Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkGeometry.h"
      9 #include "SkMatrix.h"
     10 #include "SkNx.h"
     11 
     12 static SkVector to_vector(const Sk2s& x) {
     13     SkVector vector;
     14     x.store(&vector);
     15     return vector;
     16 }
     17 
     18 ////////////////////////////////////////////////////////////////////////
     19 
     20 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
     21     SkScalar ab = a - b;
     22     SkScalar bc = b - c;
     23     if (ab < 0) {
     24         bc = -bc;
     25     }
     26     return ab == 0 || bc < 0;
     27 }
     28 
     29 ////////////////////////////////////////////////////////////////////////
     30 
     31 static bool is_unit_interval(SkScalar x) {
     32     return x > 0 && x < SK_Scalar1;
     33 }
     34 
     35 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
     36     SkASSERT(ratio);
     37 
     38     if (numer < 0) {
     39         numer = -numer;
     40         denom = -denom;
     41     }
     42 
     43     if (denom == 0 || numer == 0 || numer >= denom) {
     44         return 0;
     45     }
     46 
     47     SkScalar r = numer / denom;
     48     if (SkScalarIsNaN(r)) {
     49         return 0;
     50     }
     51     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
     52     if (r == 0) { // catch underflow if numer <<<< denom
     53         return 0;
     54     }
     55     *ratio = r;
     56     return 1;
     57 }
     58 
     59 /** From Numerical Recipes in C.
     60 
     61     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
     62     x1 = Q / A
     63     x2 = C / Q
     64 */
     65 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
     66     SkASSERT(roots);
     67 
     68     if (A == 0) {
     69         return valid_unit_divide(-C, B, roots);
     70     }
     71 
     72     SkScalar* r = roots;
     73 
     74     SkScalar R = B*B - 4*A*C;
     75     if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
     76         // if R is infinite, it's possible that it may still produce
     77         // useful results if the operation was repeated in doubles
     78         // the flipside is determining if the more precise answer
     79         // isn't useful because surrounding machinery (e.g., subtracting
     80         // the axis offset from C) already discards the extra precision
     81         // more investigation and unit tests required...
     82         return 0;
     83     }
     84     R = SkScalarSqrt(R);
     85 
     86     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
     87     r += valid_unit_divide(Q, A, r);
     88     r += valid_unit_divide(C, Q, r);
     89     if (r - roots == 2) {
     90         if (roots[0] > roots[1])
     91             SkTSwap<SkScalar>(roots[0], roots[1]);
     92         else if (roots[0] == roots[1])  // nearly-equal?
     93             r -= 1; // skip the double root
     94     }
     95     return (int)(r - roots);
     96 }
     97 
     98 ///////////////////////////////////////////////////////////////////////////////
     99 ///////////////////////////////////////////////////////////////////////////////
    100 
    101 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
    102     SkASSERT(src);
    103     SkASSERT(t >= 0 && t <= SK_Scalar1);
    104 
    105     if (pt) {
    106         *pt = SkEvalQuadAt(src, t);
    107     }
    108     if (tangent) {
    109         *tangent = SkEvalQuadTangentAt(src, t);
    110     }
    111 }
    112 
    113 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
    114     return to_point(SkQuadCoeff(src).eval(t));
    115 }
    116 
    117 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
    118     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
    119     // zero tangent vector when t is 0 or 1, and the control point is equal
    120     // to the end point. In this case, use the quad end points to compute the tangent.
    121     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
    122         return src[2] - src[0];
    123     }
    124     SkASSERT(src);
    125     SkASSERT(t >= 0 && t <= SK_Scalar1);
    126 
    127     Sk2s P0 = from_point(src[0]);
    128     Sk2s P1 = from_point(src[1]);
    129     Sk2s P2 = from_point(src[2]);
    130 
    131     Sk2s B = P1 - P0;
    132     Sk2s A = P2 - P1 - B;
    133     Sk2s T = A * Sk2s(t) + B;
    134 
    135     return to_vector(T + T);
    136 }
    137 
    138 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
    139     return v0 + (v1 - v0) * t;
    140 }
    141 
    142 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
    143     SkASSERT(t > 0 && t < SK_Scalar1);
    144 
    145     Sk2s p0 = from_point(src[0]);
    146     Sk2s p1 = from_point(src[1]);
    147     Sk2s p2 = from_point(src[2]);
    148     Sk2s tt(t);
    149 
    150     Sk2s p01 = interp(p0, p1, tt);
    151     Sk2s p12 = interp(p1, p2, tt);
    152 
    153     dst[0] = to_point(p0);
    154     dst[1] = to_point(p01);
    155     dst[2] = to_point(interp(p01, p12, tt));
    156     dst[3] = to_point(p12);
    157     dst[4] = to_point(p2);
    158 }
    159 
    160 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
    161     SkChopQuadAt(src, dst, 0.5f);
    162 }
    163 
    164 /** Quad'(t) = At + B, where
    165     A = 2(a - 2b + c)
    166     B = 2(b - a)
    167     Solve for t, only if it fits between 0 < t < 1
    168 */
    169 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    170     /*  At + B == 0
    171         t = -B / A
    172     */
    173     return valid_unit_divide(a - b, a - b - b + c, tValue);
    174 }
    175 
    176 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
    177     coords[2] = coords[6] = coords[4];
    178 }
    179 
    180 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    181  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    182  */
    183 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
    184     SkASSERT(src);
    185     SkASSERT(dst);
    186 
    187     SkScalar a = src[0].fY;
    188     SkScalar b = src[1].fY;
    189     SkScalar c = src[2].fY;
    190 
    191     if (is_not_monotonic(a, b, c)) {
    192         SkScalar    tValue;
    193         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    194             SkChopQuadAt(src, dst, tValue);
    195             flatten_double_quad_extrema(&dst[0].fY);
    196             return 1;
    197         }
    198         // if we get here, we need to force dst to be monotonic, even though
    199         // we couldn't compute a unit_divide value (probably underflow).
    200         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    201     }
    202     dst[0].set(src[0].fX, a);
    203     dst[1].set(src[1].fX, b);
    204     dst[2].set(src[2].fX, c);
    205     return 0;
    206 }
    207 
    208 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    209     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    210  */
    211 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
    212     SkASSERT(src);
    213     SkASSERT(dst);
    214 
    215     SkScalar a = src[0].fX;
    216     SkScalar b = src[1].fX;
    217     SkScalar c = src[2].fX;
    218 
    219     if (is_not_monotonic(a, b, c)) {
    220         SkScalar tValue;
    221         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    222             SkChopQuadAt(src, dst, tValue);
    223             flatten_double_quad_extrema(&dst[0].fX);
    224             return 1;
    225         }
    226         // if we get here, we need to force dst to be monotonic, even though
    227         // we couldn't compute a unit_divide value (probably underflow).
    228         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    229     }
    230     dst[0].set(a, src[0].fY);
    231     dst[1].set(b, src[1].fY);
    232     dst[2].set(c, src[2].fY);
    233     return 0;
    234 }
    235 
    236 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
    237 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
    238 //  F''(t)  = 2 (a - 2b + c)
    239 //
    240 //  A = 2 (b - a)
    241 //  B = 2 (a - 2b + c)
    242 //
    243 //  Maximum curvature for a quadratic means solving
    244 //  Fx' Fx'' + Fy' Fy'' = 0
    245 //
    246 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
    247 //
    248 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    249     SkScalar    Ax = src[1].fX - src[0].fX;
    250     SkScalar    Ay = src[1].fY - src[0].fY;
    251     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    252     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    253     SkScalar    t = 0;  // 0 means don't chop
    254 
    255     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    256     return t;
    257 }
    258 
    259 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
    260     SkScalar t = SkFindQuadMaxCurvature(src);
    261     if (t == 0) {
    262         memcpy(dst, src, 3 * sizeof(SkPoint));
    263         return 1;
    264     } else {
    265         SkChopQuadAt(src, dst, t);
    266         return 2;
    267     }
    268 }
    269 
    270 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    271     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
    272     Sk2s s0 = from_point(src[0]);
    273     Sk2s s1 = from_point(src[1]);
    274     Sk2s s2 = from_point(src[2]);
    275 
    276     dst[0] = src[0];
    277     dst[1] = to_point(s0 + (s1 - s0) * scale);
    278     dst[2] = to_point(s2 + (s1 - s2) * scale);
    279     dst[3] = src[2];
    280 }
    281 
    282 //////////////////////////////////////////////////////////////////////////////
    283 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
    284 //////////////////////////////////////////////////////////////////////////////
    285 
    286 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
    287     SkQuadCoeff coeff;
    288     Sk2s P0 = from_point(src[0]);
    289     Sk2s P1 = from_point(src[1]);
    290     Sk2s P2 = from_point(src[2]);
    291     Sk2s P3 = from_point(src[3]);
    292 
    293     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
    294     coeff.fB = times_2(P2 - times_2(P1) + P0);
    295     coeff.fC = P1 - P0;
    296     return to_vector(coeff.eval(t));
    297 }
    298 
    299 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
    300     Sk2s P0 = from_point(src[0]);
    301     Sk2s P1 = from_point(src[1]);
    302     Sk2s P2 = from_point(src[2]);
    303     Sk2s P3 = from_point(src[3]);
    304     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
    305     Sk2s B = P2 - times_2(P1) + P0;
    306 
    307     return to_vector(A * Sk2s(t) + B);
    308 }
    309 
    310 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
    311                    SkVector* tangent, SkVector* curvature) {
    312     SkASSERT(src);
    313     SkASSERT(t >= 0 && t <= SK_Scalar1);
    314 
    315     if (loc) {
    316         *loc = to_point(SkCubicCoeff(src).eval(t));
    317     }
    318     if (tangent) {
    319         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
    320         // adjacent control point is equal to the end point. In this case, use the
    321         // next control point or the end points to compute the tangent.
    322         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
    323             if (t == 0) {
    324                 *tangent = src[2] - src[0];
    325             } else {
    326                 *tangent = src[3] - src[1];
    327             }
    328             if (!tangent->fX && !tangent->fY) {
    329                 *tangent = src[3] - src[0];
    330             }
    331         } else {
    332             *tangent = eval_cubic_derivative(src, t);
    333         }
    334     }
    335     if (curvature) {
    336         *curvature = eval_cubic_2ndDerivative(src, t);
    337     }
    338 }
    339 
    340 /** Cubic'(t) = At^2 + Bt + C, where
    341     A = 3(-a + 3(b - c) + d)
    342     B = 6(a - 2b + c)
    343     C = 3(b - a)
    344     Solve for t, keeping only those that fit betwee 0 < t < 1
    345 */
    346 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    347                        SkScalar tValues[2]) {
    348     // we divide A,B,C by 3 to simplify
    349     SkScalar A = d - a + 3*(b - c);
    350     SkScalar B = 2*(a - b - b + c);
    351     SkScalar C = b - a;
    352 
    353     return SkFindUnitQuadRoots(A, B, C, tValues);
    354 }
    355 
    356 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
    357     SkASSERT(t > 0 && t < SK_Scalar1);
    358 
    359     Sk2s    p0 = from_point(src[0]);
    360     Sk2s    p1 = from_point(src[1]);
    361     Sk2s    p2 = from_point(src[2]);
    362     Sk2s    p3 = from_point(src[3]);
    363     Sk2s    tt(t);
    364 
    365     Sk2s    ab = interp(p0, p1, tt);
    366     Sk2s    bc = interp(p1, p2, tt);
    367     Sk2s    cd = interp(p2, p3, tt);
    368     Sk2s    abc = interp(ab, bc, tt);
    369     Sk2s    bcd = interp(bc, cd, tt);
    370     Sk2s    abcd = interp(abc, bcd, tt);
    371 
    372     dst[0] = src[0];
    373     dst[1] = to_point(ab);
    374     dst[2] = to_point(abc);
    375     dst[3] = to_point(abcd);
    376     dst[4] = to_point(bcd);
    377     dst[5] = to_point(cd);
    378     dst[6] = src[3];
    379 }
    380 
    381 /*  http://code.google.com/p/skia/issues/detail?id=32
    382 
    383     This test code would fail when we didn't check the return result of
    384     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    385     that after the first chop, the parameters to valid_unit_divide are equal
    386     (thanks to finite float precision and rounding in the subtracts). Thus
    387     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    388     up with 1.0, hence the need to check and just return the last cubic as
    389     a degenerate clump of 4 points in the sampe place.
    390 
    391     static void test_cubic() {
    392         SkPoint src[4] = {
    393             { 556.25000, 523.03003 },
    394             { 556.23999, 522.96002 },
    395             { 556.21997, 522.89001 },
    396             { 556.21997, 522.82001 }
    397         };
    398         SkPoint dst[10];
    399         SkScalar tval[] = { 0.33333334f, 0.99999994f };
    400         SkChopCubicAt(src, dst, tval, 2);
    401     }
    402  */
    403 
    404 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
    405                    const SkScalar tValues[], int roots) {
    406 #ifdef SK_DEBUG
    407     {
    408         for (int i = 0; i < roots - 1; i++)
    409         {
    410             SkASSERT(is_unit_interval(tValues[i]));
    411             SkASSERT(is_unit_interval(tValues[i+1]));
    412             SkASSERT(tValues[i] < tValues[i+1]);
    413         }
    414     }
    415 #endif
    416 
    417     if (dst) {
    418         if (roots == 0) { // nothing to chop
    419             memcpy(dst, src, 4*sizeof(SkPoint));
    420         } else {
    421             SkScalar    t = tValues[0];
    422             SkPoint     tmp[4];
    423 
    424             for (int i = 0; i < roots; i++) {
    425                 SkChopCubicAt(src, dst, t);
    426                 if (i == roots - 1) {
    427                     break;
    428                 }
    429 
    430                 dst += 3;
    431                 // have src point to the remaining cubic (after the chop)
    432                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
    433                 src = tmp;
    434 
    435                 // watch out in case the renormalized t isn't in range
    436                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
    437                                        SK_Scalar1 - tValues[i], &t)) {
    438                     // if we can't, just create a degenerate cubic
    439                     dst[4] = dst[5] = dst[6] = src[3];
    440                     break;
    441                 }
    442             }
    443         }
    444     }
    445 }
    446 
    447 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
    448     SkChopCubicAt(src, dst, 0.5f);
    449 }
    450 
    451 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
    452     coords[4] = coords[8] = coords[6];
    453 }
    454 
    455 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    456     the resulting beziers are monotonic in Y. This is called by the scan
    457     converter.  Depending on what is returned, dst[] is treated as follows:
    458     0   dst[0..3] is the original cubic
    459     1   dst[0..3] and dst[3..6] are the two new cubics
    460     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    461     If dst == null, it is ignored and only the count is returned.
    462 */
    463 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    464     SkScalar    tValues[2];
    465     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
    466                                            src[3].fY, tValues);
    467 
    468     SkChopCubicAt(src, dst, tValues, roots);
    469     if (dst && roots > 0) {
    470         // we do some cleanup to ensure our Y extrema are flat
    471         flatten_double_cubic_extrema(&dst[0].fY);
    472         if (roots == 2) {
    473             flatten_double_cubic_extrema(&dst[3].fY);
    474         }
    475     }
    476     return roots;
    477 }
    478 
    479 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    480     SkScalar    tValues[2];
    481     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
    482                                            src[3].fX, tValues);
    483 
    484     SkChopCubicAt(src, dst, tValues, roots);
    485     if (dst && roots > 0) {
    486         // we do some cleanup to ensure our Y extrema are flat
    487         flatten_double_cubic_extrema(&dst[0].fX);
    488         if (roots == 2) {
    489             flatten_double_cubic_extrema(&dst[3].fX);
    490         }
    491     }
    492     return roots;
    493 }
    494 
    495 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
    496 
    497     Inflection means that curvature is zero.
    498     Curvature is [F' x F''] / [F'^3]
    499     So we solve F'x X F''y - F'y X F''y == 0
    500     After some canceling of the cubic term, we get
    501     A = b - a
    502     B = c - 2b + a
    503     C = d - 3c + 3b - a
    504     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
    505 */
    506 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
    507     SkScalar    Ax = src[1].fX - src[0].fX;
    508     SkScalar    Ay = src[1].fY - src[0].fY;
    509     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    510     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    511     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    512     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    513 
    514     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
    515                                Ax*Cy - Ay*Cx,
    516                                Ax*By - Ay*Bx,
    517                                tValues);
    518 }
    519 
    520 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
    521     SkScalar    tValues[2];
    522     int         count = SkFindCubicInflections(src, tValues);
    523 
    524     if (dst) {
    525         if (count == 0) {
    526             memcpy(dst, src, 4 * sizeof(SkPoint));
    527         } else {
    528             SkChopCubicAt(src, dst, tValues, count);
    529         }
    530     }
    531     return count + 1;
    532 }
    533 
    534 // Assumes the third component of points is 1.
    535 // Calcs p0 . (p1 x p2)
    536 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    537     const double xComp = (double) p0.fX * (double) (p1.fY - p2.fY);
    538     const double yComp = (double) p0.fY * (double) (p2.fX - p1.fX);
    539     const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
    540     return (xComp + yComp + wComp);
    541 }
    542 
    543 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
    544 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
    545 // d0 = a1 - 2*a2+3*a3
    546 // d1 = -a2 + 3*a3
    547 // d2 = 3*a3
    548 // a1 = p0 . (p3 x p2)
    549 // a2 = p1 . (p0 x p3)
    550 // a3 = p2 . (p1 x p0)
    551 // Places the values of d1, d2, d3 in array d passed in
    552 static void calc_cubic_inflection_func(const SkPoint p[4], double d[4]) {
    553     const double a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
    554     const double a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
    555     const double a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
    556 
    557     d[3] = 3 * a3;
    558     d[2] = d[3] - a2;
    559     d[1] = d[2] - a2 + a1;
    560     d[0] = 0;
    561 }
    562 
    563 static void normalize_t_s(double t[], double s[], int count) {
    564     // Keep the exponents at or below zero to avoid overflow down the road.
    565     for (int i = 0; i < count; ++i) {
    566         SkASSERT(0 != s[i]);
    567         union { double value; int64_t bits; } tt, ss, norm;
    568         tt.value = t[i];
    569         ss.value = s[i];
    570         int64_t expT = ((tt.bits >> 52) & 0x7ff) - 1023,
    571                 expS = ((ss.bits >> 52) & 0x7ff) - 1023;
    572         int64_t expNorm = -SkTMax(expT, expS) + 1023;
    573         SkASSERT(expNorm > 0 && expNorm < 2047); // ensure we have a valid non-zero exponent.
    574         norm.bits = expNorm << 52;
    575         t[i] *= norm.value;
    576         s[i] *= norm.value;
    577     }
    578 }
    579 
    580 static void sort_and_orient_t_s(double t[2], double s[2]) {
    581     // This copysign/abs business orients the implicit function so positive values are always on the
    582     // "left" side of the curve.
    583     t[1] = -copysign(t[1], t[1] * s[1]);
    584     s[1] = -fabs(s[1]);
    585 
    586     // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
    587     if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
    588         std::swap(t[0], t[1]);
    589         std::swap(s[0], s[1]);
    590     }
    591 }
    592 
    593 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware"
    594 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
    595 // discr(I) = 3*d2^2 - 4*d1*d3
    596 // Classification:
    597 // d1 != 0, discr(I) > 0        Serpentine
    598 // d1 != 0, discr(I) < 0        Loop
    599 // d1 != 0, discr(I) = 0        Cusp (with inflection at infinity)
    600 // d1 = 0, d2 != 0              Cusp (with cusp at infinity)
    601 // d1 = d2 = 0, d3 != 0         Quadratic
    602 // d1 = d2 = d3 = 0             Line or Point
    603 static SkCubicType classify_cubic(const double d[4], double t[2], double s[2]) {
    604     // Check for degenerate cubics (quadratics, lines, and points).
    605     // This also attempts to detect near-quadratics in a resolution independent fashion, however it
    606     // is still up to the caller to check for almost-linear curves if needed.
    607     if (fabs(d[1]) + fabs(d[2]) <= fabs(d[3]) * 1e-3) {
    608         if (t && s) {
    609             t[0] = t[1] = 1;
    610             s[0] = s[1] = 0; // infinity
    611         }
    612         return 0 == d[3] ? SkCubicType::kLineOrPoint : SkCubicType::kQuadratic;
    613     }
    614 
    615     if (0 == d[1]) {
    616         SkASSERT(0 != d[2]); // captured in check for degeneracy above.
    617         if (t && s) {
    618             t[0] = d[3];
    619             s[0] = 3 * d[2];
    620             normalize_t_s(t, s, 1);
    621             t[1] = 1;
    622             s[1] = 0; // infinity
    623         }
    624         return SkCubicType::kCuspAtInfinity;
    625     }
    626 
    627     const double discr = 3 * d[2] * d[2] - 4 * d[1] * d[3];
    628     if (discr > 0) {
    629         if (t && s) {
    630             const double q = 3 * d[2] + copysign(sqrt(3 * discr), d[2]);
    631             t[0] = q;
    632             s[0] = 6 * d[1];
    633             t[1] = 2 * d[3];
    634             s[1] = q;
    635             normalize_t_s(t, s, 2);
    636             sort_and_orient_t_s(t, s);
    637         }
    638         return SkCubicType::kSerpentine;
    639     } else if (discr < 0) {
    640         if (t && s) {
    641             const double q = d[2] + copysign(sqrt(-discr), d[2]);
    642             t[0] = q;
    643             s[0] = 2 * d[1];
    644             t[1] = 2 * (d[2] * d[2] - d[3] * d[1]);
    645             s[1] = d[1] * q;
    646             normalize_t_s(t, s, 2);
    647             sort_and_orient_t_s(t, s);
    648         }
    649         return SkCubicType::kLoop;
    650     } else {
    651         SkASSERT(0 == discr); // Detect NaN.
    652         if (t && s) {
    653             t[0] = d[2];
    654             s[0] = 2 * d[1];
    655             normalize_t_s(t, s, 1);
    656             t[1] = t[0];
    657             s[1] = s[0];
    658             sort_and_orient_t_s(t, s);
    659         }
    660         return SkCubicType::kLocalCusp;
    661     }
    662 }
    663 
    664 SkCubicType SkClassifyCubic(const SkPoint src[4], double t[2], double s[2], double d[4]) {
    665     double localD[4];
    666     double* dd = d ? d : localD;
    667     calc_cubic_inflection_func(src, dd);
    668     return classify_cubic(dd, t, s);
    669 }
    670 
    671 template <typename T> void bubble_sort(T array[], int count) {
    672     for (int i = count - 1; i > 0; --i)
    673         for (int j = i; j > 0; --j)
    674             if (array[j] < array[j-1])
    675             {
    676                 T   tmp(array[j]);
    677                 array[j] = array[j-1];
    678                 array[j-1] = tmp;
    679             }
    680 }
    681 
    682 /**
    683  *  Given an array and count, remove all pair-wise duplicates from the array,
    684  *  keeping the existing sorting, and return the new count
    685  */
    686 static int collaps_duplicates(SkScalar array[], int count) {
    687     for (int n = count; n > 1; --n) {
    688         if (array[0] == array[1]) {
    689             for (int i = 1; i < n; ++i) {
    690                 array[i - 1] = array[i];
    691             }
    692             count -= 1;
    693         } else {
    694             array += 1;
    695         }
    696     }
    697     return count;
    698 }
    699 
    700 #ifdef SK_DEBUG
    701 
    702 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
    703 
    704 static void test_collaps_duplicates() {
    705     static bool gOnce;
    706     if (gOnce) { return; }
    707     gOnce = true;
    708     const SkScalar src0[] = { 0 };
    709     const SkScalar src1[] = { 0, 0 };
    710     const SkScalar src2[] = { 0, 1 };
    711     const SkScalar src3[] = { 0, 0, 0 };
    712     const SkScalar src4[] = { 0, 0, 1 };
    713     const SkScalar src5[] = { 0, 1, 1 };
    714     const SkScalar src6[] = { 0, 1, 2 };
    715     const struct {
    716         const SkScalar* fData;
    717         int fCount;
    718         int fCollapsedCount;
    719     } data[] = {
    720         { TEST_COLLAPS_ENTRY(src0), 1 },
    721         { TEST_COLLAPS_ENTRY(src1), 1 },
    722         { TEST_COLLAPS_ENTRY(src2), 2 },
    723         { TEST_COLLAPS_ENTRY(src3), 1 },
    724         { TEST_COLLAPS_ENTRY(src4), 2 },
    725         { TEST_COLLAPS_ENTRY(src5), 2 },
    726         { TEST_COLLAPS_ENTRY(src6), 3 },
    727     };
    728     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
    729         SkScalar dst[3];
    730         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
    731         int count = collaps_duplicates(dst, data[i].fCount);
    732         SkASSERT(data[i].fCollapsedCount == count);
    733         for (int j = 1; j < count; ++j) {
    734             SkASSERT(dst[j-1] < dst[j]);
    735         }
    736     }
    737 }
    738 #endif
    739 
    740 static SkScalar SkScalarCubeRoot(SkScalar x) {
    741     return SkScalarPow(x, 0.3333333f);
    742 }
    743 
    744 /*  Solve coeff(t) == 0, returning the number of roots that
    745     lie withing 0 < t < 1.
    746     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
    747 
    748     Eliminates repeated roots (so that all tValues are distinct, and are always
    749     in increasing order.
    750 */
    751 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
    752     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
    753         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    754     }
    755 
    756     SkScalar a, b, c, Q, R;
    757 
    758     {
    759         SkASSERT(coeff[0] != 0);
    760 
    761         SkScalar inva = SkScalarInvert(coeff[0]);
    762         a = coeff[1] * inva;
    763         b = coeff[2] * inva;
    764         c = coeff[3] * inva;
    765     }
    766     Q = (a*a - b*3) / 9;
    767     R = (2*a*a*a - 9*a*b + 27*c) / 54;
    768 
    769     SkScalar Q3 = Q * Q * Q;
    770     SkScalar R2MinusQ3 = R * R - Q3;
    771     SkScalar adiv3 = a / 3;
    772 
    773     SkScalar*   roots = tValues;
    774     SkScalar    r;
    775 
    776     if (R2MinusQ3 < 0) { // we have 3 real roots
    777         // the divide/root can, due to finite precisions, be slightly outside of -1...1
    778         SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
    779         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
    780 
    781         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
    782         if (is_unit_interval(r)) {
    783             *roots++ = r;
    784         }
    785         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
    786         if (is_unit_interval(r)) {
    787             *roots++ = r;
    788         }
    789         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
    790         if (is_unit_interval(r)) {
    791             *roots++ = r;
    792         }
    793         SkDEBUGCODE(test_collaps_duplicates();)
    794 
    795         // now sort the roots
    796         int count = (int)(roots - tValues);
    797         SkASSERT((unsigned)count <= 3);
    798         bubble_sort(tValues, count);
    799         count = collaps_duplicates(tValues, count);
    800         roots = tValues + count;    // so we compute the proper count below
    801     } else {              // we have 1 real root
    802         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
    803         A = SkScalarCubeRoot(A);
    804         if (R > 0) {
    805             A = -A;
    806         }
    807         if (A != 0) {
    808             A += Q / A;
    809         }
    810         r = A - adiv3;
    811         if (is_unit_interval(r)) {
    812             *roots++ = r;
    813         }
    814     }
    815 
    816     return (int)(roots - tValues);
    817 }
    818 
    819 /*  Looking for F' dot F'' == 0
    820 
    821     A = b - a
    822     B = c - 2b + a
    823     C = d - 3c + 3b - a
    824 
    825     F' = 3Ct^2 + 6Bt + 3A
    826     F'' = 6Ct + 6B
    827 
    828     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    829 */
    830 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
    831     SkScalar    a = src[2] - src[0];
    832     SkScalar    b = src[4] - 2 * src[2] + src[0];
    833     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
    834 
    835     coeff[0] = c * c;
    836     coeff[1] = 3 * b * c;
    837     coeff[2] = 2 * b * b + c * a;
    838     coeff[3] = a * b;
    839 }
    840 
    841 /*  Looking for F' dot F'' == 0
    842 
    843     A = b - a
    844     B = c - 2b + a
    845     C = d - 3c + 3b - a
    846 
    847     F' = 3Ct^2 + 6Bt + 3A
    848     F'' = 6Ct + 6B
    849 
    850     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    851 */
    852 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
    853     SkScalar coeffX[4], coeffY[4];
    854     int      i;
    855 
    856     formulate_F1DotF2(&src[0].fX, coeffX);
    857     formulate_F1DotF2(&src[0].fY, coeffY);
    858 
    859     for (i = 0; i < 4; i++) {
    860         coeffX[i] += coeffY[i];
    861     }
    862 
    863     SkScalar    t[3];
    864     int         count = solve_cubic_poly(coeffX, t);
    865     int         maxCount = 0;
    866 
    867     // now remove extrema where the curvature is zero (mins)
    868     // !!!! need a test for this !!!!
    869     for (i = 0; i < count; i++) {
    870         // if (not_min_curvature())
    871         if (t[i] > 0 && t[i] < SK_Scalar1) {
    872             tValues[maxCount++] = t[i];
    873         }
    874     }
    875     return maxCount;
    876 }
    877 
    878 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    879                               SkScalar tValues[3]) {
    880     SkScalar    t_storage[3];
    881 
    882     if (tValues == nullptr) {
    883         tValues = t_storage;
    884     }
    885 
    886     int count = SkFindCubicMaxCurvature(src, tValues);
    887 
    888     if (dst) {
    889         if (count == 0) {
    890             memcpy(dst, src, 4 * sizeof(SkPoint));
    891         } else {
    892             SkChopCubicAt(src, dst, tValues, count);
    893         }
    894     }
    895     return count + 1;
    896 }
    897 
    898 #include "../pathops/SkPathOpsCubic.h"
    899 
    900 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
    901 
    902 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
    903                                      InterceptProc method) {
    904     SkDCubic cubic;
    905     double roots[3];
    906     int count = (cubic.set(src).*method)(intercept, roots);
    907     if (count > 0) {
    908         SkDCubicPair pair = cubic.chopAt(roots[0]);
    909         for (int i = 0; i < 7; ++i) {
    910             dst[i] = pair.pts[i].asSkPoint();
    911         }
    912         return true;
    913     }
    914     return false;
    915 }
    916 
    917 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
    918     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
    919 }
    920 
    921 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
    922     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
    923 }
    924 
    925 ///////////////////////////////////////////////////////////////////////////////
    926 //
    927 // NURB representation for conics.  Helpful explanations at:
    928 //
    929 // http://citeseerx.ist.psu.edu/viewdoc/
    930 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
    931 // and
    932 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
    933 //
    934 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
    935 //     ------------------------------------------
    936 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
    937 //
    938 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
    939 //     ------------------------------------------------
    940 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
    941 //
    942 
    943 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
    944 //
    945 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
    946 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
    947 //  t^0 : -2 P0 w + 2 P1 w
    948 //
    949 //  We disregard magnitude, so we can freely ignore the denominator of F', and
    950 //  divide the numerator by 2
    951 //
    952 //    coeff[0] for t^2
    953 //    coeff[1] for t^1
    954 //    coeff[2] for t^0
    955 //
    956 static void conic_deriv_coeff(const SkScalar src[],
    957                               SkScalar w,
    958                               SkScalar coeff[3]) {
    959     const SkScalar P20 = src[4] - src[0];
    960     const SkScalar P10 = src[2] - src[0];
    961     const SkScalar wP10 = w * P10;
    962     coeff[0] = w * P20 - P20;
    963     coeff[1] = P20 - 2 * wP10;
    964     coeff[2] = wP10;
    965 }
    966 
    967 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
    968     SkScalar coeff[3];
    969     conic_deriv_coeff(src, w, coeff);
    970 
    971     SkScalar tValues[2];
    972     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
    973     SkASSERT(0 == roots || 1 == roots);
    974 
    975     if (1 == roots) {
    976         *t = tValues[0];
    977         return true;
    978     }
    979     return false;
    980 }
    981 
    982 struct SkP3D {
    983     SkScalar fX, fY, fZ;
    984 
    985     void set(SkScalar x, SkScalar y, SkScalar z) {
    986         fX = x; fY = y; fZ = z;
    987     }
    988 
    989     void projectDown(SkPoint* dst) const {
    990         dst->set(fX / fZ, fY / fZ);
    991     }
    992 };
    993 
    994 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
    995 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
    996     SkScalar ab = SkScalarInterp(src[0], src[3], t);
    997     SkScalar bc = SkScalarInterp(src[3], src[6], t);
    998     dst[0] = ab;
    999     dst[3] = SkScalarInterp(ab, bc, t);
   1000     dst[6] = bc;
   1001 }
   1002 
   1003 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
   1004     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
   1005     dst[1].set(src[1].fX * w, src[1].fY * w, w);
   1006     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
   1007 }
   1008 
   1009 // return false if infinity or NaN is generated; caller must check
   1010 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
   1011     SkP3D tmp[3], tmp2[3];
   1012 
   1013     ratquad_mapTo3D(fPts, fW, tmp);
   1014 
   1015     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
   1016     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
   1017     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
   1018 
   1019     dst[0].fPts[0] = fPts[0];
   1020     tmp2[0].projectDown(&dst[0].fPts[1]);
   1021     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
   1022     tmp2[2].projectDown(&dst[1].fPts[1]);
   1023     dst[1].fPts[2] = fPts[2];
   1024 
   1025     // to put in "standard form", where w0 and w2 are both 1, we compute the
   1026     // new w1 as sqrt(w1*w1/w0*w2)
   1027     // or
   1028     // w1 /= sqrt(w0*w2)
   1029     //
   1030     // However, in our case, we know that for dst[0]:
   1031     //     w0 == 1, and for dst[1], w2 == 1
   1032     //
   1033     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
   1034     dst[0].fW = tmp2[0].fZ / root;
   1035     dst[1].fW = tmp2[2].fZ / root;
   1036     SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
   1037     SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
   1038     return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
   1039 }
   1040 
   1041 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
   1042     if (0 == t1 || 1 == t2) {
   1043         if (0 == t1 && 1 == t2) {
   1044             *dst = *this;
   1045             return;
   1046         } else {
   1047             SkConic pair[2];
   1048             if (this->chopAt(t1 ? t1 : t2, pair)) {
   1049                 *dst = pair[SkToBool(t1)];
   1050                 return;
   1051             }
   1052         }
   1053     }
   1054     SkConicCoeff coeff(*this);
   1055     Sk2s tt1(t1);
   1056     Sk2s aXY = coeff.fNumer.eval(tt1);
   1057     Sk2s aZZ = coeff.fDenom.eval(tt1);
   1058     Sk2s midTT((t1 + t2) / 2);
   1059     Sk2s dXY = coeff.fNumer.eval(midTT);
   1060     Sk2s dZZ = coeff.fDenom.eval(midTT);
   1061     Sk2s tt2(t2);
   1062     Sk2s cXY = coeff.fNumer.eval(tt2);
   1063     Sk2s cZZ = coeff.fDenom.eval(tt2);
   1064     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
   1065     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
   1066     dst->fPts[0] = to_point(aXY / aZZ);
   1067     dst->fPts[1] = to_point(bXY / bZZ);
   1068     dst->fPts[2] = to_point(cXY / cZZ);
   1069     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
   1070     dst->fW = ww[0];
   1071 }
   1072 
   1073 SkPoint SkConic::evalAt(SkScalar t) const {
   1074     return to_point(SkConicCoeff(*this).eval(t));
   1075 }
   1076 
   1077 SkVector SkConic::evalTangentAt(SkScalar t) const {
   1078     // The derivative equation returns a zero tangent vector when t is 0 or 1,
   1079     // and the control point is equal to the end point.
   1080     // In this case, use the conic endpoints to compute the tangent.
   1081     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
   1082         return fPts[2] - fPts[0];
   1083     }
   1084     Sk2s p0 = from_point(fPts[0]);
   1085     Sk2s p1 = from_point(fPts[1]);
   1086     Sk2s p2 = from_point(fPts[2]);
   1087     Sk2s ww(fW);
   1088 
   1089     Sk2s p20 = p2 - p0;
   1090     Sk2s p10 = p1 - p0;
   1091 
   1092     Sk2s C = ww * p10;
   1093     Sk2s A = ww * p20 - p20;
   1094     Sk2s B = p20 - C - C;
   1095 
   1096     return to_vector(SkQuadCoeff(A, B, C).eval(t));
   1097 }
   1098 
   1099 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
   1100     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1101 
   1102     if (pt) {
   1103         *pt = this->evalAt(t);
   1104     }
   1105     if (tangent) {
   1106         *tangent = this->evalTangentAt(t);
   1107     }
   1108 }
   1109 
   1110 static SkScalar subdivide_w_value(SkScalar w) {
   1111     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
   1112 }
   1113 
   1114 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
   1115     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
   1116     SkScalar newW = subdivide_w_value(fW);
   1117 
   1118     Sk2s p0 = from_point(fPts[0]);
   1119     Sk2s p1 = from_point(fPts[1]);
   1120     Sk2s p2 = from_point(fPts[2]);
   1121     Sk2s ww(fW);
   1122 
   1123     Sk2s wp1 = ww * p1;
   1124     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
   1125 
   1126     dst[0].fPts[0] = fPts[0];
   1127     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
   1128     dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
   1129     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
   1130     dst[1].fPts[2] = fPts[2];
   1131 
   1132     dst[0].fW = dst[1].fW = newW;
   1133 }
   1134 
   1135 /*
   1136  *  "High order approximation of conic sections by quadratic splines"
   1137  *      by Michael Floater, 1993
   1138  */
   1139 #define AS_QUAD_ERROR_SETUP                                         \
   1140     SkScalar a = fW - 1;                                            \
   1141     SkScalar k = a / (4 * (2 + a));                                 \
   1142     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
   1143     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
   1144 
   1145 void SkConic::computeAsQuadError(SkVector* err) const {
   1146     AS_QUAD_ERROR_SETUP
   1147     err->set(x, y);
   1148 }
   1149 
   1150 bool SkConic::asQuadTol(SkScalar tol) const {
   1151     AS_QUAD_ERROR_SETUP
   1152     return (x * x + y * y) <= tol * tol;
   1153 }
   1154 
   1155 // Limit the number of suggested quads to approximate a conic
   1156 #define kMaxConicToQuadPOW2     5
   1157 
   1158 int SkConic::computeQuadPOW2(SkScalar tol) const {
   1159     if (tol < 0 || !SkScalarIsFinite(tol)) {
   1160         return 0;
   1161     }
   1162 
   1163     AS_QUAD_ERROR_SETUP
   1164 
   1165     SkScalar error = SkScalarSqrt(x * x + y * y);
   1166     int pow2;
   1167     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
   1168         if (error <= tol) {
   1169             break;
   1170         }
   1171         error *= 0.25f;
   1172     }
   1173     // float version -- using ceil gives the same results as the above.
   1174     if (false) {
   1175         SkScalar err = SkScalarSqrt(x * x + y * y);
   1176         if (err <= tol) {
   1177             return 0;
   1178         }
   1179         SkScalar tol2 = tol * tol;
   1180         if (tol2 == 0) {
   1181             return kMaxConicToQuadPOW2;
   1182         }
   1183         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
   1184         int altPow2 = SkScalarCeilToInt(fpow2);
   1185         if (altPow2 != pow2) {
   1186             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
   1187         }
   1188         pow2 = altPow2;
   1189     }
   1190     return pow2;
   1191 }
   1192 
   1193 // This was originally developed and tested for pathops: see SkOpTypes.h
   1194 // returns true if (a <= b <= c) || (a >= b >= c)
   1195 static bool between(SkScalar a, SkScalar b, SkScalar c) {
   1196     return (a - b) * (c - b) <= 0;
   1197 }
   1198 
   1199 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
   1200     SkASSERT(level >= 0);
   1201 
   1202     if (0 == level) {
   1203         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
   1204         return pts + 2;
   1205     } else {
   1206         SkConic dst[2];
   1207         src.chop(dst);
   1208         const SkScalar startY = src.fPts[0].fY;
   1209         const SkScalar endY = src.fPts[2].fY;
   1210         if (between(startY, src.fPts[1].fY, endY)) {
   1211             // If the input is monotonic and the output is not, the scan converter hangs.
   1212             // Ensure that the chopped conics maintain their y-order.
   1213             SkScalar midY = dst[0].fPts[2].fY;
   1214             if (!between(startY, midY, endY)) {
   1215                 // If the computed midpoint is outside the ends, move it to the closer one.
   1216                 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
   1217                 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
   1218             }
   1219             if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
   1220                 // If the 1st control is not between the start and end, put it at the start.
   1221                 // This also reduces the quad to a line.
   1222                 dst[0].fPts[1].fY = startY;
   1223             }
   1224             if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
   1225                 // If the 2nd control is not between the start and end, put it at the end.
   1226                 // This also reduces the quad to a line.
   1227                 dst[1].fPts[1].fY = endY;
   1228             }
   1229             // Verify that all five points are in order.
   1230             SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
   1231             SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
   1232             SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
   1233         }
   1234         --level;
   1235         pts = subdivide(dst[0], pts, level);
   1236         return subdivide(dst[1], pts, level);
   1237     }
   1238 }
   1239 
   1240 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
   1241     SkASSERT(pow2 >= 0);
   1242     *pts = fPts[0];
   1243     SkDEBUGCODE(SkPoint* endPts);
   1244     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
   1245         SkConic dst[2];
   1246         this->chop(dst);
   1247         // check to see if the first chop generates a pair of lines
   1248         if (dst[0].fPts[1].equalsWithinTolerance(dst[0].fPts[2])
   1249                 && dst[1].fPts[0].equalsWithinTolerance(dst[1].fPts[1])) {
   1250             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
   1251             pts[4] = dst[1].fPts[2];
   1252             pow2 = 1;
   1253             SkDEBUGCODE(endPts = &pts[5]);
   1254             goto commonFinitePtCheck;
   1255         }
   1256     }
   1257     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
   1258 commonFinitePtCheck:
   1259     const int quadCount = 1 << pow2;
   1260     const int ptCount = 2 * quadCount + 1;
   1261     SkASSERT(endPts - pts == ptCount);
   1262     if (!SkPointsAreFinite(pts, ptCount)) {
   1263         // if we generated a non-finite, pin ourselves to the middle of the hull,
   1264         // as our first and last are already on the first/last pts of the hull.
   1265         for (int i = 1; i < ptCount - 1; ++i) {
   1266             pts[i] = fPts[1];
   1267         }
   1268     }
   1269     return 1 << pow2;
   1270 }
   1271 
   1272 bool SkConic::findXExtrema(SkScalar* t) const {
   1273     return conic_find_extrema(&fPts[0].fX, fW, t);
   1274 }
   1275 
   1276 bool SkConic::findYExtrema(SkScalar* t) const {
   1277     return conic_find_extrema(&fPts[0].fY, fW, t);
   1278 }
   1279 
   1280 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
   1281     SkScalar t;
   1282     if (this->findXExtrema(&t)) {
   1283         if (!this->chopAt(t, dst)) {
   1284             // if chop can't return finite values, don't chop
   1285             return false;
   1286         }
   1287         // now clean-up the middle, since we know t was meant to be at
   1288         // an X-extrema
   1289         SkScalar value = dst[0].fPts[2].fX;
   1290         dst[0].fPts[1].fX = value;
   1291         dst[1].fPts[0].fX = value;
   1292         dst[1].fPts[1].fX = value;
   1293         return true;
   1294     }
   1295     return false;
   1296 }
   1297 
   1298 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
   1299     SkScalar t;
   1300     if (this->findYExtrema(&t)) {
   1301         if (!this->chopAt(t, dst)) {
   1302             // if chop can't return finite values, don't chop
   1303             return false;
   1304         }
   1305         // now clean-up the middle, since we know t was meant to be at
   1306         // an Y-extrema
   1307         SkScalar value = dst[0].fPts[2].fY;
   1308         dst[0].fPts[1].fY = value;
   1309         dst[1].fPts[0].fY = value;
   1310         dst[1].fPts[1].fY = value;
   1311         return true;
   1312     }
   1313     return false;
   1314 }
   1315 
   1316 void SkConic::computeTightBounds(SkRect* bounds) const {
   1317     SkPoint pts[4];
   1318     pts[0] = fPts[0];
   1319     pts[1] = fPts[2];
   1320     int count = 2;
   1321 
   1322     SkScalar t;
   1323     if (this->findXExtrema(&t)) {
   1324         this->evalAt(t, &pts[count++]);
   1325     }
   1326     if (this->findYExtrema(&t)) {
   1327         this->evalAt(t, &pts[count++]);
   1328     }
   1329     bounds->set(pts, count);
   1330 }
   1331 
   1332 void SkConic::computeFastBounds(SkRect* bounds) const {
   1333     bounds->set(fPts, 3);
   1334 }
   1335 
   1336 #if 0  // unimplemented
   1337 bool SkConic::findMaxCurvature(SkScalar* t) const {
   1338     // TODO: Implement me
   1339     return false;
   1340 }
   1341 #endif
   1342 
   1343 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
   1344                              const SkMatrix& matrix) {
   1345     if (!matrix.hasPerspective()) {
   1346         return w;
   1347     }
   1348 
   1349     SkP3D src[3], dst[3];
   1350 
   1351     ratquad_mapTo3D(pts, w, src);
   1352 
   1353     matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
   1354 
   1355     // w' = sqrt(w1*w1/w0*w2)
   1356     SkScalar w0 = dst[0].fZ;
   1357     SkScalar w1 = dst[1].fZ;
   1358     SkScalar w2 = dst[2].fZ;
   1359     w = SkScalarSqrt((w1 * w1) / (w0 * w2));
   1360     return w;
   1361 }
   1362 
   1363 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
   1364                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
   1365     // rotate by x,y so that uStart is (1.0)
   1366     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1367     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1368 
   1369     SkScalar absY = SkScalarAbs(y);
   1370 
   1371     // check for (effectively) coincident vectors
   1372     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1373     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1374     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1375                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1376         return 0;
   1377     }
   1378 
   1379     if (dir == kCCW_SkRotationDirection) {
   1380         y = -y;
   1381     }
   1382 
   1383     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
   1384     //      0 == [0  .. 90)
   1385     //      1 == [90 ..180)
   1386     //      2 == [180..270)
   1387     //      3 == [270..360)
   1388     //
   1389     int quadrant = 0;
   1390     if (0 == y) {
   1391         quadrant = 2;        // 180
   1392         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1393     } else if (0 == x) {
   1394         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1395         quadrant = y > 0 ? 1 : 3; // 90 : 270
   1396     } else {
   1397         if (y < 0) {
   1398             quadrant += 2;
   1399         }
   1400         if ((x < 0) != (y < 0)) {
   1401             quadrant += 1;
   1402         }
   1403     }
   1404 
   1405     const SkPoint quadrantPts[] = {
   1406         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
   1407     };
   1408     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
   1409 
   1410     int conicCount = quadrant;
   1411     for (int i = 0; i < conicCount; ++i) {
   1412         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
   1413     }
   1414 
   1415     // Now compute any remaing (sub-90-degree) arc for the last conic
   1416     const SkPoint finalP = { x, y };
   1417     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
   1418     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
   1419     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
   1420 
   1421     if (dot < 1) {
   1422         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
   1423         // compute the bisector vector, and then rescale to be the off-curve point.
   1424         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
   1425         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
   1426         // This is nice, since our computed weight is cos(theta/2) as well!
   1427         //
   1428         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
   1429         offCurve.setLength(SkScalarInvert(cosThetaOver2));
   1430         if (!lastQ.equalsWithinTolerance(offCurve)) {
   1431             dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
   1432             conicCount += 1;
   1433         }
   1434     }
   1435 
   1436     // now handle counter-clockwise and the initial unitStart rotation
   1437     SkMatrix    matrix;
   1438     matrix.setSinCos(uStart.fY, uStart.fX);
   1439     if (dir == kCCW_SkRotationDirection) {
   1440         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1441     }
   1442     if (userMatrix) {
   1443         matrix.postConcat(*userMatrix);
   1444     }
   1445     for (int i = 0; i < conicCount; ++i) {
   1446         matrix.mapPoints(dst[i].fPts, 3);
   1447     }
   1448     return conicCount;
   1449 }
   1450