Home | History | Annotate | Download | only in ppc
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
      6 #define V8_PPC_MACRO_ASSEMBLER_PPC_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Give alias names to registers for calling conventions.
     17 const Register kReturnRegister0 = {Register::kCode_r3};
     18 const Register kReturnRegister1 = {Register::kCode_r4};
     19 const Register kReturnRegister2 = {Register::kCode_r5};
     20 const Register kJSFunctionRegister = {Register::kCode_r4};
     21 const Register kContextRegister = {Register::kCode_r30};
     22 const Register kAllocateSizeRegister = {Register::kCode_r4};
     23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r3};
     24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r15};
     25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r16};
     26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r17};
     27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r3};
     28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r6};
     29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r4};
     30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r3};
     31 
     32 // ----------------------------------------------------------------------------
     33 // Static helper functions
     34 
     35 // Generate a MemOperand for loading a field from an object.
     36 inline MemOperand FieldMemOperand(Register object, int offset) {
     37   return MemOperand(object, offset - kHeapObjectTag);
     38 }
     39 
     40 
     41 // Flags used for AllocateHeapNumber
     42 enum TaggingMode {
     43   // Tag the result.
     44   TAG_RESULT,
     45   // Don't tag
     46   DONT_TAG_RESULT
     47 };
     48 
     49 
     50 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     51 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     52 enum PointersToHereCheck {
     53   kPointersToHereMaybeInteresting,
     54   kPointersToHereAreAlwaysInteresting
     55 };
     56 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     57 
     58 
     59 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
     60                                    Register reg3 = no_reg,
     61                                    Register reg4 = no_reg,
     62                                    Register reg5 = no_reg,
     63                                    Register reg6 = no_reg);
     64 
     65 
     66 #ifdef DEBUG
     67 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
     68                 Register reg4 = no_reg, Register reg5 = no_reg,
     69                 Register reg6 = no_reg, Register reg7 = no_reg,
     70                 Register reg8 = no_reg, Register reg9 = no_reg,
     71                 Register reg10 = no_reg);
     72 #endif
     73 
     74 // These exist to provide portability between 32 and 64bit
     75 #if V8_TARGET_ARCH_PPC64
     76 #define LoadPX ldx
     77 #define LoadPUX ldux
     78 #define StorePX stdx
     79 #define StorePUX stdux
     80 #define ShiftLeftImm sldi
     81 #define ShiftRightImm srdi
     82 #define ClearLeftImm clrldi
     83 #define ClearRightImm clrrdi
     84 #define ShiftRightArithImm sradi
     85 #define ShiftLeft_ sld
     86 #define ShiftRight_ srd
     87 #define ShiftRightArith srad
     88 #define Mul mulld
     89 #define Div divd
     90 #else
     91 #define LoadPX lwzx
     92 #define LoadPUX lwzux
     93 #define StorePX stwx
     94 #define StorePUX stwux
     95 #define ShiftLeftImm slwi
     96 #define ShiftRightImm srwi
     97 #define ClearLeftImm clrlwi
     98 #define ClearRightImm clrrwi
     99 #define ShiftRightArithImm srawi
    100 #define ShiftLeft_ slw
    101 #define ShiftRight_ srw
    102 #define ShiftRightArith sraw
    103 #define Mul mullw
    104 #define Div divw
    105 #endif
    106 
    107 
    108 // MacroAssembler implements a collection of frequently used macros.
    109 class MacroAssembler : public Assembler {
    110  public:
    111   MacroAssembler(Isolate* isolate, void* buffer, int size,
    112                  CodeObjectRequired create_code_object);
    113 
    114 
    115   // Returns the size of a call in instructions. Note, the value returned is
    116   // only valid as long as no entries are added to the constant pool between
    117   // checking the call size and emitting the actual call.
    118   static int CallSize(Register target);
    119   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
    120   static int CallSizeNotPredictableCodeSize(Address target,
    121                                             RelocInfo::Mode rmode,
    122                                             Condition cond = al);
    123 
    124   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    125   void Jump(Register target);
    126   void JumpToJSEntry(Register target);
    127   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
    128             CRegister cr = cr7);
    129   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
    130   void Call(Register target);
    131   void CallJSEntry(Register target);
    132   void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
    133   int CallSize(Handle<Code> code,
    134                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    135                TypeFeedbackId ast_id = TypeFeedbackId::None(),
    136                Condition cond = al);
    137   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    138             TypeFeedbackId ast_id = TypeFeedbackId::None(),
    139             Condition cond = al);
    140   void Ret() { blr(); }
    141   void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }
    142 
    143   // Emit code that loads |parameter_index|'th parameter from the stack to
    144   // the register according to the CallInterfaceDescriptor definition.
    145   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
    146   // below the caller's sp.
    147   template <class Descriptor>
    148   void LoadParameterFromStack(
    149       Register reg, typename Descriptor::ParameterIndices parameter_index,
    150       int sp_to_ra_offset_in_words = 0) {
    151     DCHECK(Descriptor::kPassLastArgsOnStack);
    152     UNIMPLEMENTED();
    153   }
    154 
    155   // Emit code to discard a non-negative number of pointer-sized elements
    156   // from the stack, clobbering only the sp register.
    157   void Drop(int count);
    158   void Drop(Register count, Register scratch = r0);
    159 
    160   void Ret(int drop) {
    161     Drop(drop);
    162     blr();
    163   }
    164 
    165   void Call(Label* target);
    166 
    167   // Register move. May do nothing if the registers are identical.
    168   void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
    169   void Move(Register dst, Handle<Object> value);
    170   void Move(Register dst, Register src, Condition cond = al);
    171   void Move(DoubleRegister dst, DoubleRegister src);
    172 
    173   void MultiPush(RegList regs, Register location = sp);
    174   void MultiPop(RegList regs, Register location = sp);
    175 
    176   void MultiPushDoubles(RegList dregs, Register location = sp);
    177   void MultiPopDoubles(RegList dregs, Register location = sp);
    178 
    179   // Load an object from the root table.
    180   void LoadRoot(Register destination, Heap::RootListIndex index,
    181                 Condition cond = al);
    182   // Store an object to the root table.
    183   void StoreRoot(Register source, Heap::RootListIndex index,
    184                  Condition cond = al);
    185 
    186   // ---------------------------------------------------------------------------
    187   // GC Support
    188 
    189   void IncrementalMarkingRecordWriteHelper(Register object, Register value,
    190                                            Register address);
    191 
    192   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
    193 
    194   // Record in the remembered set the fact that we have a pointer to new space
    195   // at the address pointed to by the addr register.  Only works if addr is not
    196   // in new space.
    197   void RememberedSetHelper(Register object,  // Used for debug code.
    198                            Register addr, Register scratch,
    199                            SaveFPRegsMode save_fp,
    200                            RememberedSetFinalAction and_then);
    201 
    202   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
    203                      Label* condition_met);
    204 
    205   // Check if object is in new space.  Jumps if the object is not in new space.
    206   // The register scratch can be object itself, but scratch will be clobbered.
    207   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
    208     InNewSpace(object, scratch, eq, branch);
    209   }
    210 
    211   // Check if object is in new space.  Jumps if the object is in new space.
    212   // The register scratch can be object itself, but it will be clobbered.
    213   void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
    214     InNewSpace(object, scratch, ne, branch);
    215   }
    216 
    217   // Check if an object has a given incremental marking color.
    218   void HasColor(Register object, Register scratch0, Register scratch1,
    219                 Label* has_color, int first_bit, int second_bit);
    220 
    221   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
    222                    Label* on_black);
    223 
    224   // Checks the color of an object.  If the object is white we jump to the
    225   // incremental marker.
    226   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    227                    Register scratch3, Label* value_is_white);
    228 
    229   // Notify the garbage collector that we wrote a pointer into an object.
    230   // |object| is the object being stored into, |value| is the object being
    231   // stored.  value and scratch registers are clobbered by the operation.
    232   // The offset is the offset from the start of the object, not the offset from
    233   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
    234   void RecordWriteField(
    235       Register object, int offset, Register value, Register scratch,
    236       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    237       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    238       SmiCheck smi_check = INLINE_SMI_CHECK,
    239       PointersToHereCheck pointers_to_here_check_for_value =
    240           kPointersToHereMaybeInteresting);
    241 
    242   // As above, but the offset has the tag presubtracted.  For use with
    243   // MemOperand(reg, off).
    244   inline void RecordWriteContextSlot(
    245       Register context, int offset, Register value, Register scratch,
    246       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    247       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    248       SmiCheck smi_check = INLINE_SMI_CHECK,
    249       PointersToHereCheck pointers_to_here_check_for_value =
    250           kPointersToHereMaybeInteresting) {
    251     RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
    252                      lr_status, save_fp, remembered_set_action, smi_check,
    253                      pointers_to_here_check_for_value);
    254   }
    255 
    256   // Notify the garbage collector that we wrote a code entry into a
    257   // JSFunction. Only scratch is clobbered by the operation.
    258   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    259                                  Register scratch);
    260 
    261   void RecordWriteForMap(Register object, Register map, Register dst,
    262                          LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
    263 
    264   // For a given |object| notify the garbage collector that the slot |address|
    265   // has been written.  |value| is the object being stored. The value and
    266   // address registers are clobbered by the operation.
    267   void RecordWrite(
    268       Register object, Register address, Register value,
    269       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
    270       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    271       SmiCheck smi_check = INLINE_SMI_CHECK,
    272       PointersToHereCheck pointers_to_here_check_for_value =
    273           kPointersToHereMaybeInteresting);
    274 
    275   void Push(Register src) { push(src); }
    276 
    277   // Push a handle.
    278   void Push(Handle<Object> handle);
    279   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    280 
    281   // Push two registers.  Pushes leftmost register first (to highest address).
    282   void Push(Register src1, Register src2) {
    283     StorePU(src2, MemOperand(sp, -2 * kPointerSize));
    284     StoreP(src1, MemOperand(sp, kPointerSize));
    285   }
    286 
    287   // Push three registers.  Pushes leftmost register first (to highest address).
    288   void Push(Register src1, Register src2, Register src3) {
    289     StorePU(src3, MemOperand(sp, -3 * kPointerSize));
    290     StoreP(src2, MemOperand(sp, kPointerSize));
    291     StoreP(src1, MemOperand(sp, 2 * kPointerSize));
    292   }
    293 
    294   // Push four registers.  Pushes leftmost register first (to highest address).
    295   void Push(Register src1, Register src2, Register src3, Register src4) {
    296     StorePU(src4, MemOperand(sp, -4 * kPointerSize));
    297     StoreP(src3, MemOperand(sp, kPointerSize));
    298     StoreP(src2, MemOperand(sp, 2 * kPointerSize));
    299     StoreP(src1, MemOperand(sp, 3 * kPointerSize));
    300   }
    301 
    302   // Push five registers.  Pushes leftmost register first (to highest address).
    303   void Push(Register src1, Register src2, Register src3, Register src4,
    304             Register src5) {
    305     StorePU(src5, MemOperand(sp, -5 * kPointerSize));
    306     StoreP(src4, MemOperand(sp, kPointerSize));
    307     StoreP(src3, MemOperand(sp, 2 * kPointerSize));
    308     StoreP(src2, MemOperand(sp, 3 * kPointerSize));
    309     StoreP(src1, MemOperand(sp, 4 * kPointerSize));
    310   }
    311 
    312   void Pop(Register dst) { pop(dst); }
    313 
    314   // Pop two registers. Pops rightmost register first (from lower address).
    315   void Pop(Register src1, Register src2) {
    316     LoadP(src2, MemOperand(sp, 0));
    317     LoadP(src1, MemOperand(sp, kPointerSize));
    318     addi(sp, sp, Operand(2 * kPointerSize));
    319   }
    320 
    321   // Pop three registers.  Pops rightmost register first (from lower address).
    322   void Pop(Register src1, Register src2, Register src3) {
    323     LoadP(src3, MemOperand(sp, 0));
    324     LoadP(src2, MemOperand(sp, kPointerSize));
    325     LoadP(src1, MemOperand(sp, 2 * kPointerSize));
    326     addi(sp, sp, Operand(3 * kPointerSize));
    327   }
    328 
    329   // Pop four registers.  Pops rightmost register first (from lower address).
    330   void Pop(Register src1, Register src2, Register src3, Register src4) {
    331     LoadP(src4, MemOperand(sp, 0));
    332     LoadP(src3, MemOperand(sp, kPointerSize));
    333     LoadP(src2, MemOperand(sp, 2 * kPointerSize));
    334     LoadP(src1, MemOperand(sp, 3 * kPointerSize));
    335     addi(sp, sp, Operand(4 * kPointerSize));
    336   }
    337 
    338   // Pop five registers.  Pops rightmost register first (from lower address).
    339   void Pop(Register src1, Register src2, Register src3, Register src4,
    340            Register src5) {
    341     LoadP(src5, MemOperand(sp, 0));
    342     LoadP(src4, MemOperand(sp, kPointerSize));
    343     LoadP(src3, MemOperand(sp, 2 * kPointerSize));
    344     LoadP(src2, MemOperand(sp, 3 * kPointerSize));
    345     LoadP(src1, MemOperand(sp, 4 * kPointerSize));
    346     addi(sp, sp, Operand(5 * kPointerSize));
    347   }
    348 
    349   // Push a fixed frame, consisting of lr, fp, constant pool.
    350   void PushCommonFrame(Register marker_reg = no_reg);
    351 
    352   // Push a standard frame, consisting of lr, fp, constant pool,
    353   // context and JS function
    354   void PushStandardFrame(Register function_reg);
    355 
    356   void PopCommonFrame(Register marker_reg = no_reg);
    357 
    358   // Restore caller's frame pointer and return address prior to being
    359   // overwritten by tail call stack preparation.
    360   void RestoreFrameStateForTailCall();
    361 
    362   // Push and pop the registers that can hold pointers, as defined by the
    363   // RegList constant kSafepointSavedRegisters.
    364   void PushSafepointRegisters();
    365   void PopSafepointRegisters();
    366   // Store value in register src in the safepoint stack slot for
    367   // register dst.
    368   void StoreToSafepointRegisterSlot(Register src, Register dst);
    369   // Load the value of the src register from its safepoint stack slot
    370   // into register dst.
    371   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    372 
    373   // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
    374   // from C.
    375   // Does not handle errors.
    376   void FlushICache(Register address, size_t size, Register scratch);
    377 
    378   // If the value is a NaN, canonicalize the value else, do nothing.
    379   void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
    380   void CanonicalizeNaN(const DoubleRegister value) {
    381     CanonicalizeNaN(value, value);
    382   }
    383 
    384   // Converts the integer (untagged smi) in |src| to a double, storing
    385   // the result to |dst|
    386   void ConvertIntToDouble(Register src, DoubleRegister dst);
    387 
    388   // Converts the unsigned integer (untagged smi) in |src| to
    389   // a double, storing the result to |dst|
    390   void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
    391 
    392   // Converts the integer (untagged smi) in |src| to
    393   // a float, storing the result in |dst|
    394   void ConvertIntToFloat(Register src, DoubleRegister dst);
    395 
    396   // Converts the unsigned integer (untagged smi) in |src| to
    397   // a float, storing the result in |dst|
    398   void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
    399 
    400 #if V8_TARGET_ARCH_PPC64
    401   void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
    402   void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
    403   void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
    404   void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
    405 #endif
    406 
    407   // Converts the double_input to an integer.  Note that, upon return,
    408   // the contents of double_dst will also hold the fixed point representation.
    409   void ConvertDoubleToInt64(const DoubleRegister double_input,
    410 #if !V8_TARGET_ARCH_PPC64
    411                             const Register dst_hi,
    412 #endif
    413                             const Register dst, const DoubleRegister double_dst,
    414                             FPRoundingMode rounding_mode = kRoundToZero);
    415 
    416 #if V8_TARGET_ARCH_PPC64
    417   // Converts the double_input to an unsigned integer.  Note that, upon return,
    418   // the contents of double_dst will also hold the fixed point representation.
    419   void ConvertDoubleToUnsignedInt64(
    420       const DoubleRegister double_input, const Register dst,
    421       const DoubleRegister double_dst,
    422       FPRoundingMode rounding_mode = kRoundToZero);
    423 #endif
    424 
    425 #if !V8_TARGET_ARCH_PPC64
    426   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
    427                      Register src_high, Register scratch, Register shift);
    428   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
    429                      Register src_high, uint32_t shift);
    430   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
    431                       Register src_high, Register scratch, Register shift);
    432   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
    433                       Register src_high, uint32_t shift);
    434   void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
    435                          Register src_high, Register scratch, Register shift);
    436   void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
    437                          Register src_high, uint32_t shift);
    438 #endif
    439 
    440   // Generates function and stub prologue code.
    441   void StubPrologue(StackFrame::Type type, Register base = no_reg,
    442                     int prologue_offset = 0);
    443   void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
    444 
    445   // Enter exit frame.
    446   // stack_space - extra stack space, used for parameters before call to C.
    447   // At least one slot (for the return address) should be provided.
    448   void EnterExitFrame(bool save_doubles, int stack_space = 1,
    449                       StackFrame::Type frame_type = StackFrame::EXIT);
    450 
    451   // Leave the current exit frame. Expects the return value in r0.
    452   // Expect the number of values, pushed prior to the exit frame, to
    453   // remove in a register (or no_reg, if there is nothing to remove).
    454   void LeaveExitFrame(bool save_doubles, Register argument_count,
    455                       bool restore_context,
    456                       bool argument_count_is_length = false);
    457 
    458   // Get the actual activation frame alignment for target environment.
    459   static int ActivationFrameAlignment();
    460 
    461   void LoadContext(Register dst, int context_chain_length);
    462 
    463   // Load the global object from the current context.
    464   void LoadGlobalObject(Register dst) {
    465     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
    466   }
    467 
    468   // Load the global proxy from the current context.
    469   void LoadGlobalProxy(Register dst) {
    470     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
    471   }
    472 
    473   void LoadNativeContextSlot(int index, Register dst);
    474 
    475   // Load the initial map from the global function. The registers
    476   // function and map can be the same, function is then overwritten.
    477   void LoadGlobalFunctionInitialMap(Register function, Register map,
    478                                     Register scratch);
    479 
    480   void InitializeRootRegister() {
    481     ExternalReference roots_array_start =
    482         ExternalReference::roots_array_start(isolate());
    483     mov(kRootRegister, Operand(roots_array_start));
    484   }
    485 
    486   // ----------------------------------------------------------------
    487   // new PPC macro-assembler interfaces that are slightly higher level
    488   // than assembler-ppc and may generate variable length sequences
    489 
    490   // load a literal signed int value <value> to GPR <dst>
    491   void LoadIntLiteral(Register dst, int value);
    492 
    493   // load an SMI value <value> to GPR <dst>
    494   void LoadSmiLiteral(Register dst, Smi* smi);
    495 
    496   // load a literal double value <value> to FPR <result>
    497   void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
    498 
    499   void LoadWord(Register dst, const MemOperand& mem, Register scratch);
    500   void LoadWordArith(Register dst, const MemOperand& mem,
    501                      Register scratch = no_reg);
    502   void StoreWord(Register src, const MemOperand& mem, Register scratch);
    503 
    504   void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
    505   void LoadHalfWordArith(Register dst, const MemOperand& mem,
    506                          Register scratch = no_reg);
    507   void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);
    508 
    509   void LoadByte(Register dst, const MemOperand& mem, Register scratch);
    510   void StoreByte(Register src, const MemOperand& mem, Register scratch);
    511 
    512   void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
    513                           Register scratch = no_reg);
    514   void StoreRepresentation(Register src, const MemOperand& mem,
    515                            Representation r, Register scratch = no_reg);
    516 
    517   void LoadDouble(DoubleRegister dst, const MemOperand& mem,
    518                   Register scratch = no_reg);
    519   void LoadDoubleU(DoubleRegister dst, const MemOperand& mem,
    520                   Register scratch = no_reg);
    521 
    522   void LoadSingle(DoubleRegister dst, const MemOperand& mem,
    523                   Register scratch = no_reg);
    524   void LoadSingleU(DoubleRegister dst, const MemOperand& mem,
    525                    Register scratch = no_reg);
    526 
    527   void StoreDouble(DoubleRegister src, const MemOperand& mem,
    528                    Register scratch = no_reg);
    529   void StoreDoubleU(DoubleRegister src, const MemOperand& mem,
    530                    Register scratch = no_reg);
    531 
    532   void StoreSingle(DoubleRegister src, const MemOperand& mem,
    533                    Register scratch = no_reg);
    534   void StoreSingleU(DoubleRegister src, const MemOperand& mem,
    535                     Register scratch = no_reg);
    536 
    537   // Move values between integer and floating point registers.
    538   void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
    539   void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
    540                               Register scratch);
    541   void MovInt64ToDouble(DoubleRegister dst,
    542 #if !V8_TARGET_ARCH_PPC64
    543                         Register src_hi,
    544 #endif
    545                         Register src);
    546 #if V8_TARGET_ARCH_PPC64
    547   void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
    548                                   Register src_lo, Register scratch);
    549 #endif
    550   void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
    551   void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
    552   void MovDoubleLowToInt(Register dst, DoubleRegister src);
    553   void MovDoubleHighToInt(Register dst, DoubleRegister src);
    554   void MovDoubleToInt64(
    555 #if !V8_TARGET_ARCH_PPC64
    556       Register dst_hi,
    557 #endif
    558       Register dst, DoubleRegister src);
    559   void MovIntToFloat(DoubleRegister dst, Register src);
    560   void MovFloatToInt(Register dst, DoubleRegister src);
    561 
    562   void Add(Register dst, Register src, intptr_t value, Register scratch);
    563   void Cmpi(Register src1, const Operand& src2, Register scratch,
    564             CRegister cr = cr7);
    565   void Cmpli(Register src1, const Operand& src2, Register scratch,
    566              CRegister cr = cr7);
    567   void Cmpwi(Register src1, const Operand& src2, Register scratch,
    568              CRegister cr = cr7);
    569   void Cmplwi(Register src1, const Operand& src2, Register scratch,
    570               CRegister cr = cr7);
    571   void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
    572   void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
    573   void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
    574 
    575   void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
    576   void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
    577   void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
    578                      CRegister cr = cr7);
    579   void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
    580                       CRegister cr = cr7);
    581   void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
    582                      RCBit rc = LeaveRC);
    583 
    584   // Set new rounding mode RN to FPSCR
    585   void SetRoundingMode(FPRoundingMode RN);
    586 
    587   // reset rounding mode to default (kRoundToNearest)
    588   void ResetRoundingMode();
    589 
    590   // These exist to provide portability between 32 and 64bit
    591   void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
    592   void LoadPU(Register dst, const MemOperand& mem, Register scratch = no_reg);
    593   void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
    594   void StorePU(Register src, const MemOperand& mem, Register scratch = no_reg);
    595 
    596   // ---------------------------------------------------------------------------
    597   // JavaScript invokes
    598 
    599   // Removes current frame and its arguments from the stack preserving
    600   // the arguments and a return address pushed to the stack for the next call.
    601   // Both |callee_args_count| and |caller_args_count_reg| do not include
    602   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
    603   // is trashed.
    604   void PrepareForTailCall(const ParameterCount& callee_args_count,
    605                           Register caller_args_count_reg, Register scratch0,
    606                           Register scratch1);
    607 
    608   // Invoke the JavaScript function code by either calling or jumping.
    609   void InvokeFunctionCode(Register function, Register new_target,
    610                           const ParameterCount& expected,
    611                           const ParameterCount& actual, InvokeFlag flag,
    612                           const CallWrapper& call_wrapper);
    613 
    614   // On function call, call into the debugger if necessary.
    615   void CheckDebugHook(Register fun, Register new_target,
    616                       const ParameterCount& expected,
    617                       const ParameterCount& actual);
    618 
    619   // Invoke the JavaScript function in the given register. Changes the
    620   // current context to the context in the function before invoking.
    621   void InvokeFunction(Register function, Register new_target,
    622                       const ParameterCount& actual, InvokeFlag flag,
    623                       const CallWrapper& call_wrapper);
    624 
    625   void InvokeFunction(Register function, const ParameterCount& expected,
    626                       const ParameterCount& actual, InvokeFlag flag,
    627                       const CallWrapper& call_wrapper);
    628 
    629   void InvokeFunction(Handle<JSFunction> function,
    630                       const ParameterCount& expected,
    631                       const ParameterCount& actual, InvokeFlag flag,
    632                       const CallWrapper& call_wrapper);
    633 
    634   void IsObjectJSStringType(Register object, Register scratch, Label* fail);
    635 
    636   void IsObjectNameType(Register object, Register scratch, Label* fail);
    637 
    638   void DebugBreak();
    639   // Frame restart support
    640   void MaybeDropFrames();
    641 
    642   // Exception handling
    643 
    644   // Push a new stack handler and link into stack handler chain.
    645   void PushStackHandler();
    646 
    647   // Unlink the stack handler on top of the stack from the stack handler chain.
    648   // Must preserve the result register.
    649   void PopStackHandler();
    650 
    651   // ---------------------------------------------------------------------------
    652   // Inline caching support
    653 
    654   void GetNumberHash(Register t0, Register scratch);
    655 
    656   inline void MarkCode(NopMarkerTypes type) { nop(type); }
    657 
    658   // Check if the given instruction is a 'type' marker.
    659   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
    660   // These instructions are generated to mark special location in the code,
    661   // like some special IC code.
    662   static inline bool IsMarkedCode(Instr instr, int type) {
    663     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    664     return IsNop(instr, type);
    665   }
    666 
    667 
    668   static inline int GetCodeMarker(Instr instr) {
    669     int dst_reg_offset = 12;
    670     int dst_mask = 0xf << dst_reg_offset;
    671     int src_mask = 0xf;
    672     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    673     int src_reg = instr & src_mask;
    674     uint32_t non_register_mask = ~(dst_mask | src_mask);
    675     uint32_t mov_mask = al | 13 << 21;
    676 
    677     // Return <n> if we have a mov rn rn, else return -1.
    678     int type = ((instr & non_register_mask) == mov_mask) &&
    679                        (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
    680                        (dst_reg < LAST_CODE_MARKER)
    681                    ? src_reg
    682                    : -1;
    683     DCHECK((type == -1) ||
    684            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    685     return type;
    686   }
    687 
    688 
    689   // ---------------------------------------------------------------------------
    690   // Allocation support
    691 
    692   // Allocate an object in new space or old space. The object_size is
    693   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    694   // is passed. If the space is exhausted control continues at the gc_required
    695   // label. The allocated object is returned in result. If the flag
    696   // tag_allocated_object is true the result is tagged as as a heap object.
    697   // All registers are clobbered also when control continues at the gc_required
    698   // label.
    699   void Allocate(int object_size, Register result, Register scratch1,
    700                 Register scratch2, Label* gc_required, AllocationFlags flags);
    701 
    702   void Allocate(Register object_size, Register result, Register result_end,
    703                 Register scratch, Label* gc_required, AllocationFlags flags);
    704 
    705   // FastAllocate is right now only used for folded allocations. It just
    706   // increments the top pointer without checking against limit. This can only
    707   // be done if it was proved earlier that the allocation will succeed.
    708   void FastAllocate(int object_size, Register result, Register scratch1,
    709                     Register scratch2, AllocationFlags flags);
    710 
    711   void FastAllocate(Register object_size, Register result, Register result_end,
    712                     Register scratch, AllocationFlags flags);
    713 
    714   // Allocates a heap number or jumps to the gc_required label if the young
    715   // space is full and a scavenge is needed. All registers are clobbered also
    716   // when control continues at the gc_required label.
    717   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
    718                           Register heap_number_map, Label* gc_required,
    719                           MutableMode mode = IMMUTABLE);
    720   void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
    721                                    Register scratch1, Register scratch2,
    722                                    Register heap_number_map,
    723                                    Label* gc_required);
    724 
    725   // Allocate and initialize a JSValue wrapper with the specified {constructor}
    726   // and {value}.
    727   void AllocateJSValue(Register result, Register constructor, Register value,
    728                        Register scratch1, Register scratch2,
    729                        Label* gc_required);
    730 
    731   // Initialize fields with filler values.  |count| fields starting at
    732   // |current_address| are overwritten with the value in |filler|.  At the end
    733   // the loop, |current_address| points at the next uninitialized field.
    734   // |count| is assumed to be non-zero.
    735   void InitializeNFieldsWithFiller(Register current_address, Register count,
    736                                    Register filler);
    737 
    738   // Initialize fields with filler values.  Fields starting at |current_address|
    739   // not including |end_address| are overwritten with the value in |filler|.  At
    740   // the end the loop, |current_address| takes the value of |end_address|.
    741   void InitializeFieldsWithFiller(Register current_address,
    742                                   Register end_address, Register filler);
    743 
    744   // ---------------------------------------------------------------------------
    745   // Support functions.
    746 
    747   // Machine code version of Map::GetConstructor().
    748   // |temp| holds |result|'s map when done, and |temp2| its instance type.
    749   void GetMapConstructor(Register result, Register map, Register temp,
    750                          Register temp2);
    751 
    752   // Compare object type for heap object.  heap_object contains a non-Smi
    753   // whose object type should be compared with the given type.  This both
    754   // sets the flags and leaves the object type in the type_reg register.
    755   // It leaves the map in the map register (unless the type_reg and map register
    756   // are the same register).  It leaves the heap object in the heap_object
    757   // register unless the heap_object register is the same register as one of the
    758   // other registers.
    759   // Type_reg can be no_reg. In that case ip is used.
    760   void CompareObjectType(Register heap_object, Register map, Register type_reg,
    761                          InstanceType type);
    762 
    763   // Compare instance type in a map.  map contains a valid map object whose
    764   // object type should be compared with the given type.  This both
    765   // sets the flags and leaves the object type in the type_reg register.
    766   void CompareInstanceType(Register map, Register type_reg, InstanceType type);
    767 
    768   // Compare an object's map with the specified map and its transitioned
    769   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
    770   // set with result of map compare. If multiple map compares are required, the
    771   // compare sequences branches to early_success.
    772   void CompareMap(Register obj, Register scratch, Handle<Map> map,
    773                   Label* early_success);
    774 
    775   // As above, but the map of the object is already loaded into the register
    776   // which is preserved by the code generated.
    777   void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
    778 
    779   // Check if the map of an object is equal to a specified map and branch to
    780   // label if not. Skip the smi check if not required (object is known to be a
    781   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    782   // against maps that are ElementsKind transition maps of the specified map.
    783   void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
    784                 SmiCheckType smi_check_type);
    785 
    786 
    787   void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
    788                 Label* fail, SmiCheckType smi_check_type);
    789 
    790 
    791   // Check if the map of an object is equal to a specified weak map and branch
    792   // to a specified target if equal. Skip the smi check if not required
    793   // (object is known to be a heap object)
    794   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
    795                        Handle<WeakCell> cell, Handle<Code> success,
    796                        SmiCheckType smi_check_type);
    797 
    798   // Compare the given value and the value of weak cell.
    799   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
    800                     CRegister cr = cr7);
    801 
    802   void GetWeakValue(Register value, Handle<WeakCell> cell);
    803 
    804   // Load the value of the weak cell in the value register. Branch to the given
    805   // miss label if the weak cell was cleared.
    806   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    807 
    808   // Compare the object in a register to a value from the root list.
    809   // Uses the ip register as scratch.
    810   void CompareRoot(Register obj, Heap::RootListIndex index);
    811   void PushRoot(Heap::RootListIndex index) {
    812     LoadRoot(r0, index);
    813     Push(r0);
    814   }
    815 
    816   // Compare the object in a register to a value and jump if they are equal.
    817   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    818     CompareRoot(with, index);
    819     beq(if_equal);
    820   }
    821 
    822   // Compare the object in a register to a value and jump if they are not equal.
    823   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    824                      Label* if_not_equal) {
    825     CompareRoot(with, index);
    826     bne(if_not_equal);
    827   }
    828 
    829   // Load and check the instance type of an object for being a string.
    830   // Loads the type into the second argument register.
    831   // Returns a condition that will be enabled if the object was a string.
    832   Condition IsObjectStringType(Register obj, Register type) {
    833     LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
    834     lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
    835     andi(r0, type, Operand(kIsNotStringMask));
    836     DCHECK_EQ(0u, kStringTag);
    837     return eq;
    838   }
    839 
    840   // Get the number of least significant bits from a register
    841   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
    842   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
    843 
    844   // Load the value of a smi object into a double register.
    845   void SmiToDouble(DoubleRegister value, Register smi);
    846 
    847   // Check if a double can be exactly represented as a signed 32-bit integer.
    848   // CR_EQ in cr7 is set if true.
    849   void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
    850                          Register scratch2, DoubleRegister double_scratch);
    851 
    852   // Check if a double is equal to -0.0.
    853   // CR_EQ in cr7 holds the result.
    854   void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
    855                              Register scratch2);
    856 
    857   // Check the sign of a double.
    858   // CR_LT in cr7 holds the result.
    859   void TestDoubleSign(DoubleRegister input, Register scratch);
    860   void TestHeapNumberSign(Register input, Register scratch);
    861 
    862   // Try to convert a double to a signed 32-bit integer.
    863   // CR_EQ in cr7 is set and result assigned if the conversion is exact.
    864   void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
    865                              Register scratch, DoubleRegister double_scratch);
    866 
    867   // Floor a double and writes the value to the result register.
    868   // Go to exact if the conversion is exact (to be able to test -0),
    869   // fall through calling code if an overflow occurred, else go to done.
    870   // In return, input_high is loaded with high bits of input.
    871   void TryInt32Floor(Register result, DoubleRegister double_input,
    872                      Register input_high, Register scratch,
    873                      DoubleRegister double_scratch, Label* done, Label* exact);
    874 
    875   // Performs a truncating conversion of a floating point number as used by
    876   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
    877   // succeeds, otherwise falls through if result is saturated. On return
    878   // 'result' either holds answer, or is clobbered on fall through.
    879   //
    880   // Only public for the test code in test-code-stubs-arm.cc.
    881   void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
    882                                   Label* done);
    883 
    884   // Performs a truncating conversion of a floating point number as used by
    885   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
    886   // Exits with 'result' holding the answer.
    887   void TruncateDoubleToI(Register result, DoubleRegister double_input);
    888 
    889   // Performs a truncating conversion of a heap number as used by
    890   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
    891   // must be different registers.  Exits with 'result' holding the answer.
    892   void TruncateHeapNumberToI(Register result, Register object);
    893 
    894   // Converts the smi or heap number in object to an int32 using the rules
    895   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
    896   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
    897   // different registers.
    898   void TruncateNumberToI(Register object, Register result,
    899                          Register heap_number_map, Register scratch1,
    900                          Label* not_int32);
    901 
    902   // Overflow handling functions.
    903   // Usage: call the appropriate arithmetic function and then call one of the
    904   // flow control functions with the corresponding label.
    905 
    906   // Compute dst = left + right, setting condition codes. dst may be same as
    907   // either left or right (or a unique register). left and right must not be
    908   // the same register.
    909   void AddAndCheckForOverflow(Register dst, Register left, Register right,
    910                               Register overflow_dst, Register scratch = r0);
    911   void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
    912                               Register overflow_dst, Register scratch = r0);
    913 
    914   // Compute dst = left - right, setting condition codes. dst may be same as
    915   // either left or right (or a unique register). left and right must not be
    916   // the same register.
    917   void SubAndCheckForOverflow(Register dst, Register left, Register right,
    918                               Register overflow_dst, Register scratch = r0);
    919 
    920   void BranchOnOverflow(Label* label) { blt(label, cr0); }
    921 
    922   void BranchOnNoOverflow(Label* label) { bge(label, cr0); }
    923 
    924   void RetOnOverflow(void) { Ret(lt, cr0); }
    925 
    926   void RetOnNoOverflow(void) { Ret(ge, cr0); }
    927 
    928   // ---------------------------------------------------------------------------
    929   // Runtime calls
    930 
    931   // Call a code stub.
    932   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
    933                 Condition cond = al);
    934 
    935   // Call a code stub.
    936   void TailCallStub(CodeStub* stub, Condition cond = al);
    937 
    938   // Call a runtime routine.
    939   void CallRuntime(const Runtime::Function* f, int num_arguments,
    940                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
    941   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
    942     const Runtime::Function* function = Runtime::FunctionForId(fid);
    943     CallRuntime(function, function->nargs, kSaveFPRegs);
    944   }
    945 
    946   // Convenience function: Same as above, but takes the fid instead.
    947   void CallRuntime(Runtime::FunctionId fid,
    948                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    949     const Runtime::Function* function = Runtime::FunctionForId(fid);
    950     CallRuntime(function, function->nargs, save_doubles);
    951   }
    952 
    953   // Convenience function: Same as above, but takes the fid instead.
    954   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
    955                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    956     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
    957   }
    958 
    959   // Convenience function: call an external reference.
    960   void CallExternalReference(const ExternalReference& ext, int num_arguments);
    961 
    962   // Convenience function: tail call a runtime routine (jump).
    963   void TailCallRuntime(Runtime::FunctionId fid);
    964 
    965   int CalculateStackPassedWords(int num_reg_arguments,
    966                                 int num_double_arguments);
    967 
    968   // Before calling a C-function from generated code, align arguments on stack.
    969   // After aligning the frame, non-register arguments must be stored in
    970   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
    971   // are word sized. If double arguments are used, this function assumes that
    972   // all double arguments are stored before core registers; otherwise the
    973   // correct alignment of the double values is not guaranteed.
    974   // Some compilers/platforms require the stack to be aligned when calling
    975   // C++ code.
    976   // Needs a scratch register to do some arithmetic. This register will be
    977   // trashed.
    978   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
    979                             Register scratch);
    980   void PrepareCallCFunction(int num_reg_arguments, Register scratch);
    981 
    982   // There are two ways of passing double arguments on ARM, depending on
    983   // whether soft or hard floating point ABI is used. These functions
    984   // abstract parameter passing for the three different ways we call
    985   // C functions from generated code.
    986   void MovToFloatParameter(DoubleRegister src);
    987   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
    988   void MovToFloatResult(DoubleRegister src);
    989 
    990   // Calls a C function and cleans up the space for arguments allocated
    991   // by PrepareCallCFunction. The called function is not allowed to trigger a
    992   // garbage collection, since that might move the code and invalidate the
    993   // return address (unless this is somehow accounted for by the called
    994   // function).
    995   void CallCFunction(ExternalReference function, int num_arguments);
    996   void CallCFunction(Register function, int num_arguments);
    997   void CallCFunction(ExternalReference function, int num_reg_arguments,
    998                      int num_double_arguments);
    999   void CallCFunction(Register function, int num_reg_arguments,
   1000                      int num_double_arguments);
   1001 
   1002   void MovFromFloatParameter(DoubleRegister dst);
   1003   void MovFromFloatResult(DoubleRegister dst);
   1004 
   1005   // Jump to a runtime routine.
   1006   void JumpToExternalReference(const ExternalReference& builtin,
   1007                                bool builtin_exit_frame = false);
   1008 
   1009   Handle<Object> CodeObject() {
   1010     DCHECK(!code_object_.is_null());
   1011     return code_object_;
   1012   }
   1013 
   1014 
   1015   // Emit code for a truncating division by a constant. The dividend register is
   1016   // unchanged and ip gets clobbered. Dividend and result must be different.
   1017   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1018 
   1019   // ---------------------------------------------------------------------------
   1020   // StatsCounter support
   1021 
   1022   void SetCounter(StatsCounter* counter, int value, Register scratch1,
   1023                   Register scratch2);
   1024   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
   1025                         Register scratch2);
   1026   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
   1027                         Register scratch2);
   1028 
   1029 
   1030   // ---------------------------------------------------------------------------
   1031   // Debugging
   1032 
   1033   // Calls Abort(msg) if the condition cond is not satisfied.
   1034   // Use --debug_code to enable.
   1035   void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
   1036   void AssertFastElements(Register elements);
   1037 
   1038   // Like Assert(), but always enabled.
   1039   void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
   1040 
   1041   // Print a message to stdout and abort execution.
   1042   void Abort(BailoutReason reason);
   1043 
   1044   // Verify restrictions about code generated in stubs.
   1045   void set_generating_stub(bool value) { generating_stub_ = value; }
   1046   bool generating_stub() { return generating_stub_; }
   1047   void set_has_frame(bool value) { has_frame_ = value; }
   1048   bool has_frame() { return has_frame_; }
   1049   inline bool AllowThisStubCall(CodeStub* stub);
   1050 
   1051   // ---------------------------------------------------------------------------
   1052   // Number utilities
   1053 
   1054   // Check whether the value of reg is a power of two and not zero. If not
   1055   // control continues at the label not_power_of_two. If reg is a power of two
   1056   // the register scratch contains the value of (reg - 1) when control falls
   1057   // through.
   1058   void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
   1059                                  Label* not_power_of_two_or_zero);
   1060   // Check whether the value of reg is a power of two and not zero.
   1061   // Control falls through if it is, with scratch containing the mask
   1062   // value (reg - 1).
   1063   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
   1064   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
   1065   // strictly positive but not a power of two.
   1066   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
   1067                                        Label* zero_and_neg,
   1068                                        Label* not_power_of_two);
   1069 
   1070   // ---------------------------------------------------------------------------
   1071   // Bit testing/extraction
   1072   //
   1073   // Bit numbering is such that the least significant bit is bit 0
   1074   // (for consistency between 32/64-bit).
   1075 
   1076   // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
   1077   // and, if !test, shift them into the least significant bits of dst.
   1078   inline void ExtractBitRange(Register dst, Register src, int rangeStart,
   1079                               int rangeEnd, RCBit rc = LeaveRC,
   1080                               bool test = false) {
   1081     DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
   1082     int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
   1083     int width = rangeStart - rangeEnd + 1;
   1084     if (rc == SetRC && rangeStart < 16 && (rangeEnd == 0 || test)) {
   1085       // Prefer faster andi when applicable.
   1086       andi(dst, src, Operand(((1 << width) - 1) << rangeEnd));
   1087     } else {
   1088 #if V8_TARGET_ARCH_PPC64
   1089       rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
   1090 #else
   1091       rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1,
   1092              rc);
   1093 #endif
   1094     }
   1095   }
   1096 
   1097   inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
   1098                          RCBit rc = LeaveRC, bool test = false) {
   1099     ExtractBitRange(dst, src, bitNumber, bitNumber, rc, test);
   1100   }
   1101 
   1102   // Extract consecutive bits (defined by mask) from src and place them
   1103   // into the least significant bits of dst.
   1104   inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
   1105                              RCBit rc = LeaveRC, bool test = false) {
   1106     int start = kBitsPerPointer - 1;
   1107     int end;
   1108     uintptr_t bit = (1L << start);
   1109 
   1110     while (bit && (mask & bit) == 0) {
   1111       start--;
   1112       bit >>= 1;
   1113     }
   1114     end = start;
   1115     bit >>= 1;
   1116 
   1117     while (bit && (mask & bit)) {
   1118       end--;
   1119       bit >>= 1;
   1120     }
   1121 
   1122     // 1-bits in mask must be contiguous
   1123     DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
   1124 
   1125     ExtractBitRange(dst, src, start, end, rc, test);
   1126   }
   1127 
   1128   // Test single bit in value.
   1129   inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
   1130     ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC, true);
   1131   }
   1132 
   1133   // Test consecutive bit range in value.  Range is defined by
   1134   // rangeStart - rangeEnd.
   1135   inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
   1136                            Register scratch = r0) {
   1137     ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC, true);
   1138   }
   1139 
   1140   // Test consecutive bit range in value.  Range is defined by mask.
   1141   inline void TestBitMask(Register value, uintptr_t mask,
   1142                           Register scratch = r0) {
   1143     ExtractBitMask(scratch, value, mask, SetRC, true);
   1144   }
   1145 
   1146 
   1147   // ---------------------------------------------------------------------------
   1148   // Smi utilities
   1149 
   1150   // Shift left by kSmiShift
   1151   void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
   1152   void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
   1153     ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
   1154   }
   1155 
   1156 #if !V8_TARGET_ARCH_PPC64
   1157   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
   1158   void SmiTagCheckOverflow(Register reg, Register overflow);
   1159   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
   1160 
   1161   inline void JumpIfNotSmiCandidate(Register value, Register scratch,
   1162                                     Label* not_smi_label) {
   1163     // High bits must be identical to fit into an Smi
   1164     STATIC_ASSERT(kSmiShift == 1);
   1165     addis(scratch, value, Operand(0x40000000u >> 16));
   1166     cmpi(scratch, Operand::Zero());
   1167     blt(not_smi_label);
   1168   }
   1169 #endif
   1170   inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
   1171     // The test is different for unsigned int values. Since we need
   1172     // the value to be in the range of a positive smi, we can't
   1173     // handle any of the high bits being set in the value.
   1174     TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
   1175                  scratch);
   1176   }
   1177   inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
   1178                                             Label* not_smi_label) {
   1179     TestUnsignedSmiCandidate(value, scratch);
   1180     bne(not_smi_label, cr0);
   1181   }
   1182 
   1183   void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }
   1184 
   1185   void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
   1186     ShiftRightArithImm(dst, src, kSmiShift, rc);
   1187   }
   1188 
   1189   void SmiToPtrArrayOffset(Register dst, Register src) {
   1190 #if V8_TARGET_ARCH_PPC64
   1191     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
   1192     ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
   1193 #else
   1194     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
   1195     ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
   1196 #endif
   1197   }
   1198 
   1199   void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
   1200 
   1201   void SmiToShortArrayOffset(Register dst, Register src) {
   1202 #if V8_TARGET_ARCH_PPC64
   1203     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
   1204     ShiftRightArithImm(dst, src, kSmiShift - 1);
   1205 #else
   1206     STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
   1207     if (!dst.is(src)) {
   1208       mr(dst, src);
   1209     }
   1210 #endif
   1211   }
   1212 
   1213   void SmiToIntArrayOffset(Register dst, Register src) {
   1214 #if V8_TARGET_ARCH_PPC64
   1215     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
   1216     ShiftRightArithImm(dst, src, kSmiShift - 2);
   1217 #else
   1218     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
   1219     ShiftLeftImm(dst, src, Operand(2 - kSmiShift));
   1220 #endif
   1221   }
   1222 
   1223 #define SmiToFloatArrayOffset SmiToIntArrayOffset
   1224 
   1225   void SmiToDoubleArrayOffset(Register dst, Register src) {
   1226 #if V8_TARGET_ARCH_PPC64
   1227     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
   1228     ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2);
   1229 #else
   1230     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
   1231     ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
   1232 #endif
   1233   }
   1234 
   1235   void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
   1236     if (kSmiShift < elementSizeLog2) {
   1237       ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift));
   1238     } else if (kSmiShift > elementSizeLog2) {
   1239       ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2);
   1240     } else if (!dst.is(src)) {
   1241       mr(dst, src);
   1242     }
   1243   }
   1244 
   1245   void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
   1246                           bool isSmi) {
   1247     if (isSmi) {
   1248       SmiToArrayOffset(dst, src, elementSizeLog2);
   1249     } else {
   1250       ShiftLeftImm(dst, src, Operand(elementSizeLog2));
   1251     }
   1252   }
   1253 
   1254   // Untag the source value into destination and jump if source is a smi.
   1255   // Souce and destination can be the same register.
   1256   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1257 
   1258   inline void TestIfSmi(Register value, Register scratch) {
   1259     TestBitRange(value, kSmiTagSize - 1, 0, scratch);
   1260   }
   1261 
   1262   inline void TestIfPositiveSmi(Register value, Register scratch) {
   1263 #if V8_TARGET_ARCH_PPC64
   1264     rldicl(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize), SetRC);
   1265 #else
   1266     rlwinm(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize),
   1267            kBitsPerPointer - 1, SetRC);
   1268 #endif
   1269   }
   1270 
   1271   // Jump the register contains a smi.
   1272   inline void JumpIfSmi(Register value, Label* smi_label) {
   1273     TestIfSmi(value, r0);
   1274     beq(smi_label, cr0);  // branch if SMI
   1275   }
   1276   // Jump if either of the registers contain a non-smi.
   1277   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
   1278     TestIfSmi(value, r0);
   1279     bne(not_smi_label, cr0);
   1280   }
   1281   // Jump if either of the registers contain a non-smi.
   1282   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1283   // Jump if either of the registers contain a smi.
   1284   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1285 
   1286   // Abort execution if argument is a number, enabled via --debug-code.
   1287   void AssertNotNumber(Register object);
   1288 
   1289   // Abort execution if argument is a smi, enabled via --debug-code.
   1290   void AssertNotSmi(Register object);
   1291   void AssertSmi(Register object);
   1292 
   1293 
   1294 #if V8_TARGET_ARCH_PPC64
   1295   inline void TestIfInt32(Register value, Register scratch,
   1296                           CRegister cr = cr7) {
   1297     // High bits must be identical to fit into an 32-bit integer
   1298     extsw(scratch, value);
   1299     cmp(scratch, value, cr);
   1300   }
   1301 #else
   1302   inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
   1303                           CRegister cr = cr7) {
   1304     // High bits must be identical to fit into an 32-bit integer
   1305     srawi(scratch, lo_word, 31);
   1306     cmp(scratch, hi_word, cr);
   1307   }
   1308 #endif
   1309 
   1310 #if V8_TARGET_ARCH_PPC64
   1311   // Ensure it is permissable to read/write int value directly from
   1312   // upper half of the smi.
   1313   STATIC_ASSERT(kSmiTag == 0);
   1314   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
   1315 #endif
   1316 #if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
   1317 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
   1318 #else
   1319 #define SmiWordOffset(offset) offset
   1320 #endif
   1321 
   1322   // Abort execution if argument is not a string, enabled via --debug-code.
   1323   void AssertString(Register object);
   1324 
   1325   // Abort execution if argument is not a name, enabled via --debug-code.
   1326   void AssertName(Register object);
   1327 
   1328   void AssertFunction(Register object);
   1329 
   1330   // Abort execution if argument is not a JSBoundFunction,
   1331   // enabled via --debug-code.
   1332   void AssertBoundFunction(Register object);
   1333 
   1334   // Abort execution if argument is not a JSGeneratorObject,
   1335   // enabled via --debug-code.
   1336   void AssertGeneratorObject(Register object);
   1337 
   1338   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1339   void AssertReceiver(Register object);
   1340 
   1341   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1342   // via --debug-code.
   1343   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1344 
   1345   // Abort execution if reg is not the root value with the given index,
   1346   // enabled via --debug-code.
   1347   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1348 
   1349   // ---------------------------------------------------------------------------
   1350   // HeapNumber utilities
   1351 
   1352   void JumpIfNotHeapNumber(Register object, Register heap_number_map,
   1353                            Register scratch, Label* on_not_heap_number);
   1354 
   1355   // ---------------------------------------------------------------------------
   1356   // String utilities
   1357 
   1358   // Checks if both objects are sequential one-byte strings and jumps to label
   1359   // if either is not. Assumes that neither object is a smi.
   1360   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
   1361                                                     Register object2,
   1362                                                     Register scratch1,
   1363                                                     Register scratch2,
   1364                                                     Label* failure);
   1365 
   1366   // Checks if both objects are sequential one-byte strings and jumps to label
   1367   // if either is not.
   1368   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
   1369                                              Register scratch1,
   1370                                              Register scratch2,
   1371                                              Label* not_flat_one_byte_strings);
   1372 
   1373   // Checks if both instance types are sequential one-byte strings and jumps to
   1374   // label if either is not.
   1375   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
   1376       Register first_object_instance_type, Register second_object_instance_type,
   1377       Register scratch1, Register scratch2, Label* failure);
   1378 
   1379   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
   1380 
   1381   void EmitSeqStringSetCharCheck(Register string, Register index,
   1382                                  Register value, uint32_t encoding_mask);
   1383 
   1384   // ---------------------------------------------------------------------------
   1385   // Patching helpers.
   1386 
   1387   // Decode offset from constant pool load instruction(s).
   1388   // Caller must place the instruction word at <location> in <result>.
   1389   void DecodeConstantPoolOffset(Register result, Register location);
   1390 
   1391   void ClampUint8(Register output_reg, Register input_reg);
   1392 
   1393   // Saturate a value into 8-bit unsigned integer
   1394   //   if input_value < 0, output_value is 0
   1395   //   if input_value > 255, output_value is 255
   1396   //   otherwise output_value is the (int)input_value (round to nearest)
   1397   void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
   1398                           DoubleRegister temp_double_reg);
   1399 
   1400 
   1401   void LoadInstanceDescriptors(Register map, Register descriptors);
   1402   void EnumLength(Register dst, Register map);
   1403   void NumberOfOwnDescriptors(Register dst, Register map);
   1404   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1405                     AccessorComponent accessor);
   1406 
   1407   template <typename Field>
   1408   void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
   1409     ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
   1410                     rc);
   1411   }
   1412 
   1413   template <typename Field>
   1414   void DecodeField(Register reg, RCBit rc = LeaveRC) {
   1415     DecodeField<Field>(reg, reg, rc);
   1416   }
   1417 
   1418   template <typename Field>
   1419   void DecodeFieldToSmi(Register dst, Register src) {
   1420 #if V8_TARGET_ARCH_PPC64
   1421     DecodeField<Field>(dst, src);
   1422     SmiTag(dst);
   1423 #else
   1424     // 32-bit can do this in one instruction:
   1425     int start = Field::kSize + kSmiShift - 1;
   1426     int end = kSmiShift;
   1427     int rotate = kSmiShift - Field::kShift;
   1428     if (rotate < 0) {
   1429       rotate += kBitsPerPointer;
   1430     }
   1431     rlwinm(dst, src, rotate, kBitsPerPointer - start - 1,
   1432            kBitsPerPointer - end - 1);
   1433 #endif
   1434   }
   1435 
   1436   template <typename Field>
   1437   void DecodeFieldToSmi(Register reg) {
   1438     DecodeFieldToSmi<Field>(reg, reg);
   1439   }
   1440 
   1441   // Load the type feedback vector from a JavaScript frame.
   1442   void EmitLoadFeedbackVector(Register vector);
   1443 
   1444   // Activation support.
   1445   void EnterFrame(StackFrame::Type type,
   1446                   bool load_constant_pool_pointer_reg = false);
   1447   // Returns the pc offset at which the frame ends.
   1448   int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
   1449 
   1450   void EnterBuiltinFrame(Register context, Register target, Register argc);
   1451   void LeaveBuiltinFrame(Register context, Register target, Register argc);
   1452 
   1453   // Expects object in r3 and returns map with validated enum cache
   1454   // in r3.  Assumes that any other register can be used as a scratch.
   1455   void CheckEnumCache(Label* call_runtime);
   1456 
   1457   // AllocationMemento support. Arrays may have an associated
   1458   // AllocationMemento object that can be checked for in order to pretransition
   1459   // to another type.
   1460   // On entry, receiver_reg should point to the array object.
   1461   // scratch_reg gets clobbered.
   1462   // If allocation info is present, condition flags are set to eq.
   1463   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1464                                        Register scratch_reg,
   1465                                        Register scratch2_reg,
   1466                                        Label* no_memento_found);
   1467 
   1468   // Loads the constant pool pointer (kConstantPoolRegister).
   1469   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
   1470       Register code_target_address);
   1471   void LoadConstantPoolPointerRegister();
   1472   void LoadConstantPoolPointerRegister(Register base, int code_entry_delta = 0);
   1473 
   1474   void AbortConstantPoolBuilding() {
   1475 #ifdef DEBUG
   1476     // Avoid DCHECK(!is_linked()) failure in ~Label()
   1477     bind(ConstantPoolPosition());
   1478 #endif
   1479   }
   1480 
   1481  private:
   1482   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1483 
   1484   void CallCFunctionHelper(Register function, int num_reg_arguments,
   1485                            int num_double_arguments);
   1486 
   1487   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
   1488             CRegister cr = cr7);
   1489 
   1490   // Helper functions for generating invokes.
   1491   void InvokePrologue(const ParameterCount& expected,
   1492                       const ParameterCount& actual, Label* done,
   1493                       bool* definitely_mismatches, InvokeFlag flag,
   1494                       const CallWrapper& call_wrapper);
   1495 
   1496   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1497   void InNewSpace(Register object, Register scratch,
   1498                   Condition cond,  // eq for new space, ne otherwise.
   1499                   Label* branch);
   1500 
   1501   // Helper for finding the mark bits for an address.  Afterwards, the
   1502   // bitmap register points at the word with the mark bits and the mask
   1503   // the position of the first bit.  Leaves addr_reg unchanged.
   1504   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
   1505                           Register mask_reg);
   1506 
   1507   static const RegList kSafepointSavedRegisters;
   1508   static const int kNumSafepointSavedRegisters;
   1509 
   1510   // Compute memory operands for safepoint stack slots.
   1511   static int SafepointRegisterStackIndex(int reg_code);
   1512   MemOperand SafepointRegisterSlot(Register reg);
   1513   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1514 
   1515   bool generating_stub_;
   1516   bool has_frame_;
   1517   // This handle will be patched with the code object on installation.
   1518   Handle<Object> code_object_;
   1519 
   1520   // Needs access to SafepointRegisterStackIndex for compiled frame
   1521   // traversal.
   1522   friend class StandardFrame;
   1523 };
   1524 
   1525 
   1526 // The code patcher is used to patch (typically) small parts of code e.g. for
   1527 // debugging and other types of instrumentation. When using the code patcher
   1528 // the exact number of bytes specified must be emitted. It is not legal to emit
   1529 // relocation information. If any of these constraints are violated it causes
   1530 // an assertion to fail.
   1531 class CodePatcher {
   1532  public:
   1533   enum FlushICache { FLUSH, DONT_FLUSH };
   1534 
   1535   CodePatcher(Isolate* isolate, byte* address, int instructions,
   1536               FlushICache flush_cache = FLUSH);
   1537   ~CodePatcher();
   1538 
   1539   // Macro assembler to emit code.
   1540   MacroAssembler* masm() { return &masm_; }
   1541 
   1542   // Emit an instruction directly.
   1543   void Emit(Instr instr);
   1544 
   1545   // Emit the condition part of an instruction leaving the rest of the current
   1546   // instruction unchanged.
   1547   void EmitCondition(Condition cond);
   1548 
   1549  private:
   1550   byte* address_;            // The address of the code being patched.
   1551   int size_;                 // Number of bytes of the expected patch size.
   1552   MacroAssembler masm_;      // Macro assembler used to generate the code.
   1553   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1554 };
   1555 
   1556 
   1557 // -----------------------------------------------------------------------------
   1558 // Static helper functions.
   1559 
   1560 inline MemOperand ContextMemOperand(Register context, int index = 0) {
   1561   return MemOperand(context, Context::SlotOffset(index));
   1562 }
   1563 
   1564 
   1565 inline MemOperand NativeContextMemOperand() {
   1566   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
   1567 }
   1568 
   1569 #define ACCESS_MASM(masm) masm->
   1570 
   1571 }  // namespace internal
   1572 }  // namespace v8
   1573 
   1574 #endif  // V8_PPC_MACRO_ASSEMBLER_PPC_H_
   1575