision defined in `fmt`.
    278 //! The resulting interval might not be a singleton if rounding in both
    279 //! directions is allowed.
    280 template <typename T>
    281 typename Traits<T>::IVal round (const FloatFormat& fmt, const T& value)
    282 {
    283 	return Traits<T>::doRound(fmt, value);
    284 }
    285 
    286 template <typename T>
    287 typename Traits<T>::IVal convert (const FloatFormat&				fmt,
    288 								  const typename Traits<T>::IVal&	value)
    289 {
    290 	return Traits<T>::doConvert(fmt, value);
    291 }
    292 
    293 //! Common traits for scalar types.
    294 template <typename T>
    295 struct ScalarTraits
    296 {
    297 	typedef				Interval		IVal;
    298 
    299 	static Interval		doMakeIVal		(const T& value)
    300 	{
    301 		// Thankfully all scalar types have a well-defined conversion to `double`,
    302 		// hence Interval can represent their ranges without problems.
    303 		return Interval(double(value));
    304 	}
    305 
    306 	static Interval		doUnion			(const Interval& a, const Interval& b)
    307 	{
    308 		return a | b;
    309 	}
    310 
    311 	static bool			doContains		(const Interval& a, T value)
    312 	{
    313 		return a.contains(double(value));
    314 	}
    315 
    316 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival)
    317 	{
    318 		return fmt.convert(ival);
    319 	}
    320 
    321 	static Interval		doRound			(const FloatFormat& fmt, T value)
    322 	{
    323 		return fmt.roundOut(double(value), false);
    324 	}
    325 };
    326 
    327 template<>
    328 struct Traits<float> : ScalarTraits<float>
    329 {
    330 	static void			doPrintIVal		(const FloatFormat&	fmt,
    331 										 const Interval&	ival,
    332 										 ostream&			os)
    333 	{
    334 		os << fmt.intervalToHex(ival);
    335 	}
    336 
    337 	static void			doPrintValue	(const FloatFormat&	fmt,
    338 										 const float&		value,
    339 										 ostream&			os)
    340 	{
    341 		os << fmt.floatToHex(value);
    342 	}
    343 };
    344 
    345 template<>
    346 struct Traits<bool> : ScalarTraits<bool>
    347 {
    348 	static void			doPrintValue	(const FloatFormat&,
    349 										 const float&		value,
    350 										 ostream&			os)
    351 	{
    352 		os << (value != 0.0f ? "true" : "false");
    353 	}
    354 
    355 	static void			doPrintIVal		(const FloatFormat&,
    356 										 const Interval&	ival,
    357 										 ostream&			os)
    358 	{
    359 		os << "{";
    360 		if (ival.contains(false))
    361 			os << "false";
    362 		if (ival.contains(false) && ival.contains(true))
    363 			os << ", ";
    364 		if (ival.contains(true))
    365 			os << "true";
    366 		os << "}";
    367 	}
    368 };
    369 
    370 template<>
    371 struct Traits<int> : ScalarTraits<int>
    372 {
    373 	static void			doPrintValue	(const FloatFormat&,
    374 										 const int&			value,
    375 										 ostream&			os)
    376 	{
    377 		os << value;
    378 	}
    379 
    380 	static void			doPrintIVal		(const FloatFormat&,
    381 										 const Interval&	ival,
    382 										 ostream&			os)
    383 	{
    384 		os << "[" << int(ival.lo()) << ", " << int(ival.hi()) << "]";
    385 	}
    386 };
    387 
    388 //! Common traits for containers, i.e. vectors and matrices.
    389 //! T is the container type itself, I is the same type with interval elements.
    390 template <typename T, typename I>
    391 struct ContainerTraits
    392 {
    393 	typedef typename	T::Element		Element;
    394 	typedef				I				IVal;
    395 
    396 	static IVal			doMakeIVal		(const T& value)
    397 	{
    398 		IVal ret;
    399 
    400 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    401 			ret[ndx] = makeIVal(value[ndx]);
    402 
    403 		return ret;
    404 	}
    405 
    406 	static IVal			doUnion			(const IVal& a, const IVal& b)
    407 	{
    408 		IVal ret;
    409 
    410 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    411 			ret[ndx] = unionIVal<Element>(a[ndx], b[ndx]);
    412 
    413 		return ret;
    414 	}
    415 
    416 	static bool			doContains		(const IVal& ival, const T& value)
    417 	{
    418 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    419 			if (!contains(ival[ndx], value[ndx]))
    420 				return false;
    421 
    422 		return true;
    423 	}
    424 
    425 	static void			doPrintIVal		(const FloatFormat& fmt, const IVal ival, ostream& os)
    426 	{
    427 		os << "(";
    428 
    429 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    430 		{
    431 			if (ndx > 0)
    432 				os << ", ";
    433 
    434 			printIVal<Element>(fmt, ival[ndx], os);
    435 		}
    436 
    437 		os << ")";
    438 	}
    439 
    440 	static void			doPrintValue	(const FloatFormat& fmt, const T& value, ostream& os)
    441 	{
    442 		os << dataTypeNameOf<T>() << "(";
    443 
    444 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    445 		{
    446 			if (ndx > 0)
    447 				os << ", ";
    448 
    449 			printValue<Element>(fmt, value[ndx], os);
    450 		}
    451 
    452 		os << ")";
    453 	}
    454 
    455 	static IVal			doConvert		(const FloatFormat& fmt, const IVal& value)
    456 	{
    457 		IVal ret;
    458 
    459 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    460 			ret[ndx] = convert<Element>(fmt, value[ndx]);
    461 
    462 		return ret;
    463 	}
    464 
    465 	static IVal			doRound			(const FloatFormat& fmt, T value)
    466 	{
    467 		IVal ret;
    468 
    469 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    470 			ret[ndx] = round(fmt, value[ndx]);
    471 
    472 		return ret;
    473 	}
    474 };
    475 
    476 template <typename T, int Size>
    477 struct Traits<Vector<T, Size> > :
    478 	ContainerTraits<Vector<T, Size>, Vector<typename Traits<T>::IVal, Size> >
    479 {
    480 };
    481 
    482 template <typename T, int Rows, int Cols>
    483 struct Traits<Matrix<T, Rows, Cols> > :
    484 	ContainerTraits<Matrix<T, Rows, Cols>, Matrix<typename Traits<T>::IVal, Rows, Cols> >
    485 {
    486 };
    487 
    488 //! Void traits. These are just dummies, but technically valid: a Void is a
    489 //! unit type with a single possible value.
    490 template<>
    491 struct Traits<Void>
    492 {
    493 	typedef		Void			IVal;
    494 
    495 	static Void	doMakeIVal		(const Void& value)						{ return value; }
    496 	static Void	doUnion			(const Void&, const Void&)				{ return Void(); }
    497 	static bool	doContains		(const Void&, Void)						{ return true; }
    498 	static Void	doRound			(const FloatFormat&, const Void& value)	{ return value; }
    499 	static Void	doConvert		(const FloatFormat&, const Void& value)	{ return value; }
    500 
    501 	static void	doPrintValue	(const FloatFormat&, const Void&, ostream& os)
    502 	{
    503 		os << "()";
    504 	}
    505 
    506 	static void	doPrintIVal		(const FloatFormat&, const Void&, ostream& os)
    507 	{
    508 		os << "()";
    509 	}
    510 };
    511 
    512 //! This is needed for container-generic operations.
    513 //! We want a scalar type T to be its own "one-element vector".
    514 template <typename T, int Size> struct ContainerOf	{ typedef Vector<T, Size>	Container; };
    515 
    516 template <typename T>			struct ContainerOf<T, 1>		{ typedef T		Container; };
    517 template <int Size>				struct ContainerOf<Void, Size>	{ typedef Void	Container; };
    518 
    519 // This is a kludge that is only needed to get the ExprP::operator[] syntactic sugar to work.
    520 template <typename T>	struct ElementOf		{ typedef	typename T::Element	Element; };
    521 template <>				struct ElementOf<float>	{ typedef	void				Element; };
    522 template <>				struct ElementOf<bool>	{ typedef	void				Element; };
    523 template <>				struct ElementOf<int>	{ typedef	void				Element; };
    524 
    525 /*--------------------------------------------------------------------*//*!
    526  *
    527  * \name Abstract syntax for expressions and statements.
    528  *
    529  * We represent GLSL programs as syntax objects: an Expr<T> represents an
    530  * expression whose GLSL type corresponds to the C++ type T, and a Statement
    531  * represents a statement.
    532  *
    533  * To ease memory management, we use shared pointers to refer to expressions
    534  * and statements. ExprP<T> is a shared pointer to an Expr<T>, and StatementP
    535  * is a shared pointer to a Statement.
    536  *
    537  * \{
    538  *
    539  *//*--------------------------------------------------------------------*/
    540 
    541 class ExprBase;
    542 class ExpandContext;
    543 class Statement;
    544 class StatementP;
    545 class FuncBase;
    546 template <typename T> class ExprP;
    547 template <typename T> class Variable;
    548 template <typename T> class VariableP;
    549 template <typename T> class DefaultSampling;
    550 
    551 typedef set<const FuncBase*> FuncSet;
    552 
    553 template <typename T>
    554 VariableP<T>	variable			(const string& name);
    555 StatementP		compoundStatement	(const vector<StatementP>& statements);
    556 
    557 /*--------------------------------------------------------------------*//*!
    558  * \brief A variable environment.
    559  *
    560  * An Environment object maintains the mapping between variables of the
    561  * abstract syntax tree and their values.
    562  *
    563  * \todo [2014-03-28 lauri] At least run-time type safety.
    564  *
    565  *//*--------------------------------------------------------------------*/
    566 class Environment
    567 {
    568 public:
    569 	template<typename T>
    570 	void						bind	(const Variable<T>&					variable,
    571 										 const typename Traits<T>::IVal&	value)
    572 	{
    573 		deUint8* const data = new deUint8[sizeof(value)];
    574 
    575 		deMemcpy(data, &value, sizeof(value));
    576 		de::insert(m_map, variable.getName(), SharedPtr<deUint8>(data, de::ArrayDeleter<deUint8>()));
    577 	}
    578 
    579 	template<typename T>
    580 	typename Traits<T>::IVal&	lookup	(const Variable<T>& variable) const
    581 	{
    582 		deUint8* const data = de::lookup(m_map, variable.getName()).get();
    583 
    584 		return *reinterpret_cast<typename Traits<T>::IVal*>(data);
    585 	}
    586 
    587 private:
    588 	map<string, SharedPtr<deUint8> >	m_map;
    589 };
    590 
    591 /*--------------------------------------------------------------------*//*!
    592  * \brief Evaluation context.
    593  *
    594  * The evaluation context contains everything that separates one execution of
    595  * an expression from the next. Currently this means the desired floating
    596  * point precision and the current variable environment.
    597  *
    598  *//*--------------------------------------------------------------------*/
    599 struct EvalContext
    600 {
    601 	EvalContext (const FloatFormat&	format_,
    602 				 Precision			floatPrecision_,
    603 				 Environment&		env_,
    604 				 int				callDepth_ = 0)
    605 		: format			(format_)
    606 		, floatPrecision	(floatPrecision_)
    607 		, env				(env_)
    608 		, callDepth			(callDepth_) {}
    609 
    610 	FloatFormat		format;
    611 	Precision		floatPrecision;
    612 	Environment&	env;
    613 	int				callDepth;
    614 };
    615 
    616 /*--------------------------------------------------------------------*//*!
    617  * \brief Simple incremental counter.
    618  *
    619  * This is used to make sure that different ExpandContexts will not produce
    620  * overlapping temporary names.
    621  *
    622  *//*--------------------------------------------------------------------*/
    623 class Counter
    624 {
    625 public:
    626 			Counter		(int count = 0) : m_count(count) {}
    627 	int		operator()	(void) { return m_count++; }
    628 
    629 private:
    630 	int		m_count;
    631 };
    632 
    633 class ExpandContext
    634 {
    635 public:
    636 						ExpandContext	(Counter& symCounter) : m_symCounter(symCounter) {}
    637 						ExpandContext	(const ExpandContext& parent)
    638 							: m_symCounter(parent.m_symCounter) {}
    639 
    640 	template<typename T>
    641 	VariableP<T>		genSym			(const string& baseName)
    642 	{
    643 		return variable<T>(baseName + de::toString(m_symCounter()));
    644 	}
    645 
    646 	void				addStatement	(const StatementP& stmt)
    647 	{
    648 		m_statements.push_back(stmt);
    649 	}
    650 
    651 	vector<StatementP>	getStatements	(void) const
    652 	{
    653 		return m_statements;
    654 	}
    655 private:
    656 	Counter&			m_symCounter;
    657 	vector<StatementP>	m_statements;
    658 };
    659 
    660 /*--------------------------------------------------------------------*//*!
    661  * \brief A statement or declaration.
    662  *
    663  * Statements have no values. Instead, they are executed for their side
    664  * effects only: the execute() method should modify at least one variable in
    665  * the environment.
    666  *
    667  * As a bit of a kludge, a Statement object can also represent a declaration:
    668  * when it is evaluated, it can add a variable binding to the environment
    669  * instead of modifying a current one.
    670  *
    671  *//*--------------------------------------------------------------------*/
    672 class Statement
    673 {
    674 public:
    675 	virtual	~Statement		(void)							{								 }
    676 	//! Execute the statement, modifying the environment of `ctx`
    677 	void	execute			(EvalContext&	ctx)	const	{ this->doExecute(ctx);			 }
    678 	void	print			(ostream&		os)		const	{ this->doPrint(os);			 }
    679 	//! Add the functions used in this statement to `dst`.
    680 	void	getUsedFuncs	(FuncSet& dst)			const	{ this->doGetUsedFuncs(dst);	 }
    681 
    682 protected:
    683 	virtual void	doPrint			(ostream& os)			const	= 0;
    684 	virtual void	doExecute		(EvalContext& ctx)		const	= 0;
    685 	virtual void	doGetUsedFuncs	(FuncSet& dst)			const	= 0;
    686 };
    687 
    688 ostream& operator<<(ostream& os, const Statement& stmt)
    689 {
    690 	stmt.print(os);
    691 	return os;
    692 }
    693 
    694 /*--------------------------------------------------------------------*//*!
    695  * \brief Smart pointer for statements (and declarations)
    696  *
    697  *//*--------------------------------------------------------------------*/
    698 class StatementP : public SharedPtr<const Statement>
    699 {
    700 public:
    701 	typedef		SharedPtr<const Statement>	Super;
    702 
    703 				StatementP			(void) {}
    704 	explicit	StatementP			(const Statement* ptr)	: Super(ptr) {}
    705 				StatementP			(const Super& ptr)		: Super(ptr) {}
    706 };
    707 
    708 /*--------------------------------------------------------------------*//*!
    709  * \brief
    710  *
    711  * A statement that modifies a variable or a declaration that binds a variable.
    712  *
    713  *//*--------------------------------------------------------------------*/
    714 template <typename T>
    715 class VariableStatement : public Statement
    716 {
    717 public:
    718 					VariableStatement	(const VariableP<T>& variable, const ExprP<T>& value,
    719 										 bool isDeclaration)
    720 						: m_variable		(variable)
    721 						, m_value			(value)
    722 						, m_isDeclaration	(isDeclaration) {}
    723 
    724 protected:
    725 	void			doPrint				(ostream& os)							const
    726 	{
    727 		if (m_isDeclaration)
    728 			os << glu::declare(getVarTypeOf<T>(), m_variable->getName());
    729 		else
    730 			os << m_variable->getName();
    731 
    732 		os << " = " << *m_value << ";\n";
    733 	}
    734 
    735 	void			doExecute			(EvalContext& ctx)						const
    736 	{
    737 		if (m_isDeclaration)
    738 			ctx.env.bind(*m_variable, m_value->evaluate(ctx));
    739 		else
    740 			ctx.env.lookup(*m_variable) = m_value->evaluate(ctx);
    741 	}
    742 
    743 	void			doGetUsedFuncs		(FuncSet& dst)							const
    744 	{
    745 		m_value->getUsedFuncs(dst);
    746 	}
    747 
    748 	VariableP<T>	m_variable;
    749 	ExprP<T>		m_value;
    750 	bool			m_isDeclaration;
    751 };
    752 
    753 template <typename T>
    754 StatementP variableStatement (const VariableP<T>&	variable,
    755 							  const ExprP<T>&		value,
    756 							  bool					isDeclaration)
    757 {
    758 	return StatementP(new VariableStatement<T>(variable, value, isDeclaration));
    759 }
    760 
    761 template <typename T>
    762 StatementP variableDeclaration (const VariableP<T>& variable, const ExprP<T>& definiens)
    763 {
    764 	return variableStatement(variable, definiens, true);
    765 }
    766 
    767 template <typename T>
    768 StatementP variableAssignment (const VariableP<T>& variable, const ExprP<T>& value)
    769 {
    770 	return variableStatement(variable, value, false);
    771 }
    772 
    773 /*--------------------------------------------------------------------*//*!
    774  * \brief A compound statement, i.e. a block.
    775  *
    776  * A compound statement is executed by executing its constituent statements in
    777  * sequence.
    778  *
    779  *//*--------------------------------------------------------------------*/
    780 class CompoundStatement : public Statement
    781 {
    782 public:
    783 						CompoundStatement	(const vector<StatementP>& statements)
    784 							: m_statements	(statements) {}
    785 
    786 protected:
    787 	void				doPrint				(ostream&		os)						const
    788 	{
    789 		os << "{\n";
    790 
    791 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
    792 			os << *m_statements[ndx];
    793 
    794 		os << "}\n";
    795 	}
    796 
    797 	void				doExecute			(EvalContext&	ctx)					const
    798 	{
    799 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
    800 			m_statements[ndx]->execute(ctx);
    801 	}
    802 
    803 	void				doGetUsedFuncs		(FuncSet& dst)							const
    804 	{
    805 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
    806 			m_statements[ndx]->getUsedFuncs(dst);
    807 	}
    808 
    809 	vector<StatementP>	m_statements;
    810 };
    811 
    812 StatementP compoundStatement(const vector<StatementP>& statements)
    813 {
    814 	return StatementP(new CompoundStatement(statements));
    815 }
    816 
    817 //! Common base class for all expressions regardless of their type.
    818 class ExprBase
    819 {
    820 public:
    821 	virtual				~ExprBase		(void)									{}
    822 	void				printExpr		(ostream& os) const { this->doPrintExpr(os); }
    823 
    824 	//! Output the functions that this expression refers to
    825 	void				getUsedFuncs	(FuncSet& dst) const
    826 	{
    827 		this->doGetUsedFuncs(dst);
    828 	}
    829 
    830 protected:
    831 	virtual void		doPrintExpr		(ostream&)	const	{}
    832 	virtual void		doGetUsedFuncs	(FuncSet&)	const	{}
    833 };
    834 
    835 //! Type-specific operations for an expression representing type T.
    836 template <typename T>
    837 class Expr : public ExprBase
    838 {
    839 public:
    840 	typedef				T				Val;
    841 	typedef typename	Traits<T>::IVal	IVal;
    842 
    843 	IVal				evaluate		(const EvalContext&	ctx) const;
    844 
    845 protected:
    846 	virtual IVal		doEvaluate		(const EvalContext&	ctx) const = 0;
    847 };
    848 
    849 //! Evaluate an expression with the given context, optionally tracing the calls to stderr.
    850 template <typename T>
    851 typename Traits<T>::IVal Expr<T>::evaluate (const EvalContext& ctx) const
    852 {
    853 #ifdef GLS_ENABLE_TRACE
    854 	static const FloatFormat	highpFmt	(-126, 127, 23, true,
    855 											 tcu::MAYBE,
    856 											 tcu::YES,
    857 											 tcu::MAYBE);
    858 	EvalContext					newCtx		(ctx.format, ctx.floatPrecision,
    859 											 ctx.env, ctx.callDepth + 1);
    860 	const IVal					ret			= this->doEvaluate(newCtx);
    861 
    862 	if (isTypeValid<T>())
    863 	{
    864 		std::cerr << string(ctx.callDepth, ' ');
    865 		this->printExpr(std::cerr);
    866 		std::cerr << " -> " << intervalToString<T>(highpFmt, ret) << std::endl;
    867 	}
    868 	return ret;
    869 #else
    870 	return this->doEvaluate(ctx);
    871 #endif
    872 }
    873 
    874 template <typename T>
    875 class ExprPBase : public SharedPtr<const Expr<T> >
    876 {
    877 public:
    878 };
    879 
    880 ostream& operator<< (ostream& os, const ExprBase& expr)
    881 {
    882 	expr.printExpr(os);
    883 	return os;
    884 }
    885 
    886 /*--------------------------------------------------------------------*//*!
    887  * \brief Shared pointer to an expression of a container type.
    888  *
    889  * Container types (i.e. vectors and matrices) support the subscription
    890  * operator. This class provides a bit of syntactic sugar to allow us to use
    891  * the C++ subscription operator to create a subscription expression.
    892  *//*--------------------------------------------------------------------*/
    893 template <typename T>
    894 class ContainerExprPBase : public ExprPBase<T>
    895 {
    896 public:
    897 	ExprP<typename T::Element>	operator[]	(int i) const;
    898 };
    899 
    900 template <typename T>
    901 class ExprP : public ExprPBase<T> {};
    902 
    903 // We treat Voids as containers since the dummy parameters in generalized
    904 // vector functions are represented as Voids.
    905 template <>
    906 class ExprP<Void> : public ContainerExprPBase<Void> {};
    907 
    908 template <typename T, int Size>
    909 class ExprP<Vector<T, Size> > : public ContainerExprPBase<Vector<T, Size> > {};
    910 
    911 template <typename T, int Rows, int Cols>
    912 class ExprP<Matrix<T, Rows, Cols> > : public ContainerExprPBase<Matrix<T, Rows, Cols> > {};
    913 
    914 template <typename T> ExprP<T> exprP (void)
    915 {
    916 	return ExprP<T>();
    917 }
    918 
    919 template <typename T>
    920 ExprP<T> exprP (const SharedPtr<const Expr<T> >& ptr)
    921 {
    922 	ExprP<T> ret;
    923 	static_cast<SharedPtr<const Expr<T> >&>(ret) = ptr;
    924 	return ret;
    925 }
    926 
    927 template <typename T>
    928 ExprP<T> exprP (const Expr<T>* ptr)
    929 {
    930 	return exprP(SharedPtr<const Expr<T> >(ptr));
    931 }
    932 
    933 /*--------------------------------------------------------------------*//*!
    934  * \brief A shared pointer to a variable expression.
    935  *
    936  * This is just a narrowing of ExprP for the operations that require a variable
    937  * instead of an arbitrary expression.
    938  *
    939  *//*--------------------------------------------------------------------*/
    940 template <typename T>
    941 class VariableP : public SharedPtr<const Variable<T> >
    942 {
    943 public:
    944 	typedef		SharedPtr<const Variable<T> >	Super;
    945 	explicit	VariableP	(const Variable<T>* ptr) : Super(ptr) {}
    946 				VariableP	(void) {}
    947 				VariableP	(const Super& ptr) : Super(ptr) {}
    948 
    949 	operator	ExprP<T>	(void) const { return exprP(SharedPtr<const Expr<T> >(*this)); }
    950 };
    951 
    952 /*--------------------------------------------------------------------*//*!
    953  * \name Syntactic sugar operators for expressions.
    954  *
    955  * @{
    956  *
    957  * These operators allow the use of C++ syntax to construct GLSL expressions
    958  * containing operators: e.g. "a+b" creates an addition expression with
    959  * operands a and b, and so on.
    960  *
    961  *//*--------------------------------------------------------------------*/
    962 ExprP<float>						operator-(const ExprP<float>&						arg0);
    963 ExprP<float>						operator+(const ExprP<float>&						arg0,
    964 											  const ExprP<float>&						arg1);
    965 ExprP<float>						operator-(const ExprP<float>&						arg0,
    966 											  const ExprP<float>&						arg1);
    967 ExprP<float>						operator*(const ExprP<float>&						arg0,
    968 											  const ExprP<float>&						arg1);
    969 ExprP<float>						operator/(const ExprP<float>&						arg0,
    970 											  const ExprP<float>&						arg1);
    971 template<int Size>
    972 ExprP<Vector<float, Size> >			operator-(const ExprP<Vector<float, Size> >&		arg0);
    973 template<int Size>
    974 ExprP<Vector<float, Size> >			operator*(const ExprP<Vector<float, Size> >&		arg0,
    975 											  const ExprP<float>&						arg1);
    976 template<int Size>
    977 ExprP<Vector<float, Size> >			operator*(const ExprP<Vector<float, Size> >&		arg0,
    978 											  const ExprP<Vector<float, Size> >&		arg1);
    979 template<int Size>
    980 ExprP<Vector<float, Size> >			operator-(const ExprP<Vector<float, Size> >&		arg0,
    981 											  const ExprP<Vector<float, Size> >&		arg1);
    982 template<int Left, int Mid, int Right>
    983 ExprP<Matrix<float, Left, Right> >	operator* (const ExprP<Matrix<float, Left, Mid> >&	left,
    984 											   const ExprP<Matrix<float, Mid, Right> >&	right);
    985 template<int Rows, int Cols>
    986 ExprP<Vector<float, Rows> >			operator* (const ExprP<Vector<float, Cols> >&		left,
    987 											   const ExprP<Matrix<float, Rows, Cols> >&	right);
    988 template<int Rows, int Cols>
    989 ExprP<Vector<float, Cols> >			operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
    990 											   const ExprP<Vector<float, Rows> >&		right);
    991 template<int Rows, int Cols>
    992 ExprP<Matrix<float, Rows, Cols> >	operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
    993 											   const ExprP<float>&						right);
    994 template<int Rows, int Cols>
    995 ExprP<Matrix<float, Rows, Cols> >	operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
    996 											   const ExprP<Matrix<float, Rows, Cols> >&	right);
    997 template<int Rows, int Cols>
    998 ExprP<Matrix<float, Rows, Cols> >	operator- (const ExprP<Matrix<float, Rows, Cols> >&	mat);
    999 
   1000 //! @}
   1001 
   1002 /*--------------------------------------------------------------------*//*!
   1003  * \brief Variable expression.
   1004  *
   1005  * A variable is evaluated by looking up its range of possible values from an
   1006  * environment.
   1007  *//*--------------------------------------------------------------------*/
   1008 template <typename T>
   1009 class Variable : public Expr<T>
   1010 {
   1011 public:
   1012 	typedef typename Expr<T>::IVal IVal;
   1013 
   1014 					Variable	(const string& name) : m_name (name) {}
   1015 	string			getName		(void)							const { return m_name; }
   1016 
   1017 protected:
   1018 	void			doPrintExpr	(ostream& os)					const { os << m_name; }
   1019 	IVal			doEvaluate	(const EvalContext& ctx)		const
   1020 	{
   1021 		return ctx.env.lookup<T>(*this);
   1022 	}
   1023 
   1024 private:
   1025 	string	m_name;
   1026 };
   1027 
   1028 template <typename T>
   1029 VariableP<T> variable (const string& name)
   1030 {
   1031 	return VariableP<T>(new Variable<T>(name));
   1032 }
   1033 
   1034 template <typename T>
   1035 VariableP<T> bindExpression (const string& name, ExpandContext& ctx, const ExprP<T>& expr)
   1036 {
   1037 	VariableP<T> var = ctx.genSym<T>(name);
   1038 	ctx.addStatement(variableDeclaration(var, expr));
   1039 	return var;
   1040 }
   1041 
   1042 /*--------------------------------------------------------------------*//*!
   1043  * \brief Constant expression.
   1044  *
   1045  * A constant is evaluated by rounding it to a set of possible values allowed
   1046  * by the current floating point precision.
   1047  *//*--------------------------------------------------------------------*/
   1048 template <typename T>
   1049 class Constant : public Expr<T>
   1050 {
   1051 public:
   1052 	typedef typename Expr<T>::IVal IVal;
   1053 
   1054 			Constant		(const T& value) : m_value(value) {}
   1055 
   1056 protected:
   1057 	void	doPrintExpr		(ostream& os) const			{ os << m_value; }
   1058 	IVal	doEvaluate		(const EvalContext&) const	{ return makeIVal(m_value); }
   1059 
   1060 private:
   1061 	T		m_value;
   1062 };
   1063 
   1064 template <typename T>
   1065 ExprP<T> constant (const T& value)
   1066 {
   1067 	return exprP(new Constant<T>(value));
   1068 }
   1069 
   1070 //! Return a reference to a singleton void constant.
   1071 const ExprP<Void>& voidP (void)
   1072 {
   1073 	static const ExprP<Void> singleton = constant(Void());
   1074 
   1075 	return singleton;
   1076 }
   1077 
   1078 /*--------------------------------------------------------------------*//*!
   1079  * \brief Four-element tuple.
   1080  *
   1081  * This is used for various things where we need one thing for each possible
   1082  * function parameter. Currently the maximum supported number of parameters is
   1083  * four.
   1084  *//*--------------------------------------------------------------------*/
   1085 template <typename T0 = Void, typename T1 = Void, typename T2 = Void, typename T3 = Void>
   1086 struct Tuple4
   1087 {
   1088 	explicit Tuple4 (const T0 e0 = T0(),
   1089 					 const T1 e1 = T1(),
   1090 					 const T2 e2 = T2(),
   1091 					 const T3 e3 = T3())
   1092 		: a	(e0)
   1093 		, b	(e1)
   1094 		, c	(e2)
   1095 		, d	(e3)
   1096 	{
   1097 	}
   1098 
   1099 	T0 a;
   1100 	T1 b;
   1101 	T2 c;
   1102 	T3 d;
   1103 };
   1104 
   1105 /*--------------------------------------------------------------------*//*!
   1106  * \brief Function signature.
   1107  *
   1108  * This is a purely compile-time structure used to bundle all types in a
   1109  * function signature together. This makes passing the signature around in
   1110  * templates easier, since we only need to take and pass a single Sig instead
   1111  * of a bunch of parameter types and a return type.
   1112  *
   1113  *//*--------------------------------------------------------------------*/
   1114 template <typename R,
   1115 		  typename P0 = Void, typename P1 = Void,
   1116 		  typename P2 = Void, typename P3 = Void>
   1117 struct Signature
   1118 {
   1119 	typedef R							Ret;
   1120 	typedef P0							Arg0;
   1121 	typedef P1							Arg1;
   1122 	typedef P2							Arg2;
   1123 	typedef P3							Arg3;
   1124 	typedef typename Traits<Ret>::IVal	IRet;
   1125 	typedef typename Traits<Arg0>::IVal	IArg0;
   1126 	typedef typename Traits<Arg1>::IVal	IArg1;
   1127 	typedef typename Traits<Arg2>::IVal	IArg2;
   1128 	typedef typename Traits<Arg3>::IVal	IArg3;
   1129 
   1130 	typedef Tuple4<	const Arg0&,	const Arg1&,	const Arg2&,	const Arg3&>	Args;
   1131 	typedef Tuple4<	const IArg0&,	const IArg1&,	const IArg2&,	const IArg3&>	IArgs;
   1132 	typedef Tuple4<	ExprP<Arg0>,	ExprP<Arg1>,	ExprP<Arg2>,	ExprP<Arg3> >	ArgExprs;
   1133 };
   1134 
   1135 typedef vector<const ExprBase*> BaseArgExprs;
   1136 
   1137 /*--------------------------------------------------------------------*//*!
   1138  * \brief Type-independent operations for function objects.
   1139  *
   1140  *//*--------------------------------------------------------------------*/
   1141 class FuncBase
   1142 {
   1143 public:
   1144 	virtual			~FuncBase				(void)					{}
   1145 	virtual string	getName					(void)					const = 0;
   1146 	//! Name of extension that this function requires, or empty.
   1147 	virtual string	getRequiredExtension	(void)					const { return ""; }
   1148 	virtual void	print					(ostream&,
   1149 											 const BaseArgExprs&)	const = 0;
   1150 	//! Index of output parameter, or -1 if none of the parameters is output.
   1151 	virtual int		getOutParamIndex		(void)					const { return -1; }
   1152 
   1153 	void			printDefinition			(ostream& os)			const
   1154 	{
   1155 		doPrintDefinition(os);
   1156 	}
   1157 
   1158 	void				getUsedFuncs		(FuncSet& dst) const
   1159 	{
   1160 		this->doGetUsedFuncs(dst);
   1161 	}
   1162 
   1163 protected:
   1164 	virtual void	doPrintDefinition		(ostream& os)			const = 0;
   1165 	virtual void	doGetUsedFuncs			(FuncSet& dst)			const = 0;
   1166 };
   1167 
   1168 typedef Tuple4<string, string, string, string> ParamNames;
   1169 
   1170 /*--------------------------------------------------------------------*//*!
   1171  * \brief Function objects.
   1172  *
   1173  * Each Func object represents a GLSL function. It can be applied to interval
   1174  * arguments, and it returns the an interval that is a conservative
   1175  * approximation of the image of the GLSL function over the argument
   1176  * intervals. That is, it is given a set of possible arguments and it returns
   1177  * the set of possible values.
   1178  *
   1179  *//*--------------------------------------------------------------------*/
   1180 template <typename Sig_>
   1181 class Func : public FuncBase
   1182 {
   1183 public:
   1184 	typedef Sig_										Sig;
   1185 	typedef typename Sig::Ret							Ret;
   1186 	typedef typename Sig::Arg0							Arg0;
   1187 	typedef typename Sig::Arg1							Arg1;
   1188 	typedef typename Sig::Arg2							Arg2;
   1189 	typedef typename Sig::Arg3							Arg3;
   1190 	typedef typename Sig::IRet							IRet;
   1191 	typedef typename Sig::IArg0							IArg0;
   1192 	typedef typename Sig::IArg1							IArg1;
   1193 	typedef typename Sig::IArg2							IArg2;
   1194 	typedef typename Sig::IArg3							IArg3;
   1195 	typedef typename Sig::Args							Args;
   1196 	typedef typename Sig::IArgs							IArgs;
   1197 	typedef typename Sig::ArgExprs						ArgExprs;
   1198 
   1199 	void				print			(ostream&			os,
   1200 										 const BaseArgExprs& args)				const
   1201 	{
   1202 		this->doPrint(os, args);
   1203 	}
   1204 
   1205 	IRet				apply			(const EvalContext&	ctx,
   1206 										 const IArg0&		arg0 = IArg0(),
   1207 										 const IArg1&		arg1 = IArg1(),
   1208 										 const IArg2&		arg2 = IArg2(),
   1209 										 const IArg3&		arg3 = IArg3())		const
   1210 	{
   1211 		return this->applyArgs(ctx, IArgs(arg0, arg1, arg2, arg3));
   1212 	}
   1213 	IRet				applyArgs		(const EvalContext&	ctx,
   1214 										 const IArgs&		args)				const
   1215 	{
   1216 		return this->doApply(ctx, args);
   1217 	}
   1218 	ExprP<Ret>			operator()		(const ExprP<Arg0>&		arg0 = voidP(),
   1219 										 const ExprP<Arg1>&		arg1 = voidP(),
   1220 										 const ExprP<Arg2>&		arg2 = voidP(),
   1221 										 const ExprP<Arg3>&		arg3 = voidP())		const;
   1222 
   1223 	const ParamNames&	getParamNames	(void)									const
   1224 	{
   1225 		return this->doGetParamNames();
   1226 	}
   1227 
   1228 protected:
   1229 	virtual IRet		doApply			(const EvalContext&,
   1230 										 const IArgs&)							const = 0;
   1231 	virtual void		doPrint			(ostream& os, const BaseArgExprs& args)	const
   1232 	{
   1233 		os << getName() << "(";
   1234 
   1235 		if (isTypeValid<Arg0>())
   1236 			os << *args[0];
   1237 
   1238 		if (isTypeValid<Arg1>())
   1239 			os << ", " << *args[1];
   1240 
   1241 		if (isTypeValid<Arg2>())
   1242 			os << ", " << *args[2];
   1243 
   1244 		if (isTypeValid<Arg3>())
   1245 			os << ", " << *args[3];
   1246 
   1247 		os << ")";
   1248 	}
   1249 
   1250 	virtual const ParamNames&	doGetParamNames	(void)							const
   1251 	{
   1252 		static ParamNames	names	("a", "b", "c", "d");
   1253 		return names;
   1254 	}
   1255 };
   1256 
   1257 template <typename Sig>
   1258 class Apply : public Expr<typename Sig::Ret>
   1259 {
   1260 public:
   1261 	typedef typename Sig::Ret				Ret;
   1262 	typedef typename Sig::Arg0				Arg0;
   1263 	typedef typename Sig::Arg1				Arg1;
   1264 	typedef typename Sig::Arg2				Arg2;
   1265 	typedef typename Sig::Arg3				Arg3;
   1266 	typedef typename Expr<Ret>::Val			Val;
   1267 	typedef typename Expr<Ret>::IVal		IVal;
   1268 	typedef Func<Sig>						ApplyFunc;
   1269 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
   1270 
   1271 						Apply	(const ApplyFunc&		func,
   1272 								 const ExprP<Arg0>&		arg0 = voidP(),
   1273 								 const ExprP<Arg1>&		arg1 = voidP(),
   1274 								 const ExprP<Arg2>&		arg2 = voidP(),
   1275 								 const ExprP<Arg3>&		arg3 = voidP())
   1276 							: m_func	(func),
   1277 							  m_args	(arg0, arg1, arg2, arg3) {}
   1278 
   1279 						Apply	(const ApplyFunc&	func,
   1280 								 const ArgExprs&	args)
   1281 							: m_func	(func),
   1282 							  m_args	(args) {}
   1283 protected:
   1284 	void				doPrintExpr			(ostream& os) const
   1285 	{
   1286 		BaseArgExprs	args;
   1287 		args.push_back(m_args.a.get());
   1288 		args.push_back(m_args.b.get());
   1289 		args.push_back(m_args.c.get());
   1290 		args.push_back(m_args.d.get());
   1291 		m_func.print(os, args);
   1292 	}
   1293 
   1294 	IVal				doEvaluate		(const EvalContext& ctx) const
   1295 	{
   1296 		return m_func.apply(ctx,
   1297 							m_args.a->evaluate(ctx), m_args.b->evaluate(ctx),
   1298 							m_args.c->evaluate(ctx), m_args.d->evaluate(ctx));
   1299 	}
   1300 
   1301 	void				doGetUsedFuncs	(FuncSet& dst) const
   1302 	{
   1303 		m_func.getUsedFuncs(dst);
   1304 		m_args.a->getUsedFuncs(dst);
   1305 		m_args.b->getUsedFuncs(dst);
   1306 		m_args.c->getUsedFuncs(dst);
   1307 		m_args.d->getUsedFuncs(dst);
   1308 	}
   1309 
   1310 	const ApplyFunc&	m_func;
   1311 	ArgExprs			m_args;
   1312 };
   1313 
   1314 template<typename T>
   1315 class Alternatives : public Func<Signature<T, T, T> >
   1316 {
   1317 public:
   1318 	typedef typename	Alternatives::Sig		Sig;
   1319 
   1320 protected:
   1321 	typedef typename	Alternatives::IRet		IRet;
   1322 	typedef typename	Alternatives::IArgs		IArgs;
   1323 
   1324 	virtual string		getName				(void) const			{ return "alternatives"; }
   1325 	virtual void		doPrintDefinition	(std::ostream&) const	{}
   1326 	void				doGetUsedFuncs		(FuncSet&) const		{}
   1327 
   1328 	virtual IRet		doApply				(const EvalContext&, const IArgs& args) const
   1329 	{
   1330 		return unionIVal<T>(args.a, args.b);
   1331 	}
   1332 
   1333 	virtual void		doPrint				(ostream& os, const BaseArgExprs& args)	const
   1334 	{
   1335 		os << "{" << *args[0] << " | " << *args[1] << "}";
   1336 	}
   1337 };
   1338 
   1339 template <typename Sig>
   1340 ExprP<typename Sig::Ret> createApply (const Func<Sig>&						func,
   1341 									  const typename Func<Sig>::ArgExprs&	args)
   1342 {
   1343 	return exprP(new Apply<Sig>(func, args));
   1344 }
   1345 
   1346 template <typename Sig>
   1347 ExprP<typename Sig::Ret> createApply (
   1348 	const Func<Sig>&			func,
   1349 	const ExprP<typename Sig::Arg0>&	arg0 = voidP(),
   1350 	const ExprP<typename Sig::Arg1>&	arg1 = voidP(),
   1351 	const ExprP<typename Sig::Arg2>&	arg2 = voidP(),
   1352 	const ExprP<typename Sig::Arg3>&	arg3 = voidP())
   1353 {
   1354 	return exprP(new Apply<Sig>(func, arg0, arg1, arg2, arg3));
   1355 }
   1356 
   1357 template <typename Sig>
   1358 ExprP<typename Sig::Ret> Func<Sig>::operator() (const ExprP<typename Sig::Arg0>& arg0,
   1359 												const ExprP<typename Sig::Arg1>& arg1,
   1360 												const ExprP<typename Sig::Arg2>& arg2,
   1361 												const ExprP<typename Sig::Arg3>& arg3) const
   1362 {
   1363 	return createApply(*this, arg0, arg1, arg2, arg3);
   1364 }
   1365 
   1366 template <typename F>
   1367 ExprP<typename F::Ret> app (const ExprP<typename F::Arg0>& arg0 = voidP(),
   1368 							const ExprP<typename F::Arg1>& arg1 = voidP(),
   1369 							const ExprP<typename F::Arg2>& arg2 = voidP(),
   1370 							const ExprP<typename F::Arg3>& arg3 = voidP())
   1371 {
   1372 	return createApply(instance<F>(), arg0, arg1, arg2, arg3);
   1373 }
   1374 
   1375 template <typename F>
   1376 typename F::IRet call (const EvalContext&			ctx,
   1377 					   const typename F::IArg0&		arg0 = Void(),
   1378 					   const typename F::IArg1&		arg1 = Void(),
   1379 					   const typename F::IArg2&		arg2 = Void(),
   1380 					   const typename F::IArg3&		arg3 = Void())
   1381 {
   1382 	return instance<F>().apply(ctx, arg0, arg1, arg2, arg3);
   1383 }
   1384 
   1385 template <typename T>
   1386 ExprP<T> alternatives (const ExprP<T>& arg0,
   1387 					   const ExprP<T>& arg1)
   1388 {
   1389 	return createApply<typename Alternatives<T>::Sig>(instance<Alternatives<T> >(), arg0, arg1);
   1390 }
   1391 
   1392 template <typename Sig>
   1393 class ApplyVar : public Apply<Sig>
   1394 {
   1395 public:
   1396 	typedef typename Sig::Ret				Ret;
   1397 	typedef typename Sig::Arg0				Arg0;
   1398 	typedef typename Sig::Arg1				Arg1;
   1399 	typedef typename Sig::Arg2				Arg2;
   1400 	typedef typename Sig::Arg3				Arg3;
   1401 	typedef typename Expr<Ret>::Val			Val;
   1402 	typedef typename Expr<Ret>::IVal		IVal;
   1403 	typedef Func<Sig>						ApplyFunc;
   1404 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
   1405 
   1406 						ApplyVar	(const ApplyFunc&			func,
   1407 									 const VariableP<Arg0>&		arg0,
   1408 									 const VariableP<Arg1>&		arg1,
   1409 									 const VariableP<Arg2>&		arg2,
   1410 									 const VariableP<Arg3>&		arg3)
   1411 							: Apply<Sig> (func, arg0, arg1, arg2, arg3) {}
   1412 protected:
   1413 	IVal				doEvaluate		(const EvalContext& ctx) const
   1414 	{
   1415 		const Variable<Arg0>&	var0 = static_cast<const Variable<Arg0>&>(*this->m_args.a);
   1416 		const Variable<Arg1>&	var1 = static_cast<const Variable<Arg1>&>(*this->m_args.b);
   1417 		const Variable<Arg2>&	var2 = static_cast<const Variable<Arg2>&>(*this->m_args.c);
   1418 		const Variable<Arg3>&	var3 = static_cast<const Variable<Arg3>&>(*this->m_args.d);
   1419 		return this->m_func.apply(ctx,
   1420 								  ctx.env.lookup(var0), ctx.env.lookup(var1),
   1421 								  ctx.env.lookup(var2), ctx.env.lookup(var3));
   1422 	}
   1423 };
   1424 
   1425 template <typename Sig>
   1426 ExprP<typename Sig::Ret> applyVar (const Func<Sig>&						func,
   1427 								   const VariableP<typename Sig::Arg0>&	arg0,
   1428 								   const VariableP<typename Sig::Arg1>&	arg1,
   1429 								   const VariableP<typename Sig::Arg2>&	arg2,
   1430 								   const VariableP<typename Sig::Arg3>&	arg3)
   1431 {
   1432 	return exprP(new ApplyVar<Sig>(func, arg0, arg1, arg2, arg3));
   1433 }
   1434 
   1435 template <typename Sig_>
   1436 class DerivedFunc : public Func<Sig_>
   1437 {
   1438 public:
   1439 	typedef typename DerivedFunc::ArgExprs		ArgExprs;
   1440 	typedef typename DerivedFunc::IRet			IRet;
   1441 	typedef typename DerivedFunc::IArgs			IArgs;
   1442 	typedef typename DerivedFunc::Ret			Ret;
   1443 	typedef typename DerivedFunc::Arg0			Arg0;
   1444 	typedef typename DerivedFunc::Arg1			Arg1;
   1445 	typedef typename DerivedFunc::Arg2			Arg2;
   1446 	typedef typename DerivedFunc::Arg3			Arg3;
   1447 	typedef typename DerivedFunc::IArg0			IArg0;
   1448 	typedef typename DerivedFunc::IArg1			IArg1;
   1449 	typedef typename DerivedFunc::IArg2			IArg2;
   1450 	typedef typename DerivedFunc::IArg3			IArg3;
   1451 
   1452 protected:
   1453 	void						doPrintDefinition	(ostream& os) const
   1454 	{
   1455 		const ParamNames&	paramNames	= this->getParamNames();
   1456 
   1457 		initialize();
   1458 
   1459 		os << dataTypeNameOf<Ret>() << " " << this->getName()
   1460 			<< "(";
   1461 		if (isTypeValid<Arg0>())
   1462 			os << dataTypeNameOf<Arg0>() << " " << paramNames.a;
   1463 		if (isTypeValid<Arg1>())
   1464 			os << ", " << dataTypeNameOf<Arg1>() << " " << paramNames.b;
   1465 		if (isTypeValid<Arg2>())
   1466 			os << ", " << dataTypeNameOf<Arg2>() << " " << paramNames.c;
   1467 		if (isTypeValid<Arg3>())
   1468 			os << ", " << dataTypeNameOf<Arg3>() << " " << paramNames.d;
   1469 		os << ")\n{\n";
   1470 
   1471 		for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
   1472 			os << *m_body[ndx];
   1473 		os << "return " << *m_ret << ";\n";
   1474 		os << "}\n";
   1475 	}
   1476 
   1477 	IRet						doApply			(const EvalContext&	ctx,
   1478 												 const IArgs&		args) const
   1479 	{
   1480 		Environment	funEnv;
   1481 		IArgs&		mutArgs		= const_cast<IArgs&>(args);
   1482 		IRet		ret;
   1483 
   1484 		initialize();
   1485 
   1486 		funEnv.bind(*m_var0, args.a);
   1487 		funEnv.bind(*m_var1, args.b);
   1488 		funEnv.bind(*m_var2, args.c);
   1489 		funEnv.bind(*m_var3, args.d);
   1490 
   1491 		{
   1492 			EvalContext	funCtx(ctx.format, ctx.floatPrecision, funEnv, ctx.callDepth);
   1493 
   1494 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
   1495 				m_body[ndx]->execute(funCtx);
   1496 
   1497 			ret = m_ret->evaluate(funCtx);
   1498 		}
   1499 
   1500 		// \todo [lauri] Store references instead of values in environment
   1501 		const_cast<IArg0&>(mutArgs.a) = funEnv.lookup(*m_var0);
   1502 		const_cast<IArg1&>(mutArgs.b) = funEnv.lookup(*m_var1);
   1503 		const_cast<IArg2&>(mutArgs.c) = funEnv.lookup(*m_var2);
   1504 		const_cast<IArg3&>(mutArgs.d) = funEnv.lookup(*m_var3);
   1505 
   1506 		return ret;
   1507 	}
   1508 
   1509 	void						doGetUsedFuncs	(FuncSet& dst) const
   1510 	{
   1511 		initialize();
   1512 		if (dst.insert(this).second)
   1513 		{
   1514 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
   1515 				m_body[ndx]->getUsedFuncs(dst);
   1516 			m_ret->getUsedFuncs(dst);
   1517 		}
   1518 	}
   1519 
   1520 	virtual ExprP<Ret>			doExpand		(ExpandContext& ctx, const ArgExprs& args_) const = 0;
   1521 
   1522 	// These are transparently initialized when first needed. They cannot be
   1523 	// initialized in the constructor because they depend on the doExpand
   1524 	// method of the subclass.
   1525 
   1526 	mutable VariableP<Arg0>		m_var0;
   1527 	mutable VariableP<Arg1>		m_var1;
   1528 	mutable VariableP<Arg2>		m_var2;
   1529 	mutable VariableP<Arg3>		m_var3;
   1530 	mutable vector<StatementP>	m_body;
   1531 	mutable ExprP<Ret>			m_ret;
   1532 
   1533 private:
   1534 
   1535 	void				initialize		(void)	const
   1536 	{
   1537 		if (!m_ret)
   1538 		{
   1539 			const ParamNames&	paramNames	= this->getParamNames();
   1540 			Counter				symCounter;
   1541 			ExpandContext		ctx			(symCounter);
   1542 			ArgExprs			args;
   1543 
   1544 			args.a	= m_var0 = variable<Arg0>(paramNames.a);
   1545 			args.b	= m_var1 = variable<Arg1>(paramNames.b);
   1546 			args.c	= m_var2 = variable<Arg2>(paramNames.c);
   1547 			args.d	= m_var3 = variable<Arg3>(paramNames.d);
   1548 
   1549 			m_ret	= this->doExpand(ctx, args);
   1550 			m_body	= ctx.getStatements();
   1551 		}
   1552 	}
   1553 };
   1554 
   1555 template <typename Sig>
   1556 class PrimitiveFunc : public Func<Sig>
   1557 {
   1558 public:
   1559 	typedef typename PrimitiveFunc::Ret			Ret;
   1560 	typedef typename PrimitiveFunc::ArgExprs	ArgExprs;
   1561 
   1562 protected:
   1563 	void	doPrintDefinition	(ostream&) const	{}
   1564 	void	doGetUsedFuncs		(FuncSet&) const	{}
   1565 };
   1566 
   1567 template <typename T>
   1568 class Cond : public PrimitiveFunc<Signature<T, bool, T, T> >
   1569 {
   1570 public:
   1571 	typedef typename Cond::IArgs	IArgs;
   1572 	typedef typename Cond::IRet		IRet;
   1573 
   1574 	string	getName	(void) const
   1575 	{
   1576 		return "_cond";
   1577 	}
   1578 
   1579 protected:
   1580 
   1581 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   1582 	{
   1583 		os << "(" << *args[0] << " ? " << *args[1] << " : " << *args[2] << ")";
   1584 	}
   1585 
   1586 	IRet	doApply	(const EvalContext&, const IArgs& iargs)const
   1587 	{
   1588 		IRet	ret;
   1589 
   1590 		if (iargs.a.contains(true))
   1591 			ret = unionIVal<T>(ret, iargs.b);
   1592 
   1593 		if (iargs.a.contains(false))
   1594 			ret = unionIVal<T>(ret, iargs.c);
   1595 
   1596 		return ret;
   1597 	}
   1598 };
   1599 
   1600 template <typename T>
   1601 class CompareOperator : public PrimitiveFunc<Signature<bool, T, T> >
   1602 {
   1603 public:
   1604 	typedef typename CompareOperator::IArgs	IArgs;
   1605 	typedef typename CompareOperator::IArg0	IArg0;
   1606 	typedef typename CompareOperator::IArg1	IArg1;
   1607 	typedef typename CompareOperator::IRet	IRet;
   1608 
   1609 protected:
   1610 	void			doPrint	(ostream& os, const BaseArgExprs& args) const
   1611 	{
   1612 		os << "(" << *args[0] << getSymbol() << *args[1] << ")";
   1613 	}
   1614 
   1615 	Interval		doApply	(const EvalContext&, const IArgs& iargs) const
   1616 	{
   1617 		const IArg0&	arg0 = iargs.a;
   1618 		const IArg1&	arg1 = iargs.b;
   1619 		IRet	ret;
   1620 
   1621 		if (canSucceed(arg0, arg1))
   1622 			ret |= true;
   1623 		if (canFail(arg0, arg1))
   1624 			ret |= false;
   1625 
   1626 		return ret;
   1627 	}
   1628 
   1629 	virtual string	getSymbol	(void) const = 0;
   1630 	virtual bool	canSucceed	(const IArg0&, const IArg1&) const = 0;
   1631 	virtual bool	canFail		(const IArg0&, const IArg1&) const = 0;
   1632 };
   1633 
   1634 template <typename T>
   1635 class LessThan : public CompareOperator<T>
   1636 {
   1637 public:
   1638 	string	getName		(void) const									{ return "lessThan"; }
   1639 
   1640 protected:
   1641 	string	getSymbol	(void) const									{ return "<";		}
   1642 
   1643 	bool	canSucceed	(const Interval& a, const Interval& b) const
   1644 	{
   1645 		return (a.lo() < b.hi());
   1646 	}
   1647 
   1648 	bool	canFail		(const Interval& a, const Interval& b) const
   1649 	{
   1650 		return !(a.hi() < b.lo());
   1651 	}
   1652 };
   1653 
   1654 template <typename T>
   1655 ExprP<bool> operator< (const ExprP<T>& a, const ExprP<T>& b)
   1656 {
   1657 	return app<LessThan<T> >(a, b);
   1658 }
   1659 
   1660 template <typename T>
   1661 ExprP<T> cond (const ExprP<bool>&	test,
   1662 			   const ExprP<T>&		consequent,
   1663 			   const ExprP<T>&		alternative)
   1664 {
   1665 	return app<Cond<T> >(test, consequent, alternative);
   1666 }
   1667 
   1668 /*--------------------------------------------------------------------*//*!
   1669  *
   1670  * @}
   1671  *
   1672  *//*--------------------------------------------------------------------*/
   1673 
   1674 class FloatFunc1 : public PrimitiveFunc<Signature<float, float> >
   1675 {
   1676 protected:
   1677 	Interval			doApply			(const EvalContext& ctx, const IArgs& iargs) const
   1678 	{
   1679 		return this->applyMonotone(ctx, iargs.a);
   1680 	}
   1681 
   1682 	Interval			applyMonotone	(const EvalContext& ctx, const Interval& iarg0) const
   1683 	{
   1684 		Interval ret;
   1685 
   1686 		TCU_INTERVAL_APPLY_MONOTONE1(ret, arg0, iarg0, val,
   1687 									 TCU_SET_INTERVAL(val, point,
   1688 													  point = this->applyPoint(ctx, arg0)));
   1689 
   1690 		ret |= innerExtrema(ctx, iarg0);
   1691 		ret &= (this->getCodomain() | TCU_NAN);
   1692 
   1693 		return ctx.format.convert(ret);
   1694 	}
   1695 
   1696 	virtual Interval	innerExtrema	(const EvalContext&, const Interval&) const
   1697 	{
   1698 		return Interval(); // empty interval, i.e. no extrema
   1699 	}
   1700 
   1701 	virtual Interval	applyPoint		(const EvalContext& ctx, double arg0) const
   1702 	{
   1703 		const double	exact	= this->applyExact(arg0);
   1704 		const double	prec	= this->precision(ctx, exact, arg0);
   1705 
   1706 		return exact + Interval(-prec, prec);
   1707 	}
   1708 
   1709 	virtual double		applyExact		(double) const
   1710 	{
   1711 		TCU_THROW(InternalError, "Cannot apply");
   1712 	}
   1713 
   1714 	virtual Interval	getCodomain		(void) const
   1715 	{
   1716 		return Interval::unbounded(true);
   1717 	}
   1718 
   1719 	virtual double		precision		(const EvalContext& ctx, double, double) const = 0;
   1720 };
   1721 
   1722 class CFloatFunc1 : public FloatFunc1
   1723 {
   1724 public:
   1725 			CFloatFunc1	(const string& name, DoubleFunc1& func)
   1726 				: m_name(name), m_func(func) {}
   1727 
   1728 	string			getName		(void) const		{ return m_name; }
   1729 
   1730 protected:
   1731 	double			applyExact	(double x) const	{ return m_func(x); }
   1732 
   1733 	const string	m_name;
   1734 	DoubleFunc1&	m_func;
   1735 };
   1736 
   1737 class FloatFunc2 : public PrimitiveFunc<Signature<float, float, float> >
   1738 {
   1739 protected:
   1740 	Interval			doApply			(const EvalContext&	ctx, const IArgs& iargs) const
   1741 	{
   1742 		return this->applyMonotone(ctx, iargs.a, iargs.b);
   1743 	}
   1744 
   1745 	Interval			applyMonotone	(const EvalContext&	ctx,
   1746 										 const Interval&	xi,
   1747 										 const Interval&	yi) const
   1748 	{
   1749 		Interval reti;
   1750 
   1751 		TCU_INTERVAL_APPLY_MONOTONE2(reti, x, xi, y, yi, ret,
   1752 									 TCU_SET_INTERVAL(ret, point,
   1753 													  point = this->applyPoint(ctx, x, y)));
   1754 		reti |= innerExtrema(ctx, xi, yi);
   1755 		reti &= (this->getCodomain() | TCU_NAN);
   1756 
   1757 		return ctx.format.convert(reti);
   1758 	}
   1759 
   1760 	virtual Interval	innerExtrema	(const EvalContext&,
   1761 										 const Interval&,
   1762 										 const Interval&) const
   1763 	{
   1764 		return Interval(); // empty interval, i.e. no extrema
   1765 	}
   1766 
   1767 	virtual Interval	applyPoint		(const EvalContext&	ctx,
   1768 										 double				x,
   1769 										 double				y) const
   1770 	{
   1771 		const double exact	= this->applyExact(x, y);
   1772 		const double prec	= this->precision(ctx, exact, x, y);
   1773 
   1774 		return exact + Interval(-prec, prec);
   1775 	}
   1776 
   1777 	virtual double		applyExact		(double, double) const
   1778 	{
   1779 		TCU_THROW(InternalError, "Cannot apply");
   1780 	}
   1781 
   1782 	virtual Interval	getCodomain		(void) const
   1783 	{
   1784 		return Interval::unbounded(true);
   1785 	}
   1786 
   1787 	virtual double		precision		(const EvalContext&	ctx,
   1788 										 double				ret,
   1789 										 double				x,
   1790 										 double				y) const = 0;
   1791 };
   1792 
   1793 class CFloatFunc2 : public FloatFunc2
   1794 {
   1795 public:
   1796 					CFloatFunc2	(const string&	name,
   1797 								 DoubleFunc2&	func)
   1798 						: m_name(name)
   1799 						, m_func(func)
   1800 	{
   1801 	}
   1802 
   1803 	string			getName		(void) const						{ return m_name; }
   1804 
   1805 protected:
   1806 	double			applyExact	(double x, double y) const			{ return m_func(x, y); }
   1807 
   1808 	const string	m_name;
   1809 	DoubleFunc2&	m_func;
   1810 };
   1811 
   1812 class InfixOperator : public FloatFunc2
   1813 {
   1814 protected:
   1815 	virtual string	getSymbol		(void) const = 0;
   1816 
   1817 	void			doPrint			(ostream& os, const BaseArgExprs& args) const
   1818 	{
   1819 		os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")";
   1820 	}
   1821 
   1822 	Interval		applyPoint		(const EvalContext&	ctx,
   1823 									 double				x,
   1824 									 double				y) const
   1825 	{
   1826 		const double exact	= this->applyExact(x, y);
   1827 
   1828 		// Allow either representable number on both sides of the exact value,
   1829 		// but require exactly representable values to be preserved.
   1830 		return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y));
   1831 	}
   1832 
   1833 	double			precision		(const EvalContext&, double, double, double) const
   1834 	{
   1835 		return 0.0;
   1836 	}
   1837 };
   1838 
   1839 class FloatFunc3 : public PrimitiveFunc<Signature<float, float, float, float> >
   1840 {
   1841 protected:
   1842 	Interval			doApply			(const EvalContext&	ctx, const IArgs& iargs) const
   1843 	{
   1844 		return this->applyMonotone(ctx, iargs.a, iargs.b, iargs.c);
   1845 	}
   1846 
   1847 	Interval			applyMonotone	(const EvalContext&	ctx,
   1848 										 const Interval&	xi,
   1849 										 const Interval&	yi,
   1850 										 const Interval&	zi) const
   1851 	{
   1852 		Interval reti;
   1853 		TCU_INTERVAL_APPLY_MONOTONE3(reti, x, xi, y, yi, z, zi, ret,
   1854 									 TCU_SET_INTERVAL(ret, point,
   1855 													  point = this->applyPoint(ctx, x, y, z)));
   1856 		return ctx.format.convert(reti);
   1857 	}
   1858 
   1859 	virtual Interval	applyPoint		(const EvalContext&	ctx,
   1860 										 double				x,
   1861 										 double				y,
   1862 										 double				z) const
   1863 	{
   1864 		const double exact	= this->applyExact(x, y, z);
   1865 		const double prec	= this->precision(ctx, exact, x, y, z);
   1866 		return exact + Interval(-prec, prec);
   1867 	}
   1868 
   1869 	virtual double		applyExact		(double, double, double) const
   1870 	{
   1871 		TCU_THROW(InternalError, "Cannot apply");
   1872 	}
   1873 
   1874 	virtual double		precision		(const EvalContext&	ctx,
   1875 										 double				result,
   1876 										 double				x,
   1877 										 double				y,
   1878 										 double				z) const = 0;
   1879 };
   1880 
   1881 // We define syntactic sugar functions for expression constructors. Since
   1882 // these have the same names as ordinary mathematical operations (sin, log
   1883 // etc.), it's better to give them a dedicated namespace.
   1884 namespace Functions
   1885 {
   1886 
   1887 using namespace tcu;
   1888 
   1889 class Add : public InfixOperator
   1890 {
   1891 public:
   1892 	string		getName		(void) const						{ return "add"; }
   1893 	string		getSymbol	(void) const						{ return "+"; }
   1894 
   1895 	Interval	doApply		(const EvalContext&	ctx,
   1896 							 const IArgs&		iargs) const
   1897 	{
   1898 		// Fast-path for common case
   1899 		if (iargs.a.isOrdinary() && iargs.b.isOrdinary())
   1900 		{
   1901 			Interval ret;
   1902 			TCU_SET_INTERVAL_BOUNDS(ret, sum,
   1903 									sum = iargs.a.lo() + iargs.b.lo(),
   1904 									sum = iargs.a.hi() + iargs.b.hi());
   1905 			return ctx.format.convert(ctx.format.roundOut(ret, true));
   1906 		}
   1907 		return this->applyMonotone(ctx, iargs.a, iargs.b);
   1908 	}
   1909 
   1910 protected:
   1911 	double		applyExact	(double x, double y) const			{ return x + y; }
   1912 };
   1913 
   1914 class Mul : public InfixOperator
   1915 {
   1916 public:
   1917 	string		getName		(void) const									{ return "mul"; }
   1918 	string		getSymbol	(void) const									{ return "*"; }
   1919 
   1920 	Interval	doApply		(const EvalContext&	ctx, const IArgs& iargs) const
   1921 	{
   1922 		Interval a = iargs.a;
   1923 		Interval b = iargs.b;
   1924 
   1925 		// Fast-path for common case
   1926 		if (a.isOrdinary() && b.isOrdinary())
   1927 		{
   1928 			Interval ret;
   1929 			if (a.hi() < 0)
   1930 			{
   1931 				a = -a;
   1932 				b = -b;
   1933 			}
   1934 			if (a.lo() >= 0 && b.lo() >= 0)
   1935 			{
   1936 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
   1937 										prod = iargs.a.lo() * iargs.b.lo(),
   1938 										prod = iargs.a.hi() * iargs.b.hi());
   1939 				return ctx.format.convert(ctx.format.roundOut(ret, true));
   1940 			}
   1941 			if (a.lo() >= 0 && b.hi() <= 0)
   1942 			{
   1943 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
   1944 										prod = iargs.a.hi() * iargs.b.lo(),
   1945 										prod = iargs.a.lo() * iargs.b.hi());
   1946 				return ctx.format.convert(ctx.format.roundOut(ret, true));
   1947 			}
   1948 		}
   1949 		return this->applyMonotone(ctx, iargs.a, iargs.b);
   1950 	}
   1951 
   1952 protected:
   1953 	double		applyExact	(double x, double y) const						{ return x * y; }
   1954 
   1955 	Interval	innerExtrema(const EvalContext&, const Interval& xi, const Interval& yi) const
   1956 	{
   1957 		if (((xi.contains(-TCU_INFINITY) || xi.contains(TCU_INFINITY)) && yi.contains(0.0)) ||
   1958 			((yi.contains(-TCU_INFINITY) || yi.contains(TCU_INFINITY)) && xi.contains(0.0)))
   1959 			return Interval(TCU_NAN);
   1960 
   1961 		return Interval();
   1962 	}
   1963 };
   1964 
   1965 class Sub : public InfixOperator
   1966 {
   1967 public:
   1968 	string		getName		(void) const				{ return "sub"; }
   1969 	string		getSymbol	(void) const				{ return "-"; }
   1970 
   1971 	Interval	doApply		(const EvalContext&	ctx, const IArgs& iargs) const
   1972 	{
   1973 		// Fast-path for common case
   1974 		if (iargs.a.isOrdinary() && iargs.b.isOrdinary())
   1975 		{
   1976 			Interval ret;
   1977 
   1978 			TCU_SET_INTERVAL_BOUNDS(ret, diff,
   1979 									diff = iargs.a.lo() - iargs.b.hi(),
   1980 									diff = iargs.a.hi() - iargs.b.lo());
   1981 			return ctx.format.convert(ctx.format.roundOut(ret, true));
   1982 
   1983 		}
   1984 		else
   1985 		{
   1986 			return this->applyMonotone(ctx, iargs.a, iargs.b);
   1987 		}
   1988 	}
   1989 
   1990 protected:
   1991 	double		applyExact	(double x, double y) const	{ return x - y; }
   1992 };
   1993 
   1994 class Negate : public FloatFunc1
   1995 {
   1996 public:
   1997 	string	getName		(void) const									{ return "_negate"; }
   1998 	void	doPrint		(ostream& os, const BaseArgExprs& args) const	{ os << "-" << *args[0]; }
   1999 
   2000 protected:
   2001 	double	precision	(const EvalContext&, double, double) const		{ return 0.0; }
   2002 	double	applyExact	(double x) const								{ return -x; }
   2003 };
   2004 
   2005 class Div : public InfixOperator
   2006 {
   2007 public:
   2008 	string		getName			(void) const						{ return "div"; }
   2009 
   2010 protected:
   2011 	string		getSymbol		(void) const						{ return "/"; }
   2012 
   2013 	Interval	innerExtrema	(const EvalContext&,
   2014 								 const Interval&		nom,
   2015 								 const Interval&		den) const
   2016 	{
   2017 		Interval ret;
   2018 
   2019 		if (den.contains(0.0))
   2020 		{
   2021 			if (nom.contains(0.0))
   2022 				ret |= TCU_NAN;
   2023 
   2024 			if (nom.lo() < 0.0 || nom.hi() > 0.0)
   2025 				ret |= Interval::unbounded();
   2026 		}
   2027 
   2028 		return ret;
   2029 	}
   2030 
   2031 	double		applyExact		(double x, double y) const { return x / y; }
   2032 
   2033 	Interval	applyPoint		(const EvalContext&	ctx, double x, double y) const
   2034 	{
   2035 		Interval ret = FloatFunc2::applyPoint(ctx, x, y);
   2036 
   2037 		if (!deIsInf(x) && !deIsInf(y) && y != 0.0)
   2038 		{
   2039 			const Interval dst = ctx.format.convert(ret);
   2040 			if (dst.contains(-TCU_INFINITY)) ret |= -ctx.format.getMaxValue();
   2041 			if (dst.contains(+TCU_INFINITY)) ret |= +ctx.format.getMaxValue();
   2042 		}
   2043 
   2044 		return ret;
   2045 	}
   2046 
   2047 	double		precision		(const EvalContext& ctx, double ret, double, double den) const
   2048 	{
   2049 		const FloatFormat&	fmt		= ctx.format;
   2050 
   2051 		// \todo [2014-03-05 lauri] Check that the limits in GLSL 3.10 are actually correct.
   2052 		// For now, we assume that division's precision is 2.5 ULP when the value is within
   2053 		// [2^MINEXP, 2^MAXEXP-1]
   2054 
   2055 		if (den == 0.0)
   2056 			return 0.0; // Result must be exactly inf
   2057 		else if (de::inBounds(deAbs(den),
   2058 							  deLdExp(1.0, fmt.getMinExp()),
   2059 							  deLdExp(1.0, fmt.getMaxExp() - 1)))
   2060 			return fmt.ulp(ret, 2.5);
   2061 		else
   2062 			return TCU_INFINITY; // Can be any number, but must be a number.
   2063 	}
   2064 };
   2065 
   2066 class InverseSqrt : public FloatFunc1
   2067 {
   2068 public:
   2069 	string		getName		(void) const							{ return "inversesqrt"; }
   2070 
   2071 protected:
   2072 	double		applyExact	(double x) const						{ return 1.0 / deSqrt(x); }
   2073 
   2074 	double		precision	(const EvalContext& ctx, double ret, double x) const
   2075 	{
   2076 		return x <= 0 ? TCU_NAN : ctx.format.ulp(ret, 2.0);
   2077 	}
   2078 
   2079 	Interval	getCodomain	(void) const
   2080 	{
   2081 		return Interval(0.0, TCU_INFINITY);
   2082 	}
   2083 };
   2084 
   2085 class ExpFunc : public CFloatFunc1
   2086 {
   2087 public:
   2088 				ExpFunc		(const string& name, DoubleFunc1& func)
   2089 					: CFloatFunc1(name, func) {}
   2090 protected:
   2091 	double		precision	(const EvalContext& ctx, double ret, double x) const
   2092 	{
   2093 		switch (ctx.floatPrecision)
   2094 		{
   2095 			case glu::PRECISION_HIGHP:
   2096 				return ctx.format.ulp(ret, 3.0 + 2.0 * deAbs(x));
   2097 			case glu::PRECISION_MEDIUMP:
   2098 				return ctx.format.ulp(ret, 2.0 + 2.0 * deAbs(x));
   2099 			case glu::PRECISION_LOWP:
   2100 				return ctx.format.ulp(ret, 2.0);
   2101 			default:
   2102 				DE_FATAL("Impossible");
   2103 		}
   2104 		return 0;
   2105 	}
   2106 
   2107 	Interval	getCodomain	(void) const
   2108 	{
   2109 		return Interval(0.0, TCU_INFINITY);
   2110 	}
   2111 };
   2112 
   2113 class Exp2	: public ExpFunc	{ public: Exp2 (void)	: ExpFunc("exp2", deExp2) {} };
   2114 class Exp	: public ExpFunc	{ public: Exp (void)	: ExpFunc("exp", deExp) {} };
   2115 
   2116 ExprP<float> exp2	(const ExprP<float>& x)	{ return app<Exp2>(x); }
   2117 ExprP<float> exp	(const ExprP<float>& x)	{ return app<Exp>(x); }
   2118 
   2119 class LogFunc : public CFloatFunc1
   2120 {
   2121 public:
   2122 				LogFunc		(const string& name, DoubleFunc1& func)
   2123 					: CFloatFunc1(name, func) {}
   2124 
   2125 protected:
   2126 	double		precision	(const EvalContext& ctx, double ret, double x) const
   2127 	{
   2128 		if (x <= 0)
   2129 			return TCU_NAN;
   2130 
   2131 		switch (ctx.floatPrecision)
   2132 		{
   2133 			case glu::PRECISION_HIGHP:
   2134 				return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0);
   2135 			case glu::PRECISION_MEDIUMP:
   2136 				return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 2.0);
   2137 			case glu::PRECISION_LOWP:
   2138 				return ctx.format.ulp(ret, 2.0);
   2139 			default:
   2140 				DE_FATAL("Impossible");
   2141 		}
   2142 
   2143 		return 0;
   2144 	}
   2145 };
   2146 
   2147 class Log2	: public LogFunc		{ public: Log2	(void) : LogFunc("log2", deLog2) {} };
   2148 class Log	: public LogFunc		{ public: Log	(void) : LogFunc("log", deLog) {} };
   2149 
   2150 ExprP<float> log2	(const ExprP<float>& x)	{ return app<Log2>(x); }
   2151 ExprP<float> log	(const ExprP<float>& x)	{ return app<Log>(x); }
   2152 
   2153 #define DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0) \
   2154 ExprP<TRET> NAME (const ExprP<T0>& arg0) { return app<CLASS>(arg0); }
   2155 
   2156 #define DEFINE_DERIVED1(CLASS, TRET, NAME, T0, ARG0, EXPANSION)			\
   2157 class CLASS : public DerivedFunc<Signature<TRET, T0> > /* NOLINT(CLASS) */ \
   2158 {																		\
   2159 public:																	\
   2160 	string			getName		(void) const		{ return #NAME; }	\
   2161 																		\
   2162 protected:																\
   2163 	ExprP<TRET>		doExpand		(ExpandContext&,					\
   2164 									 const CLASS::ArgExprs& args_) const \
   2165 	{																	\
   2166 		const ExprP<float>& (ARG0) = args_.a;							\
   2167 		return EXPANSION;												\
   2168 	}																	\
   2169 };																		\
   2170 DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0)
   2171 
   2172 #define DEFINE_DERIVED_FLOAT1(CLASS, NAME, ARG0, EXPANSION) \
   2173 	DEFINE_DERIVED1(CLASS, float, NAME, float, ARG0, EXPANSION)
   2174 
   2175 #define DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)				\
   2176 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1)		\
   2177 {																	\
   2178 	return app<CLASS>(arg0, arg1);									\
   2179 }
   2180 
   2181 #define DEFINE_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION) \
   2182 class CLASS : public DerivedFunc<Signature<TRET, T0, T1> > /* NOLINT(CLASS) */	\
   2183 {																		\
   2184 public:																	\
   2185 	string			getName		(void) const		{ return #NAME; }	\
   2186 																		\
   2187 protected:																\
   2188 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const \
   2189 	{																	\
   2190 		const ExprP<T0>& (Arg0) = args_.a;								\
   2191 		const ExprP<T1>& (Arg1) = args_.b;								\
   2192 		return EXPANSION;												\
   2193 	}																	\
   2194 };																		\
   2195 DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)
   2196 
   2197 #define DEFINE_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
   2198 	DEFINE_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION)
   2199 
   2200 #define DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)				\
   2201 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1, const ExprP<T2>& arg2) \
   2202 {																		\
   2203 	return app<CLASS>(arg0, arg1, arg2);								\
   2204 }
   2205 
   2206 #define DEFINE_DERIVED3(CLASS, TRET, NAME, T0, ARG0, T1, ARG1, T2, ARG2, EXPANSION) \
   2207 class CLASS : public DerivedFunc<Signature<TRET, T0, T1, T2> > /* NOLINT(CLASS) */	\
   2208 {																				\
   2209 public:																			\
   2210 	string			getName		(void) const	{ return #NAME; }				\
   2211 																				\
   2212 protected:																		\
   2213 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const	\
   2214 	{																			\
   2215 		const ExprP<T0>& (ARG0) = args_.a;										\
   2216 		const ExprP<T1>& (ARG1) = args_.b;										\
   2217 		const ExprP<T2>& (ARG2) = args_.c;										\
   2218 		return EXPANSION;														\
   2219 	}																			\
   2220 };																				\
   2221 DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)
   2222 
   2223 #define DEFINE_DERIVED_FLOAT3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
   2224 	DEFINE_DERIVED3(CLASS, float, NAME, float, ARG0, float, ARG1, float, ARG2, EXPANSION)
   2225 
   2226 #define DEFINE_CONSTRUCTOR4(CLASS, TRET, NAME, T0, T1, T2, T3)			\
   2227 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1,			\
   2228 				  const ExprP<T2>& arg2, const ExprP<T3>& arg3)			\
   2229 {																		\
   2230 	return app<CLASS>(arg0, arg1, arg2, arg3);							\
   2231 }
   2232 
   2233 DEFINE_DERIVED_FLOAT1(Sqrt,		sqrt,		x,		constant(1.0f) / app<InverseSqrt>(x));
   2234 DEFINE_DERIVED_FLOAT2(Pow,		pow,		x,	y,	exp2(y * log2(x)));
   2235 DEFINE_DERIVED_FLOAT1(Radians,	radians,	d,		(constant(DE_PI) / constant(180.0f)) * d);
   2236 DEFINE_DERIVED_FLOAT1(Degrees,	degrees,	r,		(constant(180.0f) / constant(DE_PI)) * r);
   2237 
   2238 class TrigFunc : public CFloatFunc1
   2239 {
   2240 public:
   2241 					TrigFunc		(const string&		name,
   2242 									 DoubleFunc1&		func,
   2243 									 const Interval&	loEx,
   2244 									 const Interval&	hiEx)
   2245 						: CFloatFunc1	(name, func)
   2246 						, m_loExtremum	(loEx)
   2247 						, m_hiExtremum	(hiEx) {}
   2248 
   2249 protected:
   2250 	Interval		innerExtrema	(const EvalContext&, const Interval& angle) const
   2251 	{
   2252 		const double		lo		= angle.lo();
   2253 		const double		hi		= angle.hi();
   2254 		const int			loSlope	= doGetSlope(lo);
   2255 		const int			hiSlope	= doGetSlope(hi);
   2256 
   2257 		// Detect the high and low values the function can take between the
   2258 		// interval endpoints.
   2259 		if (angle.length() >= 2.0 * DE_PI_DOUBLE)
   2260 		{
   2261 			// The interval is longer than a full cycle, so it must get all possible values.
   2262 			return m_hiExtremum | m_loExtremum;
   2263 		}
   2264 		else if (loSlope == 1 && hiSlope == -1)
   2265 		{
   2266 			// The slope can change from positive to negative only at the maximum value.
   2267 			return m_hiExtremum;
   2268 		}
   2269 		else if (loSlope == -1 && hiSlope == 1)
   2270 		{
   2271 			// The slope can change from negative to positive only at the maximum value.
   2272 			return m_loExtremum;
   2273 		}
   2274 		else if (loSlope == hiSlope &&
   2275 				 deIntSign(applyExact(hi) - applyExact(lo)) * loSlope == -1)
   2276 		{
   2277 			// The slope has changed twice between the endpoints, so both extrema are included.
   2278 			return m_hiExtremum | m_loExtremum;
   2279 		}
   2280 
   2281 		return Interval();
   2282 	}
   2283 
   2284 	Interval	getCodomain			(void) const
   2285 	{
   2286 		// Ensure that result is always within [-1, 1], or NaN (for +-inf)
   2287 		return Interval(-1.0, 1.0) | TCU_NAN;
   2288 	}
   2289 
   2290 	double		precision			(const EvalContext& ctx, double ret, double arg) const
   2291 	{
   2292 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2293 		{
   2294 			// Use precision from OpenCL fast relaxed math
   2295 			if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
   2296 			{
   2297 				return deLdExp(1.0, -11);
   2298 			}
   2299 			else
   2300 			{
   2301 				// "larger otherwise", let's pick |x| * 2^-12 , which is slightly over
   2302 				// 2^-11 at x == pi.
   2303 				return deLdExp(deAbs(arg), -12);
   2304 			}
   2305 		}
   2306 		else if (ctx.floatPrecision == glu::PRECISION_MEDIUMP)
   2307 		{
   2308 			if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
   2309 			{
   2310 				// from OpenCL half-float extension specification
   2311 				return ctx.format.ulp(ret, 2.0);
   2312 			}
   2313 			else
   2314 			{
   2315 				// |x| * 2^-10, slightly larger than 2 ULP at x == pi
   2316 				return deLdExp(deAbs(arg), -10);
   2317 			}
   2318 		}
   2319 		else
   2320 		{
   2321 			DE_ASSERT(ctx.floatPrecision == glu::PRECISION_LOWP);
   2322 
   2323 			// from OpenCL half-float extension specification
   2324 			return ctx.format.ulp(ret, 2.0);
   2325 		}
   2326 	}
   2327 
   2328 	virtual int		doGetSlope		(double angle) const = 0;
   2329 
   2330 	Interval		m_loExtremum;
   2331 	Interval		m_hiExtremum;
   2332 };
   2333 
   2334 class Sin : public TrigFunc
   2335 {
   2336 public:
   2337 				Sin			(void) : TrigFunc("sin", deSin, -1.0, 1.0) {}
   2338 
   2339 protected:
   2340 	int			doGetSlope	(double angle) const { return deIntSign(deCos(angle)); }
   2341 };
   2342 
   2343 ExprP<float> sin (const ExprP<float>& x) { return app<Sin>(x); }
   2344 
   2345 class Cos : public TrigFunc
   2346 {
   2347 public:
   2348 				Cos			(void) : TrigFunc("cos", deCos, -1.0, 1.0) {}
   2349 
   2350 protected:
   2351 	int			doGetSlope	(double angle) const { return -deIntSign(deSin(angle)); }
   2352 };
   2353 
   2354 ExprP<float> cos (const ExprP<float>& x) { return app<Cos>(x); }
   2355 
   2356 DEFINE_DERIVED_FLOAT1(Tan, tan, x, sin(x) * (constant(1.0f) / cos(x)));
   2357 
   2358 class ASin : public CFloatFunc1
   2359 {
   2360 public:
   2361 					ASin		(void) : CFloatFunc1("asin", deAsin) {}
   2362 
   2363 protected:
   2364 	double			precision	(const EvalContext& ctx, double, double x) const
   2365 	{
   2366 		if (!de::inBounds(x, -1.0, 1.0))
   2367 			return TCU_NAN;
   2368 
   2369 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2370 		{
   2371 			// Absolute error of 2^-11
   2372 			return deLdExp(1.0, -11);
   2373 		}
   2374 		else
   2375 		{
   2376 			// Absolute error of 2^-8
   2377 			return deLdExp(1.0, -8);
   2378 		}
   2379 
   2380 	}
   2381 };
   2382 
   2383 class ArcTrigFunc : public CFloatFunc1
   2384 {
   2385 public:
   2386 					ArcTrigFunc	(const string&		name,
   2387 								 DoubleFunc1&		func,
   2388 								 double				precisionULPs,
   2389 								 const Interval&	domain,
   2390 								 const Interval&	codomain)
   2391 						: CFloatFunc1		(name, func)
   2392 						, m_precision		(precisionULPs)
   2393 						, m_domain			(domain)
   2394 						, m_codomain		(codomain) {}
   2395 
   2396 protected:
   2397 	double			precision	(const EvalContext& ctx, double ret, double x) const
   2398 	{
   2399 		if (!m_domain.contains(x))
   2400 			return TCU_NAN;
   2401 
   2402 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2403 		{
   2404 			// Use OpenCL's fast relaxed math precision
   2405 			return ctx.format.ulp(ret, m_precision);
   2406 		}
   2407 		else
   2408 		{
   2409 			// Use OpenCL half-float spec
   2410 			return ctx.format.ulp(ret, 2.0);
   2411 		}
   2412 	}
   2413 
   2414 	// We could implement getCodomain with m_codomain, but choose not to,
   2415 	// because it seems too strict with trascendental constants like pi.
   2416 
   2417 	const double	m_precision;
   2418 	const Interval	m_domain;
   2419 	const Interval	m_codomain;
   2420 };
   2421 
   2422 class ACos : public ArcTrigFunc
   2423 {
   2424 public:
   2425 	ACos (void) : ArcTrigFunc("acos", deAcos, 4096.0,
   2426 							  Interval(-1.0, 1.0),
   2427 							  Interval(0.0, DE_PI_DOUBLE)) {}
   2428 };
   2429 
   2430 class ATan : public ArcTrigFunc
   2431 {
   2432 public:
   2433 	ATan (void) : ArcTrigFunc("atan", deAtanOver, 4096.0,
   2434 							  Interval::unbounded(),
   2435 							  Interval(-DE_PI_DOUBLE * 0.5, DE_PI_DOUBLE * 0.5)) {}
   2436 };
   2437 
   2438 class ATan2 : public CFloatFunc2
   2439 {
   2440 public:
   2441 				ATan2			(void) : CFloatFunc2 ("atan", deAtan2) {}
   2442 
   2443 protected:
   2444 	Interval	innerExtrema	(const EvalContext&		ctx,
   2445 								 const Interval&		yi,
   2446 								 const Interval&		xi) const
   2447 	{
   2448 		Interval ret;
   2449 
   2450 		if (yi.contains(0.0))
   2451 		{
   2452 			if (xi.contains(0.0))
   2453 				ret |= TCU_NAN;
   2454 			if (xi.intersects(Interval(-TCU_INFINITY, 0.0)))
   2455 				ret |= Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE);
   2456 		}
   2457 
   2458 		if (ctx.format.hasInf() != YES && (!yi.isFinite() || !xi.isFinite()))
   2459 		{
   2460 			// Infinities may not be supported, allow anything, including NaN
   2461 			ret |= TCU_NAN;
   2462 		}
   2463 
   2464 		return ret;
   2465 	}
   2466 
   2467 	double		precision		(const EvalContext& ctx, double ret, double, double) const
   2468 	{
   2469 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2470 			return ctx.format.ulp(ret, 4096.0);
   2471 		else
   2472 			return ctx.format.ulp(ret, 2.0);
   2473 	}
   2474 
   2475 	// Codomain could be [-pi, pi], but that would probably be too strict.
   2476 };
   2477 
   2478 DEFINE_DERIVED_FLOAT1(Sinh, sinh, x, (exp(x) - exp(-x)) / constant(2.0f));
   2479 DEFINE_DERIVED_FLOAT1(Cosh, cosh, x, (exp(x) + exp(-x)) / constant(2.0f));
   2480 DEFINE_DERIVED_FLOAT1(Tanh, tanh, x, sinh(x) / cosh(x));
   2481 
   2482 // These are not defined as derived forms in the GLSL ES spec, but
   2483 // that gives us a reasonable precision.
   2484 DEFINE_DERIVED_FLOAT1(ASinh, asinh, x, log(x + sqrt(x * x + constant(1.0f))));
   2485 DEFINE_DERIVED_FLOAT1(ACosh, acosh, x, log(x + sqrt(alternatives((x + constant(1.0f)) * (x - constant(1.0f)),
   2486 																 (x*x - constant(1.0f))))));
   2487 DEFINE_DERIVED_FLOAT1(ATanh, atanh, x, constant(0.5f) * log((constant(1.0f) + x) /
   2488 															(constant(1.0f) - x)));
   2489 
   2490 template <typename T>
   2491 class GetComponent : public PrimitiveFunc<Signature<typename T::Element, T, int> >
   2492 {
   2493 public:
   2494 	typedef		typename GetComponent::IRet	IRet;
   2495 
   2496 	string		getName		(void) const { return "_getComponent"; }
   2497 
   2498 	void		print		(ostream&				os,
   2499 							 const BaseArgExprs&	args) const
   2500 	{
   2501 		os << *args[0] << "[" << *args[1] << "]";
   2502 	}
   2503 
   2504 protected:
   2505 	IRet		doApply		(const EvalContext&,
   2506 							 const typename GetComponent::IArgs& iargs) const
   2507 	{
   2508 		IRet ret;
   2509 
   2510 		for (int compNdx = 0; compNdx < T::SIZE; ++compNdx)
   2511 		{
   2512 			if (iargs.b.contains(compNdx))
   2513 				ret = unionIVal<typename T::Element>(ret, iargs.a[compNdx]);
   2514 		}
   2515 
   2516 		return ret;
   2517 	}
   2518 
   2519 };
   2520 
   2521 template <typename T>
   2522 ExprP<typename T::Element> getComponent (const ExprP<T>& container, int ndx)
   2523 {
   2524 	DE_ASSERT(0 <= ndx && ndx < T::SIZE);
   2525 	return app<GetComponent<T> >(container, constant(ndx));
   2526 }
   2527 
   2528 template <typename T>	string	vecNamePrefix			(void);
   2529 template <>				string	vecNamePrefix<float>	(void) { return ""; }
   2530 template <>				string	vecNamePrefix<int>		(void) { return "i"; }
   2531 template <>				string	vecNamePrefix<bool>		(void) { return "b"; }
   2532 
   2533 template <typename T, int Size>
   2534 string vecName (void) { return vecNamePrefix<T>() + "vec" + de::toString(Size); }
   2535 
   2536 template <typename T, int Size> class GenVec;
   2537 
   2538 template <typename T>
   2539 class GenVec<T, 1> : public DerivedFunc<Signature<T, T> >
   2540 {
   2541 public:
   2542 	typedef typename GenVec<T, 1>::ArgExprs ArgExprs;
   2543 
   2544 	string		getName		(void) const
   2545 	{
   2546 		return "_" + vecName<T, 1>();
   2547 	}
   2548 
   2549 protected:
   2550 
   2551 	ExprP<T>	doExpand	(ExpandContext&, const ArgExprs& args) const { return args.a; }
   2552 };
   2553 
   2554 template <typename T>
   2555 class GenVec<T, 2> : public PrimitiveFunc<Signature<Vector<T, 2>, T, T> >
   2556 {
   2557 public:
   2558 	typedef typename GenVec::IRet	IRet;
   2559 	typedef typename GenVec::IArgs	IArgs;
   2560 
   2561 	string		getName		(void) const
   2562 	{
   2563 		return vecName<T, 2>();
   2564 	}
   2565 
   2566 protected:
   2567 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   2568 	{
   2569 		return IRet(iargs.a, iargs.b);
   2570 	}
   2571 };
   2572 
   2573 template <typename T>
   2574 class GenVec<T, 3> : public PrimitiveFunc<Signature<Vector<T, 3>, T, T, T> >
   2575 {
   2576 public:
   2577 	typedef typename GenVec::IRet	IRet;
   2578 	typedef typename GenVec::IArgs	IArgs;
   2579 
   2580 	string	getName		(void) const
   2581 	{
   2582 		return vecName<T, 3>();
   2583 	}
   2584 
   2585 protected:
   2586 	IRet	doApply		(const EvalContext&, const IArgs& iargs) const
   2587 	{
   2588 		return IRet(iargs.a, iargs.b, iargs.c);
   2589 	}
   2590 };
   2591 
   2592 template <typename T>
   2593 class GenVec<T, 4> : public PrimitiveFunc<Signature<Vector<T, 4>, T, T, T, T> >
   2594 {
   2595 public:
   2596 	typedef typename GenVec::IRet	IRet;
   2597 	typedef typename GenVec::IArgs	IArgs;
   2598 
   2599 	string		getName		(void) const { return vecName<T, 4>(); }
   2600 
   2601 protected:
   2602 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   2603 	{
   2604 		return IRet(iargs.a, iargs.b, iargs.c, iargs.d);
   2605 	}
   2606 };
   2607 
   2608 
   2609 
   2610 template <typename T, int Rows, int Columns>
   2611 class GenMat;
   2612 
   2613 template <typename T, int Rows>
   2614 class GenMat<T, Rows, 2> : public PrimitiveFunc<
   2615 	Signature<Matrix<T, Rows, 2>, Vector<T, Rows>, Vector<T, Rows> > >
   2616 {
   2617 public:
   2618 	typedef typename GenMat::Ret	Ret;
   2619 	typedef typename GenMat::IRet	IRet;
   2620 	typedef typename GenMat::IArgs	IArgs;
   2621 
   2622 	string		getName		(void) const
   2623 	{
   2624 		return dataTypeNameOf<Ret>();
   2625 	}
   2626 
   2627 protected:
   2628 
   2629 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   2630 	{
   2631 		IRet	ret;
   2632 		ret[0] = iargs.a;
   2633 		ret[1] = iargs.b;
   2634 		return ret;
   2635 	}
   2636 };
   2637 
   2638 template <typename T, int Rows>
   2639 class GenMat<T, Rows, 3> : public PrimitiveFunc<
   2640 	Signature<Matrix<T, Rows, 3>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
   2641 {
   2642 public:
   2643 	typedef typename GenMat::Ret	Ret;
   2644 	typedef typename GenMat::IRet	IRet;
   2645 	typedef typename GenMat::IArgs	IArgs;
   2646 
   2647 	string	getName	(void) const
   2648 	{
   2649 		return dataTypeNameOf<Ret>();
   2650 	}
   2651 
   2652 protected:
   2653 
   2654 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
   2655 	{
   2656 		IRet	ret;
   2657 		ret[0] = iargs.a;
   2658 		ret[1] = iargs.b;
   2659 		ret[2] = iargs.c;
   2660 		return ret;
   2661 	}
   2662 };
   2663 
   2664 template <typename T, int Rows>
   2665 class GenMat<T, Rows, 4> : public PrimitiveFunc<
   2666 	Signature<Matrix<T, Rows, 4>,
   2667 			  Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
   2668 {
   2669 public:
   2670 	typedef typename GenMat::Ret	Ret;
   2671 	typedef typename GenMat::IRet	IRet;
   2672 	typedef typename GenMat::IArgs	IArgs;
   2673 
   2674 	string	getName	(void) const
   2675 	{
   2676 		return dataTypeNameOf<Ret>();
   2677 	}
   2678 
   2679 protected:
   2680 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
   2681 	{
   2682 		IRet	ret;
   2683 		ret[0] = iargs.a;
   2684 		ret[1] = iargs.b;
   2685 		ret[2] = iargs.c;
   2686 		ret[3] = iargs.d;
   2687 		return ret;
   2688 	}
   2689 };
   2690 
   2691 template <typename T, int Rows>
   2692 ExprP<Matrix<T, Rows, 2> > mat2 (const ExprP<Vector<T, Rows> >& arg0,
   2693 								 const ExprP<Vector<T, Rows> >& arg1)
   2694 {
   2695 	return app<GenMat<T, Rows, 2> >(arg0, arg1);
   2696 }
   2697 
   2698 template <typename T, int Rows>
   2699 ExprP<Matrix<T, Rows, 3> > mat3 (const ExprP<Vector<T, Rows> >& arg0,
   2700 								 const ExprP<Vector<T, Rows> >& arg1,
   2701 								 const ExprP<Vector<T, Rows> >& arg2)
   2702 {
   2703 	return app<GenMat<T, Rows, 3> >(arg0, arg1, arg2);
   2704 }
   2705 
   2706 template <typename T, int Rows>
   2707 ExprP<Matrix<T, Rows, 4> > mat4 (const ExprP<Vector<T, Rows> >& arg0,
   2708 								 const ExprP<Vector<T, Rows> >& arg1,
   2709 								 const ExprP<Vector<T, Rows> >& arg2,
   2710 								 const ExprP<Vector<T, Rows> >& arg3)
   2711 {
   2712 	return app<GenMat<T, Rows, 4> >(arg0, arg1, arg2, arg3);
   2713 }
   2714 
   2715 
   2716 template <int Rows, int Cols>
   2717 class MatNeg : public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>,
   2718 											  Matrix<float, Rows, Cols> > >
   2719 {
   2720 public:
   2721 	typedef typename MatNeg::IRet		IRet;
   2722 	typedef typename MatNeg::IArgs		IArgs;
   2723 
   2724 	string	getName	(void) const
   2725 	{
   2726 		return "_matNeg";
   2727 	}
   2728 
   2729 protected:
   2730 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   2731 	{
   2732 		os << "-(" << *args[0] << ")";
   2733 	}
   2734 
   2735 	IRet	doApply	(const EvalContext&, const IArgs& iargs)			const
   2736 	{
   2737 		IRet	ret;
   2738 
   2739 		for (int col = 0; col < Cols; ++col)
   2740 		{
   2741 			for (int row = 0; row < Rows; ++row)
   2742 				ret[col][row] = -iargs.a[col][row];
   2743 		}
   2744 
   2745 		return ret;
   2746 	}
   2747 };
   2748 
   2749 template <typename T, typename Sig>
   2750 class CompWiseFunc : public PrimitiveFunc<Sig>
   2751 {
   2752 public:
   2753 	typedef Func<Signature<T, T, T> >	ScalarFunc;
   2754 
   2755 	string				getName			(void)									const
   2756 	{
   2757 		return doGetScalarFunc().getName();
   2758 	}
   2759 protected:
   2760 	void				doPrint			(ostream&				os,
   2761 										 const BaseArgExprs&	args)			const
   2762 	{
   2763 		doGetScalarFunc().print(os, args);
   2764 	}
   2765 
   2766 	virtual
   2767 	const ScalarFunc&	doGetScalarFunc	(void)									const = 0;
   2768 };
   2769 
   2770 template <int Rows, int Cols>
   2771 class CompMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>,
   2772 															 Matrix<float, Rows, Cols>,
   2773 															 Matrix<float, Rows, Cols> > >
   2774 {
   2775 public:
   2776 	typedef typename CompMatFuncBase::IRet		IRet;
   2777 	typedef typename CompMatFuncBase::IArgs		IArgs;
   2778 
   2779 protected:
   2780 
   2781 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   2782 	{
   2783 		IRet			ret;
   2784 
   2785 		for (int col = 0; col < Cols; ++col)
   2786 		{
   2787 			for (int row = 0; row < Rows; ++row)
   2788 				ret[col][row] = this->doGetScalarFunc().apply(ctx,
   2789 															  iargs.a[col][row],
   2790 															  iargs.b[col][row]);
   2791 		}
   2792 
   2793 		return ret;
   2794 	}
   2795 };
   2796 
   2797 template <typename F, int Rows, int Cols>
   2798 class CompMatFunc : public CompMatFuncBase<Rows, Cols>
   2799 {
   2800 protected:
   2801 	const typename CompMatFunc::ScalarFunc&	doGetScalarFunc	(void) const
   2802 	{
   2803 		return instance<F>();
   2804 	}
   2805 };
   2806 
   2807 class ScalarMatrixCompMult : public Mul
   2808 {
   2809 public:
   2810 	string	getName	(void) const
   2811 	{
   2812 		return "matrixCompMult";
   2813 	}
   2814 
   2815 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   2816 	{
   2817 		Func<Sig>::doPrint(os, args);
   2818 	}
   2819 };
   2820 
   2821 template <int Rows, int Cols>
   2822 class MatrixCompMult : public CompMatFunc<ScalarMatrixCompMult, Rows, Cols>
   2823 {
   2824 };
   2825 
   2826 template <int Rows, int Cols>
   2827 class ScalarMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>,
   2828 															   Matrix<float, Rows, Cols>,
   2829 															   float> >
   2830 {
   2831 public:
   2832 	typedef typename ScalarMatFuncBase::IRet	IRet;
   2833 	typedef typename ScalarMatFuncBase::IArgs	IArgs;
   2834 
   2835 protected:
   2836 
   2837 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   2838 	{
   2839 		IRet	ret;
   2840 
   2841 		for (int col = 0; col < Cols; ++col)
   2842 		{
   2843 			for (int row = 0; row < Rows; ++row)
   2844 				ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b);
   2845 		}
   2846 
   2847 		return ret;
   2848 	}
   2849 };
   2850 
   2851 template <typename F, int Rows, int Cols>
   2852 class ScalarMatFunc : public ScalarMatFuncBase<Rows, Cols>
   2853 {
   2854 protected:
   2855 	const typename ScalarMatFunc::ScalarFunc&	doGetScalarFunc	(void)	const
   2856 	{
   2857 		return instance<F>();
   2858 	}
   2859 };
   2860 
   2861 template<typename T, int Size> struct GenXType;
   2862 
   2863 template<typename T>
   2864 struct GenXType<T, 1>
   2865 {
   2866 	static ExprP<T>	genXType	(const ExprP<T>& x) { return x; }
   2867 };
   2868 
   2869 template<typename T>
   2870 struct GenXType<T, 2>
   2871 {
   2872 	static ExprP<Vector<T, 2> >	genXType	(const ExprP<T>& x)
   2873 	{
   2874 		return app<GenVec<T, 2> >(x, x);
   2875 	}
   2876 };
   2877 
   2878 template<typename T>
   2879 struct GenXType<T, 3>
   2880 {
   2881 	static ExprP<Vector<T, 3> >	genXType	(const ExprP<T>& x)
   2882 	{
   2883 		return app<GenVec<T, 3> >(x, x, x);
   2884 	}
   2885 };
   2886 
   2887 template<typename T>
   2888 struct GenXType<T, 4>
   2889 {
   2890 	static ExprP<Vector<T, 4> >	genXType	(const ExprP<T>& x)
   2891 	{
   2892 		return app<GenVec<T, 4> >(x, x, x, x);
   2893 	}
   2894 };
   2895 
   2896 //! Returns an expression of vector of size `Size` (or scalar if Size == 1),
   2897 //! with each element initialized with the expression `x`.
   2898 template<typename T, int Size>
   2899 ExprP<typename ContainerOf<T, Size>::Container> genXType (const ExprP<T>& x)
   2900 {
   2901 	return GenXType<T, Size>::genXType(x);
   2902 }
   2903 
   2904 typedef GenVec<float, 2> FloatVec2;
   2905 DEFINE_CONSTRUCTOR2(FloatVec2, Vec2, vec2, float, float)
   2906 
   2907 typedef GenVec<float, 3> FloatVec3;
   2908 DEFINE_CONSTRUCTOR3(FloatVec3, Vec3, vec3, float, float, float)
   2909 
   2910 typedef GenVec<float, 4> FloatVec4;
   2911 DEFINE_CONSTRUCTOR4(FloatVec4, Vec4, vec4, float, float, float, float)
   2912 
   2913 template <int Size>
   2914 class Dot : public DerivedFunc<Signature<float, Vector<float, Size>, Vector<float, Size> > >
   2915 {
   2916 public:
   2917 	typedef typename Dot::ArgExprs ArgExprs;
   2918 
   2919 	string			getName		(void) const
   2920 	{
   2921 		return "dot";
   2922 	}
   2923 
   2924 protected:
   2925 	ExprP<float>	doExpand	(ExpandContext&, const ArgExprs& args) const
   2926 	{
   2927 		ExprP<float> val = args.a[0] * args.b[0];
   2928 
   2929 		for (int ndx = 1; ndx < Size; ++ndx)
   2930 			val = val + args.a[ndx] * args.b[ndx];
   2931 
   2932 		return val;
   2933 	}
   2934 };
   2935 
   2936 template <>
   2937 class Dot<1> : public DerivedFunc<Signature<float, float, float> >
   2938 {
   2939 public:
   2940 	string			getName		(void) const
   2941 	{
   2942 		return "dot";
   2943 	}
   2944 
   2945 	ExprP<float>	doExpand	(ExpandContext&, const ArgExprs& args) const
   2946 	{
   2947 		return args.a * args.b;
   2948 	}
   2949 };
   2950 
   2951 template <int Size>
   2952 ExprP<float> dot (const ExprP<Vector<float, Size> >& x, const ExprP<Vector<float, Size> >& y)
   2953 {
   2954 	return app<Dot<Size> >(x, y);
   2955 }
   2956 
   2957 ExprP<float> dot (const ExprP<float>& x, const ExprP<float>& y)
   2958 {
   2959 	return app<Dot<1> >(x, y);
   2960 }
   2961 
   2962 template <int Size>
   2963 class Length : public DerivedFunc<
   2964 	Signature<float, typename ContainerOf<float, Size>::Container> >
   2965 {
   2966 public:
   2967 	typedef typename Length::ArgExprs ArgExprs;
   2968 
   2969 	string			getName		(void) const
   2970 	{
   2971 		return "length";
   2972 	}
   2973 
   2974 protected:
   2975 	ExprP<float>	doExpand	(ExpandContext&, const ArgExprs& args) const
   2976 	{
   2977 		return sqrt(dot(args.a, args.a));
   2978 	}
   2979 };
   2980 
   2981 template <int Size>
   2982 ExprP<float> length (const ExprP<typename ContainerOf<float, Size>::Container>& x)
   2983 {
   2984 	return app<Length<Size> >(x);
   2985 }
   2986 
   2987 template <int Size>
   2988 class Distance : public DerivedFunc<
   2989 	Signature<float,
   2990 			  typename ContainerOf<float, Size>::Container,
   2991 			  typename ContainerOf<float, Size>::Container> >
   2992 {
   2993 public:
   2994 	typedef typename	Distance::Ret		Ret;
   2995 	typedef typename	Distance::ArgExprs	ArgExprs;
   2996 
   2997 	string		getName		(void) const
   2998 	{
   2999 		return "distance";
   3000 	}
   3001 
   3002 protected:
   3003 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
   3004 	{
   3005 		return length<Size>(args.a - args.b);
   3006 	}
   3007 };
   3008 
   3009 // cross
   3010 
   3011 class Cross : public DerivedFunc<Signature<Vec3, Vec3, Vec3> >
   3012 {
   3013 public:
   3014 	string			getName		(void) const
   3015 	{
   3016 		return "cross";
   3017 	}
   3018 
   3019 protected:
   3020 	ExprP<Vec3>		doExpand	(ExpandContext&, const ArgExprs& x) const
   3021 	{
   3022 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
   3023 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
   3024 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
   3025 	}
   3026 };
   3027 
   3028 DEFINE_CONSTRUCTOR2(Cross, Vec3, cross, Vec3, Vec3)
   3029 
   3030 template<int Size>
   3031 class Normalize : public DerivedFunc<
   3032 	Signature<typename ContainerOf<float, Size>::Container,
   3033 			  typename ContainerOf<float, Size>::Container> >
   3034 {
   3035 public:
   3036 	typedef typename	Normalize::Ret		Ret;
   3037 	typedef typename	Normalize::ArgExprs	ArgExprs;
   3038 
   3039 	string		getName		(void) const
   3040 	{
   3041 		return "normalize";
   3042 	}
   3043 
   3044 protected:
   3045 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
   3046 	{
   3047 		return args.a / length<Size>(args.a);
   3048 	}
   3049 };
   3050 
   3051 template <int Size>
   3052 class FaceForward : public DerivedFunc<
   3053 	Signature<typename ContainerOf<float, Size>::Container,
   3054 			  typename ContainerOf<float, Size>::Container,
   3055 			  typename ContainerOf<float, Size>::Container,
   3056 			  typename ContainerOf<float, Size>::Container> >
   3057 {
   3058 public:
   3059 	typedef typename	FaceForward::Ret		Ret;
   3060 	typedef typename	FaceForward::ArgExprs	ArgExprs;
   3061 
   3062 	string		getName		(void) const
   3063 	{
   3064 		return "faceforward";
   3065 	}
   3066 
   3067 protected:
   3068 
   3069 
   3070 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
   3071 	{
   3072 		return cond(dot(args.c, args.b) < constant(0.0f), args.a, -args.a);
   3073 	}
   3074 };
   3075 
   3076 template<int Size, typename Ret, typename Arg0, typename Arg1>
   3077 struct ApplyReflect
   3078 {
   3079 	static ExprP<Ret> apply	(ExpandContext&		ctx,
   3080 							 const ExprP<Arg0>&	i,
   3081 							 const ExprP<Arg1>&	n)
   3082 	{
   3083 		const ExprP<float>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
   3084 
   3085 		return i - alternatives((n * dotNI) * constant(2.0f),
   3086 								n * (dotNI * constant(2.0f)));
   3087 	};
   3088 };
   3089 
   3090 template<typename Ret, typename Arg0, typename Arg1>
   3091 struct ApplyReflect<1, Ret, Arg0, Arg1>
   3092 {
   3093 	static ExprP<Ret> apply	(ExpandContext&,
   3094 							 const ExprP<Arg0>&	i,
   3095 							 const ExprP<Arg1>&	n)
   3096 	{
   3097 		return i - alternatives(alternatives((n * (n*i)) * constant(2.0f),
   3098 											n * ((n*i) * constant(2.0f))),
   3099 											(n * n) * (i * constant(2.0f)));
   3100 	};
   3101 };
   3102 
   3103 template <int Size>
   3104 class Reflect : public DerivedFunc<
   3105 	Signature<typename ContainerOf<float, Size>::Container,
   3106 			  typename ContainerOf<float, Size>::Container,
   3107 			  typename ContainerOf<float, Size>::Container> >
   3108 {
   3109 public:
   3110 	typedef typename	Reflect::Ret		Ret;
   3111 	typedef typename	Reflect::Arg0		Arg0;
   3112 	typedef typename	Reflect::Arg1		Arg1;
   3113 	typedef typename	Reflect::ArgExprs	ArgExprs;
   3114 
   3115 	string		getName		(void) const
   3116 	{
   3117 		return "reflect";
   3118 	}
   3119 
   3120 protected:
   3121 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
   3122 	{
   3123 		const ExprP<Arg0>&	i		= args.a;
   3124 		const ExprP<Arg1>&	n		= args.b;
   3125 
   3126 		return ApplyReflect<Size, Ret, Arg0, Arg1>::apply(ctx, i, n);
   3127 	}
   3128 };
   3129 
   3130 template <int Size>
   3131 class Refract : public DerivedFunc<
   3132 	Signature<typename ContainerOf<float, Size>::Container,
   3133 			  typename ContainerOf<float, Size>::Container,
   3134 			  typename ContainerOf<float, Size>::Container,
   3135 			  float> >
   3136 {
   3137 public:
   3138 	typedef typename	Refract::Ret		Ret;
   3139 	typedef typename	Refract::Arg0		Arg0;
   3140 	typedef typename	Refract::Arg1		Arg1;
   3141 	typedef typename	Refract::ArgExprs	ArgExprs;
   3142 
   3143 	string		getName		(void) const
   3144 	{
   3145 		return "refract";
   3146 	}
   3147 
   3148 protected:
   3149 	ExprP<Ret>	doExpand	(ExpandContext&	ctx, const ArgExprs& args) const
   3150 	{
   3151 		const ExprP<Arg0>&	i		= args.a;
   3152 		const ExprP<Arg1>&	n		= args.b;
   3153 		const ExprP<float>&	eta		= args.c;
   3154 		const ExprP<float>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
   3155 		const ExprP<float>	k1		= bindExpression("k1", ctx, constant(1.0f) - eta * eta *
   3156 												(constant(1.0f) - dotNI * dotNI));
   3157 
   3158 		const ExprP<float>	k2		= bindExpression("k2", ctx,
   3159 												(((dotNI * (-dotNI)) + constant(1.0f)) * eta)
   3160 												* (-eta) + constant(1.0f));
   3161 		const ExprP<float>	k		= bindExpression("k", ctx, alternatives(k1, k2));
   3162 
   3163 		return cond(k < constant(0.0f),
   3164 					genXType<float, Size>(constant(0.0f)),
   3165 					i * eta - n * (eta * dotNI + sqrt(k)));
   3166 	}
   3167 };
   3168 
   3169 class PreciseFunc1 : public CFloatFunc1
   3170 {
   3171 public:
   3172 			PreciseFunc1	(const string& name, DoubleFunc1& func) : CFloatFunc1(name, func) {}
   3173 protected:
   3174 	double	precision		(const EvalContext&, double, double) const	{ return 0.0; }
   3175 };
   3176 
   3177 class Abs : public PreciseFunc1
   3178 {
   3179 public:
   3180 	Abs (void) : PreciseFunc1("abs", deAbs) {}
   3181 };
   3182 
   3183 class Sign : public PreciseFunc1
   3184 {
   3185 public:
   3186 	Sign (void) : PreciseFunc1("sign", deSign) {}
   3187 };
   3188 
   3189 class Floor : public PreciseFunc1
   3190 {
   3191 public:
   3192 	Floor (void) : PreciseFunc1("floor", deFloor) {}
   3193 };
   3194 
   3195 class Trunc : public PreciseFunc1
   3196 {
   3197 public:
   3198 	Trunc (void) : PreciseFunc1("trunc", deTrunc) {}
   3199 };
   3200 
   3201 class Round : public FloatFunc1
   3202 {
   3203 public:
   3204 	string		getName		(void) const								{ return "round"; }
   3205 
   3206 protected:
   3207 	Interval	applyPoint	(const EvalContext&, double x) const
   3208 	{
   3209 		double			truncated	= 0.0;
   3210 		const double	fract		= deModf(x, &truncated);
   3211 		Interval		ret;
   3212 
   3213 		if (fabs(fract) <= 0.5)
   3214 			ret |= truncated;
   3215 		if (fabs(fract) >= 0.5)
   3216 			ret |= truncated + deSign(fract);
   3217 
   3218 		return ret;
   3219 	}
   3220 
   3221 	double		precision	(const EvalContext&, double, double) const	{ return 0.0; }
   3222 };
   3223 
   3224 class RoundEven : public PreciseFunc1
   3225 {
   3226 public:
   3227 	RoundEven (void) : PreciseFunc1("roundEven", deRoundEven) {}
   3228 };
   3229 
   3230 class Ceil : public PreciseFunc1
   3231 {
   3232 public:
   3233 	Ceil (void) : PreciseFunc1("ceil", deCeil) {}
   3234 };
   3235 
   3236 DEFINE_DERIVED_FLOAT1(Fract, fract, x, x - app<Floor>(x));
   3237 
   3238 class PreciseFunc2 : public CFloatFunc2
   3239 {
   3240 public:
   3241 			PreciseFunc2	(const string& name, DoubleFunc2& func) : CFloatFunc2(name, func) {}
   3242 protected:
   3243 	double	precision		(const EvalContext&, double, double, double) const { return 0.0; }
   3244 };
   3245 
   3246 DEFINE_DERIVED_FLOAT2(Mod, mod, x, y, x - y * app<Floor>(x / y));
   3247 
   3248 class Modf : public PrimitiveFunc<Signature<float, float, float> >
   3249 {
   3250 public:
   3251 	string	getName				(void) const
   3252 	{
   3253 		return "modf";
   3254 	}
   3255 
   3256 protected:
   3257 	IRet	doApply				(const EvalContext&, const IArgs& iargs) const
   3258 	{
   3259 		Interval	fracIV;
   3260 		Interval&	wholeIV		= const_cast<Interval&>(iargs.b);
   3261 		double		intPart		= 0;
   3262 
   3263 		TCU_INTERVAL_APPLY_MONOTONE1(fracIV, x, iargs.a, frac, frac = deModf(x, &intPart));
   3264 		TCU_INTERVAL_APPLY_MONOTONE1(wholeIV, x, iargs.a, whole,
   3265 									 deModf(x, &intPart); whole = intPart);
   3266 
   3267 		if (!iargs.a.isFinite())
   3268 		{
   3269 			// Behavior on modf(Inf) not well-defined, allow anything as a fractional part
   3270 			// See Khronos bug 13907
   3271 			fracIV |= TCU_NAN;
   3272 		}
   3273 
   3274 		return fracIV;
   3275 	}
   3276 
   3277 	int		getOutParamIndex	(void) const
   3278 	{
   3279 		return 1;
   3280 	}
   3281 };
   3282 
   3283 class Min : public PreciseFunc2 { public: Min (void) : PreciseFunc2("min", deMin) {} };
   3284 class Max : public PreciseFunc2 { public: Max (void) : PreciseFunc2("max", deMax) {} };
   3285 
   3286 class Clamp : public FloatFunc3
   3287 {
   3288 public:
   3289 	string	getName		(void) const { return "clamp"; }
   3290 
   3291 	double	applyExact	(double x, double minVal, double maxVal) const
   3292 	{
   3293 		return de::min(de::max(x, minVal), maxVal);
   3294 	}
   3295 
   3296 	double	precision	(const EvalContext&, double, double, double minVal, double maxVal) const
   3297 	{
   3298 		return minVal > maxVal ? TCU_NAN : 0.0;
   3299 	}
   3300 };
   3301 
   3302 ExprP<float> clamp(const ExprP<float>& x, const ExprP<float>& minVal, const ExprP<float>& maxVal)
   3303 {
   3304 	return app<Clamp>(x, minVal, maxVal);
   3305 }
   3306 
   3307 DEFINE_DERIVED_FLOAT3(Mix, mix, x, y, a, alternatives((x * (constant(1.0f) - a)) + y * a,
   3308 													  x + (y - x) * a));
   3309 
   3310 static double step (double edge, double x)
   3311 {
   3312 	return x < edge ? 0.0 : 1.0;
   3313 }
   3314 
   3315 class Step : public PreciseFunc2 { public: Step (void) : PreciseFunc2("step", step) {} };
   3316 
   3317 class SmoothStep : public DerivedFunc<Signature<float, float, float, float> >
   3318 {
   3319 public:
   3320 	string		getName		(void) const
   3321 	{
   3322 		return "smoothstep";
   3323 	}
   3324 
   3325 protected:
   3326 
   3327 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
   3328 	{
   3329 		const ExprP<float>&		edge0	= args.a;
   3330 		const ExprP<float>&		edge1	= args.b;
   3331 		const ExprP<float>&		x		= args.c;
   3332 		const ExprP<float>		tExpr	= clamp((x - edge0) / (edge1 - edge0),
   3333 											constant(0.0f), constant(1.0f));
   3334 		const ExprP<float>		t		= bindExpression("t", ctx, tExpr);
   3335 
   3336 		return (t * t * (constant(3.0f) - constant(2.0f) * t));
   3337 	}
   3338 };
   3339 
   3340 class FrExp : public PrimitiveFunc<Signature<float, float, int> >
   3341 {
   3342 public:
   3343 	string	getName			(void) const
   3344 	{
   3345 		return "frexp";
   3346 	}
   3347 
   3348 protected:
   3349 	IRet	doApply			(const EvalContext&, const IArgs& iargs) const
   3350 	{
   3351 		IRet			ret;
   3352 		const IArg0&	x			= iargs.a;
   3353 		IArg1&			exponent	= const_cast<IArg1&>(iargs.b);
   3354 
   3355 		if (x.hasNaN() || x.contains(TCU_INFINITY) || x.contains(-TCU_INFINITY))
   3356 		{
   3357 			// GLSL (in contrast to IEEE) says that result of applying frexp
   3358 			// to infinity is undefined
   3359 			ret = Interval::unbounded() | TCU_NAN;
   3360 			exponent = Interval(-deLdExp(1.0, 31), deLdExp(1.0, 31)-1);
   3361 		}
   3362 		else if (!x.empty())
   3363 		{
   3364 			int				loExp	= 0;
   3365 			const double	loFrac	= deFrExp(x.lo(), &loExp);
   3366 			int				hiExp	= 0;
   3367 			const double	hiFrac	= deFrExp(x.hi(), &hiExp);
   3368 
   3369 			if (deSign(loFrac) != deSign(hiFrac))
   3370 			{
   3371 				exponent = Interval(-TCU_INFINITY, de::max(loExp, hiExp));
   3372 				ret = Interval();
   3373 				if (deSign(loFrac) < 0)
   3374 					ret |= Interval(-1.0 + DBL_EPSILON*0.5, 0.0);
   3375 				if (deSign(hiFrac) > 0)
   3376 					ret |= Interval(0.0, 1.0 - DBL_EPSILON*0.5);
   3377 			}
   3378 			else
   3379 			{
   3380 				exponent = Interval(loExp, hiExp);
   3381 				if (loExp == hiExp)
   3382 					ret = Interval(loFrac, hiFrac);
   3383 				else
   3384 					ret = deSign(loFrac) * Interval(0.5, 1.0 - DBL_EPSILON*0.5);
   3385 			}
   3386 		}
   3387 
   3388 		return ret;
   3389 	}
   3390 
   3391 	int	getOutParamIndex	(void) const
   3392 	{
   3393 		return 1;
   3394 	}
   3395 };
   3396 
   3397 class LdExp : public PrimitiveFunc<Signature<float, float, int> >
   3398 {
   3399 public:
   3400 	string		getName			(void) const
   3401 	{
   3402 		return "ldexp";
   3403 	}
   3404 
   3405 protected:
   3406 	Interval	doApply			(const EvalContext& ctx, const IArgs& iargs) const
   3407 	{
   3408 		Interval	ret = call<Exp2>(ctx, iargs.b);
   3409 		// Khronos bug 11180 consensus: if exp2(exponent) cannot be represented,
   3410 		// the result is undefined.
   3411 
   3412 		if (ret.contains(TCU_INFINITY) | ret.contains(-TCU_INFINITY))
   3413 			ret |= TCU_NAN;
   3414 
   3415 		return call<Mul>(ctx, iargs.a, ret);
   3416 	}
   3417 };
   3418 
   3419 template<int Rows, int Columns>
   3420 class Transpose : public PrimitiveFunc<Signature<Matrix<float, Rows, Columns>,
   3421 												 Matrix<float, Columns, Rows> > >
   3422 {
   3423 public:
   3424 	typedef typename Transpose::IRet	IRet;
   3425 	typedef typename Transpose::IArgs	IArgs;
   3426 
   3427 	string		getName		(void) const
   3428 	{
   3429 		return "transpose";
   3430 	}
   3431 
   3432 protected:
   3433 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   3434 	{
   3435 		IRet ret;
   3436 
   3437 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
   3438 		{
   3439 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
   3440 				ret(rowNdx, colNdx) = iargs.a(colNdx, rowNdx);
   3441 		}
   3442 
   3443 		return ret;
   3444 	}
   3445 };
   3446 
   3447 template<typename Ret, typename Arg0, typename Arg1>
   3448 class MulFunc : public PrimitiveFunc<Signature<Ret, Arg0, Arg1> >
   3449 {
   3450 public:
   3451 	string	getName	(void) const									{ return "mul"; }
   3452 
   3453 protected:
   3454 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   3455 	{
   3456 		os << "(" << *args[0] << " * " << *args[1] << ")";
   3457 	}
   3458 };
   3459 
   3460 template<int LeftRows, int Middle, int RightCols>
   3461 class MatMul : public MulFunc<Matrix<float, LeftRows, RightCols>,
   3462 							  Matrix<float, LeftRows, Middle>,
   3463 							  Matrix<float, Middle, RightCols> >
   3464 {
   3465 protected:
   3466 	typedef typename MatMul::IRet	IRet;
   3467 	typedef typename MatMul::IArgs	IArgs;
   3468 	typedef typename MatMul::IArg0	IArg0;
   3469 	typedef typename MatMul::IArg1	IArg1;
   3470 
   3471 	IRet	doApply	(const EvalContext&	ctx, const IArgs& iargs) const
   3472 	{
   3473 		const IArg0&	left	= iargs.a;
   3474 		const IArg1&	right	= iargs.b;
   3475 		IRet			ret;
   3476 
   3477 		for (int row = 0; row < LeftRows; ++row)
   3478 		{
   3479 			for (int col = 0; col < RightCols; ++col)
   3480 			{
   3481 				Interval	element	(0.0);
   3482 
   3483 				for (int ndx = 0; ndx < Middle; ++ndx)
   3484 					element = call<Add>(ctx, element,
   3485 										call<Mul>(ctx, left[ndx][row], right[col][ndx]));
   3486 
   3487 				ret[col][row] = element;
   3488 			}
   3489 		}
   3490 
   3491 		return ret;
   3492 	}
   3493 };
   3494 
   3495 template<int Rows, int Cols>
   3496 class VecMatMul : public MulFunc<Vector<float, Cols>,
   3497 								 Vector<float, Rows>,
   3498 								 Matrix<float, Rows, Cols> >
   3499 {
   3500 public:
   3501 	typedef typename VecMatMul::IRet	IRet;
   3502 	typedef typename VecMatMul::IArgs	IArgs;
   3503 	typedef typename VecMatMul::IArg0	IArg0;
   3504 	typedef typename VecMatMul::IArg1	IArg1;
   3505 
   3506 protected:
   3507 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   3508 	{
   3509 		const IArg0&	left	= iargs.a;
   3510 		const IArg1&	right	= iargs.b;
   3511 		IRet			ret;
   3512 
   3513 		for (int col = 0; col < Cols; ++col)
   3514 		{
   3515 			Interval	element	(0.0);
   3516 
   3517 			for (int row = 0; row < Rows; ++row)
   3518 				element = call<Add>(ctx, element, call<Mul>(ctx, left[row], right[col][row]));
   3519 
   3520 			ret[col] = element;
   3521 		}
   3522 
   3523 		return ret;
   3524 	}
   3525 };
   3526 
   3527 template<int Rows, int Cols>
   3528 class MatVecMul : public MulFunc<Vector<float, Rows>,
   3529 								 Matrix<float, Rows, Cols>,
   3530 								 Vector<float, Cols> >
   3531 {
   3532 public:
   3533 	typedef typename MatVecMul::IRet	IRet;
   3534 	typedef typename MatVecMul::IArgs	IArgs;
   3535 	typedef typename MatVecMul::IArg0	IArg0;
   3536 	typedef typename MatVecMul::IArg1	IArg1;
   3537 
   3538 protected:
   3539 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   3540 	{
   3541 		const IArg0&	left	= iargs.a;
   3542 		const IArg1&	right	= iargs.b;
   3543 
   3544 		return call<VecMatMul<Cols, Rows> >(ctx, right,
   3545 											call<Transpose<Rows, Cols> >(ctx, left));
   3546 	}
   3547 };
   3548 
   3549 template<int Rows, int Cols>
   3550 class OuterProduct : public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>,
   3551 													Vector<float, Rows>,
   3552 													Vector<float, Cols> > >
   3553 {
   3554 public:
   3555 	typedef typename OuterProduct::IRet		IRet;
   3556 	typedef typename OuterProduct::IArgs	IArgs;
   3557 
   3558 	string	getName	(void) const
   3559 	{
   3560 		return "outerProduct";
   3561 	}
   3562 
   3563 protected:
   3564 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   3565 	{
   3566 		IRet	ret;
   3567 
   3568 		for (int row = 0; row < Rows; ++row)
   3569 		{
   3570 			for (int col = 0; col < Cols; ++col)
   3571 				ret[col][row] = call<Mul>(ctx, iargs.a[row], iargs.b[col]);
   3572 		}
   3573 
   3574 		return ret;
   3575 	}
   3576 };
   3577 
   3578 template<int Rows, int Cols>
   3579 ExprP<Matrix<float, Rows, Cols> > outerProduct (const ExprP<Vector<float, Rows> >& left,
   3580 												const ExprP<Vector<float, Cols> >& right)
   3581 {
   3582 	return app<OuterProduct<Rows, Cols> >(left, right);
   3583 }
   3584 
   3585 template<int Size>
   3586 class DeterminantBase : public DerivedFunc<Signature<float, Matrix<float, Size, Size> > >
   3587 {
   3588 public:
   3589 	string	getName	(void) const { return "determinant"; }
   3590 };
   3591 
   3592 template<int Size>
   3593 class Determinant;
   3594 
   3595 template<int Size>
   3596 ExprP<float> determinant (ExprP<Matrix<float, Size, Size> > mat)
   3597 {
   3598 	return app<Determinant<Size> >(mat);
   3599 }
   3600 
   3601 template<>
   3602 class Determinant<2> : public DeterminantBase<2>
   3603 {
   3604 protected:
   3605 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
   3606 	{
   3607 		ExprP<Mat2>	mat	= args.a;
   3608 
   3609 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
   3610 	}
   3611 };
   3612 
   3613 template<>
   3614 class Determinant<3> : public DeterminantBase<3>
   3615 {
   3616 protected:
   3617 	ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const
   3618 	{
   3619 		ExprP<Mat3>	mat	= args.a;
   3620 
   3621 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
   3622 				mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
   3623 				mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
   3624 	}
   3625 };
   3626 
   3627 template<>
   3628 class Determinant<4> : public DeterminantBase<4>
   3629 {
   3630 protected:
   3631 	 ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
   3632 	{
   3633 		ExprP<Mat4>	mat	= args.a;
   3634 		ExprP<Mat3>	minors[4];
   3635 
   3636 		for (int ndx = 0; ndx < 4; ++ndx)
   3637 		{
   3638 			ExprP<Vec4>		minorColumns[3];
   3639 			ExprP<Vec3>		columns[3];
   3640 
   3641 			for (int col = 0; col < 3; ++col)
   3642 				minorColumns[col] = mat[col < ndx ? col : col + 1];
   3643 
   3644 			for (int col = 0; col < 3; ++col)
   3645 				columns[col] = vec3(minorColumns[0][col+1],
   3646 									minorColumns[1][col+1],
   3647 									minorColumns[2][col+1]);
   3648 
   3649 			minors[ndx] = bindExpression("minor", ctx,
   3650 										 mat3(columns[0], columns[1], columns[2]));
   3651 		}
   3652 
   3653 		return (mat[0][0] * determinant(minors[0]) -
   3654 				mat[1][0] * determinant(minors[1]) +
   3655 				mat[2][0] * determinant(minors[2]) -
   3656 				mat[3][0] * determinant(minors[3]));
   3657 	}
   3658 };
   3659 
   3660 template<int Size> class Inverse;
   3661 
   3662 template <int Size>
   3663 ExprP<Matrix<float, Size, Size> > inverse (ExprP<Matrix<float, Size, Size> > mat)
   3664 {
   3665 	return app<Inverse<Size> >(mat);
   3666 }
   3667 
   3668 template<>
   3669 class Inverse<2> : public DerivedFunc<Signature<Mat2, Mat2> >
   3670 {
   3671 public:
   3672 	string		getName	(void) const
   3673 	{
   3674 		return "inverse";
   3675 	}
   3676 
   3677 protected:
   3678 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
   3679 	{
   3680 		ExprP<Mat2>		mat = args.a;
   3681 		ExprP<float>	det	= bindExpression("det", ctx, determinant(mat));
   3682 
   3683 		return mat2(vec2(mat[1][1] / det, -mat[0][1] / det),
   3684 					vec2(-mat[1][0] / det, mat[0][0] / det));
   3685 	}
   3686 };
   3687 
   3688 template<>
   3689 class Inverse<3> : public DerivedFunc<Signature<Mat3, Mat3> >
   3690 {
   3691 public:
   3692 	string		getName		(void) const
   3693 	{
   3694 		return "inverse";
   3695 	}
   3696 
   3697 protected:
   3698 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args)			const
   3699 	{
   3700 		ExprP<Mat3>		mat		= args.a;
   3701 		ExprP<Mat2>		invA	= bindExpression("invA", ctx,
   3702 												 inverse(mat2(vec2(mat[0][0], mat[0][1]),
   3703 															  vec2(mat[1][0], mat[1][1]))));
   3704 
   3705 		ExprP<Vec2>		matB	= bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
   3706 		ExprP<Vec2>		matC	= bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
   3707 		ExprP<float>	matD	= bindExpression("matD", ctx, mat[2][2]);
   3708 
   3709 		ExprP<float>	schur	= bindExpression("schur", ctx,
   3710 												 constant(1.0f) /
   3711 												 (matD - dot(matC * invA, matB)));
   3712 
   3713 		ExprP<Vec2>		t1		= invA * matB;
   3714 		ExprP<Vec2>		t2		= t1 * schur;
   3715 		ExprP<Mat2>		t3		= outerProduct(t2, matC);
   3716 		ExprP<Mat2>		t4		= t3 * invA;
   3717 		ExprP<Mat2>		t5		= invA + t4;
   3718 		ExprP<Mat2>		blockA	= bindExpression("blockA", ctx, t5);
   3719 		ExprP<Vec2>		blockB	= bindExpression("blockB", ctx,
   3720 												 (invA * matB) * -schur);
   3721 		ExprP<Vec2>		blockC	= bindExpression("blockC", ctx,
   3722 												 (matC * invA) * -schur);
   3723 
   3724 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
   3725 					vec3(blockA[1][0], blockA[1][1], blockC[1]),
   3726 					vec3(blockB[0], blockB[1], schur));
   3727 	}
   3728 };
   3729 
   3730 template<>
   3731 class Inverse<4> : public DerivedFunc<Signature<Mat4, Mat4> >
   3732 {
   3733 public:
   3734 	string		getName		(void) const { return "inverse"; }
   3735 
   3736 protected:
   3737 	ExprP<Ret>			doExpand			(ExpandContext&		ctx,
   3738 											 const ArgExprs&	args)			const
   3739 	{
   3740 		ExprP<Mat4>	mat		= args.a;
   3741 		ExprP<Mat2>	invA	= bindExpression("invA", ctx,
   3742 											 inverse(mat2(vec2(mat[0][0], mat[0][1]),
   3743 														  vec2(mat[1][0], mat[1][1]))));
   3744 		ExprP<Mat2>	matB	= bindExpression("matB", ctx,
   3745 											 mat2(vec2(mat[2][0], mat[2][1]),
   3746 												  vec2(mat[3][0], mat[3][1])));
   3747 		ExprP<Mat2>	matC	= bindExpression("matC", ctx,
   3748 											 mat2(vec2(mat[0][2], mat[0][3]),
   3749 												  vec2(mat[1][2], mat[1][3])));
   3750 		ExprP<Mat2>	matD	= bindExpression("matD", ctx,
   3751 											 mat2(vec2(mat[2][2], mat[2][3]),
   3752 												  vec2(mat[3][2], mat[3][3])));
   3753 		ExprP<Mat2>	schur	= bindExpression("schur", ctx,
   3754 											 inverse(matD + -(matC * invA * matB)));
   3755 		ExprP<Mat2>	blockA	= bindExpression("blockA", ctx,
   3756 											 invA + (invA * matB * schur * matC * invA));
   3757 		ExprP<Mat2>	blockB	= bindExpression("blockB", ctx,
   3758 											 (-invA) * matB * schur);
   3759 		ExprP<Mat2>	blockC	= bindExpression("blockC", ctx,
   3760 											 (-schur) * matC * invA);
   3761 
   3762 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
   3763 					vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
   3764 					vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
   3765 					vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
   3766 	}
   3767 };
   3768 
   3769 class Fma : public DerivedFunc<Signature<float, float, float, float> >
   3770 {
   3771 public:
   3772 	string			getName					(void) const
   3773 	{
   3774 		return "fma";
   3775 	}
   3776 
   3777 	string			getRequiredExtension	(void) const
   3778 	{
   3779 		return "GL_EXT_gpu_shader5";
   3780 	}
   3781 
   3782 protected:
   3783 	ExprP<float>	doExpand				(ExpandContext&, const ArgExprs& x) const
   3784 	{
   3785 		return x.a * x.b + x.c;
   3786 	}
   3787 };
   3788 
   3789 } // Functions
   3790 
   3791 using namespace Functions;
   3792 
   3793 template <typename T>
   3794 ExprP<typename T::Element> ContainerExprPBase<T>::operator[] (int i) const
   3795 {
   3796 	return Functions::getComponent(exprP<T>(*this), i);
   3797 }
   3798 
   3799 ExprP<float> operator+ (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3800 {
   3801 	return app<Add>(arg0, arg1);
   3802 }
   3803 
   3804 ExprP<float> operator- (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3805 {
   3806 	return app<Sub>(arg0, arg1);
   3807 }
   3808 
   3809 ExprP<float> operator- (const ExprP<float>& arg0)
   3810 {
   3811 	return app<Negate>(arg0);
   3812 }
   3813 
   3814 ExprP<float> operator* (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3815 {
   3816 	return app<Mul>(arg0, arg1);
   3817 }
   3818 
   3819 ExprP<float> operator/ (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3820 {
   3821 	return app<Div>(arg0, arg1);
   3822 }
   3823 
   3824 template <typename Sig_, int Size>
   3825 class GenFunc : public PrimitiveFunc<Signature<
   3826 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
   3827 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
   3828 	typename ContainerOf<typename Sig_::Arg1, Size>::Container,
   3829 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
   3830 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
   3831 {
   3832 public:
   3833 	typedef typename GenFunc::IArgs		IArgs;
   3834 	typedef typename GenFunc::IRet		IRet;
   3835 
   3836 			GenFunc					(const Func<Sig_>&	scalarFunc) : m_func (scalarFunc) {}
   3837 
   3838 	string	getName					(void) const
   3839 	{
   3840 		return m_func.getName();
   3841 	}
   3842 
   3843 	int		getOutParamIndex		(void) const
   3844 	{
   3845 		return m_func.getOutParamIndex();
   3846 	}
   3847 
   3848 	string	getRequiredExtension	(void) const
   3849 	{
   3850 		return m_func.getRequiredExtension();
   3851 	}
   3852 
   3853 protected:
   3854 	void	doPrint					(ostream& os, const BaseArgExprs& args) const
   3855 	{
   3856 		m_func.print(os, args);
   3857 	}
   3858 
   3859 	IRet	doApply					(const EvalContext& ctx, const IArgs& iargs) const
   3860 	{
   3861 		IRet ret;
   3862 
   3863 		for (int ndx = 0; ndx < Size; ++ndx)
   3864 		{
   3865 			ret[ndx] =
   3866 				m_func.apply(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]);
   3867 		}
   3868 
   3869 		return ret;
   3870 	}
   3871 
   3872 	void	doGetUsedFuncs			(FuncSet& dst) const
   3873 	{
   3874 		m_func.getUsedFuncs(dst);
   3875 	}
   3876 
   3877 	const Func<Sig_>&	m_func;
   3878 };
   3879 
   3880 template <typename F, int Size>
   3881 class VectorizedFunc : public GenFunc<typename F::Sig, Size>
   3882 {
   3883 public:
   3884 	VectorizedFunc	(void) : GenFunc<typename F::Sig, Size>(instance<F>()) {}
   3885 };
   3886 
   3887 
   3888 
   3889 template <typename Sig_, int Size>
   3890 class FixedGenFunc : public PrimitiveFunc <Signature<
   3891 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
   3892 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
   3893 	typename Sig_::Arg1,
   3894 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
   3895 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
   3896 {
   3897 public:
   3898 	typedef typename FixedGenFunc::IArgs		IArgs;
   3899 	typedef typename FixedGenFunc::IRet			IRet;
   3900 
   3901 	string						getName			(void) const
   3902 	{
   3903 		return this->doGetScalarFunc().getName();
   3904 	}
   3905 
   3906 protected:
   3907 	void						doPrint			(ostream& os, const BaseArgExprs& args) const
   3908 	{
   3909 		this->doGetScalarFunc().print(os, args);
   3910 	}
   3911 
   3912 	IRet						doApply			(const EvalContext& ctx,
   3913 												 const IArgs&		iargs) const
   3914 	{
   3915 		IRet				ret;
   3916 		const Func<Sig_>&	func	= this->doGetScalarFunc();
   3917 
   3918 		for (int ndx = 0; ndx < Size; ++ndx)
   3919 			ret[ndx] = func.apply(ctx, iargs.a[ndx], iargs.b, iargs.c[ndx], iargs.d[ndx]);
   3920 
   3921 		return ret;
   3922 	}
   3923 
   3924 	virtual const Func<Sig_>&	doGetScalarFunc	(void) const = 0;
   3925 };
   3926 
   3927 template <typename F, int Size>
   3928 class FixedVecFunc : public FixedGenFunc<typename F::Sig, Size>
   3929 {
   3930 protected:
   3931 	const Func<typename F::Sig>& doGetScalarFunc	(void) const { return instance<F>(); }
   3932 };
   3933 
   3934 template<typename Sig>
   3935 struct GenFuncs
   3936 {
   3937 	GenFuncs (const Func<Sig>&			func_,
   3938 			  const GenFunc<Sig, 2>&	func2_,
   3939 			  const GenFunc<Sig, 3>&	func3_,
   3940 			  const GenFunc<Sig, 4>&	func4_)
   3941 		: func	(func_)
   3942 		, func2	(func2_)
   3943 		, func3	(func3_)
   3944 		, func4	(func4_)
   3945 	{}
   3946 
   3947 	const Func<Sig>&		func;
   3948 	const GenFunc<Sig, 2>&	func2;
   3949 	const GenFunc<Sig, 3>&	func3;
   3950 	const GenFunc<Sig, 4>&	func4;
   3951 };
   3952 
   3953 template<typename F>
   3954 GenFuncs<typename F::Sig> makeVectorizedFuncs (void)
   3955 {
   3956 	return GenFuncs<typename F::Sig>(instance<F>(),
   3957 									 instance<VectorizedFunc<F, 2> >(),
   3958 									 instance<VectorizedFunc<F, 3> >(),
   3959 									 instance<VectorizedFunc<F, 4> >());
   3960 }
   3961 
   3962 template<int Size>
   3963 ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >& arg0,
   3964 									  const ExprP<Vector<float, Size> >& arg1)
   3965 {
   3966 	return app<VectorizedFunc<Mul, Size> >(arg0, arg1);
   3967 }
   3968 
   3969 template<int Size>
   3970 ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >&	arg0,
   3971 									  const ExprP<float>&					arg1)
   3972 {
   3973 	return app<FixedVecFunc<Mul, Size> >(arg0, arg1);
   3974 }
   3975 
   3976 template<int Size>
   3977 ExprP<Vector<float, Size> > operator/(const ExprP<Vector<float, Size> >&	arg0,
   3978 									  const ExprP<float>&					arg1)
   3979 {
   3980 	return app<FixedVecFunc<Div, Size> >(arg0, arg1);
   3981 }
   3982 
   3983 template<int Size>
   3984 ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0)
   3985 {
   3986 	return app<VectorizedFunc<Negate, Size> >(arg0);
   3987 }
   3988 
   3989 template<int Size>
   3990 ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0,
   3991 									  const ExprP<Vector<float, Size> >& arg1)
   3992 {
   3993 	return app<VectorizedFunc<Sub, Size> >(arg0, arg1);
   3994 }
   3995 
   3996 template<int LeftRows, int Middle, int RightCols>
   3997 ExprP<Matrix<float, LeftRows, RightCols> >
   3998 operator* (const ExprP<Matrix<float, LeftRows, Middle> >&	left,
   3999 		   const ExprP<Matrix<float, Middle, RightCols> >&	right)
   4000 {
   4001 	return app<MatMul<LeftRows, Middle, RightCols> >(left, right);
   4002 }
   4003 
   4004 template<int Rows, int Cols>
   4005 ExprP<Vector<float, Rows> > operator* (const ExprP<Vector<float, Cols> >&		left,
   4006 									   const ExprP<Matrix<float, Rows, Cols> >&	right)
   4007 {
   4008 	return app<VecMatMul<Rows, Cols> >(left, right);
   4009 }
   4010 
   4011 template<int Rows, int Cols>
   4012 ExprP<Vector<float, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
   4013 									   const ExprP<Vector<float, Rows> >&		right)
   4014 {
   4015 	return app<MatVecMul<Rows, Cols> >(left, right);
   4016 }
   4017 
   4018 template<int Rows, int Cols>
   4019 ExprP<Matrix<float, Rows, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
   4020 											 const ExprP<float>&						right)
   4021 {
   4022 	return app<ScalarMatFunc<Mul, Rows, Cols> >(left, right);
   4023 }
   4024 
   4025 template<int Rows, int Cols>
   4026 ExprP<Matrix<float, Rows, Cols> > operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
   4027 											 const ExprP<Matrix<float, Rows, Cols> >&	right)
   4028 {
   4029 	return app<CompMatFunc<Add, Rows, Cols> >(left, right);
   4030 }
   4031 
   4032 template<int Rows, int Cols>
   4033 ExprP<Matrix<float, Rows, Cols> > operator- (const ExprP<Matrix<float, Rows, Cols> >&	mat)
   4034 {
   4035 	return app<MatNeg<Rows, Cols> >(mat);
   4036 }
   4037 
   4038 template <typename T>
   4039 class Sampling
   4040 {
   4041 public:
   4042 	virtual void	genFixeds	(const FloatFormat&, vector<T>&)			const {}
   4043 	virtual T		genRandom	(const FloatFormat&, Precision, Random&)	const { return T(); }
   4044 	virtual double	getWeight	(void)										const { return 0.0; }
   4045 };
   4046 
   4047 template <>
   4048 class DefaultSampling<Void> : public Sampling<Void>
   4049 {
   4050 public:
   4051 	void	genFixeds	(const FloatFormat&, vector<Void>& dst) const { dst.push_back(Void()); }
   4052 };
   4053 
   4054 template <>
   4055 class DefaultSampling<bool> : public Sampling<bool>
   4056 {
   4057 public:
   4058 	void	genFixeds	(const FloatFormat&, vector<bool>& dst) const
   4059 	{
   4060 		dst.push_back(true);
   4061 		dst.push_back(false);
   4062 	}
   4063 };
   4064 
   4065 template <>
   4066 class DefaultSampling<int> : public Sampling<int>
   4067 {
   4068 public:
   4069 	int		genRandom	(const FloatFormat&, Precision prec, Random& rnd) const
   4070 	{
   4071 		const int	exp		= rnd.getInt(0, getNumBits(prec)-2);
   4072 		const int	sign	= rnd.getBool() ? -1 : 1;
   4073 
   4074 		return sign * rnd.getInt(0, (deInt32)1 << exp);
   4075 	}
   4076 
   4077 	void	genFixeds	(const FloatFormat&, vector<int>& dst) const
   4078 	{
   4079 		dst.push_back(0);
   4080 		dst.push_back(-1);
   4081 		dst.push_back(1);
   4082 	}
   4083 	double	getWeight	(void) const { return 1.0; }
   4084 
   4085 private:
   4086 	static inline int getNumBits (Precision prec)
   4087 	{
   4088 		switch (prec)
   4089 		{
   4090 			case glu::PRECISION_LOWP:		return 8;
   4091 			case glu::PRECISION_MEDIUMP:	return 16;
   4092 			case glu::PRECISION_HIGHP:		return 32;
   4093 			default:
   4094 				DE_ASSERT(false);
   4095 				return 0;
   4096 		}
   4097 	}
   4098 };
   4099 
   4100 template <>
   4101 class DefaultSampling<float> : public Sampling<float>
   4102 {
   4103 public:
   4104 	float	genRandom	(const FloatFormat& format, Precision prec, Random& rnd) const;
   4105 	void	genFixeds	(const FloatFormat& format, vector<float>& dst) const;
   4106 	double	getWeight	(void) const { return 1.0; }
   4107 };
   4108 
   4109 //! Generate a random float from a reasonable general-purpose distribution.
   4110 float DefaultSampling<float>::genRandom (const FloatFormat& format,
   4111 										 Precision,
   4112 										 Random&			rnd) const
   4113 {
   4114 	const int		minExp			= format.getMinExp();
   4115 	const int		maxExp			= format.getMaxExp();
   4116 	const bool		haveSubnormal	= format.hasSubnormal() != tcu::NO;
   4117 
   4118 	// Choose exponent so that the cumulative distribution is cubic.
   4119 	// This makes the probability distribution quadratic, with the peak centered on zero.
   4120 	const double	minRoot			= deCbrt(minExp - 0.5 - (haveSubnormal ? 1.0 : 0.0));
   4121 	const double	maxRoot			= deCbrt(maxExp + 0.5);
   4122 	const int		fractionBits	= format.getFractionBits();
   4123 	const int		exp				= int(deRoundEven(dePow(rnd.getDouble(minRoot, maxRoot),
   4124 															3.0)));
   4125 	float			base			= 0.0f; // integral power of two
   4126 	float			quantum			= 0.0f; // smallest representable difference in the binade
   4127 	float			significand		= 0.0f; // Significand.
   4128 
   4129 	DE_ASSERT(fractionBits < std::numeric_limits<float>::digits);
   4130 
   4131 	// Generate some occasional special numbers
   4132 	switch (rnd.getInt(0, 64))
   4133 	{
   4134 		case 0:		return 0;
   4135 		case 1:		return TCU_INFINITY;
   4136 		case 2:		return -TCU_INFINITY;
   4137 		case 3:		return TCU_NAN;
   4138 		default:	break;
   4139 	}
   4140 
   4141 	if (exp >= minExp)
   4142 	{
   4143 		// Normal number
   4144 		base = deFloatLdExp(1.0f, exp);
   4145 		quantum = deFloatLdExp(1.0f, exp - fractionBits);
   4146 	}
   4147 	else
   4148 	{
   4149 		// Subnormal
   4150 		base = 0.0f;
   4151 		quantum = deFloatLdExp(1.0f, minExp - fractionBits);
   4152 	}
   4153 
   4154 	switch (rnd.getInt(0, 16))
   4155 	{
   4156 		case 0: // The highest number in this binade, significand is all bits one.
   4157 			significand = base - quantum;
   4158 			break;
   4159 		case 1: // Significand is one.
   4160 			significand = quantum;
   4161 			break;
   4162 		case 2: // Significand is zero.
   4163 			significand = 0.0;
   4164 			break;
   4165 		default: // Random (evenly distributed) significand.
   4166 		{
   4167 			deUint64 intFraction = rnd.getUint64() & ((1 << fractionBits) - 1);
   4168 			significand = float(intFraction) * quantum;
   4169 		}
   4170 	}
   4171 
   4172 	// Produce positive numbers more often than negative.
   4173 	return (rnd.getInt(0,3) == 0 ? -1.0f : 1.0f) * (base + significand);
   4174 }
   4175 
   4176 //! Generate a standard set of floats that should always be tested.
   4177 void DefaultSampling<float>::genFixeds (const FloatFormat& format, vector<float>& dst) const
   4178 {
   4179 	const int			minExp			= format.getMinExp();
   4180 	const int			maxExp			= format.getMaxExp();
   4181 	const int			fractionBits	= format.getFractionBits();
   4182 	const float			minQuantum		= deFloatLdExp(1.0f, minExp - fractionBits);
   4183 	const float			minNormalized	= deFloatLdExp(1.0f, minExp);
   4184 	const float			maxQuantum		= deFloatLdExp(1.0f, maxExp - fractionBits);
   4185 
   4186 	// NaN
   4187 	dst.push_back(TCU_NAN);
   4188 	// Zero
   4189 	dst.push_back(0.0f);
   4190 
   4191 	for (int sign = -1; sign <= 1; sign += 2)
   4192 	{
   4193 		// Smallest subnormal
   4194 		dst.push_back((float)sign * minQuantum);
   4195 
   4196 		// Largest subnormal
   4197 		dst.push_back((float)sign * (minNormalized - minQuantum));
   4198 
   4199 		// Smallest normalized
   4200 		dst.push_back((float)sign * minNormalized);
   4201 
   4202 		// Next smallest normalized
   4203 		dst.push_back((float)sign * (minNormalized + minQuantum));
   4204 
   4205 		dst.push_back((float)sign * 0.5f);
   4206 		dst.push_back((float)sign * 1.0f);
   4207 		dst.push_back((float)sign * 2.0f);
   4208 
   4209 		// Largest number
   4210 		dst.push_back((float)sign * (deFloatLdExp(1.0f, maxExp) +
   4211 									(deFloatLdExp(1.0f, maxExp) - maxQuantum)));
   4212 
   4213 		dst.push_back((float)sign * TCU_INFINITY);
   4214 	}
   4215 }
   4216 
   4217 template <typename T, int Size>
   4218 class DefaultSampling<Vector<T, Size> > : public Sampling<Vector<T, Size> >
   4219 {
   4220 public:
   4221 	typedef Vector<T, Size>		Value;
   4222 
   4223 	Value	genRandom	(const FloatFormat& fmt, Precision prec, Random& rnd) const
   4224 	{
   4225 		Value ret;
   4226 
   4227 		for (int ndx = 0; ndx < Size; ++ndx)
   4228 			ret[ndx] = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd);
   4229 
   4230 		return ret;
   4231 	}
   4232 
   4233 	void	genFixeds	(const FloatFormat& fmt, vector<Value>& dst) const
   4234 	{
   4235 		vector<T> scalars;
   4236 
   4237 		instance<DefaultSampling<T> >().genFixeds(fmt, scalars);
   4238 
   4239 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
   4240 			dst.push_back(Value(scalars[scalarNdx]));
   4241 	}
   4242 
   4243 	double	getWeight	(void) const
   4244 	{
   4245 		return dePow(instance<DefaultSampling<T> >().getWeight(), Size);
   4246 	}
   4247 };
   4248 
   4249 template <typename T, int Rows, int Columns>
   4250 class DefaultSampling<Matrix<T, Rows, Columns> > : public Sampling<Matrix<T, Rows, Columns> >
   4251 {
   4252 public:
   4253 	typedef Matrix<T, Rows, Columns>		Value;
   4254 
   4255 	Value	genRandom	(const FloatFormat& fmt, Precision prec, Random& rnd) const
   4256 	{
   4257 		Value ret;
   4258 
   4259 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
   4260 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
   4261 				ret(rowNdx, colNdx) = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd);
   4262 
   4263 		return ret;
   4264 	}
   4265 
   4266 	void	genFixeds	(const FloatFormat& fmt, vector<Value>& dst) const
   4267 	{
   4268 		vector<T> scalars;
   4269 
   4270 		instance<DefaultSampling<T> >().genFixeds(fmt, scalars);
   4271 
   4272 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
   4273 			dst.push_back(Value(scalars[scalarNdx]));
   4274 
   4275 		if (Columns == Rows)
   4276 		{
   4277 			Value	mat	(0.0);
   4278 			T		x	= T(1.0f);
   4279 			mat[0][0] = x;
   4280 			for (int ndx = 0; ndx < Columns; ++ndx)
   4281 			{
   4282 				mat[Columns-1-ndx][ndx] = x;
   4283 				x *= T(2.0f);
   4284 			}
   4285 			dst.push_back(mat);
   4286 		}
   4287 	}
   4288 
   4289 	double	getWeight	(void) const
   4290 	{
   4291 		return dePow(instance<DefaultSampling<T> >().getWeight(), Rows * Columns);
   4292 	}
   4293 };
   4294 
   4295 struct Context
   4296 {
   4297 	Context		(const string&		name_,
   4298 				 TestContext&		testContext_,
   4299 				 RenderContext&		renderContext_,
   4300 				 const FloatFormat&	floatFormat_,
   4301 				 const FloatFormat&	highpFormat_,
   4302 				 Precision			precision_,
   4303 				 ShaderType			shaderType_,
   4304 				 size_t				numRandoms_)
   4305 		: name				(name_)
   4306 		, testContext		(testContext_)
   4307 		, renderContext		(renderContext_)
   4308 		, floatFormat		(floatFormat_)
   4309 		, highpFormat		(highpFormat_)
   4310 		, precision			(precision_)
   4311 		, shaderType		(shaderType_)
   4312 		, numRandoms		(numRandoms_) {}
   4313 
   4314 	string				name;
   4315 	TestContext&		testContext;
   4316 	RenderContext&		renderContext;
   4317 	FloatFormat			floatFormat;
   4318 	FloatFormat			highpFormat;
   4319 	Precision			precision;
   4320 	ShaderType			shaderType;
   4321 	size_t				numRandoms;
   4322 };
   4323 
   4324 template<typename In0_ = Void, typename In1_ = Void, typename In2_ = Void, typename In3_ = Void>
   4325 struct InTypes
   4326 {
   4327 	typedef	In0_	In0;
   4328 	typedef	In1_	In1;
   4329 	typedef	In2_	In2;
   4330 	typedef	In3_	In3;
   4331 };
   4332 
   4333 template <typename In>
   4334 int numInputs (void)
   4335 {
   4336 	return (!isTypeValid<typename In::In0>() ? 0 :
   4337 			!isTypeValid<typename In::In1>() ? 1 :
   4338 			!isTypeValid<typename In::In2>() ? 2 :
   4339 			!isTypeValid<typename In::In3>() ? 3 :
   4340 			4);
   4341 }
   4342 
   4343 template<typename Out0_, typename Out1_ = Void>
   4344 struct OutTypes
   4345 {
   4346 	typedef	Out0_	Out0;
   4347 	typedef	Out1_	Out1;
   4348 };
   4349 
   4350 template <typename Out>
   4351 int numOutputs (void)
   4352 {
   4353 	return (!isTypeValid<typename Out::Out0>() ? 0 :
   4354 			!isTypeValid<typename Out::Out1>() ? 1 :
   4355 			2);
   4356 }
   4357 
   4358 template<typename In>
   4359 struct Inputs
   4360 {
   4361 	vector<typename In::In0>	in0;
   4362 	vector<typename In::In1>	in1;
   4363 	vector<typename In::In2>	in2;
   4364 	vector<typename In::In3>	in3;
   4365 };
   4366 
   4367 template<typename Out>
   4368 struct Outputs
   4369 {
   4370 	Outputs	(size_t size) : out0(size), out1(size) {}
   4371 
   4372 	vector<typename Out::Out0>	out0;
   4373 	vector<typename Out::Out1>	out1;
   4374 };
   4375 
   4376 template<typename In, typename Out>
   4377 struct Variables
   4378 {
   4379 	VariableP<typename In::In0>		in0;
   4380 	VariableP<typename In::In1>		in1;
   4381 	VariableP<typename In::In2>		in2;
   4382 	VariableP<typename In::In3>		in3;
   4383 	VariableP<typename Out::Out0>	out0;
   4384 	VariableP<typename Out::Out1>	out1;
   4385 };
   4386 
   4387 template<typename In>
   4388 struct Samplings
   4389 {
   4390 	Samplings	(const Sampling<typename In::In0>&	in0_,
   4391 				 const Sampling<typename In::In1>&	in1_,
   4392 				 const Sampling<typename In::In2>&	in2_,
   4393 				 const Sampling<typename In::In3>&	in3_)
   4394 		: in0 (in0_), in1 (in1_), in2 (in2_), in3 (in3_) {}
   4395 
   4396 	const Sampling<typename In::In0>&	in0;
   4397 	const Sampling<typename In::In1>&	in1;
   4398 	const Sampling<typename In::In2>&	in2;
   4399 	const Sampling<typename In::In3>&	in3;
   4400 };
   4401 
   4402 template<typename In>
   4403 struct DefaultSamplings : Samplings<In>
   4404 {
   4405 	DefaultSamplings	(void)
   4406 		: Samplings<In>(instance<DefaultSampling<typename In::In0> >(),
   4407 						instance<DefaultSampling<typename In::In1> >(),
   4408 						instance<DefaultSampling<typename In::In2> >(),
   4409 						instance<DefaultSampling<typename In::In3> >()) {}
   4410 };
   4411 
   4412 class PrecisionCase : public TestCase
   4413 {
   4414 public:
   4415 	IterateResult		iterate			(void);
   4416 
   4417 protected:
   4418 						PrecisionCase	(const Context&		context,
   4419 										 const string&		name,
   4420 										 const string&		extension	= "")
   4421 							: TestCase		(context.testContext,
   4422 											 name.c_str(),
   4423 											 name.c_str())
   4424 							, m_ctx			(context)
   4425 							, m_status		()
   4426 							, m_rnd			(0xdeadbeefu +
   4427 											 context.testContext.getCommandLine().getBaseSeed())
   4428 							, m_extension	(extension)
   4429 	{
   4430 	}
   4431 
   4432 	RenderContext&		getRenderContext(void) const			{ return m_ctx.renderContext; }
   4433 
   4434 	const FloatFormat&	getFormat		(void) const			{ return m_ctx.floatFormat; }
   4435 
   4436 	TestLog&			log				(void) const			{ return m_testCtx.getLog(); }
   4437 
   4438 	virtual void		runTest			(void) = 0;
   4439 
   4440 	template <typename In, typename Out>
   4441 	void				testStatement	(const Variables<In, Out>&	variables,
   4442 										 const Inputs<In>&			inputs,
   4443 										 const Statement&			stmt);
   4444 
   4445 	template<typename T>
   4446 	Symbol				makeSymbol		(const Variable<T>& variable)
   4447 	{
   4448 		return Symbol(variable.getName(), getVarTypeOf<T>(m_ctx.precision));
   4449 	}
   4450 
   4451 	Context				m_ctx;
   4452 	ResultCollector		m_status;
   4453 	Random				m_rnd;
   4454 	const string		m_extension;
   4455 };
   4456 
   4457 IterateResult PrecisionCase::iterate (void)
   4458 {
   4459 	runTest();
   4460 	m_status.setTestContextResult(m_testCtx);
   4461 	return STOP;
   4462 }
   4463 
   4464 template <typename In, typename Out>
   4465 void PrecisionCase::testStatement (const Variables<In, Out>&	variables,
   4466 								   const Inputs<In>&			inputs,
   4467 								   const Statement&				stmt)
   4468 {
   4469 	using namespace ShaderExecUtil;
   4470 
   4471 	typedef typename	In::In0		In0;
   4472 	typedef typename	In::In1		In1;
   4473 	typedef typename	In::In2		In2;
   4474 	typedef typename	In::In3		In3;
   4475 	typedef typename	Out::Out0	Out0;
   4476 	typedef typename	Out::Out1	Out1;
   4477 
   4478 	const FloatFormat&	fmt			= getFormat();
   4479 	const int			inCount		= numInputs<In>();
   4480 	const int			outCount	= numOutputs<Out>();
   4481 	const size_t		numValues	= (inCount > 0) ? inputs.in0.size() : 1;
   4482 	Outputs<Out>		outputs		(numValues);
   4483 	ShaderSpec			spec;
   4484 	const FloatFormat	highpFmt	= m_ctx.highpFormat;
   4485 	const int			maxMsgs		= 100;
   4486 	int					numErrors	= 0;
   4487 	Environment			env;		// Hoisted out of the inner loop for optimization.
   4488 
   4489 	switch (inCount)
   4490 	{
   4491 		case 4: DE_ASSERT(inputs.in3.size() == numValues);
   4492 		case 3: DE_ASSERT(inputs.in2.size() == numValues);
   4493 		case 2: DE_ASSERT(inputs.in1.size() == numValues);
   4494 		case 1: DE_ASSERT(inputs.in0.size() == numValues);
   4495 		default: break;
   4496 	}
   4497 
   4498 	// Print out the statement and its definitions
   4499 	log() << TestLog::Message << "Statement: " << stmt << TestLog::EndMessage;
   4500 	{
   4501 		ostringstream	oss;
   4502 		FuncSet			funcs;
   4503 
   4504 		stmt.getUsedFuncs(funcs);
   4505 		for (FuncSet::const_iterator it = funcs.begin(); it != funcs.end(); ++it)
   4506 		{
   4507 			(*it)->printDefinition(oss);
   4508 		}
   4509 		if (!funcs.empty())
   4510 			log() << TestLog::Message << "Reference definitions:\n" << oss.str()
   4511 				  << TestLog::EndMessage;
   4512 	}
   4513 
   4514 	// Initialize ShaderSpec from precision, variables and statement.
   4515 	{
   4516 		ostringstream os;
   4517 		os << "precision " << glu::getPrecisionName(m_ctx.precision) << " float;\n";
   4518 		spec.globalDeclarations = os.str();
   4519 	}
   4520 
   4521 	spec.version = getContextTypeGLSLVersion(getRenderContext().getType());
   4522 
   4523 	if (!m_extension.empty())
   4524 		spec.globalDeclarations = "#extension " + m_extension + " : require\n";
   4525 
   4526 	spec.inputs.resize(inCount);
   4527 
   4528 	switch (inCount)
   4529 	{
   4530 		case 4: spec.inputs[3] = makeSymbol(*variables.in3);
   4531 		case 3:	spec.inputs[2] = makeSymbol(*variables.in2);
   4532 		case 2:	spec.inputs[1] = makeSymbol(*variables.in1);
   4533 		case 1:	spec.inputs[0] = makeSymbol(*variables.in0);
   4534 		default: break;
   4535 	}
   4536 
   4537 	spec.outputs.resize(outCount);
   4538 
   4539 	switch (outCount)
   4540 	{
   4541 		case 2:	spec.outputs[1] = makeSymbol(*variables.out1);
   4542 		case 1:	spec.outputs[0] = makeSymbol(*variables.out0);
   4543 		default: break;
   4544 	}
   4545 
   4546 	spec.source = de::toString(stmt);
   4547 
   4548 	// Run the shader with inputs.
   4549 	{
   4550 		UniquePtr<ShaderExecutor>	executor		(createExecutor(getRenderContext(),
   4551 																	m_ctx.shaderType,
   4552 																	spec));
   4553 		const void*					inputArr[]		=
   4554 		{
   4555 			&inputs.in0.front(), &inputs.in1.front(), &inputs.in2.front(), &inputs.in3.front(),
   4556 		};
   4557 		void*						outputArr[]		=
   4558 		{
   4559 			&outputs.out0.front(), &outputs.out1.front(),
   4560 		};
   4561 
   4562 		executor->log(log());
   4563 		if (!executor->isOk())
   4564 			TCU_FAIL("Shader compilation failed");
   4565 
   4566 		executor->useProgram();
   4567 		executor->execute(int(numValues), inputArr, outputArr);
   4568 	}
   4569 
   4570 	// Initialize environment with dummy values so we don't need to bind in inner loop.
   4571 	{
   4572 		const typename Traits<In0>::IVal		in0;
   4573 		const typename Traits<In1>::IVal		in1;
   4574 		const typename Traits<In2>::IVal		in2;
   4575 		const typename Traits<In3>::IVal		in3;
   4576 		const typename Traits<Out0>::IVal		reference0;
   4577 		const typename Traits<Out1>::IVal		reference1;
   4578 
   4579 		env.bind(*variables.in0, in0);
   4580 		env.bind(*variables.in1, in1);
   4581 		env.bind(*variables.in2, in2);
   4582 		env.bind(*variables.in3, in3);
   4583 		env.bind(*variables.out0, reference0);
   4584 		env.bind(*variables.out1, reference1);
   4585 	}
   4586 
   4587 	// For each input tuple, compute output reference interval and compare
   4588 	// shader output to the reference.
   4589 	for (size_t valueNdx = 0; valueNdx < numValues; valueNdx++)
   4590 	{
   4591 		bool						result		= true;
   4592 		typename Traits<Out0>::IVal	reference0;
   4593 		typename Traits<Out1>::IVal	reference1;
   4594 
   4595 		if (valueNdx % (size_t)TOUCH_WATCHDOG_VALUE_FREQUENCY == 0)
   4596 			m_testCtx.touchWatchdog();
   4597 
   4598 		env.lookup(*variables.in0) = convert<In0>(fmt, round(fmt, inputs.in0[valueNdx]));
   4599 		env.lookup(*variables.in1) = convert<In1>(fmt, round(fmt, inputs.in1[valueNdx]));
   4600 		env.lookup(*variables.in2) = convert<In2>(fmt, round(fmt, inputs.in2[valueNdx]));
   4601 		env.lookup(*variables.in3) = convert<In3>(fmt, round(fmt, inputs.in3[valueNdx]));
   4602 
   4603 		{
   4604 			EvalContext	ctx (fmt, m_ctx.precision, env);
   4605 			stmt.execute(ctx);
   4606 		}
   4607 
   4608 		switch (outCount)
   4609 		{
   4610 			case 2:
   4611 				reference1 = convert<Out1>(highpFmt, env.lookup(*variables.out1));
   4612 				if (!m_status.check(contains(reference1, outputs.out1[valueNdx]),
   4613 									"Shader output 1 is outside acceptable range"))
   4614 					result = false;
   4615 			case 1:
   4616 				reference0 = convert<Out0>(highpFmt, env.lookup(*variables.out0));
   4617 				if (!m_status.check(contains(reference0, outputs.out0[valueNdx]),
   4618 									"Shader output 0 is outside acceptable range"))
   4619 					result = false;
   4620 			default: break;
   4621 		}
   4622 
   4623 		if (!result)
   4624 			++numErrors;
   4625 
   4626 		if ((!result && numErrors <= maxMsgs) || GLS_LOG_ALL_RESULTS)
   4627 		{
   4628 			MessageBuilder	builder	= log().message();
   4629 
   4630 			builder << (result ? "Passed" : "Failed") << " sample:\n";
   4631 
   4632 			if (inCount > 0)
   4633 			{
   4634 				builder << "\t" << variables.in0->getName() << " = "
   4635 						<< valueToString(highpFmt, inputs.in0[valueNdx]) << "\n";
   4636 			}
   4637 
   4638 			if (inCount > 1)
   4639 			{
   4640 				builder << "\t" << variables.in1->getName() << " = "
   4641 						<< valueToString(highpFmt, inputs.in1[valueNdx]) << "\n";
   4642 			}
   4643 
   4644 			if (inCount > 2)
   4645 			{
   4646 				builder << "\t" << variables.in2->getName() << " = "
   4647 						<< valueToString(highpFmt, inputs.in2[valueNdx]) << "\n";
   4648 			}
   4649 
   4650 			if (inCount > 3)
   4651 			{
   4652 				builder << "\t" << variables.in3->getName() << " = "
   4653 						<< valueToString(highpFmt, inputs.in3[valueNdx]) << "\n";
   4654 			}
   4655 
   4656 			if (outCount > 0)
   4657 			{
   4658 				builder << "\t" << variables.out0->getName() << " = "
   4659 						<< valueToString(highpFmt, outputs.out0[valueNdx]) << "\n"
   4660 						<< "\tExpected range: "
   4661 						<< intervalToString<typename Out::Out0>(highpFmt, reference0) << "\n";
   4662 			}
   4663 
   4664 			if (outCount > 1)
   4665 			{
   4666 				builder << "\t" << variables.out1->getName() << " = "
   4667 						<< valueToString(highpFmt, outputs.out1[valueNdx]) << "\n"
   4668 						<< "\tExpected range: "
   4669 						<< intervalToString<typename Out::Out1>(highpFmt, reference1) << "\n";
   4670 			}
   4671 
   4672 			builder << TestLog::EndMessage;
   4673 		}
   4674 	}
   4675 
   4676 	if (numErrors > maxMsgs)
   4677 	{
   4678 		log() << TestLog::Message << "(Skipped " << (numErrors - maxMsgs) << " messages.)"
   4679 			  << TestLog::EndMessage;
   4680 	}
   4681 
   4682 	if (numErrors == 0)
   4683 	{
   4684 		log() << TestLog::Message << "All " << numValues << " inputs passed."
   4685 			  << TestLog::EndMessage;
   4686 	}
   4687 	else
   4688 	{
   4689 		log() << TestLog::Message << numErrors << "/" << numValues << " inputs failed."
   4690 			  << TestLog::EndMessage;
   4691 	}
   4692 }
   4693 
   4694 
   4695 
   4696 template <typename T>
   4697 struct InputLess
   4698 {
   4699 	bool operator() (const T& val1, const T& val2) const
   4700 	{
   4701 		return val1 < val2;
   4702 	}
   4703 };
   4704 
   4705 template <typename T>
   4706 bool inputLess (const T& val1, const T& val2)
   4707 {
   4708 	return InputLess<T>()(val1, val2);
   4709 }
   4710 
   4711 template <>
   4712 struct InputLess<float>
   4713 {
   4714 	bool operator() (const float& val1, const float& val2) const
   4715 	{
   4716 		if (deIsNaN(val1))
   4717 			return false;
   4718 		if (deIsNaN(val2))
   4719 			return true;
   4720 		return val1 < val2;
   4721 	}
   4722 };
   4723 
   4724 template <typename T, int Size>
   4725 struct InputLess<Vector<T, Size> >
   4726 {
   4727 	bool operator() (const Vector<T, Size>& vec1, const Vector<T, Size>& vec2) const
   4728 	{
   4729 		for (int ndx = 0; ndx < Size; ++ndx)
   4730 		{
   4731 			if (inputLess(vec1[ndx], vec2[ndx]))
   4732 				return true;
   4733 			if (inputLess(vec2[ndx], vec1[ndx]))
   4734 				return false;
   4735 		}
   4736 
   4737 		return false;
   4738 	}
   4739 };
   4740 
   4741 template <typename T, int Rows, int Cols>
   4742 struct InputLess<Matrix<T, Rows, Cols> >
   4743 {
   4744 	bool operator() (const Matrix<T, Rows, Cols>& mat1,
   4745 					 const Matrix<T, Rows, Cols>& mat2) const
   4746 	{
   4747 		for (int col = 0; col < Cols; ++col)
   4748 		{
   4749 			if (inputLess(mat1[col], mat2[col]))
   4750 				return true;
   4751 			if (inputLess(mat2[col], mat1[col]))
   4752 				return false;
   4753 		}
   4754 
   4755 		return false;
   4756 	}
   4757 };
   4758 
   4759 template <typename In>
   4760 struct InTuple :
   4761 	public Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
   4762 {
   4763 	InTuple	(const typename In::In0& in0,
   4764 			 const typename In::In1& in1,
   4765 			 const typename In::In2& in2,
   4766 			 const typename In::In3& in3)
   4767 		: Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
   4768 		  (in0, in1, in2, in3) {}
   4769 };
   4770 
   4771 template <typename In>
   4772 struct InputLess<InTuple<In> >
   4773 {
   4774 	bool operator() (const InTuple<In>& in1, const InTuple<In>& in2) const
   4775 	{
   4776 		if (inputLess(in1.a, in2.a))
   4777 			return true;
   4778 		if (inputLess(in2.a, in1.a))
   4779 			return false;
   4780 		if (inputLess(in1.b, in2.b))
   4781 			return true;
   4782 		if (inputLess(in2.b, in1.b))
   4783 			return false;
   4784 		if (inputLess(in1.c, in2.c))
   4785 			return true;
   4786 		if (inputLess(in2.c, in1.c))
   4787 			return false;
   4788 		if (inputLess(in1.d, in2.d))
   4789 			return true;
   4790 		return false;
   4791 	};
   4792 };
   4793 
   4794 template<typename In>
   4795 Inputs<In> generateInputs (const Samplings<In>&	samplings,
   4796 						   const FloatFormat&	floatFormat,
   4797 						   Precision			intPrecision,
   4798 						   size_t				numSamples,
   4799 						   Random&				rnd)
   4800 {
   4801 	Inputs<In>									ret;
   4802 	Inputs<In>									fixedInputs;
   4803 	set<InTuple<In>, InputLess<InTuple<In> > >	seenInputs;
   4804 
   4805 	samplings.in0.genFixeds(floatFormat, fixedInputs.in0);
   4806 	samplings.in1.genFixeds(floatFormat, fixedInputs.in1);
   4807 	samplings.in2.genFixeds(floatFormat, fixedInputs.in2);
   4808 	samplings.in3.genFixeds(floatFormat, fixedInputs.in3);
   4809 
   4810 	for (size_t ndx0 = 0; ndx0 < fixedInputs.in0.size(); ++ndx0)
   4811 	{
   4812 		for (size_t ndx1 = 0; ndx1 < fixedInputs.in1.size(); ++ndx1)
   4813 		{
   4814 			for (size_t ndx2 = 0; ndx2 < fixedInputs.in2.size(); ++ndx2)
   4815 			{
   4816 				for (size_t ndx3 = 0; ndx3 < fixedInputs.in3.size(); ++ndx3)
   4817 				{
   4818 					const InTuple<In>	tuple	(fixedInputs.in0[ndx0],
   4819 												 fixedInputs.in1[ndx1],
   4820 												 fixedInputs.in2[ndx2],
   4821 												 fixedInputs.in3[ndx3]);
   4822 
   4823 					seenInputs.insert(tuple);
   4824 					ret.in0.push_back(tuple.a);
   4825 					ret.in1.push_back(tuple.b);
   4826 					ret.in2.push_back(tuple.c);
   4827 					ret.in3.push_back(tuple.d);
   4828 				}
   4829 			}
   4830 		}
   4831 	}
   4832 
   4833 	for (size_t ndx = 0; ndx < numSamples; ++ndx)
   4834 	{
   4835 		const typename In::In0	in0		= samplings.in0.genRandom(floatFormat, intPrecision, rnd);
   4836 		const typename In::In1	in1		= samplings.in1.genRandom(floatFormat, intPrecision, rnd);
   4837 		const typename In::In2	in2		= samplings.in2.genRandom(floatFormat, intPrecision, rnd);
   4838 		const typename In::In3	in3		= samplings.in3.genRandom(floatFormat, intPrecision, rnd);
   4839 		const InTuple<In>		tuple	(in0, in1, in2, in3);
   4840 
   4841 		if (de::contains(seenInputs, tuple))
   4842 			continue;
   4843 
   4844 		seenInputs.insert(tuple);
   4845 		ret.in0.push_back(in0);
   4846 		ret.in1.push_back(in1);
   4847 		ret.in2.push_back(in2);
   4848 		ret.in3.push_back(in3);
   4849 	}
   4850 
   4851 	return ret;
   4852 }
   4853 
   4854 class FuncCaseBase : public PrecisionCase
   4855 {
   4856 public:
   4857 	IterateResult	iterate			(void);
   4858 
   4859 protected:
   4860 					FuncCaseBase	(const Context&		context,
   4861 									 const string&		name,
   4862 									 const FuncBase&	func)
   4863 						: PrecisionCase	(context, name, func.getRequiredExtension()) {}
   4864 };
   4865 
   4866 IterateResult FuncCaseBase::iterate (void)
   4867 {
   4868 	MovePtr<ContextInfo>	info	(ContextInfo::create(getRenderContext()));
   4869 
   4870 	if (!m_extension.empty() && !info->isExtensionSupported(m_extension.c_str()))
   4871 		throw NotSupportedError("Unsupported extension: " + m_extension);
   4872 
   4873 	runTest();
   4874 
   4875 	m_status.setTestContextResult(m_testCtx);
   4876 	return STOP;
   4877 }
   4878 
   4879 template <typename Sig>
   4880 class FuncCase : public FuncCaseBase
   4881 {
   4882 public:
   4883 	typedef Func<Sig>						CaseFunc;
   4884 	typedef typename Sig::Ret				Ret;
   4885 	typedef typename Sig::Arg0				Arg0;
   4886 	typedef typename Sig::Arg1				Arg1;
   4887 	typedef typename Sig::Arg2				Arg2;
   4888 	typedef typename Sig::Arg3				Arg3;
   4889 	typedef InTypes<Arg0, Arg1, Arg2, Arg3>	In;
   4890 	typedef OutTypes<Ret>					Out;
   4891 
   4892 					FuncCase	(const Context&		context,
   4893 								 const string&		name,
   4894 								 const CaseFunc&	func)
   4895 						: FuncCaseBase	(context, name, func)
   4896 						, m_func		(func) {}
   4897 
   4898 protected:
   4899 	void				runTest		(void);
   4900 
   4901 	virtual const Samplings<In>&	getSamplings	(void)
   4902 	{
   4903 		return instance<DefaultSamplings<In> >();
   4904 	}
   4905 
   4906 private:
   4907 	const CaseFunc&			m_func;
   4908 };
   4909 
   4910 template <typename Sig>
   4911 void FuncCase<Sig>::runTest (void)
   4912 {
   4913 	const Inputs<In>	inputs	(generateInputs(getSamplings(),
   4914 												m_ctx.floatFormat,
   4915 												m_ctx.precision,
   4916 												m_ctx.numRandoms,
   4917 												m_rnd));
   4918 	Variables<In, Out>	variables;
   4919 
   4920 	variables.out0	= variable<Ret>("out0");
   4921 	variables.out1	= variable<Void>("out1");
   4922 	variables.in0	= variable<Arg0>("in0");
   4923 	variables.in1	= variable<Arg1>("in1");
   4924 	variables.in2	= variable<Arg2>("in2");
   4925 	variables.in3	= variable<Arg3>("in3");
   4926 
   4927 	{
   4928 		ExprP<Ret>	expr	= applyVar(m_func,
   4929 									   variables.in0, variables.in1,
   4930 									   variables.in2, variables.in3);
   4931 		StatementP	stmt	= variableAssignment(variables.out0, expr);
   4932 
   4933 		this->testStatement(variables, inputs, *stmt);
   4934 	}
   4935 }
   4936 
   4937 template <typename Sig>
   4938 class InOutFuncCase : public FuncCaseBase
   4939 {
   4940 public:
   4941 	typedef Func<Sig>						CaseFunc;
   4942 	typedef typename Sig::Ret				Ret;
   4943 	typedef typename Sig::Arg0				Arg0;
   4944 	typedef typename Sig::Arg1				Arg1;
   4945 	typedef typename Sig::Arg2				Arg2;
   4946 	typedef typename Sig::Arg3				Arg3;
   4947 	typedef InTypes<Arg0, Arg2, Arg3>		In;
   4948 	typedef OutTypes<Ret, Arg1>				Out;
   4949 
   4950 					InOutFuncCase	(const Context&		context,
   4951 									 const string&		name,
   4952 									 const CaseFunc&	func)
   4953 						: FuncCaseBase	(context, name, func)
   4954 						, m_func		(func) {}
   4955 
   4956 protected:
   4957 	void				runTest		(void);
   4958 
   4959 	virtual const Samplings<In>&	getSamplings	(void)
   4960 	{
   4961 		return instance<DefaultSamplings<In> >();
   4962 	}
   4963 
   4964 private:
   4965 	const CaseFunc&			m_func;
   4966 };
   4967 
   4968 template <typename Sig>
   4969 void InOutFuncCase<Sig>::runTest (void)
   4970 {
   4971 	const Inputs<In>	inputs	(generateInputs(getSamplings(),
   4972 												m_ctx.floatFormat,
   4973 												m_ctx.precision,
   4974 												m_ctx.numRandoms,
   4975 												m_rnd));
   4976 	Variables<In, Out>	variables;
   4977 
   4978 	variables.out0	= variable<Ret>("out0");
   4979 	variables.out1	= variable<Arg1>("out1");
   4980 	variables.in0	= variable<Arg0>("in0");
   4981 	variables.in1	= variable<Arg2>("in1");
   4982 	variables.in2	= variable<Arg3>("in2");
   4983 	variables.in3	= variable<Void>("in3");
   4984 
   4985 	{
   4986 		ExprP<Ret>	expr	= applyVar(m_func,
   4987 									   variables.in0, variables.out1,
   4988 									   variables.in1, variables.in2);
   4989 		StatementP	stmt	= variableAssignment(variables.out0, expr);
   4990 
   4991 		this->testStatement(variables, inputs, *stmt);
   4992 	}
   4993 }
   4994 
   4995 template <typename Sig>
   4996 PrecisionCase* createFuncCase (const Context&	context,
   4997 							   const string&	name,
   4998 							   const Func<Sig>&	func)
   4999 {
   5000 	switch (func.getOutParamIndex())
   5001 	{
   5002 		case -1:
   5003 			return new FuncCase<Sig>(context, name, func);
   5004 		case 1:
   5005 			return new InOutFuncCase<Sig>(context, name, func);
   5006 		default:
   5007 			DE_FATAL("Impossible");
   5008 	}
   5009 	return DE_NULL;
   5010 }
   5011 
   5012 class CaseFactory
   5013 {
   5014 public:
   5015 	virtual						~CaseFactory	(void) {}
   5016 	virtual MovePtr<TestNode>	createCase		(const Context& ctx) const = 0;
   5017 	virtual string				getName			(void) const = 0;
   5018 	virtual string				getDesc			(void) const = 0;
   5019 };
   5020 
   5021 class FuncCaseFactory : public CaseFactory
   5022 {
   5023 public:
   5024 	virtual const FuncBase&	getFunc		(void) const = 0;
   5025 
   5026 	string					getName		(void) const
   5027 	{
   5028 		return de::toLower(getFunc().getName());
   5029 	}
   5030 
   5031 	string					getDesc		(void) const
   5032 	{
   5033 		return "Function '" + getFunc().getName() + "'";
   5034 	}
   5035 };
   5036 
   5037 template <typename Sig>
   5038 class GenFuncCaseFactory : public CaseFactory
   5039 {
   5040 public:
   5041 
   5042 						GenFuncCaseFactory	(const GenFuncs<Sig>&	funcs,
   5043 											 const string&			name)
   5044 							: m_funcs	(funcs)
   5045 							, m_name	(de::toLower(name)) {}
   5046 
   5047 	MovePtr<TestNode>	createCase			(const Context& ctx) const
   5048 	{
   5049 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext,
   5050 												  ctx.name.c_str(), ctx.name.c_str());
   5051 
   5052 		group->addChild(createFuncCase(ctx, "scalar", m_funcs.func));
   5053 		group->addChild(createFuncCase(ctx, "vec2", m_funcs.func2));
   5054 		group->addChild(createFuncCase(ctx, "vec3", m_funcs.func3));
   5055 		group->addChild(createFuncCase(ctx, "vec4", m_funcs.func4));
   5056 
   5057 		return MovePtr<TestNode>(group);
   5058 	}
   5059 
   5060 	string				getName				(void) const
   5061 	{
   5062 		return m_name;
   5063 	}
   5064 
   5065 	string				getDesc				(void) const
   5066 	{
   5067 		return "Function '" + m_funcs.func.getName() + "'";
   5068 	}
   5069 
   5070 private:
   5071 	const GenFuncs<Sig>	m_funcs;
   5072 	string				m_name;
   5073 };
   5074 
   5075 template <template <int> class GenF>
   5076 class TemplateFuncCaseFactory : public FuncCaseFactory
   5077 {
   5078 public:
   5079 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5080 	{
   5081 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext,
   5082 							  ctx.name.c_str(), ctx.name.c_str());
   5083 		group->addChild(createFuncCase(ctx, "scalar", instance<GenF<1> >()));
   5084 		group->addChild(createFuncCase(ctx, "vec2", instance<GenF<2> >()));
   5085 		group->addChild(createFuncCase(ctx, "vec3", instance<GenF<3> >()));
   5086 		group->addChild(createFuncCase(ctx, "vec4", instance<GenF<4> >()));
   5087 
   5088 		return MovePtr<TestNode>(group);
   5089 	}
   5090 
   5091 	const FuncBase&		getFunc			(void) const { return instance<GenF<1> >(); }
   5092 };
   5093 
   5094 template <template <int> class GenF>
   5095 class SquareMatrixFuncCaseFactory : public FuncCaseFactory
   5096 {
   5097 public:
   5098 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5099 	{
   5100 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext,
   5101 							  ctx.name.c_str(), ctx.name.c_str());
   5102 		group->addChild(createFuncCase(ctx, "mat2", instance<GenF<2> >()));
   5103 #if 0
   5104 		// disabled until we get reasonable results
   5105 		group->addChild(createFuncCase(ctx, "mat3", instance<GenF<3> >()));
   5106 		group->addChild(createFuncCase(ctx, "mat4", instance<GenF<4> >()));
   5107 #endif
   5108 
   5109 		return MovePtr<TestNode>(group);
   5110 	}
   5111 
   5112 	const FuncBase&		getFunc			(void) const { return instance<GenF<2> >(); }
   5113 };
   5114 
   5115 template <template <int, int> class GenF>
   5116 class MatrixFuncCaseFactory : public FuncCaseFactory
   5117 {
   5118 public:
   5119 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5120 	{
   5121 		TestCaseGroup*	const group = new TestCaseGroup(ctx.testContext,
   5122 														ctx.name.c_str(), ctx.name.c_str());
   5123 
   5124 		this->addCase<2, 2>(ctx, group);
   5125 		this->addCase<3, 2>(ctx, group);
   5126 		this->addCase<4, 2>(ctx, group);
   5127 		this->addCase<2, 3>(ctx, group);
   5128 		this->addCase<3, 3>(ctx, group);
   5129 		this->addCase<4, 3>(ctx, group);
   5130 		this->addCase<2, 4>(ctx, group);
   5131 		this->addCase<3, 4>(ctx, group);
   5132 		this->addCase<4, 4>(ctx, group);
   5133 
   5134 		return MovePtr<TestNode>(group);
   5135 	}
   5136 
   5137 	const FuncBase&		getFunc			(void) const { return instance<GenF<2,2> >(); }
   5138 
   5139 private:
   5140 	template <int Rows, int Cols>
   5141 	void				addCase			(const Context& ctx, TestCaseGroup* group) const
   5142 	{
   5143 		const char*	const name = dataTypeNameOf<Matrix<float, Rows, Cols> >();
   5144 
   5145 		group->addChild(createFuncCase(ctx, name, instance<GenF<Rows, Cols> >()));
   5146 	}
   5147 };
   5148 
   5149 template <typename Sig>
   5150 class SimpleFuncCaseFactory : public CaseFactory
   5151 {
   5152 public:
   5153 						SimpleFuncCaseFactory	(const Func<Sig>& func) : m_func(func) {}
   5154 
   5155 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5156 	{
   5157 		return MovePtr<TestNode>(createFuncCase(ctx, ctx.name.c_str(), m_func));
   5158 	}
   5159 
   5160 	string				getName					(void) const
   5161 	{
   5162 		return de::toLower(m_func.getName());
   5163 	}
   5164 
   5165 	string				getDesc					(void) const
   5166 	{
   5167 		return "Function '" + getName() + "'";
   5168 	}
   5169 
   5170 private:
   5171 	const Func<Sig>&	m_func;
   5172 };
   5173 
   5174 template <typename F>
   5175 SharedPtr<SimpleFuncCaseFactory<typename F::Sig> > createSimpleFuncCaseFactory (void)
   5176 {
   5177 	return SharedPtr<SimpleFuncCaseFactory<typename F::Sig> >(
   5178 		new SimpleFuncCaseFactory<typename F::Sig>(instance<F>()));
   5179 }
   5180 
   5181 class BuiltinFuncs : public CaseFactories
   5182 {
   5183 public:
   5184 	const vector<const CaseFactory*>	getFactories	(void) const
   5185 	{
   5186 		vector<const CaseFactory*> ret;
   5187 
   5188 		for (size_t ndx = 0; ndx < m_factories.size(); ++ndx)
   5189 			ret.push_back(m_factories[ndx].get());
   5190 
   5191 		return ret;
   5192 	}
   5193 
   5194 	void								addFactory		(SharedPtr<const CaseFactory> fact)
   5195 	{
   5196 		m_factories.push_back(fact);
   5197 	}
   5198 
   5199 private:
   5200 	vector<SharedPtr<const CaseFactory> >			m_factories;
   5201 };
   5202 
   5203 template <typename F>
   5204 void addScalarFactory(BuiltinFuncs& funcs, string name = "")
   5205 {
   5206 	if (name.empty())
   5207 		name = instance<F>().getName();
   5208 
   5209 	funcs.addFactory(SharedPtr<const CaseFactory>(new GenFuncCaseFactory<typename F::Sig>(
   5210 													  makeVectorizedFuncs<F>(), name)));
   5211 }
   5212 
   5213 MovePtr<const CaseFactories> createES3BuiltinCases (void)
   5214 {
   5215 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
   5216 
   5217 	addScalarFactory<Add>(*funcs);
   5218 	addScalarFactory<Sub>(*funcs);
   5219 	addScalarFactory<Mul>(*funcs);
   5220 	addScalarFactory<Div>(*funcs);
   5221 
   5222 	addScalarFactory<Radians>(*funcs);
   5223 	addScalarFactory<Degrees>(*funcs);
   5224 	addScalarFactory<Sin>(*funcs);
   5225 	addScalarFactory<Cos>(*funcs);
   5226 	addScalarFactory<Tan>(*funcs);
   5227 	addScalarFactory<ASin>(*funcs);
   5228 	addScalarFactory<ACos>(*funcs);
   5229 	addScalarFactory<ATan2>(*funcs, "atan2");
   5230 	addScalarFactory<ATan>(*funcs);
   5231 	addScalarFactory<Sinh>(*funcs);
   5232 	addScalarFactory<Cosh>(*funcs);
   5233 	addScalarFactory<Tanh>(*funcs);
   5234 	addScalarFactory<ASinh>(*funcs);
   5235 	addScalarFactory<ACosh>(*funcs);
   5236 	addScalarFactory<ATanh>(*funcs);
   5237 
   5238 	addScalarFactory<Pow>(*funcs);
   5239 	addScalarFactory<Exp>(*funcs);
   5240 	addScalarFactory<Log>(*funcs);
   5241 	addScalarFactory<Exp2>(*funcs);
   5242 	addScalarFactory<Log2>(*funcs);
   5243 	addScalarFactory<Sqrt>(*funcs);
   5244 	addScalarFactory<InverseSqrt>(*funcs);
   5245 
   5246 	addScalarFactory<Abs>(*funcs);
   5247 	addScalarFactory<Sign>(*funcs);
   5248 	addScalarFactory<Floor>(*funcs);
   5249 	addScalarFactory<Trunc>(*funcs);
   5250 	addScalarFactory<Round>(*funcs);
   5251 	addScalarFactory<RoundEven>(*funcs);
   5252 	addScalarFactory<Ceil>(*funcs);
   5253 	addScalarFactory<Fract>(*funcs);
   5254 	addScalarFactory<Mod>(*funcs);
   5255 	funcs->addFactory(createSimpleFuncCaseFactory<Modf>());
   5256 	addScalarFactory<Min>(*funcs);
   5257 	addScalarFactory<Max>(*funcs);
   5258 	addScalarFactory<Clamp>(*funcs);
   5259 	addScalarFactory<Mix>(*funcs);
   5260 	addScalarFactory<Step>(*funcs);
   5261 	addScalarFactory<SmoothStep>(*funcs);
   5262 
   5263 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length>()));
   5264 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance>()));
   5265 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot>()));
   5266 	funcs->addFactory(createSimpleFuncCaseFactory<Cross>());
   5267 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize>()));
   5268 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward>()));
   5269 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect>()));
   5270 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract>()));
   5271 
   5272 
   5273 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult>()));
   5274 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct>()));
   5275 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose>()));
   5276 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant>()));
   5277 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse>()));
   5278 
   5279 	return MovePtr<const CaseFactories>(funcs.release());
   5280 }
   5281 
   5282 MovePtr<const CaseFactories> createES31BuiltinCases (void)
   5283 {
   5284 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
   5285 
   5286 	addScalarFactory<FrExp>(*funcs);
   5287 	addScalarFactory<LdExp>(*funcs);
   5288 	addScalarFactory<Fma>(*funcs);
   5289 
   5290 	return MovePtr<const CaseFactories>(funcs.release());
   5291 }
   5292 
   5293 struct PrecisionTestContext
   5294 {
   5295 	PrecisionTestContext	(TestContext&				testCtx_,
   5296 							 RenderContext&				renderCtx_,
   5297 							 const FloatFormat&			highp_,
   5298 							 const FloatFormat&			mediump_,
   5299 							 const FloatFormat&			lowp_,
   5300 							 const vector<ShaderType>&	shaderTypes_,
   5301 							 int						numRandoms_)
   5302 		: testCtx		(testCtx_)
   5303 		, renderCtx		(renderCtx_)
   5304 		, shaderTypes	(shaderTypes_)
   5305 		, numRandoms	(numRandoms_)
   5306 	{
   5307 		formats[glu::PRECISION_HIGHP]	= &highp_;
   5308 		formats[glu::PRECISION_MEDIUMP]	= &mediump_;
   5309 		formats[glu::PRECISION_LOWP]	= &lowp_;
   5310 	}
   5311 
   5312 	TestContext&			testCtx;
   5313 	RenderContext&			renderCtx;
   5314 	const FloatFormat*		formats[glu::PRECISION_LAST];
   5315 	vector<ShaderType>		shaderTypes;
   5316 	int						numRandoms;
   5317 };
   5318 
   5319 TestCaseGroup* createFuncGroup (const PrecisionTestContext&	ctx,
   5320 								const CaseFactory&			factory)
   5321 {
   5322 	TestCaseGroup* const	group	= new TestCaseGroup(ctx.testCtx,
   5323 														factory.getName().c_str(),
   5324 														factory.getDesc().c_str());
   5325 
   5326 	for (int precNdx = 0; precNdx < glu::PRECISION_LAST; ++precNdx)
   5327 	{
   5328 		const Precision		precision	= Precision(precNdx);
   5329 		const string		precName	(glu::getPrecisionName(precision));
   5330 		const FloatFormat&	fmt			= *de::getSizedArrayElement<glu::PRECISION_LAST>(ctx.formats, precNdx);
   5331 		const FloatFormat&	highpFmt	= *de::getSizedArrayElement<glu::PRECISION_LAST>(ctx.formats,
   5332 																						 glu::PRECISION_HIGHP);
   5333 
   5334 		for (size_t shaderNdx = 0; shaderNdx < ctx.shaderTypes.size(); ++shaderNdx)
   5335 		{
   5336 			const ShaderType	shaderType	= ctx.shaderTypes[shaderNdx];
   5337 			const string		shaderName	(glu::getShaderTypeName(shaderType));
   5338 			const string		name		= precName + "_" + shaderName;
   5339 			const Context		caseCtx		(name, ctx.testCtx, ctx.renderCtx, fmt, highpFmt,
   5340 											 precision, shaderType, ctx.numRandoms);
   5341 
   5342 			group->addChild(factory.createCase(caseCtx).release());
   5343 		}
   5344 	}
   5345 
   5346 	return group;
   5347 }
   5348 
   5349 void addBuiltinPrecisionTests (TestContext&					testCtx,
   5350 							   RenderContext&				renderCtx,
   5351 							   const CaseFactories&			cases,
   5352 							   const vector<ShaderType>&	shaderTypes,
   5353 							   TestCaseGroup&				dstGroup)
   5354 {
   5355 	const int						userRandoms	= testCtx.getCommandLine().getTestIterationCount();
   5356 	const int						defRandoms	= 16384;
   5357 	const int						numRandoms	= userRandoms > 0 ? userRandoms : defRandoms;
   5358 	const FloatFormat				highp		(-126, 127, 23, true,
   5359 												 tcu::MAYBE,	// subnormals
   5360 												 tcu::YES,		// infinities
   5361 												 tcu::MAYBE);	// NaN
   5362 	// \todo [2014-04-01 lauri] Check these once Khronos bug 11840 is resolved.
   5363 	const FloatFormat				mediump		(-13, 13, 9, false);
   5364 	// A fixed-point format is just a floating point format with a fixed
   5365 	// exponent and support for subnormals.
   5366 	const FloatFormat				lowp		(0, 0, 7, false, tcu::YES);
   5367 	const PrecisionTestContext		ctx			(testCtx, renderCtx, highp, mediump, lowp,
   5368 												 shaderTypes, numRandoms);
   5369 
   5370 	for (size_t ndx = 0; ndx < cases.getFactories().size(); ++ndx)
   5371 		dstGroup.addChild(createFuncGroup(ctx, *cases.getFactories()[ndx]));
   5372 }
   5373 
   5374 } // BuiltinPrecisionTests
   5375 } // gls
   5376 } // deqp
   5377