Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/ExprOpenMP.h"
     28 #include "clang/AST/RecursiveASTVisitor.h"
     29 #include "clang/AST/TypeLoc.h"
     30 #include "clang/Basic/PartialDiagnostic.h"
     31 #include "clang/Basic/SourceManager.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "clang/Lex/LiteralSupport.h"
     34 #include "clang/Lex/Preprocessor.h"
     35 #include "clang/Sema/AnalysisBasedWarnings.h"
     36 #include "clang/Sema/DeclSpec.h"
     37 #include "clang/Sema/DelayedDiagnostic.h"
     38 #include "clang/Sema/Designator.h"
     39 #include "clang/Sema/Initialization.h"
     40 #include "clang/Sema/Lookup.h"
     41 #include "clang/Sema/ParsedTemplate.h"
     42 #include "clang/Sema/Scope.h"
     43 #include "clang/Sema/ScopeInfo.h"
     44 #include "clang/Sema/SemaFixItUtils.h"
     45 #include "clang/Sema/Template.h"
     46 #include "llvm/Support/ConvertUTF.h"
     47 using namespace clang;
     48 using namespace sema;
     49 
     50 /// \brief Determine whether the use of this declaration is valid, without
     51 /// emitting diagnostics.
     52 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
     53   // See if this is an auto-typed variable whose initializer we are parsing.
     54   if (ParsingInitForAutoVars.count(D))
     55     return false;
     56 
     57   // See if this is a deleted function.
     58   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     59     if (FD->isDeleted())
     60       return false;
     61 
     62     // If the function has a deduced return type, and we can't deduce it,
     63     // then we can't use it either.
     64     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
     65         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
     66       return false;
     67   }
     68 
     69   // See if this function is unavailable.
     70   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
     71       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     72     return false;
     73 
     74   return true;
     75 }
     76 
     77 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     78   // Warn if this is used but marked unused.
     79   if (const auto *A = D->getAttr<UnusedAttr>()) {
     80     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
     81     // should diagnose them.
     82     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused) {
     83       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
     84       if (DC && !DC->hasAttr<UnusedAttr>())
     85         S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     86     }
     87   }
     88 }
     89 
     90 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
     91   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
     92   if (!OMD)
     93     return false;
     94   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
     95   if (!OID)
     96     return false;
     97 
     98   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
     99     if (ObjCMethodDecl *CatMeth =
    100             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
    101       if (!CatMeth->hasAttr<AvailabilityAttr>())
    102         return true;
    103   return false;
    104 }
    105 
    106 static AvailabilityResult
    107 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
    108                            const ObjCInterfaceDecl *UnknownObjCClass,
    109                            bool ObjCPropertyAccess) {
    110   // See if this declaration is unavailable or deprecated.
    111   std::string Message;
    112   AvailabilityResult Result = D->getAvailability(&Message);
    113 
    114   // For typedefs, if the typedef declaration appears available look
    115   // to the underlying type to see if it is more restrictive.
    116   while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    117     if (Result == AR_Available) {
    118       if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
    119         D = TT->getDecl();
    120         Result = D->getAvailability(&Message);
    121         continue;
    122       }
    123     }
    124     break;
    125   }
    126 
    127   // Forward class declarations get their attributes from their definition.
    128   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
    129     if (IDecl->getDefinition()) {
    130       D = IDecl->getDefinition();
    131       Result = D->getAvailability(&Message);
    132     }
    133   }
    134 
    135   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
    136     if (Result == AR_Available) {
    137       const DeclContext *DC = ECD->getDeclContext();
    138       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
    139         Result = TheEnumDecl->getAvailability(&Message);
    140     }
    141 
    142   const ObjCPropertyDecl *ObjCPDecl = nullptr;
    143   if (Result == AR_Deprecated || Result == AR_Unavailable ||
    144       Result == AR_NotYetIntroduced) {
    145     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    146       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    147         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
    148         if (PDeclResult == Result)
    149           ObjCPDecl = PD;
    150       }
    151     }
    152   }
    153 
    154   switch (Result) {
    155     case AR_Available:
    156       break;
    157 
    158     case AR_Deprecated:
    159       if (S.getCurContextAvailability() != AR_Deprecated)
    160         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
    161                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    162                                   ObjCPropertyAccess);
    163       break;
    164 
    165     case AR_NotYetIntroduced: {
    166       // Don't do this for enums, they can't be redeclared.
    167       if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
    168         break;
    169 
    170       bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
    171       // Objective-C method declarations in categories are not modelled as
    172       // redeclarations, so manually look for a redeclaration in a category
    173       // if necessary.
    174       if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
    175         Warn = false;
    176       // In general, D will point to the most recent redeclaration. However,
    177       // for `@class A;` decls, this isn't true -- manually go through the
    178       // redecl chain in that case.
    179       if (Warn && isa<ObjCInterfaceDecl>(D))
    180         for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
    181              Redecl = Redecl->getPreviousDecl())
    182           if (!Redecl->hasAttr<AvailabilityAttr>() ||
    183               Redecl->getAttr<AvailabilityAttr>()->isInherited())
    184             Warn = false;
    185 
    186       if (Warn)
    187         S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
    188                                   UnknownObjCClass, ObjCPDecl,
    189                                   ObjCPropertyAccess);
    190       break;
    191     }
    192 
    193     case AR_Unavailable:
    194       if (S.getCurContextAvailability() != AR_Unavailable)
    195         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
    196                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    197                                   ObjCPropertyAccess);
    198       break;
    199 
    200     }
    201     return Result;
    202 }
    203 
    204 /// \brief Emit a note explaining that this function is deleted.
    205 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    206   assert(Decl->isDeleted());
    207 
    208   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    209 
    210   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    211     // If the method was explicitly defaulted, point at that declaration.
    212     if (!Method->isImplicit())
    213       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    214 
    215     // Try to diagnose why this special member function was implicitly
    216     // deleted. This might fail, if that reason no longer applies.
    217     CXXSpecialMember CSM = getSpecialMember(Method);
    218     if (CSM != CXXInvalid)
    219       ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
    220 
    221     return;
    222   }
    223 
    224   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
    225   if (Ctor && Ctor->isInheritingConstructor())
    226     return NoteDeletedInheritingConstructor(Ctor);
    227 
    228   Diag(Decl->getLocation(), diag::note_availability_specified_here)
    229     << Decl << true;
    230 }
    231 
    232 /// \brief Determine whether a FunctionDecl was ever declared with an
    233 /// explicit storage class.
    234 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    235   for (auto I : D->redecls()) {
    236     if (I->getStorageClass() != SC_None)
    237       return true;
    238   }
    239   return false;
    240 }
    241 
    242 /// \brief Check whether we're in an extern inline function and referring to a
    243 /// variable or function with internal linkage (C11 6.7.4p3).
    244 ///
    245 /// This is only a warning because we used to silently accept this code, but
    246 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    247 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    248 /// and so while there may still be user mistakes, most of the time we can't
    249 /// prove that there are errors.
    250 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    251                                                       const NamedDecl *D,
    252                                                       SourceLocation Loc) {
    253   // This is disabled under C++; there are too many ways for this to fire in
    254   // contexts where the warning is a false positive, or where it is technically
    255   // correct but benign.
    256   if (S.getLangOpts().CPlusPlus)
    257     return;
    258 
    259   // Check if this is an inlined function or method.
    260   FunctionDecl *Current = S.getCurFunctionDecl();
    261   if (!Current)
    262     return;
    263   if (!Current->isInlined())
    264     return;
    265   if (!Current->isExternallyVisible())
    266     return;
    267 
    268   // Check if the decl has internal linkage.
    269   if (D->getFormalLinkage() != InternalLinkage)
    270     return;
    271 
    272   // Downgrade from ExtWarn to Extension if
    273   //  (1) the supposedly external inline function is in the main file,
    274   //      and probably won't be included anywhere else.
    275   //  (2) the thing we're referencing is a pure function.
    276   //  (3) the thing we're referencing is another inline function.
    277   // This last can give us false negatives, but it's better than warning on
    278   // wrappers for simple C library functions.
    279   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    280   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
    281   if (!DowngradeWarning && UsedFn)
    282     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    283 
    284   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
    285                                : diag::ext_internal_in_extern_inline)
    286     << /*IsVar=*/!UsedFn << D;
    287 
    288   S.MaybeSuggestAddingStaticToDecl(Current);
    289 
    290   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
    291       << D;
    292 }
    293 
    294 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    295   const FunctionDecl *First = Cur->getFirstDecl();
    296 
    297   // Suggest "static" on the function, if possible.
    298   if (!hasAnyExplicitStorageClass(First)) {
    299     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    300     Diag(DeclBegin, diag::note_convert_inline_to_static)
    301       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    302   }
    303 }
    304 
    305 /// \brief Determine whether the use of this declaration is valid, and
    306 /// emit any corresponding diagnostics.
    307 ///
    308 /// This routine diagnoses various problems with referencing
    309 /// declarations that can occur when using a declaration. For example,
    310 /// it might warn if a deprecated or unavailable declaration is being
    311 /// used, or produce an error (and return true) if a C++0x deleted
    312 /// function is being used.
    313 ///
    314 /// \returns true if there was an error (this declaration cannot be
    315 /// referenced), false otherwise.
    316 ///
    317 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    318                              const ObjCInterfaceDecl *UnknownObjCClass,
    319                              bool ObjCPropertyAccess) {
    320   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    321     // If there were any diagnostics suppressed by template argument deduction,
    322     // emit them now.
    323     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    324     if (Pos != SuppressedDiagnostics.end()) {
    325       for (const PartialDiagnosticAt &Suppressed : Pos->second)
    326         Diag(Suppressed.first, Suppressed.second);
    327 
    328       // Clear out the list of suppressed diagnostics, so that we don't emit
    329       // them again for this specialization. However, we don't obsolete this
    330       // entry from the table, because we want to avoid ever emitting these
    331       // diagnostics again.
    332       Pos->second.clear();
    333     }
    334 
    335     // C++ [basic.start.main]p3:
    336     //   The function 'main' shall not be used within a program.
    337     if (cast<FunctionDecl>(D)->isMain())
    338       Diag(Loc, diag::ext_main_used);
    339   }
    340 
    341   // See if this is an auto-typed variable whose initializer we are parsing.
    342   if (ParsingInitForAutoVars.count(D)) {
    343     const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
    344 
    345     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    346       << D->getDeclName() << (unsigned)AT->getKeyword();
    347     return true;
    348   }
    349 
    350   // See if this is a deleted function.
    351   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    352     if (FD->isDeleted()) {
    353       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
    354       if (Ctor && Ctor->isInheritingConstructor())
    355         Diag(Loc, diag::err_deleted_inherited_ctor_use)
    356             << Ctor->getParent()
    357             << Ctor->getInheritedConstructor().getConstructor()->getParent();
    358       else
    359         Diag(Loc, diag::err_deleted_function_use);
    360       NoteDeletedFunction(FD);
    361       return true;
    362     }
    363 
    364     // If the function has a deduced return type, and we can't deduce it,
    365     // then we can't use it either.
    366     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
    367         DeduceReturnType(FD, Loc))
    368       return true;
    369   }
    370 
    371   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
    372   // Only the variables omp_in and omp_out are allowed in the combiner.
    373   // Only the variables omp_priv and omp_orig are allowed in the
    374   // initializer-clause.
    375   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
    376   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
    377       isa<VarDecl>(D)) {
    378     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
    379         << getCurFunction()->HasOMPDeclareReductionCombiner;
    380     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
    381     return true;
    382   }
    383   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
    384                              ObjCPropertyAccess);
    385 
    386   DiagnoseUnusedOfDecl(*this, D, Loc);
    387 
    388   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    389 
    390   return false;
    391 }
    392 
    393 /// \brief Retrieve the message suffix that should be added to a
    394 /// diagnostic complaining about the given function being deleted or
    395 /// unavailable.
    396 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    397   std::string Message;
    398   if (FD->getAvailability(&Message))
    399     return ": " + Message;
    400 
    401   return std::string();
    402 }
    403 
    404 /// DiagnoseSentinelCalls - This routine checks whether a call or
    405 /// message-send is to a declaration with the sentinel attribute, and
    406 /// if so, it checks that the requirements of the sentinel are
    407 /// satisfied.
    408 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    409                                  ArrayRef<Expr *> Args) {
    410   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    411   if (!attr)
    412     return;
    413 
    414   // The number of formal parameters of the declaration.
    415   unsigned numFormalParams;
    416 
    417   // The kind of declaration.  This is also an index into a %select in
    418   // the diagnostic.
    419   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    420 
    421   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    422     numFormalParams = MD->param_size();
    423     calleeType = CT_Method;
    424   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    425     numFormalParams = FD->param_size();
    426     calleeType = CT_Function;
    427   } else if (isa<VarDecl>(D)) {
    428     QualType type = cast<ValueDecl>(D)->getType();
    429     const FunctionType *fn = nullptr;
    430     if (const PointerType *ptr = type->getAs<PointerType>()) {
    431       fn = ptr->getPointeeType()->getAs<FunctionType>();
    432       if (!fn) return;
    433       calleeType = CT_Function;
    434     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    435       fn = ptr->getPointeeType()->castAs<FunctionType>();
    436       calleeType = CT_Block;
    437     } else {
    438       return;
    439     }
    440 
    441     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    442       numFormalParams = proto->getNumParams();
    443     } else {
    444       numFormalParams = 0;
    445     }
    446   } else {
    447     return;
    448   }
    449 
    450   // "nullPos" is the number of formal parameters at the end which
    451   // effectively count as part of the variadic arguments.  This is
    452   // useful if you would prefer to not have *any* formal parameters,
    453   // but the language forces you to have at least one.
    454   unsigned nullPos = attr->getNullPos();
    455   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    456   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    457 
    458   // The number of arguments which should follow the sentinel.
    459   unsigned numArgsAfterSentinel = attr->getSentinel();
    460 
    461   // If there aren't enough arguments for all the formal parameters,
    462   // the sentinel, and the args after the sentinel, complain.
    463   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    464     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    465     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    466     return;
    467   }
    468 
    469   // Otherwise, find the sentinel expression.
    470   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    471   if (!sentinelExpr) return;
    472   if (sentinelExpr->isValueDependent()) return;
    473   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    474 
    475   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
    476   // or 'NULL' if those are actually defined in the context.  Only use
    477   // 'nil' for ObjC methods, where it's much more likely that the
    478   // variadic arguments form a list of object pointers.
    479   SourceLocation MissingNilLoc
    480     = getLocForEndOfToken(sentinelExpr->getLocEnd());
    481   std::string NullValue;
    482   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
    483     NullValue = "nil";
    484   else if (getLangOpts().CPlusPlus11)
    485     NullValue = "nullptr";
    486   else if (PP.isMacroDefined("NULL"))
    487     NullValue = "NULL";
    488   else
    489     NullValue = "(void*) 0";
    490 
    491   if (MissingNilLoc.isInvalid())
    492     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    493   else
    494     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    495       << int(calleeType)
    496       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    497   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    498 }
    499 
    500 SourceRange Sema::getExprRange(Expr *E) const {
    501   return E ? E->getSourceRange() : SourceRange();
    502 }
    503 
    504 //===----------------------------------------------------------------------===//
    505 //  Standard Promotions and Conversions
    506 //===----------------------------------------------------------------------===//
    507 
    508 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    509 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
    510   // Handle any placeholder expressions which made it here.
    511   if (E->getType()->isPlaceholderType()) {
    512     ExprResult result = CheckPlaceholderExpr(E);
    513     if (result.isInvalid()) return ExprError();
    514     E = result.get();
    515   }
    516 
    517   QualType Ty = E->getType();
    518   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    519 
    520   if (Ty->isFunctionType()) {
    521     // If we are here, we are not calling a function but taking
    522     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
    523     if (getLangOpts().OpenCL) {
    524       if (Diagnose)
    525         Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
    526       return ExprError();
    527     }
    528 
    529     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
    530       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
    531         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
    532           return ExprError();
    533 
    534     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    535                           CK_FunctionToPointerDecay).get();
    536   } else if (Ty->isArrayType()) {
    537     // In C90 mode, arrays only promote to pointers if the array expression is
    538     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    539     // type 'array of type' is converted to an expression that has type 'pointer
    540     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    541     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    542     // (C90) to "an expression" (C99).
    543     //
    544     // C++ 4.2p1:
    545     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    546     // T" can be converted to an rvalue of type "pointer to T".
    547     //
    548     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    549       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    550                             CK_ArrayToPointerDecay).get();
    551   }
    552   return E;
    553 }
    554 
    555 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    556   // Check to see if we are dereferencing a null pointer.  If so,
    557   // and if not volatile-qualified, this is undefined behavior that the
    558   // optimizer will delete, so warn about it.  People sometimes try to use this
    559   // to get a deterministic trap and are surprised by clang's behavior.  This
    560   // only handles the pattern "*null", which is a very syntactic check.
    561   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    562     if (UO->getOpcode() == UO_Deref &&
    563         UO->getSubExpr()->IgnoreParenCasts()->
    564           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    565         !UO->getType().isVolatileQualified()) {
    566     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    567                           S.PDiag(diag::warn_indirection_through_null)
    568                             << UO->getSubExpr()->getSourceRange());
    569     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    570                         S.PDiag(diag::note_indirection_through_null));
    571   }
    572 }
    573 
    574 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    575                                     SourceLocation AssignLoc,
    576                                     const Expr* RHS) {
    577   const ObjCIvarDecl *IV = OIRE->getDecl();
    578   if (!IV)
    579     return;
    580 
    581   DeclarationName MemberName = IV->getDeclName();
    582   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    583   if (!Member || !Member->isStr("isa"))
    584     return;
    585 
    586   const Expr *Base = OIRE->getBase();
    587   QualType BaseType = Base->getType();
    588   if (OIRE->isArrow())
    589     BaseType = BaseType->getPointeeType();
    590   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    591     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    592       ObjCInterfaceDecl *ClassDeclared = nullptr;
    593       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    594       if (!ClassDeclared->getSuperClass()
    595           && (*ClassDeclared->ivar_begin()) == IV) {
    596         if (RHS) {
    597           NamedDecl *ObjectSetClass =
    598             S.LookupSingleName(S.TUScope,
    599                                &S.Context.Idents.get("object_setClass"),
    600                                SourceLocation(), S.LookupOrdinaryName);
    601           if (ObjectSetClass) {
    602             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
    603             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    604             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    605             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    606                                                      AssignLoc), ",") <<
    607             FixItHint::CreateInsertion(RHSLocEnd, ")");
    608           }
    609           else
    610             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    611         } else {
    612           NamedDecl *ObjectGetClass =
    613             S.LookupSingleName(S.TUScope,
    614                                &S.Context.Idents.get("object_getClass"),
    615                                SourceLocation(), S.LookupOrdinaryName);
    616           if (ObjectGetClass)
    617             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    618             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    619             FixItHint::CreateReplacement(
    620                                          SourceRange(OIRE->getOpLoc(),
    621                                                      OIRE->getLocEnd()), ")");
    622           else
    623             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    624         }
    625         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    626       }
    627     }
    628 }
    629 
    630 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    631   // Handle any placeholder expressions which made it here.
    632   if (E->getType()->isPlaceholderType()) {
    633     ExprResult result = CheckPlaceholderExpr(E);
    634     if (result.isInvalid()) return ExprError();
    635     E = result.get();
    636   }
    637 
    638   // C++ [conv.lval]p1:
    639   //   A glvalue of a non-function, non-array type T can be
    640   //   converted to a prvalue.
    641   if (!E->isGLValue()) return E;
    642 
    643   QualType T = E->getType();
    644   assert(!T.isNull() && "r-value conversion on typeless expression?");
    645 
    646   // We don't want to throw lvalue-to-rvalue casts on top of
    647   // expressions of certain types in C++.
    648   if (getLangOpts().CPlusPlus &&
    649       (E->getType() == Context.OverloadTy ||
    650        T->isDependentType() ||
    651        T->isRecordType()))
    652     return E;
    653 
    654   // The C standard is actually really unclear on this point, and
    655   // DR106 tells us what the result should be but not why.  It's
    656   // generally best to say that void types just doesn't undergo
    657   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    658   // 'void' type are never l-values, but qualified void can be.
    659   if (T->isVoidType())
    660     return E;
    661 
    662   // OpenCL usually rejects direct accesses to values of 'half' type.
    663   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    664       T->isHalfType()) {
    665     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    666       << 0 << T;
    667     return ExprError();
    668   }
    669 
    670   CheckForNullPointerDereference(*this, E);
    671   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    672     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    673                                      &Context.Idents.get("object_getClass"),
    674                                      SourceLocation(), LookupOrdinaryName);
    675     if (ObjectGetClass)
    676       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    677         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    678         FixItHint::CreateReplacement(
    679                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    680     else
    681       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    682   }
    683   else if (const ObjCIvarRefExpr *OIRE =
    684             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    685     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
    686 
    687   // C++ [conv.lval]p1:
    688   //   [...] If T is a non-class type, the type of the prvalue is the
    689   //   cv-unqualified version of T. Otherwise, the type of the
    690   //   rvalue is T.
    691   //
    692   // C99 6.3.2.1p2:
    693   //   If the lvalue has qualified type, the value has the unqualified
    694   //   version of the type of the lvalue; otherwise, the value has the
    695   //   type of the lvalue.
    696   if (T.hasQualifiers())
    697     T = T.getUnqualifiedType();
    698 
    699   // Under the MS ABI, lock down the inheritance model now.
    700   if (T->isMemberPointerType() &&
    701       Context.getTargetInfo().getCXXABI().isMicrosoft())
    702     (void)isCompleteType(E->getExprLoc(), T);
    703 
    704   UpdateMarkingForLValueToRValue(E);
    705 
    706   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    707   // balance that.
    708   if (getLangOpts().ObjCAutoRefCount &&
    709       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    710     Cleanup.setExprNeedsCleanups(true);
    711 
    712   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
    713                                             nullptr, VK_RValue);
    714 
    715   // C11 6.3.2.1p2:
    716   //   ... if the lvalue has atomic type, the value has the non-atomic version
    717   //   of the type of the lvalue ...
    718   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    719     T = Atomic->getValueType().getUnqualifiedType();
    720     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
    721                                    nullptr, VK_RValue);
    722   }
    723 
    724   return Res;
    725 }
    726 
    727 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
    728   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
    729   if (Res.isInvalid())
    730     return ExprError();
    731   Res = DefaultLvalueConversion(Res.get());
    732   if (Res.isInvalid())
    733     return ExprError();
    734   return Res;
    735 }
    736 
    737 /// CallExprUnaryConversions - a special case of an unary conversion
    738 /// performed on a function designator of a call expression.
    739 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
    740   QualType Ty = E->getType();
    741   ExprResult Res = E;
    742   // Only do implicit cast for a function type, but not for a pointer
    743   // to function type.
    744   if (Ty->isFunctionType()) {
    745     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
    746                             CK_FunctionToPointerDecay).get();
    747     if (Res.isInvalid())
    748       return ExprError();
    749   }
    750   Res = DefaultLvalueConversion(Res.get());
    751   if (Res.isInvalid())
    752     return ExprError();
    753   return Res.get();
    754 }
    755 
    756 /// UsualUnaryConversions - Performs various conversions that are common to most
    757 /// operators (C99 6.3). The conversions of array and function types are
    758 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    759 /// apply if the array is an argument to the sizeof or address (&) operators.
    760 /// In these instances, this routine should *not* be called.
    761 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    762   // First, convert to an r-value.
    763   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    764   if (Res.isInvalid())
    765     return ExprError();
    766   E = Res.get();
    767 
    768   QualType Ty = E->getType();
    769   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    770 
    771   // Half FP have to be promoted to float unless it is natively supported
    772   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    773     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
    774 
    775   // Try to perform integral promotions if the object has a theoretically
    776   // promotable type.
    777   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    778     // C99 6.3.1.1p2:
    779     //
    780     //   The following may be used in an expression wherever an int or
    781     //   unsigned int may be used:
    782     //     - an object or expression with an integer type whose integer
    783     //       conversion rank is less than or equal to the rank of int
    784     //       and unsigned int.
    785     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    786     //
    787     //   If an int can represent all values of the original type, the
    788     //   value is converted to an int; otherwise, it is converted to an
    789     //   unsigned int. These are called the integer promotions. All
    790     //   other types are unchanged by the integer promotions.
    791 
    792     QualType PTy = Context.isPromotableBitField(E);
    793     if (!PTy.isNull()) {
    794       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
    795       return E;
    796     }
    797     if (Ty->isPromotableIntegerType()) {
    798       QualType PT = Context.getPromotedIntegerType(Ty);
    799       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
    800       return E;
    801     }
    802   }
    803   return E;
    804 }
    805 
    806 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    807 /// do not have a prototype. Arguments that have type float or __fp16
    808 /// are promoted to double. All other argument types are converted by
    809 /// UsualUnaryConversions().
    810 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    811   QualType Ty = E->getType();
    812   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    813 
    814   ExprResult Res = UsualUnaryConversions(E);
    815   if (Res.isInvalid())
    816     return ExprError();
    817   E = Res.get();
    818 
    819   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    820   // double.
    821   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    822   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    823               BTy->getKind() == BuiltinType::Float))
    824     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    825 
    826   // C++ performs lvalue-to-rvalue conversion as a default argument
    827   // promotion, even on class types, but note:
    828   //   C++11 [conv.lval]p2:
    829   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    830   //     operand or a subexpression thereof the value contained in the
    831   //     referenced object is not accessed. Otherwise, if the glvalue
    832   //     has a class type, the conversion copy-initializes a temporary
    833   //     of type T from the glvalue and the result of the conversion
    834   //     is a prvalue for the temporary.
    835   // FIXME: add some way to gate this entire thing for correctness in
    836   // potentially potentially evaluated contexts.
    837   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    838     ExprResult Temp = PerformCopyInitialization(
    839                        InitializedEntity::InitializeTemporary(E->getType()),
    840                                                 E->getExprLoc(), E);
    841     if (Temp.isInvalid())
    842       return ExprError();
    843     E = Temp.get();
    844   }
    845 
    846   return E;
    847 }
    848 
    849 /// Determine the degree of POD-ness for an expression.
    850 /// Incomplete types are considered POD, since this check can be performed
    851 /// when we're in an unevaluated context.
    852 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    853   if (Ty->isIncompleteType()) {
    854     // C++11 [expr.call]p7:
    855     //   After these conversions, if the argument does not have arithmetic,
    856     //   enumeration, pointer, pointer to member, or class type, the program
    857     //   is ill-formed.
    858     //
    859     // Since we've already performed array-to-pointer and function-to-pointer
    860     // decay, the only such type in C++ is cv void. This also handles
    861     // initializer lists as variadic arguments.
    862     if (Ty->isVoidType())
    863       return VAK_Invalid;
    864 
    865     if (Ty->isObjCObjectType())
    866       return VAK_Invalid;
    867     return VAK_Valid;
    868   }
    869 
    870   if (Ty.isCXX98PODType(Context))
    871     return VAK_Valid;
    872 
    873   // C++11 [expr.call]p7:
    874   //   Passing a potentially-evaluated argument of class type (Clause 9)
    875   //   having a non-trivial copy constructor, a non-trivial move constructor,
    876   //   or a non-trivial destructor, with no corresponding parameter,
    877   //   is conditionally-supported with implementation-defined semantics.
    878   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    879     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    880       if (!Record->hasNonTrivialCopyConstructor() &&
    881           !Record->hasNonTrivialMoveConstructor() &&
    882           !Record->hasNonTrivialDestructor())
    883         return VAK_ValidInCXX11;
    884 
    885   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    886     return VAK_Valid;
    887 
    888   if (Ty->isObjCObjectType())
    889     return VAK_Invalid;
    890 
    891   if (getLangOpts().MSVCCompat)
    892     return VAK_MSVCUndefined;
    893 
    894   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    895   // permitted to reject them. We should consider doing so.
    896   return VAK_Undefined;
    897 }
    898 
    899 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    900   // Don't allow one to pass an Objective-C interface to a vararg.
    901   const QualType &Ty = E->getType();
    902   VarArgKind VAK = isValidVarArgType(Ty);
    903 
    904   // Complain about passing non-POD types through varargs.
    905   switch (VAK) {
    906   case VAK_ValidInCXX11:
    907     DiagRuntimeBehavior(
    908         E->getLocStart(), nullptr,
    909         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    910           << Ty << CT);
    911     // Fall through.
    912   case VAK_Valid:
    913     if (Ty->isRecordType()) {
    914       // This is unlikely to be what the user intended. If the class has a
    915       // 'c_str' member function, the user probably meant to call that.
    916       DiagRuntimeBehavior(E->getLocStart(), nullptr,
    917                           PDiag(diag::warn_pass_class_arg_to_vararg)
    918                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
    919     }
    920     break;
    921 
    922   case VAK_Undefined:
    923   case VAK_MSVCUndefined:
    924     DiagRuntimeBehavior(
    925         E->getLocStart(), nullptr,
    926         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    927           << getLangOpts().CPlusPlus11 << Ty << CT);
    928     break;
    929 
    930   case VAK_Invalid:
    931     if (Ty->isObjCObjectType())
    932       DiagRuntimeBehavior(
    933           E->getLocStart(), nullptr,
    934           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    935             << Ty << CT);
    936     else
    937       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    938         << isa<InitListExpr>(E) << Ty << CT;
    939     break;
    940   }
    941 }
    942 
    943 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    944 /// will create a trap if the resulting type is not a POD type.
    945 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    946                                                   FunctionDecl *FDecl) {
    947   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    948     // Strip the unbridged-cast placeholder expression off, if applicable.
    949     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    950         (CT == VariadicMethod ||
    951          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    952       E = stripARCUnbridgedCast(E);
    953 
    954     // Otherwise, do normal placeholder checking.
    955     } else {
    956       ExprResult ExprRes = CheckPlaceholderExpr(E);
    957       if (ExprRes.isInvalid())
    958         return ExprError();
    959       E = ExprRes.get();
    960     }
    961   }
    962 
    963   ExprResult ExprRes = DefaultArgumentPromotion(E);
    964   if (ExprRes.isInvalid())
    965     return ExprError();
    966   E = ExprRes.get();
    967 
    968   // Diagnostics regarding non-POD argument types are
    969   // emitted along with format string checking in Sema::CheckFunctionCall().
    970   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    971     // Turn this into a trap.
    972     CXXScopeSpec SS;
    973     SourceLocation TemplateKWLoc;
    974     UnqualifiedId Name;
    975     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    976                        E->getLocStart());
    977     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    978                                           Name, true, false);
    979     if (TrapFn.isInvalid())
    980       return ExprError();
    981 
    982     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    983                                     E->getLocStart(), None,
    984                                     E->getLocEnd());
    985     if (Call.isInvalid())
    986       return ExprError();
    987 
    988     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    989                                   Call.get(), E);
    990     if (Comma.isInvalid())
    991       return ExprError();
    992     return Comma.get();
    993   }
    994 
    995   if (!getLangOpts().CPlusPlus &&
    996       RequireCompleteType(E->getExprLoc(), E->getType(),
    997                           diag::err_call_incomplete_argument))
    998     return ExprError();
    999 
   1000   return E;
   1001 }
   1002 
   1003 /// \brief Converts an integer to complex float type.  Helper function of
   1004 /// UsualArithmeticConversions()
   1005 ///
   1006 /// \return false if the integer expression is an integer type and is
   1007 /// successfully converted to the complex type.
   1008 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
   1009                                                   ExprResult &ComplexExpr,
   1010                                                   QualType IntTy,
   1011                                                   QualType ComplexTy,
   1012                                                   bool SkipCast) {
   1013   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
   1014   if (SkipCast) return false;
   1015   if (IntTy->isIntegerType()) {
   1016     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
   1017     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
   1018     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1019                                   CK_FloatingRealToComplex);
   1020   } else {
   1021     assert(IntTy->isComplexIntegerType());
   1022     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1023                                   CK_IntegralComplexToFloatingComplex);
   1024   }
   1025   return false;
   1026 }
   1027 
   1028 /// \brief Handle arithmetic conversion with complex types.  Helper function of
   1029 /// UsualArithmeticConversions()
   1030 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
   1031                                              ExprResult &RHS, QualType LHSType,
   1032                                              QualType RHSType,
   1033                                              bool IsCompAssign) {
   1034   // if we have an integer operand, the result is the complex type.
   1035   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1036                                              /*skipCast*/false))
   1037     return LHSType;
   1038   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1039                                              /*skipCast*/IsCompAssign))
   1040     return RHSType;
   1041 
   1042   // This handles complex/complex, complex/float, or float/complex.
   1043   // When both operands are complex, the shorter operand is converted to the
   1044   // type of the longer, and that is the type of the result. This corresponds
   1045   // to what is done when combining two real floating-point operands.
   1046   // The fun begins when size promotion occur across type domains.
   1047   // From H&S 6.3.4: When one operand is complex and the other is a real
   1048   // floating-point type, the less precise type is converted, within it's
   1049   // real or complex domain, to the precision of the other type. For example,
   1050   // when combining a "long double" with a "double _Complex", the
   1051   // "double _Complex" is promoted to "long double _Complex".
   1052 
   1053   // Compute the rank of the two types, regardless of whether they are complex.
   1054   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1055 
   1056   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
   1057   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
   1058   QualType LHSElementType =
   1059       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
   1060   QualType RHSElementType =
   1061       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
   1062 
   1063   QualType ResultType = S.Context.getComplexType(LHSElementType);
   1064   if (Order < 0) {
   1065     // Promote the precision of the LHS if not an assignment.
   1066     ResultType = S.Context.getComplexType(RHSElementType);
   1067     if (!IsCompAssign) {
   1068       if (LHSComplexType)
   1069         LHS =
   1070             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
   1071       else
   1072         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
   1073     }
   1074   } else if (Order > 0) {
   1075     // Promote the precision of the RHS.
   1076     if (RHSComplexType)
   1077       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
   1078     else
   1079       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
   1080   }
   1081   return ResultType;
   1082 }
   1083 
   1084 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1085 /// of UsualArithmeticConversions()
   1086 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1087                                            ExprResult &IntExpr,
   1088                                            QualType FloatTy, QualType IntTy,
   1089                                            bool ConvertFloat, bool ConvertInt) {
   1090   if (IntTy->isIntegerType()) {
   1091     if (ConvertInt)
   1092       // Convert intExpr to the lhs floating point type.
   1093       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
   1094                                     CK_IntegralToFloating);
   1095     return FloatTy;
   1096   }
   1097 
   1098   // Convert both sides to the appropriate complex float.
   1099   assert(IntTy->isComplexIntegerType());
   1100   QualType result = S.Context.getComplexType(FloatTy);
   1101 
   1102   // _Complex int -> _Complex float
   1103   if (ConvertInt)
   1104     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
   1105                                   CK_IntegralComplexToFloatingComplex);
   1106 
   1107   // float -> _Complex float
   1108   if (ConvertFloat)
   1109     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
   1110                                     CK_FloatingRealToComplex);
   1111 
   1112   return result;
   1113 }
   1114 
   1115 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1116 /// function of UsualArithmeticConversions()
   1117 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1118                                       ExprResult &RHS, QualType LHSType,
   1119                                       QualType RHSType, bool IsCompAssign) {
   1120   bool LHSFloat = LHSType->isRealFloatingType();
   1121   bool RHSFloat = RHSType->isRealFloatingType();
   1122 
   1123   // If we have two real floating types, convert the smaller operand
   1124   // to the bigger result.
   1125   if (LHSFloat && RHSFloat) {
   1126     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1127     if (order > 0) {
   1128       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
   1129       return LHSType;
   1130     }
   1131 
   1132     assert(order < 0 && "illegal float comparison");
   1133     if (!IsCompAssign)
   1134       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
   1135     return RHSType;
   1136   }
   1137 
   1138   if (LHSFloat) {
   1139     // Half FP has to be promoted to float unless it is natively supported
   1140     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
   1141       LHSType = S.Context.FloatTy;
   1142 
   1143     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1144                                       /*convertFloat=*/!IsCompAssign,
   1145                                       /*convertInt=*/ true);
   1146   }
   1147   assert(RHSFloat);
   1148   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1149                                     /*convertInt=*/ true,
   1150                                     /*convertFloat=*/!IsCompAssign);
   1151 }
   1152 
   1153 /// \brief Diagnose attempts to convert between __float128 and long double if
   1154 /// there is no support for such conversion. Helper function of
   1155 /// UsualArithmeticConversions().
   1156 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
   1157                                       QualType RHSType) {
   1158   /*  No issue converting if at least one of the types is not a floating point
   1159       type or the two types have the same rank.
   1160   */
   1161   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
   1162       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
   1163     return false;
   1164 
   1165   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
   1166          "The remaining types must be floating point types.");
   1167 
   1168   auto *LHSComplex = LHSType->getAs<ComplexType>();
   1169   auto *RHSComplex = RHSType->getAs<ComplexType>();
   1170 
   1171   QualType LHSElemType = LHSComplex ?
   1172     LHSComplex->getElementType() : LHSType;
   1173   QualType RHSElemType = RHSComplex ?
   1174     RHSComplex->getElementType() : RHSType;
   1175 
   1176   // No issue if the two types have the same representation
   1177   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
   1178       &S.Context.getFloatTypeSemantics(RHSElemType))
   1179     return false;
   1180 
   1181   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
   1182                                 RHSElemType == S.Context.LongDoubleTy);
   1183   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
   1184                             RHSElemType == S.Context.Float128Ty);
   1185 
   1186   /* We've handled the situation where __float128 and long double have the same
   1187      representation. The only other allowable conversion is if long double is
   1188      really just double.
   1189   */
   1190   return Float128AndLongDouble &&
   1191     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) !=
   1192      &llvm::APFloat::IEEEdouble);
   1193 }
   1194 
   1195 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1196 
   1197 namespace {
   1198 /// These helper callbacks are placed in an anonymous namespace to
   1199 /// permit their use as function template parameters.
   1200 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1201   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1202 }
   1203 
   1204 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1205   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1206                              CK_IntegralComplexCast);
   1207 }
   1208 }
   1209 
   1210 /// \brief Handle integer arithmetic conversions.  Helper function of
   1211 /// UsualArithmeticConversions()
   1212 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1213 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1214                                         ExprResult &RHS, QualType LHSType,
   1215                                         QualType RHSType, bool IsCompAssign) {
   1216   // The rules for this case are in C99 6.3.1.8
   1217   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1218   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1219   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1220   if (LHSSigned == RHSSigned) {
   1221     // Same signedness; use the higher-ranked type
   1222     if (order >= 0) {
   1223       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1224       return LHSType;
   1225     } else if (!IsCompAssign)
   1226       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1227     return RHSType;
   1228   } else if (order != (LHSSigned ? 1 : -1)) {
   1229     // The unsigned type has greater than or equal rank to the
   1230     // signed type, so use the unsigned type
   1231     if (RHSSigned) {
   1232       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1233       return LHSType;
   1234     } else if (!IsCompAssign)
   1235       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1236     return RHSType;
   1237   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1238     // The two types are different widths; if we are here, that
   1239     // means the signed type is larger than the unsigned type, so
   1240     // use the signed type.
   1241     if (LHSSigned) {
   1242       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1243       return LHSType;
   1244     } else if (!IsCompAssign)
   1245       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1246     return RHSType;
   1247   } else {
   1248     // The signed type is higher-ranked than the unsigned type,
   1249     // but isn't actually any bigger (like unsigned int and long
   1250     // on most 32-bit systems).  Use the unsigned type corresponding
   1251     // to the signed type.
   1252     QualType result =
   1253       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1254     RHS = (*doRHSCast)(S, RHS.get(), result);
   1255     if (!IsCompAssign)
   1256       LHS = (*doLHSCast)(S, LHS.get(), result);
   1257     return result;
   1258   }
   1259 }
   1260 
   1261 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1262 /// of UsualArithmeticConversions()
   1263 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1264                                            ExprResult &RHS, QualType LHSType,
   1265                                            QualType RHSType,
   1266                                            bool IsCompAssign) {
   1267   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1268   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1269 
   1270   if (LHSComplexInt && RHSComplexInt) {
   1271     QualType LHSEltType = LHSComplexInt->getElementType();
   1272     QualType RHSEltType = RHSComplexInt->getElementType();
   1273     QualType ScalarType =
   1274       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1275         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1276 
   1277     return S.Context.getComplexType(ScalarType);
   1278   }
   1279 
   1280   if (LHSComplexInt) {
   1281     QualType LHSEltType = LHSComplexInt->getElementType();
   1282     QualType ScalarType =
   1283       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1284         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1285     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1286     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
   1287                               CK_IntegralRealToComplex);
   1288 
   1289     return ComplexType;
   1290   }
   1291 
   1292   assert(RHSComplexInt);
   1293 
   1294   QualType RHSEltType = RHSComplexInt->getElementType();
   1295   QualType ScalarType =
   1296     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1297       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1298   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1299 
   1300   if (!IsCompAssign)
   1301     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
   1302                               CK_IntegralRealToComplex);
   1303   return ComplexType;
   1304 }
   1305 
   1306 /// UsualArithmeticConversions - Performs various conversions that are common to
   1307 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1308 /// routine returns the first non-arithmetic type found. The client is
   1309 /// responsible for emitting appropriate error diagnostics.
   1310 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1311                                           bool IsCompAssign) {
   1312   if (!IsCompAssign) {
   1313     LHS = UsualUnaryConversions(LHS.get());
   1314     if (LHS.isInvalid())
   1315       return QualType();
   1316   }
   1317 
   1318   RHS = UsualUnaryConversions(RHS.get());
   1319   if (RHS.isInvalid())
   1320     return QualType();
   1321 
   1322   // For conversion purposes, we ignore any qualifiers.
   1323   // For example, "const float" and "float" are equivalent.
   1324   QualType LHSType =
   1325     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1326   QualType RHSType =
   1327     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1328 
   1329   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1330   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1331     LHSType = AtomicLHS->getValueType();
   1332 
   1333   // If both types are identical, no conversion is needed.
   1334   if (LHSType == RHSType)
   1335     return LHSType;
   1336 
   1337   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1338   // The caller can deal with this (e.g. pointer + int).
   1339   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1340     return QualType();
   1341 
   1342   // Apply unary and bitfield promotions to the LHS's type.
   1343   QualType LHSUnpromotedType = LHSType;
   1344   if (LHSType->isPromotableIntegerType())
   1345     LHSType = Context.getPromotedIntegerType(LHSType);
   1346   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1347   if (!LHSBitfieldPromoteTy.isNull())
   1348     LHSType = LHSBitfieldPromoteTy;
   1349   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1350     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
   1351 
   1352   // If both types are identical, no conversion is needed.
   1353   if (LHSType == RHSType)
   1354     return LHSType;
   1355 
   1356   // At this point, we have two different arithmetic types.
   1357 
   1358   // Diagnose attempts to convert between __float128 and long double where
   1359   // such conversions currently can't be handled.
   1360   if (unsupportedTypeConversion(*this, LHSType, RHSType))
   1361     return QualType();
   1362 
   1363   // Handle complex types first (C99 6.3.1.8p1).
   1364   if (LHSType->isComplexType() || RHSType->isComplexType())
   1365     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1366                                         IsCompAssign);
   1367 
   1368   // Now handle "real" floating types (i.e. float, double, long double).
   1369   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1370     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1371                                  IsCompAssign);
   1372 
   1373   // Handle GCC complex int extension.
   1374   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1375     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1376                                       IsCompAssign);
   1377 
   1378   // Finally, we have two differing integer types.
   1379   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1380            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1381 }
   1382 
   1383 
   1384 //===----------------------------------------------------------------------===//
   1385 //  Semantic Analysis for various Expression Types
   1386 //===----------------------------------------------------------------------===//
   1387 
   1388 
   1389 ExprResult
   1390 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1391                                 SourceLocation DefaultLoc,
   1392                                 SourceLocation RParenLoc,
   1393                                 Expr *ControllingExpr,
   1394                                 ArrayRef<ParsedType> ArgTypes,
   1395                                 ArrayRef<Expr *> ArgExprs) {
   1396   unsigned NumAssocs = ArgTypes.size();
   1397   assert(NumAssocs == ArgExprs.size());
   1398 
   1399   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1400   for (unsigned i = 0; i < NumAssocs; ++i) {
   1401     if (ArgTypes[i])
   1402       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1403     else
   1404       Types[i] = nullptr;
   1405   }
   1406 
   1407   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1408                                              ControllingExpr,
   1409                                              llvm::makeArrayRef(Types, NumAssocs),
   1410                                              ArgExprs);
   1411   delete [] Types;
   1412   return ER;
   1413 }
   1414 
   1415 ExprResult
   1416 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1417                                  SourceLocation DefaultLoc,
   1418                                  SourceLocation RParenLoc,
   1419                                  Expr *ControllingExpr,
   1420                                  ArrayRef<TypeSourceInfo *> Types,
   1421                                  ArrayRef<Expr *> Exprs) {
   1422   unsigned NumAssocs = Types.size();
   1423   assert(NumAssocs == Exprs.size());
   1424 
   1425   // Decay and strip qualifiers for the controlling expression type, and handle
   1426   // placeholder type replacement. See committee discussion from WG14 DR423.
   1427   {
   1428     EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   1429     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
   1430     if (R.isInvalid())
   1431       return ExprError();
   1432     ControllingExpr = R.get();
   1433   }
   1434 
   1435   // The controlling expression is an unevaluated operand, so side effects are
   1436   // likely unintended.
   1437   if (ActiveTemplateInstantiations.empty() &&
   1438       ControllingExpr->HasSideEffects(Context, false))
   1439     Diag(ControllingExpr->getExprLoc(),
   1440          diag::warn_side_effects_unevaluated_context);
   1441 
   1442   bool TypeErrorFound = false,
   1443        IsResultDependent = ControllingExpr->isTypeDependent(),
   1444        ContainsUnexpandedParameterPack
   1445          = ControllingExpr->containsUnexpandedParameterPack();
   1446 
   1447   for (unsigned i = 0; i < NumAssocs; ++i) {
   1448     if (Exprs[i]->containsUnexpandedParameterPack())
   1449       ContainsUnexpandedParameterPack = true;
   1450 
   1451     if (Types[i]) {
   1452       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1453         ContainsUnexpandedParameterPack = true;
   1454 
   1455       if (Types[i]->getType()->isDependentType()) {
   1456         IsResultDependent = true;
   1457       } else {
   1458         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1459         // complete object type other than a variably modified type."
   1460         unsigned D = 0;
   1461         if (Types[i]->getType()->isIncompleteType())
   1462           D = diag::err_assoc_type_incomplete;
   1463         else if (!Types[i]->getType()->isObjectType())
   1464           D = diag::err_assoc_type_nonobject;
   1465         else if (Types[i]->getType()->isVariablyModifiedType())
   1466           D = diag::err_assoc_type_variably_modified;
   1467 
   1468         if (D != 0) {
   1469           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1470             << Types[i]->getTypeLoc().getSourceRange()
   1471             << Types[i]->getType();
   1472           TypeErrorFound = true;
   1473         }
   1474 
   1475         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1476         // selection shall specify compatible types."
   1477         for (unsigned j = i+1; j < NumAssocs; ++j)
   1478           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1479               Context.typesAreCompatible(Types[i]->getType(),
   1480                                          Types[j]->getType())) {
   1481             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1482                  diag::err_assoc_compatible_types)
   1483               << Types[j]->getTypeLoc().getSourceRange()
   1484               << Types[j]->getType()
   1485               << Types[i]->getType();
   1486             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1487                  diag::note_compat_assoc)
   1488               << Types[i]->getTypeLoc().getSourceRange()
   1489               << Types[i]->getType();
   1490             TypeErrorFound = true;
   1491           }
   1492       }
   1493     }
   1494   }
   1495   if (TypeErrorFound)
   1496     return ExprError();
   1497 
   1498   // If we determined that the generic selection is result-dependent, don't
   1499   // try to compute the result expression.
   1500   if (IsResultDependent)
   1501     return new (Context) GenericSelectionExpr(
   1502         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1503         ContainsUnexpandedParameterPack);
   1504 
   1505   SmallVector<unsigned, 1> CompatIndices;
   1506   unsigned DefaultIndex = -1U;
   1507   for (unsigned i = 0; i < NumAssocs; ++i) {
   1508     if (!Types[i])
   1509       DefaultIndex = i;
   1510     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1511                                         Types[i]->getType()))
   1512       CompatIndices.push_back(i);
   1513   }
   1514 
   1515   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1516   // type compatible with at most one of the types named in its generic
   1517   // association list."
   1518   if (CompatIndices.size() > 1) {
   1519     // We strip parens here because the controlling expression is typically
   1520     // parenthesized in macro definitions.
   1521     ControllingExpr = ControllingExpr->IgnoreParens();
   1522     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1523       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1524       << (unsigned) CompatIndices.size();
   1525     for (unsigned I : CompatIndices) {
   1526       Diag(Types[I]->getTypeLoc().getBeginLoc(),
   1527            diag::note_compat_assoc)
   1528         << Types[I]->getTypeLoc().getSourceRange()
   1529         << Types[I]->getType();
   1530     }
   1531     return ExprError();
   1532   }
   1533 
   1534   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1535   // its controlling expression shall have type compatible with exactly one of
   1536   // the types named in its generic association list."
   1537   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1538     // We strip parens here because the controlling expression is typically
   1539     // parenthesized in macro definitions.
   1540     ControllingExpr = ControllingExpr->IgnoreParens();
   1541     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1542       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1543     return ExprError();
   1544   }
   1545 
   1546   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1547   // type name that is compatible with the type of the controlling expression,
   1548   // then the result expression of the generic selection is the expression
   1549   // in that generic association. Otherwise, the result expression of the
   1550   // generic selection is the expression in the default generic association."
   1551   unsigned ResultIndex =
   1552     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1553 
   1554   return new (Context) GenericSelectionExpr(
   1555       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1556       ContainsUnexpandedParameterPack, ResultIndex);
   1557 }
   1558 
   1559 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1560 /// location of the token and the offset of the ud-suffix within it.
   1561 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1562                                      unsigned Offset) {
   1563   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1564                                         S.getLangOpts());
   1565 }
   1566 
   1567 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1568 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1569 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1570                                                  IdentifierInfo *UDSuffix,
   1571                                                  SourceLocation UDSuffixLoc,
   1572                                                  ArrayRef<Expr*> Args,
   1573                                                  SourceLocation LitEndLoc) {
   1574   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1575 
   1576   QualType ArgTy[2];
   1577   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1578     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1579     if (ArgTy[ArgIdx]->isArrayType())
   1580       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1581   }
   1582 
   1583   DeclarationName OpName =
   1584     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1585   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1586   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1587 
   1588   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1589   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1590                               /*AllowRaw*/false, /*AllowTemplate*/false,
   1591                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
   1592     return ExprError();
   1593 
   1594   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1595 }
   1596 
   1597 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1598 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1599 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1600 /// multiple tokens.  However, the common case is that StringToks points to one
   1601 /// string.
   1602 ///
   1603 ExprResult
   1604 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
   1605   assert(!StringToks.empty() && "Must have at least one string!");
   1606 
   1607   StringLiteralParser Literal(StringToks, PP);
   1608   if (Literal.hadError)
   1609     return ExprError();
   1610 
   1611   SmallVector<SourceLocation, 4> StringTokLocs;
   1612   for (const Token &Tok : StringToks)
   1613     StringTokLocs.push_back(Tok.getLocation());
   1614 
   1615   QualType CharTy = Context.CharTy;
   1616   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1617   if (Literal.isWide()) {
   1618     CharTy = Context.getWideCharType();
   1619     Kind = StringLiteral::Wide;
   1620   } else if (Literal.isUTF8()) {
   1621     Kind = StringLiteral::UTF8;
   1622   } else if (Literal.isUTF16()) {
   1623     CharTy = Context.Char16Ty;
   1624     Kind = StringLiteral::UTF16;
   1625   } else if (Literal.isUTF32()) {
   1626     CharTy = Context.Char32Ty;
   1627     Kind = StringLiteral::UTF32;
   1628   } else if (Literal.isPascal()) {
   1629     CharTy = Context.UnsignedCharTy;
   1630   }
   1631 
   1632   QualType CharTyConst = CharTy;
   1633   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1634   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1635     CharTyConst.addConst();
   1636 
   1637   // Get an array type for the string, according to C99 6.4.5.  This includes
   1638   // the nul terminator character as well as the string length for pascal
   1639   // strings.
   1640   QualType StrTy = Context.getConstantArrayType(CharTyConst,
   1641                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1642                                  ArrayType::Normal, 0);
   1643 
   1644   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
   1645   if (getLangOpts().OpenCL) {
   1646     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
   1647   }
   1648 
   1649   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1650   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1651                                              Kind, Literal.Pascal, StrTy,
   1652                                              &StringTokLocs[0],
   1653                                              StringTokLocs.size());
   1654   if (Literal.getUDSuffix().empty())
   1655     return Lit;
   1656 
   1657   // We're building a user-defined literal.
   1658   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1659   SourceLocation UDSuffixLoc =
   1660     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1661                    Literal.getUDSuffixOffset());
   1662 
   1663   // Make sure we're allowed user-defined literals here.
   1664   if (!UDLScope)
   1665     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1666 
   1667   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1668   //   operator "" X (str, len)
   1669   QualType SizeType = Context.getSizeType();
   1670 
   1671   DeclarationName OpName =
   1672     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1673   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1674   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1675 
   1676   QualType ArgTy[] = {
   1677     Context.getArrayDecayedType(StrTy), SizeType
   1678   };
   1679 
   1680   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   1681   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
   1682                                 /*AllowRaw*/false, /*AllowTemplate*/false,
   1683                                 /*AllowStringTemplate*/true)) {
   1684 
   1685   case LOLR_Cooked: {
   1686     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1687     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1688                                                     StringTokLocs[0]);
   1689     Expr *Args[] = { Lit, LenArg };
   1690 
   1691     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
   1692   }
   1693 
   1694   case LOLR_StringTemplate: {
   1695     TemplateArgumentListInfo ExplicitArgs;
   1696 
   1697     unsigned CharBits = Context.getIntWidth(CharTy);
   1698     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
   1699     llvm::APSInt Value(CharBits, CharIsUnsigned);
   1700 
   1701     TemplateArgument TypeArg(CharTy);
   1702     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
   1703     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
   1704 
   1705     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
   1706       Value = Lit->getCodeUnit(I);
   1707       TemplateArgument Arg(Context, Value, CharTy);
   1708       TemplateArgumentLocInfo ArgInfo;
   1709       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   1710     }
   1711     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
   1712                                     &ExplicitArgs);
   1713   }
   1714   case LOLR_Raw:
   1715   case LOLR_Template:
   1716     llvm_unreachable("unexpected literal operator lookup result");
   1717   case LOLR_Error:
   1718     return ExprError();
   1719   }
   1720   llvm_unreachable("unexpected literal operator lookup result");
   1721 }
   1722 
   1723 ExprResult
   1724 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1725                        SourceLocation Loc,
   1726                        const CXXScopeSpec *SS) {
   1727   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1728   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1729 }
   1730 
   1731 /// BuildDeclRefExpr - Build an expression that references a
   1732 /// declaration that does not require a closure capture.
   1733 ExprResult
   1734 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1735                        const DeclarationNameInfo &NameInfo,
   1736                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1737                        const TemplateArgumentListInfo *TemplateArgs) {
   1738   if (getLangOpts().CUDA)
   1739     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1740       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1741         if (CheckCUDATarget(Caller, Callee)) {
   1742           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1743             << IdentifyCUDATarget(Callee) << D->getIdentifier()
   1744             << IdentifyCUDATarget(Caller);
   1745           Diag(D->getLocation(), diag::note_previous_decl)
   1746             << D->getIdentifier();
   1747           return ExprError();
   1748         }
   1749       }
   1750 
   1751   bool RefersToCapturedVariable =
   1752       isa<VarDecl>(D) &&
   1753       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
   1754 
   1755   DeclRefExpr *E;
   1756   if (isa<VarTemplateSpecializationDecl>(D)) {
   1757     VarTemplateSpecializationDecl *VarSpec =
   1758         cast<VarTemplateSpecializationDecl>(D);
   1759 
   1760     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1761                                         : NestedNameSpecifierLoc(),
   1762                             VarSpec->getTemplateKeywordLoc(), D,
   1763                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
   1764                             FoundD, TemplateArgs);
   1765   } else {
   1766     assert(!TemplateArgs && "No template arguments for non-variable"
   1767                             " template specialization references");
   1768     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1769                                         : NestedNameSpecifierLoc(),
   1770                             SourceLocation(), D, RefersToCapturedVariable,
   1771                             NameInfo, Ty, VK, FoundD);
   1772   }
   1773 
   1774   MarkDeclRefReferenced(E);
   1775 
   1776   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
   1777       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
   1778       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
   1779       recordUseOfEvaluatedWeak(E);
   1780 
   1781   if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
   1782     UnusedPrivateFields.remove(FD);
   1783     // Just in case we're building an illegal pointer-to-member.
   1784     if (FD->isBitField())
   1785       E->setObjectKind(OK_BitField);
   1786   }
   1787 
   1788   return E;
   1789 }
   1790 
   1791 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1792 /// possibly a list of template arguments.
   1793 ///
   1794 /// If this produces template arguments, it is permitted to call
   1795 /// DecomposeTemplateName.
   1796 ///
   1797 /// This actually loses a lot of source location information for
   1798 /// non-standard name kinds; we should consider preserving that in
   1799 /// some way.
   1800 void
   1801 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1802                              TemplateArgumentListInfo &Buffer,
   1803                              DeclarationNameInfo &NameInfo,
   1804                              const TemplateArgumentListInfo *&TemplateArgs) {
   1805   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1806     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1807     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1808 
   1809     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1810                                        Id.TemplateId->NumArgs);
   1811     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1812 
   1813     TemplateName TName = Id.TemplateId->Template.get();
   1814     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1815     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1816     TemplateArgs = &Buffer;
   1817   } else {
   1818     NameInfo = GetNameFromUnqualifiedId(Id);
   1819     TemplateArgs = nullptr;
   1820   }
   1821 }
   1822 
   1823 static void emitEmptyLookupTypoDiagnostic(
   1824     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
   1825     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
   1826     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
   1827   DeclContext *Ctx =
   1828       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
   1829   if (!TC) {
   1830     // Emit a special diagnostic for failed member lookups.
   1831     // FIXME: computing the declaration context might fail here (?)
   1832     if (Ctx)
   1833       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
   1834                                                  << SS.getRange();
   1835     else
   1836       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
   1837     return;
   1838   }
   1839 
   1840   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
   1841   bool DroppedSpecifier =
   1842       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
   1843   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
   1844                         ? diag::note_implicit_param_decl
   1845                         : diag::note_previous_decl;
   1846   if (!Ctx)
   1847     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
   1848                          SemaRef.PDiag(NoteID));
   1849   else
   1850     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
   1851                                  << Typo << Ctx << DroppedSpecifier
   1852                                  << SS.getRange(),
   1853                          SemaRef.PDiag(NoteID));
   1854 }
   1855 
   1856 /// Diagnose an empty lookup.
   1857 ///
   1858 /// \return false if new lookup candidates were found
   1859 bool
   1860 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1861                           std::unique_ptr<CorrectionCandidateCallback> CCC,
   1862                           TemplateArgumentListInfo *ExplicitTemplateArgs,
   1863                           ArrayRef<Expr *> Args, TypoExpr **Out) {
   1864   DeclarationName Name = R.getLookupName();
   1865 
   1866   unsigned diagnostic = diag::err_undeclared_var_use;
   1867   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1868   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1869       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1870       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1871     diagnostic = diag::err_undeclared_use;
   1872     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1873   }
   1874 
   1875   // If the original lookup was an unqualified lookup, fake an
   1876   // unqualified lookup.  This is useful when (for example) the
   1877   // original lookup would not have found something because it was a
   1878   // dependent name.
   1879   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
   1880   while (DC) {
   1881     if (isa<CXXRecordDecl>(DC)) {
   1882       LookupQualifiedName(R, DC);
   1883 
   1884       if (!R.empty()) {
   1885         // Don't give errors about ambiguities in this lookup.
   1886         R.suppressDiagnostics();
   1887 
   1888         // During a default argument instantiation the CurContext points
   1889         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1890         // function parameter list, hence add an explicit check.
   1891         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1892                               ActiveTemplateInstantiations.back().Kind ==
   1893             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1894         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1895         bool isInstance = CurMethod &&
   1896                           CurMethod->isInstance() &&
   1897                           DC == CurMethod->getParent() && !isDefaultArgument;
   1898 
   1899         // Give a code modification hint to insert 'this->'.
   1900         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1901         // Actually quite difficult!
   1902         if (getLangOpts().MSVCCompat)
   1903           diagnostic = diag::ext_found_via_dependent_bases_lookup;
   1904         if (isInstance) {
   1905           Diag(R.getNameLoc(), diagnostic) << Name
   1906             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1907           CheckCXXThisCapture(R.getNameLoc());
   1908         } else {
   1909           Diag(R.getNameLoc(), diagnostic) << Name;
   1910         }
   1911 
   1912         // Do we really want to note all of these?
   1913         for (NamedDecl *D : R)
   1914           Diag(D->getLocation(), diag::note_dependent_var_use);
   1915 
   1916         // Return true if we are inside a default argument instantiation
   1917         // and the found name refers to an instance member function, otherwise
   1918         // the function calling DiagnoseEmptyLookup will try to create an
   1919         // implicit member call and this is wrong for default argument.
   1920         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1921           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1922           return true;
   1923         }
   1924 
   1925         // Tell the callee to try to recover.
   1926         return false;
   1927       }
   1928 
   1929       R.clear();
   1930     }
   1931 
   1932     // In Microsoft mode, if we are performing lookup from within a friend
   1933     // function definition declared at class scope then we must set
   1934     // DC to the lexical parent to be able to search into the parent
   1935     // class.
   1936     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
   1937         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1938         DC->getLexicalParent()->isRecord())
   1939       DC = DC->getLexicalParent();
   1940     else
   1941       DC = DC->getParent();
   1942   }
   1943 
   1944   // We didn't find anything, so try to correct for a typo.
   1945   TypoCorrection Corrected;
   1946   if (S && Out) {
   1947     SourceLocation TypoLoc = R.getNameLoc();
   1948     assert(!ExplicitTemplateArgs &&
   1949            "Diagnosing an empty lookup with explicit template args!");
   1950     *Out = CorrectTypoDelayed(
   1951         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
   1952         [=](const TypoCorrection &TC) {
   1953           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
   1954                                         diagnostic, diagnostic_suggest);
   1955         },
   1956         nullptr, CTK_ErrorRecovery);
   1957     if (*Out)
   1958       return true;
   1959   } else if (S && (Corrected =
   1960                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
   1961                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
   1962     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1963     bool DroppedSpecifier =
   1964         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1965     R.setLookupName(Corrected.getCorrection());
   1966 
   1967     bool AcceptableWithRecovery = false;
   1968     bool AcceptableWithoutRecovery = false;
   1969     NamedDecl *ND = Corrected.getFoundDecl();
   1970     if (ND) {
   1971       if (Corrected.isOverloaded()) {
   1972         OverloadCandidateSet OCS(R.getNameLoc(),
   1973                                  OverloadCandidateSet::CSK_Normal);
   1974         OverloadCandidateSet::iterator Best;
   1975         for (NamedDecl *CD : Corrected) {
   1976           if (FunctionTemplateDecl *FTD =
   1977                    dyn_cast<FunctionTemplateDecl>(CD))
   1978             AddTemplateOverloadCandidate(
   1979                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1980                 Args, OCS);
   1981           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   1982             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1983               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1984                                    Args, OCS);
   1985         }
   1986         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1987         case OR_Success:
   1988           ND = Best->FoundDecl;
   1989           Corrected.setCorrectionDecl(ND);
   1990           break;
   1991         default:
   1992           // FIXME: Arbitrarily pick the first declaration for the note.
   1993           Corrected.setCorrectionDecl(ND);
   1994           break;
   1995         }
   1996       }
   1997       R.addDecl(ND);
   1998       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
   1999         CXXRecordDecl *Record = nullptr;
   2000         if (Corrected.getCorrectionSpecifier()) {
   2001           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
   2002           Record = Ty->getAsCXXRecordDecl();
   2003         }
   2004         if (!Record)
   2005           Record = cast<CXXRecordDecl>(
   2006               ND->getDeclContext()->getRedeclContext());
   2007         R.setNamingClass(Record);
   2008       }
   2009 
   2010       auto *UnderlyingND = ND->getUnderlyingDecl();
   2011       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
   2012                                isa<FunctionTemplateDecl>(UnderlyingND);
   2013       // FIXME: If we ended up with a typo for a type name or
   2014       // Objective-C class name, we're in trouble because the parser
   2015       // is in the wrong place to recover. Suggest the typo
   2016       // correction, but don't make it a fix-it since we're not going
   2017       // to recover well anyway.
   2018       AcceptableWithoutRecovery =
   2019           isa<TypeDecl>(UnderlyingND) || isa<ObjCInterfaceDecl>(UnderlyingND);
   2020     } else {
   2021       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   2022       // because we aren't able to recover.
   2023       AcceptableWithoutRecovery = true;
   2024     }
   2025 
   2026     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
   2027       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
   2028                             ? diag::note_implicit_param_decl
   2029                             : diag::note_previous_decl;
   2030       if (SS.isEmpty())
   2031         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
   2032                      PDiag(NoteID), AcceptableWithRecovery);
   2033       else
   2034         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   2035                                   << Name << computeDeclContext(SS, false)
   2036                                   << DroppedSpecifier << SS.getRange(),
   2037                      PDiag(NoteID), AcceptableWithRecovery);
   2038 
   2039       // Tell the callee whether to try to recover.
   2040       return !AcceptableWithRecovery;
   2041     }
   2042   }
   2043   R.clear();
   2044 
   2045   // Emit a special diagnostic for failed member lookups.
   2046   // FIXME: computing the declaration context might fail here (?)
   2047   if (!SS.isEmpty()) {
   2048     Diag(R.getNameLoc(), diag::err_no_member)
   2049       << Name << computeDeclContext(SS, false)
   2050       << SS.getRange();
   2051     return true;
   2052   }
   2053 
   2054   // Give up, we can't recover.
   2055   Diag(R.getNameLoc(), diagnostic) << Name;
   2056   return true;
   2057 }
   2058 
   2059 /// In Microsoft mode, if we are inside a template class whose parent class has
   2060 /// dependent base classes, and we can't resolve an unqualified identifier, then
   2061 /// assume the identifier is a member of a dependent base class.  We can only
   2062 /// recover successfully in static methods, instance methods, and other contexts
   2063 /// where 'this' is available.  This doesn't precisely match MSVC's
   2064 /// instantiation model, but it's close enough.
   2065 static Expr *
   2066 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
   2067                                DeclarationNameInfo &NameInfo,
   2068                                SourceLocation TemplateKWLoc,
   2069                                const TemplateArgumentListInfo *TemplateArgs) {
   2070   // Only try to recover from lookup into dependent bases in static methods or
   2071   // contexts where 'this' is available.
   2072   QualType ThisType = S.getCurrentThisType();
   2073   const CXXRecordDecl *RD = nullptr;
   2074   if (!ThisType.isNull())
   2075     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
   2076   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
   2077     RD = MD->getParent();
   2078   if (!RD || !RD->hasAnyDependentBases())
   2079     return nullptr;
   2080 
   2081   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
   2082   // is available, suggest inserting 'this->' as a fixit.
   2083   SourceLocation Loc = NameInfo.getLoc();
   2084   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
   2085   DB << NameInfo.getName() << RD;
   2086 
   2087   if (!ThisType.isNull()) {
   2088     DB << FixItHint::CreateInsertion(Loc, "this->");
   2089     return CXXDependentScopeMemberExpr::Create(
   2090         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
   2091         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
   2092         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
   2093   }
   2094 
   2095   // Synthesize a fake NNS that points to the derived class.  This will
   2096   // perform name lookup during template instantiation.
   2097   CXXScopeSpec SS;
   2098   auto *NNS =
   2099       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
   2100   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
   2101   return DependentScopeDeclRefExpr::Create(
   2102       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   2103       TemplateArgs);
   2104 }
   2105 
   2106 ExprResult
   2107 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
   2108                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
   2109                         bool HasTrailingLParen, bool IsAddressOfOperand,
   2110                         std::unique_ptr<CorrectionCandidateCallback> CCC,
   2111                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
   2112   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   2113          "cannot be direct & operand and have a trailing lparen");
   2114   if (SS.isInvalid())
   2115     return ExprError();
   2116 
   2117   TemplateArgumentListInfo TemplateArgsBuffer;
   2118 
   2119   // Decompose the UnqualifiedId into the following data.
   2120   DeclarationNameInfo NameInfo;
   2121   const TemplateArgumentListInfo *TemplateArgs;
   2122   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   2123 
   2124   DeclarationName Name = NameInfo.getName();
   2125   IdentifierInfo *II = Name.getAsIdentifierInfo();
   2126   SourceLocation NameLoc = NameInfo.getLoc();
   2127 
   2128   // C++ [temp.dep.expr]p3:
   2129   //   An id-expression is type-dependent if it contains:
   2130   //     -- an identifier that was declared with a dependent type,
   2131   //        (note: handled after lookup)
   2132   //     -- a template-id that is dependent,
   2133   //        (note: handled in BuildTemplateIdExpr)
   2134   //     -- a conversion-function-id that specifies a dependent type,
   2135   //     -- a nested-name-specifier that contains a class-name that
   2136   //        names a dependent type.
   2137   // Determine whether this is a member of an unknown specialization;
   2138   // we need to handle these differently.
   2139   bool DependentID = false;
   2140   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   2141       Name.getCXXNameType()->isDependentType()) {
   2142     DependentID = true;
   2143   } else if (SS.isSet()) {
   2144     if (DeclContext *DC = computeDeclContext(SS, false)) {
   2145       if (RequireCompleteDeclContext(SS, DC))
   2146         return ExprError();
   2147     } else {
   2148       DependentID = true;
   2149     }
   2150   }
   2151 
   2152   if (DependentID)
   2153     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2154                                       IsAddressOfOperand, TemplateArgs);
   2155 
   2156   // Perform the required lookup.
   2157   LookupResult R(*this, NameInfo,
   2158                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   2159                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   2160   if (TemplateArgs) {
   2161     // Lookup the template name again to correctly establish the context in
   2162     // which it was found. This is really unfortunate as we already did the
   2163     // lookup to determine that it was a template name in the first place. If
   2164     // this becomes a performance hit, we can work harder to preserve those
   2165     // results until we get here but it's likely not worth it.
   2166     bool MemberOfUnknownSpecialization;
   2167     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   2168                        MemberOfUnknownSpecialization);
   2169 
   2170     if (MemberOfUnknownSpecialization ||
   2171         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   2172       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2173                                         IsAddressOfOperand, TemplateArgs);
   2174   } else {
   2175     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   2176     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   2177 
   2178     // If the result might be in a dependent base class, this is a dependent
   2179     // id-expression.
   2180     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2181       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2182                                         IsAddressOfOperand, TemplateArgs);
   2183 
   2184     // If this reference is in an Objective-C method, then we need to do
   2185     // some special Objective-C lookup, too.
   2186     if (IvarLookupFollowUp) {
   2187       ExprResult E(LookupInObjCMethod(R, S, II, true));
   2188       if (E.isInvalid())
   2189         return ExprError();
   2190 
   2191       if (Expr *Ex = E.getAs<Expr>())
   2192         return Ex;
   2193     }
   2194   }
   2195 
   2196   if (R.isAmbiguous())
   2197     return ExprError();
   2198 
   2199   // This could be an implicitly declared function reference (legal in C90,
   2200   // extension in C99, forbidden in C++).
   2201   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   2202     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   2203     if (D) R.addDecl(D);
   2204   }
   2205 
   2206   // Determine whether this name might be a candidate for
   2207   // argument-dependent lookup.
   2208   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   2209 
   2210   if (R.empty() && !ADL) {
   2211     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
   2212       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
   2213                                                    TemplateKWLoc, TemplateArgs))
   2214         return E;
   2215     }
   2216 
   2217     // Don't diagnose an empty lookup for inline assembly.
   2218     if (IsInlineAsmIdentifier)
   2219       return ExprError();
   2220 
   2221     // If this name wasn't predeclared and if this is not a function
   2222     // call, diagnose the problem.
   2223     TypoExpr *TE = nullptr;
   2224     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
   2225         II, SS.isValid() ? SS.getScopeRep() : nullptr);
   2226     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
   2227     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
   2228            "Typo correction callback misconfigured");
   2229     if (CCC) {
   2230       // Make sure the callback knows what the typo being diagnosed is.
   2231       CCC->setTypoName(II);
   2232       if (SS.isValid())
   2233         CCC->setTypoNNS(SS.getScopeRep());
   2234     }
   2235     if (DiagnoseEmptyLookup(S, SS, R,
   2236                             CCC ? std::move(CCC) : std::move(DefaultValidator),
   2237                             nullptr, None, &TE)) {
   2238       if (TE && KeywordReplacement) {
   2239         auto &State = getTypoExprState(TE);
   2240         auto BestTC = State.Consumer->getNextCorrection();
   2241         if (BestTC.isKeyword()) {
   2242           auto *II = BestTC.getCorrectionAsIdentifierInfo();
   2243           if (State.DiagHandler)
   2244             State.DiagHandler(BestTC);
   2245           KeywordReplacement->startToken();
   2246           KeywordReplacement->setKind(II->getTokenID());
   2247           KeywordReplacement->setIdentifierInfo(II);
   2248           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
   2249           // Clean up the state associated with the TypoExpr, since it has
   2250           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
   2251           clearDelayedTypo(TE);
   2252           // Signal that a correction to a keyword was performed by returning a
   2253           // valid-but-null ExprResult.
   2254           return (Expr*)nullptr;
   2255         }
   2256         State.Consumer->resetCorrectionStream();
   2257       }
   2258       return TE ? TE : ExprError();
   2259     }
   2260 
   2261     assert(!R.empty() &&
   2262            "DiagnoseEmptyLookup returned false but added no results");
   2263 
   2264     // If we found an Objective-C instance variable, let
   2265     // LookupInObjCMethod build the appropriate expression to
   2266     // reference the ivar.
   2267     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2268       R.clear();
   2269       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2270       // In a hopelessly buggy code, Objective-C instance variable
   2271       // lookup fails and no expression will be built to reference it.
   2272       if (!E.isInvalid() && !E.get())
   2273         return ExprError();
   2274       return E;
   2275     }
   2276   }
   2277 
   2278   // This is guaranteed from this point on.
   2279   assert(!R.empty() || ADL);
   2280 
   2281   // Check whether this might be a C++ implicit instance member access.
   2282   // C++ [class.mfct.non-static]p3:
   2283   //   When an id-expression that is not part of a class member access
   2284   //   syntax and not used to form a pointer to member is used in the
   2285   //   body of a non-static member function of class X, if name lookup
   2286   //   resolves the name in the id-expression to a non-static non-type
   2287   //   member of some class C, the id-expression is transformed into a
   2288   //   class member access expression using (*this) as the
   2289   //   postfix-expression to the left of the . operator.
   2290   //
   2291   // But we don't actually need to do this for '&' operands if R
   2292   // resolved to a function or overloaded function set, because the
   2293   // expression is ill-formed if it actually works out to be a
   2294   // non-static member function:
   2295   //
   2296   // C++ [expr.ref]p4:
   2297   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2298   //   [t]he expression can be used only as the left-hand operand of a
   2299   //   member function call.
   2300   //
   2301   // There are other safeguards against such uses, but it's important
   2302   // to get this right here so that we don't end up making a
   2303   // spuriously dependent expression if we're inside a dependent
   2304   // instance method.
   2305   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2306     bool MightBeImplicitMember;
   2307     if (!IsAddressOfOperand)
   2308       MightBeImplicitMember = true;
   2309     else if (!SS.isEmpty())
   2310       MightBeImplicitMember = false;
   2311     else if (R.isOverloadedResult())
   2312       MightBeImplicitMember = false;
   2313     else if (R.isUnresolvableResult())
   2314       MightBeImplicitMember = true;
   2315     else
   2316       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2317                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2318                               isa<MSPropertyDecl>(R.getFoundDecl());
   2319 
   2320     if (MightBeImplicitMember)
   2321       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2322                                              R, TemplateArgs, S);
   2323   }
   2324 
   2325   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2326 
   2327     // In C++1y, if this is a variable template id, then check it
   2328     // in BuildTemplateIdExpr().
   2329     // The single lookup result must be a variable template declaration.
   2330     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2331         Id.TemplateId->Kind == TNK_Var_template) {
   2332       assert(R.getAsSingle<VarTemplateDecl>() &&
   2333              "There should only be one declaration found.");
   2334     }
   2335 
   2336     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2337   }
   2338 
   2339   return BuildDeclarationNameExpr(SS, R, ADL);
   2340 }
   2341 
   2342 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2343 /// declaration name, generally during template instantiation.
   2344 /// There's a large number of things which don't need to be done along
   2345 /// this path.
   2346 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
   2347     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
   2348     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
   2349   DeclContext *DC = computeDeclContext(SS, false);
   2350   if (!DC)
   2351     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2352                                      NameInfo, /*TemplateArgs=*/nullptr);
   2353 
   2354   if (RequireCompleteDeclContext(SS, DC))
   2355     return ExprError();
   2356 
   2357   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2358   LookupQualifiedName(R, DC);
   2359 
   2360   if (R.isAmbiguous())
   2361     return ExprError();
   2362 
   2363   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2364     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2365                                      NameInfo, /*TemplateArgs=*/nullptr);
   2366 
   2367   if (R.empty()) {
   2368     Diag(NameInfo.getLoc(), diag::err_no_member)
   2369       << NameInfo.getName() << DC << SS.getRange();
   2370     return ExprError();
   2371   }
   2372 
   2373   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
   2374     // Diagnose a missing typename if this resolved unambiguously to a type in
   2375     // a dependent context.  If we can recover with a type, downgrade this to
   2376     // a warning in Microsoft compatibility mode.
   2377     unsigned DiagID = diag::err_typename_missing;
   2378     if (RecoveryTSI && getLangOpts().MSVCCompat)
   2379       DiagID = diag::ext_typename_missing;
   2380     SourceLocation Loc = SS.getBeginLoc();
   2381     auto D = Diag(Loc, DiagID);
   2382     D << SS.getScopeRep() << NameInfo.getName().getAsString()
   2383       << SourceRange(Loc, NameInfo.getEndLoc());
   2384 
   2385     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
   2386     // context.
   2387     if (!RecoveryTSI)
   2388       return ExprError();
   2389 
   2390     // Only issue the fixit if we're prepared to recover.
   2391     D << FixItHint::CreateInsertion(Loc, "typename ");
   2392 
   2393     // Recover by pretending this was an elaborated type.
   2394     QualType Ty = Context.getTypeDeclType(TD);
   2395     TypeLocBuilder TLB;
   2396     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
   2397 
   2398     QualType ET = getElaboratedType(ETK_None, SS, Ty);
   2399     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
   2400     QTL.setElaboratedKeywordLoc(SourceLocation());
   2401     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2402 
   2403     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
   2404 
   2405     return ExprEmpty();
   2406   }
   2407 
   2408   // Defend against this resolving to an implicit member access. We usually
   2409   // won't get here if this might be a legitimate a class member (we end up in
   2410   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2411   // a pointer-to-member or in an unevaluated context in C++11.
   2412   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2413     return BuildPossibleImplicitMemberExpr(SS,
   2414                                            /*TemplateKWLoc=*/SourceLocation(),
   2415                                            R, /*TemplateArgs=*/nullptr, S);
   2416 
   2417   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2418 }
   2419 
   2420 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2421 /// detected that we're currently inside an ObjC method.  Perform some
   2422 /// additional lookup.
   2423 ///
   2424 /// Ideally, most of this would be done by lookup, but there's
   2425 /// actually quite a lot of extra work involved.
   2426 ///
   2427 /// Returns a null sentinel to indicate trivial success.
   2428 ExprResult
   2429 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2430                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2431   SourceLocation Loc = Lookup.getNameLoc();
   2432   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2433 
   2434   // Check for error condition which is already reported.
   2435   if (!CurMethod)
   2436     return ExprError();
   2437 
   2438   // There are two cases to handle here.  1) scoped lookup could have failed,
   2439   // in which case we should look for an ivar.  2) scoped lookup could have
   2440   // found a decl, but that decl is outside the current instance method (i.e.
   2441   // a global variable).  In these two cases, we do a lookup for an ivar with
   2442   // this name, if the lookup sucedes, we replace it our current decl.
   2443 
   2444   // If we're in a class method, we don't normally want to look for
   2445   // ivars.  But if we don't find anything else, and there's an
   2446   // ivar, that's an error.
   2447   bool IsClassMethod = CurMethod->isClassMethod();
   2448 
   2449   bool LookForIvars;
   2450   if (Lookup.empty())
   2451     LookForIvars = true;
   2452   else if (IsClassMethod)
   2453     LookForIvars = false;
   2454   else
   2455     LookForIvars = (Lookup.isSingleResult() &&
   2456                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2457   ObjCInterfaceDecl *IFace = nullptr;
   2458   if (LookForIvars) {
   2459     IFace = CurMethod->getClassInterface();
   2460     ObjCInterfaceDecl *ClassDeclared;
   2461     ObjCIvarDecl *IV = nullptr;
   2462     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2463       // Diagnose using an ivar in a class method.
   2464       if (IsClassMethod)
   2465         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2466                          << IV->getDeclName());
   2467 
   2468       // If we're referencing an invalid decl, just return this as a silent
   2469       // error node.  The error diagnostic was already emitted on the decl.
   2470       if (IV->isInvalidDecl())
   2471         return ExprError();
   2472 
   2473       // Check if referencing a field with __attribute__((deprecated)).
   2474       if (DiagnoseUseOfDecl(IV, Loc))
   2475         return ExprError();
   2476 
   2477       // Diagnose the use of an ivar outside of the declaring class.
   2478       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2479           !declaresSameEntity(ClassDeclared, IFace) &&
   2480           !getLangOpts().DebuggerSupport)
   2481         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2482 
   2483       // FIXME: This should use a new expr for a direct reference, don't
   2484       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2485       IdentifierInfo &II = Context.Idents.get("self");
   2486       UnqualifiedId SelfName;
   2487       SelfName.setIdentifier(&II, SourceLocation());
   2488       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2489       CXXScopeSpec SelfScopeSpec;
   2490       SourceLocation TemplateKWLoc;
   2491       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2492                                               SelfName, false, false);
   2493       if (SelfExpr.isInvalid())
   2494         return ExprError();
   2495 
   2496       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
   2497       if (SelfExpr.isInvalid())
   2498         return ExprError();
   2499 
   2500       MarkAnyDeclReferenced(Loc, IV, true);
   2501 
   2502       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2503       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2504           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2505         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2506 
   2507       ObjCIvarRefExpr *Result = new (Context)
   2508           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
   2509                           IV->getLocation(), SelfExpr.get(), true, true);
   2510 
   2511       if (getLangOpts().ObjCAutoRefCount) {
   2512         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2513           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   2514             recordUseOfEvaluatedWeak(Result);
   2515         }
   2516         if (CurContext->isClosure())
   2517           Diag(Loc, diag::warn_implicitly_retains_self)
   2518             << FixItHint::CreateInsertion(Loc, "self->");
   2519       }
   2520 
   2521       return Result;
   2522     }
   2523   } else if (CurMethod->isInstanceMethod()) {
   2524     // We should warn if a local variable hides an ivar.
   2525     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2526       ObjCInterfaceDecl *ClassDeclared;
   2527       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2528         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2529             declaresSameEntity(IFace, ClassDeclared))
   2530           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2531       }
   2532     }
   2533   } else if (Lookup.isSingleResult() &&
   2534              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2535     // If accessing a stand-alone ivar in a class method, this is an error.
   2536     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2537       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2538                        << IV->getDeclName());
   2539   }
   2540 
   2541   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2542     // FIXME. Consolidate this with similar code in LookupName.
   2543     if (unsigned BuiltinID = II->getBuiltinID()) {
   2544       if (!(getLangOpts().CPlusPlus &&
   2545             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2546         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2547                                            S, Lookup.isForRedeclaration(),
   2548                                            Lookup.getNameLoc());
   2549         if (D) Lookup.addDecl(D);
   2550       }
   2551     }
   2552   }
   2553   // Sentinel value saying that we didn't do anything special.
   2554   return ExprResult((Expr *)nullptr);
   2555 }
   2556 
   2557 /// \brief Cast a base object to a member's actual type.
   2558 ///
   2559 /// Logically this happens in three phases:
   2560 ///
   2561 /// * First we cast from the base type to the naming class.
   2562 ///   The naming class is the class into which we were looking
   2563 ///   when we found the member;  it's the qualifier type if a
   2564 ///   qualifier was provided, and otherwise it's the base type.
   2565 ///
   2566 /// * Next we cast from the naming class to the declaring class.
   2567 ///   If the member we found was brought into a class's scope by
   2568 ///   a using declaration, this is that class;  otherwise it's
   2569 ///   the class declaring the member.
   2570 ///
   2571 /// * Finally we cast from the declaring class to the "true"
   2572 ///   declaring class of the member.  This conversion does not
   2573 ///   obey access control.
   2574 ExprResult
   2575 Sema::PerformObjectMemberConversion(Expr *From,
   2576                                     NestedNameSpecifier *Qualifier,
   2577                                     NamedDecl *FoundDecl,
   2578                                     NamedDecl *Member) {
   2579   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2580   if (!RD)
   2581     return From;
   2582 
   2583   QualType DestRecordType;
   2584   QualType DestType;
   2585   QualType FromRecordType;
   2586   QualType FromType = From->getType();
   2587   bool PointerConversions = false;
   2588   if (isa<FieldDecl>(Member)) {
   2589     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2590 
   2591     if (FromType->getAs<PointerType>()) {
   2592       DestType = Context.getPointerType(DestRecordType);
   2593       FromRecordType = FromType->getPointeeType();
   2594       PointerConversions = true;
   2595     } else {
   2596       DestType = DestRecordType;
   2597       FromRecordType = FromType;
   2598     }
   2599   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2600     if (Method->isStatic())
   2601       return From;
   2602 
   2603     DestType = Method->getThisType(Context);
   2604     DestRecordType = DestType->getPointeeType();
   2605 
   2606     if (FromType->getAs<PointerType>()) {
   2607       FromRecordType = FromType->getPointeeType();
   2608       PointerConversions = true;
   2609     } else {
   2610       FromRecordType = FromType;
   2611       DestType = DestRecordType;
   2612     }
   2613   } else {
   2614     // No conversion necessary.
   2615     return From;
   2616   }
   2617 
   2618   if (DestType->isDependentType() || FromType->isDependentType())
   2619     return From;
   2620 
   2621   // If the unqualified types are the same, no conversion is necessary.
   2622   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2623     return From;
   2624 
   2625   SourceRange FromRange = From->getSourceRange();
   2626   SourceLocation FromLoc = FromRange.getBegin();
   2627 
   2628   ExprValueKind VK = From->getValueKind();
   2629 
   2630   // C++ [class.member.lookup]p8:
   2631   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2632   //   class name.
   2633   //
   2634   // If the member was a qualified name and the qualified referred to a
   2635   // specific base subobject type, we'll cast to that intermediate type
   2636   // first and then to the object in which the member is declared. That allows
   2637   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2638   //
   2639   //   class Base { public: int x; };
   2640   //   class Derived1 : public Base { };
   2641   //   class Derived2 : public Base { };
   2642   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2643   //
   2644   //   void VeryDerived::f() {
   2645   //     x = 17; // error: ambiguous base subobjects
   2646   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2647   //   }
   2648   if (Qualifier && Qualifier->getAsType()) {
   2649     QualType QType = QualType(Qualifier->getAsType(), 0);
   2650     assert(QType->isRecordType() && "lookup done with non-record type");
   2651 
   2652     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2653 
   2654     // In C++98, the qualifier type doesn't actually have to be a base
   2655     // type of the object type, in which case we just ignore it.
   2656     // Otherwise build the appropriate casts.
   2657     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
   2658       CXXCastPath BasePath;
   2659       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2660                                        FromLoc, FromRange, &BasePath))
   2661         return ExprError();
   2662 
   2663       if (PointerConversions)
   2664         QType = Context.getPointerType(QType);
   2665       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2666                                VK, &BasePath).get();
   2667 
   2668       FromType = QType;
   2669       FromRecordType = QRecordType;
   2670 
   2671       // If the qualifier type was the same as the destination type,
   2672       // we're done.
   2673       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2674         return From;
   2675     }
   2676   }
   2677 
   2678   bool IgnoreAccess = false;
   2679 
   2680   // If we actually found the member through a using declaration, cast
   2681   // down to the using declaration's type.
   2682   //
   2683   // Pointer equality is fine here because only one declaration of a
   2684   // class ever has member declarations.
   2685   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2686     assert(isa<UsingShadowDecl>(FoundDecl));
   2687     QualType URecordType = Context.getTypeDeclType(
   2688                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2689 
   2690     // We only need to do this if the naming-class to declaring-class
   2691     // conversion is non-trivial.
   2692     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2693       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
   2694       CXXCastPath BasePath;
   2695       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2696                                        FromLoc, FromRange, &BasePath))
   2697         return ExprError();
   2698 
   2699       QualType UType = URecordType;
   2700       if (PointerConversions)
   2701         UType = Context.getPointerType(UType);
   2702       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2703                                VK, &BasePath).get();
   2704       FromType = UType;
   2705       FromRecordType = URecordType;
   2706     }
   2707 
   2708     // We don't do access control for the conversion from the
   2709     // declaring class to the true declaring class.
   2710     IgnoreAccess = true;
   2711   }
   2712 
   2713   CXXCastPath BasePath;
   2714   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2715                                    FromLoc, FromRange, &BasePath,
   2716                                    IgnoreAccess))
   2717     return ExprError();
   2718 
   2719   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2720                            VK, &BasePath);
   2721 }
   2722 
   2723 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2724                                       const LookupResult &R,
   2725                                       bool HasTrailingLParen) {
   2726   // Only when used directly as the postfix-expression of a call.
   2727   if (!HasTrailingLParen)
   2728     return false;
   2729 
   2730   // Never if a scope specifier was provided.
   2731   if (SS.isSet())
   2732     return false;
   2733 
   2734   // Only in C++ or ObjC++.
   2735   if (!getLangOpts().CPlusPlus)
   2736     return false;
   2737 
   2738   // Turn off ADL when we find certain kinds of declarations during
   2739   // normal lookup:
   2740   for (NamedDecl *D : R) {
   2741     // C++0x [basic.lookup.argdep]p3:
   2742     //     -- a declaration of a class member
   2743     // Since using decls preserve this property, we check this on the
   2744     // original decl.
   2745     if (D->isCXXClassMember())
   2746       return false;
   2747 
   2748     // C++0x [basic.lookup.argdep]p3:
   2749     //     -- a block-scope function declaration that is not a
   2750     //        using-declaration
   2751     // NOTE: we also trigger this for function templates (in fact, we
   2752     // don't check the decl type at all, since all other decl types
   2753     // turn off ADL anyway).
   2754     if (isa<UsingShadowDecl>(D))
   2755       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2756     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
   2757       return false;
   2758 
   2759     // C++0x [basic.lookup.argdep]p3:
   2760     //     -- a declaration that is neither a function or a function
   2761     //        template
   2762     // And also for builtin functions.
   2763     if (isa<FunctionDecl>(D)) {
   2764       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2765 
   2766       // But also builtin functions.
   2767       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2768         return false;
   2769     } else if (!isa<FunctionTemplateDecl>(D))
   2770       return false;
   2771   }
   2772 
   2773   return true;
   2774 }
   2775 
   2776 
   2777 /// Diagnoses obvious problems with the use of the given declaration
   2778 /// as an expression.  This is only actually called for lookups that
   2779 /// were not overloaded, and it doesn't promise that the declaration
   2780 /// will in fact be used.
   2781 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2782   if (isa<TypedefNameDecl>(D)) {
   2783     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2784     return true;
   2785   }
   2786 
   2787   if (isa<ObjCInterfaceDecl>(D)) {
   2788     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2789     return true;
   2790   }
   2791 
   2792   if (isa<NamespaceDecl>(D)) {
   2793     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2794     return true;
   2795   }
   2796 
   2797   return false;
   2798 }
   2799 
   2800 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2801                                           LookupResult &R, bool NeedsADL,
   2802                                           bool AcceptInvalidDecl) {
   2803   // If this is a single, fully-resolved result and we don't need ADL,
   2804   // just build an ordinary singleton decl ref.
   2805   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2806     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2807                                     R.getRepresentativeDecl(), nullptr,
   2808                                     AcceptInvalidDecl);
   2809 
   2810   // We only need to check the declaration if there's exactly one
   2811   // result, because in the overloaded case the results can only be
   2812   // functions and function templates.
   2813   if (R.isSingleResult() &&
   2814       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2815     return ExprError();
   2816 
   2817   // Otherwise, just build an unresolved lookup expression.  Suppress
   2818   // any lookup-related diagnostics; we'll hash these out later, when
   2819   // we've picked a target.
   2820   R.suppressDiagnostics();
   2821 
   2822   UnresolvedLookupExpr *ULE
   2823     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2824                                    SS.getWithLocInContext(Context),
   2825                                    R.getLookupNameInfo(),
   2826                                    NeedsADL, R.isOverloadedResult(),
   2827                                    R.begin(), R.end());
   2828 
   2829   return ULE;
   2830 }
   2831 
   2832 /// \brief Complete semantic analysis for a reference to the given declaration.
   2833 ExprResult Sema::BuildDeclarationNameExpr(
   2834     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2835     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
   2836     bool AcceptInvalidDecl) {
   2837   assert(D && "Cannot refer to a NULL declaration");
   2838   assert(!isa<FunctionTemplateDecl>(D) &&
   2839          "Cannot refer unambiguously to a function template");
   2840 
   2841   SourceLocation Loc = NameInfo.getLoc();
   2842   if (CheckDeclInExpr(*this, Loc, D))
   2843     return ExprError();
   2844 
   2845   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2846     // Specifically diagnose references to class templates that are missing
   2847     // a template argument list.
   2848     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2849                                            << Template << SS.getRange();
   2850     Diag(Template->getLocation(), diag::note_template_decl_here);
   2851     return ExprError();
   2852   }
   2853 
   2854   // Make sure that we're referring to a value.
   2855   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2856   if (!VD) {
   2857     Diag(Loc, diag::err_ref_non_value)
   2858       << D << SS.getRange();
   2859     Diag(D->getLocation(), diag::note_declared_at);
   2860     return ExprError();
   2861   }
   2862 
   2863   // Check whether this declaration can be used. Note that we suppress
   2864   // this check when we're going to perform argument-dependent lookup
   2865   // on this function name, because this might not be the function
   2866   // that overload resolution actually selects.
   2867   if (DiagnoseUseOfDecl(VD, Loc))
   2868     return ExprError();
   2869 
   2870   // Only create DeclRefExpr's for valid Decl's.
   2871   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
   2872     return ExprError();
   2873 
   2874   // Handle members of anonymous structs and unions.  If we got here,
   2875   // and the reference is to a class member indirect field, then this
   2876   // must be the subject of a pointer-to-member expression.
   2877   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2878     if (!indirectField->isCXXClassMember())
   2879       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2880                                                       indirectField);
   2881 
   2882   {
   2883     QualType type = VD->getType();
   2884     ExprValueKind valueKind = VK_RValue;
   2885 
   2886     switch (D->getKind()) {
   2887     // Ignore all the non-ValueDecl kinds.
   2888 #define ABSTRACT_DECL(kind)
   2889 #define VALUE(type, base)
   2890 #define DECL(type, base) \
   2891     case Decl::type:
   2892 #include "clang/AST/DeclNodes.inc"
   2893       llvm_unreachable("invalid value decl kind");
   2894 
   2895     // These shouldn't make it here.
   2896     case Decl::ObjCAtDefsField:
   2897     case Decl::ObjCIvar:
   2898       llvm_unreachable("forming non-member reference to ivar?");
   2899 
   2900     // Enum constants are always r-values and never references.
   2901     // Unresolved using declarations are dependent.
   2902     case Decl::EnumConstant:
   2903     case Decl::UnresolvedUsingValue:
   2904     case Decl::OMPDeclareReduction:
   2905       valueKind = VK_RValue;
   2906       break;
   2907 
   2908     // Fields and indirect fields that got here must be for
   2909     // pointer-to-member expressions; we just call them l-values for
   2910     // internal consistency, because this subexpression doesn't really
   2911     // exist in the high-level semantics.
   2912     case Decl::Field:
   2913     case Decl::IndirectField:
   2914       assert(getLangOpts().CPlusPlus &&
   2915              "building reference to field in C?");
   2916 
   2917       // These can't have reference type in well-formed programs, but
   2918       // for internal consistency we do this anyway.
   2919       type = type.getNonReferenceType();
   2920       valueKind = VK_LValue;
   2921       break;
   2922 
   2923     // Non-type template parameters are either l-values or r-values
   2924     // depending on the type.
   2925     case Decl::NonTypeTemplateParm: {
   2926       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2927         type = reftype->getPointeeType();
   2928         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2929         break;
   2930       }
   2931 
   2932       // For non-references, we need to strip qualifiers just in case
   2933       // the template parameter was declared as 'const int' or whatever.
   2934       valueKind = VK_RValue;
   2935       type = type.getUnqualifiedType();
   2936       break;
   2937     }
   2938 
   2939     case Decl::Var:
   2940     case Decl::VarTemplateSpecialization:
   2941     case Decl::VarTemplatePartialSpecialization:
   2942     case Decl::OMPCapturedExpr:
   2943       // In C, "extern void blah;" is valid and is an r-value.
   2944       if (!getLangOpts().CPlusPlus &&
   2945           !type.hasQualifiers() &&
   2946           type->isVoidType()) {
   2947         valueKind = VK_RValue;
   2948         break;
   2949       }
   2950       // fallthrough
   2951 
   2952     case Decl::ImplicitParam:
   2953     case Decl::ParmVar: {
   2954       // These are always l-values.
   2955       valueKind = VK_LValue;
   2956       type = type.getNonReferenceType();
   2957 
   2958       // FIXME: Does the addition of const really only apply in
   2959       // potentially-evaluated contexts? Since the variable isn't actually
   2960       // captured in an unevaluated context, it seems that the answer is no.
   2961       if (!isUnevaluatedContext()) {
   2962         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2963         if (!CapturedType.isNull())
   2964           type = CapturedType;
   2965       }
   2966 
   2967       break;
   2968     }
   2969 
   2970     case Decl::Function: {
   2971       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2972         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2973           type = Context.BuiltinFnTy;
   2974           valueKind = VK_RValue;
   2975           break;
   2976         }
   2977       }
   2978 
   2979       const FunctionType *fty = type->castAs<FunctionType>();
   2980 
   2981       // If we're referring to a function with an __unknown_anytype
   2982       // result type, make the entire expression __unknown_anytype.
   2983       if (fty->getReturnType() == Context.UnknownAnyTy) {
   2984         type = Context.UnknownAnyTy;
   2985         valueKind = VK_RValue;
   2986         break;
   2987       }
   2988 
   2989       // Functions are l-values in C++.
   2990       if (getLangOpts().CPlusPlus) {
   2991         valueKind = VK_LValue;
   2992         break;
   2993       }
   2994 
   2995       // C99 DR 316 says that, if a function type comes from a
   2996       // function definition (without a prototype), that type is only
   2997       // used for checking compatibility. Therefore, when referencing
   2998       // the function, we pretend that we don't have the full function
   2999       // type.
   3000       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   3001           isa<FunctionProtoType>(fty))
   3002         type = Context.getFunctionNoProtoType(fty->getReturnType(),
   3003                                               fty->getExtInfo());
   3004 
   3005       // Functions are r-values in C.
   3006       valueKind = VK_RValue;
   3007       break;
   3008     }
   3009 
   3010     case Decl::MSProperty:
   3011       valueKind = VK_LValue;
   3012       break;
   3013 
   3014     case Decl::CXXMethod:
   3015       // If we're referring to a method with an __unknown_anytype
   3016       // result type, make the entire expression __unknown_anytype.
   3017       // This should only be possible with a type written directly.
   3018       if (const FunctionProtoType *proto
   3019             = dyn_cast<FunctionProtoType>(VD->getType()))
   3020         if (proto->getReturnType() == Context.UnknownAnyTy) {
   3021           type = Context.UnknownAnyTy;
   3022           valueKind = VK_RValue;
   3023           break;
   3024         }
   3025 
   3026       // C++ methods are l-values if static, r-values if non-static.
   3027       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   3028         valueKind = VK_LValue;
   3029         break;
   3030       }
   3031       // fallthrough
   3032 
   3033     case Decl::CXXConversion:
   3034     case Decl::CXXDestructor:
   3035     case Decl::CXXConstructor:
   3036       valueKind = VK_RValue;
   3037       break;
   3038     }
   3039 
   3040     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   3041                             TemplateArgs);
   3042   }
   3043 }
   3044 
   3045 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   3046                                     SmallString<32> &Target) {
   3047   Target.resize(CharByteWidth * (Source.size() + 1));
   3048   char *ResultPtr = &Target[0];
   3049   const UTF8 *ErrorPtr;
   3050   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   3051   (void)success;
   3052   assert(success);
   3053   Target.resize(ResultPtr - &Target[0]);
   3054 }
   3055 
   3056 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
   3057                                      PredefinedExpr::IdentType IT) {
   3058   // Pick the current block, lambda, captured statement or function.
   3059   Decl *currentDecl = nullptr;
   3060   if (const BlockScopeInfo *BSI = getCurBlock())
   3061     currentDecl = BSI->TheDecl;
   3062   else if (const LambdaScopeInfo *LSI = getCurLambda())
   3063     currentDecl = LSI->CallOperator;
   3064   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
   3065     currentDecl = CSI->TheCapturedDecl;
   3066   else
   3067     currentDecl = getCurFunctionOrMethodDecl();
   3068 
   3069   if (!currentDecl) {
   3070     Diag(Loc, diag::ext_predef_outside_function);
   3071     currentDecl = Context.getTranslationUnitDecl();
   3072   }
   3073 
   3074   QualType ResTy;
   3075   StringLiteral *SL = nullptr;
   3076   if (cast<DeclContext>(currentDecl)->isDependentContext())
   3077     ResTy = Context.DependentTy;
   3078   else {
   3079     // Pre-defined identifiers are of type char[x], where x is the length of
   3080     // the string.
   3081     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
   3082     unsigned Length = Str.length();
   3083 
   3084     llvm::APInt LengthI(32, Length + 1);
   3085     if (IT == PredefinedExpr::LFunction) {
   3086       ResTy = Context.WideCharTy.withConst();
   3087       SmallString<32> RawChars;
   3088       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
   3089                               Str, RawChars);
   3090       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3091                                            /*IndexTypeQuals*/ 0);
   3092       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
   3093                                  /*Pascal*/ false, ResTy, Loc);
   3094     } else {
   3095       ResTy = Context.CharTy.withConst();
   3096       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3097                                            /*IndexTypeQuals*/ 0);
   3098       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
   3099                                  /*Pascal*/ false, ResTy, Loc);
   3100     }
   3101   }
   3102 
   3103   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
   3104 }
   3105 
   3106 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   3107   PredefinedExpr::IdentType IT;
   3108 
   3109   switch (Kind) {
   3110   default: llvm_unreachable("Unknown simple primary expr!");
   3111   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   3112   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   3113   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
   3114   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
   3115   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   3116   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   3117   }
   3118 
   3119   return BuildPredefinedExpr(Loc, IT);
   3120 }
   3121 
   3122 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   3123   SmallString<16> CharBuffer;
   3124   bool Invalid = false;
   3125   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   3126   if (Invalid)
   3127     return ExprError();
   3128 
   3129   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   3130                             PP, Tok.getKind());
   3131   if (Literal.hadError())
   3132     return ExprError();
   3133 
   3134   QualType Ty;
   3135   if (Literal.isWide())
   3136     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   3137   else if (Literal.isUTF16())
   3138     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   3139   else if (Literal.isUTF32())
   3140     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   3141   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   3142     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   3143   else
   3144     Ty = Context.CharTy;  // 'x' -> char in C++
   3145 
   3146   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   3147   if (Literal.isWide())
   3148     Kind = CharacterLiteral::Wide;
   3149   else if (Literal.isUTF16())
   3150     Kind = CharacterLiteral::UTF16;
   3151   else if (Literal.isUTF32())
   3152     Kind = CharacterLiteral::UTF32;
   3153   else if (Literal.isUTF8())
   3154     Kind = CharacterLiteral::UTF8;
   3155 
   3156   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   3157                                              Tok.getLocation());
   3158 
   3159   if (Literal.getUDSuffix().empty())
   3160     return Lit;
   3161 
   3162   // We're building a user-defined literal.
   3163   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3164   SourceLocation UDSuffixLoc =
   3165     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3166 
   3167   // Make sure we're allowed user-defined literals here.
   3168   if (!UDLScope)
   3169     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   3170 
   3171   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   3172   //   operator "" X (ch)
   3173   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   3174                                         Lit, Tok.getLocation());
   3175 }
   3176 
   3177 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   3178   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3179   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   3180                                 Context.IntTy, Loc);
   3181 }
   3182 
   3183 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   3184                                   QualType Ty, SourceLocation Loc) {
   3185   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   3186 
   3187   using llvm::APFloat;
   3188   APFloat Val(Format);
   3189 
   3190   APFloat::opStatus result = Literal.GetFloatValue(Val);
   3191 
   3192   // Overflow is always an error, but underflow is only an error if
   3193   // we underflowed to zero (APFloat reports denormals as underflow).
   3194   if ((result & APFloat::opOverflow) ||
   3195       ((result & APFloat::opUnderflow) && Val.isZero())) {
   3196     unsigned diagnostic;
   3197     SmallString<20> buffer;
   3198     if (result & APFloat::opOverflow) {
   3199       diagnostic = diag::warn_float_overflow;
   3200       APFloat::getLargest(Format).toString(buffer);
   3201     } else {
   3202       diagnostic = diag::warn_float_underflow;
   3203       APFloat::getSmallest(Format).toString(buffer);
   3204     }
   3205 
   3206     S.Diag(Loc, diagnostic)
   3207       << Ty
   3208       << StringRef(buffer.data(), buffer.size());
   3209   }
   3210 
   3211   bool isExact = (result == APFloat::opOK);
   3212   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   3213 }
   3214 
   3215 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
   3216   assert(E && "Invalid expression");
   3217 
   3218   if (E->isValueDependent())
   3219     return false;
   3220 
   3221   QualType QT = E->getType();
   3222   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
   3223     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
   3224     return true;
   3225   }
   3226 
   3227   llvm::APSInt ValueAPS;
   3228   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
   3229 
   3230   if (R.isInvalid())
   3231     return true;
   3232 
   3233   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
   3234   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
   3235     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
   3236         << ValueAPS.toString(10) << ValueIsPositive;
   3237     return true;
   3238   }
   3239 
   3240   return false;
   3241 }
   3242 
   3243 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   3244   // Fast path for a single digit (which is quite common).  A single digit
   3245   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   3246   if (Tok.getLength() == 1) {
   3247     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   3248     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   3249   }
   3250 
   3251   SmallString<128> SpellingBuffer;
   3252   // NumericLiteralParser wants to overread by one character.  Add padding to
   3253   // the buffer in case the token is copied to the buffer.  If getSpelling()
   3254   // returns a StringRef to the memory buffer, it should have a null char at
   3255   // the EOF, so it is also safe.
   3256   SpellingBuffer.resize(Tok.getLength() + 1);
   3257 
   3258   // Get the spelling of the token, which eliminates trigraphs, etc.
   3259   bool Invalid = false;
   3260   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   3261   if (Invalid)
   3262     return ExprError();
   3263 
   3264   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   3265   if (Literal.hadError)
   3266     return ExprError();
   3267 
   3268   if (Literal.hasUDSuffix()) {
   3269     // We're building a user-defined literal.
   3270     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3271     SourceLocation UDSuffixLoc =
   3272       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3273 
   3274     // Make sure we're allowed user-defined literals here.
   3275     if (!UDLScope)
   3276       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   3277 
   3278     QualType CookedTy;
   3279     if (Literal.isFloatingLiteral()) {
   3280       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   3281       // long double, the literal is treated as a call of the form
   3282       //   operator "" X (f L)
   3283       CookedTy = Context.LongDoubleTy;
   3284     } else {
   3285       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   3286       // unsigned long long, the literal is treated as a call of the form
   3287       //   operator "" X (n ULL)
   3288       CookedTy = Context.UnsignedLongLongTy;
   3289     }
   3290 
   3291     DeclarationName OpName =
   3292       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   3293     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   3294     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   3295 
   3296     SourceLocation TokLoc = Tok.getLocation();
   3297 
   3298     // Perform literal operator lookup to determine if we're building a raw
   3299     // literal or a cooked one.
   3300     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   3301     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   3302                                   /*AllowRaw*/true, /*AllowTemplate*/true,
   3303                                   /*AllowStringTemplate*/false)) {
   3304     case LOLR_Error:
   3305       return ExprError();
   3306 
   3307     case LOLR_Cooked: {
   3308       Expr *Lit;
   3309       if (Literal.isFloatingLiteral()) {
   3310         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   3311       } else {
   3312         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   3313         if (Literal.GetIntegerValue(ResultVal))
   3314           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3315               << /* Unsigned */ 1;
   3316         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   3317                                      Tok.getLocation());
   3318       }
   3319       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3320     }
   3321 
   3322     case LOLR_Raw: {
   3323       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   3324       // literal is treated as a call of the form
   3325       //   operator "" X ("n")
   3326       unsigned Length = Literal.getUDSuffixOffset();
   3327       QualType StrTy = Context.getConstantArrayType(
   3328           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   3329           ArrayType::Normal, 0);
   3330       Expr *Lit = StringLiteral::Create(
   3331           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   3332           /*Pascal*/false, StrTy, &TokLoc, 1);
   3333       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3334     }
   3335 
   3336     case LOLR_Template: {
   3337       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   3338       // template), L is treated as a call fo the form
   3339       //   operator "" X <'c1', 'c2', ... 'ck'>()
   3340       // where n is the source character sequence c1 c2 ... ck.
   3341       TemplateArgumentListInfo ExplicitArgs;
   3342       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   3343       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   3344       llvm::APSInt Value(CharBits, CharIsUnsigned);
   3345       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   3346         Value = TokSpelling[I];
   3347         TemplateArgument Arg(Context, Value, Context.CharTy);
   3348         TemplateArgumentLocInfo ArgInfo;
   3349         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3350       }
   3351       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
   3352                                       &ExplicitArgs);
   3353     }
   3354     case LOLR_StringTemplate:
   3355       llvm_unreachable("unexpected literal operator lookup result");
   3356     }
   3357   }
   3358 
   3359   Expr *Res;
   3360 
   3361   if (Literal.isFloatingLiteral()) {
   3362     QualType Ty;
   3363     if (Literal.isHalf){
   3364       if (getOpenCLOptions().cl_khr_fp16)
   3365         Ty = Context.HalfTy;
   3366       else {
   3367         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
   3368         return ExprError();
   3369       }
   3370     } else if (Literal.isFloat)
   3371       Ty = Context.FloatTy;
   3372     else if (Literal.isLong)
   3373       Ty = Context.LongDoubleTy;
   3374     else if (Literal.isFloat128)
   3375       Ty = Context.Float128Ty;
   3376     else
   3377       Ty = Context.DoubleTy;
   3378 
   3379     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3380 
   3381     if (Ty == Context.DoubleTy) {
   3382       if (getLangOpts().SinglePrecisionConstants) {
   3383         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3384       } else if (getLangOpts().OpenCL &&
   3385                  !((getLangOpts().OpenCLVersion >= 120) ||
   3386                    getOpenCLOptions().cl_khr_fp64)) {
   3387         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3388         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3389       }
   3390     }
   3391   } else if (!Literal.isIntegerLiteral()) {
   3392     return ExprError();
   3393   } else {
   3394     QualType Ty;
   3395 
   3396     // 'long long' is a C99 or C++11 feature.
   3397     if (!getLangOpts().C99 && Literal.isLongLong) {
   3398       if (getLangOpts().CPlusPlus)
   3399         Diag(Tok.getLocation(),
   3400              getLangOpts().CPlusPlus11 ?
   3401              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3402       else
   3403         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3404     }
   3405 
   3406     // Get the value in the widest-possible width.
   3407     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3408     llvm::APInt ResultVal(MaxWidth, 0);
   3409 
   3410     if (Literal.GetIntegerValue(ResultVal)) {
   3411       // If this value didn't fit into uintmax_t, error and force to ull.
   3412       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3413           << /* Unsigned */ 1;
   3414       Ty = Context.UnsignedLongLongTy;
   3415       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3416              "long long is not intmax_t?");
   3417     } else {
   3418       // If this value fits into a ULL, try to figure out what else it fits into
   3419       // according to the rules of C99 6.4.4.1p5.
   3420 
   3421       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3422       // be an unsigned int.
   3423       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3424 
   3425       // Check from smallest to largest, picking the smallest type we can.
   3426       unsigned Width = 0;
   3427 
   3428       // Microsoft specific integer suffixes are explicitly sized.
   3429       if (Literal.MicrosoftInteger) {
   3430         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
   3431           Width = 8;
   3432           Ty = Context.CharTy;
   3433         } else {
   3434           Width = Literal.MicrosoftInteger;
   3435           Ty = Context.getIntTypeForBitwidth(Width,
   3436                                              /*Signed=*/!Literal.isUnsigned);
   3437         }
   3438       }
   3439 
   3440       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
   3441         // Are int/unsigned possibilities?
   3442         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3443 
   3444         // Does it fit in a unsigned int?
   3445         if (ResultVal.isIntN(IntSize)) {
   3446           // Does it fit in a signed int?
   3447           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3448             Ty = Context.IntTy;
   3449           else if (AllowUnsigned)
   3450             Ty = Context.UnsignedIntTy;
   3451           Width = IntSize;
   3452         }
   3453       }
   3454 
   3455       // Are long/unsigned long possibilities?
   3456       if (Ty.isNull() && !Literal.isLongLong) {
   3457         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3458 
   3459         // Does it fit in a unsigned long?
   3460         if (ResultVal.isIntN(LongSize)) {
   3461           // Does it fit in a signed long?
   3462           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3463             Ty = Context.LongTy;
   3464           else if (AllowUnsigned)
   3465             Ty = Context.UnsignedLongTy;
   3466           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
   3467           // is compatible.
   3468           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
   3469             const unsigned LongLongSize =
   3470                 Context.getTargetInfo().getLongLongWidth();
   3471             Diag(Tok.getLocation(),
   3472                  getLangOpts().CPlusPlus
   3473                      ? Literal.isLong
   3474                            ? diag::warn_old_implicitly_unsigned_long_cxx
   3475                            : /*C++98 UB*/ diag::
   3476                                  ext_old_implicitly_unsigned_long_cxx
   3477                      : diag::warn_old_implicitly_unsigned_long)
   3478                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
   3479                                             : /*will be ill-formed*/ 1);
   3480             Ty = Context.UnsignedLongTy;
   3481           }
   3482           Width = LongSize;
   3483         }
   3484       }
   3485 
   3486       // Check long long if needed.
   3487       if (Ty.isNull()) {
   3488         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3489 
   3490         // Does it fit in a unsigned long long?
   3491         if (ResultVal.isIntN(LongLongSize)) {
   3492           // Does it fit in a signed long long?
   3493           // To be compatible with MSVC, hex integer literals ending with the
   3494           // LL or i64 suffix are always signed in Microsoft mode.
   3495           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3496               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3497             Ty = Context.LongLongTy;
   3498           else if (AllowUnsigned)
   3499             Ty = Context.UnsignedLongLongTy;
   3500           Width = LongLongSize;
   3501         }
   3502       }
   3503 
   3504       // If we still couldn't decide a type, we probably have something that
   3505       // does not fit in a signed long long, but has no U suffix.
   3506       if (Ty.isNull()) {
   3507         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
   3508         Ty = Context.UnsignedLongLongTy;
   3509         Width = Context.getTargetInfo().getLongLongWidth();
   3510       }
   3511 
   3512       if (ResultVal.getBitWidth() != Width)
   3513         ResultVal = ResultVal.trunc(Width);
   3514     }
   3515     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3516   }
   3517 
   3518   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3519   if (Literal.isImaginary)
   3520     Res = new (Context) ImaginaryLiteral(Res,
   3521                                         Context.getComplexType(Res->getType()));
   3522 
   3523   return Res;
   3524 }
   3525 
   3526 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3527   assert(E && "ActOnParenExpr() missing expr");
   3528   return new (Context) ParenExpr(L, R, E);
   3529 }
   3530 
   3531 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3532                                          SourceLocation Loc,
   3533                                          SourceRange ArgRange) {
   3534   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3535   // scalar or vector data type argument..."
   3536   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3537   // type (C99 6.2.5p18) or void.
   3538   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3539     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3540       << T << ArgRange;
   3541     return true;
   3542   }
   3543 
   3544   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3545          "Scalar types should always be complete");
   3546   return false;
   3547 }
   3548 
   3549 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3550                                            SourceLocation Loc,
   3551                                            SourceRange ArgRange,
   3552                                            UnaryExprOrTypeTrait TraitKind) {
   3553   // Invalid types must be hard errors for SFINAE in C++.
   3554   if (S.LangOpts.CPlusPlus)
   3555     return true;
   3556 
   3557   // C99 6.5.3.4p1:
   3558   if (T->isFunctionType() &&
   3559       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3560     // sizeof(function)/alignof(function) is allowed as an extension.
   3561     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3562       << TraitKind << ArgRange;
   3563     return false;
   3564   }
   3565 
   3566   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
   3567   // this is an error (OpenCL v1.1 s6.3.k)
   3568   if (T->isVoidType()) {
   3569     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
   3570                                         : diag::ext_sizeof_alignof_void_type;
   3571     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
   3572     return false;
   3573   }
   3574 
   3575   return true;
   3576 }
   3577 
   3578 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3579                                              SourceLocation Loc,
   3580                                              SourceRange ArgRange,
   3581                                              UnaryExprOrTypeTrait TraitKind) {
   3582   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3583   // runtime doesn't allow it.
   3584   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3585     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3586       << T << (TraitKind == UETT_SizeOf)
   3587       << ArgRange;
   3588     return true;
   3589   }
   3590 
   3591   return false;
   3592 }
   3593 
   3594 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3595 /// pointer type is equal to T) and emit a warning if it is.
   3596 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3597                                      Expr *E) {
   3598   // Don't warn if the operation changed the type.
   3599   if (T != E->getType())
   3600     return;
   3601 
   3602   // Now look for array decays.
   3603   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3604   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3605     return;
   3606 
   3607   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3608                                              << ICE->getType()
   3609                                              << ICE->getSubExpr()->getType();
   3610 }
   3611 
   3612 /// \brief Check the constraints on expression operands to unary type expression
   3613 /// and type traits.
   3614 ///
   3615 /// Completes any types necessary and validates the constraints on the operand
   3616 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3617 /// the expression as it completes the type for that expression through template
   3618 /// instantiation, etc.
   3619 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3620                                             UnaryExprOrTypeTrait ExprKind) {
   3621   QualType ExprTy = E->getType();
   3622   assert(!ExprTy->isReferenceType());
   3623 
   3624   if (ExprKind == UETT_VecStep)
   3625     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3626                                         E->getSourceRange());
   3627 
   3628   // Whitelist some types as extensions
   3629   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3630                                       E->getSourceRange(), ExprKind))
   3631     return false;
   3632 
   3633   // 'alignof' applied to an expression only requires the base element type of
   3634   // the expression to be complete. 'sizeof' requires the expression's type to
   3635   // be complete (and will attempt to complete it if it's an array of unknown
   3636   // bound).
   3637   if (ExprKind == UETT_AlignOf) {
   3638     if (RequireCompleteType(E->getExprLoc(),
   3639                             Context.getBaseElementType(E->getType()),
   3640                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
   3641                             E->getSourceRange()))
   3642       return true;
   3643   } else {
   3644     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
   3645                                 ExprKind, E->getSourceRange()))
   3646       return true;
   3647   }
   3648 
   3649   // Completing the expression's type may have changed it.
   3650   ExprTy = E->getType();
   3651   assert(!ExprTy->isReferenceType());
   3652 
   3653   if (ExprTy->isFunctionType()) {
   3654     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
   3655       << ExprKind << E->getSourceRange();
   3656     return true;
   3657   }
   3658 
   3659   // The operand for sizeof and alignof is in an unevaluated expression context,
   3660   // so side effects could result in unintended consequences.
   3661   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
   3662       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
   3663     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
   3664 
   3665   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3666                                        E->getSourceRange(), ExprKind))
   3667     return true;
   3668 
   3669   if (ExprKind == UETT_SizeOf) {
   3670     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3671       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3672         QualType OType = PVD->getOriginalType();
   3673         QualType Type = PVD->getType();
   3674         if (Type->isPointerType() && OType->isArrayType()) {
   3675           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3676             << Type << OType;
   3677           Diag(PVD->getLocation(), diag::note_declared_at);
   3678         }
   3679       }
   3680     }
   3681 
   3682     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3683     // decays into a pointer and returns an unintended result. This is most
   3684     // likely a typo for "sizeof(array) op x".
   3685     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3686       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3687                                BO->getLHS());
   3688       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3689                                BO->getRHS());
   3690     }
   3691   }
   3692 
   3693   return false;
   3694 }
   3695 
   3696 /// \brief Check the constraints on operands to unary expression and type
   3697 /// traits.
   3698 ///
   3699 /// This will complete any types necessary, and validate the various constraints
   3700 /// on those operands.
   3701 ///
   3702 /// The UsualUnaryConversions() function is *not* called by this routine.
   3703 /// C99 6.3.2.1p[2-4] all state:
   3704 ///   Except when it is the operand of the sizeof operator ...
   3705 ///
   3706 /// C++ [expr.sizeof]p4
   3707 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3708 ///   standard conversions are not applied to the operand of sizeof.
   3709 ///
   3710 /// This policy is followed for all of the unary trait expressions.
   3711 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3712                                             SourceLocation OpLoc,
   3713                                             SourceRange ExprRange,
   3714                                             UnaryExprOrTypeTrait ExprKind) {
   3715   if (ExprType->isDependentType())
   3716     return false;
   3717 
   3718   // C++ [expr.sizeof]p2:
   3719   //     When applied to a reference or a reference type, the result
   3720   //     is the size of the referenced type.
   3721   // C++11 [expr.alignof]p3:
   3722   //     When alignof is applied to a reference type, the result
   3723   //     shall be the alignment of the referenced type.
   3724   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3725     ExprType = Ref->getPointeeType();
   3726 
   3727   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
   3728   //   When alignof or _Alignof is applied to an array type, the result
   3729   //   is the alignment of the element type.
   3730   if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
   3731     ExprType = Context.getBaseElementType(ExprType);
   3732 
   3733   if (ExprKind == UETT_VecStep)
   3734     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3735 
   3736   // Whitelist some types as extensions
   3737   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3738                                       ExprKind))
   3739     return false;
   3740 
   3741   if (RequireCompleteType(OpLoc, ExprType,
   3742                           diag::err_sizeof_alignof_incomplete_type,
   3743                           ExprKind, ExprRange))
   3744     return true;
   3745 
   3746   if (ExprType->isFunctionType()) {
   3747     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
   3748       << ExprKind << ExprRange;
   3749     return true;
   3750   }
   3751 
   3752   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3753                                        ExprKind))
   3754     return true;
   3755 
   3756   return false;
   3757 }
   3758 
   3759 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3760   E = E->IgnoreParens();
   3761 
   3762   // Cannot know anything else if the expression is dependent.
   3763   if (E->isTypeDependent())
   3764     return false;
   3765 
   3766   if (E->getObjectKind() == OK_BitField) {
   3767     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
   3768        << 1 << E->getSourceRange();
   3769     return true;
   3770   }
   3771 
   3772   ValueDecl *D = nullptr;
   3773   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3774     D = DRE->getDecl();
   3775   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3776     D = ME->getMemberDecl();
   3777   }
   3778 
   3779   // If it's a field, require the containing struct to have a
   3780   // complete definition so that we can compute the layout.
   3781   //
   3782   // This can happen in C++11 onwards, either by naming the member
   3783   // in a way that is not transformed into a member access expression
   3784   // (in an unevaluated operand, for instance), or by naming the member
   3785   // in a trailing-return-type.
   3786   //
   3787   // For the record, since __alignof__ on expressions is a GCC
   3788   // extension, GCC seems to permit this but always gives the
   3789   // nonsensical answer 0.
   3790   //
   3791   // We don't really need the layout here --- we could instead just
   3792   // directly check for all the appropriate alignment-lowing
   3793   // attributes --- but that would require duplicating a lot of
   3794   // logic that just isn't worth duplicating for such a marginal
   3795   // use-case.
   3796   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3797     // Fast path this check, since we at least know the record has a
   3798     // definition if we can find a member of it.
   3799     if (!FD->getParent()->isCompleteDefinition()) {
   3800       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3801         << E->getSourceRange();
   3802       return true;
   3803     }
   3804 
   3805     // Otherwise, if it's a field, and the field doesn't have
   3806     // reference type, then it must have a complete type (or be a
   3807     // flexible array member, which we explicitly want to
   3808     // white-list anyway), which makes the following checks trivial.
   3809     if (!FD->getType()->isReferenceType())
   3810       return false;
   3811   }
   3812 
   3813   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3814 }
   3815 
   3816 bool Sema::CheckVecStepExpr(Expr *E) {
   3817   E = E->IgnoreParens();
   3818 
   3819   // Cannot know anything else if the expression is dependent.
   3820   if (E->isTypeDependent())
   3821     return false;
   3822 
   3823   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3824 }
   3825 
   3826 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
   3827                                         CapturingScopeInfo *CSI) {
   3828   assert(T->isVariablyModifiedType());
   3829   assert(CSI != nullptr);
   3830 
   3831   // We're going to walk down into the type and look for VLA expressions.
   3832   do {
   3833     const Type *Ty = T.getTypePtr();
   3834     switch (Ty->getTypeClass()) {
   3835 #define TYPE(Class, Base)
   3836 #define ABSTRACT_TYPE(Class, Base)
   3837 #define NON_CANONICAL_TYPE(Class, Base)
   3838 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   3839 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   3840 #include "clang/AST/TypeNodes.def"
   3841       T = QualType();
   3842       break;
   3843     // These types are never variably-modified.
   3844     case Type::Builtin:
   3845     case Type::Complex:
   3846     case Type::Vector:
   3847     case Type::ExtVector:
   3848     case Type::Record:
   3849     case Type::Enum:
   3850     case Type::Elaborated:
   3851     case Type::TemplateSpecialization:
   3852     case Type::ObjCObject:
   3853     case Type::ObjCInterface:
   3854     case Type::ObjCObjectPointer:
   3855     case Type::Pipe:
   3856       llvm_unreachable("type class is never variably-modified!");
   3857     case Type::Adjusted:
   3858       T = cast<AdjustedType>(Ty)->getOriginalType();
   3859       break;
   3860     case Type::Decayed:
   3861       T = cast<DecayedType>(Ty)->getPointeeType();
   3862       break;
   3863     case Type::Pointer:
   3864       T = cast<PointerType>(Ty)->getPointeeType();
   3865       break;
   3866     case Type::BlockPointer:
   3867       T = cast<BlockPointerType>(Ty)->getPointeeType();
   3868       break;
   3869     case Type::LValueReference:
   3870     case Type::RValueReference:
   3871       T = cast<ReferenceType>(Ty)->getPointeeType();
   3872       break;
   3873     case Type::MemberPointer:
   3874       T = cast<MemberPointerType>(Ty)->getPointeeType();
   3875       break;
   3876     case Type::ConstantArray:
   3877     case Type::IncompleteArray:
   3878       // Losing element qualification here is fine.
   3879       T = cast<ArrayType>(Ty)->getElementType();
   3880       break;
   3881     case Type::VariableArray: {
   3882       // Losing element qualification here is fine.
   3883       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
   3884 
   3885       // Unknown size indication requires no size computation.
   3886       // Otherwise, evaluate and record it.
   3887       if (auto Size = VAT->getSizeExpr()) {
   3888         if (!CSI->isVLATypeCaptured(VAT)) {
   3889           RecordDecl *CapRecord = nullptr;
   3890           if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
   3891             CapRecord = LSI->Lambda;
   3892           } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   3893             CapRecord = CRSI->TheRecordDecl;
   3894           }
   3895           if (CapRecord) {
   3896             auto ExprLoc = Size->getExprLoc();
   3897             auto SizeType = Context.getSizeType();
   3898             // Build the non-static data member.
   3899             auto Field =
   3900                 FieldDecl::Create(Context, CapRecord, ExprLoc, ExprLoc,
   3901                                   /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
   3902                                   /*BW*/ nullptr, /*Mutable*/ false,
   3903                                   /*InitStyle*/ ICIS_NoInit);
   3904             Field->setImplicit(true);
   3905             Field->setAccess(AS_private);
   3906             Field->setCapturedVLAType(VAT);
   3907             CapRecord->addDecl(Field);
   3908 
   3909             CSI->addVLATypeCapture(ExprLoc, SizeType);
   3910           }
   3911         }
   3912       }
   3913       T = VAT->getElementType();
   3914       break;
   3915     }
   3916     case Type::FunctionProto:
   3917     case Type::FunctionNoProto:
   3918       T = cast<FunctionType>(Ty)->getReturnType();
   3919       break;
   3920     case Type::Paren:
   3921     case Type::TypeOf:
   3922     case Type::UnaryTransform:
   3923     case Type::Attributed:
   3924     case Type::SubstTemplateTypeParm:
   3925     case Type::PackExpansion:
   3926       // Keep walking after single level desugaring.
   3927       T = T.getSingleStepDesugaredType(Context);
   3928       break;
   3929     case Type::Typedef:
   3930       T = cast<TypedefType>(Ty)->desugar();
   3931       break;
   3932     case Type::Decltype:
   3933       T = cast<DecltypeType>(Ty)->desugar();
   3934       break;
   3935     case Type::Auto:
   3936       T = cast<AutoType>(Ty)->getDeducedType();
   3937       break;
   3938     case Type::TypeOfExpr:
   3939       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
   3940       break;
   3941     case Type::Atomic:
   3942       T = cast<AtomicType>(Ty)->getValueType();
   3943       break;
   3944     }
   3945   } while (!T.isNull() && T->isVariablyModifiedType());
   3946 }
   3947 
   3948 /// \brief Build a sizeof or alignof expression given a type operand.
   3949 ExprResult
   3950 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3951                                      SourceLocation OpLoc,
   3952                                      UnaryExprOrTypeTrait ExprKind,
   3953                                      SourceRange R) {
   3954   if (!TInfo)
   3955     return ExprError();
   3956 
   3957   QualType T = TInfo->getType();
   3958 
   3959   if (!T->isDependentType() &&
   3960       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3961     return ExprError();
   3962 
   3963   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
   3964     if (auto *TT = T->getAs<TypedefType>()) {
   3965       for (auto I = FunctionScopes.rbegin(),
   3966                 E = std::prev(FunctionScopes.rend());
   3967            I != E; ++I) {
   3968         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
   3969         if (CSI == nullptr)
   3970           break;
   3971         DeclContext *DC = nullptr;
   3972         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
   3973           DC = LSI->CallOperator;
   3974         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
   3975           DC = CRSI->TheCapturedDecl;
   3976         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
   3977           DC = BSI->TheDecl;
   3978         if (DC) {
   3979           if (DC->containsDecl(TT->getDecl()))
   3980             break;
   3981           captureVariablyModifiedType(Context, T, CSI);
   3982         }
   3983       }
   3984     }
   3985   }
   3986 
   3987   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3988   return new (Context) UnaryExprOrTypeTraitExpr(
   3989       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
   3990 }
   3991 
   3992 /// \brief Build a sizeof or alignof expression given an expression
   3993 /// operand.
   3994 ExprResult
   3995 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3996                                      UnaryExprOrTypeTrait ExprKind) {
   3997   ExprResult PE = CheckPlaceholderExpr(E);
   3998   if (PE.isInvalid())
   3999     return ExprError();
   4000 
   4001   E = PE.get();
   4002 
   4003   // Verify that the operand is valid.
   4004   bool isInvalid = false;
   4005   if (E->isTypeDependent()) {
   4006     // Delay type-checking for type-dependent expressions.
   4007   } else if (ExprKind == UETT_AlignOf) {
   4008     isInvalid = CheckAlignOfExpr(*this, E);
   4009   } else if (ExprKind == UETT_VecStep) {
   4010     isInvalid = CheckVecStepExpr(E);
   4011   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
   4012       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
   4013       isInvalid = true;
   4014   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   4015     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
   4016     isInvalid = true;
   4017   } else {
   4018     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   4019   }
   4020 
   4021   if (isInvalid)
   4022     return ExprError();
   4023 
   4024   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   4025     PE = TransformToPotentiallyEvaluated(E);
   4026     if (PE.isInvalid()) return ExprError();
   4027     E = PE.get();
   4028   }
   4029 
   4030   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   4031   return new (Context) UnaryExprOrTypeTraitExpr(
   4032       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
   4033 }
   4034 
   4035 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   4036 /// expr and the same for @c alignof and @c __alignof
   4037 /// Note that the ArgRange is invalid if isType is false.
   4038 ExprResult
   4039 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   4040                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   4041                                     void *TyOrEx, SourceRange ArgRange) {
   4042   // If error parsing type, ignore.
   4043   if (!TyOrEx) return ExprError();
   4044 
   4045   if (IsType) {
   4046     TypeSourceInfo *TInfo;
   4047     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   4048     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   4049   }
   4050 
   4051   Expr *ArgEx = (Expr *)TyOrEx;
   4052   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   4053   return Result;
   4054 }
   4055 
   4056 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   4057                                      bool IsReal) {
   4058   if (V.get()->isTypeDependent())
   4059     return S.Context.DependentTy;
   4060 
   4061   // _Real and _Imag are only l-values for normal l-values.
   4062   if (V.get()->getObjectKind() != OK_Ordinary) {
   4063     V = S.DefaultLvalueConversion(V.get());
   4064     if (V.isInvalid())
   4065       return QualType();
   4066   }
   4067 
   4068   // These operators return the element type of a complex type.
   4069   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   4070     return CT->getElementType();
   4071 
   4072   // Otherwise they pass through real integer and floating point types here.
   4073   if (V.get()->getType()->isArithmeticType())
   4074     return V.get()->getType();
   4075 
   4076   // Test for placeholders.
   4077   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   4078   if (PR.isInvalid()) return QualType();
   4079   if (PR.get() != V.get()) {
   4080     V = PR;
   4081     return CheckRealImagOperand(S, V, Loc, IsReal);
   4082   }
   4083 
   4084   // Reject anything else.
   4085   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   4086     << (IsReal ? "__real" : "__imag");
   4087   return QualType();
   4088 }
   4089 
   4090 
   4091 
   4092 ExprResult
   4093 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   4094                           tok::TokenKind Kind, Expr *Input) {
   4095   UnaryOperatorKind Opc;
   4096   switch (Kind) {
   4097   default: llvm_unreachable("Unknown unary op!");
   4098   case tok::plusplus:   Opc = UO_PostInc; break;
   4099   case tok::minusminus: Opc = UO_PostDec; break;
   4100   }
   4101 
   4102   // Since this might is a postfix expression, get rid of ParenListExprs.
   4103   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   4104   if (Result.isInvalid()) return ExprError();
   4105   Input = Result.get();
   4106 
   4107   return BuildUnaryOp(S, OpLoc, Opc, Input);
   4108 }
   4109 
   4110 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   4111 ///
   4112 /// \return true on error
   4113 static bool checkArithmeticOnObjCPointer(Sema &S,
   4114                                          SourceLocation opLoc,
   4115                                          Expr *op) {
   4116   assert(op->getType()->isObjCObjectPointerType());
   4117   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
   4118       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
   4119     return false;
   4120 
   4121   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   4122     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   4123     << op->getSourceRange();
   4124   return true;
   4125 }
   4126 
   4127 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
   4128   auto *BaseNoParens = Base->IgnoreParens();
   4129   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
   4130     return MSProp->getPropertyDecl()->getType()->isArrayType();
   4131   return isa<MSPropertySubscriptExpr>(BaseNoParens);
   4132 }
   4133 
   4134 ExprResult
   4135 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   4136                               Expr *idx, SourceLocation rbLoc) {
   4137   if (base && !base->getType().isNull() &&
   4138       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
   4139     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
   4140                                     /*Length=*/nullptr, rbLoc);
   4141 
   4142   // Since this might be a postfix expression, get rid of ParenListExprs.
   4143   if (isa<ParenListExpr>(base)) {
   4144     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   4145     if (result.isInvalid()) return ExprError();
   4146     base = result.get();
   4147   }
   4148 
   4149   // Handle any non-overload placeholder types in the base and index
   4150   // expressions.  We can't handle overloads here because the other
   4151   // operand might be an overloadable type, in which case the overload
   4152   // resolution for the operator overload should get the first crack
   4153   // at the overload.
   4154   bool IsMSPropertySubscript = false;
   4155   if (base->getType()->isNonOverloadPlaceholderType()) {
   4156     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
   4157     if (!IsMSPropertySubscript) {
   4158       ExprResult result = CheckPlaceholderExpr(base);
   4159       if (result.isInvalid())
   4160         return ExprError();
   4161       base = result.get();
   4162     }
   4163   }
   4164   if (idx->getType()->isNonOverloadPlaceholderType()) {
   4165     ExprResult result = CheckPlaceholderExpr(idx);
   4166     if (result.isInvalid()) return ExprError();
   4167     idx = result.get();
   4168   }
   4169 
   4170   // Build an unanalyzed expression if either operand is type-dependent.
   4171   if (getLangOpts().CPlusPlus &&
   4172       (base->isTypeDependent() || idx->isTypeDependent())) {
   4173     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
   4174                                             VK_LValue, OK_Ordinary, rbLoc);
   4175   }
   4176 
   4177   // MSDN, property (C++)
   4178   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
   4179   // This attribute can also be used in the declaration of an empty array in a
   4180   // class or structure definition. For example:
   4181   // __declspec(property(get=GetX, put=PutX)) int x[];
   4182   // The above statement indicates that x[] can be used with one or more array
   4183   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
   4184   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
   4185   if (IsMSPropertySubscript) {
   4186     // Build MS property subscript expression if base is MS property reference
   4187     // or MS property subscript.
   4188     return new (Context) MSPropertySubscriptExpr(
   4189         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
   4190   }
   4191 
   4192   // Use C++ overloaded-operator rules if either operand has record
   4193   // type.  The spec says to do this if either type is *overloadable*,
   4194   // but enum types can't declare subscript operators or conversion
   4195   // operators, so there's nothing interesting for overload resolution
   4196   // to do if there aren't any record types involved.
   4197   //
   4198   // ObjC pointers have their own subscripting logic that is not tied
   4199   // to overload resolution and so should not take this path.
   4200   if (getLangOpts().CPlusPlus &&
   4201       (base->getType()->isRecordType() ||
   4202        (!base->getType()->isObjCObjectPointerType() &&
   4203         idx->getType()->isRecordType()))) {
   4204     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   4205   }
   4206 
   4207   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   4208 }
   4209 
   4210 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
   4211                                           Expr *LowerBound,
   4212                                           SourceLocation ColonLoc, Expr *Length,
   4213                                           SourceLocation RBLoc) {
   4214   if (Base->getType()->isPlaceholderType() &&
   4215       !Base->getType()->isSpecificPlaceholderType(
   4216           BuiltinType::OMPArraySection)) {
   4217     ExprResult Result = CheckPlaceholderExpr(Base);
   4218     if (Result.isInvalid())
   4219       return ExprError();
   4220     Base = Result.get();
   4221   }
   4222   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
   4223     ExprResult Result = CheckPlaceholderExpr(LowerBound);
   4224     if (Result.isInvalid())
   4225       return ExprError();
   4226     Result = DefaultLvalueConversion(Result.get());
   4227     if (Result.isInvalid())
   4228       return ExprError();
   4229     LowerBound = Result.get();
   4230   }
   4231   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
   4232     ExprResult Result = CheckPlaceholderExpr(Length);
   4233     if (Result.isInvalid())
   4234       return ExprError();
   4235     Result = DefaultLvalueConversion(Result.get());
   4236     if (Result.isInvalid())
   4237       return ExprError();
   4238     Length = Result.get();
   4239   }
   4240 
   4241   // Build an unanalyzed expression if either operand is type-dependent.
   4242   if (Base->isTypeDependent() ||
   4243       (LowerBound &&
   4244        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
   4245       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
   4246     return new (Context)
   4247         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
   4248                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4249   }
   4250 
   4251   // Perform default conversions.
   4252   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
   4253   QualType ResultTy;
   4254   if (OriginalTy->isAnyPointerType()) {
   4255     ResultTy = OriginalTy->getPointeeType();
   4256   } else if (OriginalTy->isArrayType()) {
   4257     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
   4258   } else {
   4259     return ExprError(
   4260         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
   4261         << Base->getSourceRange());
   4262   }
   4263   // C99 6.5.2.1p1
   4264   if (LowerBound) {
   4265     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
   4266                                                       LowerBound);
   4267     if (Res.isInvalid())
   4268       return ExprError(Diag(LowerBound->getExprLoc(),
   4269                             diag::err_omp_typecheck_section_not_integer)
   4270                        << 0 << LowerBound->getSourceRange());
   4271     LowerBound = Res.get();
   4272 
   4273     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4274         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4275       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
   4276           << 0 << LowerBound->getSourceRange();
   4277   }
   4278   if (Length) {
   4279     auto Res =
   4280         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
   4281     if (Res.isInvalid())
   4282       return ExprError(Diag(Length->getExprLoc(),
   4283                             diag::err_omp_typecheck_section_not_integer)
   4284                        << 1 << Length->getSourceRange());
   4285     Length = Res.get();
   4286 
   4287     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4288         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4289       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
   4290           << 1 << Length->getSourceRange();
   4291   }
   4292 
   4293   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4294   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4295   // type. Note that functions are not objects, and that (in C99 parlance)
   4296   // incomplete types are not object types.
   4297   if (ResultTy->isFunctionType()) {
   4298     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
   4299         << ResultTy << Base->getSourceRange();
   4300     return ExprError();
   4301   }
   4302 
   4303   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
   4304                           diag::err_omp_section_incomplete_type, Base))
   4305     return ExprError();
   4306 
   4307   if (LowerBound) {
   4308     llvm::APSInt LowerBoundValue;
   4309     if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
   4310       // OpenMP 4.0, [2.4 Array Sections]
   4311       // The lower-bound and length must evaluate to non-negative integers.
   4312       if (LowerBoundValue.isNegative()) {
   4313         Diag(LowerBound->getExprLoc(), diag::err_omp_section_negative)
   4314             << 0 << LowerBoundValue.toString(/*Radix=*/10, /*Signed=*/true)
   4315             << LowerBound->getSourceRange();
   4316         return ExprError();
   4317       }
   4318     }
   4319   }
   4320 
   4321   if (Length) {
   4322     llvm::APSInt LengthValue;
   4323     if (Length->EvaluateAsInt(LengthValue, Context)) {
   4324       // OpenMP 4.0, [2.4 Array Sections]
   4325       // The lower-bound and length must evaluate to non-negative integers.
   4326       if (LengthValue.isNegative()) {
   4327         Diag(Length->getExprLoc(), diag::err_omp_section_negative)
   4328             << 1 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
   4329             << Length->getSourceRange();
   4330         return ExprError();
   4331       }
   4332     }
   4333   } else if (ColonLoc.isValid() &&
   4334              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
   4335                                       !OriginalTy->isVariableArrayType()))) {
   4336     // OpenMP 4.0, [2.4 Array Sections]
   4337     // When the size of the array dimension is not known, the length must be
   4338     // specified explicitly.
   4339     Diag(ColonLoc, diag::err_omp_section_length_undefined)
   4340         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
   4341     return ExprError();
   4342   }
   4343 
   4344   if (!Base->getType()->isSpecificPlaceholderType(
   4345           BuiltinType::OMPArraySection)) {
   4346     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
   4347     if (Result.isInvalid())
   4348       return ExprError();
   4349     Base = Result.get();
   4350   }
   4351   return new (Context)
   4352       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
   4353                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4354 }
   4355 
   4356 ExprResult
   4357 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   4358                                       Expr *Idx, SourceLocation RLoc) {
   4359   Expr *LHSExp = Base;
   4360   Expr *RHSExp = Idx;
   4361 
   4362   // Perform default conversions.
   4363   if (!LHSExp->getType()->getAs<VectorType>()) {
   4364     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   4365     if (Result.isInvalid())
   4366       return ExprError();
   4367     LHSExp = Result.get();
   4368   }
   4369   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   4370   if (Result.isInvalid())
   4371     return ExprError();
   4372   RHSExp = Result.get();
   4373 
   4374   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   4375   ExprValueKind VK = VK_LValue;
   4376   ExprObjectKind OK = OK_Ordinary;
   4377 
   4378   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   4379   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   4380   // in the subscript position. As a result, we need to derive the array base
   4381   // and index from the expression types.
   4382   Expr *BaseExpr, *IndexExpr;
   4383   QualType ResultType;
   4384   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   4385     BaseExpr = LHSExp;
   4386     IndexExpr = RHSExp;
   4387     ResultType = Context.DependentTy;
   4388   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   4389     BaseExpr = LHSExp;
   4390     IndexExpr = RHSExp;
   4391     ResultType = PTy->getPointeeType();
   4392   } else if (const ObjCObjectPointerType *PTy =
   4393                LHSTy->getAs<ObjCObjectPointerType>()) {
   4394     BaseExpr = LHSExp;
   4395     IndexExpr = RHSExp;
   4396 
   4397     // Use custom logic if this should be the pseudo-object subscript
   4398     // expression.
   4399     if (!LangOpts.isSubscriptPointerArithmetic())
   4400       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
   4401                                           nullptr);
   4402 
   4403     ResultType = PTy->getPointeeType();
   4404   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   4405      // Handle the uncommon case of "123[Ptr]".
   4406     BaseExpr = RHSExp;
   4407     IndexExpr = LHSExp;
   4408     ResultType = PTy->getPointeeType();
   4409   } else if (const ObjCObjectPointerType *PTy =
   4410                RHSTy->getAs<ObjCObjectPointerType>()) {
   4411      // Handle the uncommon case of "123[Ptr]".
   4412     BaseExpr = RHSExp;
   4413     IndexExpr = LHSExp;
   4414     ResultType = PTy->getPointeeType();
   4415     if (!LangOpts.isSubscriptPointerArithmetic()) {
   4416       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   4417         << ResultType << BaseExpr->getSourceRange();
   4418       return ExprError();
   4419     }
   4420   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   4421     BaseExpr = LHSExp;    // vectors: V[123]
   4422     IndexExpr = RHSExp;
   4423     VK = LHSExp->getValueKind();
   4424     if (VK != VK_RValue)
   4425       OK = OK_VectorComponent;
   4426 
   4427     // FIXME: need to deal with const...
   4428     ResultType = VTy->getElementType();
   4429   } else if (LHSTy->isArrayType()) {
   4430     // If we see an array that wasn't promoted by
   4431     // DefaultFunctionArrayLvalueConversion, it must be an array that
   4432     // wasn't promoted because of the C90 rule that doesn't
   4433     // allow promoting non-lvalue arrays.  Warn, then
   4434     // force the promotion here.
   4435     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4436         LHSExp->getSourceRange();
   4437     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   4438                                CK_ArrayToPointerDecay).get();
   4439     LHSTy = LHSExp->getType();
   4440 
   4441     BaseExpr = LHSExp;
   4442     IndexExpr = RHSExp;
   4443     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   4444   } else if (RHSTy->isArrayType()) {
   4445     // Same as previous, except for 123[f().a] case
   4446     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4447         RHSExp->getSourceRange();
   4448     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   4449                                CK_ArrayToPointerDecay).get();
   4450     RHSTy = RHSExp->getType();
   4451 
   4452     BaseExpr = RHSExp;
   4453     IndexExpr = LHSExp;
   4454     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   4455   } else {
   4456     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   4457        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   4458   }
   4459   // C99 6.5.2.1p1
   4460   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   4461     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   4462                      << IndexExpr->getSourceRange());
   4463 
   4464   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4465        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4466          && !IndexExpr->isTypeDependent())
   4467     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   4468 
   4469   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4470   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4471   // type. Note that Functions are not objects, and that (in C99 parlance)
   4472   // incomplete types are not object types.
   4473   if (ResultType->isFunctionType()) {
   4474     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   4475       << ResultType << BaseExpr->getSourceRange();
   4476     return ExprError();
   4477   }
   4478 
   4479   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   4480     // GNU extension: subscripting on pointer to void
   4481     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   4482       << BaseExpr->getSourceRange();
   4483 
   4484     // C forbids expressions of unqualified void type from being l-values.
   4485     // See IsCForbiddenLValueType.
   4486     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   4487   } else if (!ResultType->isDependentType() &&
   4488       RequireCompleteType(LLoc, ResultType,
   4489                           diag::err_subscript_incomplete_type, BaseExpr))
   4490     return ExprError();
   4491 
   4492   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   4493          !ResultType.isCForbiddenLValueType());
   4494 
   4495   return new (Context)
   4496       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
   4497 }
   4498 
   4499 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   4500                                         FunctionDecl *FD,
   4501                                         ParmVarDecl *Param) {
   4502   if (Param->hasUnparsedDefaultArg()) {
   4503     Diag(CallLoc,
   4504          diag::err_use_of_default_argument_to_function_declared_later) <<
   4505       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   4506     Diag(UnparsedDefaultArgLocs[Param],
   4507          diag::note_default_argument_declared_here);
   4508     return ExprError();
   4509   }
   4510 
   4511   if (Param->hasUninstantiatedDefaultArg()) {
   4512     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   4513 
   4514     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   4515                                                  Param);
   4516 
   4517     // Instantiate the expression.
   4518     MultiLevelTemplateArgumentList MutiLevelArgList
   4519       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
   4520 
   4521     InstantiatingTemplate Inst(*this, CallLoc, Param,
   4522                                MutiLevelArgList.getInnermost());
   4523     if (Inst.isInvalid())
   4524       return ExprError();
   4525 
   4526     ExprResult Result;
   4527     {
   4528       // C++ [dcl.fct.default]p5:
   4529       //   The names in the [default argument] expression are bound, and
   4530       //   the semantic constraints are checked, at the point where the
   4531       //   default argument expression appears.
   4532       ContextRAII SavedContext(*this, FD);
   4533       LocalInstantiationScope Local(*this);
   4534       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   4535     }
   4536     if (Result.isInvalid())
   4537       return ExprError();
   4538 
   4539     // Check the expression as an initializer for the parameter.
   4540     InitializedEntity Entity
   4541       = InitializedEntity::InitializeParameter(Context, Param);
   4542     InitializationKind Kind
   4543       = InitializationKind::CreateCopy(Param->getLocation(),
   4544              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   4545     Expr *ResultE = Result.getAs<Expr>();
   4546 
   4547     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   4548     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   4549     if (Result.isInvalid())
   4550       return ExprError();
   4551 
   4552     Result = ActOnFinishFullExpr(Result.getAs<Expr>(),
   4553                                  Param->getOuterLocStart());
   4554     if (Result.isInvalid())
   4555       return ExprError();
   4556 
   4557     // Remember the instantiated default argument.
   4558     Param->setDefaultArg(Result.getAs<Expr>());
   4559     if (ASTMutationListener *L = getASTMutationListener()) {
   4560       L->DefaultArgumentInstantiated(Param);
   4561     }
   4562   }
   4563 
   4564   // If the default argument expression is not set yet, we are building it now.
   4565   if (!Param->hasInit()) {
   4566     Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD;
   4567     Param->setInvalidDecl();
   4568     return ExprError();
   4569   }
   4570 
   4571   // If the default expression creates temporaries, we need to
   4572   // push them to the current stack of expression temporaries so they'll
   4573   // be properly destroyed.
   4574   // FIXME: We should really be rebuilding the default argument with new
   4575   // bound temporaries; see the comment in PR5810.
   4576   // We don't need to do that with block decls, though, because
   4577   // blocks in default argument expression can never capture anything.
   4578   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
   4579     // Set the "needs cleanups" bit regardless of whether there are
   4580     // any explicit objects.
   4581     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
   4582 
   4583     // Append all the objects to the cleanup list.  Right now, this
   4584     // should always be a no-op, because blocks in default argument
   4585     // expressions should never be able to capture anything.
   4586     assert(!Init->getNumObjects() &&
   4587            "default argument expression has capturing blocks?");
   4588   }
   4589 
   4590   // We already type-checked the argument, so we know it works.
   4591   // Just mark all of the declarations in this potentially-evaluated expression
   4592   // as being "referenced".
   4593   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   4594                                    /*SkipLocalVariables=*/true);
   4595   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
   4596 }
   4597 
   4598 
   4599 Sema::VariadicCallType
   4600 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   4601                           Expr *Fn) {
   4602   if (Proto && Proto->isVariadic()) {
   4603     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   4604       return VariadicConstructor;
   4605     else if (Fn && Fn->getType()->isBlockPointerType())
   4606       return VariadicBlock;
   4607     else if (FDecl) {
   4608       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4609         if (Method->isInstance())
   4610           return VariadicMethod;
   4611     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   4612       return VariadicMethod;
   4613     return VariadicFunction;
   4614   }
   4615   return VariadicDoesNotApply;
   4616 }
   4617 
   4618 namespace {
   4619 class FunctionCallCCC : public FunctionCallFilterCCC {
   4620 public:
   4621   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   4622                   unsigned NumArgs, MemberExpr *ME)
   4623       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
   4624         FunctionName(FuncName) {}
   4625 
   4626   bool ValidateCandidate(const TypoCorrection &candidate) override {
   4627     if (!candidate.getCorrectionSpecifier() ||
   4628         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   4629       return false;
   4630     }
   4631 
   4632     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   4633   }
   4634 
   4635 private:
   4636   const IdentifierInfo *const FunctionName;
   4637 };
   4638 }
   4639 
   4640 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
   4641                                                FunctionDecl *FDecl,
   4642                                                ArrayRef<Expr *> Args) {
   4643   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
   4644   DeclarationName FuncName = FDecl->getDeclName();
   4645   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
   4646 
   4647   if (TypoCorrection Corrected = S.CorrectTypo(
   4648           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
   4649           S.getScopeForContext(S.CurContext), nullptr,
   4650           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
   4651                                              Args.size(), ME),
   4652           Sema::CTK_ErrorRecovery)) {
   4653     if (NamedDecl *ND = Corrected.getFoundDecl()) {
   4654       if (Corrected.isOverloaded()) {
   4655         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
   4656         OverloadCandidateSet::iterator Best;
   4657         for (NamedDecl *CD : Corrected) {
   4658           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   4659             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   4660                                    OCS);
   4661         }
   4662         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
   4663         case OR_Success:
   4664           ND = Best->FoundDecl;
   4665           Corrected.setCorrectionDecl(ND);
   4666           break;
   4667         default:
   4668           break;
   4669         }
   4670       }
   4671       ND = ND->getUnderlyingDecl();
   4672       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
   4673         return Corrected;
   4674     }
   4675   }
   4676   return TypoCorrection();
   4677 }
   4678 
   4679 /// ConvertArgumentsForCall - Converts the arguments specified in
   4680 /// Args/NumArgs to the parameter types of the function FDecl with
   4681 /// function prototype Proto. Call is the call expression itself, and
   4682 /// Fn is the function expression. For a C++ member function, this
   4683 /// routine does not attempt to convert the object argument. Returns
   4684 /// true if the call is ill-formed.
   4685 bool
   4686 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   4687                               FunctionDecl *FDecl,
   4688                               const FunctionProtoType *Proto,
   4689                               ArrayRef<Expr *> Args,
   4690                               SourceLocation RParenLoc,
   4691                               bool IsExecConfig) {
   4692   // Bail out early if calling a builtin with custom typechecking.
   4693   if (FDecl)
   4694     if (unsigned ID = FDecl->getBuiltinID())
   4695       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   4696         return false;
   4697 
   4698   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   4699   // assignment, to the types of the corresponding parameter, ...
   4700   unsigned NumParams = Proto->getNumParams();
   4701   bool Invalid = false;
   4702   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
   4703   unsigned FnKind = Fn->getType()->isBlockPointerType()
   4704                        ? 1 /* block */
   4705                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   4706                                        : 0 /* function */);
   4707 
   4708   // If too few arguments are available (and we don't have default
   4709   // arguments for the remaining parameters), don't make the call.
   4710   if (Args.size() < NumParams) {
   4711     if (Args.size() < MinArgs) {
   4712       TypoCorrection TC;
   4713       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4714         unsigned diag_id =
   4715             MinArgs == NumParams && !Proto->isVariadic()
   4716                 ? diag::err_typecheck_call_too_few_args_suggest
   4717                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
   4718         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
   4719                                         << static_cast<unsigned>(Args.size())
   4720                                         << TC.getCorrectionRange());
   4721       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   4722         Diag(RParenLoc,
   4723              MinArgs == NumParams && !Proto->isVariadic()
   4724                  ? diag::err_typecheck_call_too_few_args_one
   4725                  : diag::err_typecheck_call_too_few_args_at_least_one)
   4726             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
   4727       else
   4728         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
   4729                             ? diag::err_typecheck_call_too_few_args
   4730                             : diag::err_typecheck_call_too_few_args_at_least)
   4731             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
   4732             << Fn->getSourceRange();
   4733 
   4734       // Emit the location of the prototype.
   4735       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4736         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4737           << FDecl;
   4738 
   4739       return true;
   4740     }
   4741     Call->setNumArgs(Context, NumParams);
   4742   }
   4743 
   4744   // If too many are passed and not variadic, error on the extras and drop
   4745   // them.
   4746   if (Args.size() > NumParams) {
   4747     if (!Proto->isVariadic()) {
   4748       TypoCorrection TC;
   4749       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4750         unsigned diag_id =
   4751             MinArgs == NumParams && !Proto->isVariadic()
   4752                 ? diag::err_typecheck_call_too_many_args_suggest
   4753                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
   4754         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
   4755                                         << static_cast<unsigned>(Args.size())
   4756                                         << TC.getCorrectionRange());
   4757       } else if (NumParams == 1 && FDecl &&
   4758                  FDecl->getParamDecl(0)->getDeclName())
   4759         Diag(Args[NumParams]->getLocStart(),
   4760              MinArgs == NumParams
   4761                  ? diag::err_typecheck_call_too_many_args_one
   4762                  : diag::err_typecheck_call_too_many_args_at_most_one)
   4763             << FnKind << FDecl->getParamDecl(0)
   4764             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
   4765             << SourceRange(Args[NumParams]->getLocStart(),
   4766                            Args.back()->getLocEnd());
   4767       else
   4768         Diag(Args[NumParams]->getLocStart(),
   4769              MinArgs == NumParams
   4770                  ? diag::err_typecheck_call_too_many_args
   4771                  : diag::err_typecheck_call_too_many_args_at_most)
   4772             << FnKind << NumParams << static_cast<unsigned>(Args.size())
   4773             << Fn->getSourceRange()
   4774             << SourceRange(Args[NumParams]->getLocStart(),
   4775                            Args.back()->getLocEnd());
   4776 
   4777       // Emit the location of the prototype.
   4778       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4779         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4780           << FDecl;
   4781 
   4782       // This deletes the extra arguments.
   4783       Call->setNumArgs(Context, NumParams);
   4784       return true;
   4785     }
   4786   }
   4787   SmallVector<Expr *, 8> AllArgs;
   4788   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   4789 
   4790   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   4791                                    Proto, 0, Args, AllArgs, CallType);
   4792   if (Invalid)
   4793     return true;
   4794   unsigned TotalNumArgs = AllArgs.size();
   4795   for (unsigned i = 0; i < TotalNumArgs; ++i)
   4796     Call->setArg(i, AllArgs[i]);
   4797 
   4798   return false;
   4799 }
   4800 
   4801 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
   4802                                   const FunctionProtoType *Proto,
   4803                                   unsigned FirstParam, ArrayRef<Expr *> Args,
   4804                                   SmallVectorImpl<Expr *> &AllArgs,
   4805                                   VariadicCallType CallType, bool AllowExplicit,
   4806                                   bool IsListInitialization) {
   4807   unsigned NumParams = Proto->getNumParams();
   4808   bool Invalid = false;
   4809   size_t ArgIx = 0;
   4810   // Continue to check argument types (even if we have too few/many args).
   4811   for (unsigned i = FirstParam; i < NumParams; i++) {
   4812     QualType ProtoArgType = Proto->getParamType(i);
   4813 
   4814     Expr *Arg;
   4815     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
   4816     if (ArgIx < Args.size()) {
   4817       Arg = Args[ArgIx++];
   4818 
   4819       if (RequireCompleteType(Arg->getLocStart(),
   4820                               ProtoArgType,
   4821                               diag::err_call_incomplete_argument, Arg))
   4822         return true;
   4823 
   4824       // Strip the unbridged-cast placeholder expression off, if applicable.
   4825       bool CFAudited = false;
   4826       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   4827           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4828           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4829         Arg = stripARCUnbridgedCast(Arg);
   4830       else if (getLangOpts().ObjCAutoRefCount &&
   4831                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4832                (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4833         CFAudited = true;
   4834 
   4835       InitializedEntity Entity =
   4836           Param ? InitializedEntity::InitializeParameter(Context, Param,
   4837                                                          ProtoArgType)
   4838                 : InitializedEntity::InitializeParameter(
   4839                       Context, ProtoArgType, Proto->isParamConsumed(i));
   4840 
   4841       // Remember that parameter belongs to a CF audited API.
   4842       if (CFAudited)
   4843         Entity.setParameterCFAudited();
   4844 
   4845       ExprResult ArgE = PerformCopyInitialization(
   4846           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
   4847       if (ArgE.isInvalid())
   4848         return true;
   4849 
   4850       Arg = ArgE.getAs<Expr>();
   4851     } else {
   4852       assert(Param && "can't use default arguments without a known callee");
   4853 
   4854       ExprResult ArgExpr =
   4855         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   4856       if (ArgExpr.isInvalid())
   4857         return true;
   4858 
   4859       Arg = ArgExpr.getAs<Expr>();
   4860     }
   4861 
   4862     // Check for array bounds violations for each argument to the call. This
   4863     // check only triggers warnings when the argument isn't a more complex Expr
   4864     // with its own checking, such as a BinaryOperator.
   4865     CheckArrayAccess(Arg);
   4866 
   4867     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   4868     CheckStaticArrayArgument(CallLoc, Param, Arg);
   4869 
   4870     AllArgs.push_back(Arg);
   4871   }
   4872 
   4873   // If this is a variadic call, handle args passed through "...".
   4874   if (CallType != VariadicDoesNotApply) {
   4875     // Assume that extern "C" functions with variadic arguments that
   4876     // return __unknown_anytype aren't *really* variadic.
   4877     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
   4878         FDecl->isExternC()) {
   4879       for (Expr *A : Args.slice(ArgIx)) {
   4880         QualType paramType; // ignored
   4881         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
   4882         Invalid |= arg.isInvalid();
   4883         AllArgs.push_back(arg.get());
   4884       }
   4885 
   4886     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   4887     } else {
   4888       for (Expr *A : Args.slice(ArgIx)) {
   4889         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
   4890         Invalid |= Arg.isInvalid();
   4891         AllArgs.push_back(Arg.get());
   4892       }
   4893     }
   4894 
   4895     // Check for array bounds violations.
   4896     for (Expr *A : Args.slice(ArgIx))
   4897       CheckArrayAccess(A);
   4898   }
   4899   return Invalid;
   4900 }
   4901 
   4902 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   4903   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   4904   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
   4905     TL = DTL.getOriginalLoc();
   4906   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
   4907     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
   4908       << ATL.getLocalSourceRange();
   4909 }
   4910 
   4911 /// CheckStaticArrayArgument - If the given argument corresponds to a static
   4912 /// array parameter, check that it is non-null, and that if it is formed by
   4913 /// array-to-pointer decay, the underlying array is sufficiently large.
   4914 ///
   4915 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
   4916 /// array type derivation, then for each call to the function, the value of the
   4917 /// corresponding actual argument shall provide access to the first element of
   4918 /// an array with at least as many elements as specified by the size expression.
   4919 void
   4920 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
   4921                                ParmVarDecl *Param,
   4922                                const Expr *ArgExpr) {
   4923   // Static array parameters are not supported in C++.
   4924   if (!Param || getLangOpts().CPlusPlus)
   4925     return;
   4926 
   4927   QualType OrigTy = Param->getOriginalType();
   4928 
   4929   const ArrayType *AT = Context.getAsArrayType(OrigTy);
   4930   if (!AT || AT->getSizeModifier() != ArrayType::Static)
   4931     return;
   4932 
   4933   if (ArgExpr->isNullPointerConstant(Context,
   4934                                      Expr::NPC_NeverValueDependent)) {
   4935     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   4936     DiagnoseCalleeStaticArrayParam(*this, Param);
   4937     return;
   4938   }
   4939 
   4940   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
   4941   if (!CAT)
   4942     return;
   4943 
   4944   const ConstantArrayType *ArgCAT =
   4945     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
   4946   if (!ArgCAT)
   4947     return;
   4948 
   4949   if (ArgCAT->getSize().ult(CAT->getSize())) {
   4950     Diag(CallLoc, diag::warn_static_array_too_small)
   4951       << ArgExpr->getSourceRange()
   4952       << (unsigned) ArgCAT->getSize().getZExtValue()
   4953       << (unsigned) CAT->getSize().getZExtValue();
   4954     DiagnoseCalleeStaticArrayParam(*this, Param);
   4955   }
   4956 }
   4957 
   4958 /// Given a function expression of unknown-any type, try to rebuild it
   4959 /// to have a function type.
   4960 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   4961 
   4962 /// Is the given type a placeholder that we need to lower out
   4963 /// immediately during argument processing?
   4964 static bool isPlaceholderToRemoveAsArg(QualType type) {
   4965   // Placeholders are never sugared.
   4966   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
   4967   if (!placeholder) return false;
   4968 
   4969   switch (placeholder->getKind()) {
   4970   // Ignore all the non-placeholder types.
   4971 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   4972   case BuiltinType::Id:
   4973 #include "clang/Basic/OpenCLImageTypes.def"
   4974 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
   4975 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
   4976 #include "clang/AST/BuiltinTypes.def"
   4977     return false;
   4978 
   4979   // We cannot lower out overload sets; they might validly be resolved
   4980   // by the call machinery.
   4981   case BuiltinType::Overload:
   4982     return false;
   4983 
   4984   // Unbridged casts in ARC can be handled in some call positions and
   4985   // should be left in place.
   4986   case BuiltinType::ARCUnbridgedCast:
   4987     return false;
   4988 
   4989   // Pseudo-objects should be converted as soon as possible.
   4990   case BuiltinType::PseudoObject:
   4991     return true;
   4992 
   4993   // The debugger mode could theoretically but currently does not try
   4994   // to resolve unknown-typed arguments based on known parameter types.
   4995   case BuiltinType::UnknownAny:
   4996     return true;
   4997 
   4998   // These are always invalid as call arguments and should be reported.
   4999   case BuiltinType::BoundMember:
   5000   case BuiltinType::BuiltinFn:
   5001   case BuiltinType::OMPArraySection:
   5002     return true;
   5003 
   5004   }
   5005   llvm_unreachable("bad builtin type kind");
   5006 }
   5007 
   5008 /// Check an argument list for placeholders that we won't try to
   5009 /// handle later.
   5010 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
   5011   // Apply this processing to all the arguments at once instead of
   5012   // dying at the first failure.
   5013   bool hasInvalid = false;
   5014   for (size_t i = 0, e = args.size(); i != e; i++) {
   5015     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
   5016       ExprResult result = S.CheckPlaceholderExpr(args[i]);
   5017       if (result.isInvalid()) hasInvalid = true;
   5018       else args[i] = result.get();
   5019     } else if (hasInvalid) {
   5020       (void)S.CorrectDelayedTyposInExpr(args[i]);
   5021     }
   5022   }
   5023   return hasInvalid;
   5024 }
   5025 
   5026 /// If a builtin function has a pointer argument with no explicit address
   5027 /// space, then it should be able to accept a pointer to any address
   5028 /// space as input.  In order to do this, we need to replace the
   5029 /// standard builtin declaration with one that uses the same address space
   5030 /// as the call.
   5031 ///
   5032 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
   5033 ///                  it does not contain any pointer arguments without
   5034 ///                  an address space qualifer.  Otherwise the rewritten
   5035 ///                  FunctionDecl is returned.
   5036 /// TODO: Handle pointer return types.
   5037 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
   5038                                                 const FunctionDecl *FDecl,
   5039                                                 MultiExprArg ArgExprs) {
   5040 
   5041   QualType DeclType = FDecl->getType();
   5042   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
   5043 
   5044   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
   5045       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
   5046     return nullptr;
   5047 
   5048   bool NeedsNewDecl = false;
   5049   unsigned i = 0;
   5050   SmallVector<QualType, 8> OverloadParams;
   5051 
   5052   for (QualType ParamType : FT->param_types()) {
   5053 
   5054     // Convert array arguments to pointer to simplify type lookup.
   5055     Expr *Arg = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]).get();
   5056     QualType ArgType = Arg->getType();
   5057     if (!ParamType->isPointerType() ||
   5058         ParamType.getQualifiers().hasAddressSpace() ||
   5059         !ArgType->isPointerType() ||
   5060         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
   5061       OverloadParams.push_back(ParamType);
   5062       continue;
   5063     }
   5064 
   5065     NeedsNewDecl = true;
   5066     unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
   5067 
   5068     QualType PointeeType = ParamType->getPointeeType();
   5069     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
   5070     OverloadParams.push_back(Context.getPointerType(PointeeType));
   5071   }
   5072 
   5073   if (!NeedsNewDecl)
   5074     return nullptr;
   5075 
   5076   FunctionProtoType::ExtProtoInfo EPI;
   5077   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
   5078                                                 OverloadParams, EPI);
   5079   DeclContext *Parent = Context.getTranslationUnitDecl();
   5080   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
   5081                                                     FDecl->getLocation(),
   5082                                                     FDecl->getLocation(),
   5083                                                     FDecl->getIdentifier(),
   5084                                                     OverloadTy,
   5085                                                     /*TInfo=*/nullptr,
   5086                                                     SC_Extern, false,
   5087                                                     /*hasPrototype=*/true);
   5088   SmallVector<ParmVarDecl*, 16> Params;
   5089   FT = cast<FunctionProtoType>(OverloadTy);
   5090   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   5091     QualType ParamType = FT->getParamType(i);
   5092     ParmVarDecl *Parm =
   5093         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
   5094                                 SourceLocation(), nullptr, ParamType,
   5095                                 /*TInfo=*/nullptr, SC_None, nullptr);
   5096     Parm->setScopeInfo(0, i);
   5097     Params.push_back(Parm);
   5098   }
   5099   OverloadDecl->setParams(Params);
   5100   return OverloadDecl;
   5101 }
   5102 
   5103 static bool isNumberOfArgsValidForCall(Sema &S, const FunctionDecl *Callee,
   5104                                        std::size_t NumArgs) {
   5105   if (S.TooManyArguments(Callee->getNumParams(), NumArgs,
   5106                          /*PartialOverloading=*/false))
   5107     return Callee->isVariadic();
   5108   return Callee->getMinRequiredArguments() <= NumArgs;
   5109 }
   5110 
   5111 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   5112 /// This provides the location of the left/right parens and a list of comma
   5113 /// locations.
   5114 ExprResult
   5115 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   5116                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
   5117                     Expr *ExecConfig, bool IsExecConfig) {
   5118   // Since this might be a postfix expression, get rid of ParenListExprs.
   5119   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   5120   if (Result.isInvalid()) return ExprError();
   5121   Fn = Result.get();
   5122 
   5123   if (checkArgsForPlaceholders(*this, ArgExprs))
   5124     return ExprError();
   5125 
   5126   if (getLangOpts().CPlusPlus) {
   5127     // If this is a pseudo-destructor expression, build the call immediately.
   5128     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   5129       if (!ArgExprs.empty()) {
   5130         // Pseudo-destructor calls should not have any arguments.
   5131         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   5132           << FixItHint::CreateRemoval(
   5133                                     SourceRange(ArgExprs.front()->getLocStart(),
   5134                                                 ArgExprs.back()->getLocEnd()));
   5135       }
   5136 
   5137       return new (Context)
   5138           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
   5139     }
   5140     if (Fn->getType() == Context.PseudoObjectTy) {
   5141       ExprResult result = CheckPlaceholderExpr(Fn);
   5142       if (result.isInvalid()) return ExprError();
   5143       Fn = result.get();
   5144     }
   5145 
   5146     // Determine whether this is a dependent call inside a C++ template,
   5147     // in which case we won't do any semantic analysis now.
   5148     bool Dependent = false;
   5149     if (Fn->isTypeDependent())
   5150       Dependent = true;
   5151     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
   5152       Dependent = true;
   5153 
   5154     if (Dependent) {
   5155       if (ExecConfig) {
   5156         return new (Context) CUDAKernelCallExpr(
   5157             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
   5158             Context.DependentTy, VK_RValue, RParenLoc);
   5159       } else {
   5160         return new (Context) CallExpr(
   5161             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
   5162       }
   5163     }
   5164 
   5165     // Determine whether this is a call to an object (C++ [over.call.object]).
   5166     if (Fn->getType()->isRecordType())
   5167       return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
   5168                                           RParenLoc);
   5169 
   5170     if (Fn->getType() == Context.UnknownAnyTy) {
   5171       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   5172       if (result.isInvalid()) return ExprError();
   5173       Fn = result.get();
   5174     }
   5175 
   5176     if (Fn->getType() == Context.BoundMemberTy) {
   5177       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
   5178     }
   5179   }
   5180 
   5181   // Check for overloaded calls.  This can happen even in C due to extensions.
   5182   if (Fn->getType() == Context.OverloadTy) {
   5183     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
   5184 
   5185     // We aren't supposed to apply this logic for if there's an '&' involved.
   5186     if (!find.HasFormOfMemberPointer) {
   5187       OverloadExpr *ovl = find.Expression;
   5188       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
   5189         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
   5190                                        RParenLoc, ExecConfig,
   5191                                        /*AllowTypoCorrection=*/true,
   5192                                        find.IsAddressOfOperand);
   5193       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
   5194     }
   5195   }
   5196 
   5197   // If we're directly calling a function, get the appropriate declaration.
   5198   if (Fn->getType() == Context.UnknownAnyTy) {
   5199     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   5200     if (result.isInvalid()) return ExprError();
   5201     Fn = result.get();
   5202   }
   5203 
   5204   Expr *NakedFn = Fn->IgnoreParens();
   5205 
   5206   bool CallingNDeclIndirectly = false;
   5207   NamedDecl *NDecl = nullptr;
   5208   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
   5209     if (UnOp->getOpcode() == UO_AddrOf) {
   5210       CallingNDeclIndirectly = true;
   5211       NakedFn = UnOp->getSubExpr()->IgnoreParens();
   5212     }
   5213   }
   5214 
   5215   if (isa<DeclRefExpr>(NakedFn)) {
   5216     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
   5217 
   5218     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
   5219     if (FDecl && FDecl->getBuiltinID()) {
   5220       // Rewrite the function decl for this builtin by replacing parameters
   5221       // with no explicit address space with the address space of the arguments
   5222       // in ArgExprs.
   5223       if ((FDecl = rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
   5224         NDecl = FDecl;
   5225         Fn = DeclRefExpr::Create(Context, FDecl->getQualifierLoc(),
   5226                            SourceLocation(), FDecl, false,
   5227                            SourceLocation(), FDecl->getType(),
   5228                            Fn->getValueKind(), FDecl);
   5229       }
   5230     }
   5231   } else if (isa<MemberExpr>(NakedFn))
   5232     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
   5233 
   5234   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
   5235     if (CallingNDeclIndirectly &&
   5236         !checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
   5237                                            Fn->getLocStart()))
   5238       return ExprError();
   5239 
   5240     // CheckEnableIf assumes that the we're passing in a sane number of args for
   5241     // FD, but that doesn't always hold true here. This is because, in some
   5242     // cases, we'll emit a diag about an ill-formed function call, but then
   5243     // we'll continue on as if the function call wasn't ill-formed. So, if the
   5244     // number of args looks incorrect, don't do enable_if checks; we should've
   5245     // already emitted an error about the bad call.
   5246     if (FD->hasAttr<EnableIfAttr>() &&
   5247         isNumberOfArgsValidForCall(*this, FD, ArgExprs.size())) {
   5248       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
   5249         Diag(Fn->getLocStart(),
   5250              isa<CXXMethodDecl>(FD) ?
   5251                  diag::err_ovl_no_viable_member_function_in_call :
   5252                  diag::err_ovl_no_viable_function_in_call)
   5253           << FD << FD->getSourceRange();
   5254         Diag(FD->getLocation(),
   5255              diag::note_ovl_candidate_disabled_by_enable_if_attr)
   5256             << Attr->getCond()->getSourceRange() << Attr->getMessage();
   5257       }
   5258     }
   5259   }
   5260 
   5261   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
   5262                                ExecConfig, IsExecConfig);
   5263 }
   5264 
   5265 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
   5266 ///
   5267 /// __builtin_astype( value, dst type )
   5268 ///
   5269 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
   5270                                  SourceLocation BuiltinLoc,
   5271                                  SourceLocation RParenLoc) {
   5272   ExprValueKind VK = VK_RValue;
   5273   ExprObjectKind OK = OK_Ordinary;
   5274   QualType DstTy = GetTypeFromParser(ParsedDestTy);
   5275   QualType SrcTy = E->getType();
   5276   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
   5277     return ExprError(Diag(BuiltinLoc,
   5278                           diag::err_invalid_astype_of_different_size)
   5279                      << DstTy
   5280                      << SrcTy
   5281                      << E->getSourceRange());
   5282   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
   5283 }
   5284 
   5285 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
   5286 /// provided arguments.
   5287 ///
   5288 /// __builtin_convertvector( value, dst type )
   5289 ///
   5290 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
   5291                                         SourceLocation BuiltinLoc,
   5292                                         SourceLocation RParenLoc) {
   5293   TypeSourceInfo *TInfo;
   5294   GetTypeFromParser(ParsedDestTy, &TInfo);
   5295   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
   5296 }
   5297 
   5298 /// BuildResolvedCallExpr - Build a call to a resolved expression,
   5299 /// i.e. an expression not of \p OverloadTy.  The expression should
   5300 /// unary-convert to an expression of function-pointer or
   5301 /// block-pointer type.
   5302 ///
   5303 /// \param NDecl the declaration being called, if available
   5304 ExprResult
   5305 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
   5306                             SourceLocation LParenLoc,
   5307                             ArrayRef<Expr *> Args,
   5308                             SourceLocation RParenLoc,
   5309                             Expr *Config, bool IsExecConfig) {
   5310   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
   5311   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
   5312 
   5313   // Functions with 'interrupt' attribute cannot be called directly.
   5314   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
   5315     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
   5316     return ExprError();
   5317   }
   5318 
   5319   // Promote the function operand.
   5320   // We special-case function promotion here because we only allow promoting
   5321   // builtin functions to function pointers in the callee of a call.
   5322   ExprResult Result;
   5323   if (BuiltinID &&
   5324       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
   5325     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
   5326                                CK_BuiltinFnToFnPtr).get();
   5327   } else {
   5328     Result = CallExprUnaryConversions(Fn);
   5329   }
   5330   if (Result.isInvalid())
   5331     return ExprError();
   5332   Fn = Result.get();
   5333 
   5334   // Make the call expr early, before semantic checks.  This guarantees cleanup
   5335   // of arguments and function on error.
   5336   CallExpr *TheCall;
   5337   if (Config)
   5338     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
   5339                                                cast<CallExpr>(Config), Args,
   5340                                                Context.BoolTy, VK_RValue,
   5341                                                RParenLoc);
   5342   else
   5343     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
   5344                                      VK_RValue, RParenLoc);
   5345 
   5346   if (!getLangOpts().CPlusPlus) {
   5347     // C cannot always handle TypoExpr nodes in builtin calls and direct
   5348     // function calls as their argument checking don't necessarily handle
   5349     // dependent types properly, so make sure any TypoExprs have been
   5350     // dealt with.
   5351     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
   5352     if (!Result.isUsable()) return ExprError();
   5353     TheCall = dyn_cast<CallExpr>(Result.get());
   5354     if (!TheCall) return Result;
   5355     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
   5356   }
   5357 
   5358   // Bail out early if calling a builtin with custom typechecking.
   5359   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
   5360     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
   5361 
   5362  retry:
   5363   const FunctionType *FuncT;
   5364   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
   5365     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
   5366     // have type pointer to function".
   5367     FuncT = PT->getPointeeType()->getAs<FunctionType>();
   5368     if (!FuncT)
   5369       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   5370                          << Fn->getType() << Fn->getSourceRange());
   5371   } else if (const BlockPointerType *BPT =
   5372                Fn->getType()->getAs<BlockPointerType>()) {
   5373     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
   5374   } else {
   5375     // Handle calls to expressions of unknown-any type.
   5376     if (Fn->getType() == Context.UnknownAnyTy) {
   5377       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
   5378       if (rewrite.isInvalid()) return ExprError();
   5379       Fn = rewrite.get();
   5380       TheCall->setCallee(Fn);
   5381       goto retry;
   5382     }
   5383 
   5384     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   5385       << Fn->getType() << Fn->getSourceRange());
   5386   }
   5387 
   5388   if (getLangOpts().CUDA) {
   5389     if (Config) {
   5390       // CUDA: Kernel calls must be to global functions
   5391       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
   5392         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
   5393             << FDecl->getName() << Fn->getSourceRange());
   5394 
   5395       // CUDA: Kernel function must have 'void' return type
   5396       if (!FuncT->getReturnType()->isVoidType())
   5397         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
   5398             << Fn->getType() << Fn->getSourceRange());
   5399     } else {
   5400       // CUDA: Calls to global functions must be configured
   5401       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
   5402         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
   5403             << FDecl->getName() << Fn->getSourceRange());
   5404     }
   5405   }
   5406 
   5407   // Check for a valid return type
   5408   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
   5409                           FDecl))
   5410     return ExprError();
   5411 
   5412   // We know the result type of the call, set it.
   5413   TheCall->setType(FuncT->getCallResultType(Context));
   5414   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
   5415 
   5416   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
   5417   if (Proto) {
   5418     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
   5419                                 IsExecConfig))
   5420       return ExprError();
   5421   } else {
   5422     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
   5423 
   5424     if (FDecl) {
   5425       // Check if we have too few/too many template arguments, based
   5426       // on our knowledge of the function definition.
   5427       const FunctionDecl *Def = nullptr;
   5428       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
   5429         Proto = Def->getType()->getAs<FunctionProtoType>();
   5430        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
   5431           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
   5432           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
   5433       }
   5434 
   5435       // If the function we're calling isn't a function prototype, but we have
   5436       // a function prototype from a prior declaratiom, use that prototype.
   5437       if (!FDecl->hasPrototype())
   5438         Proto = FDecl->getType()->getAs<FunctionProtoType>();
   5439     }
   5440 
   5441     // Promote the arguments (C99 6.5.2.2p6).
   5442     for (unsigned i = 0, e = Args.size(); i != e; i++) {
   5443       Expr *Arg = Args[i];
   5444 
   5445       if (Proto && i < Proto->getNumParams()) {
   5446         InitializedEntity Entity = InitializedEntity::InitializeParameter(
   5447             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
   5448         ExprResult ArgE =
   5449             PerformCopyInitialization(Entity, SourceLocation(), Arg);
   5450         if (ArgE.isInvalid())
   5451           return true;
   5452 
   5453         Arg = ArgE.getAs<Expr>();
   5454 
   5455       } else {
   5456         ExprResult ArgE = DefaultArgumentPromotion(Arg);
   5457 
   5458         if (ArgE.isInvalid())
   5459           return true;
   5460 
   5461         Arg = ArgE.getAs<Expr>();
   5462       }
   5463 
   5464       if (RequireCompleteType(Arg->getLocStart(),
   5465                               Arg->getType(),
   5466                               diag::err_call_incomplete_argument, Arg))
   5467         return ExprError();
   5468 
   5469       TheCall->setArg(i, Arg);
   5470     }
   5471   }
   5472 
   5473   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   5474     if (!Method->isStatic())
   5475       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
   5476         << Fn->getSourceRange());
   5477 
   5478   // Check for sentinels
   5479   if (NDecl)
   5480     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
   5481 
   5482   // Do special checking on direct calls to functions.
   5483   if (FDecl) {
   5484     if (CheckFunctionCall(FDecl, TheCall, Proto))
   5485       return ExprError();
   5486 
   5487     if (BuiltinID)
   5488       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
   5489   } else if (NDecl) {
   5490     if (CheckPointerCall(NDecl, TheCall, Proto))
   5491       return ExprError();
   5492   } else {
   5493     if (CheckOtherCall(TheCall, Proto))
   5494       return ExprError();
   5495   }
   5496 
   5497   return MaybeBindToTemporary(TheCall);
   5498 }
   5499 
   5500 ExprResult
   5501 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
   5502                            SourceLocation RParenLoc, Expr *InitExpr) {
   5503   assert(Ty && "ActOnCompoundLiteral(): missing type");
   5504   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
   5505 
   5506   TypeSourceInfo *TInfo;
   5507   QualType literalType = GetTypeFromParser(Ty, &TInfo);
   5508   if (!TInfo)
   5509     TInfo = Context.getTrivialTypeSourceInfo(literalType);
   5510 
   5511   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
   5512 }
   5513 
   5514 ExprResult
   5515 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
   5516                                SourceLocation RParenLoc, Expr *LiteralExpr) {
   5517   QualType literalType = TInfo->getType();
   5518 
   5519   if (literalType->isArrayType()) {
   5520     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
   5521           diag::err_illegal_decl_array_incomplete_type,
   5522           SourceRange(LParenLoc,
   5523                       LiteralExpr->getSourceRange().getEnd())))
   5524       return ExprError();
   5525     if (literalType->isVariableArrayType())
   5526       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
   5527         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
   5528   } else if (!literalType->isDependentType() &&
   5529              RequireCompleteType(LParenLoc, literalType,
   5530                diag::err_typecheck_decl_incomplete_type,
   5531                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
   5532     return ExprError();
   5533 
   5534   InitializedEntity Entity
   5535     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
   5536   InitializationKind Kind
   5537     = InitializationKind::CreateCStyleCast(LParenLoc,
   5538                                            SourceRange(LParenLoc, RParenLoc),
   5539                                            /*InitList=*/true);
   5540   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
   5541   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
   5542                                       &literalType);
   5543   if (Result.isInvalid())
   5544     return ExprError();
   5545   LiteralExpr = Result.get();
   5546 
   5547   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
   5548   if (isFileScope &&
   5549       !LiteralExpr->isTypeDependent() &&
   5550       !LiteralExpr->isValueDependent() &&
   5551       !literalType->isDependentType()) { // 6.5.2.5p3
   5552     if (CheckForConstantInitializer(LiteralExpr, literalType))
   5553       return ExprError();
   5554   }
   5555 
   5556   // In C, compound literals are l-values for some reason.
   5557   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
   5558 
   5559   return MaybeBindToTemporary(
   5560            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
   5561                                              VK, LiteralExpr, isFileScope));
   5562 }
   5563 
   5564 ExprResult
   5565 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
   5566                     SourceLocation RBraceLoc) {
   5567   // Immediately handle non-overload placeholders.  Overloads can be
   5568   // resolved contextually, but everything else here can't.
   5569   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
   5570     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
   5571       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
   5572 
   5573       // Ignore failures; dropping the entire initializer list because
   5574       // of one failure would be terrible for indexing/etc.
   5575       if (result.isInvalid()) continue;
   5576 
   5577       InitArgList[I] = result.get();
   5578     }
   5579   }
   5580 
   5581   // Semantic analysis for initializers is done by ActOnDeclarator() and
   5582   // CheckInitializer() - it requires knowledge of the object being intialized.
   5583 
   5584   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
   5585                                                RBraceLoc);
   5586   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
   5587   return E;
   5588 }
   5589 
   5590 /// Do an explicit extend of the given block pointer if we're in ARC.
   5591 void Sema::maybeExtendBlockObject(ExprResult &E) {
   5592   assert(E.get()->getType()->isBlockPointerType());
   5593   assert(E.get()->isRValue());
   5594 
   5595   // Only do this in an r-value context.
   5596   if (!getLangOpts().ObjCAutoRefCount) return;
   5597 
   5598   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
   5599                                CK_ARCExtendBlockObject, E.get(),
   5600                                /*base path*/ nullptr, VK_RValue);
   5601   Cleanup.setExprNeedsCleanups(true);
   5602 }
   5603 
   5604 /// Prepare a conversion of the given expression to an ObjC object
   5605 /// pointer type.
   5606 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
   5607   QualType type = E.get()->getType();
   5608   if (type->isObjCObjectPointerType()) {
   5609     return CK_BitCast;
   5610   } else if (type->isBlockPointerType()) {
   5611     maybeExtendBlockObject(E);
   5612     return CK_BlockPointerToObjCPointerCast;
   5613   } else {
   5614     assert(type->isPointerType());
   5615     return CK_CPointerToObjCPointerCast;
   5616   }
   5617 }
   5618 
   5619 /// Prepares for a scalar cast, performing all the necessary stages
   5620 /// except the final cast and returning the kind required.
   5621 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
   5622   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
   5623   // Also, callers should have filtered out the invalid cases with
   5624   // pointers.  Everything else should be possible.
   5625 
   5626   QualType SrcTy = Src.get()->getType();
   5627   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
   5628     return CK_NoOp;
   5629 
   5630   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
   5631   case Type::STK_MemberPointer:
   5632     llvm_unreachable("member pointer type in C");
   5633 
   5634   case Type::STK_CPointer:
   5635   case Type::STK_BlockPointer:
   5636   case Type::STK_ObjCObjectPointer:
   5637     switch (DestTy->getScalarTypeKind()) {
   5638     case Type::STK_CPointer: {
   5639       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
   5640       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
   5641       if (SrcAS != DestAS)
   5642         return CK_AddressSpaceConversion;
   5643       return CK_BitCast;
   5644     }
   5645     case Type::STK_BlockPointer:
   5646       return (SrcKind == Type::STK_BlockPointer
   5647                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
   5648     case Type::STK_ObjCObjectPointer:
   5649       if (SrcKind == Type::STK_ObjCObjectPointer)
   5650         return CK_BitCast;
   5651       if (SrcKind == Type::STK_CPointer)
   5652         return CK_CPointerToObjCPointerCast;
   5653       maybeExtendBlockObject(Src);
   5654       return CK_BlockPointerToObjCPointerCast;
   5655     case Type::STK_Bool:
   5656       return CK_PointerToBoolean;
   5657     case Type::STK_Integral:
   5658       return CK_PointerToIntegral;
   5659     case Type::STK_Floating:
   5660     case Type::STK_FloatingComplex:
   5661     case Type::STK_IntegralComplex:
   5662     case Type::STK_MemberPointer:
   5663       llvm_unreachable("illegal cast from pointer");
   5664     }
   5665     llvm_unreachable("Should have returned before this");
   5666 
   5667   case Type::STK_Bool: // casting from bool is like casting from an integer
   5668   case Type::STK_Integral:
   5669     switch (DestTy->getScalarTypeKind()) {
   5670     case Type::STK_CPointer:
   5671     case Type::STK_ObjCObjectPointer:
   5672     case Type::STK_BlockPointer:
   5673       if (Src.get()->isNullPointerConstant(Context,
   5674                                            Expr::NPC_ValueDependentIsNull))
   5675         return CK_NullToPointer;
   5676       return CK_IntegralToPointer;
   5677     case Type::STK_Bool:
   5678       return CK_IntegralToBoolean;
   5679     case Type::STK_Integral:
   5680       return CK_IntegralCast;
   5681     case Type::STK_Floating:
   5682       return CK_IntegralToFloating;
   5683     case Type::STK_IntegralComplex:
   5684       Src = ImpCastExprToType(Src.get(),
   5685                       DestTy->castAs<ComplexType>()->getElementType(),
   5686                       CK_IntegralCast);
   5687       return CK_IntegralRealToComplex;
   5688     case Type::STK_FloatingComplex:
   5689       Src = ImpCastExprToType(Src.get(),
   5690                       DestTy->castAs<ComplexType>()->getElementType(),
   5691                       CK_IntegralToFloating);
   5692       return CK_FloatingRealToComplex;
   5693     case Type::STK_MemberPointer:
   5694       llvm_unreachable("member pointer type in C");
   5695     }
   5696     llvm_unreachable("Should have returned before this");
   5697 
   5698   case Type::STK_Floating:
   5699     switch (DestTy->getScalarTypeKind()) {
   5700     case Type::STK_Floating:
   5701       return CK_FloatingCast;
   5702     case Type::STK_Bool:
   5703       return CK_FloatingToBoolean;
   5704     case Type::STK_Integral:
   5705       return CK_FloatingToIntegral;
   5706     case Type::STK_FloatingComplex:
   5707       Src = ImpCastExprToType(Src.get(),
   5708                               DestTy->castAs<ComplexType>()->getElementType(),
   5709                               CK_FloatingCast);
   5710       return CK_FloatingRealToComplex;
   5711     case Type::STK_IntegralComplex:
   5712       Src = ImpCastExprToType(Src.get(),
   5713                               DestTy->castAs<ComplexType>()->getElementType(),
   5714                               CK_FloatingToIntegral);
   5715       return CK_IntegralRealToComplex;
   5716     case Type::STK_CPointer:
   5717     case Type::STK_ObjCObjectPointer:
   5718     case Type::STK_BlockPointer:
   5719       llvm_unreachable("valid float->pointer cast?");
   5720     case Type::STK_MemberPointer:
   5721       llvm_unreachable("member pointer type in C");
   5722     }
   5723     llvm_unreachable("Should have returned before this");
   5724 
   5725   case Type::STK_FloatingComplex:
   5726     switch (DestTy->getScalarTypeKind()) {
   5727     case Type::STK_FloatingComplex:
   5728       return CK_FloatingComplexCast;
   5729     case Type::STK_IntegralComplex:
   5730       return CK_FloatingComplexToIntegralComplex;
   5731     case Type::STK_Floating: {
   5732       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5733       if (Context.hasSameType(ET, DestTy))
   5734         return CK_FloatingComplexToReal;
   5735       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
   5736       return CK_FloatingCast;
   5737     }
   5738     case Type::STK_Bool:
   5739       return CK_FloatingComplexToBoolean;
   5740     case Type::STK_Integral:
   5741       Src = ImpCastExprToType(Src.get(),
   5742                               SrcTy->castAs<ComplexType>()->getElementType(),
   5743                               CK_FloatingComplexToReal);
   5744       return CK_FloatingToIntegral;
   5745     case Type::STK_CPointer:
   5746     case Type::STK_ObjCObjectPointer:
   5747     case Type::STK_BlockPointer:
   5748       llvm_unreachable("valid complex float->pointer cast?");
   5749     case Type::STK_MemberPointer:
   5750       llvm_unreachable("member pointer type in C");
   5751     }
   5752     llvm_unreachable("Should have returned before this");
   5753 
   5754   case Type::STK_IntegralComplex:
   5755     switch (DestTy->getScalarTypeKind()) {
   5756     case Type::STK_FloatingComplex:
   5757       return CK_IntegralComplexToFloatingComplex;
   5758     case Type::STK_IntegralComplex:
   5759       return CK_IntegralComplexCast;
   5760     case Type::STK_Integral: {
   5761       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5762       if (Context.hasSameType(ET, DestTy))
   5763         return CK_IntegralComplexToReal;
   5764       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
   5765       return CK_IntegralCast;
   5766     }
   5767     case Type::STK_Bool:
   5768       return CK_IntegralComplexToBoolean;
   5769     case Type::STK_Floating:
   5770       Src = ImpCastExprToType(Src.get(),
   5771                               SrcTy->castAs<ComplexType>()->getElementType(),
   5772                               CK_IntegralComplexToReal);
   5773       return CK_IntegralToFloating;
   5774     case Type::STK_CPointer:
   5775     case Type::STK_ObjCObjectPointer:
   5776     case Type::STK_BlockPointer:
   5777       llvm_unreachable("valid complex int->pointer cast?");
   5778     case Type::STK_MemberPointer:
   5779       llvm_unreachable("member pointer type in C");
   5780     }
   5781     llvm_unreachable("Should have returned before this");
   5782   }
   5783 
   5784   llvm_unreachable("Unhandled scalar cast");
   5785 }
   5786 
   5787 static bool breakDownVectorType(QualType type, uint64_t &len,
   5788                                 QualType &eltType) {
   5789   // Vectors are simple.
   5790   if (const VectorType *vecType = type->getAs<VectorType>()) {
   5791     len = vecType->getNumElements();
   5792     eltType = vecType->getElementType();
   5793     assert(eltType->isScalarType());
   5794     return true;
   5795   }
   5796 
   5797   // We allow lax conversion to and from non-vector types, but only if
   5798   // they're real types (i.e. non-complex, non-pointer scalar types).
   5799   if (!type->isRealType()) return false;
   5800 
   5801   len = 1;
   5802   eltType = type;
   5803   return true;
   5804 }
   5805 
   5806 /// Are the two types lax-compatible vector types?  That is, given
   5807 /// that one of them is a vector, do they have equal storage sizes,
   5808 /// where the storage size is the number of elements times the element
   5809 /// size?
   5810 ///
   5811 /// This will also return false if either of the types is neither a
   5812 /// vector nor a real type.
   5813 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
   5814   assert(destTy->isVectorType() || srcTy->isVectorType());
   5815 
   5816   // Disallow lax conversions between scalars and ExtVectors (these
   5817   // conversions are allowed for other vector types because common headers
   5818   // depend on them).  Most scalar OP ExtVector cases are handled by the
   5819   // splat path anyway, which does what we want (convert, not bitcast).
   5820   // What this rules out for ExtVectors is crazy things like char4*float.
   5821   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
   5822   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
   5823 
   5824   uint64_t srcLen, destLen;
   5825   QualType srcEltTy, destEltTy;
   5826   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
   5827   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
   5828 
   5829   // ASTContext::getTypeSize will return the size rounded up to a
   5830   // power of 2, so instead of using that, we need to use the raw
   5831   // element size multiplied by the element count.
   5832   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
   5833   uint64_t destEltSize = Context.getTypeSize(destEltTy);
   5834 
   5835   return (srcLen * srcEltSize == destLen * destEltSize);
   5836 }
   5837 
   5838 /// Is this a legal conversion between two types, one of which is
   5839 /// known to be a vector type?
   5840 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
   5841   assert(destTy->isVectorType() || srcTy->isVectorType());
   5842 
   5843   if (!Context.getLangOpts().LaxVectorConversions)
   5844     return false;
   5845   return areLaxCompatibleVectorTypes(srcTy, destTy);
   5846 }
   5847 
   5848 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
   5849                            CastKind &Kind) {
   5850   assert(VectorTy->isVectorType() && "Not a vector type!");
   5851 
   5852   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
   5853     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
   5854       return Diag(R.getBegin(),
   5855                   Ty->isVectorType() ?
   5856                   diag::err_invalid_conversion_between_vectors :
   5857                   diag::err_invalid_conversion_between_vector_and_integer)
   5858         << VectorTy << Ty << R;
   5859   } else
   5860     return Diag(R.getBegin(),
   5861                 diag::err_invalid_conversion_between_vector_and_scalar)
   5862       << VectorTy << Ty << R;
   5863 
   5864   Kind = CK_BitCast;
   5865   return false;
   5866 }
   5867 
   5868 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
   5869   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
   5870 
   5871   if (DestElemTy == SplattedExpr->getType())
   5872     return SplattedExpr;
   5873 
   5874   assert(DestElemTy->isFloatingType() ||
   5875          DestElemTy->isIntegralOrEnumerationType());
   5876 
   5877   CastKind CK;
   5878   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
   5879     // OpenCL requires that we convert `true` boolean expressions to -1, but
   5880     // only when splatting vectors.
   5881     if (DestElemTy->isFloatingType()) {
   5882       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
   5883       // in two steps: boolean to signed integral, then to floating.
   5884       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
   5885                                                  CK_BooleanToSignedIntegral);
   5886       SplattedExpr = CastExprRes.get();
   5887       CK = CK_IntegralToFloating;
   5888     } else {
   5889       CK = CK_BooleanToSignedIntegral;
   5890     }
   5891   } else {
   5892     ExprResult CastExprRes = SplattedExpr;
   5893     CK = PrepareScalarCast(CastExprRes, DestElemTy);
   5894     if (CastExprRes.isInvalid())
   5895       return ExprError();
   5896     SplattedExpr = CastExprRes.get();
   5897   }
   5898   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
   5899 }
   5900 
   5901 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
   5902                                     Expr *CastExpr, CastKind &Kind) {
   5903   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
   5904 
   5905   QualType SrcTy = CastExpr->getType();
   5906 
   5907   // If SrcTy is a VectorType, the total size must match to explicitly cast to
   5908   // an ExtVectorType.
   5909   // In OpenCL, casts between vectors of different types are not allowed.
   5910   // (See OpenCL 6.2).
   5911   if (SrcTy->isVectorType()) {
   5912     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy)
   5913         || (getLangOpts().OpenCL &&
   5914             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
   5915       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
   5916         << DestTy << SrcTy << R;
   5917       return ExprError();
   5918     }
   5919     Kind = CK_BitCast;
   5920     return CastExpr;
   5921   }
   5922 
   5923   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
   5924   // conversion will take place first from scalar to elt type, and then
   5925   // splat from elt type to vector.
   5926   if (SrcTy->isPointerType())
   5927     return Diag(R.getBegin(),
   5928                 diag::err_invalid_conversion_between_vector_and_scalar)
   5929       << DestTy << SrcTy << R;
   5930 
   5931   Kind = CK_VectorSplat;
   5932   return prepareVectorSplat(DestTy, CastExpr);
   5933 }
   5934 
   5935 ExprResult
   5936 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
   5937                     Declarator &D, ParsedType &Ty,
   5938                     SourceLocation RParenLoc, Expr *CastExpr) {
   5939   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
   5940          "ActOnCastExpr(): missing type or expr");
   5941 
   5942   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
   5943   if (D.isInvalidType())
   5944     return ExprError();
   5945 
   5946   if (getLangOpts().CPlusPlus) {
   5947     // Check that there are no default arguments (C++ only).
   5948     CheckExtraCXXDefaultArguments(D);
   5949   } else {
   5950     // Make sure any TypoExprs have been dealt with.
   5951     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
   5952     if (!Res.isUsable())
   5953       return ExprError();
   5954     CastExpr = Res.get();
   5955   }
   5956 
   5957   checkUnusedDeclAttributes(D);
   5958 
   5959   QualType castType = castTInfo->getType();
   5960   Ty = CreateParsedType(castType, castTInfo);
   5961 
   5962   bool isVectorLiteral = false;
   5963 
   5964   // Check for an altivec or OpenCL literal,
   5965   // i.e. all the elements are integer constants.
   5966   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
   5967   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
   5968   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
   5969        && castType->isVectorType() && (PE || PLE)) {
   5970     if (PLE && PLE->getNumExprs() == 0) {
   5971       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
   5972       return ExprError();
   5973     }
   5974     if (PE || PLE->getNumExprs() == 1) {
   5975       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
   5976       if (!E->getType()->isVectorType())
   5977         isVectorLiteral = true;
   5978     }
   5979     else
   5980       isVectorLiteral = true;
   5981   }
   5982 
   5983   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
   5984   // then handle it as such.
   5985   if (isVectorLiteral)
   5986     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
   5987 
   5988   // If the Expr being casted is a ParenListExpr, handle it specially.
   5989   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
   5990   // sequence of BinOp comma operators.
   5991   if (isa<ParenListExpr>(CastExpr)) {
   5992     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
   5993     if (Result.isInvalid()) return ExprError();
   5994     CastExpr = Result.get();
   5995   }
   5996 
   5997   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
   5998       !getSourceManager().isInSystemMacro(LParenLoc))
   5999     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
   6000 
   6001   CheckTollFreeBridgeCast(castType, CastExpr);
   6002 
   6003   CheckObjCBridgeRelatedCast(castType, CastExpr);
   6004 
   6005   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
   6006 }
   6007 
   6008 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
   6009                                     SourceLocation RParenLoc, Expr *E,
   6010                                     TypeSourceInfo *TInfo) {
   6011   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
   6012          "Expected paren or paren list expression");
   6013 
   6014   Expr **exprs;
   6015   unsigned numExprs;
   6016   Expr *subExpr;
   6017   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
   6018   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
   6019     LiteralLParenLoc = PE->getLParenLoc();
   6020     LiteralRParenLoc = PE->getRParenLoc();
   6021     exprs = PE->getExprs();
   6022     numExprs = PE->getNumExprs();
   6023   } else { // isa<ParenExpr> by assertion at function entrance
   6024     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
   6025     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
   6026     subExpr = cast<ParenExpr>(E)->getSubExpr();
   6027     exprs = &subExpr;
   6028     numExprs = 1;
   6029   }
   6030 
   6031   QualType Ty = TInfo->getType();
   6032   assert(Ty->isVectorType() && "Expected vector type");
   6033 
   6034   SmallVector<Expr *, 8> initExprs;
   6035   const VectorType *VTy = Ty->getAs<VectorType>();
   6036   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
   6037 
   6038   // '(...)' form of vector initialization in AltiVec: the number of
   6039   // initializers must be one or must match the size of the vector.
   6040   // If a single value is specified in the initializer then it will be
   6041   // replicated to all the components of the vector
   6042   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
   6043     // The number of initializers must be one or must match the size of the
   6044     // vector. If a single value is specified in the initializer then it will
   6045     // be replicated to all the components of the vector
   6046     if (numExprs == 1) {
   6047       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   6048       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   6049       if (Literal.isInvalid())
   6050         return ExprError();
   6051       Literal = ImpCastExprToType(Literal.get(), ElemTy,
   6052                                   PrepareScalarCast(Literal, ElemTy));
   6053       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   6054     }
   6055     else if (numExprs < numElems) {
   6056       Diag(E->getExprLoc(),
   6057            diag::err_incorrect_number_of_vector_initializers);
   6058       return ExprError();
   6059     }
   6060     else
   6061       initExprs.append(exprs, exprs + numExprs);
   6062   }
   6063   else {
   6064     // For OpenCL, when the number of initializers is a single value,
   6065     // it will be replicated to all components of the vector.
   6066     if (getLangOpts().OpenCL &&
   6067         VTy->getVectorKind() == VectorType::GenericVector &&
   6068         numExprs == 1) {
   6069         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   6070         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   6071         if (Literal.isInvalid())
   6072           return ExprError();
   6073         Literal = ImpCastExprToType(Literal.get(), ElemTy,
   6074                                     PrepareScalarCast(Literal, ElemTy));
   6075         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   6076     }
   6077 
   6078     initExprs.append(exprs, exprs + numExprs);
   6079   }
   6080   // FIXME: This means that pretty-printing the final AST will produce curly
   6081   // braces instead of the original commas.
   6082   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
   6083                                                    initExprs, LiteralRParenLoc);
   6084   initE->setType(Ty);
   6085   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
   6086 }
   6087 
   6088 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
   6089 /// the ParenListExpr into a sequence of comma binary operators.
   6090 ExprResult
   6091 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
   6092   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
   6093   if (!E)
   6094     return OrigExpr;
   6095 
   6096   ExprResult Result(E->getExpr(0));
   6097 
   6098   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
   6099     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
   6100                         E->getExpr(i));
   6101 
   6102   if (Result.isInvalid()) return ExprError();
   6103 
   6104   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
   6105 }
   6106 
   6107 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
   6108                                     SourceLocation R,
   6109                                     MultiExprArg Val) {
   6110   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
   6111   return expr;
   6112 }
   6113 
   6114 /// \brief Emit a specialized diagnostic when one expression is a null pointer
   6115 /// constant and the other is not a pointer.  Returns true if a diagnostic is
   6116 /// emitted.
   6117 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
   6118                                       SourceLocation QuestionLoc) {
   6119   Expr *NullExpr = LHSExpr;
   6120   Expr *NonPointerExpr = RHSExpr;
   6121   Expr::NullPointerConstantKind NullKind =
   6122       NullExpr->isNullPointerConstant(Context,
   6123                                       Expr::NPC_ValueDependentIsNotNull);
   6124 
   6125   if (NullKind == Expr::NPCK_NotNull) {
   6126     NullExpr = RHSExpr;
   6127     NonPointerExpr = LHSExpr;
   6128     NullKind =
   6129         NullExpr->isNullPointerConstant(Context,
   6130                                         Expr::NPC_ValueDependentIsNotNull);
   6131   }
   6132 
   6133   if (NullKind == Expr::NPCK_NotNull)
   6134     return false;
   6135 
   6136   if (NullKind == Expr::NPCK_ZeroExpression)
   6137     return false;
   6138 
   6139   if (NullKind == Expr::NPCK_ZeroLiteral) {
   6140     // In this case, check to make sure that we got here from a "NULL"
   6141     // string in the source code.
   6142     NullExpr = NullExpr->IgnoreParenImpCasts();
   6143     SourceLocation loc = NullExpr->getExprLoc();
   6144     if (!findMacroSpelling(loc, "NULL"))
   6145       return false;
   6146   }
   6147 
   6148   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
   6149   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
   6150       << NonPointerExpr->getType() << DiagType
   6151       << NonPointerExpr->getSourceRange();
   6152   return true;
   6153 }
   6154 
   6155 /// \brief Return false if the condition expression is valid, true otherwise.
   6156 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
   6157   QualType CondTy = Cond->getType();
   6158 
   6159   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
   6160   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
   6161     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
   6162       << CondTy << Cond->getSourceRange();
   6163     return true;
   6164   }
   6165 
   6166   // C99 6.5.15p2
   6167   if (CondTy->isScalarType()) return false;
   6168 
   6169   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
   6170     << CondTy << Cond->getSourceRange();
   6171   return true;
   6172 }
   6173 
   6174 /// \brief Handle when one or both operands are void type.
   6175 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
   6176                                          ExprResult &RHS) {
   6177     Expr *LHSExpr = LHS.get();
   6178     Expr *RHSExpr = RHS.get();
   6179 
   6180     if (!LHSExpr->getType()->isVoidType())
   6181       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   6182         << RHSExpr->getSourceRange();
   6183     if (!RHSExpr->getType()->isVoidType())
   6184       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   6185         << LHSExpr->getSourceRange();
   6186     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
   6187     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
   6188     return S.Context.VoidTy;
   6189 }
   6190 
   6191 /// \brief Return false if the NullExpr can be promoted to PointerTy,
   6192 /// true otherwise.
   6193 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
   6194                                         QualType PointerTy) {
   6195   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
   6196       !NullExpr.get()->isNullPointerConstant(S.Context,
   6197                                             Expr::NPC_ValueDependentIsNull))
   6198     return true;
   6199 
   6200   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
   6201   return false;
   6202 }
   6203 
   6204 /// \brief Checks compatibility between two pointers and return the resulting
   6205 /// type.
   6206 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
   6207                                                      ExprResult &RHS,
   6208                                                      SourceLocation Loc) {
   6209   QualType LHSTy = LHS.get()->getType();
   6210   QualType RHSTy = RHS.get()->getType();
   6211 
   6212   if (S.Context.hasSameType(LHSTy, RHSTy)) {
   6213     // Two identical pointers types are always compatible.
   6214     return LHSTy;
   6215   }
   6216 
   6217   QualType lhptee, rhptee;
   6218 
   6219   // Get the pointee types.
   6220   bool IsBlockPointer = false;
   6221   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
   6222     lhptee = LHSBTy->getPointeeType();
   6223     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
   6224     IsBlockPointer = true;
   6225   } else {
   6226     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
   6227     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
   6228   }
   6229 
   6230   // C99 6.5.15p6: If both operands are pointers to compatible types or to
   6231   // differently qualified versions of compatible types, the result type is
   6232   // a pointer to an appropriately qualified version of the composite
   6233   // type.
   6234 
   6235   // Only CVR-qualifiers exist in the standard, and the differently-qualified
   6236   // clause doesn't make sense for our extensions. E.g. address space 2 should
   6237   // be incompatible with address space 3: they may live on different devices or
   6238   // anything.
   6239   Qualifiers lhQual = lhptee.getQualifiers();
   6240   Qualifiers rhQual = rhptee.getQualifiers();
   6241 
   6242   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
   6243   lhQual.removeCVRQualifiers();
   6244   rhQual.removeCVRQualifiers();
   6245 
   6246   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
   6247   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
   6248 
   6249   // For OpenCL:
   6250   // 1. If LHS and RHS types match exactly and:
   6251   //  (a) AS match => use standard C rules, no bitcast or addrspacecast
   6252   //  (b) AS overlap => generate addrspacecast
   6253   //  (c) AS don't overlap => give an error
   6254   // 2. if LHS and RHS types don't match:
   6255   //  (a) AS match => use standard C rules, generate bitcast
   6256   //  (b) AS overlap => generate addrspacecast instead of bitcast
   6257   //  (c) AS don't overlap => give an error
   6258 
   6259   // For OpenCL, non-null composite type is returned only for cases 1a and 1b.
   6260   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
   6261 
   6262   // OpenCL cases 1c, 2a, 2b, and 2c.
   6263   if (CompositeTy.isNull()) {
   6264     // In this situation, we assume void* type. No especially good
   6265     // reason, but this is what gcc does, and we do have to pick
   6266     // to get a consistent AST.
   6267     QualType incompatTy;
   6268     if (S.getLangOpts().OpenCL) {
   6269       // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
   6270       // spaces is disallowed.
   6271       unsigned ResultAddrSpace;
   6272       if (lhQual.isAddressSpaceSupersetOf(rhQual)) {
   6273         // Cases 2a and 2b.
   6274         ResultAddrSpace = lhQual.getAddressSpace();
   6275       } else if (rhQual.isAddressSpaceSupersetOf(lhQual)) {
   6276         // Cases 2a and 2b.
   6277         ResultAddrSpace = rhQual.getAddressSpace();
   6278       } else {
   6279         // Cases 1c and 2c.
   6280         S.Diag(Loc,
   6281                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
   6282             << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
   6283             << RHS.get()->getSourceRange();
   6284         return QualType();
   6285       }
   6286 
   6287       // Continue handling cases 2a and 2b.
   6288       incompatTy = S.Context.getPointerType(
   6289           S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
   6290       LHS = S.ImpCastExprToType(LHS.get(), incompatTy,
   6291                                 (lhQual.getAddressSpace() != ResultAddrSpace)
   6292                                     ? CK_AddressSpaceConversion /* 2b */
   6293                                     : CK_BitCast /* 2a */);
   6294       RHS = S.ImpCastExprToType(RHS.get(), incompatTy,
   6295                                 (rhQual.getAddressSpace() != ResultAddrSpace)
   6296                                     ? CK_AddressSpaceConversion /* 2b */
   6297                                     : CK_BitCast /* 2a */);
   6298     } else {
   6299       S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
   6300           << LHSTy << RHSTy << LHS.get()->getSourceRange()
   6301           << RHS.get()->getSourceRange();
   6302       incompatTy = S.Context.getPointerType(S.Context.VoidTy);
   6303       LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   6304       RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   6305     }
   6306     return incompatTy;
   6307   }
   6308 
   6309   // The pointer types are compatible.
   6310   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
   6311   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
   6312   if (IsBlockPointer)
   6313     ResultTy = S.Context.getBlockPointerType(ResultTy);
   6314   else {
   6315     // Cases 1a and 1b for OpenCL.
   6316     auto ResultAddrSpace = ResultTy.getQualifiers().getAddressSpace();
   6317     LHSCastKind = lhQual.getAddressSpace() == ResultAddrSpace
   6318                       ? CK_BitCast /* 1a */
   6319                       : CK_AddressSpaceConversion /* 1b */;
   6320     RHSCastKind = rhQual.getAddressSpace() == ResultAddrSpace
   6321                       ? CK_BitCast /* 1a */
   6322                       : CK_AddressSpaceConversion /* 1b */;
   6323     ResultTy = S.Context.getPointerType(ResultTy);
   6324   }
   6325 
   6326   // For case 1a of OpenCL, S.ImpCastExprToType will not insert bitcast
   6327   // if the target type does not change.
   6328   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
   6329   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
   6330   return ResultTy;
   6331 }
   6332 
   6333 /// \brief Return the resulting type when the operands are both block pointers.
   6334 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
   6335                                                           ExprResult &LHS,
   6336                                                           ExprResult &RHS,
   6337                                                           SourceLocation Loc) {
   6338   QualType LHSTy = LHS.get()->getType();
   6339   QualType RHSTy = RHS.get()->getType();
   6340 
   6341   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
   6342     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
   6343       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
   6344       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   6345       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   6346       return destType;
   6347     }
   6348     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
   6349       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   6350       << RHS.get()->getSourceRange();
   6351     return QualType();
   6352   }
   6353 
   6354   // We have 2 block pointer types.
   6355   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   6356 }
   6357 
   6358 /// \brief Return the resulting type when the operands are both pointers.
   6359 static QualType
   6360 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
   6361                                             ExprResult &RHS,
   6362                                             SourceLocation Loc) {
   6363   // get the pointer types
   6364   QualType LHSTy = LHS.get()->getType();
   6365   QualType RHSTy = RHS.get()->getType();
   6366 
   6367   // get the "pointed to" types
   6368   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   6369   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   6370 
   6371   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
   6372   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
   6373     // Figure out necessary qualifiers (C99 6.5.15p6)
   6374     QualType destPointee
   6375       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   6376     QualType destType = S.Context.getPointerType(destPointee);
   6377     // Add qualifiers if necessary.
   6378     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   6379     // Promote to void*.
   6380     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   6381     return destType;
   6382   }
   6383   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
   6384     QualType destPointee
   6385       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   6386     QualType destType = S.Context.getPointerType(destPointee);
   6387     // Add qualifiers if necessary.
   6388     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   6389     // Promote to void*.
   6390     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   6391     return destType;
   6392   }
   6393 
   6394   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   6395 }
   6396 
   6397 /// \brief Return false if the first expression is not an integer and the second
   6398 /// expression is not a pointer, true otherwise.
   6399 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
   6400                                         Expr* PointerExpr, SourceLocation Loc,
   6401                                         bool IsIntFirstExpr) {
   6402   if (!PointerExpr->getType()->isPointerType() ||
   6403       !Int.get()->getType()->isIntegerType())
   6404     return false;
   6405 
   6406   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
   6407   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
   6408 
   6409   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
   6410     << Expr1->getType() << Expr2->getType()
   6411     << Expr1->getSourceRange() << Expr2->getSourceRange();
   6412   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
   6413                             CK_IntegralToPointer);
   6414   return true;
   6415 }
   6416 
   6417 /// \brief Simple conversion between integer and floating point types.
   6418 ///
   6419 /// Used when handling the OpenCL conditional operator where the
   6420 /// condition is a vector while the other operands are scalar.
   6421 ///
   6422 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
   6423 /// types are either integer or floating type. Between the two
   6424 /// operands, the type with the higher rank is defined as the "result
   6425 /// type". The other operand needs to be promoted to the same type. No
   6426 /// other type promotion is allowed. We cannot use
   6427 /// UsualArithmeticConversions() for this purpose, since it always
   6428 /// promotes promotable types.
   6429 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
   6430                                             ExprResult &RHS,
   6431                                             SourceLocation QuestionLoc) {
   6432   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
   6433   if (LHS.isInvalid())
   6434     return QualType();
   6435   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
   6436   if (RHS.isInvalid())
   6437     return QualType();
   6438 
   6439   // For conversion purposes, we ignore any qualifiers.
   6440   // For example, "const float" and "float" are equivalent.
   6441   QualType LHSType =
   6442     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   6443   QualType RHSType =
   6444     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   6445 
   6446   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
   6447     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
   6448       << LHSType << LHS.get()->getSourceRange();
   6449     return QualType();
   6450   }
   6451 
   6452   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
   6453     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
   6454       << RHSType << RHS.get()->getSourceRange();
   6455     return QualType();
   6456   }
   6457 
   6458   // If both types are identical, no conversion is needed.
   6459   if (LHSType == RHSType)
   6460     return LHSType;
   6461 
   6462   // Now handle "real" floating types (i.e. float, double, long double).
   6463   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   6464     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
   6465                                  /*IsCompAssign = */ false);
   6466 
   6467   // Finally, we have two differing integer types.
   6468   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   6469   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
   6470 }
   6471 
   6472 /// \brief Convert scalar operands to a vector that matches the
   6473 ///        condition in length.
   6474 ///
   6475 /// Used when handling the OpenCL conditional operator where the
   6476 /// condition is a vector while the other operands are scalar.
   6477 ///
   6478 /// We first compute the "result type" for the scalar operands
   6479 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
   6480 /// into a vector of that type where the length matches the condition
   6481 /// vector type. s6.11.6 requires that the element types of the result
   6482 /// and the condition must have the same number of bits.
   6483 static QualType
   6484 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
   6485                               QualType CondTy, SourceLocation QuestionLoc) {
   6486   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
   6487   if (ResTy.isNull()) return QualType();
   6488 
   6489   const VectorType *CV = CondTy->getAs<VectorType>();
   6490   assert(CV);
   6491 
   6492   // Determine the vector result type
   6493   unsigned NumElements = CV->getNumElements();
   6494   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
   6495 
   6496   // Ensure that all types have the same number of bits
   6497   if (S.Context.getTypeSize(CV->getElementType())
   6498       != S.Context.getTypeSize(ResTy)) {
   6499     // Since VectorTy is created internally, it does not pretty print
   6500     // with an OpenCL name. Instead, we just print a description.
   6501     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
   6502     SmallString<64> Str;
   6503     llvm::raw_svector_ostream OS(Str);
   6504     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
   6505     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
   6506       << CondTy << OS.str();
   6507     return QualType();
   6508   }
   6509 
   6510   // Convert operands to the vector result type
   6511   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
   6512   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
   6513 
   6514   return VectorTy;
   6515 }
   6516 
   6517 /// \brief Return false if this is a valid OpenCL condition vector
   6518 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
   6519                                        SourceLocation QuestionLoc) {
   6520   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
   6521   // integral type.
   6522   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
   6523   assert(CondTy);
   6524   QualType EleTy = CondTy->getElementType();
   6525   if (EleTy->isIntegerType()) return false;
   6526 
   6527   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
   6528     << Cond->getType() << Cond->getSourceRange();
   6529   return true;
   6530 }
   6531 
   6532 /// \brief Return false if the vector condition type and the vector
   6533 ///        result type are compatible.
   6534 ///
   6535 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
   6536 /// number of elements, and their element types have the same number
   6537 /// of bits.
   6538 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
   6539                               SourceLocation QuestionLoc) {
   6540   const VectorType *CV = CondTy->getAs<VectorType>();
   6541   const VectorType *RV = VecResTy->getAs<VectorType>();
   6542   assert(CV && RV);
   6543 
   6544   if (CV->getNumElements() != RV->getNumElements()) {
   6545     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
   6546       << CondTy << VecResTy;
   6547     return true;
   6548   }
   6549 
   6550   QualType CVE = CV->getElementType();
   6551   QualType RVE = RV->getElementType();
   6552 
   6553   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
   6554     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
   6555       << CondTy << VecResTy;
   6556     return true;
   6557   }
   6558 
   6559   return false;
   6560 }
   6561 
   6562 /// \brief Return the resulting type for the conditional operator in
   6563 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
   6564 ///        s6.3.i) when the condition is a vector type.
   6565 static QualType
   6566 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
   6567                              ExprResult &LHS, ExprResult &RHS,
   6568                              SourceLocation QuestionLoc) {
   6569   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
   6570   if (Cond.isInvalid())
   6571     return QualType();
   6572   QualType CondTy = Cond.get()->getType();
   6573 
   6574   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
   6575     return QualType();
   6576 
   6577   // If either operand is a vector then find the vector type of the
   6578   // result as specified in OpenCL v1.1 s6.3.i.
   6579   if (LHS.get()->getType()->isVectorType() ||
   6580       RHS.get()->getType()->isVectorType()) {
   6581     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
   6582                                               /*isCompAssign*/false,
   6583                                               /*AllowBothBool*/true,
   6584                                               /*AllowBoolConversions*/false);
   6585     if (VecResTy.isNull()) return QualType();
   6586     // The result type must match the condition type as specified in
   6587     // OpenCL v1.1 s6.11.6.
   6588     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
   6589       return QualType();
   6590     return VecResTy;
   6591   }
   6592 
   6593   // Both operands are scalar.
   6594   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
   6595 }
   6596 
   6597 /// \brief Return true if the Expr is block type
   6598 static bool checkBlockType(Sema &S, const Expr *E) {
   6599   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
   6600     QualType Ty = CE->getCallee()->getType();
   6601     if (Ty->isBlockPointerType()) {
   6602       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
   6603       return true;
   6604     }
   6605   }
   6606   return false;
   6607 }
   6608 
   6609 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
   6610 /// In that case, LHS = cond.
   6611 /// C99 6.5.15
   6612 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   6613                                         ExprResult &RHS, ExprValueKind &VK,
   6614                                         ExprObjectKind &OK,
   6615                                         SourceLocation QuestionLoc) {
   6616 
   6617   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
   6618   if (!LHSResult.isUsable()) return QualType();
   6619   LHS = LHSResult;
   6620 
   6621   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
   6622   if (!RHSResult.isUsable()) return QualType();
   6623   RHS = RHSResult;
   6624 
   6625   // C++ is sufficiently different to merit its own checker.
   6626   if (getLangOpts().CPlusPlus)
   6627     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
   6628 
   6629   VK = VK_RValue;
   6630   OK = OK_Ordinary;
   6631 
   6632   // The OpenCL operator with a vector condition is sufficiently
   6633   // different to merit its own checker.
   6634   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
   6635     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
   6636 
   6637   // First, check the condition.
   6638   Cond = UsualUnaryConversions(Cond.get());
   6639   if (Cond.isInvalid())
   6640     return QualType();
   6641   if (checkCondition(*this, Cond.get(), QuestionLoc))
   6642     return QualType();
   6643 
   6644   // Now check the two expressions.
   6645   if (LHS.get()->getType()->isVectorType() ||
   6646       RHS.get()->getType()->isVectorType())
   6647     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
   6648                                /*AllowBothBool*/true,
   6649                                /*AllowBoolConversions*/false);
   6650 
   6651   QualType ResTy = UsualArithmeticConversions(LHS, RHS);
   6652   if (LHS.isInvalid() || RHS.isInvalid())
   6653     return QualType();
   6654 
   6655   QualType LHSTy = LHS.get()->getType();
   6656   QualType RHSTy = RHS.get()->getType();
   6657 
   6658   // Diagnose attempts to convert between __float128 and long double where
   6659   // such conversions currently can't be handled.
   6660   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
   6661     Diag(QuestionLoc,
   6662          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
   6663       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6664     return QualType();
   6665   }
   6666 
   6667   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
   6668   // selection operator (?:).
   6669   if (getLangOpts().OpenCL &&
   6670       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
   6671     return QualType();
   6672   }
   6673 
   6674   // If both operands have arithmetic type, do the usual arithmetic conversions
   6675   // to find a common type: C99 6.5.15p3,5.
   6676   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
   6677     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
   6678     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
   6679 
   6680     return ResTy;
   6681   }
   6682 
   6683   // If both operands are the same structure or union type, the result is that
   6684   // type.
   6685   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
   6686     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
   6687       if (LHSRT->getDecl() == RHSRT->getDecl())
   6688         // "If both the operands have structure or union type, the result has
   6689         // that type."  This implies that CV qualifiers are dropped.
   6690         return LHSTy.getUnqualifiedType();
   6691     // FIXME: Type of conditional expression must be complete in C mode.
   6692   }
   6693 
   6694   // C99 6.5.15p5: "If both operands have void type, the result has void type."
   6695   // The following || allows only one side to be void (a GCC-ism).
   6696   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
   6697     return checkConditionalVoidType(*this, LHS, RHS);
   6698   }
   6699 
   6700   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
   6701   // the type of the other operand."
   6702   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
   6703   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
   6704 
   6705   // All objective-c pointer type analysis is done here.
   6706   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
   6707                                                         QuestionLoc);
   6708   if (LHS.isInvalid() || RHS.isInvalid())
   6709     return QualType();
   6710   if (!compositeType.isNull())
   6711     return compositeType;
   6712 
   6713 
   6714   // Handle block pointer types.
   6715   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
   6716     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
   6717                                                      QuestionLoc);
   6718 
   6719   // Check constraints for C object pointers types (C99 6.5.15p3,6).
   6720   if (LHSTy->isPointerType() && RHSTy->isPointerType())
   6721     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
   6722                                                        QuestionLoc);
   6723 
   6724   // GCC compatibility: soften pointer/integer mismatch.  Note that
   6725   // null pointers have been filtered out by this point.
   6726   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
   6727       /*isIntFirstExpr=*/true))
   6728     return RHSTy;
   6729   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
   6730       /*isIntFirstExpr=*/false))
   6731     return LHSTy;
   6732 
   6733   // Emit a better diagnostic if one of the expressions is a null pointer
   6734   // constant and the other is not a pointer type. In this case, the user most
   6735   // likely forgot to take the address of the other expression.
   6736   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   6737     return QualType();
   6738 
   6739   // Otherwise, the operands are not compatible.
   6740   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   6741     << LHSTy << RHSTy << LHS.get()->getSourceRange()
   6742     << RHS.get()->getSourceRange();
   6743   return QualType();
   6744 }
   6745 
   6746 /// FindCompositeObjCPointerType - Helper method to find composite type of
   6747 /// two objective-c pointer types of the two input expressions.
   6748 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
   6749                                             SourceLocation QuestionLoc) {
   6750   QualType LHSTy = LHS.get()->getType();
   6751   QualType RHSTy = RHS.get()->getType();
   6752 
   6753   // Handle things like Class and struct objc_class*.  Here we case the result
   6754   // to the pseudo-builtin, because that will be implicitly cast back to the
   6755   // redefinition type if an attempt is made to access its fields.
   6756   if (LHSTy->isObjCClassType() &&
   6757       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
   6758     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   6759     return LHSTy;
   6760   }
   6761   if (RHSTy->isObjCClassType() &&
   6762       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
   6763     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   6764     return RHSTy;
   6765   }
   6766   // And the same for struct objc_object* / id
   6767   if (LHSTy->isObjCIdType() &&
   6768       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
   6769     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   6770     return LHSTy;
   6771   }
   6772   if (RHSTy->isObjCIdType() &&
   6773       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
   6774     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   6775     return RHSTy;
   6776   }
   6777   // And the same for struct objc_selector* / SEL
   6778   if (Context.isObjCSelType(LHSTy) &&
   6779       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
   6780     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
   6781     return LHSTy;
   6782   }
   6783   if (Context.isObjCSelType(RHSTy) &&
   6784       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
   6785     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
   6786     return RHSTy;
   6787   }
   6788   // Check constraints for Objective-C object pointers types.
   6789   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
   6790 
   6791     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   6792       // Two identical object pointer types are always compatible.
   6793       return LHSTy;
   6794     }
   6795     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
   6796     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
   6797     QualType compositeType = LHSTy;
   6798 
   6799     // If both operands are interfaces and either operand can be
   6800     // assigned to the other, use that type as the composite
   6801     // type. This allows
   6802     //   xxx ? (A*) a : (B*) b
   6803     // where B is a subclass of A.
   6804     //
   6805     // Additionally, as for assignment, if either type is 'id'
   6806     // allow silent coercion. Finally, if the types are
   6807     // incompatible then make sure to use 'id' as the composite
   6808     // type so the result is acceptable for sending messages to.
   6809 
   6810     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
   6811     // It could return the composite type.
   6812     if (!(compositeType =
   6813           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
   6814       // Nothing more to do.
   6815     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
   6816       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
   6817     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
   6818       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
   6819     } else if ((LHSTy->isObjCQualifiedIdType() ||
   6820                 RHSTy->isObjCQualifiedIdType()) &&
   6821                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
   6822       // Need to handle "id<xx>" explicitly.
   6823       // GCC allows qualified id and any Objective-C type to devolve to
   6824       // id. Currently localizing to here until clear this should be
   6825       // part of ObjCQualifiedIdTypesAreCompatible.
   6826       compositeType = Context.getObjCIdType();
   6827     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
   6828       compositeType = Context.getObjCIdType();
   6829     } else {
   6830       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
   6831       << LHSTy << RHSTy
   6832       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6833       QualType incompatTy = Context.getObjCIdType();
   6834       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   6835       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   6836       return incompatTy;
   6837     }
   6838     // The object pointer types are compatible.
   6839     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
   6840     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
   6841     return compositeType;
   6842   }
   6843   // Check Objective-C object pointer types and 'void *'
   6844   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
   6845     if (getLangOpts().ObjCAutoRefCount) {
   6846       // ARC forbids the implicit conversion of object pointers to 'void *',
   6847       // so these types are not compatible.
   6848       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   6849           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6850       LHS = RHS = true;
   6851       return QualType();
   6852     }
   6853     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   6854     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   6855     QualType destPointee
   6856     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   6857     QualType destType = Context.getPointerType(destPointee);
   6858     // Add qualifiers if necessary.
   6859     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   6860     // Promote to void*.
   6861     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   6862     return destType;
   6863   }
   6864   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
   6865     if (getLangOpts().ObjCAutoRefCount) {
   6866       // ARC forbids the implicit conversion of object pointers to 'void *',
   6867       // so these types are not compatible.
   6868       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   6869           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6870       LHS = RHS = true;
   6871       return QualType();
   6872     }
   6873     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   6874     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   6875     QualType destPointee
   6876     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   6877     QualType destType = Context.getPointerType(destPointee);
   6878     // Add qualifiers if necessary.
   6879     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   6880     // Promote to void*.
   6881     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   6882     return destType;
   6883   }
   6884   return QualType();
   6885 }
   6886 
   6887 /// SuggestParentheses - Emit a note with a fixit hint that wraps
   6888 /// ParenRange in parentheses.
   6889 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
   6890                                const PartialDiagnostic &Note,
   6891                                SourceRange ParenRange) {
   6892   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
   6893   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
   6894       EndLoc.isValid()) {
   6895     Self.Diag(Loc, Note)
   6896       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
   6897       << FixItHint::CreateInsertion(EndLoc, ")");
   6898   } else {
   6899     // We can't display the parentheses, so just show the bare note.
   6900     Self.Diag(Loc, Note) << ParenRange;
   6901   }
   6902 }
   6903 
   6904 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
   6905   return BinaryOperator::isAdditiveOp(Opc) ||
   6906          BinaryOperator::isMultiplicativeOp(Opc) ||
   6907          BinaryOperator::isShiftOp(Opc);
   6908 }
   6909 
   6910 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
   6911 /// expression, either using a built-in or overloaded operator,
   6912 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
   6913 /// expression.
   6914 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
   6915                                    Expr **RHSExprs) {
   6916   // Don't strip parenthesis: we should not warn if E is in parenthesis.
   6917   E = E->IgnoreImpCasts();
   6918   E = E->IgnoreConversionOperator();
   6919   E = E->IgnoreImpCasts();
   6920 
   6921   // Built-in binary operator.
   6922   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
   6923     if (IsArithmeticOp(OP->getOpcode())) {
   6924       *Opcode = OP->getOpcode();
   6925       *RHSExprs = OP->getRHS();
   6926       return true;
   6927     }
   6928   }
   6929 
   6930   // Overloaded operator.
   6931   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
   6932     if (Call->getNumArgs() != 2)
   6933       return false;
   6934 
   6935     // Make sure this is really a binary operator that is safe to pass into
   6936     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
   6937     OverloadedOperatorKind OO = Call->getOperator();
   6938     if (OO < OO_Plus || OO > OO_Arrow ||
   6939         OO == OO_PlusPlus || OO == OO_MinusMinus)
   6940       return false;
   6941 
   6942     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
   6943     if (IsArithmeticOp(OpKind)) {
   6944       *Opcode = OpKind;
   6945       *RHSExprs = Call->getArg(1);
   6946       return true;
   6947     }
   6948   }
   6949 
   6950   return false;
   6951 }
   6952 
   6953 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
   6954 /// or is a logical expression such as (x==y) which has int type, but is
   6955 /// commonly interpreted as boolean.
   6956 static bool ExprLooksBoolean(Expr *E) {
   6957   E = E->IgnoreParenImpCasts();
   6958 
   6959   if (E->getType()->isBooleanType())
   6960     return true;
   6961   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
   6962     return OP->isComparisonOp() || OP->isLogicalOp();
   6963   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
   6964     return OP->getOpcode() == UO_LNot;
   6965   if (E->getType()->isPointerType())
   6966     return true;
   6967 
   6968   return false;
   6969 }
   6970 
   6971 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
   6972 /// and binary operator are mixed in a way that suggests the programmer assumed
   6973 /// the conditional operator has higher precedence, for example:
   6974 /// "int x = a + someBinaryCondition ? 1 : 2".
   6975 static void DiagnoseConditionalPrecedence(Sema &Self,
   6976                                           SourceLocation OpLoc,
   6977                                           Expr *Condition,
   6978                                           Expr *LHSExpr,
   6979                                           Expr *RHSExpr) {
   6980   BinaryOperatorKind CondOpcode;
   6981   Expr *CondRHS;
   6982 
   6983   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
   6984     return;
   6985   if (!ExprLooksBoolean(CondRHS))
   6986     return;
   6987 
   6988   // The condition is an arithmetic binary expression, with a right-
   6989   // hand side that looks boolean, so warn.
   6990 
   6991   Self.Diag(OpLoc, diag::warn_precedence_conditional)
   6992       << Condition->getSourceRange()
   6993       << BinaryOperator::getOpcodeStr(CondOpcode);
   6994 
   6995   SuggestParentheses(Self, OpLoc,
   6996     Self.PDiag(diag::note_precedence_silence)
   6997       << BinaryOperator::getOpcodeStr(CondOpcode),
   6998     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
   6999 
   7000   SuggestParentheses(Self, OpLoc,
   7001     Self.PDiag(diag::note_precedence_conditional_first),
   7002     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
   7003 }
   7004 
   7005 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
   7006 /// in the case of a the GNU conditional expr extension.
   7007 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
   7008                                     SourceLocation ColonLoc,
   7009                                     Expr *CondExpr, Expr *LHSExpr,
   7010                                     Expr *RHSExpr) {
   7011   if (!getLangOpts().CPlusPlus) {
   7012     // C cannot handle TypoExpr nodes in the condition because it
   7013     // doesn't handle dependent types properly, so make sure any TypoExprs have
   7014     // been dealt with before checking the operands.
   7015     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
   7016     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
   7017     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
   7018 
   7019     if (!CondResult.isUsable())
   7020       return ExprError();
   7021 
   7022     if (LHSExpr) {
   7023       if (!LHSResult.isUsable())
   7024         return ExprError();
   7025     }
   7026 
   7027     if (!RHSResult.isUsable())
   7028       return ExprError();
   7029 
   7030     CondExpr = CondResult.get();
   7031     LHSExpr = LHSResult.get();
   7032     RHSExpr = RHSResult.get();
   7033   }
   7034 
   7035   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
   7036   // was the condition.
   7037   OpaqueValueExpr *opaqueValue = nullptr;
   7038   Expr *commonExpr = nullptr;
   7039   if (!LHSExpr) {
   7040     commonExpr = CondExpr;
   7041     // Lower out placeholder types first.  This is important so that we don't
   7042     // try to capture a placeholder. This happens in few cases in C++; such
   7043     // as Objective-C++'s dictionary subscripting syntax.
   7044     if (commonExpr->hasPlaceholderType()) {
   7045       ExprResult result = CheckPlaceholderExpr(commonExpr);
   7046       if (!result.isUsable()) return ExprError();
   7047       commonExpr = result.get();
   7048     }
   7049     // We usually want to apply unary conversions *before* saving, except
   7050     // in the special case of a C++ l-value conditional.
   7051     if (!(getLangOpts().CPlusPlus
   7052           && !commonExpr->isTypeDependent()
   7053           && commonExpr->getValueKind() == RHSExpr->getValueKind()
   7054           && commonExpr->isGLValue()
   7055           && commonExpr->isOrdinaryOrBitFieldObject()
   7056           && RHSExpr->isOrdinaryOrBitFieldObject()
   7057           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
   7058       ExprResult commonRes = UsualUnaryConversions(commonExpr);
   7059       if (commonRes.isInvalid())
   7060         return ExprError();
   7061       commonExpr = commonRes.get();
   7062     }
   7063 
   7064     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
   7065                                                 commonExpr->getType(),
   7066                                                 commonExpr->getValueKind(),
   7067                                                 commonExpr->getObjectKind(),
   7068                                                 commonExpr);
   7069     LHSExpr = CondExpr = opaqueValue;
   7070   }
   7071 
   7072   ExprValueKind VK = VK_RValue;
   7073   ExprObjectKind OK = OK_Ordinary;
   7074   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
   7075   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
   7076                                              VK, OK, QuestionLoc);
   7077   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
   7078       RHS.isInvalid())
   7079     return ExprError();
   7080 
   7081   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
   7082                                 RHS.get());
   7083 
   7084   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
   7085 
   7086   if (!commonExpr)
   7087     return new (Context)
   7088         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
   7089                             RHS.get(), result, VK, OK);
   7090 
   7091   return new (Context) BinaryConditionalOperator(
   7092       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
   7093       ColonLoc, result, VK, OK);
   7094 }
   7095 
   7096 // checkPointerTypesForAssignment - This is a very tricky routine (despite
   7097 // being closely modeled after the C99 spec:-). The odd characteristic of this
   7098 // routine is it effectively iqnores the qualifiers on the top level pointee.
   7099 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
   7100 // FIXME: add a couple examples in this comment.
   7101 static Sema::AssignConvertType
   7102 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
   7103   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   7104   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   7105 
   7106   // get the "pointed to" type (ignoring qualifiers at the top level)
   7107   const Type *lhptee, *rhptee;
   7108   Qualifiers lhq, rhq;
   7109   std::tie(lhptee, lhq) =
   7110       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
   7111   std::tie(rhptee, rhq) =
   7112       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
   7113 
   7114   Sema::AssignConvertType ConvTy = Sema::Compatible;
   7115 
   7116   // C99 6.5.16.1p1: This following citation is common to constraints
   7117   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
   7118   // qualifiers of the type *pointed to* by the right;
   7119 
   7120   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
   7121   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
   7122       lhq.compatiblyIncludesObjCLifetime(rhq)) {
   7123     // Ignore lifetime for further calculation.
   7124     lhq.removeObjCLifetime();
   7125     rhq.removeObjCLifetime();
   7126   }
   7127 
   7128   if (!lhq.compatiblyIncludes(rhq)) {
   7129     // Treat address-space mismatches as fatal.  TODO: address subspaces
   7130     if (!lhq.isAddressSpaceSupersetOf(rhq))
   7131       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   7132 
   7133     // It's okay to add or remove GC or lifetime qualifiers when converting to
   7134     // and from void*.
   7135     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
   7136                         .compatiblyIncludes(
   7137                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
   7138              && (lhptee->isVoidType() || rhptee->isVoidType()))
   7139       ; // keep old
   7140 
   7141     // Treat lifetime mismatches as fatal.
   7142     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
   7143       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   7144 
   7145     // For GCC/MS compatibility, other qualifier mismatches are treated
   7146     // as still compatible in C.
   7147     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   7148   }
   7149 
   7150   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
   7151   // incomplete type and the other is a pointer to a qualified or unqualified
   7152   // version of void...
   7153   if (lhptee->isVoidType()) {
   7154     if (rhptee->isIncompleteOrObjectType())
   7155       return ConvTy;
   7156 
   7157     // As an extension, we allow cast to/from void* to function pointer.
   7158     assert(rhptee->isFunctionType());
   7159     return Sema::FunctionVoidPointer;
   7160   }
   7161 
   7162   if (rhptee->isVoidType()) {
   7163     if (lhptee->isIncompleteOrObjectType())
   7164       return ConvTy;
   7165 
   7166     // As an extension, we allow cast to/from void* to function pointer.
   7167     assert(lhptee->isFunctionType());
   7168     return Sema::FunctionVoidPointer;
   7169   }
   7170 
   7171   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
   7172   // unqualified versions of compatible types, ...
   7173   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
   7174   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
   7175     // Check if the pointee types are compatible ignoring the sign.
   7176     // We explicitly check for char so that we catch "char" vs
   7177     // "unsigned char" on systems where "char" is unsigned.
   7178     if (lhptee->isCharType())
   7179       ltrans = S.Context.UnsignedCharTy;
   7180     else if (lhptee->hasSignedIntegerRepresentation())
   7181       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
   7182 
   7183     if (rhptee->isCharType())
   7184       rtrans = S.Context.UnsignedCharTy;
   7185     else if (rhptee->hasSignedIntegerRepresentation())
   7186       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
   7187 
   7188     if (ltrans == rtrans) {
   7189       // Types are compatible ignoring the sign. Qualifier incompatibility
   7190       // takes priority over sign incompatibility because the sign
   7191       // warning can be disabled.
   7192       if (ConvTy != Sema::Compatible)
   7193         return ConvTy;
   7194 
   7195       return Sema::IncompatiblePointerSign;
   7196     }
   7197 
   7198     // If we are a multi-level pointer, it's possible that our issue is simply
   7199     // one of qualification - e.g. char ** -> const char ** is not allowed. If
   7200     // the eventual target type is the same and the pointers have the same
   7201     // level of indirection, this must be the issue.
   7202     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
   7203       do {
   7204         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
   7205         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
   7206       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
   7207 
   7208       if (lhptee == rhptee)
   7209         return Sema::IncompatibleNestedPointerQualifiers;
   7210     }
   7211 
   7212     // General pointer incompatibility takes priority over qualifiers.
   7213     return Sema::IncompatiblePointer;
   7214   }
   7215   if (!S.getLangOpts().CPlusPlus &&
   7216       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
   7217     return Sema::IncompatiblePointer;
   7218   return ConvTy;
   7219 }
   7220 
   7221 /// checkBlockPointerTypesForAssignment - This routine determines whether two
   7222 /// block pointer types are compatible or whether a block and normal pointer
   7223 /// are compatible. It is more restrict than comparing two function pointer
   7224 // types.
   7225 static Sema::AssignConvertType
   7226 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
   7227                                     QualType RHSType) {
   7228   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   7229   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   7230 
   7231   QualType lhptee, rhptee;
   7232 
   7233   // get the "pointed to" type (ignoring qualifiers at the top level)
   7234   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
   7235   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
   7236 
   7237   // In C++, the types have to match exactly.
   7238   if (S.getLangOpts().CPlusPlus)
   7239     return Sema::IncompatibleBlockPointer;
   7240 
   7241   Sema::AssignConvertType ConvTy = Sema::Compatible;
   7242 
   7243   // For blocks we enforce that qualifiers are identical.
   7244   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
   7245     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   7246 
   7247   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
   7248     return Sema::IncompatibleBlockPointer;
   7249 
   7250   return ConvTy;
   7251 }
   7252 
   7253 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
   7254 /// for assignment compatibility.
   7255 static Sema::AssignConvertType
   7256 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
   7257                                    QualType RHSType) {
   7258   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
   7259   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
   7260 
   7261   if (LHSType->isObjCBuiltinType()) {
   7262     // Class is not compatible with ObjC object pointers.
   7263     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
   7264         !RHSType->isObjCQualifiedClassType())
   7265       return Sema::IncompatiblePointer;
   7266     return Sema::Compatible;
   7267   }
   7268   if (RHSType->isObjCBuiltinType()) {
   7269     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
   7270         !LHSType->isObjCQualifiedClassType())
   7271       return Sema::IncompatiblePointer;
   7272     return Sema::Compatible;
   7273   }
   7274   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   7275   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   7276 
   7277   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
   7278       // make an exception for id<P>
   7279       !LHSType->isObjCQualifiedIdType())
   7280     return Sema::CompatiblePointerDiscardsQualifiers;
   7281 
   7282   if (S.Context.typesAreCompatible(LHSType, RHSType))
   7283     return Sema::Compatible;
   7284   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
   7285     return Sema::IncompatibleObjCQualifiedId;
   7286   return Sema::IncompatiblePointer;
   7287 }
   7288 
   7289 Sema::AssignConvertType
   7290 Sema::CheckAssignmentConstraints(SourceLocation Loc,
   7291                                  QualType LHSType, QualType RHSType) {
   7292   // Fake up an opaque expression.  We don't actually care about what
   7293   // cast operations are required, so if CheckAssignmentConstraints
   7294   // adds casts to this they'll be wasted, but fortunately that doesn't
   7295   // usually happen on valid code.
   7296   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
   7297   ExprResult RHSPtr = &RHSExpr;
   7298   CastKind K = CK_Invalid;
   7299 
   7300   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
   7301 }
   7302 
   7303 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
   7304 /// has code to accommodate several GCC extensions when type checking
   7305 /// pointers. Here are some objectionable examples that GCC considers warnings:
   7306 ///
   7307 ///  int a, *pint;
   7308 ///  short *pshort;
   7309 ///  struct foo *pfoo;
   7310 ///
   7311 ///  pint = pshort; // warning: assignment from incompatible pointer type
   7312 ///  a = pint; // warning: assignment makes integer from pointer without a cast
   7313 ///  pint = a; // warning: assignment makes pointer from integer without a cast
   7314 ///  pint = pfoo; // warning: assignment from incompatible pointer type
   7315 ///
   7316 /// As a result, the code for dealing with pointers is more complex than the
   7317 /// C99 spec dictates.
   7318 ///
   7319 /// Sets 'Kind' for any result kind except Incompatible.
   7320 Sema::AssignConvertType
   7321 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   7322                                  CastKind &Kind, bool ConvertRHS) {
   7323   QualType RHSType = RHS.get()->getType();
   7324   QualType OrigLHSType = LHSType;
   7325 
   7326   // Get canonical types.  We're not formatting these types, just comparing
   7327   // them.
   7328   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
   7329   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
   7330 
   7331   // Common case: no conversion required.
   7332   if (LHSType == RHSType) {
   7333     Kind = CK_NoOp;
   7334     return Compatible;
   7335   }
   7336 
   7337   // If we have an atomic type, try a non-atomic assignment, then just add an
   7338   // atomic qualification step.
   7339   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
   7340     Sema::AssignConvertType result =
   7341       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
   7342     if (result != Compatible)
   7343       return result;
   7344     if (Kind != CK_NoOp && ConvertRHS)
   7345       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
   7346     Kind = CK_NonAtomicToAtomic;
   7347     return Compatible;
   7348   }
   7349 
   7350   // If the left-hand side is a reference type, then we are in a
   7351   // (rare!) case where we've allowed the use of references in C,
   7352   // e.g., as a parameter type in a built-in function. In this case,
   7353   // just make sure that the type referenced is compatible with the
   7354   // right-hand side type. The caller is responsible for adjusting
   7355   // LHSType so that the resulting expression does not have reference
   7356   // type.
   7357   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
   7358     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
   7359       Kind = CK_LValueBitCast;
   7360       return Compatible;
   7361     }
   7362     return Incompatible;
   7363   }
   7364 
   7365   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
   7366   // to the same ExtVector type.
   7367   if (LHSType->isExtVectorType()) {
   7368     if (RHSType->isExtVectorType())
   7369       return Incompatible;
   7370     if (RHSType->isArithmeticType()) {
   7371       // CK_VectorSplat does T -> vector T, so first cast to the element type.
   7372       if (ConvertRHS)
   7373         RHS = prepareVectorSplat(LHSType, RHS.get());
   7374       Kind = CK_VectorSplat;
   7375       return Compatible;
   7376     }
   7377   }
   7378 
   7379   // Conversions to or from vector type.
   7380   if (LHSType->isVectorType() || RHSType->isVectorType()) {
   7381     if (LHSType->isVectorType() && RHSType->isVectorType()) {
   7382       // Allow assignments of an AltiVec vector type to an equivalent GCC
   7383       // vector type and vice versa
   7384       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   7385         Kind = CK_BitCast;
   7386         return Compatible;
   7387       }
   7388 
   7389       // If we are allowing lax vector conversions, and LHS and RHS are both
   7390       // vectors, the total size only needs to be the same. This is a bitcast;
   7391       // no bits are changed but the result type is different.
   7392       if (isLaxVectorConversion(RHSType, LHSType)) {
   7393         Kind = CK_BitCast;
   7394         return IncompatibleVectors;
   7395       }
   7396     }
   7397 
   7398     // When the RHS comes from another lax conversion (e.g. binops between
   7399     // scalars and vectors) the result is canonicalized as a vector. When the
   7400     // LHS is also a vector, the lax is allowed by the condition above. Handle
   7401     // the case where LHS is a scalar.
   7402     if (LHSType->isScalarType()) {
   7403       const VectorType *VecType = RHSType->getAs<VectorType>();
   7404       if (VecType && VecType->getNumElements() == 1 &&
   7405           isLaxVectorConversion(RHSType, LHSType)) {
   7406         ExprResult *VecExpr = &RHS;
   7407         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
   7408         Kind = CK_BitCast;
   7409         return Compatible;
   7410       }
   7411     }
   7412 
   7413     return Incompatible;
   7414   }
   7415 
   7416   // Diagnose attempts to convert between __float128 and long double where
   7417   // such conversions currently can't be handled.
   7418   if (unsupportedTypeConversion(*this, LHSType, RHSType))
   7419     return Incompatible;
   7420 
   7421   // Arithmetic conversions.
   7422   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
   7423       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
   7424     if (ConvertRHS)
   7425       Kind = PrepareScalarCast(RHS, LHSType);
   7426     return Compatible;
   7427   }
   7428 
   7429   // Conversions to normal pointers.
   7430   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
   7431     // U* -> T*
   7432     if (isa<PointerType>(RHSType)) {
   7433       unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
   7434       unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
   7435       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
   7436       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
   7437     }
   7438 
   7439     // int -> T*
   7440     if (RHSType->isIntegerType()) {
   7441       Kind = CK_IntegralToPointer; // FIXME: null?
   7442       return IntToPointer;
   7443     }
   7444 
   7445     // C pointers are not compatible with ObjC object pointers,
   7446     // with two exceptions:
   7447     if (isa<ObjCObjectPointerType>(RHSType)) {
   7448       //  - conversions to void*
   7449       if (LHSPointer->getPointeeType()->isVoidType()) {
   7450         Kind = CK_BitCast;
   7451         return Compatible;
   7452       }
   7453 
   7454       //  - conversions from 'Class' to the redefinition type
   7455       if (RHSType->isObjCClassType() &&
   7456           Context.hasSameType(LHSType,
   7457                               Context.getObjCClassRedefinitionType())) {
   7458         Kind = CK_BitCast;
   7459         return Compatible;
   7460       }
   7461 
   7462       Kind = CK_BitCast;
   7463       return IncompatiblePointer;
   7464     }
   7465 
   7466     // U^ -> void*
   7467     if (RHSType->getAs<BlockPointerType>()) {
   7468       if (LHSPointer->getPointeeType()->isVoidType()) {
   7469         Kind = CK_BitCast;
   7470         return Compatible;
   7471       }
   7472     }
   7473 
   7474     return Incompatible;
   7475   }
   7476 
   7477   // Conversions to block pointers.
   7478   if (isa<BlockPointerType>(LHSType)) {
   7479     // U^ -> T^
   7480     if (RHSType->isBlockPointerType()) {
   7481       Kind = CK_BitCast;
   7482       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
   7483     }
   7484 
   7485     // int or null -> T^
   7486     if (RHSType->isIntegerType()) {
   7487       Kind = CK_IntegralToPointer; // FIXME: null
   7488       return IntToBlockPointer;
   7489     }
   7490 
   7491     // id -> T^
   7492     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
   7493       Kind = CK_AnyPointerToBlockPointerCast;
   7494       return Compatible;
   7495     }
   7496 
   7497     // void* -> T^
   7498     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
   7499       if (RHSPT->getPointeeType()->isVoidType()) {
   7500         Kind = CK_AnyPointerToBlockPointerCast;
   7501         return Compatible;
   7502       }
   7503 
   7504     return Incompatible;
   7505   }
   7506 
   7507   // Conversions to Objective-C pointers.
   7508   if (isa<ObjCObjectPointerType>(LHSType)) {
   7509     // A* -> B*
   7510     if (RHSType->isObjCObjectPointerType()) {
   7511       Kind = CK_BitCast;
   7512       Sema::AssignConvertType result =
   7513         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
   7514       if (getLangOpts().ObjCAutoRefCount &&
   7515           result == Compatible &&
   7516           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
   7517         result = IncompatibleObjCWeakRef;
   7518       return result;
   7519     }
   7520 
   7521     // int or null -> A*
   7522     if (RHSType->isIntegerType()) {
   7523       Kind = CK_IntegralToPointer; // FIXME: null
   7524       return IntToPointer;
   7525     }
   7526 
   7527     // In general, C pointers are not compatible with ObjC object pointers,
   7528     // with two exceptions:
   7529     if (isa<PointerType>(RHSType)) {
   7530       Kind = CK_CPointerToObjCPointerCast;
   7531 
   7532       //  - conversions from 'void*'
   7533       if (RHSType->isVoidPointerType()) {
   7534         return Compatible;
   7535       }
   7536 
   7537       //  - conversions to 'Class' from its redefinition type
   7538       if (LHSType->isObjCClassType() &&
   7539           Context.hasSameType(RHSType,
   7540                               Context.getObjCClassRedefinitionType())) {
   7541         return Compatible;
   7542       }
   7543 
   7544       return IncompatiblePointer;
   7545     }
   7546 
   7547     // Only under strict condition T^ is compatible with an Objective-C pointer.
   7548     if (RHSType->isBlockPointerType() &&
   7549         LHSType->isBlockCompatibleObjCPointerType(Context)) {
   7550       if (ConvertRHS)
   7551         maybeExtendBlockObject(RHS);
   7552       Kind = CK_BlockPointerToObjCPointerCast;
   7553       return Compatible;
   7554     }
   7555 
   7556     return Incompatible;
   7557   }
   7558 
   7559   // Conversions from pointers that are not covered by the above.
   7560   if (isa<PointerType>(RHSType)) {
   7561     // T* -> _Bool
   7562     if (LHSType == Context.BoolTy) {
   7563       Kind = CK_PointerToBoolean;
   7564       return Compatible;
   7565     }
   7566 
   7567     // T* -> int
   7568     if (LHSType->isIntegerType()) {
   7569       Kind = CK_PointerToIntegral;
   7570       return PointerToInt;
   7571     }
   7572 
   7573     return Incompatible;
   7574   }
   7575 
   7576   // Conversions from Objective-C pointers that are not covered by the above.
   7577   if (isa<ObjCObjectPointerType>(RHSType)) {
   7578     // T* -> _Bool
   7579     if (LHSType == Context.BoolTy) {
   7580       Kind = CK_PointerToBoolean;
   7581       return Compatible;
   7582     }
   7583 
   7584     // T* -> int
   7585     if (LHSType->isIntegerType()) {
   7586       Kind = CK_PointerToIntegral;
   7587       return PointerToInt;
   7588     }
   7589 
   7590     return Incompatible;
   7591   }
   7592 
   7593   // struct A -> struct B
   7594   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
   7595     if (Context.typesAreCompatible(LHSType, RHSType)) {
   7596       Kind = CK_NoOp;
   7597       return Compatible;
   7598     }
   7599   }
   7600 
   7601   return Incompatible;
   7602 }
   7603 
   7604 /// \brief Constructs a transparent union from an expression that is
   7605 /// used to initialize the transparent union.
   7606 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
   7607                                       ExprResult &EResult, QualType UnionType,
   7608                                       FieldDecl *Field) {
   7609   // Build an initializer list that designates the appropriate member
   7610   // of the transparent union.
   7611   Expr *E = EResult.get();
   7612   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
   7613                                                    E, SourceLocation());
   7614   Initializer->setType(UnionType);
   7615   Initializer->setInitializedFieldInUnion(Field);
   7616 
   7617   // Build a compound literal constructing a value of the transparent
   7618   // union type from this initializer list.
   7619   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
   7620   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
   7621                                         VK_RValue, Initializer, false);
   7622 }
   7623 
   7624 Sema::AssignConvertType
   7625 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
   7626                                                ExprResult &RHS) {
   7627   QualType RHSType = RHS.get()->getType();
   7628 
   7629   // If the ArgType is a Union type, we want to handle a potential
   7630   // transparent_union GCC extension.
   7631   const RecordType *UT = ArgType->getAsUnionType();
   7632   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   7633     return Incompatible;
   7634 
   7635   // The field to initialize within the transparent union.
   7636   RecordDecl *UD = UT->getDecl();
   7637   FieldDecl *InitField = nullptr;
   7638   // It's compatible if the expression matches any of the fields.
   7639   for (auto *it : UD->fields()) {
   7640     if (it->getType()->isPointerType()) {
   7641       // If the transparent union contains a pointer type, we allow:
   7642       // 1) void pointer
   7643       // 2) null pointer constant
   7644       if (RHSType->isPointerType())
   7645         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
   7646           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
   7647           InitField = it;
   7648           break;
   7649         }
   7650 
   7651       if (RHS.get()->isNullPointerConstant(Context,
   7652                                            Expr::NPC_ValueDependentIsNull)) {
   7653         RHS = ImpCastExprToType(RHS.get(), it->getType(),
   7654                                 CK_NullToPointer);
   7655         InitField = it;
   7656         break;
   7657       }
   7658     }
   7659 
   7660     CastKind Kind = CK_Invalid;
   7661     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
   7662           == Compatible) {
   7663       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
   7664       InitField = it;
   7665       break;
   7666     }
   7667   }
   7668 
   7669   if (!InitField)
   7670     return Incompatible;
   7671 
   7672   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
   7673   return Compatible;
   7674 }
   7675 
   7676 Sema::AssignConvertType
   7677 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
   7678                                        bool Diagnose,
   7679                                        bool DiagnoseCFAudited,
   7680                                        bool ConvertRHS) {
   7681   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
   7682   // we can't avoid *all* modifications at the moment, so we need some somewhere
   7683   // to put the updated value.
   7684   ExprResult LocalRHS = CallerRHS;
   7685   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
   7686 
   7687   if (getLangOpts().CPlusPlus) {
   7688     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
   7689       // C++ 5.17p3: If the left operand is not of class type, the
   7690       // expression is implicitly converted (C++ 4) to the
   7691       // cv-unqualified type of the left operand.
   7692       ExprResult Res;
   7693       if (Diagnose) {
   7694         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7695                                         AA_Assigning);
   7696       } else {
   7697         ImplicitConversionSequence ICS =
   7698             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7699                                   /*SuppressUserConversions=*/false,
   7700                                   /*AllowExplicit=*/false,
   7701                                   /*InOverloadResolution=*/false,
   7702                                   /*CStyle=*/false,
   7703                                   /*AllowObjCWritebackConversion=*/false);
   7704         if (ICS.isFailure())
   7705           return Incompatible;
   7706         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7707                                         ICS, AA_Assigning);
   7708       }
   7709       if (Res.isInvalid())
   7710         return Incompatible;
   7711       Sema::AssignConvertType result = Compatible;
   7712       if (getLangOpts().ObjCAutoRefCount &&
   7713           !CheckObjCARCUnavailableWeakConversion(LHSType,
   7714                                                  RHS.get()->getType()))
   7715         result = IncompatibleObjCWeakRef;
   7716       RHS = Res;
   7717       return result;
   7718     }
   7719 
   7720     // FIXME: Currently, we fall through and treat C++ classes like C
   7721     // structures.
   7722     // FIXME: We also fall through for atomics; not sure what should
   7723     // happen there, though.
   7724   } else if (RHS.get()->getType() == Context.OverloadTy) {
   7725     // As a set of extensions to C, we support overloading on functions. These
   7726     // functions need to be resolved here.
   7727     DeclAccessPair DAP;
   7728     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
   7729             RHS.get(), LHSType, /*Complain=*/false, DAP))
   7730       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
   7731     else
   7732       return Incompatible;
   7733   }
   7734 
   7735   // C99 6.5.16.1p1: the left operand is a pointer and the right is
   7736   // a null pointer constant.
   7737   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
   7738        LHSType->isBlockPointerType()) &&
   7739       RHS.get()->isNullPointerConstant(Context,
   7740                                        Expr::NPC_ValueDependentIsNull)) {
   7741     if (Diagnose || ConvertRHS) {
   7742       CastKind Kind;
   7743       CXXCastPath Path;
   7744       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
   7745                              /*IgnoreBaseAccess=*/false, Diagnose);
   7746       if (ConvertRHS)
   7747         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
   7748     }
   7749     return Compatible;
   7750   }
   7751 
   7752   // This check seems unnatural, however it is necessary to ensure the proper
   7753   // conversion of functions/arrays. If the conversion were done for all
   7754   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
   7755   // expressions that suppress this implicit conversion (&, sizeof).
   7756   //
   7757   // Suppress this for references: C++ 8.5.3p5.
   7758   if (!LHSType->isReferenceType()) {
   7759     // FIXME: We potentially allocate here even if ConvertRHS is false.
   7760     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
   7761     if (RHS.isInvalid())
   7762       return Incompatible;
   7763   }
   7764 
   7765   Expr *PRE = RHS.get()->IgnoreParenCasts();
   7766   if (Diagnose && isa<ObjCProtocolExpr>(PRE)) {
   7767     ObjCProtocolDecl *PDecl = cast<ObjCProtocolExpr>(PRE)->getProtocol();
   7768     if (PDecl && !PDecl->hasDefinition()) {
   7769       Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
   7770       Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
   7771     }
   7772   }
   7773 
   7774   CastKind Kind = CK_Invalid;
   7775   Sema::AssignConvertType result =
   7776     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
   7777 
   7778   // C99 6.5.16.1p2: The value of the right operand is converted to the
   7779   // type of the assignment expression.
   7780   // CheckAssignmentConstraints allows the left-hand side to be a reference,
   7781   // so that we can use references in built-in functions even in C.
   7782   // The getNonReferenceType() call makes sure that the resulting expression
   7783   // does not have reference type.
   7784   if (result != Incompatible && RHS.get()->getType() != LHSType) {
   7785     QualType Ty = LHSType.getNonLValueExprType(Context);
   7786     Expr *E = RHS.get();
   7787 
   7788     // Check for various Objective-C errors. If we are not reporting
   7789     // diagnostics and just checking for errors, e.g., during overload
   7790     // resolution, return Incompatible to indicate the failure.
   7791     if (getLangOpts().ObjCAutoRefCount &&
   7792         CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
   7793                                Diagnose, DiagnoseCFAudited) != ACR_okay) {
   7794       if (!Diagnose)
   7795         return Incompatible;
   7796     }
   7797     if (getLangOpts().ObjC1 &&
   7798         (CheckObjCBridgeRelatedConversions(E->getLocStart(), LHSType,
   7799                                            E->getType(), E, Diagnose) ||
   7800          ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
   7801       if (!Diagnose)
   7802         return Incompatible;
   7803       // Replace the expression with a corrected version and continue so we
   7804       // can find further errors.
   7805       RHS = E;
   7806       return Compatible;
   7807     }
   7808 
   7809     if (ConvertRHS)
   7810       RHS = ImpCastExprToType(E, Ty, Kind);
   7811   }
   7812   return result;
   7813 }
   7814 
   7815 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
   7816                                ExprResult &RHS) {
   7817   Diag(Loc, diag::err_typecheck_invalid_operands)
   7818     << LHS.get()->getType() << RHS.get()->getType()
   7819     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7820   return QualType();
   7821 }
   7822 
   7823 /// Try to convert a value of non-vector type to a vector type by converting
   7824 /// the type to the element type of the vector and then performing a splat.
   7825 /// If the language is OpenCL, we only use conversions that promote scalar
   7826 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
   7827 /// for float->int.
   7828 ///
   7829 /// \param scalar - if non-null, actually perform the conversions
   7830 /// \return true if the operation fails (but without diagnosing the failure)
   7831 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
   7832                                      QualType scalarTy,
   7833                                      QualType vectorEltTy,
   7834                                      QualType vectorTy) {
   7835   // The conversion to apply to the scalar before splatting it,
   7836   // if necessary.
   7837   CastKind scalarCast = CK_Invalid;
   7838 
   7839   if (vectorEltTy->isIntegralType(S.Context)) {
   7840     if (!scalarTy->isIntegralType(S.Context))
   7841       return true;
   7842     if (S.getLangOpts().OpenCL &&
   7843         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
   7844       return true;
   7845     scalarCast = CK_IntegralCast;
   7846   } else if (vectorEltTy->isRealFloatingType()) {
   7847     if (scalarTy->isRealFloatingType()) {
   7848       if (S.getLangOpts().OpenCL &&
   7849           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
   7850         return true;
   7851       scalarCast = CK_FloatingCast;
   7852     }
   7853     else if (scalarTy->isIntegralType(S.Context))
   7854       scalarCast = CK_IntegralToFloating;
   7855     else
   7856       return true;
   7857   } else {
   7858     return true;
   7859   }
   7860 
   7861   // Adjust scalar if desired.
   7862   if (scalar) {
   7863     if (scalarCast != CK_Invalid)
   7864       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
   7865     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
   7866   }
   7867   return false;
   7868 }
   7869 
   7870 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
   7871                                    SourceLocation Loc, bool IsCompAssign,
   7872                                    bool AllowBothBool,
   7873                                    bool AllowBoolConversions) {
   7874   if (!IsCompAssign) {
   7875     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
   7876     if (LHS.isInvalid())
   7877       return QualType();
   7878   }
   7879   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   7880   if (RHS.isInvalid())
   7881     return QualType();
   7882 
   7883   // For conversion purposes, we ignore any qualifiers.
   7884   // For example, "const float" and "float" are equivalent.
   7885   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
   7886   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
   7887 
   7888   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
   7889   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
   7890   assert(LHSVecType || RHSVecType);
   7891 
   7892   // AltiVec-style "vector bool op vector bool" combinations are allowed
   7893   // for some operators but not others.
   7894   if (!AllowBothBool &&
   7895       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
   7896       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
   7897     return InvalidOperands(Loc, LHS, RHS);
   7898 
   7899   // If the vector types are identical, return.
   7900   if (Context.hasSameType(LHSType, RHSType))
   7901     return LHSType;
   7902 
   7903   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
   7904   if (LHSVecType && RHSVecType &&
   7905       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   7906     if (isa<ExtVectorType>(LHSVecType)) {
   7907       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   7908       return LHSType;
   7909     }
   7910 
   7911     if (!IsCompAssign)
   7912       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   7913     return RHSType;
   7914   }
   7915 
   7916   // AllowBoolConversions says that bool and non-bool AltiVec vectors
   7917   // can be mixed, with the result being the non-bool type.  The non-bool
   7918   // operand must have integer element type.
   7919   if (AllowBoolConversions && LHSVecType && RHSVecType &&
   7920       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
   7921       (Context.getTypeSize(LHSVecType->getElementType()) ==
   7922        Context.getTypeSize(RHSVecType->getElementType()))) {
   7923     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
   7924         LHSVecType->getElementType()->isIntegerType() &&
   7925         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
   7926       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   7927       return LHSType;
   7928     }
   7929     if (!IsCompAssign &&
   7930         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
   7931         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
   7932         RHSVecType->getElementType()->isIntegerType()) {
   7933       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   7934       return RHSType;
   7935     }
   7936   }
   7937 
   7938   // If there's an ext-vector type and a scalar, try to convert the scalar to
   7939   // the vector element type and splat.
   7940   if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
   7941     if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
   7942                                   LHSVecType->getElementType(), LHSType))
   7943       return LHSType;
   7944   }
   7945   if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
   7946     if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
   7947                                   LHSType, RHSVecType->getElementType(),
   7948                                   RHSType))
   7949       return RHSType;
   7950   }
   7951 
   7952   // If we're allowing lax vector conversions, only the total (data) size needs
   7953   // to be the same. If one of the types is scalar, the result is always the
   7954   // vector type. Don't allow this if the scalar operand is an lvalue.
   7955   QualType VecType = LHSVecType ? LHSType : RHSType;
   7956   QualType ScalarType = LHSVecType ? RHSType : LHSType;
   7957   ExprResult *ScalarExpr = LHSVecType ? &RHS : &LHS;
   7958   if (isLaxVectorConversion(ScalarType, VecType) &&
   7959       !ScalarExpr->get()->isLValue()) {
   7960     *ScalarExpr = ImpCastExprToType(ScalarExpr->get(), VecType, CK_BitCast);
   7961     return VecType;
   7962   }
   7963 
   7964   // Okay, the expression is invalid.
   7965 
   7966   // If there's a non-vector, non-real operand, diagnose that.
   7967   if ((!RHSVecType && !RHSType->isRealType()) ||
   7968       (!LHSVecType && !LHSType->isRealType())) {
   7969     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
   7970       << LHSType << RHSType
   7971       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7972     return QualType();
   7973   }
   7974 
   7975   // OpenCL V1.1 6.2.6.p1:
   7976   // If the operands are of more than one vector type, then an error shall
   7977   // occur. Implicit conversions between vector types are not permitted, per
   7978   // section 6.2.1.
   7979   if (getLangOpts().OpenCL &&
   7980       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
   7981       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
   7982     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
   7983                                                            << RHSType;
   7984     return QualType();
   7985   }
   7986 
   7987   // Otherwise, use the generic diagnostic.
   7988   Diag(Loc, diag::err_typecheck_vector_not_convertable)
   7989     << LHSType << RHSType
   7990     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7991   return QualType();
   7992 }
   7993 
   7994 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
   7995 // expression.  These are mainly cases where the null pointer is used as an
   7996 // integer instead of a pointer.
   7997 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
   7998                                 SourceLocation Loc, bool IsCompare) {
   7999   // The canonical way to check for a GNU null is with isNullPointerConstant,
   8000   // but we use a bit of a hack here for speed; this is a relatively
   8001   // hot path, and isNullPointerConstant is slow.
   8002   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
   8003   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
   8004 
   8005   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
   8006 
   8007   // Avoid analyzing cases where the result will either be invalid (and
   8008   // diagnosed as such) or entirely valid and not something to warn about.
   8009   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
   8010       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
   8011     return;
   8012 
   8013   // Comparison operations would not make sense with a null pointer no matter
   8014   // what the other expression is.
   8015   if (!IsCompare) {
   8016     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
   8017         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
   8018         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
   8019     return;
   8020   }
   8021 
   8022   // The rest of the operations only make sense with a null pointer
   8023   // if the other expression is a pointer.
   8024   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
   8025       NonNullType->canDecayToPointerType())
   8026     return;
   8027 
   8028   S.Diag(Loc, diag::warn_null_in_comparison_operation)
   8029       << LHSNull /* LHS is NULL */ << NonNullType
   8030       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8031 }
   8032 
   8033 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
   8034                                                ExprResult &RHS,
   8035                                                SourceLocation Loc, bool IsDiv) {
   8036   // Check for division/remainder by zero.
   8037   llvm::APSInt RHSValue;
   8038   if (!RHS.get()->isValueDependent() &&
   8039       RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue == 0)
   8040     S.DiagRuntimeBehavior(Loc, RHS.get(),
   8041                           S.PDiag(diag::warn_remainder_division_by_zero)
   8042                             << IsDiv << RHS.get()->getSourceRange());
   8043 }
   8044 
   8045 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
   8046                                            SourceLocation Loc,
   8047                                            bool IsCompAssign, bool IsDiv) {
   8048   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8049 
   8050   if (LHS.get()->getType()->isVectorType() ||
   8051       RHS.get()->getType()->isVectorType())
   8052     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   8053                                /*AllowBothBool*/getLangOpts().AltiVec,
   8054                                /*AllowBoolConversions*/false);
   8055 
   8056   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   8057   if (LHS.isInvalid() || RHS.isInvalid())
   8058     return QualType();
   8059 
   8060 
   8061   if (compType.isNull() || !compType->isArithmeticType())
   8062     return InvalidOperands(Loc, LHS, RHS);
   8063   if (IsDiv)
   8064     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
   8065   return compType;
   8066 }
   8067 
   8068 QualType Sema::CheckRemainderOperands(
   8069   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   8070   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8071 
   8072   if (LHS.get()->getType()->isVectorType() ||
   8073       RHS.get()->getType()->isVectorType()) {
   8074     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   8075         RHS.get()->getType()->hasIntegerRepresentation())
   8076       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   8077                                  /*AllowBothBool*/getLangOpts().AltiVec,
   8078                                  /*AllowBoolConversions*/false);
   8079     return InvalidOperands(Loc, LHS, RHS);
   8080   }
   8081 
   8082   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   8083   if (LHS.isInvalid() || RHS.isInvalid())
   8084     return QualType();
   8085 
   8086   if (compType.isNull() || !compType->isIntegerType())
   8087     return InvalidOperands(Loc, LHS, RHS);
   8088   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
   8089   return compType;
   8090 }
   8091 
   8092 /// \brief Diagnose invalid arithmetic on two void pointers.
   8093 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
   8094                                                 Expr *LHSExpr, Expr *RHSExpr) {
   8095   S.Diag(Loc, S.getLangOpts().CPlusPlus
   8096                 ? diag::err_typecheck_pointer_arith_void_type
   8097                 : diag::ext_gnu_void_ptr)
   8098     << 1 /* two pointers */ << LHSExpr->getSourceRange()
   8099                             << RHSExpr->getSourceRange();
   8100 }
   8101 
   8102 /// \brief Diagnose invalid arithmetic on a void pointer.
   8103 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
   8104                                             Expr *Pointer) {
   8105   S.Diag(Loc, S.getLangOpts().CPlusPlus
   8106                 ? diag::err_typecheck_pointer_arith_void_type
   8107                 : diag::ext_gnu_void_ptr)
   8108     << 0 /* one pointer */ << Pointer->getSourceRange();
   8109 }
   8110 
   8111 /// \brief Diagnose invalid arithmetic on two function pointers.
   8112 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
   8113                                                     Expr *LHS, Expr *RHS) {
   8114   assert(LHS->getType()->isAnyPointerType());
   8115   assert(RHS->getType()->isAnyPointerType());
   8116   S.Diag(Loc, S.getLangOpts().CPlusPlus
   8117                 ? diag::err_typecheck_pointer_arith_function_type
   8118                 : diag::ext_gnu_ptr_func_arith)
   8119     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
   8120     // We only show the second type if it differs from the first.
   8121     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
   8122                                                    RHS->getType())
   8123     << RHS->getType()->getPointeeType()
   8124     << LHS->getSourceRange() << RHS->getSourceRange();
   8125 }
   8126 
   8127 /// \brief Diagnose invalid arithmetic on a function pointer.
   8128 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
   8129                                                 Expr *Pointer) {
   8130   assert(Pointer->getType()->isAnyPointerType());
   8131   S.Diag(Loc, S.getLangOpts().CPlusPlus
   8132                 ? diag::err_typecheck_pointer_arith_function_type
   8133                 : diag::ext_gnu_ptr_func_arith)
   8134     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
   8135     << 0 /* one pointer, so only one type */
   8136     << Pointer->getSourceRange();
   8137 }
   8138 
   8139 /// \brief Emit error if Operand is incomplete pointer type
   8140 ///
   8141 /// \returns True if pointer has incomplete type
   8142 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
   8143                                                  Expr *Operand) {
   8144   QualType ResType = Operand->getType();
   8145   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   8146     ResType = ResAtomicType->getValueType();
   8147 
   8148   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
   8149   QualType PointeeTy = ResType->getPointeeType();
   8150   return S.RequireCompleteType(Loc, PointeeTy,
   8151                                diag::err_typecheck_arithmetic_incomplete_type,
   8152                                PointeeTy, Operand->getSourceRange());
   8153 }
   8154 
   8155 /// \brief Check the validity of an arithmetic pointer operand.
   8156 ///
   8157 /// If the operand has pointer type, this code will check for pointer types
   8158 /// which are invalid in arithmetic operations. These will be diagnosed
   8159 /// appropriately, including whether or not the use is supported as an
   8160 /// extension.
   8161 ///
   8162 /// \returns True when the operand is valid to use (even if as an extension).
   8163 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
   8164                                             Expr *Operand) {
   8165   QualType ResType = Operand->getType();
   8166   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   8167     ResType = ResAtomicType->getValueType();
   8168 
   8169   if (!ResType->isAnyPointerType()) return true;
   8170 
   8171   QualType PointeeTy = ResType->getPointeeType();
   8172   if (PointeeTy->isVoidType()) {
   8173     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
   8174     return !S.getLangOpts().CPlusPlus;
   8175   }
   8176   if (PointeeTy->isFunctionType()) {
   8177     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
   8178     return !S.getLangOpts().CPlusPlus;
   8179   }
   8180 
   8181   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
   8182 
   8183   return true;
   8184 }
   8185 
   8186 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
   8187 /// operands.
   8188 ///
   8189 /// This routine will diagnose any invalid arithmetic on pointer operands much
   8190 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
   8191 /// for emitting a single diagnostic even for operations where both LHS and RHS
   8192 /// are (potentially problematic) pointers.
   8193 ///
   8194 /// \returns True when the operand is valid to use (even if as an extension).
   8195 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
   8196                                                 Expr *LHSExpr, Expr *RHSExpr) {
   8197   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
   8198   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
   8199   if (!isLHSPointer && !isRHSPointer) return true;
   8200 
   8201   QualType LHSPointeeTy, RHSPointeeTy;
   8202   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
   8203   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
   8204 
   8205   // if both are pointers check if operation is valid wrt address spaces
   8206   if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
   8207     const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
   8208     const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
   8209     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
   8210       S.Diag(Loc,
   8211              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
   8212           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
   8213           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   8214       return false;
   8215     }
   8216   }
   8217 
   8218   // Check for arithmetic on pointers to incomplete types.
   8219   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
   8220   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
   8221   if (isLHSVoidPtr || isRHSVoidPtr) {
   8222     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
   8223     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
   8224     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
   8225 
   8226     return !S.getLangOpts().CPlusPlus;
   8227   }
   8228 
   8229   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
   8230   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
   8231   if (isLHSFuncPtr || isRHSFuncPtr) {
   8232     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
   8233     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
   8234                                                                 RHSExpr);
   8235     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
   8236 
   8237     return !S.getLangOpts().CPlusPlus;
   8238   }
   8239 
   8240   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
   8241     return false;
   8242   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
   8243     return false;
   8244 
   8245   return true;
   8246 }
   8247 
   8248 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
   8249 /// literal.
   8250 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
   8251                                   Expr *LHSExpr, Expr *RHSExpr) {
   8252   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
   8253   Expr* IndexExpr = RHSExpr;
   8254   if (!StrExpr) {
   8255     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
   8256     IndexExpr = LHSExpr;
   8257   }
   8258 
   8259   bool IsStringPlusInt = StrExpr &&
   8260       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
   8261   if (!IsStringPlusInt || IndexExpr->isValueDependent())
   8262     return;
   8263 
   8264   llvm::APSInt index;
   8265   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
   8266     unsigned StrLenWithNull = StrExpr->getLength() + 1;
   8267     if (index.isNonNegative() &&
   8268         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
   8269                               index.isUnsigned()))
   8270       return;
   8271   }
   8272 
   8273   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   8274   Self.Diag(OpLoc, diag::warn_string_plus_int)
   8275       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
   8276 
   8277   // Only print a fixit for "str" + int, not for int + "str".
   8278   if (IndexExpr == RHSExpr) {
   8279     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
   8280     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   8281         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   8282         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   8283         << FixItHint::CreateInsertion(EndLoc, "]");
   8284   } else
   8285     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   8286 }
   8287 
   8288 /// \brief Emit a warning when adding a char literal to a string.
   8289 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
   8290                                    Expr *LHSExpr, Expr *RHSExpr) {
   8291   const Expr *StringRefExpr = LHSExpr;
   8292   const CharacterLiteral *CharExpr =
   8293       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
   8294 
   8295   if (!CharExpr) {
   8296     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
   8297     StringRefExpr = RHSExpr;
   8298   }
   8299 
   8300   if (!CharExpr || !StringRefExpr)
   8301     return;
   8302 
   8303   const QualType StringType = StringRefExpr->getType();
   8304 
   8305   // Return if not a PointerType.
   8306   if (!StringType->isAnyPointerType())
   8307     return;
   8308 
   8309   // Return if not a CharacterType.
   8310   if (!StringType->getPointeeType()->isAnyCharacterType())
   8311     return;
   8312 
   8313   ASTContext &Ctx = Self.getASTContext();
   8314   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   8315 
   8316   const QualType CharType = CharExpr->getType();
   8317   if (!CharType->isAnyCharacterType() &&
   8318       CharType->isIntegerType() &&
   8319       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
   8320     Self.Diag(OpLoc, diag::warn_string_plus_char)
   8321         << DiagRange << Ctx.CharTy;
   8322   } else {
   8323     Self.Diag(OpLoc, diag::warn_string_plus_char)
   8324         << DiagRange << CharExpr->getType();
   8325   }
   8326 
   8327   // Only print a fixit for str + char, not for char + str.
   8328   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
   8329     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
   8330     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   8331         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   8332         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   8333         << FixItHint::CreateInsertion(EndLoc, "]");
   8334   } else {
   8335     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   8336   }
   8337 }
   8338 
   8339 /// \brief Emit error when two pointers are incompatible.
   8340 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
   8341                                            Expr *LHSExpr, Expr *RHSExpr) {
   8342   assert(LHSExpr->getType()->isAnyPointerType());
   8343   assert(RHSExpr->getType()->isAnyPointerType());
   8344   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
   8345     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
   8346     << RHSExpr->getSourceRange();
   8347 }
   8348 
   8349 // C99 6.5.6
   8350 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
   8351                                      SourceLocation Loc, BinaryOperatorKind Opc,
   8352                                      QualType* CompLHSTy) {
   8353   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8354 
   8355   if (LHS.get()->getType()->isVectorType() ||
   8356       RHS.get()->getType()->isVectorType()) {
   8357     QualType compType = CheckVectorOperands(
   8358         LHS, RHS, Loc, CompLHSTy,
   8359         /*AllowBothBool*/getLangOpts().AltiVec,
   8360         /*AllowBoolConversions*/getLangOpts().ZVector);
   8361     if (CompLHSTy) *CompLHSTy = compType;
   8362     return compType;
   8363   }
   8364 
   8365   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   8366   if (LHS.isInvalid() || RHS.isInvalid())
   8367     return QualType();
   8368 
   8369   // Diagnose "string literal" '+' int and string '+' "char literal".
   8370   if (Opc == BO_Add) {
   8371     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
   8372     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
   8373   }
   8374 
   8375   // handle the common case first (both operands are arithmetic).
   8376   if (!compType.isNull() && compType->isArithmeticType()) {
   8377     if (CompLHSTy) *CompLHSTy = compType;
   8378     return compType;
   8379   }
   8380 
   8381   // Type-checking.  Ultimately the pointer's going to be in PExp;
   8382   // note that we bias towards the LHS being the pointer.
   8383   Expr *PExp = LHS.get(), *IExp = RHS.get();
   8384 
   8385   bool isObjCPointer;
   8386   if (PExp->getType()->isPointerType()) {
   8387     isObjCPointer = false;
   8388   } else if (PExp->getType()->isObjCObjectPointerType()) {
   8389     isObjCPointer = true;
   8390   } else {
   8391     std::swap(PExp, IExp);
   8392     if (PExp->getType()->isPointerType()) {
   8393       isObjCPointer = false;
   8394     } else if (PExp->getType()->isObjCObjectPointerType()) {
   8395       isObjCPointer = true;
   8396     } else {
   8397       return InvalidOperands(Loc, LHS, RHS);
   8398     }
   8399   }
   8400   assert(PExp->getType()->isAnyPointerType());
   8401 
   8402   if (!IExp->getType()->isIntegerType())
   8403     return InvalidOperands(Loc, LHS, RHS);
   8404 
   8405   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
   8406     return QualType();
   8407 
   8408   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
   8409     return QualType();
   8410 
   8411   // Check array bounds for pointer arithemtic
   8412   CheckArrayAccess(PExp, IExp);
   8413 
   8414   if (CompLHSTy) {
   8415     QualType LHSTy = Context.isPromotableBitField(LHS.get());
   8416     if (LHSTy.isNull()) {
   8417       LHSTy = LHS.get()->getType();
   8418       if (LHSTy->isPromotableIntegerType())
   8419         LHSTy = Context.getPromotedIntegerType(LHSTy);
   8420     }
   8421     *CompLHSTy = LHSTy;
   8422   }
   8423 
   8424   return PExp->getType();
   8425 }
   8426 
   8427 // C99 6.5.6
   8428 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
   8429                                         SourceLocation Loc,
   8430                                         QualType* CompLHSTy) {
   8431   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8432 
   8433   if (LHS.get()->getType()->isVectorType() ||
   8434       RHS.get()->getType()->isVectorType()) {
   8435     QualType compType = CheckVectorOperands(
   8436         LHS, RHS, Loc, CompLHSTy,
   8437         /*AllowBothBool*/getLangOpts().AltiVec,
   8438         /*AllowBoolConversions*/getLangOpts().ZVector);
   8439     if (CompLHSTy) *CompLHSTy = compType;
   8440     return compType;
   8441   }
   8442 
   8443   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   8444   if (LHS.isInvalid() || RHS.isInvalid())
   8445     return QualType();
   8446 
   8447   // Enforce type constraints: C99 6.5.6p3.
   8448 
   8449   // Handle the common case first (both operands are arithmetic).
   8450   if (!compType.isNull() && compType->isArithmeticType()) {
   8451     if (CompLHSTy) *CompLHSTy = compType;
   8452     return compType;
   8453   }
   8454 
   8455   // Either ptr - int   or   ptr - ptr.
   8456   if (LHS.get()->getType()->isAnyPointerType()) {
   8457     QualType lpointee = LHS.get()->getType()->getPointeeType();
   8458 
   8459     // Diagnose bad cases where we step over interface counts.
   8460     if (LHS.get()->getType()->isObjCObjectPointerType() &&
   8461         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
   8462       return QualType();
   8463 
   8464     // The result type of a pointer-int computation is the pointer type.
   8465     if (RHS.get()->getType()->isIntegerType()) {
   8466       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
   8467         return QualType();
   8468 
   8469       // Check array bounds for pointer arithemtic
   8470       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
   8471                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
   8472 
   8473       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   8474       return LHS.get()->getType();
   8475     }
   8476 
   8477     // Handle pointer-pointer subtractions.
   8478     if (const PointerType *RHSPTy
   8479           = RHS.get()->getType()->getAs<PointerType>()) {
   8480       QualType rpointee = RHSPTy->getPointeeType();
   8481 
   8482       if (getLangOpts().CPlusPlus) {
   8483         // Pointee types must be the same: C++ [expr.add]
   8484         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
   8485           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   8486         }
   8487       } else {
   8488         // Pointee types must be compatible C99 6.5.6p3
   8489         if (!Context.typesAreCompatible(
   8490                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
   8491                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
   8492           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   8493           return QualType();
   8494         }
   8495       }
   8496 
   8497       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
   8498                                                LHS.get(), RHS.get()))
   8499         return QualType();
   8500 
   8501       // The pointee type may have zero size.  As an extension, a structure or
   8502       // union may have zero size or an array may have zero length.  In this
   8503       // case subtraction does not make sense.
   8504       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
   8505         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
   8506         if (ElementSize.isZero()) {
   8507           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
   8508             << rpointee.getUnqualifiedType()
   8509             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8510         }
   8511       }
   8512 
   8513       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   8514       return Context.getPointerDiffType();
   8515     }
   8516   }
   8517 
   8518   return InvalidOperands(Loc, LHS, RHS);
   8519 }
   8520 
   8521 static bool isScopedEnumerationType(QualType T) {
   8522   if (const EnumType *ET = T->getAs<EnumType>())
   8523     return ET->getDecl()->isScoped();
   8524   return false;
   8525 }
   8526 
   8527 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
   8528                                    SourceLocation Loc, BinaryOperatorKind Opc,
   8529                                    QualType LHSType) {
   8530   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
   8531   // so skip remaining warnings as we don't want to modify values within Sema.
   8532   if (S.getLangOpts().OpenCL)
   8533     return;
   8534 
   8535   llvm::APSInt Right;
   8536   // Check right/shifter operand
   8537   if (RHS.get()->isValueDependent() ||
   8538       !RHS.get()->EvaluateAsInt(Right, S.Context))
   8539     return;
   8540 
   8541   if (Right.isNegative()) {
   8542     S.DiagRuntimeBehavior(Loc, RHS.get(),
   8543                           S.PDiag(diag::warn_shift_negative)
   8544                             << RHS.get()->getSourceRange());
   8545     return;
   8546   }
   8547   llvm::APInt LeftBits(Right.getBitWidth(),
   8548                        S.Context.getTypeSize(LHS.get()->getType()));
   8549   if (Right.uge(LeftBits)) {
   8550     S.DiagRuntimeBehavior(Loc, RHS.get(),
   8551                           S.PDiag(diag::warn_shift_gt_typewidth)
   8552                             << RHS.get()->getSourceRange());
   8553     return;
   8554   }
   8555   if (Opc != BO_Shl)
   8556     return;
   8557 
   8558   // When left shifting an ICE which is signed, we can check for overflow which
   8559   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
   8560   // integers have defined behavior modulo one more than the maximum value
   8561   // representable in the result type, so never warn for those.
   8562   llvm::APSInt Left;
   8563   if (LHS.get()->isValueDependent() ||
   8564       LHSType->hasUnsignedIntegerRepresentation() ||
   8565       !LHS.get()->EvaluateAsInt(Left, S.Context))
   8566     return;
   8567 
   8568   // If LHS does not have a signed type and non-negative value
   8569   // then, the behavior is undefined. Warn about it.
   8570   if (Left.isNegative()) {
   8571     S.DiagRuntimeBehavior(Loc, LHS.get(),
   8572                           S.PDiag(diag::warn_shift_lhs_negative)
   8573                             << LHS.get()->getSourceRange());
   8574     return;
   8575   }
   8576 
   8577   llvm::APInt ResultBits =
   8578       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
   8579   if (LeftBits.uge(ResultBits))
   8580     return;
   8581   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
   8582   Result = Result.shl(Right);
   8583 
   8584   // Print the bit representation of the signed integer as an unsigned
   8585   // hexadecimal number.
   8586   SmallString<40> HexResult;
   8587   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
   8588 
   8589   // If we are only missing a sign bit, this is less likely to result in actual
   8590   // bugs -- if the result is cast back to an unsigned type, it will have the
   8591   // expected value. Thus we place this behind a different warning that can be
   8592   // turned off separately if needed.
   8593   if (LeftBits == ResultBits - 1) {
   8594     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
   8595         << HexResult << LHSType
   8596         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8597     return;
   8598   }
   8599 
   8600   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
   8601     << HexResult.str() << Result.getMinSignedBits() << LHSType
   8602     << Left.getBitWidth() << LHS.get()->getSourceRange()
   8603     << RHS.get()->getSourceRange();
   8604 }
   8605 
   8606 /// \brief Return the resulting type when an OpenCL vector is shifted
   8607 ///        by a scalar or vector shift amount.
   8608 static QualType checkOpenCLVectorShift(Sema &S,
   8609                                        ExprResult &LHS, ExprResult &RHS,
   8610                                        SourceLocation Loc, bool IsCompAssign) {
   8611   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
   8612   if (!LHS.get()->getType()->isVectorType()) {
   8613     S.Diag(Loc, diag::err_shift_rhs_only_vector)
   8614       << RHS.get()->getType() << LHS.get()->getType()
   8615       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8616     return QualType();
   8617   }
   8618 
   8619   if (!IsCompAssign) {
   8620     LHS = S.UsualUnaryConversions(LHS.get());
   8621     if (LHS.isInvalid()) return QualType();
   8622   }
   8623 
   8624   RHS = S.UsualUnaryConversions(RHS.get());
   8625   if (RHS.isInvalid()) return QualType();
   8626 
   8627   QualType LHSType = LHS.get()->getType();
   8628   const VectorType *LHSVecTy = LHSType->castAs<VectorType>();
   8629   QualType LHSEleType = LHSVecTy->getElementType();
   8630 
   8631   // Note that RHS might not be a vector.
   8632   QualType RHSType = RHS.get()->getType();
   8633   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
   8634   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
   8635 
   8636   // OpenCL v1.1 s6.3.j says that the operands need to be integers.
   8637   if (!LHSEleType->isIntegerType()) {
   8638     S.Diag(Loc, diag::err_typecheck_expect_int)
   8639       << LHS.get()->getType() << LHS.get()->getSourceRange();
   8640     return QualType();
   8641   }
   8642 
   8643   if (!RHSEleType->isIntegerType()) {
   8644     S.Diag(Loc, diag::err_typecheck_expect_int)
   8645       << RHS.get()->getType() << RHS.get()->getSourceRange();
   8646     return QualType();
   8647   }
   8648 
   8649   if (RHSVecTy) {
   8650     // OpenCL v1.1 s6.3.j says that for vector types, the operators
   8651     // are applied component-wise. So if RHS is a vector, then ensure
   8652     // that the number of elements is the same as LHS...
   8653     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
   8654       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
   8655         << LHS.get()->getType() << RHS.get()->getType()
   8656         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8657       return QualType();
   8658     }
   8659   } else {
   8660     // ...else expand RHS to match the number of elements in LHS.
   8661     QualType VecTy =
   8662       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
   8663     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
   8664   }
   8665 
   8666   return LHSType;
   8667 }
   8668 
   8669 // C99 6.5.7
   8670 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
   8671                                   SourceLocation Loc, BinaryOperatorKind Opc,
   8672                                   bool IsCompAssign) {
   8673   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8674 
   8675   // Vector shifts promote their scalar inputs to vector type.
   8676   if (LHS.get()->getType()->isVectorType() ||
   8677       RHS.get()->getType()->isVectorType()) {
   8678     if (LangOpts.OpenCL)
   8679       return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
   8680     if (LangOpts.ZVector) {
   8681       // The shift operators for the z vector extensions work basically
   8682       // like OpenCL shifts, except that neither the LHS nor the RHS is
   8683       // allowed to be a "vector bool".
   8684       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
   8685         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
   8686           return InvalidOperands(Loc, LHS, RHS);
   8687       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
   8688         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
   8689           return InvalidOperands(Loc, LHS, RHS);
   8690       return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
   8691     }
   8692     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   8693                                /*AllowBothBool*/true,
   8694                                /*AllowBoolConversions*/false);
   8695   }
   8696 
   8697   // Shifts don't perform usual arithmetic conversions, they just do integer
   8698   // promotions on each operand. C99 6.5.7p3
   8699 
   8700   // For the LHS, do usual unary conversions, but then reset them away
   8701   // if this is a compound assignment.
   8702   ExprResult OldLHS = LHS;
   8703   LHS = UsualUnaryConversions(LHS.get());
   8704   if (LHS.isInvalid())
   8705     return QualType();
   8706   QualType LHSType = LHS.get()->getType();
   8707   if (IsCompAssign) LHS = OldLHS;
   8708 
   8709   // The RHS is simpler.
   8710   RHS = UsualUnaryConversions(RHS.get());
   8711   if (RHS.isInvalid())
   8712     return QualType();
   8713   QualType RHSType = RHS.get()->getType();
   8714 
   8715   // C99 6.5.7p2: Each of the operands shall have integer type.
   8716   if (!LHSType->hasIntegerRepresentation() ||
   8717       !RHSType->hasIntegerRepresentation())
   8718     return InvalidOperands(Loc, LHS, RHS);
   8719 
   8720   // C++0x: Don't allow scoped enums. FIXME: Use something better than
   8721   // hasIntegerRepresentation() above instead of this.
   8722   if (isScopedEnumerationType(LHSType) ||
   8723       isScopedEnumerationType(RHSType)) {
   8724     return InvalidOperands(Loc, LHS, RHS);
   8725   }
   8726   // Sanity-check shift operands
   8727   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
   8728 
   8729   // "The type of the result is that of the promoted left operand."
   8730   return LHSType;
   8731 }
   8732 
   8733 static bool IsWithinTemplateSpecialization(Decl *D) {
   8734   if (DeclContext *DC = D->getDeclContext()) {
   8735     if (isa<ClassTemplateSpecializationDecl>(DC))
   8736       return true;
   8737     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
   8738       return FD->isFunctionTemplateSpecialization();
   8739   }
   8740   return false;
   8741 }
   8742 
   8743 /// If two different enums are compared, raise a warning.
   8744 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
   8745                                 Expr *RHS) {
   8746   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
   8747   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
   8748 
   8749   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
   8750   if (!LHSEnumType)
   8751     return;
   8752   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
   8753   if (!RHSEnumType)
   8754     return;
   8755 
   8756   // Ignore anonymous enums.
   8757   if (!LHSEnumType->getDecl()->getIdentifier())
   8758     return;
   8759   if (!RHSEnumType->getDecl()->getIdentifier())
   8760     return;
   8761 
   8762   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
   8763     return;
   8764 
   8765   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
   8766       << LHSStrippedType << RHSStrippedType
   8767       << LHS->getSourceRange() << RHS->getSourceRange();
   8768 }
   8769 
   8770 /// \brief Diagnose bad pointer comparisons.
   8771 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
   8772                                               ExprResult &LHS, ExprResult &RHS,
   8773                                               bool IsError) {
   8774   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
   8775                       : diag::ext_typecheck_comparison_of_distinct_pointers)
   8776     << LHS.get()->getType() << RHS.get()->getType()
   8777     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8778 }
   8779 
   8780 /// \brief Returns false if the pointers are converted to a composite type,
   8781 /// true otherwise.
   8782 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
   8783                                            ExprResult &LHS, ExprResult &RHS) {
   8784   // C++ [expr.rel]p2:
   8785   //   [...] Pointer conversions (4.10) and qualification
   8786   //   conversions (4.4) are performed on pointer operands (or on
   8787   //   a pointer operand and a null pointer constant) to bring
   8788   //   them to their composite pointer type. [...]
   8789   //
   8790   // C++ [expr.eq]p1 uses the same notion for (in)equality
   8791   // comparisons of pointers.
   8792 
   8793   // C++ [expr.eq]p2:
   8794   //   In addition, pointers to members can be compared, or a pointer to
   8795   //   member and a null pointer constant. Pointer to member conversions
   8796   //   (4.11) and qualification conversions (4.4) are performed to bring
   8797   //   them to a common type. If one operand is a null pointer constant,
   8798   //   the common type is the type of the other operand. Otherwise, the
   8799   //   common type is a pointer to member type similar (4.4) to the type
   8800   //   of one of the operands, with a cv-qualification signature (4.4)
   8801   //   that is the union of the cv-qualification signatures of the operand
   8802   //   types.
   8803 
   8804   QualType LHSType = LHS.get()->getType();
   8805   QualType RHSType = RHS.get()->getType();
   8806   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
   8807          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
   8808 
   8809   bool NonStandardCompositeType = false;
   8810   bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
   8811   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
   8812   if (T.isNull()) {
   8813     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
   8814     return true;
   8815   }
   8816 
   8817   if (NonStandardCompositeType)
   8818     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
   8819       << LHSType << RHSType << T << LHS.get()->getSourceRange()
   8820       << RHS.get()->getSourceRange();
   8821 
   8822   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
   8823   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
   8824   return false;
   8825 }
   8826 
   8827 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
   8828                                                     ExprResult &LHS,
   8829                                                     ExprResult &RHS,
   8830                                                     bool IsError) {
   8831   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
   8832                       : diag::ext_typecheck_comparison_of_fptr_to_void)
   8833     << LHS.get()->getType() << RHS.get()->getType()
   8834     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8835 }
   8836 
   8837 static bool isObjCObjectLiteral(ExprResult &E) {
   8838   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
   8839   case Stmt::ObjCArrayLiteralClass:
   8840   case Stmt::ObjCDictionaryLiteralClass:
   8841   case Stmt::ObjCStringLiteralClass:
   8842   case Stmt::ObjCBoxedExprClass:
   8843     return true;
   8844   default:
   8845     // Note that ObjCBoolLiteral is NOT an object literal!
   8846     return false;
   8847   }
   8848 }
   8849 
   8850 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
   8851   const ObjCObjectPointerType *Type =
   8852     LHS->getType()->getAs<ObjCObjectPointerType>();
   8853 
   8854   // If this is not actually an Objective-C object, bail out.
   8855   if (!Type)
   8856     return false;
   8857 
   8858   // Get the LHS object's interface type.
   8859   QualType InterfaceType = Type->getPointeeType();
   8860 
   8861   // If the RHS isn't an Objective-C object, bail out.
   8862   if (!RHS->getType()->isObjCObjectPointerType())
   8863     return false;
   8864 
   8865   // Try to find the -isEqual: method.
   8866   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
   8867   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
   8868                                                       InterfaceType,
   8869                                                       /*instance=*/true);
   8870   if (!Method) {
   8871     if (Type->isObjCIdType()) {
   8872       // For 'id', just check the global pool.
   8873       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
   8874                                                   /*receiverId=*/true);
   8875     } else {
   8876       // Check protocols.
   8877       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
   8878                                              /*instance=*/true);
   8879     }
   8880   }
   8881 
   8882   if (!Method)
   8883     return false;
   8884 
   8885   QualType T = Method->parameters()[0]->getType();
   8886   if (!T->isObjCObjectPointerType())
   8887     return false;
   8888 
   8889   QualType R = Method->getReturnType();
   8890   if (!R->isScalarType())
   8891     return false;
   8892 
   8893   return true;
   8894 }
   8895 
   8896 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
   8897   FromE = FromE->IgnoreParenImpCasts();
   8898   switch (FromE->getStmtClass()) {
   8899     default:
   8900       break;
   8901     case Stmt::ObjCStringLiteralClass:
   8902       // "string literal"
   8903       return LK_String;
   8904     case Stmt::ObjCArrayLiteralClass:
   8905       // "array literal"
   8906       return LK_Array;
   8907     case Stmt::ObjCDictionaryLiteralClass:
   8908       // "dictionary literal"
   8909       return LK_Dictionary;
   8910     case Stmt::BlockExprClass:
   8911       return LK_Block;
   8912     case Stmt::ObjCBoxedExprClass: {
   8913       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
   8914       switch (Inner->getStmtClass()) {
   8915         case Stmt::IntegerLiteralClass:
   8916         case Stmt::FloatingLiteralClass:
   8917         case Stmt::CharacterLiteralClass:
   8918         case Stmt::ObjCBoolLiteralExprClass:
   8919         case Stmt::CXXBoolLiteralExprClass:
   8920           // "numeric literal"
   8921           return LK_Numeric;
   8922         case Stmt::ImplicitCastExprClass: {
   8923           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
   8924           // Boolean literals can be represented by implicit casts.
   8925           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
   8926             return LK_Numeric;
   8927           break;
   8928         }
   8929         default:
   8930           break;
   8931       }
   8932       return LK_Boxed;
   8933     }
   8934   }
   8935   return LK_None;
   8936 }
   8937 
   8938 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
   8939                                           ExprResult &LHS, ExprResult &RHS,
   8940                                           BinaryOperator::Opcode Opc){
   8941   Expr *Literal;
   8942   Expr *Other;
   8943   if (isObjCObjectLiteral(LHS)) {
   8944     Literal = LHS.get();
   8945     Other = RHS.get();
   8946   } else {
   8947     Literal = RHS.get();
   8948     Other = LHS.get();
   8949   }
   8950 
   8951   // Don't warn on comparisons against nil.
   8952   Other = Other->IgnoreParenCasts();
   8953   if (Other->isNullPointerConstant(S.getASTContext(),
   8954                                    Expr::NPC_ValueDependentIsNotNull))
   8955     return;
   8956 
   8957   // This should be kept in sync with warn_objc_literal_comparison.
   8958   // LK_String should always be after the other literals, since it has its own
   8959   // warning flag.
   8960   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
   8961   assert(LiteralKind != Sema::LK_Block);
   8962   if (LiteralKind == Sema::LK_None) {
   8963     llvm_unreachable("Unknown Objective-C object literal kind");
   8964   }
   8965 
   8966   if (LiteralKind == Sema::LK_String)
   8967     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
   8968       << Literal->getSourceRange();
   8969   else
   8970     S.Diag(Loc, diag::warn_objc_literal_comparison)
   8971       << LiteralKind << Literal->getSourceRange();
   8972 
   8973   if (BinaryOperator::isEqualityOp(Opc) &&
   8974       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
   8975     SourceLocation Start = LHS.get()->getLocStart();
   8976     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getLocEnd());
   8977     CharSourceRange OpRange =
   8978       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
   8979 
   8980     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
   8981       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
   8982       << FixItHint::CreateReplacement(OpRange, " isEqual:")
   8983       << FixItHint::CreateInsertion(End, "]");
   8984   }
   8985 }
   8986 
   8987 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
   8988                                                 ExprResult &RHS,
   8989                                                 SourceLocation Loc,
   8990                                                 BinaryOperatorKind Opc) {
   8991   // Check that left hand side is !something.
   8992   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
   8993   if (!UO || UO->getOpcode() != UO_LNot) return;
   8994 
   8995   // Only check if the right hand side is non-bool arithmetic type.
   8996   if (RHS.get()->isKnownToHaveBooleanValue()) return;
   8997 
   8998   // Make sure that the something in !something is not bool.
   8999   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
   9000   if (SubExpr->isKnownToHaveBooleanValue()) return;
   9001 
   9002   // Emit warning.
   9003   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
   9004       << Loc;
   9005 
   9006   // First note suggest !(x < y)
   9007   SourceLocation FirstOpen = SubExpr->getLocStart();
   9008   SourceLocation FirstClose = RHS.get()->getLocEnd();
   9009   FirstClose = S.getLocForEndOfToken(FirstClose);
   9010   if (FirstClose.isInvalid())
   9011     FirstOpen = SourceLocation();
   9012   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
   9013       << FixItHint::CreateInsertion(FirstOpen, "(")
   9014       << FixItHint::CreateInsertion(FirstClose, ")");
   9015 
   9016   // Second note suggests (!x) < y
   9017   SourceLocation SecondOpen = LHS.get()->getLocStart();
   9018   SourceLocation SecondClose = LHS.get()->getLocEnd();
   9019   SecondClose = S.getLocForEndOfToken(SecondClose);
   9020   if (SecondClose.isInvalid())
   9021     SecondOpen = SourceLocation();
   9022   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
   9023       << FixItHint::CreateInsertion(SecondOpen, "(")
   9024       << FixItHint::CreateInsertion(SecondClose, ")");
   9025 }
   9026 
   9027 // Get the decl for a simple expression: a reference to a variable,
   9028 // an implicit C++ field reference, or an implicit ObjC ivar reference.
   9029 static ValueDecl *getCompareDecl(Expr *E) {
   9030   if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
   9031     return DR->getDecl();
   9032   if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
   9033     if (Ivar->isFreeIvar())
   9034       return Ivar->getDecl();
   9035   }
   9036   if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
   9037     if (Mem->isImplicitAccess())
   9038       return Mem->getMemberDecl();
   9039   }
   9040   return nullptr;
   9041 }
   9042 
   9043 // C99 6.5.8, C++ [expr.rel]
   9044 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
   9045                                     SourceLocation Loc, BinaryOperatorKind Opc,
   9046                                     bool IsRelational) {
   9047   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
   9048 
   9049   // Handle vector comparisons separately.
   9050   if (LHS.get()->getType()->isVectorType() ||
   9051       RHS.get()->getType()->isVectorType())
   9052     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
   9053 
   9054   QualType LHSType = LHS.get()->getType();
   9055   QualType RHSType = RHS.get()->getType();
   9056 
   9057   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
   9058   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
   9059 
   9060   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
   9061   diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, Opc);
   9062 
   9063   if (!LHSType->hasFloatingRepresentation() &&
   9064       !(LHSType->isBlockPointerType() && IsRelational) &&
   9065       !LHS.get()->getLocStart().isMacroID() &&
   9066       !RHS.get()->getLocStart().isMacroID() &&
   9067       ActiveTemplateInstantiations.empty()) {
   9068     // For non-floating point types, check for self-comparisons of the form
   9069     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   9070     // often indicate logic errors in the program.
   9071     //
   9072     // NOTE: Don't warn about comparison expressions resulting from macro
   9073     // expansion. Also don't warn about comparisons which are only self
   9074     // comparisons within a template specialization. The warnings should catch
   9075     // obvious cases in the definition of the template anyways. The idea is to
   9076     // warn when the typed comparison operator will always evaluate to the same
   9077     // result.
   9078     ValueDecl *DL = getCompareDecl(LHSStripped);
   9079     ValueDecl *DR = getCompareDecl(RHSStripped);
   9080     if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
   9081       DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   9082                           << 0 // self-
   9083                           << (Opc == BO_EQ
   9084                               || Opc == BO_LE
   9085                               || Opc == BO_GE));
   9086     } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
   9087                !DL->getType()->isReferenceType() &&
   9088                !DR->getType()->isReferenceType()) {
   9089         // what is it always going to eval to?
   9090         char always_evals_to;
   9091         switch(Opc) {
   9092         case BO_EQ: // e.g. array1 == array2
   9093           always_evals_to = 0; // false
   9094           break;
   9095         case BO_NE: // e.g. array1 != array2
   9096           always_evals_to = 1; // true
   9097           break;
   9098         default:
   9099           // best we can say is 'a constant'
   9100           always_evals_to = 2; // e.g. array1 <= array2
   9101           break;
   9102         }
   9103         DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   9104                             << 1 // array
   9105                             << always_evals_to);
   9106     }
   9107 
   9108     if (isa<CastExpr>(LHSStripped))
   9109       LHSStripped = LHSStripped->IgnoreParenCasts();
   9110     if (isa<CastExpr>(RHSStripped))
   9111       RHSStripped = RHSStripped->IgnoreParenCasts();
   9112 
   9113     // Warn about comparisons against a string constant (unless the other
   9114     // operand is null), the user probably wants strcmp.
   9115     Expr *literalString = nullptr;
   9116     Expr *literalStringStripped = nullptr;
   9117     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
   9118         !RHSStripped->isNullPointerConstant(Context,
   9119                                             Expr::NPC_ValueDependentIsNull)) {
   9120       literalString = LHS.get();
   9121       literalStringStripped = LHSStripped;
   9122     } else if ((isa<StringLiteral>(RHSStripped) ||
   9123                 isa<ObjCEncodeExpr>(RHSStripped)) &&
   9124                !LHSStripped->isNullPointerConstant(Context,
   9125                                             Expr::NPC_ValueDependentIsNull)) {
   9126       literalString = RHS.get();
   9127       literalStringStripped = RHSStripped;
   9128     }
   9129 
   9130     if (literalString) {
   9131       DiagRuntimeBehavior(Loc, nullptr,
   9132         PDiag(diag::warn_stringcompare)
   9133           << isa<ObjCEncodeExpr>(literalStringStripped)
   9134           << literalString->getSourceRange());
   9135     }
   9136   }
   9137 
   9138   // C99 6.5.8p3 / C99 6.5.9p4
   9139   UsualArithmeticConversions(LHS, RHS);
   9140   if (LHS.isInvalid() || RHS.isInvalid())
   9141     return QualType();
   9142 
   9143   LHSType = LHS.get()->getType();
   9144   RHSType = RHS.get()->getType();
   9145 
   9146   // The result of comparisons is 'bool' in C++, 'int' in C.
   9147   QualType ResultTy = Context.getLogicalOperationType();
   9148 
   9149   if (IsRelational) {
   9150     if (LHSType->isRealType() && RHSType->isRealType())
   9151       return ResultTy;
   9152   } else {
   9153     // Check for comparisons of floating point operands using != and ==.
   9154     if (LHSType->hasFloatingRepresentation())
   9155       CheckFloatComparison(Loc, LHS.get(), RHS.get());
   9156 
   9157     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
   9158       return ResultTy;
   9159   }
   9160 
   9161   const Expr::NullPointerConstantKind LHSNullKind =
   9162       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   9163   const Expr::NullPointerConstantKind RHSNullKind =
   9164       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   9165   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
   9166   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
   9167 
   9168   if (!IsRelational && LHSIsNull != RHSIsNull) {
   9169     bool IsEquality = Opc == BO_EQ;
   9170     if (RHSIsNull)
   9171       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
   9172                                    RHS.get()->getSourceRange());
   9173     else
   9174       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
   9175                                    LHS.get()->getSourceRange());
   9176   }
   9177 
   9178   // All of the following pointer-related warnings are GCC extensions, except
   9179   // when handling null pointer constants.
   9180   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
   9181     QualType LCanPointeeTy =
   9182       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   9183     QualType RCanPointeeTy =
   9184       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   9185 
   9186     if (getLangOpts().CPlusPlus) {
   9187       if (LCanPointeeTy == RCanPointeeTy)
   9188         return ResultTy;
   9189       if (!IsRelational &&
   9190           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   9191         // Valid unless comparison between non-null pointer and function pointer
   9192         // This is a gcc extension compatibility comparison.
   9193         // In a SFINAE context, we treat this as a hard error to maintain
   9194         // conformance with the C++ standard.
   9195         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   9196             && !LHSIsNull && !RHSIsNull) {
   9197           diagnoseFunctionPointerToVoidComparison(
   9198               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
   9199 
   9200           if (isSFINAEContext())
   9201             return QualType();
   9202 
   9203           RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   9204           return ResultTy;
   9205         }
   9206       }
   9207 
   9208       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   9209         return QualType();
   9210       else
   9211         return ResultTy;
   9212     }
   9213     // C99 6.5.9p2 and C99 6.5.8p2
   9214     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
   9215                                    RCanPointeeTy.getUnqualifiedType())) {
   9216       // Valid unless a relational comparison of function pointers
   9217       if (IsRelational && LCanPointeeTy->isFunctionType()) {
   9218         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
   9219           << LHSType << RHSType << LHS.get()->getSourceRange()
   9220           << RHS.get()->getSourceRange();
   9221       }
   9222     } else if (!IsRelational &&
   9223                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   9224       // Valid unless comparison between non-null pointer and function pointer
   9225       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   9226           && !LHSIsNull && !RHSIsNull)
   9227         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
   9228                                                 /*isError*/false);
   9229     } else {
   9230       // Invalid
   9231       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
   9232     }
   9233     if (LCanPointeeTy != RCanPointeeTy) {
   9234       // Treat NULL constant as a special case in OpenCL.
   9235       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
   9236         const PointerType *LHSPtr = LHSType->getAs<PointerType>();
   9237         if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
   9238           Diag(Loc,
   9239                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
   9240               << LHSType << RHSType << 0 /* comparison */
   9241               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   9242         }
   9243       }
   9244       unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
   9245       unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
   9246       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
   9247                                                : CK_BitCast;
   9248       if (LHSIsNull && !RHSIsNull)
   9249         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
   9250       else
   9251         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
   9252     }
   9253     return ResultTy;
   9254   }
   9255 
   9256   if (getLangOpts().CPlusPlus) {
   9257     // Comparison of nullptr_t with itself.
   9258     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
   9259       return ResultTy;
   9260 
   9261     // Comparison of pointers with null pointer constants and equality
   9262     // comparisons of member pointers to null pointer constants.
   9263     if (RHSIsNull &&
   9264         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
   9265          (!IsRelational &&
   9266           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
   9267       RHS = ImpCastExprToType(RHS.get(), LHSType,
   9268                         LHSType->isMemberPointerType()
   9269                           ? CK_NullToMemberPointer
   9270                           : CK_NullToPointer);
   9271       return ResultTy;
   9272     }
   9273     if (LHSIsNull &&
   9274         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
   9275          (!IsRelational &&
   9276           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
   9277       LHS = ImpCastExprToType(LHS.get(), RHSType,
   9278                         RHSType->isMemberPointerType()
   9279                           ? CK_NullToMemberPointer
   9280                           : CK_NullToPointer);
   9281       return ResultTy;
   9282     }
   9283 
   9284     // Comparison of member pointers.
   9285     if (!IsRelational &&
   9286         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
   9287       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   9288         return QualType();
   9289       else
   9290         return ResultTy;
   9291     }
   9292 
   9293     // Handle scoped enumeration types specifically, since they don't promote
   9294     // to integers.
   9295     if (LHS.get()->getType()->isEnumeralType() &&
   9296         Context.hasSameUnqualifiedType(LHS.get()->getType(),
   9297                                        RHS.get()->getType()))
   9298       return ResultTy;
   9299   }
   9300 
   9301   // Handle block pointer types.
   9302   if (!IsRelational && LHSType->isBlockPointerType() &&
   9303       RHSType->isBlockPointerType()) {
   9304     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
   9305     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
   9306 
   9307     if (!LHSIsNull && !RHSIsNull &&
   9308         !Context.typesAreCompatible(lpointee, rpointee)) {
   9309       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   9310         << LHSType << RHSType << LHS.get()->getSourceRange()
   9311         << RHS.get()->getSourceRange();
   9312     }
   9313     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   9314     return ResultTy;
   9315   }
   9316 
   9317   // Allow block pointers to be compared with null pointer constants.
   9318   if (!IsRelational
   9319       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
   9320           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
   9321     if (!LHSIsNull && !RHSIsNull) {
   9322       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
   9323              ->getPointeeType()->isVoidType())
   9324             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
   9325                 ->getPointeeType()->isVoidType())))
   9326         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   9327           << LHSType << RHSType << LHS.get()->getSourceRange()
   9328           << RHS.get()->getSourceRange();
   9329     }
   9330     if (LHSIsNull && !RHSIsNull)
   9331       LHS = ImpCastExprToType(LHS.get(), RHSType,
   9332                               RHSType->isPointerType() ? CK_BitCast
   9333                                 : CK_AnyPointerToBlockPointerCast);
   9334     else
   9335       RHS = ImpCastExprToType(RHS.get(), LHSType,
   9336                               LHSType->isPointerType() ? CK_BitCast
   9337                                 : CK_AnyPointerToBlockPointerCast);
   9338     return ResultTy;
   9339   }
   9340 
   9341   if (LHSType->isObjCObjectPointerType() ||
   9342       RHSType->isObjCObjectPointerType()) {
   9343     const PointerType *LPT = LHSType->getAs<PointerType>();
   9344     const PointerType *RPT = RHSType->getAs<PointerType>();
   9345     if (LPT || RPT) {
   9346       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
   9347       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
   9348 
   9349       if (!LPtrToVoid && !RPtrToVoid &&
   9350           !Context.typesAreCompatible(LHSType, RHSType)) {
   9351         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   9352                                           /*isError*/false);
   9353       }
   9354       if (LHSIsNull && !RHSIsNull) {
   9355         Expr *E = LHS.get();
   9356         if (getLangOpts().ObjCAutoRefCount)
   9357           CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
   9358         LHS = ImpCastExprToType(E, RHSType,
   9359                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   9360       }
   9361       else {
   9362         Expr *E = RHS.get();
   9363         if (getLangOpts().ObjCAutoRefCount)
   9364           CheckObjCARCConversion(SourceRange(), LHSType, E,
   9365                                  CCK_ImplicitConversion, /*Diagnose=*/true,
   9366                                  /*DiagnoseCFAudited=*/false, Opc);
   9367         RHS = ImpCastExprToType(E, LHSType,
   9368                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   9369       }
   9370       return ResultTy;
   9371     }
   9372     if (LHSType->isObjCObjectPointerType() &&
   9373         RHSType->isObjCObjectPointerType()) {
   9374       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
   9375         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   9376                                           /*isError*/false);
   9377       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
   9378         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
   9379 
   9380       if (LHSIsNull && !RHSIsNull)
   9381         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   9382       else
   9383         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   9384       return ResultTy;
   9385     }
   9386   }
   9387   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
   9388       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
   9389     unsigned DiagID = 0;
   9390     bool isError = false;
   9391     if (LangOpts.DebuggerSupport) {
   9392       // Under a debugger, allow the comparison of pointers to integers,
   9393       // since users tend to want to compare addresses.
   9394     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
   9395         (RHSIsNull && RHSType->isIntegerType())) {
   9396       if (IsRelational && !getLangOpts().CPlusPlus)
   9397         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
   9398     } else if (IsRelational && !getLangOpts().CPlusPlus)
   9399       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
   9400     else if (getLangOpts().CPlusPlus) {
   9401       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
   9402       isError = true;
   9403     } else
   9404       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
   9405 
   9406     if (DiagID) {
   9407       Diag(Loc, DiagID)
   9408         << LHSType << RHSType << LHS.get()->getSourceRange()
   9409         << RHS.get()->getSourceRange();
   9410       if (isError)
   9411         return QualType();
   9412     }
   9413 
   9414     if (LHSType->isIntegerType())
   9415       LHS = ImpCastExprToType(LHS.get(), RHSType,
   9416                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   9417     else
   9418       RHS = ImpCastExprToType(RHS.get(), LHSType,
   9419                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   9420     return ResultTy;
   9421   }
   9422 
   9423   // Handle block pointers.
   9424   if (!IsRelational && RHSIsNull
   9425       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
   9426     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
   9427     return ResultTy;
   9428   }
   9429   if (!IsRelational && LHSIsNull
   9430       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
   9431     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
   9432     return ResultTy;
   9433   }
   9434 
   9435   return InvalidOperands(Loc, LHS, RHS);
   9436 }
   9437 
   9438 
   9439 // Return a signed type that is of identical size and number of elements.
   9440 // For floating point vectors, return an integer type of identical size
   9441 // and number of elements.
   9442 QualType Sema::GetSignedVectorType(QualType V) {
   9443   const VectorType *VTy = V->getAs<VectorType>();
   9444   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
   9445   if (TypeSize == Context.getTypeSize(Context.CharTy))
   9446     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
   9447   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
   9448     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
   9449   else if (TypeSize == Context.getTypeSize(Context.IntTy))
   9450     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
   9451   else if (TypeSize == Context.getTypeSize(Context.LongTy))
   9452     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
   9453   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
   9454          "Unhandled vector element size in vector compare");
   9455   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
   9456 }
   9457 
   9458 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
   9459 /// operates on extended vector types.  Instead of producing an IntTy result,
   9460 /// like a scalar comparison, a vector comparison produces a vector of integer
   9461 /// types.
   9462 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
   9463                                           SourceLocation Loc,
   9464                                           bool IsRelational) {
   9465   // Check to make sure we're operating on vectors of the same type and width,
   9466   // Allowing one side to be a scalar of element type.
   9467   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
   9468                               /*AllowBothBool*/true,
   9469                               /*AllowBoolConversions*/getLangOpts().ZVector);
   9470   if (vType.isNull())
   9471     return vType;
   9472 
   9473   QualType LHSType = LHS.get()->getType();
   9474 
   9475   // If AltiVec, the comparison results in a numeric type, i.e.
   9476   // bool for C++, int for C
   9477   if (getLangOpts().AltiVec &&
   9478       vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
   9479     return Context.getLogicalOperationType();
   9480 
   9481   // For non-floating point types, check for self-comparisons of the form
   9482   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   9483   // often indicate logic errors in the program.
   9484   if (!LHSType->hasFloatingRepresentation() &&
   9485       ActiveTemplateInstantiations.empty()) {
   9486     if (DeclRefExpr* DRL
   9487           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
   9488       if (DeclRefExpr* DRR
   9489             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
   9490         if (DRL->getDecl() == DRR->getDecl())
   9491           DiagRuntimeBehavior(Loc, nullptr,
   9492                               PDiag(diag::warn_comparison_always)
   9493                                 << 0 // self-
   9494                                 << 2 // "a constant"
   9495                               );
   9496   }
   9497 
   9498   // Check for comparisons of floating point operands using != and ==.
   9499   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
   9500     assert (RHS.get()->getType()->hasFloatingRepresentation());
   9501     CheckFloatComparison(Loc, LHS.get(), RHS.get());
   9502   }
   9503 
   9504   // Return a signed type for the vector.
   9505   return GetSignedVectorType(vType);
   9506 }
   9507 
   9508 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   9509                                           SourceLocation Loc) {
   9510   // Ensure that either both operands are of the same vector type, or
   9511   // one operand is of a vector type and the other is of its element type.
   9512   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
   9513                                        /*AllowBothBool*/true,
   9514                                        /*AllowBoolConversions*/false);
   9515   if (vType.isNull())
   9516     return InvalidOperands(Loc, LHS, RHS);
   9517   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
   9518       vType->hasFloatingRepresentation())
   9519     return InvalidOperands(Loc, LHS, RHS);
   9520 
   9521   return GetSignedVectorType(LHS.get()->getType());
   9522 }
   9523 
   9524 inline QualType Sema::CheckBitwiseOperands(
   9525   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   9526   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   9527 
   9528   if (LHS.get()->getType()->isVectorType() ||
   9529       RHS.get()->getType()->isVectorType()) {
   9530     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   9531         RHS.get()->getType()->hasIntegerRepresentation())
   9532       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   9533                         /*AllowBothBool*/true,
   9534                         /*AllowBoolConversions*/getLangOpts().ZVector);
   9535     return InvalidOperands(Loc, LHS, RHS);
   9536   }
   9537 
   9538   ExprResult LHSResult = LHS, RHSResult = RHS;
   9539   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
   9540                                                  IsCompAssign);
   9541   if (LHSResult.isInvalid() || RHSResult.isInvalid())
   9542     return QualType();
   9543   LHS = LHSResult.get();
   9544   RHS = RHSResult.get();
   9545 
   9546   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
   9547     return compType;
   9548   return InvalidOperands(Loc, LHS, RHS);
   9549 }
   9550 
   9551 // C99 6.5.[13,14]
   9552 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   9553                                            SourceLocation Loc,
   9554                                            BinaryOperatorKind Opc) {
   9555   // Check vector operands differently.
   9556   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
   9557     return CheckVectorLogicalOperands(LHS, RHS, Loc);
   9558 
   9559   // Diagnose cases where the user write a logical and/or but probably meant a
   9560   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
   9561   // is a constant.
   9562   if (LHS.get()->getType()->isIntegerType() &&
   9563       !LHS.get()->getType()->isBooleanType() &&
   9564       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
   9565       // Don't warn in macros or template instantiations.
   9566       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
   9567     // If the RHS can be constant folded, and if it constant folds to something
   9568     // that isn't 0 or 1 (which indicate a potential logical operation that
   9569     // happened to fold to true/false) then warn.
   9570     // Parens on the RHS are ignored.
   9571     llvm::APSInt Result;
   9572     if (RHS.get()->EvaluateAsInt(Result, Context))
   9573       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
   9574            !RHS.get()->getExprLoc().isMacroID()) ||
   9575           (Result != 0 && Result != 1)) {
   9576         Diag(Loc, diag::warn_logical_instead_of_bitwise)
   9577           << RHS.get()->getSourceRange()
   9578           << (Opc == BO_LAnd ? "&&" : "||");
   9579         // Suggest replacing the logical operator with the bitwise version
   9580         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
   9581             << (Opc == BO_LAnd ? "&" : "|")
   9582             << FixItHint::CreateReplacement(SourceRange(
   9583                                                  Loc, getLocForEndOfToken(Loc)),
   9584                                             Opc == BO_LAnd ? "&" : "|");
   9585         if (Opc == BO_LAnd)
   9586           // Suggest replacing "Foo() && kNonZero" with "Foo()"
   9587           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
   9588               << FixItHint::CreateRemoval(
   9589                   SourceRange(getLocForEndOfToken(LHS.get()->getLocEnd()),
   9590                               RHS.get()->getLocEnd()));
   9591       }
   9592   }
   9593 
   9594   if (!Context.getLangOpts().CPlusPlus) {
   9595     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
   9596     // not operate on the built-in scalar and vector float types.
   9597     if (Context.getLangOpts().OpenCL &&
   9598         Context.getLangOpts().OpenCLVersion < 120) {
   9599       if (LHS.get()->getType()->isFloatingType() ||
   9600           RHS.get()->getType()->isFloatingType())
   9601         return InvalidOperands(Loc, LHS, RHS);
   9602     }
   9603 
   9604     LHS = UsualUnaryConversions(LHS.get());
   9605     if (LHS.isInvalid())
   9606       return QualType();
   9607 
   9608     RHS = UsualUnaryConversions(RHS.get());
   9609     if (RHS.isInvalid())
   9610       return QualType();
   9611 
   9612     if (!LHS.get()->getType()->isScalarType() ||
   9613         !RHS.get()->getType()->isScalarType())
   9614       return InvalidOperands(Loc, LHS, RHS);
   9615 
   9616     return Context.IntTy;
   9617   }
   9618 
   9619   // The following is safe because we only use this method for
   9620   // non-overloadable operands.
   9621 
   9622   // C++ [expr.log.and]p1
   9623   // C++ [expr.log.or]p1
   9624   // The operands are both contextually converted to type bool.
   9625   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
   9626   if (LHSRes.isInvalid())
   9627     return InvalidOperands(Loc, LHS, RHS);
   9628   LHS = LHSRes;
   9629 
   9630   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
   9631   if (RHSRes.isInvalid())
   9632     return InvalidOperands(Loc, LHS, RHS);
   9633   RHS = RHSRes;
   9634 
   9635   // C++ [expr.log.and]p2
   9636   // C++ [expr.log.or]p2
   9637   // The result is a bool.
   9638   return Context.BoolTy;
   9639 }
   9640 
   9641 static bool IsReadonlyMessage(Expr *E, Sema &S) {
   9642   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   9643   if (!ME) return false;
   9644   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
   9645   ObjCMessageExpr *Base =
   9646     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
   9647   if (!Base) return false;
   9648   return Base->getMethodDecl() != nullptr;
   9649 }
   9650 
   9651 /// Is the given expression (which must be 'const') a reference to a
   9652 /// variable which was originally non-const, but which has become
   9653 /// 'const' due to being captured within a block?
   9654 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
   9655 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
   9656   assert(E->isLValue() && E->getType().isConstQualified());
   9657   E = E->IgnoreParens();
   9658 
   9659   // Must be a reference to a declaration from an enclosing scope.
   9660   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   9661   if (!DRE) return NCCK_None;
   9662   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
   9663 
   9664   // The declaration must be a variable which is not declared 'const'.
   9665   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
   9666   if (!var) return NCCK_None;
   9667   if (var->getType().isConstQualified()) return NCCK_None;
   9668   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
   9669 
   9670   // Decide whether the first capture was for a block or a lambda.
   9671   DeclContext *DC = S.CurContext, *Prev = nullptr;
   9672   // Decide whether the first capture was for a block or a lambda.
   9673   while (DC) {
   9674     // For init-capture, it is possible that the variable belongs to the
   9675     // template pattern of the current context.
   9676     if (auto *FD = dyn_cast<FunctionDecl>(DC))
   9677       if (var->isInitCapture() &&
   9678           FD->getTemplateInstantiationPattern() == var->getDeclContext())
   9679         break;
   9680     if (DC == var->getDeclContext())
   9681       break;
   9682     Prev = DC;
   9683     DC = DC->getParent();
   9684   }
   9685   // Unless we have an init-capture, we've gone one step too far.
   9686   if (!var->isInitCapture())
   9687     DC = Prev;
   9688   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
   9689 }
   9690 
   9691 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
   9692   Ty = Ty.getNonReferenceType();
   9693   if (IsDereference && Ty->isPointerType())
   9694     Ty = Ty->getPointeeType();
   9695   return !Ty.isConstQualified();
   9696 }
   9697 
   9698 /// Emit the "read-only variable not assignable" error and print notes to give
   9699 /// more information about why the variable is not assignable, such as pointing
   9700 /// to the declaration of a const variable, showing that a method is const, or
   9701 /// that the function is returning a const reference.
   9702 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
   9703                                     SourceLocation Loc) {
   9704   // Update err_typecheck_assign_const and note_typecheck_assign_const
   9705   // when this enum is changed.
   9706   enum {
   9707     ConstFunction,
   9708     ConstVariable,
   9709     ConstMember,
   9710     ConstMethod,
   9711     ConstUnknown,  // Keep as last element
   9712   };
   9713 
   9714   SourceRange ExprRange = E->getSourceRange();
   9715 
   9716   // Only emit one error on the first const found.  All other consts will emit
   9717   // a note to the error.
   9718   bool DiagnosticEmitted = false;
   9719 
   9720   // Track if the current expression is the result of a derefence, and if the
   9721   // next checked expression is the result of a derefence.
   9722   bool IsDereference = false;
   9723   bool NextIsDereference = false;
   9724 
   9725   // Loop to process MemberExpr chains.
   9726   while (true) {
   9727     IsDereference = NextIsDereference;
   9728     NextIsDereference = false;
   9729 
   9730     E = E->IgnoreParenImpCasts();
   9731     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   9732       NextIsDereference = ME->isArrow();
   9733       const ValueDecl *VD = ME->getMemberDecl();
   9734       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
   9735         // Mutable fields can be modified even if the class is const.
   9736         if (Field->isMutable()) {
   9737           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
   9738           break;
   9739         }
   9740 
   9741         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
   9742           if (!DiagnosticEmitted) {
   9743             S.Diag(Loc, diag::err_typecheck_assign_const)
   9744                 << ExprRange << ConstMember << false /*static*/ << Field
   9745                 << Field->getType();
   9746             DiagnosticEmitted = true;
   9747           }
   9748           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9749               << ConstMember << false /*static*/ << Field << Field->getType()
   9750               << Field->getSourceRange();
   9751         }
   9752         E = ME->getBase();
   9753         continue;
   9754       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
   9755         if (VDecl->getType().isConstQualified()) {
   9756           if (!DiagnosticEmitted) {
   9757             S.Diag(Loc, diag::err_typecheck_assign_const)
   9758                 << ExprRange << ConstMember << true /*static*/ << VDecl
   9759                 << VDecl->getType();
   9760             DiagnosticEmitted = true;
   9761           }
   9762           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9763               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
   9764               << VDecl->getSourceRange();
   9765         }
   9766         // Static fields do not inherit constness from parents.
   9767         break;
   9768       }
   9769       break;
   9770     } // End MemberExpr
   9771     break;
   9772   }
   9773 
   9774   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
   9775     // Function calls
   9776     const FunctionDecl *FD = CE->getDirectCallee();
   9777     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
   9778       if (!DiagnosticEmitted) {
   9779         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
   9780                                                       << ConstFunction << FD;
   9781         DiagnosticEmitted = true;
   9782       }
   9783       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
   9784              diag::note_typecheck_assign_const)
   9785           << ConstFunction << FD << FD->getReturnType()
   9786           << FD->getReturnTypeSourceRange();
   9787     }
   9788   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   9789     // Point to variable declaration.
   9790     if (const ValueDecl *VD = DRE->getDecl()) {
   9791       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
   9792         if (!DiagnosticEmitted) {
   9793           S.Diag(Loc, diag::err_typecheck_assign_const)
   9794               << ExprRange << ConstVariable << VD << VD->getType();
   9795           DiagnosticEmitted = true;
   9796         }
   9797         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9798             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
   9799       }
   9800     }
   9801   } else if (isa<CXXThisExpr>(E)) {
   9802     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
   9803       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
   9804         if (MD->isConst()) {
   9805           if (!DiagnosticEmitted) {
   9806             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
   9807                                                           << ConstMethod << MD;
   9808             DiagnosticEmitted = true;
   9809           }
   9810           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
   9811               << ConstMethod << MD << MD->getSourceRange();
   9812         }
   9813       }
   9814     }
   9815   }
   9816 
   9817   if (DiagnosticEmitted)
   9818     return;
   9819 
   9820   // Can't determine a more specific message, so display the generic error.
   9821   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
   9822 }
   9823 
   9824 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
   9825 /// emit an error and return true.  If so, return false.
   9826 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
   9827   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
   9828 
   9829   S.CheckShadowingDeclModification(E, Loc);
   9830 
   9831   SourceLocation OrigLoc = Loc;
   9832   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
   9833                                                               &Loc);
   9834   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
   9835     IsLV = Expr::MLV_InvalidMessageExpression;
   9836   if (IsLV == Expr::MLV_Valid)
   9837     return false;
   9838 
   9839   unsigned DiagID = 0;
   9840   bool NeedType = false;
   9841   switch (IsLV) { // C99 6.5.16p2
   9842   case Expr::MLV_ConstQualified:
   9843     // Use a specialized diagnostic when we're assigning to an object
   9844     // from an enclosing function or block.
   9845     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
   9846       if (NCCK == NCCK_Block)
   9847         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
   9848       else
   9849         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
   9850       break;
   9851     }
   9852 
   9853     // In ARC, use some specialized diagnostics for occasions where we
   9854     // infer 'const'.  These are always pseudo-strong variables.
   9855     if (S.getLangOpts().ObjCAutoRefCount) {
   9856       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
   9857       if (declRef && isa<VarDecl>(declRef->getDecl())) {
   9858         VarDecl *var = cast<VarDecl>(declRef->getDecl());
   9859 
   9860         // Use the normal diagnostic if it's pseudo-__strong but the
   9861         // user actually wrote 'const'.
   9862         if (var->isARCPseudoStrong() &&
   9863             (!var->getTypeSourceInfo() ||
   9864              !var->getTypeSourceInfo()->getType().isConstQualified())) {
   9865           // There are two pseudo-strong cases:
   9866           //  - self
   9867           ObjCMethodDecl *method = S.getCurMethodDecl();
   9868           if (method && var == method->getSelfDecl())
   9869             DiagID = method->isClassMethod()
   9870               ? diag::err_typecheck_arc_assign_self_class_method
   9871               : diag::err_typecheck_arc_assign_self;
   9872 
   9873           //  - fast enumeration variables
   9874           else
   9875             DiagID = diag::err_typecheck_arr_assign_enumeration;
   9876 
   9877           SourceRange Assign;
   9878           if (Loc != OrigLoc)
   9879             Assign = SourceRange(OrigLoc, OrigLoc);
   9880           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
   9881           // We need to preserve the AST regardless, so migration tool
   9882           // can do its job.
   9883           return false;
   9884         }
   9885       }
   9886     }
   9887 
   9888     // If none of the special cases above are triggered, then this is a
   9889     // simple const assignment.
   9890     if (DiagID == 0) {
   9891       DiagnoseConstAssignment(S, E, Loc);
   9892       return true;
   9893     }
   9894 
   9895     break;
   9896   case Expr::MLV_ConstAddrSpace:
   9897     DiagnoseConstAssignment(S, E, Loc);
   9898     return true;
   9899   case Expr::MLV_ArrayType:
   9900   case Expr::MLV_ArrayTemporary:
   9901     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
   9902     NeedType = true;
   9903     break;
   9904   case Expr::MLV_NotObjectType:
   9905     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
   9906     NeedType = true;
   9907     break;
   9908   case Expr::MLV_LValueCast:
   9909     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
   9910     break;
   9911   case Expr::MLV_Valid:
   9912     llvm_unreachable("did not take early return for MLV_Valid");
   9913   case Expr::MLV_InvalidExpression:
   9914   case Expr::MLV_MemberFunction:
   9915   case Expr::MLV_ClassTemporary:
   9916     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
   9917     break;
   9918   case Expr::MLV_IncompleteType:
   9919   case Expr::MLV_IncompleteVoidType:
   9920     return S.RequireCompleteType(Loc, E->getType(),
   9921              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
   9922   case Expr::MLV_DuplicateVectorComponents:
   9923     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
   9924     break;
   9925   case Expr::MLV_NoSetterProperty:
   9926     llvm_unreachable("readonly properties should be processed differently");
   9927   case Expr::MLV_InvalidMessageExpression:
   9928     DiagID = diag::error_readonly_message_assignment;
   9929     break;
   9930   case Expr::MLV_SubObjCPropertySetting:
   9931     DiagID = diag::error_no_subobject_property_setting;
   9932     break;
   9933   }
   9934 
   9935   SourceRange Assign;
   9936   if (Loc != OrigLoc)
   9937     Assign = SourceRange(OrigLoc, OrigLoc);
   9938   if (NeedType)
   9939     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
   9940   else
   9941     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
   9942   return true;
   9943 }
   9944 
   9945 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
   9946                                          SourceLocation Loc,
   9947                                          Sema &Sema) {
   9948   // C / C++ fields
   9949   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
   9950   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
   9951   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
   9952     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
   9953       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
   9954   }
   9955 
   9956   // Objective-C instance variables
   9957   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
   9958   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
   9959   if (OL && OR && OL->getDecl() == OR->getDecl()) {
   9960     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
   9961     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
   9962     if (RL && RR && RL->getDecl() == RR->getDecl())
   9963       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
   9964   }
   9965 }
   9966 
   9967 // C99 6.5.16.1
   9968 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
   9969                                        SourceLocation Loc,
   9970                                        QualType CompoundType) {
   9971   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
   9972 
   9973   // Verify that LHS is a modifiable lvalue, and emit error if not.
   9974   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
   9975     return QualType();
   9976 
   9977   QualType LHSType = LHSExpr->getType();
   9978   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
   9979                                              CompoundType;
   9980   AssignConvertType ConvTy;
   9981   if (CompoundType.isNull()) {
   9982     Expr *RHSCheck = RHS.get();
   9983 
   9984     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
   9985 
   9986     QualType LHSTy(LHSType);
   9987     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
   9988     if (RHS.isInvalid())
   9989       return QualType();
   9990     // Special case of NSObject attributes on c-style pointer types.
   9991     if (ConvTy == IncompatiblePointer &&
   9992         ((Context.isObjCNSObjectType(LHSType) &&
   9993           RHSType->isObjCObjectPointerType()) ||
   9994          (Context.isObjCNSObjectType(RHSType) &&
   9995           LHSType->isObjCObjectPointerType())))
   9996       ConvTy = Compatible;
   9997 
   9998     if (ConvTy == Compatible &&
   9999         LHSType->isObjCObjectType())
   10000         Diag(Loc, diag::err_objc_object_assignment)
   10001           << LHSType;
   10002 
   10003     // If the RHS is a unary plus or minus, check to see if they = and + are
   10004     // right next to each other.  If so, the user may have typo'd "x =+ 4"
   10005     // instead of "x += 4".
   10006     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
   10007       RHSCheck = ICE->getSubExpr();
   10008     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
   10009       if ((UO->getOpcode() == UO_Plus ||
   10010            UO->getOpcode() == UO_Minus) &&
   10011           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
   10012           // Only if the two operators are exactly adjacent.
   10013           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
   10014           // And there is a space or other character before the subexpr of the
   10015           // unary +/-.  We don't want to warn on "x=-1".
   10016           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
   10017           UO->getSubExpr()->getLocStart().isFileID()) {
   10018         Diag(Loc, diag::warn_not_compound_assign)
   10019           << (UO->getOpcode() == UO_Plus ? "+" : "-")
   10020           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
   10021       }
   10022     }
   10023 
   10024     if (ConvTy == Compatible) {
   10025       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
   10026         // Warn about retain cycles where a block captures the LHS, but
   10027         // not if the LHS is a simple variable into which the block is
   10028         // being stored...unless that variable can be captured by reference!
   10029         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
   10030         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
   10031         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
   10032           checkRetainCycles(LHSExpr, RHS.get());
   10033 
   10034         // It is safe to assign a weak reference into a strong variable.
   10035         // Although this code can still have problems:
   10036         //   id x = self.weakProp;
   10037         //   id y = self.weakProp;
   10038         // we do not warn to warn spuriously when 'x' and 'y' are on separate
   10039         // paths through the function. This should be revisited if
   10040         // -Wrepeated-use-of-weak is made flow-sensitive.
   10041         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
   10042                              RHS.get()->getLocStart()))
   10043           getCurFunction()->markSafeWeakUse(RHS.get());
   10044 
   10045       } else if (getLangOpts().ObjCAutoRefCount) {
   10046         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
   10047       }
   10048     }
   10049   } else {
   10050     // Compound assignment "x += y"
   10051     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
   10052   }
   10053 
   10054   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
   10055                                RHS.get(), AA_Assigning))
   10056     return QualType();
   10057 
   10058   CheckForNullPointerDereference(*this, LHSExpr);
   10059 
   10060   // C99 6.5.16p3: The type of an assignment expression is the type of the
   10061   // left operand unless the left operand has qualified type, in which case
   10062   // it is the unqualified version of the type of the left operand.
   10063   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
   10064   // is converted to the type of the assignment expression (above).
   10065   // C++ 5.17p1: the type of the assignment expression is that of its left
   10066   // operand.
   10067   return (getLangOpts().CPlusPlus
   10068           ? LHSType : LHSType.getUnqualifiedType());
   10069 }
   10070 
   10071 // Only ignore explicit casts to void.
   10072 static bool IgnoreCommaOperand(const Expr *E) {
   10073   E = E->IgnoreParens();
   10074 
   10075   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   10076     if (CE->getCastKind() == CK_ToVoid) {
   10077       return true;
   10078     }
   10079   }
   10080 
   10081   return false;
   10082 }
   10083 
   10084 // Look for instances where it is likely the comma operator is confused with
   10085 // another operator.  There is a whitelist of acceptable expressions for the
   10086 // left hand side of the comma operator, otherwise emit a warning.
   10087 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
   10088   // No warnings in macros
   10089   if (Loc.isMacroID())
   10090     return;
   10091 
   10092   // Don't warn in template instantiations.
   10093   if (!ActiveTemplateInstantiations.empty())
   10094     return;
   10095 
   10096   // Scope isn't fine-grained enough to whitelist the specific cases, so
   10097   // instead, skip more than needed, then call back into here with the
   10098   // CommaVisitor in SemaStmt.cpp.
   10099   // The whitelisted locations are the initialization and increment portions
   10100   // of a for loop.  The additional checks are on the condition of
   10101   // if statements, do/while loops, and for loops.
   10102   const unsigned ForIncrementFlags =
   10103       Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope;
   10104   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
   10105   const unsigned ScopeFlags = getCurScope()->getFlags();
   10106   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
   10107       (ScopeFlags & ForInitFlags) == ForInitFlags)
   10108     return;
   10109 
   10110   // If there are multiple comma operators used together, get the RHS of the
   10111   // of the comma operator as the LHS.
   10112   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
   10113     if (BO->getOpcode() != BO_Comma)
   10114       break;
   10115     LHS = BO->getRHS();
   10116   }
   10117 
   10118   // Only allow some expressions on LHS to not warn.
   10119   if (IgnoreCommaOperand(LHS))
   10120     return;
   10121 
   10122   Diag(Loc, diag::warn_comma_operator);
   10123   Diag(LHS->getLocStart(), diag::note_cast_to_void)
   10124       << LHS->getSourceRange()
   10125       << FixItHint::CreateInsertion(LHS->getLocStart(),
   10126                                     LangOpts.CPlusPlus ? "static_cast<void>("
   10127                                                        : "(void)(")
   10128       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getLocEnd()),
   10129                                     ")");
   10130 }
   10131 
   10132 // C99 6.5.17
   10133 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
   10134                                    SourceLocation Loc) {
   10135   LHS = S.CheckPlaceholderExpr(LHS.get());
   10136   RHS = S.CheckPlaceholderExpr(RHS.get());
   10137   if (LHS.isInvalid() || RHS.isInvalid())
   10138     return QualType();
   10139 
   10140   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
   10141   // operands, but not unary promotions.
   10142   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
   10143 
   10144   // So we treat the LHS as a ignored value, and in C++ we allow the
   10145   // containing site to determine what should be done with the RHS.
   10146   LHS = S.IgnoredValueConversions(LHS.get());
   10147   if (LHS.isInvalid())
   10148     return QualType();
   10149 
   10150   S.DiagnoseUnusedExprResult(LHS.get());
   10151 
   10152   if (!S.getLangOpts().CPlusPlus) {
   10153     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
   10154     if (RHS.isInvalid())
   10155       return QualType();
   10156     if (!RHS.get()->getType()->isVoidType())
   10157       S.RequireCompleteType(Loc, RHS.get()->getType(),
   10158                             diag::err_incomplete_type);
   10159   }
   10160 
   10161   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
   10162     S.DiagnoseCommaOperator(LHS.get(), Loc);
   10163 
   10164   return RHS.get()->getType();
   10165 }
   10166 
   10167 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
   10168 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
   10169 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
   10170                                                ExprValueKind &VK,
   10171                                                ExprObjectKind &OK,
   10172                                                SourceLocation OpLoc,
   10173                                                bool IsInc, bool IsPrefix) {
   10174   if (Op->isTypeDependent())
   10175     return S.Context.DependentTy;
   10176 
   10177   QualType ResType = Op->getType();
   10178   // Atomic types can be used for increment / decrement where the non-atomic
   10179   // versions can, so ignore the _Atomic() specifier for the purpose of
   10180   // checking.
   10181   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   10182     ResType = ResAtomicType->getValueType();
   10183 
   10184   assert(!ResType.isNull() && "no type for increment/decrement expression");
   10185 
   10186   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
   10187     // Decrement of bool is not allowed.
   10188     if (!IsInc) {
   10189       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
   10190       return QualType();
   10191     }
   10192     // Increment of bool sets it to true, but is deprecated.
   10193     S.Diag(OpLoc, S.getLangOpts().CPlusPlus1z ? diag::ext_increment_bool
   10194                                               : diag::warn_increment_bool)
   10195       << Op->getSourceRange();
   10196   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
   10197     // Error on enum increments and decrements in C++ mode
   10198     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
   10199     return QualType();
   10200   } else if (ResType->isRealType()) {
   10201     // OK!
   10202   } else if (ResType->isPointerType()) {
   10203     // C99 6.5.2.4p2, 6.5.6p2
   10204     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
   10205       return QualType();
   10206   } else if (ResType->isObjCObjectPointerType()) {
   10207     // On modern runtimes, ObjC pointer arithmetic is forbidden.
   10208     // Otherwise, we just need a complete type.
   10209     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
   10210         checkArithmeticOnObjCPointer(S, OpLoc, Op))
   10211       return QualType();
   10212   } else if (ResType->isAnyComplexType()) {
   10213     // C99 does not support ++/-- on complex types, we allow as an extension.
   10214     S.Diag(OpLoc, diag::ext_integer_increment_complex)
   10215       << ResType << Op->getSourceRange();
   10216   } else if (ResType->isPlaceholderType()) {
   10217     ExprResult PR = S.CheckPlaceholderExpr(Op);
   10218     if (PR.isInvalid()) return QualType();
   10219     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
   10220                                           IsInc, IsPrefix);
   10221   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
   10222     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
   10223   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
   10224              (ResType->getAs<VectorType>()->getVectorKind() !=
   10225               VectorType::AltiVecBool)) {
   10226     // The z vector extensions allow ++ and -- for non-bool vectors.
   10227   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
   10228             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
   10229     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
   10230   } else {
   10231     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
   10232       << ResType << int(IsInc) << Op->getSourceRange();
   10233     return QualType();
   10234   }
   10235   // At this point, we know we have a real, complex or pointer type.
   10236   // Now make sure the operand is a modifiable lvalue.
   10237   if (CheckForModifiableLvalue(Op, OpLoc, S))
   10238     return QualType();
   10239   // In C++, a prefix increment is the same type as the operand. Otherwise
   10240   // (in C or with postfix), the increment is the unqualified type of the
   10241   // operand.
   10242   if (IsPrefix && S.getLangOpts().CPlusPlus) {
   10243     VK = VK_LValue;
   10244     OK = Op->getObjectKind();
   10245     return ResType;
   10246   } else {
   10247     VK = VK_RValue;
   10248     return ResType.getUnqualifiedType();
   10249   }
   10250 }
   10251 
   10252 
   10253 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
   10254 /// This routine allows us to typecheck complex/recursive expressions
   10255 /// where the declaration is needed for type checking. We only need to
   10256 /// handle cases when the expression references a function designator
   10257 /// or is an lvalue. Here are some examples:
   10258 ///  - &(x) => x
   10259 ///  - &*****f => f for f a function designator.
   10260 ///  - &s.xx => s
   10261 ///  - &s.zz[1].yy -> s, if zz is an array
   10262 ///  - *(x + 1) -> x, if x is an array
   10263 ///  - &"123"[2] -> 0
   10264 ///  - & __real__ x -> x
   10265 static ValueDecl *getPrimaryDecl(Expr *E) {
   10266   switch (E->getStmtClass()) {
   10267   case Stmt::DeclRefExprClass:
   10268     return cast<DeclRefExpr>(E)->getDecl();
   10269   case Stmt::MemberExprClass:
   10270     // If this is an arrow operator, the address is an offset from
   10271     // the base's value, so the object the base refers to is
   10272     // irrelevant.
   10273     if (cast<MemberExpr>(E)->isArrow())
   10274       return nullptr;
   10275     // Otherwise, the expression refers to a part of the base
   10276     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
   10277   case Stmt::ArraySubscriptExprClass: {
   10278     // FIXME: This code shouldn't be necessary!  We should catch the implicit
   10279     // promotion of register arrays earlier.
   10280     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
   10281     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
   10282       if (ICE->getSubExpr()->getType()->isArrayType())
   10283         return getPrimaryDecl(ICE->getSubExpr());
   10284     }
   10285     return nullptr;
   10286   }
   10287   case Stmt::UnaryOperatorClass: {
   10288     UnaryOperator *UO = cast<UnaryOperator>(E);
   10289 
   10290     switch(UO->getOpcode()) {
   10291     case UO_Real:
   10292     case UO_Imag:
   10293     case UO_Extension:
   10294       return getPrimaryDecl(UO->getSubExpr());
   10295     default:
   10296       return nullptr;
   10297     }
   10298   }
   10299   case Stmt::ParenExprClass:
   10300     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
   10301   case Stmt::ImplicitCastExprClass:
   10302     // If the result of an implicit cast is an l-value, we care about
   10303     // the sub-expression; otherwise, the result here doesn't matter.
   10304     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
   10305   default:
   10306     return nullptr;
   10307   }
   10308 }
   10309 
   10310 namespace {
   10311   enum {
   10312     AO_Bit_Field = 0,
   10313     AO_Vector_Element = 1,
   10314     AO_Property_Expansion = 2,
   10315     AO_Register_Variable = 3,
   10316     AO_No_Error = 4
   10317   };
   10318 }
   10319 /// \brief Diagnose invalid operand for address of operations.
   10320 ///
   10321 /// \param Type The type of operand which cannot have its address taken.
   10322 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
   10323                                          Expr *E, unsigned Type) {
   10324   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
   10325 }
   10326 
   10327 /// CheckAddressOfOperand - The operand of & must be either a function
   10328 /// designator or an lvalue designating an object. If it is an lvalue, the
   10329 /// object cannot be declared with storage class register or be a bit field.
   10330 /// Note: The usual conversions are *not* applied to the operand of the &
   10331 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
   10332 /// In C++, the operand might be an overloaded function name, in which case
   10333 /// we allow the '&' but retain the overloaded-function type.
   10334 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
   10335   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
   10336     if (PTy->getKind() == BuiltinType::Overload) {
   10337       Expr *E = OrigOp.get()->IgnoreParens();
   10338       if (!isa<OverloadExpr>(E)) {
   10339         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
   10340         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
   10341           << OrigOp.get()->getSourceRange();
   10342         return QualType();
   10343       }
   10344 
   10345       OverloadExpr *Ovl = cast<OverloadExpr>(E);
   10346       if (isa<UnresolvedMemberExpr>(Ovl))
   10347         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
   10348           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   10349             << OrigOp.get()->getSourceRange();
   10350           return QualType();
   10351         }
   10352 
   10353       return Context.OverloadTy;
   10354     }
   10355 
   10356     if (PTy->getKind() == BuiltinType::UnknownAny)
   10357       return Context.UnknownAnyTy;
   10358 
   10359     if (PTy->getKind() == BuiltinType::BoundMember) {
   10360       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   10361         << OrigOp.get()->getSourceRange();
   10362       return QualType();
   10363     }
   10364 
   10365     OrigOp = CheckPlaceholderExpr(OrigOp.get());
   10366     if (OrigOp.isInvalid()) return QualType();
   10367   }
   10368 
   10369   if (OrigOp.get()->isTypeDependent())
   10370     return Context.DependentTy;
   10371 
   10372   assert(!OrigOp.get()->getType()->isPlaceholderType());
   10373 
   10374   // Make sure to ignore parentheses in subsequent checks
   10375   Expr *op = OrigOp.get()->IgnoreParens();
   10376 
   10377   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
   10378   if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
   10379     Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
   10380     return QualType();
   10381   }
   10382 
   10383   if (getLangOpts().C99) {
   10384     // Implement C99-only parts of addressof rules.
   10385     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
   10386       if (uOp->getOpcode() == UO_Deref)
   10387         // Per C99 6.5.3.2, the address of a deref always returns a valid result
   10388         // (assuming the deref expression is valid).
   10389         return uOp->getSubExpr()->getType();
   10390     }
   10391     // Technically, there should be a check for array subscript
   10392     // expressions here, but the result of one is always an lvalue anyway.
   10393   }
   10394   ValueDecl *dcl = getPrimaryDecl(op);
   10395 
   10396   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
   10397     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
   10398                                            op->getLocStart()))
   10399       return QualType();
   10400 
   10401   Expr::LValueClassification lval = op->ClassifyLValue(Context);
   10402   unsigned AddressOfError = AO_No_Error;
   10403 
   10404   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
   10405     bool sfinae = (bool)isSFINAEContext();
   10406     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
   10407                                   : diag::ext_typecheck_addrof_temporary)
   10408       << op->getType() << op->getSourceRange();
   10409     if (sfinae)
   10410       return QualType();
   10411     // Materialize the temporary as an lvalue so that we can take its address.
   10412     OrigOp = op =
   10413         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
   10414   } else if (isa<ObjCSelectorExpr>(op)) {
   10415     return Context.getPointerType(op->getType());
   10416   } else if (lval == Expr::LV_MemberFunction) {
   10417     // If it's an instance method, make a member pointer.
   10418     // The expression must have exactly the form &A::foo.
   10419 
   10420     // If the underlying expression isn't a decl ref, give up.
   10421     if (!isa<DeclRefExpr>(op)) {
   10422       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   10423         << OrigOp.get()->getSourceRange();
   10424       return QualType();
   10425     }
   10426     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
   10427     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
   10428 
   10429     // The id-expression was parenthesized.
   10430     if (OrigOp.get() != DRE) {
   10431       Diag(OpLoc, diag::err_parens_pointer_member_function)
   10432         << OrigOp.get()->getSourceRange();
   10433 
   10434     // The method was named without a qualifier.
   10435     } else if (!DRE->getQualifier()) {
   10436       if (MD->getParent()->getName().empty())
   10437         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   10438           << op->getSourceRange();
   10439       else {
   10440         SmallString<32> Str;
   10441         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
   10442         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   10443           << op->getSourceRange()
   10444           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
   10445       }
   10446     }
   10447 
   10448     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
   10449     if (isa<CXXDestructorDecl>(MD))
   10450       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
   10451 
   10452     QualType MPTy = Context.getMemberPointerType(
   10453         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
   10454     // Under the MS ABI, lock down the inheritance model now.
   10455     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   10456       (void)isCompleteType(OpLoc, MPTy);
   10457     return MPTy;
   10458   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
   10459     // C99 6.5.3.2p1
   10460     // The operand must be either an l-value or a function designator
   10461     if (!op->getType()->isFunctionType()) {
   10462       // Use a special diagnostic for loads from property references.
   10463       if (isa<PseudoObjectExpr>(op)) {
   10464         AddressOfError = AO_Property_Expansion;
   10465       } else {
   10466         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
   10467           << op->getType() << op->getSourceRange();
   10468         return QualType();
   10469       }
   10470     }
   10471   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
   10472     // The operand cannot be a bit-field
   10473     AddressOfError = AO_Bit_Field;
   10474   } else if (op->getObjectKind() == OK_VectorComponent) {
   10475     // The operand cannot be an element of a vector
   10476     AddressOfError = AO_Vector_Element;
   10477   } else if (dcl) { // C99 6.5.3.2p1
   10478     // We have an lvalue with a decl. Make sure the decl is not declared
   10479     // with the register storage-class specifier.
   10480     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
   10481       // in C++ it is not error to take address of a register
   10482       // variable (c++03 7.1.1P3)
   10483       if (vd->getStorageClass() == SC_Register &&
   10484           !getLangOpts().CPlusPlus) {
   10485         AddressOfError = AO_Register_Variable;
   10486       }
   10487     } else if (isa<MSPropertyDecl>(dcl)) {
   10488       AddressOfError = AO_Property_Expansion;
   10489     } else if (isa<FunctionTemplateDecl>(dcl)) {
   10490       return Context.OverloadTy;
   10491     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
   10492       // Okay: we can take the address of a field.
   10493       // Could be a pointer to member, though, if there is an explicit
   10494       // scope qualifier for the class.
   10495       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
   10496         DeclContext *Ctx = dcl->getDeclContext();
   10497         if (Ctx && Ctx->isRecord()) {
   10498           if (dcl->getType()->isReferenceType()) {
   10499             Diag(OpLoc,
   10500                  diag::err_cannot_form_pointer_to_member_of_reference_type)
   10501               << dcl->getDeclName() << dcl->getType();
   10502             return QualType();
   10503           }
   10504 
   10505           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
   10506             Ctx = Ctx->getParent();
   10507 
   10508           QualType MPTy = Context.getMemberPointerType(
   10509               op->getType(),
   10510               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
   10511           // Under the MS ABI, lock down the inheritance model now.
   10512           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   10513             (void)isCompleteType(OpLoc, MPTy);
   10514           return MPTy;
   10515         }
   10516       }
   10517     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
   10518       llvm_unreachable("Unknown/unexpected decl type");
   10519   }
   10520 
   10521   if (AddressOfError != AO_No_Error) {
   10522     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
   10523     return QualType();
   10524   }
   10525 
   10526   if (lval == Expr::LV_IncompleteVoidType) {
   10527     // Taking the address of a void variable is technically illegal, but we
   10528     // allow it in cases which are otherwise valid.
   10529     // Example: "extern void x; void* y = &x;".
   10530     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
   10531   }
   10532 
   10533   // If the operand has type "type", the result has type "pointer to type".
   10534   if (op->getType()->isObjCObjectType())
   10535     return Context.getObjCObjectPointerType(op->getType());
   10536 
   10537   return Context.getPointerType(op->getType());
   10538 }
   10539 
   10540 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
   10541   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
   10542   if (!DRE)
   10543     return;
   10544   const Decl *D = DRE->getDecl();
   10545   if (!D)
   10546     return;
   10547   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
   10548   if (!Param)
   10549     return;
   10550   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
   10551     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
   10552       return;
   10553   if (FunctionScopeInfo *FD = S.getCurFunction())
   10554     if (!FD->ModifiedNonNullParams.count(Param))
   10555       FD->ModifiedNonNullParams.insert(Param);
   10556 }
   10557 
   10558 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
   10559 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
   10560                                         SourceLocation OpLoc) {
   10561   if (Op->isTypeDependent())
   10562     return S.Context.DependentTy;
   10563 
   10564   ExprResult ConvResult = S.UsualUnaryConversions(Op);
   10565   if (ConvResult.isInvalid())
   10566     return QualType();
   10567   Op = ConvResult.get();
   10568   QualType OpTy = Op->getType();
   10569   QualType Result;
   10570 
   10571   if (isa<CXXReinterpretCastExpr>(Op)) {
   10572     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
   10573     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
   10574                                      Op->getSourceRange());
   10575   }
   10576 
   10577   if (const PointerType *PT = OpTy->getAs<PointerType>())
   10578   {
   10579     Result = PT->getPointeeType();
   10580   }
   10581   else if (const ObjCObjectPointerType *OPT =
   10582              OpTy->getAs<ObjCObjectPointerType>())
   10583     Result = OPT->getPointeeType();
   10584   else {
   10585     ExprResult PR = S.CheckPlaceholderExpr(Op);
   10586     if (PR.isInvalid()) return QualType();
   10587     if (PR.get() != Op)
   10588       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
   10589   }
   10590 
   10591   if (Result.isNull()) {
   10592     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
   10593       << OpTy << Op->getSourceRange();
   10594     return QualType();
   10595   }
   10596 
   10597   // Note that per both C89 and C99, indirection is always legal, even if Result
   10598   // is an incomplete type or void.  It would be possible to warn about
   10599   // dereferencing a void pointer, but it's completely well-defined, and such a
   10600   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
   10601   // for pointers to 'void' but is fine for any other pointer type:
   10602   //
   10603   // C++ [expr.unary.op]p1:
   10604   //   [...] the expression to which [the unary * operator] is applied shall
   10605   //   be a pointer to an object type, or a pointer to a function type
   10606   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
   10607     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
   10608       << OpTy << Op->getSourceRange();
   10609 
   10610   // Dereferences are usually l-values...
   10611   VK = VK_LValue;
   10612 
   10613   // ...except that certain expressions are never l-values in C.
   10614   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
   10615     VK = VK_RValue;
   10616 
   10617   return Result;
   10618 }
   10619 
   10620 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
   10621   BinaryOperatorKind Opc;
   10622   switch (Kind) {
   10623   default: llvm_unreachable("Unknown binop!");
   10624   case tok::periodstar:           Opc = BO_PtrMemD; break;
   10625   case tok::arrowstar:            Opc = BO_PtrMemI; break;
   10626   case tok::star:                 Opc = BO_Mul; break;
   10627   case tok::slash:                Opc = BO_Div; break;
   10628   case tok::percent:              Opc = BO_Rem; break;
   10629   case tok::plus:                 Opc = BO_Add; break;
   10630   case tok::minus:                Opc = BO_Sub; break;
   10631   case tok::lessless:             Opc = BO_Shl; break;
   10632   case tok::greatergreater:       Opc = BO_Shr; break;
   10633   case tok::lessequal:            Opc = BO_LE; break;
   10634   case tok::less:                 Opc = BO_LT; break;
   10635   case tok::greaterequal:         Opc = BO_GE; break;
   10636   case tok::greater:              Opc = BO_GT; break;
   10637   case tok::exclaimequal:         Opc = BO_NE; break;
   10638   case tok::equalequal:           Opc = BO_EQ; break;
   10639   case tok::amp:                  Opc = BO_And; break;
   10640   case tok::caret:                Opc = BO_Xor; break;
   10641   case tok::pipe:                 Opc = BO_Or; break;
   10642   case tok::ampamp:               Opc = BO_LAnd; break;
   10643   case tok::pipepipe:             Opc = BO_LOr; break;
   10644   case tok::equal:                Opc = BO_Assign; break;
   10645   case tok::starequal:            Opc = BO_MulAssign; break;
   10646   case tok::slashequal:           Opc = BO_DivAssign; break;
   10647   case tok::percentequal:         Opc = BO_RemAssign; break;
   10648   case tok::plusequal:            Opc = BO_AddAssign; break;
   10649   case tok::minusequal:           Opc = BO_SubAssign; break;
   10650   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
   10651   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
   10652   case tok::ampequal:             Opc = BO_AndAssign; break;
   10653   case tok::caretequal:           Opc = BO_XorAssign; break;
   10654   case tok::pipeequal:            Opc = BO_OrAssign; break;
   10655   case tok::comma:                Opc = BO_Comma; break;
   10656   }
   10657   return Opc;
   10658 }
   10659 
   10660 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
   10661   tok::TokenKind Kind) {
   10662   UnaryOperatorKind Opc;
   10663   switch (Kind) {
   10664   default: llvm_unreachable("Unknown unary op!");
   10665   case tok::plusplus:     Opc = UO_PreInc; break;
   10666   case tok::minusminus:   Opc = UO_PreDec; break;
   10667   case tok::amp:          Opc = UO_AddrOf; break;
   10668   case tok::star:         Opc = UO_Deref; break;
   10669   case tok::plus:         Opc = UO_Plus; break;
   10670   case tok::minus:        Opc = UO_Minus; break;
   10671   case tok::tilde:        Opc = UO_Not; break;
   10672   case tok::exclaim:      Opc = UO_LNot; break;
   10673   case tok::kw___real:    Opc = UO_Real; break;
   10674   case tok::kw___imag:    Opc = UO_Imag; break;
   10675   case tok::kw___extension__: Opc = UO_Extension; break;
   10676   }
   10677   return Opc;
   10678 }
   10679 
   10680 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
   10681 /// This warning is only emitted for builtin assignment operations. It is also
   10682 /// suppressed in the event of macro expansions.
   10683 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
   10684                                    SourceLocation OpLoc) {
   10685   if (!S.ActiveTemplateInstantiations.empty())
   10686     return;
   10687   if (OpLoc.isInvalid() || OpLoc.isMacroID())
   10688     return;
   10689   LHSExpr = LHSExpr->IgnoreParenImpCasts();
   10690   RHSExpr = RHSExpr->IgnoreParenImpCasts();
   10691   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
   10692   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
   10693   if (!LHSDeclRef || !RHSDeclRef ||
   10694       LHSDeclRef->getLocation().isMacroID() ||
   10695       RHSDeclRef->getLocation().isMacroID())
   10696     return;
   10697   const ValueDecl *LHSDecl =
   10698     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
   10699   const ValueDecl *RHSDecl =
   10700     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
   10701   if (LHSDecl != RHSDecl)
   10702     return;
   10703   if (LHSDecl->getType().isVolatileQualified())
   10704     return;
   10705   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
   10706     if (RefTy->getPointeeType().isVolatileQualified())
   10707       return;
   10708 
   10709   S.Diag(OpLoc, diag::warn_self_assignment)
   10710       << LHSDeclRef->getType()
   10711       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   10712 }
   10713 
   10714 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
   10715 /// is usually indicative of introspection within the Objective-C pointer.
   10716 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
   10717                                           SourceLocation OpLoc) {
   10718   if (!S.getLangOpts().ObjC1)
   10719     return;
   10720 
   10721   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
   10722   const Expr *LHS = L.get();
   10723   const Expr *RHS = R.get();
   10724 
   10725   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   10726     ObjCPointerExpr = LHS;
   10727     OtherExpr = RHS;
   10728   }
   10729   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   10730     ObjCPointerExpr = RHS;
   10731     OtherExpr = LHS;
   10732   }
   10733 
   10734   // This warning is deliberately made very specific to reduce false
   10735   // positives with logic that uses '&' for hashing.  This logic mainly
   10736   // looks for code trying to introspect into tagged pointers, which
   10737   // code should generally never do.
   10738   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
   10739     unsigned Diag = diag::warn_objc_pointer_masking;
   10740     // Determine if we are introspecting the result of performSelectorXXX.
   10741     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
   10742     // Special case messages to -performSelector and friends, which
   10743     // can return non-pointer values boxed in a pointer value.
   10744     // Some clients may wish to silence warnings in this subcase.
   10745     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
   10746       Selector S = ME->getSelector();
   10747       StringRef SelArg0 = S.getNameForSlot(0);
   10748       if (SelArg0.startswith("performSelector"))
   10749         Diag = diag::warn_objc_pointer_masking_performSelector;
   10750     }
   10751 
   10752     S.Diag(OpLoc, Diag)
   10753       << ObjCPointerExpr->getSourceRange();
   10754   }
   10755 }
   10756 
   10757 static NamedDecl *getDeclFromExpr(Expr *E) {
   10758   if (!E)
   10759     return nullptr;
   10760   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
   10761     return DRE->getDecl();
   10762   if (auto *ME = dyn_cast<MemberExpr>(E))
   10763     return ME->getMemberDecl();
   10764   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
   10765     return IRE->getDecl();
   10766   return nullptr;
   10767 }
   10768 
   10769 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
   10770 /// operator @p Opc at location @c TokLoc. This routine only supports
   10771 /// built-in operations; ActOnBinOp handles overloaded operators.
   10772 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
   10773                                     BinaryOperatorKind Opc,
   10774                                     Expr *LHSExpr, Expr *RHSExpr) {
   10775   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
   10776     // The syntax only allows initializer lists on the RHS of assignment,
   10777     // so we don't need to worry about accepting invalid code for
   10778     // non-assignment operators.
   10779     // C++11 5.17p9:
   10780     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
   10781     //   of x = {} is x = T().
   10782     InitializationKind Kind =
   10783         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
   10784     InitializedEntity Entity =
   10785         InitializedEntity::InitializeTemporary(LHSExpr->getType());
   10786     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
   10787     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
   10788     if (Init.isInvalid())
   10789       return Init;
   10790     RHSExpr = Init.get();
   10791   }
   10792 
   10793   ExprResult LHS = LHSExpr, RHS = RHSExpr;
   10794   QualType ResultTy;     // Result type of the binary operator.
   10795   // The following two variables are used for compound assignment operators
   10796   QualType CompLHSTy;    // Type of LHS after promotions for computation
   10797   QualType CompResultTy; // Type of computation result
   10798   ExprValueKind VK = VK_RValue;
   10799   ExprObjectKind OK = OK_Ordinary;
   10800 
   10801   if (!getLangOpts().CPlusPlus) {
   10802     // C cannot handle TypoExpr nodes on either side of a binop because it
   10803     // doesn't handle dependent types properly, so make sure any TypoExprs have
   10804     // been dealt with before checking the operands.
   10805     LHS = CorrectDelayedTyposInExpr(LHSExpr);
   10806     RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
   10807       if (Opc != BO_Assign)
   10808         return ExprResult(E);
   10809       // Avoid correcting the RHS to the same Expr as the LHS.
   10810       Decl *D = getDeclFromExpr(E);
   10811       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
   10812     });
   10813     if (!LHS.isUsable() || !RHS.isUsable())
   10814       return ExprError();
   10815   }
   10816 
   10817   if (getLangOpts().OpenCL) {
   10818     QualType LHSTy = LHSExpr->getType();
   10819     QualType RHSTy = RHSExpr->getType();
   10820     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
   10821     // the ATOMIC_VAR_INIT macro.
   10822     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
   10823       SourceRange SR(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   10824       if (BO_Assign == Opc)
   10825         Diag(OpLoc, diag::err_atomic_init_constant) << SR;
   10826       else
   10827         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
   10828       return ExprError();
   10829     }
   10830 
   10831     // OpenCL special types - image, sampler, pipe, and blocks are to be used
   10832     // only with a builtin functions and therefore should be disallowed here.
   10833     if (LHSTy->isImageType() || RHSTy->isImageType() ||
   10834         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
   10835         LHSTy->isPipeType() || RHSTy->isPipeType() ||
   10836         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
   10837       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
   10838       return ExprError();
   10839     }
   10840   }
   10841 
   10842   switch (Opc) {
   10843   case BO_Assign:
   10844     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
   10845     if (getLangOpts().CPlusPlus &&
   10846         LHS.get()->getObjectKind() != OK_ObjCProperty) {
   10847       VK = LHS.get()->getValueKind();
   10848       OK = LHS.get()->getObjectKind();
   10849     }
   10850     if (!ResultTy.isNull()) {
   10851       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   10852       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
   10853     }
   10854     RecordModifiableNonNullParam(*this, LHS.get());
   10855     break;
   10856   case BO_PtrMemD:
   10857   case BO_PtrMemI:
   10858     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
   10859                                             Opc == BO_PtrMemI);
   10860     break;
   10861   case BO_Mul:
   10862   case BO_Div:
   10863     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
   10864                                            Opc == BO_Div);
   10865     break;
   10866   case BO_Rem:
   10867     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
   10868     break;
   10869   case BO_Add:
   10870     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
   10871     break;
   10872   case BO_Sub:
   10873     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
   10874     break;
   10875   case BO_Shl:
   10876   case BO_Shr:
   10877     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
   10878     break;
   10879   case BO_LE:
   10880   case BO_LT:
   10881   case BO_GE:
   10882   case BO_GT:
   10883     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
   10884     break;
   10885   case BO_EQ:
   10886   case BO_NE:
   10887     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
   10888     break;
   10889   case BO_And:
   10890     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
   10891   case BO_Xor:
   10892   case BO_Or:
   10893     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
   10894     break;
   10895   case BO_LAnd:
   10896   case BO_LOr:
   10897     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
   10898     break;
   10899   case BO_MulAssign:
   10900   case BO_DivAssign:
   10901     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
   10902                                                Opc == BO_DivAssign);
   10903     CompLHSTy = CompResultTy;
   10904     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10905       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10906     break;
   10907   case BO_RemAssign:
   10908     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
   10909     CompLHSTy = CompResultTy;
   10910     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10911       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10912     break;
   10913   case BO_AddAssign:
   10914     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
   10915     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10916       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10917     break;
   10918   case BO_SubAssign:
   10919     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
   10920     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10921       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10922     break;
   10923   case BO_ShlAssign:
   10924   case BO_ShrAssign:
   10925     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
   10926     CompLHSTy = CompResultTy;
   10927     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10928       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10929     break;
   10930   case BO_AndAssign:
   10931   case BO_OrAssign: // fallthrough
   10932     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   10933   case BO_XorAssign:
   10934     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
   10935     CompLHSTy = CompResultTy;
   10936     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10937       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10938     break;
   10939   case BO_Comma:
   10940     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
   10941     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
   10942       VK = RHS.get()->getValueKind();
   10943       OK = RHS.get()->getObjectKind();
   10944     }
   10945     break;
   10946   }
   10947   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
   10948     return ExprError();
   10949 
   10950   // Check for array bounds violations for both sides of the BinaryOperator
   10951   CheckArrayAccess(LHS.get());
   10952   CheckArrayAccess(RHS.get());
   10953 
   10954   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
   10955     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
   10956                                                  &Context.Idents.get("object_setClass"),
   10957                                                  SourceLocation(), LookupOrdinaryName);
   10958     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
   10959       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getLocEnd());
   10960       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
   10961       FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
   10962       FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
   10963       FixItHint::CreateInsertion(RHSLocEnd, ")");
   10964     }
   10965     else
   10966       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
   10967   }
   10968   else if (const ObjCIvarRefExpr *OIRE =
   10969            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
   10970     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
   10971 
   10972   if (CompResultTy.isNull())
   10973     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
   10974                                         OK, OpLoc, FPFeatures.fp_contract);
   10975   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
   10976       OK_ObjCProperty) {
   10977     VK = VK_LValue;
   10978     OK = LHS.get()->getObjectKind();
   10979   }
   10980   return new (Context) CompoundAssignOperator(
   10981       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
   10982       OpLoc, FPFeatures.fp_contract);
   10983 }
   10984 
   10985 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
   10986 /// operators are mixed in a way that suggests that the programmer forgot that
   10987 /// comparison operators have higher precedence. The most typical example of
   10988 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
   10989 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
   10990                                       SourceLocation OpLoc, Expr *LHSExpr,
   10991                                       Expr *RHSExpr) {
   10992   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
   10993   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
   10994 
   10995   // Check that one of the sides is a comparison operator and the other isn't.
   10996   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
   10997   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
   10998   if (isLeftComp == isRightComp)
   10999     return;
   11000 
   11001   // Bitwise operations are sometimes used as eager logical ops.
   11002   // Don't diagnose this.
   11003   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
   11004   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
   11005   if (isLeftBitwise || isRightBitwise)
   11006     return;
   11007 
   11008   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
   11009                                                    OpLoc)
   11010                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
   11011   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
   11012   SourceRange ParensRange = isLeftComp ?
   11013       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
   11014     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
   11015 
   11016   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
   11017     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
   11018   SuggestParentheses(Self, OpLoc,
   11019     Self.PDiag(diag::note_precedence_silence) << OpStr,
   11020     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
   11021   SuggestParentheses(Self, OpLoc,
   11022     Self.PDiag(diag::note_precedence_bitwise_first)
   11023       << BinaryOperator::getOpcodeStr(Opc),
   11024     ParensRange);
   11025 }
   11026 
   11027 /// \brief It accepts a '&&' expr that is inside a '||' one.
   11028 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
   11029 /// in parentheses.
   11030 static void
   11031 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
   11032                                        BinaryOperator *Bop) {
   11033   assert(Bop->getOpcode() == BO_LAnd);
   11034   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
   11035       << Bop->getSourceRange() << OpLoc;
   11036   SuggestParentheses(Self, Bop->getOperatorLoc(),
   11037     Self.PDiag(diag::note_precedence_silence)
   11038       << Bop->getOpcodeStr(),
   11039     Bop->getSourceRange());
   11040 }
   11041 
   11042 /// \brief Returns true if the given expression can be evaluated as a constant
   11043 /// 'true'.
   11044 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
   11045   bool Res;
   11046   return !E->isValueDependent() &&
   11047          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
   11048 }
   11049 
   11050 /// \brief Returns true if the given expression can be evaluated as a constant
   11051 /// 'false'.
   11052 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
   11053   bool Res;
   11054   return !E->isValueDependent() &&
   11055          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
   11056 }
   11057 
   11058 /// \brief Look for '&&' in the left hand of a '||' expr.
   11059 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
   11060                                              Expr *LHSExpr, Expr *RHSExpr) {
   11061   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
   11062     if (Bop->getOpcode() == BO_LAnd) {
   11063       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
   11064       if (EvaluatesAsFalse(S, RHSExpr))
   11065         return;
   11066       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
   11067       if (!EvaluatesAsTrue(S, Bop->getLHS()))
   11068         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   11069     } else if (Bop->getOpcode() == BO_LOr) {
   11070       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
   11071         // If it's "a || b && 1 || c" we didn't warn earlier for
   11072         // "a || b && 1", but warn now.
   11073         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
   11074           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
   11075       }
   11076     }
   11077   }
   11078 }
   11079 
   11080 /// \brief Look for '&&' in the right hand of a '||' expr.
   11081 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
   11082                                              Expr *LHSExpr, Expr *RHSExpr) {
   11083   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
   11084     if (Bop->getOpcode() == BO_LAnd) {
   11085       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
   11086       if (EvaluatesAsFalse(S, LHSExpr))
   11087         return;
   11088       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
   11089       if (!EvaluatesAsTrue(S, Bop->getRHS()))
   11090         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   11091     }
   11092   }
   11093 }
   11094 
   11095 /// \brief Look for bitwise op in the left or right hand of a bitwise op with
   11096 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
   11097 /// the '&' expression in parentheses.
   11098 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
   11099                                          SourceLocation OpLoc, Expr *SubExpr) {
   11100   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
   11101     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
   11102       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
   11103         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
   11104         << Bop->getSourceRange() << OpLoc;
   11105       SuggestParentheses(S, Bop->getOperatorLoc(),
   11106         S.PDiag(diag::note_precedence_silence)
   11107           << Bop->getOpcodeStr(),
   11108         Bop->getSourceRange());
   11109     }
   11110   }
   11111 }
   11112 
   11113 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
   11114                                     Expr *SubExpr, StringRef Shift) {
   11115   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
   11116     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
   11117       StringRef Op = Bop->getOpcodeStr();
   11118       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
   11119           << Bop->getSourceRange() << OpLoc << Shift << Op;
   11120       SuggestParentheses(S, Bop->getOperatorLoc(),
   11121           S.PDiag(diag::note_precedence_silence) << Op,
   11122           Bop->getSourceRange());
   11123     }
   11124   }
   11125 }
   11126 
   11127 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
   11128                                  Expr *LHSExpr, Expr *RHSExpr) {
   11129   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
   11130   if (!OCE)
   11131     return;
   11132 
   11133   FunctionDecl *FD = OCE->getDirectCallee();
   11134   if (!FD || !FD->isOverloadedOperator())
   11135     return;
   11136 
   11137   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
   11138   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
   11139     return;
   11140 
   11141   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
   11142       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
   11143       << (Kind == OO_LessLess);
   11144   SuggestParentheses(S, OCE->getOperatorLoc(),
   11145                      S.PDiag(diag::note_precedence_silence)
   11146                          << (Kind == OO_LessLess ? "<<" : ">>"),
   11147                      OCE->getSourceRange());
   11148   SuggestParentheses(S, OpLoc,
   11149                      S.PDiag(diag::note_evaluate_comparison_first),
   11150                      SourceRange(OCE->getArg(1)->getLocStart(),
   11151                                  RHSExpr->getLocEnd()));
   11152 }
   11153 
   11154 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
   11155 /// precedence.
   11156 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
   11157                                     SourceLocation OpLoc, Expr *LHSExpr,
   11158                                     Expr *RHSExpr){
   11159   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
   11160   if (BinaryOperator::isBitwiseOp(Opc))
   11161     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
   11162 
   11163   // Diagnose "arg1 & arg2 | arg3"
   11164   if ((Opc == BO_Or || Opc == BO_Xor) &&
   11165       !OpLoc.isMacroID()/* Don't warn in macros. */) {
   11166     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
   11167     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
   11168   }
   11169 
   11170   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
   11171   // We don't warn for 'assert(a || b && "bad")' since this is safe.
   11172   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   11173     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
   11174     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
   11175   }
   11176 
   11177   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
   11178       || Opc == BO_Shr) {
   11179     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
   11180     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
   11181     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
   11182   }
   11183 
   11184   // Warn on overloaded shift operators and comparisons, such as:
   11185   // cout << 5 == 4;
   11186   if (BinaryOperator::isComparisonOp(Opc))
   11187     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
   11188 }
   11189 
   11190 // Binary Operators.  'Tok' is the token for the operator.
   11191 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
   11192                             tok::TokenKind Kind,
   11193                             Expr *LHSExpr, Expr *RHSExpr) {
   11194   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
   11195   assert(LHSExpr && "ActOnBinOp(): missing left expression");
   11196   assert(RHSExpr && "ActOnBinOp(): missing right expression");
   11197 
   11198   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
   11199   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
   11200 
   11201   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
   11202 }
   11203 
   11204 /// Build an overloaded binary operator expression in the given scope.
   11205 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
   11206                                        BinaryOperatorKind Opc,
   11207                                        Expr *LHS, Expr *RHS) {
   11208   // Find all of the overloaded operators visible from this
   11209   // point. We perform both an operator-name lookup from the local
   11210   // scope and an argument-dependent lookup based on the types of
   11211   // the arguments.
   11212   UnresolvedSet<16> Functions;
   11213   OverloadedOperatorKind OverOp
   11214     = BinaryOperator::getOverloadedOperator(Opc);
   11215   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
   11216     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
   11217                                    RHS->getType(), Functions);
   11218 
   11219   // Build the (potentially-overloaded, potentially-dependent)
   11220   // binary operation.
   11221   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
   11222 }
   11223 
   11224 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
   11225                             BinaryOperatorKind Opc,
   11226                             Expr *LHSExpr, Expr *RHSExpr) {
   11227   // We want to end up calling one of checkPseudoObjectAssignment
   11228   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
   11229   // both expressions are overloadable or either is type-dependent),
   11230   // or CreateBuiltinBinOp (in any other case).  We also want to get
   11231   // any placeholder types out of the way.
   11232 
   11233   // Handle pseudo-objects in the LHS.
   11234   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
   11235     // Assignments with a pseudo-object l-value need special analysis.
   11236     if (pty->getKind() == BuiltinType::PseudoObject &&
   11237         BinaryOperator::isAssignmentOp(Opc))
   11238       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
   11239 
   11240     // Don't resolve overloads if the other type is overloadable.
   11241     if (pty->getKind() == BuiltinType::Overload) {
   11242       // We can't actually test that if we still have a placeholder,
   11243       // though.  Fortunately, none of the exceptions we see in that
   11244       // code below are valid when the LHS is an overload set.  Note
   11245       // that an overload set can be dependently-typed, but it never
   11246       // instantiates to having an overloadable type.
   11247       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   11248       if (resolvedRHS.isInvalid()) return ExprError();
   11249       RHSExpr = resolvedRHS.get();
   11250 
   11251       if (RHSExpr->isTypeDependent() ||
   11252           RHSExpr->getType()->isOverloadableType())
   11253         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   11254     }
   11255 
   11256     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
   11257     if (LHS.isInvalid()) return ExprError();
   11258     LHSExpr = LHS.get();
   11259   }
   11260 
   11261   // Handle pseudo-objects in the RHS.
   11262   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
   11263     // An overload in the RHS can potentially be resolved by the type
   11264     // being assigned to.
   11265     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
   11266       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   11267         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   11268 
   11269       if (LHSExpr->getType()->isOverloadableType())
   11270         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   11271 
   11272       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   11273     }
   11274 
   11275     // Don't resolve overloads if the other type is overloadable.
   11276     if (pty->getKind() == BuiltinType::Overload &&
   11277         LHSExpr->getType()->isOverloadableType())
   11278       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   11279 
   11280     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   11281     if (!resolvedRHS.isUsable()) return ExprError();
   11282     RHSExpr = resolvedRHS.get();
   11283   }
   11284 
   11285   if (getLangOpts().CPlusPlus) {
   11286     // If either expression is type-dependent, always build an
   11287     // overloaded op.
   11288     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   11289       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   11290 
   11291     // Otherwise, build an overloaded op if either expression has an
   11292     // overloadable type.
   11293     if (LHSExpr->getType()->isOverloadableType() ||
   11294         RHSExpr->getType()->isOverloadableType())
   11295       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   11296   }
   11297 
   11298   // Build a built-in binary operation.
   11299   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   11300 }
   11301 
   11302 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
   11303                                       UnaryOperatorKind Opc,
   11304                                       Expr *InputExpr) {
   11305   ExprResult Input = InputExpr;
   11306   ExprValueKind VK = VK_RValue;
   11307   ExprObjectKind OK = OK_Ordinary;
   11308   QualType resultType;
   11309   if (getLangOpts().OpenCL) {
   11310     QualType Ty = InputExpr->getType();
   11311     // The only legal unary operation for atomics is '&'.
   11312     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
   11313     // OpenCL special types - image, sampler, pipe, and blocks are to be used
   11314     // only with a builtin functions and therefore should be disallowed here.
   11315         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
   11316         || Ty->isBlockPointerType())) {
   11317       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   11318                        << InputExpr->getType()
   11319                        << Input.get()->getSourceRange());
   11320     }
   11321   }
   11322   switch (Opc) {
   11323   case UO_PreInc:
   11324   case UO_PreDec:
   11325   case UO_PostInc:
   11326   case UO_PostDec:
   11327     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
   11328                                                 OpLoc,
   11329                                                 Opc == UO_PreInc ||
   11330                                                 Opc == UO_PostInc,
   11331                                                 Opc == UO_PreInc ||
   11332                                                 Opc == UO_PreDec);
   11333     break;
   11334   case UO_AddrOf:
   11335     resultType = CheckAddressOfOperand(Input, OpLoc);
   11336     RecordModifiableNonNullParam(*this, InputExpr);
   11337     break;
   11338   case UO_Deref: {
   11339     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   11340     if (Input.isInvalid()) return ExprError();
   11341     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
   11342     break;
   11343   }
   11344   case UO_Plus:
   11345   case UO_Minus:
   11346     Input = UsualUnaryConversions(Input.get());
   11347     if (Input.isInvalid()) return ExprError();
   11348     resultType = Input.get()->getType();
   11349     if (resultType->isDependentType())
   11350       break;
   11351     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
   11352       break;
   11353     else if (resultType->isVectorType() &&
   11354              // The z vector extensions don't allow + or - with bool vectors.
   11355              (!Context.getLangOpts().ZVector ||
   11356               resultType->getAs<VectorType>()->getVectorKind() !=
   11357               VectorType::AltiVecBool))
   11358       break;
   11359     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
   11360              Opc == UO_Plus &&
   11361              resultType->isPointerType())
   11362       break;
   11363 
   11364     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   11365       << resultType << Input.get()->getSourceRange());
   11366 
   11367   case UO_Not: // bitwise complement
   11368     Input = UsualUnaryConversions(Input.get());
   11369     if (Input.isInvalid())
   11370       return ExprError();
   11371     resultType = Input.get()->getType();
   11372     if (resultType->isDependentType())
   11373       break;
   11374     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
   11375     if (resultType->isComplexType() || resultType->isComplexIntegerType())
   11376       // C99 does not support '~' for complex conjugation.
   11377       Diag(OpLoc, diag::ext_integer_complement_complex)
   11378           << resultType << Input.get()->getSourceRange();
   11379     else if (resultType->hasIntegerRepresentation())
   11380       break;
   11381     else if (resultType->isExtVectorType()) {
   11382       if (Context.getLangOpts().OpenCL) {
   11383         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
   11384         // on vector float types.
   11385         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   11386         if (!T->isIntegerType())
   11387           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   11388                            << resultType << Input.get()->getSourceRange());
   11389       }
   11390       break;
   11391     } else {
   11392       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   11393                        << resultType << Input.get()->getSourceRange());
   11394     }
   11395     break;
   11396 
   11397   case UO_LNot: // logical negation
   11398     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
   11399     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   11400     if (Input.isInvalid()) return ExprError();
   11401     resultType = Input.get()->getType();
   11402 
   11403     // Though we still have to promote half FP to float...
   11404     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
   11405       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
   11406       resultType = Context.FloatTy;
   11407     }
   11408 
   11409     if (resultType->isDependentType())
   11410       break;
   11411     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
   11412       // C99 6.5.3.3p1: ok, fallthrough;
   11413       if (Context.getLangOpts().CPlusPlus) {
   11414         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
   11415         // operand contextually converted to bool.
   11416         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
   11417                                   ScalarTypeToBooleanCastKind(resultType));
   11418       } else if (Context.getLangOpts().OpenCL &&
   11419                  Context.getLangOpts().OpenCLVersion < 120) {
   11420         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   11421         // operate on scalar float types.
   11422         if (!resultType->isIntegerType())
   11423           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   11424                            << resultType << Input.get()->getSourceRange());
   11425       }
   11426     } else if (resultType->isExtVectorType()) {
   11427       if (Context.getLangOpts().OpenCL &&
   11428           Context.getLangOpts().OpenCLVersion < 120) {
   11429         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   11430         // operate on vector float types.
   11431         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   11432         if (!T->isIntegerType())
   11433           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   11434                            << resultType << Input.get()->getSourceRange());
   11435       }
   11436       // Vector logical not returns the signed variant of the operand type.
   11437       resultType = GetSignedVectorType(resultType);
   11438       break;
   11439     } else {
   11440       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   11441         << resultType << Input.get()->getSourceRange());
   11442     }
   11443 
   11444     // LNot always has type int. C99 6.5.3.3p5.
   11445     // In C++, it's bool. C++ 5.3.1p8
   11446     resultType = Context.getLogicalOperationType();
   11447     break;
   11448   case UO_Real:
   11449   case UO_Imag:
   11450     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
   11451     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
   11452     // complex l-values to ordinary l-values and all other values to r-values.
   11453     if (Input.isInvalid()) return ExprError();
   11454     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
   11455       if (Input.get()->getValueKind() != VK_RValue &&
   11456           Input.get()->getObjectKind() == OK_Ordinary)
   11457         VK = Input.get()->getValueKind();
   11458     } else if (!getLangOpts().CPlusPlus) {
   11459       // In C, a volatile scalar is read by __imag. In C++, it is not.
   11460       Input = DefaultLvalueConversion(Input.get());
   11461     }
   11462     break;
   11463   case UO_Extension:
   11464   case UO_Coawait:
   11465     resultType = Input.get()->getType();
   11466     VK = Input.get()->getValueKind();
   11467     OK = Input.get()->getObjectKind();
   11468     break;
   11469   }
   11470   if (resultType.isNull() || Input.isInvalid())
   11471     return ExprError();
   11472 
   11473   // Check for array bounds violations in the operand of the UnaryOperator,
   11474   // except for the '*' and '&' operators that have to be handled specially
   11475   // by CheckArrayAccess (as there are special cases like &array[arraysize]
   11476   // that are explicitly defined as valid by the standard).
   11477   if (Opc != UO_AddrOf && Opc != UO_Deref)
   11478     CheckArrayAccess(Input.get());
   11479 
   11480   return new (Context)
   11481       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
   11482 }
   11483 
   11484 /// \brief Determine whether the given expression is a qualified member
   11485 /// access expression, of a form that could be turned into a pointer to member
   11486 /// with the address-of operator.
   11487 static bool isQualifiedMemberAccess(Expr *E) {
   11488   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   11489     if (!DRE->getQualifier())
   11490       return false;
   11491 
   11492     ValueDecl *VD = DRE->getDecl();
   11493     if (!VD->isCXXClassMember())
   11494       return false;
   11495 
   11496     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
   11497       return true;
   11498     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
   11499       return Method->isInstance();
   11500 
   11501     return false;
   11502   }
   11503 
   11504   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   11505     if (!ULE->getQualifier())
   11506       return false;
   11507 
   11508     for (NamedDecl *D : ULE->decls()) {
   11509       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   11510         if (Method->isInstance())
   11511           return true;
   11512       } else {
   11513         // Overload set does not contain methods.
   11514         break;
   11515       }
   11516     }
   11517 
   11518     return false;
   11519   }
   11520 
   11521   return false;
   11522 }
   11523 
   11524 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
   11525                               UnaryOperatorKind Opc, Expr *Input) {
   11526   // First things first: handle placeholders so that the
   11527   // overloaded-operator check considers the right type.
   11528   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
   11529     // Increment and decrement of pseudo-object references.
   11530     if (pty->getKind() == BuiltinType::PseudoObject &&
   11531         UnaryOperator::isIncrementDecrementOp(Opc))
   11532       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
   11533 
   11534     // extension is always a builtin operator.
   11535     if (Opc == UO_Extension)
   11536       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11537 
   11538     // & gets special logic for several kinds of placeholder.
   11539     // The builtin code knows what to do.
   11540     if (Opc == UO_AddrOf &&
   11541         (pty->getKind() == BuiltinType::Overload ||
   11542          pty->getKind() == BuiltinType::UnknownAny ||
   11543          pty->getKind() == BuiltinType::BoundMember))
   11544       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11545 
   11546     // Anything else needs to be handled now.
   11547     ExprResult Result = CheckPlaceholderExpr(Input);
   11548     if (Result.isInvalid()) return ExprError();
   11549     Input = Result.get();
   11550   }
   11551 
   11552   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
   11553       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
   11554       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
   11555     // Find all of the overloaded operators visible from this
   11556     // point. We perform both an operator-name lookup from the local
   11557     // scope and an argument-dependent lookup based on the types of
   11558     // the arguments.
   11559     UnresolvedSet<16> Functions;
   11560     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
   11561     if (S && OverOp != OO_None)
   11562       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
   11563                                    Functions);
   11564 
   11565     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
   11566   }
   11567 
   11568   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11569 }
   11570 
   11571 // Unary Operators.  'Tok' is the token for the operator.
   11572 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
   11573                               tok::TokenKind Op, Expr *Input) {
   11574   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
   11575 }
   11576 
   11577 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
   11578 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
   11579                                 LabelDecl *TheDecl) {
   11580   TheDecl->markUsed(Context);
   11581   // Create the AST node.  The address of a label always has type 'void*'.
   11582   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
   11583                                      Context.getPointerType(Context.VoidTy));
   11584 }
   11585 
   11586 /// Given the last statement in a statement-expression, check whether
   11587 /// the result is a producing expression (like a call to an
   11588 /// ns_returns_retained function) and, if so, rebuild it to hoist the
   11589 /// release out of the full-expression.  Otherwise, return null.
   11590 /// Cannot fail.
   11591 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
   11592   // Should always be wrapped with one of these.
   11593   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
   11594   if (!cleanups) return nullptr;
   11595 
   11596   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
   11597   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
   11598     return nullptr;
   11599 
   11600   // Splice out the cast.  This shouldn't modify any interesting
   11601   // features of the statement.
   11602   Expr *producer = cast->getSubExpr();
   11603   assert(producer->getType() == cast->getType());
   11604   assert(producer->getValueKind() == cast->getValueKind());
   11605   cleanups->setSubExpr(producer);
   11606   return cleanups;
   11607 }
   11608 
   11609 void Sema::ActOnStartStmtExpr() {
   11610   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
   11611 }
   11612 
   11613 void Sema::ActOnStmtExprError() {
   11614   // Note that function is also called by TreeTransform when leaving a
   11615   // StmtExpr scope without rebuilding anything.
   11616 
   11617   DiscardCleanupsInEvaluationContext();
   11618   PopExpressionEvaluationContext();
   11619 }
   11620 
   11621 ExprResult
   11622 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
   11623                     SourceLocation RPLoc) { // "({..})"
   11624   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
   11625   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
   11626 
   11627   if (hasAnyUnrecoverableErrorsInThisFunction())
   11628     DiscardCleanupsInEvaluationContext();
   11629   assert(!Cleanup.exprNeedsCleanups() &&
   11630          "cleanups within StmtExpr not correctly bound!");
   11631   PopExpressionEvaluationContext();
   11632 
   11633   // FIXME: there are a variety of strange constraints to enforce here, for
   11634   // example, it is not possible to goto into a stmt expression apparently.
   11635   // More semantic analysis is needed.
   11636 
   11637   // If there are sub-stmts in the compound stmt, take the type of the last one
   11638   // as the type of the stmtexpr.
   11639   QualType Ty = Context.VoidTy;
   11640   bool StmtExprMayBindToTemp = false;
   11641   if (!Compound->body_empty()) {
   11642     Stmt *LastStmt = Compound->body_back();
   11643     LabelStmt *LastLabelStmt = nullptr;
   11644     // If LastStmt is a label, skip down through into the body.
   11645     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
   11646       LastLabelStmt = Label;
   11647       LastStmt = Label->getSubStmt();
   11648     }
   11649 
   11650     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
   11651       // Do function/array conversion on the last expression, but not
   11652       // lvalue-to-rvalue.  However, initialize an unqualified type.
   11653       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
   11654       if (LastExpr.isInvalid())
   11655         return ExprError();
   11656       Ty = LastExpr.get()->getType().getUnqualifiedType();
   11657 
   11658       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
   11659         // In ARC, if the final expression ends in a consume, splice
   11660         // the consume out and bind it later.  In the alternate case
   11661         // (when dealing with a retainable type), the result
   11662         // initialization will create a produce.  In both cases the
   11663         // result will be +1, and we'll need to balance that out with
   11664         // a bind.
   11665         if (Expr *rebuiltLastStmt
   11666               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
   11667           LastExpr = rebuiltLastStmt;
   11668         } else {
   11669           LastExpr = PerformCopyInitialization(
   11670                             InitializedEntity::InitializeResult(LPLoc,
   11671                                                                 Ty,
   11672                                                                 false),
   11673                                                    SourceLocation(),
   11674                                                LastExpr);
   11675         }
   11676 
   11677         if (LastExpr.isInvalid())
   11678           return ExprError();
   11679         if (LastExpr.get() != nullptr) {
   11680           if (!LastLabelStmt)
   11681             Compound->setLastStmt(LastExpr.get());
   11682           else
   11683             LastLabelStmt->setSubStmt(LastExpr.get());
   11684           StmtExprMayBindToTemp = true;
   11685         }
   11686       }
   11687     }
   11688   }
   11689 
   11690   // FIXME: Check that expression type is complete/non-abstract; statement
   11691   // expressions are not lvalues.
   11692   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
   11693   if (StmtExprMayBindToTemp)
   11694     return MaybeBindToTemporary(ResStmtExpr);
   11695   return ResStmtExpr;
   11696 }
   11697 
   11698 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
   11699                                       TypeSourceInfo *TInfo,
   11700                                       ArrayRef<OffsetOfComponent> Components,
   11701                                       SourceLocation RParenLoc) {
   11702   QualType ArgTy = TInfo->getType();
   11703   bool Dependent = ArgTy->isDependentType();
   11704   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
   11705 
   11706   // We must have at least one component that refers to the type, and the first
   11707   // one is known to be a field designator.  Verify that the ArgTy represents
   11708   // a struct/union/class.
   11709   if (!Dependent && !ArgTy->isRecordType())
   11710     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
   11711                        << ArgTy << TypeRange);
   11712 
   11713   // Type must be complete per C99 7.17p3 because a declaring a variable
   11714   // with an incomplete type would be ill-formed.
   11715   if (!Dependent
   11716       && RequireCompleteType(BuiltinLoc, ArgTy,
   11717                              diag::err_offsetof_incomplete_type, TypeRange))
   11718     return ExprError();
   11719 
   11720   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
   11721   // GCC extension, diagnose them.
   11722   // FIXME: This diagnostic isn't actually visible because the location is in
   11723   // a system header!
   11724   if (Components.size() != 1)
   11725     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
   11726       << SourceRange(Components[1].LocStart, Components.back().LocEnd);
   11727 
   11728   bool DidWarnAboutNonPOD = false;
   11729   QualType CurrentType = ArgTy;
   11730   SmallVector<OffsetOfNode, 4> Comps;
   11731   SmallVector<Expr*, 4> Exprs;
   11732   for (const OffsetOfComponent &OC : Components) {
   11733     if (OC.isBrackets) {
   11734       // Offset of an array sub-field.  TODO: Should we allow vector elements?
   11735       if (!CurrentType->isDependentType()) {
   11736         const ArrayType *AT = Context.getAsArrayType(CurrentType);
   11737         if(!AT)
   11738           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
   11739                            << CurrentType);
   11740         CurrentType = AT->getElementType();
   11741       } else
   11742         CurrentType = Context.DependentTy;
   11743 
   11744       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
   11745       if (IdxRval.isInvalid())
   11746         return ExprError();
   11747       Expr *Idx = IdxRval.get();
   11748 
   11749       // The expression must be an integral expression.
   11750       // FIXME: An integral constant expression?
   11751       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
   11752           !Idx->getType()->isIntegerType())
   11753         return ExprError(Diag(Idx->getLocStart(),
   11754                               diag::err_typecheck_subscript_not_integer)
   11755                          << Idx->getSourceRange());
   11756 
   11757       // Record this array index.
   11758       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
   11759       Exprs.push_back(Idx);
   11760       continue;
   11761     }
   11762 
   11763     // Offset of a field.
   11764     if (CurrentType->isDependentType()) {
   11765       // We have the offset of a field, but we can't look into the dependent
   11766       // type. Just record the identifier of the field.
   11767       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
   11768       CurrentType = Context.DependentTy;
   11769       continue;
   11770     }
   11771 
   11772     // We need to have a complete type to look into.
   11773     if (RequireCompleteType(OC.LocStart, CurrentType,
   11774                             diag::err_offsetof_incomplete_type))
   11775       return ExprError();
   11776 
   11777     // Look for the designated field.
   11778     const RecordType *RC = CurrentType->getAs<RecordType>();
   11779     if (!RC)
   11780       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
   11781                        << CurrentType);
   11782     RecordDecl *RD = RC->getDecl();
   11783 
   11784     // C++ [lib.support.types]p5:
   11785     //   The macro offsetof accepts a restricted set of type arguments in this
   11786     //   International Standard. type shall be a POD structure or a POD union
   11787     //   (clause 9).
   11788     // C++11 [support.types]p4:
   11789     //   If type is not a standard-layout class (Clause 9), the results are
   11790     //   undefined.
   11791     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   11792       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
   11793       unsigned DiagID =
   11794         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
   11795                             : diag::ext_offsetof_non_pod_type;
   11796 
   11797       if (!IsSafe && !DidWarnAboutNonPOD &&
   11798           DiagRuntimeBehavior(BuiltinLoc, nullptr,
   11799                               PDiag(DiagID)
   11800                               << SourceRange(Components[0].LocStart, OC.LocEnd)
   11801                               << CurrentType))
   11802         DidWarnAboutNonPOD = true;
   11803     }
   11804 
   11805     // Look for the field.
   11806     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
   11807     LookupQualifiedName(R, RD);
   11808     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
   11809     IndirectFieldDecl *IndirectMemberDecl = nullptr;
   11810     if (!MemberDecl) {
   11811       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
   11812         MemberDecl = IndirectMemberDecl->getAnonField();
   11813     }
   11814 
   11815     if (!MemberDecl)
   11816       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
   11817                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
   11818                                                               OC.LocEnd));
   11819 
   11820     // C99 7.17p3:
   11821     //   (If the specified member is a bit-field, the behavior is undefined.)
   11822     //
   11823     // We diagnose this as an error.
   11824     if (MemberDecl->isBitField()) {
   11825       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
   11826         << MemberDecl->getDeclName()
   11827         << SourceRange(BuiltinLoc, RParenLoc);
   11828       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
   11829       return ExprError();
   11830     }
   11831 
   11832     RecordDecl *Parent = MemberDecl->getParent();
   11833     if (IndirectMemberDecl)
   11834       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
   11835 
   11836     // If the member was found in a base class, introduce OffsetOfNodes for
   11837     // the base class indirections.
   11838     CXXBasePaths Paths;
   11839     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
   11840                       Paths)) {
   11841       if (Paths.getDetectedVirtual()) {
   11842         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
   11843           << MemberDecl->getDeclName()
   11844           << SourceRange(BuiltinLoc, RParenLoc);
   11845         return ExprError();
   11846       }
   11847 
   11848       CXXBasePath &Path = Paths.front();
   11849       for (const CXXBasePathElement &B : Path)
   11850         Comps.push_back(OffsetOfNode(B.Base));
   11851     }
   11852 
   11853     if (IndirectMemberDecl) {
   11854       for (auto *FI : IndirectMemberDecl->chain()) {
   11855         assert(isa<FieldDecl>(FI));
   11856         Comps.push_back(OffsetOfNode(OC.LocStart,
   11857                                      cast<FieldDecl>(FI), OC.LocEnd));
   11858       }
   11859     } else
   11860       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
   11861 
   11862     CurrentType = MemberDecl->getType().getNonReferenceType();
   11863   }
   11864 
   11865   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
   11866                               Comps, Exprs, RParenLoc);
   11867 }
   11868 
   11869 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
   11870                                       SourceLocation BuiltinLoc,
   11871                                       SourceLocation TypeLoc,
   11872                                       ParsedType ParsedArgTy,
   11873                                       ArrayRef<OffsetOfComponent> Components,
   11874                                       SourceLocation RParenLoc) {
   11875 
   11876   TypeSourceInfo *ArgTInfo;
   11877   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
   11878   if (ArgTy.isNull())
   11879     return ExprError();
   11880 
   11881   if (!ArgTInfo)
   11882     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
   11883 
   11884   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
   11885 }
   11886 
   11887 
   11888 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
   11889                                  Expr *CondExpr,
   11890                                  Expr *LHSExpr, Expr *RHSExpr,
   11891                                  SourceLocation RPLoc) {
   11892   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
   11893 
   11894   ExprValueKind VK = VK_RValue;
   11895   ExprObjectKind OK = OK_Ordinary;
   11896   QualType resType;
   11897   bool ValueDependent = false;
   11898   bool CondIsTrue = false;
   11899   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
   11900     resType = Context.DependentTy;
   11901     ValueDependent = true;
   11902   } else {
   11903     // The conditional expression is required to be a constant expression.
   11904     llvm::APSInt condEval(32);
   11905     ExprResult CondICE
   11906       = VerifyIntegerConstantExpression(CondExpr, &condEval,
   11907           diag::err_typecheck_choose_expr_requires_constant, false);
   11908     if (CondICE.isInvalid())
   11909       return ExprError();
   11910     CondExpr = CondICE.get();
   11911     CondIsTrue = condEval.getZExtValue();
   11912 
   11913     // If the condition is > zero, then the AST type is the same as the LSHExpr.
   11914     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
   11915 
   11916     resType = ActiveExpr->getType();
   11917     ValueDependent = ActiveExpr->isValueDependent();
   11918     VK = ActiveExpr->getValueKind();
   11919     OK = ActiveExpr->getObjectKind();
   11920   }
   11921 
   11922   return new (Context)
   11923       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
   11924                  CondIsTrue, resType->isDependentType(), ValueDependent);
   11925 }
   11926 
   11927 //===----------------------------------------------------------------------===//
   11928 // Clang Extensions.
   11929 //===----------------------------------------------------------------------===//
   11930 
   11931 /// ActOnBlockStart - This callback is invoked when a block literal is started.
   11932 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
   11933   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
   11934 
   11935   if (LangOpts.CPlusPlus) {
   11936     Decl *ManglingContextDecl;
   11937     if (MangleNumberingContext *MCtx =
   11938             getCurrentMangleNumberContext(Block->getDeclContext(),
   11939                                           ManglingContextDecl)) {
   11940       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
   11941       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
   11942     }
   11943   }
   11944 
   11945   PushBlockScope(CurScope, Block);
   11946   CurContext->addDecl(Block);
   11947   if (CurScope)
   11948     PushDeclContext(CurScope, Block);
   11949   else
   11950     CurContext = Block;
   11951 
   11952   getCurBlock()->HasImplicitReturnType = true;
   11953 
   11954   // Enter a new evaluation context to insulate the block from any
   11955   // cleanups from the enclosing full-expression.
   11956   PushExpressionEvaluationContext(PotentiallyEvaluated);
   11957 }
   11958 
   11959 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
   11960                                Scope *CurScope) {
   11961   assert(ParamInfo.getIdentifier() == nullptr &&
   11962          "block-id should have no identifier!");
   11963   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
   11964   BlockScopeInfo *CurBlock = getCurBlock();
   11965 
   11966   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
   11967   QualType T = Sig->getType();
   11968 
   11969   // FIXME: We should allow unexpanded parameter packs here, but that would,
   11970   // in turn, make the block expression contain unexpanded parameter packs.
   11971   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
   11972     // Drop the parameters.
   11973     FunctionProtoType::ExtProtoInfo EPI;
   11974     EPI.HasTrailingReturn = false;
   11975     EPI.TypeQuals |= DeclSpec::TQ_const;
   11976     T = Context.getFunctionType(Context.DependentTy, None, EPI);
   11977     Sig = Context.getTrivialTypeSourceInfo(T);
   11978   }
   11979 
   11980   // GetTypeForDeclarator always produces a function type for a block
   11981   // literal signature.  Furthermore, it is always a FunctionProtoType
   11982   // unless the function was written with a typedef.
   11983   assert(T->isFunctionType() &&
   11984          "GetTypeForDeclarator made a non-function block signature");
   11985 
   11986   // Look for an explicit signature in that function type.
   11987   FunctionProtoTypeLoc ExplicitSignature;
   11988 
   11989   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
   11990   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
   11991 
   11992     // Check whether that explicit signature was synthesized by
   11993     // GetTypeForDeclarator.  If so, don't save that as part of the
   11994     // written signature.
   11995     if (ExplicitSignature.getLocalRangeBegin() ==
   11996         ExplicitSignature.getLocalRangeEnd()) {
   11997       // This would be much cheaper if we stored TypeLocs instead of
   11998       // TypeSourceInfos.
   11999       TypeLoc Result = ExplicitSignature.getReturnLoc();
   12000       unsigned Size = Result.getFullDataSize();
   12001       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
   12002       Sig->getTypeLoc().initializeFullCopy(Result, Size);
   12003 
   12004       ExplicitSignature = FunctionProtoTypeLoc();
   12005     }
   12006   }
   12007 
   12008   CurBlock->TheDecl->setSignatureAsWritten(Sig);
   12009   CurBlock->FunctionType = T;
   12010 
   12011   const FunctionType *Fn = T->getAs<FunctionType>();
   12012   QualType RetTy = Fn->getReturnType();
   12013   bool isVariadic =
   12014     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
   12015 
   12016   CurBlock->TheDecl->setIsVariadic(isVariadic);
   12017 
   12018   // Context.DependentTy is used as a placeholder for a missing block
   12019   // return type.  TODO:  what should we do with declarators like:
   12020   //   ^ * { ... }
   12021   // If the answer is "apply template argument deduction"....
   12022   if (RetTy != Context.DependentTy) {
   12023     CurBlock->ReturnType = RetTy;
   12024     CurBlock->TheDecl->setBlockMissingReturnType(false);
   12025     CurBlock->HasImplicitReturnType = false;
   12026   }
   12027 
   12028   // Push block parameters from the declarator if we had them.
   12029   SmallVector<ParmVarDecl*, 8> Params;
   12030   if (ExplicitSignature) {
   12031     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
   12032       ParmVarDecl *Param = ExplicitSignature.getParam(I);
   12033       if (Param->getIdentifier() == nullptr &&
   12034           !Param->isImplicit() &&
   12035           !Param->isInvalidDecl() &&
   12036           !getLangOpts().CPlusPlus)
   12037         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   12038       Params.push_back(Param);
   12039     }
   12040 
   12041   // Fake up parameter variables if we have a typedef, like
   12042   //   ^ fntype { ... }
   12043   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
   12044     for (const auto &I : Fn->param_types()) {
   12045       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
   12046           CurBlock->TheDecl, ParamInfo.getLocStart(), I);
   12047       Params.push_back(Param);
   12048     }
   12049   }
   12050 
   12051   // Set the parameters on the block decl.
   12052   if (!Params.empty()) {
   12053     CurBlock->TheDecl->setParams(Params);
   12054     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
   12055                              /*CheckParameterNames=*/false);
   12056   }
   12057 
   12058   // Finally we can process decl attributes.
   12059   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
   12060 
   12061   // Put the parameter variables in scope.
   12062   for (auto AI : CurBlock->TheDecl->parameters()) {
   12063     AI->setOwningFunction(CurBlock->TheDecl);
   12064 
   12065     // If this has an identifier, add it to the scope stack.
   12066     if (AI->getIdentifier()) {
   12067       CheckShadow(CurBlock->TheScope, AI);
   12068 
   12069       PushOnScopeChains(AI, CurBlock->TheScope);
   12070     }
   12071   }
   12072 }
   12073 
   12074 /// ActOnBlockError - If there is an error parsing a block, this callback
   12075 /// is invoked to pop the information about the block from the action impl.
   12076 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
   12077   // Leave the expression-evaluation context.
   12078   DiscardCleanupsInEvaluationContext();
   12079   PopExpressionEvaluationContext();
   12080 
   12081   // Pop off CurBlock, handle nested blocks.
   12082   PopDeclContext();
   12083   PopFunctionScopeInfo();
   12084 }
   12085 
   12086 /// ActOnBlockStmtExpr - This is called when the body of a block statement
   12087 /// literal was successfully completed.  ^(int x){...}
   12088 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
   12089                                     Stmt *Body, Scope *CurScope) {
   12090   // If blocks are disabled, emit an error.
   12091   if (!LangOpts.Blocks)
   12092     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
   12093 
   12094   // Leave the expression-evaluation context.
   12095   if (hasAnyUnrecoverableErrorsInThisFunction())
   12096     DiscardCleanupsInEvaluationContext();
   12097   assert(!Cleanup.exprNeedsCleanups() &&
   12098          "cleanups within block not correctly bound!");
   12099   PopExpressionEvaluationContext();
   12100 
   12101   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
   12102 
   12103   if (BSI->HasImplicitReturnType)
   12104     deduceClosureReturnType(*BSI);
   12105 
   12106   PopDeclContext();
   12107 
   12108   QualType RetTy = Context.VoidTy;
   12109   if (!BSI->ReturnType.isNull())
   12110     RetTy = BSI->ReturnType;
   12111 
   12112   bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
   12113   QualType BlockTy;
   12114 
   12115   // Set the captured variables on the block.
   12116   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
   12117   SmallVector<BlockDecl::Capture, 4> Captures;
   12118   for (CapturingScopeInfo::Capture &Cap : BSI->Captures) {
   12119     if (Cap.isThisCapture())
   12120       continue;
   12121     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
   12122                               Cap.isNested(), Cap.getInitExpr());
   12123     Captures.push_back(NewCap);
   12124   }
   12125   BSI->TheDecl->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
   12126 
   12127   // If the user wrote a function type in some form, try to use that.
   12128   if (!BSI->FunctionType.isNull()) {
   12129     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
   12130 
   12131     FunctionType::ExtInfo Ext = FTy->getExtInfo();
   12132     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
   12133 
   12134     // Turn protoless block types into nullary block types.
   12135     if (isa<FunctionNoProtoType>(FTy)) {
   12136       FunctionProtoType::ExtProtoInfo EPI;
   12137       EPI.ExtInfo = Ext;
   12138       BlockTy = Context.getFunctionType(RetTy, None, EPI);
   12139 
   12140     // Otherwise, if we don't need to change anything about the function type,
   12141     // preserve its sugar structure.
   12142     } else if (FTy->getReturnType() == RetTy &&
   12143                (!NoReturn || FTy->getNoReturnAttr())) {
   12144       BlockTy = BSI->FunctionType;
   12145 
   12146     // Otherwise, make the minimal modifications to the function type.
   12147     } else {
   12148       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
   12149       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   12150       EPI.TypeQuals = 0; // FIXME: silently?
   12151       EPI.ExtInfo = Ext;
   12152       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
   12153     }
   12154 
   12155   // If we don't have a function type, just build one from nothing.
   12156   } else {
   12157     FunctionProtoType::ExtProtoInfo EPI;
   12158     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
   12159     BlockTy = Context.getFunctionType(RetTy, None, EPI);
   12160   }
   12161 
   12162   DiagnoseUnusedParameters(BSI->TheDecl->parameters());
   12163   BlockTy = Context.getBlockPointerType(BlockTy);
   12164 
   12165   // If needed, diagnose invalid gotos and switches in the block.
   12166   if (getCurFunction()->NeedsScopeChecking() &&
   12167       !PP.isCodeCompletionEnabled())
   12168     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
   12169 
   12170   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
   12171 
   12172   // Try to apply the named return value optimization. We have to check again
   12173   // if we can do this, though, because blocks keep return statements around
   12174   // to deduce an implicit return type.
   12175   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
   12176       !BSI->TheDecl->isDependentContext())
   12177     computeNRVO(Body, BSI);
   12178 
   12179   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
   12180   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   12181   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
   12182 
   12183   // If the block isn't obviously global, i.e. it captures anything at
   12184   // all, then we need to do a few things in the surrounding context:
   12185   if (Result->getBlockDecl()->hasCaptures()) {
   12186     // First, this expression has a new cleanup object.
   12187     ExprCleanupObjects.push_back(Result->getBlockDecl());
   12188     Cleanup.setExprNeedsCleanups(true);
   12189 
   12190     // It also gets a branch-protected scope if any of the captured
   12191     // variables needs destruction.
   12192     for (const auto &CI : Result->getBlockDecl()->captures()) {
   12193       const VarDecl *var = CI.getVariable();
   12194       if (var->getType().isDestructedType() != QualType::DK_none) {
   12195         getCurFunction()->setHasBranchProtectedScope();
   12196         break;
   12197       }
   12198     }
   12199   }
   12200 
   12201   return Result;
   12202 }
   12203 
   12204 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
   12205                             SourceLocation RPLoc) {
   12206   TypeSourceInfo *TInfo;
   12207   GetTypeFromParser(Ty, &TInfo);
   12208   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
   12209 }
   12210 
   12211 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
   12212                                 Expr *E, TypeSourceInfo *TInfo,
   12213                                 SourceLocation RPLoc) {
   12214   Expr *OrigExpr = E;
   12215   bool IsMS = false;
   12216 
   12217   // CUDA device code does not support varargs.
   12218   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
   12219     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
   12220       CUDAFunctionTarget T = IdentifyCUDATarget(F);
   12221       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
   12222         return ExprError(Diag(E->getLocStart(), diag::err_va_arg_in_device));
   12223     }
   12224   }
   12225 
   12226   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
   12227   // as Microsoft ABI on an actual Microsoft platform, where
   12228   // __builtin_ms_va_list and __builtin_va_list are the same.)
   12229   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
   12230       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
   12231     QualType MSVaListType = Context.getBuiltinMSVaListType();
   12232     if (Context.hasSameType(MSVaListType, E->getType())) {
   12233       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
   12234         return ExprError();
   12235       IsMS = true;
   12236     }
   12237   }
   12238 
   12239   // Get the va_list type
   12240   QualType VaListType = Context.getBuiltinVaListType();
   12241   if (!IsMS) {
   12242     if (VaListType->isArrayType()) {
   12243       // Deal with implicit array decay; for example, on x86-64,
   12244       // va_list is an array, but it's supposed to decay to
   12245       // a pointer for va_arg.
   12246       VaListType = Context.getArrayDecayedType(VaListType);
   12247       // Make sure the input expression also decays appropriately.
   12248       ExprResult Result = UsualUnaryConversions(E);
   12249       if (Result.isInvalid())
   12250         return ExprError();
   12251       E = Result.get();
   12252     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
   12253       // If va_list is a record type and we are compiling in C++ mode,
   12254       // check the argument using reference binding.
   12255       InitializedEntity Entity = InitializedEntity::InitializeParameter(
   12256           Context, Context.getLValueReferenceType(VaListType), false);
   12257       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
   12258       if (Init.isInvalid())
   12259         return ExprError();
   12260       E = Init.getAs<Expr>();
   12261     } else {
   12262       // Otherwise, the va_list argument must be an l-value because
   12263       // it is modified by va_arg.
   12264       if (!E->isTypeDependent() &&
   12265           CheckForModifiableLvalue(E, BuiltinLoc, *this))
   12266         return ExprError();
   12267     }
   12268   }
   12269 
   12270   if (!IsMS && !E->isTypeDependent() &&
   12271       !Context.hasSameType(VaListType, E->getType()))
   12272     return ExprError(Diag(E->getLocStart(),
   12273                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
   12274       << OrigExpr->getType() << E->getSourceRange());
   12275 
   12276   if (!TInfo->getType()->isDependentType()) {
   12277     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
   12278                             diag::err_second_parameter_to_va_arg_incomplete,
   12279                             TInfo->getTypeLoc()))
   12280       return ExprError();
   12281 
   12282     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
   12283                                TInfo->getType(),
   12284                                diag::err_second_parameter_to_va_arg_abstract,
   12285                                TInfo->getTypeLoc()))
   12286       return ExprError();
   12287 
   12288     if (!TInfo->getType().isPODType(Context)) {
   12289       Diag(TInfo->getTypeLoc().getBeginLoc(),
   12290            TInfo->getType()->isObjCLifetimeType()
   12291              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
   12292              : diag::warn_second_parameter_to_va_arg_not_pod)
   12293         << TInfo->getType()
   12294         << TInfo->getTypeLoc().getSourceRange();
   12295     }
   12296 
   12297     // Check for va_arg where arguments of the given type will be promoted
   12298     // (i.e. this va_arg is guaranteed to have undefined behavior).
   12299     QualType PromoteType;
   12300     if (TInfo->getType()->isPromotableIntegerType()) {
   12301       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
   12302       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
   12303         PromoteType = QualType();
   12304     }
   12305     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
   12306       PromoteType = Context.DoubleTy;
   12307     if (!PromoteType.isNull())
   12308       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
   12309                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
   12310                           << TInfo->getType()
   12311                           << PromoteType
   12312                           << TInfo->getTypeLoc().getSourceRange());
   12313   }
   12314 
   12315   QualType T = TInfo->getType().getNonLValueExprType(Context);
   12316   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
   12317 }
   12318 
   12319 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
   12320   // The type of __null will be int or long, depending on the size of
   12321   // pointers on the target.
   12322   QualType Ty;
   12323   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
   12324   if (pw == Context.getTargetInfo().getIntWidth())
   12325     Ty = Context.IntTy;
   12326   else if (pw == Context.getTargetInfo().getLongWidth())
   12327     Ty = Context.LongTy;
   12328   else if (pw == Context.getTargetInfo().getLongLongWidth())
   12329     Ty = Context.LongLongTy;
   12330   else {
   12331     llvm_unreachable("I don't know size of pointer!");
   12332   }
   12333 
   12334   return new (Context) GNUNullExpr(Ty, TokenLoc);
   12335 }
   12336 
   12337 bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
   12338                                               bool Diagnose) {
   12339   if (!getLangOpts().ObjC1)
   12340     return false;
   12341 
   12342   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
   12343   if (!PT)
   12344     return false;
   12345 
   12346   if (!PT->isObjCIdType()) {
   12347     // Check if the destination is the 'NSString' interface.
   12348     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
   12349     if (!ID || !ID->getIdentifier()->isStr("NSString"))
   12350       return false;
   12351   }
   12352 
   12353   // Ignore any parens, implicit casts (should only be
   12354   // array-to-pointer decays), and not-so-opaque values.  The last is
   12355   // important for making this trigger for property assignments.
   12356   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
   12357   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
   12358     if (OV->getSourceExpr())
   12359       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
   12360 
   12361   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
   12362   if (!SL || !SL->isAscii())
   12363     return false;
   12364   if (Diagnose) {
   12365     Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
   12366       << FixItHint::CreateInsertion(SL->getLocStart(), "@");
   12367     Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
   12368   }
   12369   return true;
   12370 }
   12371 
   12372 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
   12373                                               const Expr *SrcExpr) {
   12374   if (!DstType->isFunctionPointerType() ||
   12375       !SrcExpr->getType()->isFunctionType())
   12376     return false;
   12377 
   12378   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
   12379   if (!DRE)
   12380     return false;
   12381 
   12382   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
   12383   if (!FD)
   12384     return false;
   12385 
   12386   return !S.checkAddressOfFunctionIsAvailable(FD,
   12387                                               /*Complain=*/true,
   12388                                               SrcExpr->getLocStart());
   12389 }
   12390 
   12391 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
   12392                                     SourceLocation Loc,
   12393                                     QualType DstType, QualType SrcType,
   12394                                     Expr *SrcExpr, AssignmentAction Action,
   12395                                     bool *Complained) {
   12396   if (Complained)
   12397     *Complained = false;
   12398 
   12399   // Decode the result (notice that AST's are still created for extensions).
   12400   bool CheckInferredResultType = false;
   12401   bool isInvalid = false;
   12402   unsigned DiagKind = 0;
   12403   FixItHint Hint;
   12404   ConversionFixItGenerator ConvHints;
   12405   bool MayHaveConvFixit = false;
   12406   bool MayHaveFunctionDiff = false;
   12407   const ObjCInterfaceDecl *IFace = nullptr;
   12408   const ObjCProtocolDecl *PDecl = nullptr;
   12409 
   12410   switch (ConvTy) {
   12411   case Compatible:
   12412       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
   12413       return false;
   12414 
   12415   case PointerToInt:
   12416     DiagKind = diag::ext_typecheck_convert_pointer_int;
   12417     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   12418     MayHaveConvFixit = true;
   12419     break;
   12420   case IntToPointer:
   12421     DiagKind = diag::ext_typecheck_convert_int_pointer;
   12422     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   12423     MayHaveConvFixit = true;
   12424     break;
   12425   case IncompatiblePointer:
   12426       DiagKind =
   12427         (Action == AA_Passing_CFAudited ?
   12428           diag::err_arc_typecheck_convert_incompatible_pointer :
   12429           diag::ext_typecheck_convert_incompatible_pointer);
   12430     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
   12431       SrcType->isObjCObjectPointerType();
   12432     if (Hint.isNull() && !CheckInferredResultType) {
   12433       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   12434     }
   12435     else if (CheckInferredResultType) {
   12436       SrcType = SrcType.getUnqualifiedType();
   12437       DstType = DstType.getUnqualifiedType();
   12438     }
   12439     MayHaveConvFixit = true;
   12440     break;
   12441   case IncompatiblePointerSign:
   12442     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
   12443     break;
   12444   case FunctionVoidPointer:
   12445     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
   12446     break;
   12447   case IncompatiblePointerDiscardsQualifiers: {
   12448     // Perform array-to-pointer decay if necessary.
   12449     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
   12450 
   12451     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
   12452     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
   12453     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
   12454       DiagKind = diag::err_typecheck_incompatible_address_space;
   12455       break;
   12456 
   12457 
   12458     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
   12459       DiagKind = diag::err_typecheck_incompatible_ownership;
   12460       break;
   12461     }
   12462 
   12463     llvm_unreachable("unknown error case for discarding qualifiers!");
   12464     // fallthrough
   12465   }
   12466   case CompatiblePointerDiscardsQualifiers:
   12467     // If the qualifiers lost were because we were applying the
   12468     // (deprecated) C++ conversion from a string literal to a char*
   12469     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
   12470     // Ideally, this check would be performed in
   12471     // checkPointerTypesForAssignment. However, that would require a
   12472     // bit of refactoring (so that the second argument is an
   12473     // expression, rather than a type), which should be done as part
   12474     // of a larger effort to fix checkPointerTypesForAssignment for
   12475     // C++ semantics.
   12476     if (getLangOpts().CPlusPlus &&
   12477         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
   12478       return false;
   12479     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
   12480     break;
   12481   case IncompatibleNestedPointerQualifiers:
   12482     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
   12483     break;
   12484   case IntToBlockPointer:
   12485     DiagKind = diag::err_int_to_block_pointer;
   12486     break;
   12487   case IncompatibleBlockPointer:
   12488     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
   12489     break;
   12490   case IncompatibleObjCQualifiedId: {
   12491     if (SrcType->isObjCQualifiedIdType()) {
   12492       const ObjCObjectPointerType *srcOPT =
   12493                 SrcType->getAs<ObjCObjectPointerType>();
   12494       for (auto *srcProto : srcOPT->quals()) {
   12495         PDecl = srcProto;
   12496         break;
   12497       }
   12498       if (const ObjCInterfaceType *IFaceT =
   12499             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   12500         IFace = IFaceT->getDecl();
   12501     }
   12502     else if (DstType->isObjCQualifiedIdType()) {
   12503       const ObjCObjectPointerType *dstOPT =
   12504         DstType->getAs<ObjCObjectPointerType>();
   12505       for (auto *dstProto : dstOPT->quals()) {
   12506         PDecl = dstProto;
   12507         break;
   12508       }
   12509       if (const ObjCInterfaceType *IFaceT =
   12510             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   12511         IFace = IFaceT->getDecl();
   12512     }
   12513     DiagKind = diag::warn_incompatible_qualified_id;
   12514     break;
   12515   }
   12516   case IncompatibleVectors:
   12517     DiagKind = diag::warn_incompatible_vectors;
   12518     break;
   12519   case IncompatibleObjCWeakRef:
   12520     DiagKind = diag::err_arc_weak_unavailable_assign;
   12521     break;
   12522   case Incompatible:
   12523     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
   12524       if (Complained)
   12525         *Complained = true;
   12526       return true;
   12527     }
   12528 
   12529     DiagKind = diag::err_typecheck_convert_incompatible;
   12530     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   12531     MayHaveConvFixit = true;
   12532     isInvalid = true;
   12533     MayHaveFunctionDiff = true;
   12534     break;
   12535   }
   12536 
   12537   QualType FirstType, SecondType;
   12538   switch (Action) {
   12539   case AA_Assigning:
   12540   case AA_Initializing:
   12541     // The destination type comes first.
   12542     FirstType = DstType;
   12543     SecondType = SrcType;
   12544     break;
   12545 
   12546   case AA_Returning:
   12547   case AA_Passing:
   12548   case AA_Passing_CFAudited:
   12549   case AA_Converting:
   12550   case AA_Sending:
   12551   case AA_Casting:
   12552     // The source type comes first.
   12553     FirstType = SrcType;
   12554     SecondType = DstType;
   12555     break;
   12556   }
   12557 
   12558   PartialDiagnostic FDiag = PDiag(DiagKind);
   12559   if (Action == AA_Passing_CFAudited)
   12560     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
   12561   else
   12562     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
   12563 
   12564   // If we can fix the conversion, suggest the FixIts.
   12565   assert(ConvHints.isNull() || Hint.isNull());
   12566   if (!ConvHints.isNull()) {
   12567     for (FixItHint &H : ConvHints.Hints)
   12568       FDiag << H;
   12569   } else {
   12570     FDiag << Hint;
   12571   }
   12572   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
   12573 
   12574   if (MayHaveFunctionDiff)
   12575     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
   12576 
   12577   Diag(Loc, FDiag);
   12578   if (DiagKind == diag::warn_incompatible_qualified_id &&
   12579       PDecl && IFace && !IFace->hasDefinition())
   12580       Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
   12581         << IFace->getName() << PDecl->getName();
   12582 
   12583   if (SecondType == Context.OverloadTy)
   12584     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
   12585                               FirstType, /*TakingAddress=*/true);
   12586 
   12587   if (CheckInferredResultType)
   12588     EmitRelatedResultTypeNote(SrcExpr);
   12589 
   12590   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
   12591     EmitRelatedResultTypeNoteForReturn(DstType);
   12592 
   12593   if (Complained)
   12594     *Complained = true;
   12595   return isInvalid;
   12596 }
   12597 
   12598 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   12599                                                  llvm::APSInt *Result) {
   12600   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
   12601   public:
   12602     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   12603       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
   12604     }
   12605   } Diagnoser;
   12606 
   12607   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
   12608 }
   12609 
   12610 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   12611                                                  llvm::APSInt *Result,
   12612                                                  unsigned DiagID,
   12613                                                  bool AllowFold) {
   12614   class IDDiagnoser : public VerifyICEDiagnoser {
   12615     unsigned DiagID;
   12616 
   12617   public:
   12618     IDDiagnoser(unsigned DiagID)
   12619       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
   12620 
   12621     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   12622       S.Diag(Loc, DiagID) << SR;
   12623     }
   12624   } Diagnoser(DiagID);
   12625 
   12626   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
   12627 }
   12628 
   12629 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
   12630                                             SourceRange SR) {
   12631   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
   12632 }
   12633 
   12634 ExprResult
   12635 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
   12636                                       VerifyICEDiagnoser &Diagnoser,
   12637                                       bool AllowFold) {
   12638   SourceLocation DiagLoc = E->getLocStart();
   12639 
   12640   if (getLangOpts().CPlusPlus11) {
   12641     // C++11 [expr.const]p5:
   12642     //   If an expression of literal class type is used in a context where an
   12643     //   integral constant expression is required, then that class type shall
   12644     //   have a single non-explicit conversion function to an integral or
   12645     //   unscoped enumeration type
   12646     ExprResult Converted;
   12647     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
   12648     public:
   12649       CXX11ConvertDiagnoser(bool Silent)
   12650           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
   12651                                 Silent, true) {}
   12652 
   12653       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   12654                                            QualType T) override {
   12655         return S.Diag(Loc, diag::err_ice_not_integral) << T;
   12656       }
   12657 
   12658       SemaDiagnosticBuilder diagnoseIncomplete(
   12659           Sema &S, SourceLocation Loc, QualType T) override {
   12660         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
   12661       }
   12662 
   12663       SemaDiagnosticBuilder diagnoseExplicitConv(
   12664           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   12665         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
   12666       }
   12667 
   12668       SemaDiagnosticBuilder noteExplicitConv(
   12669           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   12670         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   12671                  << ConvTy->isEnumeralType() << ConvTy;
   12672       }
   12673 
   12674       SemaDiagnosticBuilder diagnoseAmbiguous(
   12675           Sema &S, SourceLocation Loc, QualType T) override {
   12676         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
   12677       }
   12678 
   12679       SemaDiagnosticBuilder noteAmbiguous(
   12680           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   12681         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   12682                  << ConvTy->isEnumeralType() << ConvTy;
   12683       }
   12684 
   12685       SemaDiagnosticBuilder diagnoseConversion(
   12686           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   12687         llvm_unreachable("conversion functions are permitted");
   12688       }
   12689     } ConvertDiagnoser(Diagnoser.Suppress);
   12690 
   12691     Converted = PerformContextualImplicitConversion(DiagLoc, E,
   12692                                                     ConvertDiagnoser);
   12693     if (Converted.isInvalid())
   12694       return Converted;
   12695     E = Converted.get();
   12696     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
   12697       return ExprError();
   12698   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
   12699     // An ICE must be of integral or unscoped enumeration type.
   12700     if (!Diagnoser.Suppress)
   12701       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   12702     return ExprError();
   12703   }
   12704 
   12705   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
   12706   // in the non-ICE case.
   12707   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
   12708     if (Result)
   12709       *Result = E->EvaluateKnownConstInt(Context);
   12710     return E;
   12711   }
   12712 
   12713   Expr::EvalResult EvalResult;
   12714   SmallVector<PartialDiagnosticAt, 8> Notes;
   12715   EvalResult.Diag = &Notes;
   12716 
   12717   // Try to evaluate the expression, and produce diagnostics explaining why it's
   12718   // not a constant expression as a side-effect.
   12719   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
   12720                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
   12721 
   12722   // In C++11, we can rely on diagnostics being produced for any expression
   12723   // which is not a constant expression. If no diagnostics were produced, then
   12724   // this is a constant expression.
   12725   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
   12726     if (Result)
   12727       *Result = EvalResult.Val.getInt();
   12728     return E;
   12729   }
   12730 
   12731   // If our only note is the usual "invalid subexpression" note, just point
   12732   // the caret at its location rather than producing an essentially
   12733   // redundant note.
   12734   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   12735         diag::note_invalid_subexpr_in_const_expr) {
   12736     DiagLoc = Notes[0].first;
   12737     Notes.clear();
   12738   }
   12739 
   12740   if (!Folded || !AllowFold) {
   12741     if (!Diagnoser.Suppress) {
   12742       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   12743       for (const PartialDiagnosticAt &Note : Notes)
   12744         Diag(Note.first, Note.second);
   12745     }
   12746 
   12747     return ExprError();
   12748   }
   12749 
   12750   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
   12751   for (const PartialDiagnosticAt &Note : Notes)
   12752     Diag(Note.first, Note.second);
   12753 
   12754   if (Result)
   12755     *Result = EvalResult.Val.getInt();
   12756   return E;
   12757 }
   12758 
   12759 namespace {
   12760   // Handle the case where we conclude a expression which we speculatively
   12761   // considered to be unevaluated is actually evaluated.
   12762   class TransformToPE : public TreeTransform<TransformToPE> {
   12763     typedef TreeTransform<TransformToPE> BaseTransform;
   12764 
   12765   public:
   12766     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
   12767 
   12768     // Make sure we redo semantic analysis
   12769     bool AlwaysRebuild() { return true; }
   12770 
   12771     // Make sure we handle LabelStmts correctly.
   12772     // FIXME: This does the right thing, but maybe we need a more general
   12773     // fix to TreeTransform?
   12774     StmtResult TransformLabelStmt(LabelStmt *S) {
   12775       S->getDecl()->setStmt(nullptr);
   12776       return BaseTransform::TransformLabelStmt(S);
   12777     }
   12778 
   12779     // We need to special-case DeclRefExprs referring to FieldDecls which
   12780     // are not part of a member pointer formation; normal TreeTransforming
   12781     // doesn't catch this case because of the way we represent them in the AST.
   12782     // FIXME: This is a bit ugly; is it really the best way to handle this
   12783     // case?
   12784     //
   12785     // Error on DeclRefExprs referring to FieldDecls.
   12786     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
   12787       if (isa<FieldDecl>(E->getDecl()) &&
   12788           !SemaRef.isUnevaluatedContext())
   12789         return SemaRef.Diag(E->getLocation(),
   12790                             diag::err_invalid_non_static_member_use)
   12791             << E->getDecl() << E->getSourceRange();
   12792 
   12793       return BaseTransform::TransformDeclRefExpr(E);
   12794     }
   12795 
   12796     // Exception: filter out member pointer formation
   12797     ExprResult TransformUnaryOperator(UnaryOperator *E) {
   12798       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
   12799         return E;
   12800 
   12801       return BaseTransform::TransformUnaryOperator(E);
   12802     }
   12803 
   12804     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   12805       // Lambdas never need to be transformed.
   12806       return E;
   12807     }
   12808   };
   12809 }
   12810 
   12811 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
   12812   assert(isUnevaluatedContext() &&
   12813          "Should only transform unevaluated expressions");
   12814   ExprEvalContexts.back().Context =
   12815       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
   12816   if (isUnevaluatedContext())
   12817     return E;
   12818   return TransformToPE(*this).TransformExpr(E);
   12819 }
   12820 
   12821 void
   12822 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   12823                                       Decl *LambdaContextDecl,
   12824                                       bool IsDecltype) {
   12825   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
   12826                                 LambdaContextDecl, IsDecltype);
   12827   Cleanup.reset();
   12828   if (!MaybeODRUseExprs.empty())
   12829     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
   12830 }
   12831 
   12832 void
   12833 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   12834                                       ReuseLambdaContextDecl_t,
   12835                                       bool IsDecltype) {
   12836   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
   12837   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
   12838 }
   12839 
   12840 void Sema::PopExpressionEvaluationContext() {
   12841   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
   12842   unsigned NumTypos = Rec.NumTypos;
   12843 
   12844   if (!Rec.Lambdas.empty()) {
   12845     if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   12846       unsigned D;
   12847       if (Rec.isUnevaluated()) {
   12848         // C++11 [expr.prim.lambda]p2:
   12849         //   A lambda-expression shall not appear in an unevaluated operand
   12850         //   (Clause 5).
   12851         D = diag::err_lambda_unevaluated_operand;
   12852       } else {
   12853         // C++1y [expr.const]p2:
   12854         //   A conditional-expression e is a core constant expression unless the
   12855         //   evaluation of e, following the rules of the abstract machine, would
   12856         //   evaluate [...] a lambda-expression.
   12857         D = diag::err_lambda_in_constant_expression;
   12858       }
   12859       for (const auto *L : Rec.Lambdas)
   12860         Diag(L->getLocStart(), D);
   12861     } else {
   12862       // Mark the capture expressions odr-used. This was deferred
   12863       // during lambda expression creation.
   12864       for (auto *Lambda : Rec.Lambdas) {
   12865         for (auto *C : Lambda->capture_inits())
   12866           MarkDeclarationsReferencedInExpr(C);
   12867       }
   12868     }
   12869   }
   12870 
   12871   // When are coming out of an unevaluated context, clear out any
   12872   // temporaries that we may have created as part of the evaluation of
   12873   // the expression in that context: they aren't relevant because they
   12874   // will never be constructed.
   12875   if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   12876     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
   12877                              ExprCleanupObjects.end());
   12878     Cleanup = Rec.ParentCleanup;
   12879     CleanupVarDeclMarking();
   12880     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
   12881   // Otherwise, merge the contexts together.
   12882   } else {
   12883     Cleanup.mergeFrom(Rec.ParentCleanup);
   12884     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
   12885                             Rec.SavedMaybeODRUseExprs.end());
   12886   }
   12887 
   12888   // Pop the current expression evaluation context off the stack.
   12889   ExprEvalContexts.pop_back();
   12890 
   12891   if (!ExprEvalContexts.empty())
   12892     ExprEvalContexts.back().NumTypos += NumTypos;
   12893   else
   12894     assert(NumTypos == 0 && "There are outstanding typos after popping the "
   12895                             "last ExpressionEvaluationContextRecord");
   12896 }
   12897 
   12898 void Sema::DiscardCleanupsInEvaluationContext() {
   12899   ExprCleanupObjects.erase(
   12900          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
   12901          ExprCleanupObjects.end());
   12902   Cleanup.reset();
   12903   MaybeODRUseExprs.clear();
   12904 }
   12905 
   12906 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
   12907   if (!E->getType()->isVariablyModifiedType())
   12908     return E;
   12909   return TransformToPotentiallyEvaluated(E);
   12910 }
   12911 
   12912 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
   12913   // Do not mark anything as "used" within a dependent context; wait for
   12914   // an instantiation.
   12915   if (SemaRef.CurContext->isDependentContext())
   12916     return false;
   12917 
   12918   switch (SemaRef.ExprEvalContexts.back().Context) {
   12919     case Sema::Unevaluated:
   12920     case Sema::UnevaluatedAbstract:
   12921       // We are in an expression that is not potentially evaluated; do nothing.
   12922       // (Depending on how you read the standard, we actually do need to do
   12923       // something here for null pointer constants, but the standard's
   12924       // definition of a null pointer constant is completely crazy.)
   12925       return false;
   12926 
   12927     case Sema::DiscardedStatement:
   12928       // These are technically a potentially evaluated but they have the effect
   12929       // of suppressing use marking.
   12930       return false;
   12931 
   12932     case Sema::ConstantEvaluated:
   12933     case Sema::PotentiallyEvaluated:
   12934       // We are in a potentially evaluated expression (or a constant-expression
   12935       // in C++03); we need to do implicit template instantiation, implicitly
   12936       // define class members, and mark most declarations as used.
   12937       return true;
   12938 
   12939     case Sema::PotentiallyEvaluatedIfUsed:
   12940       // Referenced declarations will only be used if the construct in the
   12941       // containing expression is used.
   12942       return false;
   12943   }
   12944   llvm_unreachable("Invalid context");
   12945 }
   12946 
   12947 /// \brief Mark a function referenced, and check whether it is odr-used
   12948 /// (C++ [basic.def.odr]p2, C99 6.9p3)
   12949 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
   12950                                   bool MightBeOdrUse) {
   12951   assert(Func && "No function?");
   12952 
   12953   Func->setReferenced();
   12954 
   12955   // C++11 [basic.def.odr]p3:
   12956   //   A function whose name appears as a potentially-evaluated expression is
   12957   //   odr-used if it is the unique lookup result or the selected member of a
   12958   //   set of overloaded functions [...].
   12959   //
   12960   // We (incorrectly) mark overload resolution as an unevaluated context, so we
   12961   // can just check that here.
   12962   bool OdrUse = MightBeOdrUse && IsPotentiallyEvaluatedContext(*this);
   12963 
   12964   // Determine whether we require a function definition to exist, per
   12965   // C++11 [temp.inst]p3:
   12966   //   Unless a function template specialization has been explicitly
   12967   //   instantiated or explicitly specialized, the function template
   12968   //   specialization is implicitly instantiated when the specialization is
   12969   //   referenced in a context that requires a function definition to exist.
   12970   //
   12971   // We consider constexpr function templates to be referenced in a context
   12972   // that requires a definition to exist whenever they are referenced.
   12973   //
   12974   // FIXME: This instantiates constexpr functions too frequently. If this is
   12975   // really an unevaluated context (and we're not just in the definition of a
   12976   // function template or overload resolution or other cases which we
   12977   // incorrectly consider to be unevaluated contexts), and we're not in a
   12978   // subexpression which we actually need to evaluate (for instance, a
   12979   // template argument, array bound or an expression in a braced-init-list),
   12980   // we are not permitted to instantiate this constexpr function definition.
   12981   //
   12982   // FIXME: This also implicitly defines special members too frequently. They
   12983   // are only supposed to be implicitly defined if they are odr-used, but they
   12984   // are not odr-used from constant expressions in unevaluated contexts.
   12985   // However, they cannot be referenced if they are deleted, and they are
   12986   // deleted whenever the implicit definition of the special member would
   12987   // fail (with very few exceptions).
   12988   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
   12989   bool NeedDefinition =
   12990       OdrUse || (Func->isConstexpr() && (Func->isImplicitlyInstantiable() ||
   12991                                          (MD && !MD->isUserProvided())));
   12992 
   12993   // C++14 [temp.expl.spec]p6:
   12994   //   If a template [...] is explicitly specialized then that specialization
   12995   //   shall be declared before the first use of that specialization that would
   12996   //   cause an implicit instantiation to take place, in every translation unit
   12997   //   in which such a use occurs
   12998   if (NeedDefinition &&
   12999       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
   13000        Func->getMemberSpecializationInfo()))
   13001     checkSpecializationVisibility(Loc, Func);
   13002 
   13003   // If we don't need to mark the function as used, and we don't need to
   13004   // try to provide a definition, there's nothing more to do.
   13005   if ((Func->isUsed(/*CheckUsedAttr=*/false) || !OdrUse) &&
   13006       (!NeedDefinition || Func->getBody()))
   13007     return;
   13008 
   13009   // Note that this declaration has been used.
   13010   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
   13011     Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
   13012     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
   13013       if (Constructor->isDefaultConstructor()) {
   13014         if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
   13015           return;
   13016         DefineImplicitDefaultConstructor(Loc, Constructor);
   13017       } else if (Constructor->isCopyConstructor()) {
   13018         DefineImplicitCopyConstructor(Loc, Constructor);
   13019       } else if (Constructor->isMoveConstructor()) {
   13020         DefineImplicitMoveConstructor(Loc, Constructor);
   13021       }
   13022     } else if (Constructor->getInheritedConstructor()) {
   13023       DefineInheritingConstructor(Loc, Constructor);
   13024     }
   13025   } else if (CXXDestructorDecl *Destructor =
   13026                  dyn_cast<CXXDestructorDecl>(Func)) {
   13027     Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
   13028     if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
   13029       if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
   13030         return;
   13031       DefineImplicitDestructor(Loc, Destructor);
   13032     }
   13033     if (Destructor->isVirtual() && getLangOpts().AppleKext)
   13034       MarkVTableUsed(Loc, Destructor->getParent());
   13035   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
   13036     if (MethodDecl->isOverloadedOperator() &&
   13037         MethodDecl->getOverloadedOperator() == OO_Equal) {
   13038       MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
   13039       if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
   13040         if (MethodDecl->isCopyAssignmentOperator())
   13041           DefineImplicitCopyAssignment(Loc, MethodDecl);
   13042         else if (MethodDecl->isMoveAssignmentOperator())
   13043           DefineImplicitMoveAssignment(Loc, MethodDecl);
   13044       }
   13045     } else if (isa<CXXConversionDecl>(MethodDecl) &&
   13046                MethodDecl->getParent()->isLambda()) {
   13047       CXXConversionDecl *Conversion =
   13048           cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
   13049       if (Conversion->isLambdaToBlockPointerConversion())
   13050         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
   13051       else
   13052         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
   13053     } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
   13054       MarkVTableUsed(Loc, MethodDecl->getParent());
   13055   }
   13056 
   13057   // Recursive functions should be marked when used from another function.
   13058   // FIXME: Is this really right?
   13059   if (CurContext == Func) return;
   13060 
   13061   // Resolve the exception specification for any function which is
   13062   // used: CodeGen will need it.
   13063   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
   13064   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
   13065     ResolveExceptionSpec(Loc, FPT);
   13066 
   13067   // Implicit instantiation of function templates and member functions of
   13068   // class templates.
   13069   if (Func->isImplicitlyInstantiable()) {
   13070     bool AlreadyInstantiated = false;
   13071     SourceLocation PointOfInstantiation = Loc;
   13072     if (FunctionTemplateSpecializationInfo *SpecInfo
   13073                               = Func->getTemplateSpecializationInfo()) {
   13074       if (SpecInfo->getPointOfInstantiation().isInvalid())
   13075         SpecInfo->setPointOfInstantiation(Loc);
   13076       else if (SpecInfo->getTemplateSpecializationKind()
   13077                  == TSK_ImplicitInstantiation) {
   13078         AlreadyInstantiated = true;
   13079         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
   13080       }
   13081     } else if (MemberSpecializationInfo *MSInfo
   13082                                 = Func->getMemberSpecializationInfo()) {
   13083       if (MSInfo->getPointOfInstantiation().isInvalid())
   13084         MSInfo->setPointOfInstantiation(Loc);
   13085       else if (MSInfo->getTemplateSpecializationKind()
   13086                  == TSK_ImplicitInstantiation) {
   13087         AlreadyInstantiated = true;
   13088         PointOfInstantiation = MSInfo->getPointOfInstantiation();
   13089       }
   13090     }
   13091 
   13092     if (!AlreadyInstantiated || Func->isConstexpr()) {
   13093       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
   13094           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
   13095           ActiveTemplateInstantiations.size())
   13096         PendingLocalImplicitInstantiations.push_back(
   13097             std::make_pair(Func, PointOfInstantiation));
   13098       else if (Func->isConstexpr())
   13099         // Do not defer instantiations of constexpr functions, to avoid the
   13100         // expression evaluator needing to call back into Sema if it sees a
   13101         // call to such a function.
   13102         InstantiateFunctionDefinition(PointOfInstantiation, Func);
   13103       else {
   13104         PendingInstantiations.push_back(std::make_pair(Func,
   13105                                                        PointOfInstantiation));
   13106         // Notify the consumer that a function was implicitly instantiated.
   13107         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
   13108       }
   13109     }
   13110   } else {
   13111     // Walk redefinitions, as some of them may be instantiable.
   13112     for (auto i : Func->redecls()) {
   13113       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
   13114         MarkFunctionReferenced(Loc, i, OdrUse);
   13115     }
   13116   }
   13117 
   13118   if (!OdrUse) return;
   13119 
   13120   // Keep track of used but undefined functions.
   13121   if (!Func->isDefined()) {
   13122     if (mightHaveNonExternalLinkage(Func))
   13123       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   13124     else if (Func->getMostRecentDecl()->isInlined() &&
   13125              !LangOpts.GNUInline &&
   13126              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
   13127       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   13128   }
   13129 
   13130   Func->markUsed(Context);
   13131 }
   13132 
   13133 static void
   13134 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
   13135                                    VarDecl *var, DeclContext *DC) {
   13136   DeclContext *VarDC = var->getDeclContext();
   13137 
   13138   //  If the parameter still belongs to the translation unit, then
   13139   //  we're actually just using one parameter in the declaration of
   13140   //  the next.
   13141   if (isa<ParmVarDecl>(var) &&
   13142       isa<TranslationUnitDecl>(VarDC))
   13143     return;
   13144 
   13145   // For C code, don't diagnose about capture if we're not actually in code
   13146   // right now; it's impossible to write a non-constant expression outside of
   13147   // function context, so we'll get other (more useful) diagnostics later.
   13148   //
   13149   // For C++, things get a bit more nasty... it would be nice to suppress this
   13150   // diagnostic for certain cases like using a local variable in an array bound
   13151   // for a member of a local class, but the correct predicate is not obvious.
   13152   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
   13153     return;
   13154 
   13155   if (isa<CXXMethodDecl>(VarDC) &&
   13156       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
   13157     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
   13158       << var->getIdentifier();
   13159   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
   13160     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
   13161       << var->getIdentifier() << fn->getDeclName();
   13162   } else if (isa<BlockDecl>(VarDC)) {
   13163     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
   13164       << var->getIdentifier();
   13165   } else {
   13166     // FIXME: Is there any other context where a local variable can be
   13167     // declared?
   13168     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
   13169       << var->getIdentifier();
   13170   }
   13171 
   13172   S.Diag(var->getLocation(), diag::note_entity_declared_at)
   13173       << var->getIdentifier();
   13174 
   13175   // FIXME: Add additional diagnostic info about class etc. which prevents
   13176   // capture.
   13177 }
   13178 
   13179 
   13180 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
   13181                                       bool &SubCapturesAreNested,
   13182                                       QualType &CaptureType,
   13183                                       QualType &DeclRefType) {
   13184    // Check whether we've already captured it.
   13185   if (CSI->CaptureMap.count(Var)) {
   13186     // If we found a capture, any subcaptures are nested.
   13187     SubCapturesAreNested = true;
   13188 
   13189     // Retrieve the capture type for this variable.
   13190     CaptureType = CSI->getCapture(Var).getCaptureType();
   13191 
   13192     // Compute the type of an expression that refers to this variable.
   13193     DeclRefType = CaptureType.getNonReferenceType();
   13194 
   13195     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
   13196     // are mutable in the sense that user can change their value - they are
   13197     // private instances of the captured declarations.
   13198     const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
   13199     if (Cap.isCopyCapture() &&
   13200         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
   13201         !(isa<CapturedRegionScopeInfo>(CSI) &&
   13202           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
   13203       DeclRefType.addConst();
   13204     return true;
   13205   }
   13206   return false;
   13207 }
   13208 
   13209 // Only block literals, captured statements, and lambda expressions can
   13210 // capture; other scopes don't work.
   13211 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
   13212                                  SourceLocation Loc,
   13213                                  const bool Diagnose, Sema &S) {
   13214   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
   13215     return getLambdaAwareParentOfDeclContext(DC);
   13216   else if (Var->hasLocalStorage()) {
   13217     if (Diagnose)
   13218        diagnoseUncapturableValueReference(S, Loc, Var, DC);
   13219   }
   13220   return nullptr;
   13221 }
   13222 
   13223 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   13224 // certain types of variables (unnamed, variably modified types etc.)
   13225 // so check for eligibility.
   13226 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
   13227                                  SourceLocation Loc,
   13228                                  const bool Diagnose, Sema &S) {
   13229 
   13230   bool IsBlock = isa<BlockScopeInfo>(CSI);
   13231   bool IsLambda = isa<LambdaScopeInfo>(CSI);
   13232 
   13233   // Lambdas are not allowed to capture unnamed variables
   13234   // (e.g. anonymous unions).
   13235   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
   13236   // assuming that's the intent.
   13237   if (IsLambda && !Var->getDeclName()) {
   13238     if (Diagnose) {
   13239       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
   13240       S.Diag(Var->getLocation(), diag::note_declared_at);
   13241     }
   13242     return false;
   13243   }
   13244 
   13245   // Prohibit variably-modified types in blocks; they're difficult to deal with.
   13246   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
   13247     if (Diagnose) {
   13248       S.Diag(Loc, diag::err_ref_vm_type);
   13249       S.Diag(Var->getLocation(), diag::note_previous_decl)
   13250         << Var->getDeclName();
   13251     }
   13252     return false;
   13253   }
   13254   // Prohibit structs with flexible array members too.
   13255   // We cannot capture what is in the tail end of the struct.
   13256   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
   13257     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
   13258       if (Diagnose) {
   13259         if (IsBlock)
   13260           S.Diag(Loc, diag::err_ref_flexarray_type);
   13261         else
   13262           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
   13263             << Var->getDeclName();
   13264         S.Diag(Var->getLocation(), diag::note_previous_decl)
   13265           << Var->getDeclName();
   13266       }
   13267       return false;
   13268     }
   13269   }
   13270   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   13271   // Lambdas and captured statements are not allowed to capture __block
   13272   // variables; they don't support the expected semantics.
   13273   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
   13274     if (Diagnose) {
   13275       S.Diag(Loc, diag::err_capture_block_variable)
   13276         << Var->getDeclName() << !IsLambda;
   13277       S.Diag(Var->getLocation(), diag::note_previous_decl)
   13278         << Var->getDeclName();
   13279     }
   13280     return false;
   13281   }
   13282 
   13283   return true;
   13284 }
   13285 
   13286 // Returns true if the capture by block was successful.
   13287 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
   13288                                  SourceLocation Loc,
   13289                                  const bool BuildAndDiagnose,
   13290                                  QualType &CaptureType,
   13291                                  QualType &DeclRefType,
   13292                                  const bool Nested,
   13293                                  Sema &S) {
   13294   Expr *CopyExpr = nullptr;
   13295   bool ByRef = false;
   13296 
   13297   // Blocks are not allowed to capture arrays.
   13298   if (CaptureType->isArrayType()) {
   13299     if (BuildAndDiagnose) {
   13300       S.Diag(Loc, diag::err_ref_array_type);
   13301       S.Diag(Var->getLocation(), diag::note_previous_decl)
   13302       << Var->getDeclName();
   13303     }
   13304     return false;
   13305   }
   13306 
   13307   // Forbid the block-capture of autoreleasing variables.
   13308   if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   13309     if (BuildAndDiagnose) {
   13310       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
   13311         << /*block*/ 0;
   13312       S.Diag(Var->getLocation(), diag::note_previous_decl)
   13313         << Var->getDeclName();
   13314     }
   13315     return false;
   13316   }
   13317   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   13318   if (HasBlocksAttr || CaptureType->isReferenceType() ||
   13319       (S.getLangOpts().OpenMP && S.IsOpenMPCapturedDecl(Var))) {
   13320     // Block capture by reference does not change the capture or
   13321     // declaration reference types.
   13322     ByRef = true;
   13323   } else {
   13324     // Block capture by copy introduces 'const'.
   13325     CaptureType = CaptureType.getNonReferenceType().withConst();
   13326     DeclRefType = CaptureType;
   13327 
   13328     if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
   13329       if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
   13330         // The capture logic needs the destructor, so make sure we mark it.
   13331         // Usually this is unnecessary because most local variables have
   13332         // their destructors marked at declaration time, but parameters are
   13333         // an exception because it's technically only the call site that
   13334         // actually requires the destructor.
   13335         if (isa<ParmVarDecl>(Var))
   13336           S.FinalizeVarWithDestructor(Var, Record);
   13337 
   13338         // Enter a new evaluation context to insulate the copy
   13339         // full-expression.
   13340         EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
   13341 
   13342         // According to the blocks spec, the capture of a variable from
   13343         // the stack requires a const copy constructor.  This is not true
   13344         // of the copy/move done to move a __block variable to the heap.
   13345         Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
   13346                                                   DeclRefType.withConst(),
   13347                                                   VK_LValue, Loc);
   13348 
   13349         ExprResult Result
   13350           = S.PerformCopyInitialization(
   13351               InitializedEntity::InitializeBlock(Var->getLocation(),
   13352                                                   CaptureType, false),
   13353               Loc, DeclRef);
   13354 
   13355         // Build a full-expression copy expression if initialization
   13356         // succeeded and used a non-trivial constructor.  Recover from
   13357         // errors by pretending that the copy isn't necessary.
   13358         if (!Result.isInvalid() &&
   13359             !cast<CXXConstructExpr>(Result.get())->getConstructor()
   13360                 ->isTrivial()) {
   13361           Result = S.MaybeCreateExprWithCleanups(Result);
   13362           CopyExpr = Result.get();
   13363         }
   13364       }
   13365     }
   13366   }
   13367 
   13368   // Actually capture the variable.
   13369   if (BuildAndDiagnose)
   13370     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
   13371                     SourceLocation(), CaptureType, CopyExpr);
   13372 
   13373   return true;
   13374 
   13375 }
   13376 
   13377 
   13378 /// \brief Capture the given variable in the captured region.
   13379 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
   13380                                     VarDecl *Var,
   13381                                     SourceLocation Loc,
   13382                                     const bool BuildAndDiagnose,
   13383                                     QualType &CaptureType,
   13384                                     QualType &DeclRefType,
   13385                                     const bool RefersToCapturedVariable,
   13386                                     Sema &S) {
   13387   // By default, capture variables by reference.
   13388   bool ByRef = true;
   13389   // Using an LValue reference type is consistent with Lambdas (see below).
   13390   if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
   13391     if (S.IsOpenMPCapturedDecl(Var))
   13392       DeclRefType = DeclRefType.getUnqualifiedType();
   13393     ByRef = S.IsOpenMPCapturedByRef(Var, RSI->OpenMPLevel);
   13394   }
   13395 
   13396   if (ByRef)
   13397     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   13398   else
   13399     CaptureType = DeclRefType;
   13400 
   13401   Expr *CopyExpr = nullptr;
   13402   if (BuildAndDiagnose) {
   13403     // The current implementation assumes that all variables are captured
   13404     // by references. Since there is no capture by copy, no expression
   13405     // evaluation will be needed.
   13406     RecordDecl *RD = RSI->TheRecordDecl;
   13407 
   13408     FieldDecl *Field
   13409       = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
   13410                           S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
   13411                           nullptr, false, ICIS_NoInit);
   13412     Field->setImplicit(true);
   13413     Field->setAccess(AS_private);
   13414     RD->addDecl(Field);
   13415 
   13416     CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
   13417                                             DeclRefType, VK_LValue, Loc);
   13418     Var->setReferenced(true);
   13419     Var->markUsed(S.Context);
   13420   }
   13421 
   13422   // Actually capture the variable.
   13423   if (BuildAndDiagnose)
   13424     RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
   13425                     SourceLocation(), CaptureType, CopyExpr);
   13426 
   13427 
   13428   return true;
   13429 }
   13430 
   13431 /// \brief Create a field within the lambda class for the variable
   13432 /// being captured.
   13433 static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI,
   13434                                     QualType FieldType, QualType DeclRefType,
   13435                                     SourceLocation Loc,
   13436                                     bool RefersToCapturedVariable) {
   13437   CXXRecordDecl *Lambda = LSI->Lambda;
   13438 
   13439   // Build the non-static data member.
   13440   FieldDecl *Field
   13441     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
   13442                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
   13443                         nullptr, false, ICIS_NoInit);
   13444   Field->setImplicit(true);
   13445   Field->setAccess(AS_private);
   13446   Lambda->addDecl(Field);
   13447 }
   13448 
   13449 /// \brief Capture the given variable in the lambda.
   13450 static bool captureInLambda(LambdaScopeInfo *LSI,
   13451                             VarDecl *Var,
   13452                             SourceLocation Loc,
   13453                             const bool BuildAndDiagnose,
   13454                             QualType &CaptureType,
   13455                             QualType &DeclRefType,
   13456                             const bool RefersToCapturedVariable,
   13457                             const Sema::TryCaptureKind Kind,
   13458                             SourceLocation EllipsisLoc,
   13459                             const bool IsTopScope,
   13460                             Sema &S) {
   13461 
   13462   // Determine whether we are capturing by reference or by value.
   13463   bool ByRef = false;
   13464   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
   13465     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
   13466   } else {
   13467     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
   13468   }
   13469 
   13470   // Compute the type of the field that will capture this variable.
   13471   if (ByRef) {
   13472     // C++11 [expr.prim.lambda]p15:
   13473     //   An entity is captured by reference if it is implicitly or
   13474     //   explicitly captured but not captured by copy. It is
   13475     //   unspecified whether additional unnamed non-static data
   13476     //   members are declared in the closure type for entities
   13477     //   captured by reference.
   13478     //
   13479     // FIXME: It is not clear whether we want to build an lvalue reference
   13480     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
   13481     // to do the former, while EDG does the latter. Core issue 1249 will
   13482     // clarify, but for now we follow GCC because it's a more permissive and
   13483     // easily defensible position.
   13484     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   13485   } else {
   13486     // C++11 [expr.prim.lambda]p14:
   13487     //   For each entity captured by copy, an unnamed non-static
   13488     //   data member is declared in the closure type. The
   13489     //   declaration order of these members is unspecified. The type
   13490     //   of such a data member is the type of the corresponding
   13491     //   captured entity if the entity is not a reference to an
   13492     //   object, or the referenced type otherwise. [Note: If the
   13493     //   captured entity is a reference to a function, the
   13494     //   corresponding data member is also a reference to a
   13495     //   function. - end note ]
   13496     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
   13497       if (!RefType->getPointeeType()->isFunctionType())
   13498         CaptureType = RefType->getPointeeType();
   13499     }
   13500 
   13501     // Forbid the lambda copy-capture of autoreleasing variables.
   13502     if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   13503       if (BuildAndDiagnose) {
   13504         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
   13505         S.Diag(Var->getLocation(), diag::note_previous_decl)
   13506           << Var->getDeclName();
   13507       }
   13508       return false;
   13509     }
   13510 
   13511     // Make sure that by-copy captures are of a complete and non-abstract type.
   13512     if (BuildAndDiagnose) {
   13513       if (!CaptureType->isDependentType() &&
   13514           S.RequireCompleteType(Loc, CaptureType,
   13515                                 diag::err_capture_of_incomplete_type,
   13516                                 Var->getDeclName()))
   13517         return false;
   13518 
   13519       if (S.RequireNonAbstractType(Loc, CaptureType,
   13520                                    diag::err_capture_of_abstract_type))
   13521         return false;
   13522     }
   13523   }
   13524 
   13525   // Capture this variable in the lambda.
   13526   if (BuildAndDiagnose)
   13527     addAsFieldToClosureType(S, LSI, CaptureType, DeclRefType, Loc,
   13528                             RefersToCapturedVariable);
   13529 
   13530   // Compute the type of a reference to this captured variable.
   13531   if (ByRef)
   13532     DeclRefType = CaptureType.getNonReferenceType();
   13533   else {
   13534     // C++ [expr.prim.lambda]p5:
   13535     //   The closure type for a lambda-expression has a public inline
   13536     //   function call operator [...]. This function call operator is
   13537     //   declared const (9.3.1) if and only if the lambda-expressions
   13538     //   parameter-declaration-clause is not followed by mutable.
   13539     DeclRefType = CaptureType.getNonReferenceType();
   13540     if (!LSI->Mutable && !CaptureType->isReferenceType())
   13541       DeclRefType.addConst();
   13542   }
   13543 
   13544   // Add the capture.
   13545   if (BuildAndDiagnose)
   13546     LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
   13547                     Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
   13548 
   13549   return true;
   13550 }
   13551 
   13552 bool Sema::tryCaptureVariable(
   13553     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
   13554     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
   13555     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
   13556   // An init-capture is notionally from the context surrounding its
   13557   // declaration, but its parent DC is the lambda class.
   13558   DeclContext *VarDC = Var->getDeclContext();
   13559   if (Var->isInitCapture())
   13560     VarDC = VarDC->getParent();
   13561 
   13562   DeclContext *DC = CurContext;
   13563   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
   13564       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
   13565   // We need to sync up the Declaration Context with the
   13566   // FunctionScopeIndexToStopAt
   13567   if (FunctionScopeIndexToStopAt) {
   13568     unsigned FSIndex = FunctionScopes.size() - 1;
   13569     while (FSIndex != MaxFunctionScopesIndex) {
   13570       DC = getLambdaAwareParentOfDeclContext(DC);
   13571       --FSIndex;
   13572     }
   13573   }
   13574 
   13575 
   13576   // If the variable is declared in the current context, there is no need to
   13577   // capture it.
   13578   if (VarDC == DC) return true;
   13579 
   13580   // Capture global variables if it is required to use private copy of this
   13581   // variable.
   13582   bool IsGlobal = !Var->hasLocalStorage();
   13583   if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedDecl(Var)))
   13584     return true;
   13585 
   13586   // Walk up the stack to determine whether we can capture the variable,
   13587   // performing the "simple" checks that don't depend on type. We stop when
   13588   // we've either hit the declared scope of the variable or find an existing
   13589   // capture of that variable.  We start from the innermost capturing-entity
   13590   // (the DC) and ensure that all intervening capturing-entities
   13591   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
   13592   // declcontext can either capture the variable or have already captured
   13593   // the variable.
   13594   CaptureType = Var->getType();
   13595   DeclRefType = CaptureType.getNonReferenceType();
   13596   bool Nested = false;
   13597   bool Explicit = (Kind != TryCapture_Implicit);
   13598   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
   13599   do {
   13600     // Only block literals, captured statements, and lambda expressions can
   13601     // capture; other scopes don't work.
   13602     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
   13603                                                               ExprLoc,
   13604                                                               BuildAndDiagnose,
   13605                                                               *this);
   13606     // We need to check for the parent *first* because, if we *have*
   13607     // private-captured a global variable, we need to recursively capture it in
   13608     // intermediate blocks, lambdas, etc.
   13609     if (!ParentDC) {
   13610       if (IsGlobal) {
   13611         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
   13612         break;
   13613       }
   13614       return true;
   13615     }
   13616 
   13617     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
   13618     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
   13619 
   13620 
   13621     // Check whether we've already captured it.
   13622     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
   13623                                              DeclRefType))
   13624       break;
   13625     // If we are instantiating a generic lambda call operator body,
   13626     // we do not want to capture new variables.  What was captured
   13627     // during either a lambdas transformation or initial parsing
   13628     // should be used.
   13629     if (isGenericLambdaCallOperatorSpecialization(DC)) {
   13630       if (BuildAndDiagnose) {
   13631         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   13632         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
   13633           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   13634           Diag(Var->getLocation(), diag::note_previous_decl)
   13635              << Var->getDeclName();
   13636           Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
   13637         } else
   13638           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
   13639       }
   13640       return true;
   13641     }
   13642     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   13643     // certain types of variables (unnamed, variably modified types etc.)
   13644     // so check for eligibility.
   13645     if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
   13646        return true;
   13647 
   13648     // Try to capture variable-length arrays types.
   13649     if (Var->getType()->isVariablyModifiedType()) {
   13650       // We're going to walk down into the type and look for VLA
   13651       // expressions.
   13652       QualType QTy = Var->getType();
   13653       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
   13654         QTy = PVD->getOriginalType();
   13655       captureVariablyModifiedType(Context, QTy, CSI);
   13656     }
   13657 
   13658     if (getLangOpts().OpenMP) {
   13659       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   13660         // OpenMP private variables should not be captured in outer scope, so
   13661         // just break here. Similarly, global variables that are captured in a
   13662         // target region should not be captured outside the scope of the region.
   13663         if (RSI->CapRegionKind == CR_OpenMP) {
   13664           auto IsTargetCap = isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
   13665           // When we detect target captures we are looking from inside the
   13666           // target region, therefore we need to propagate the capture from the
   13667           // enclosing region. Therefore, the capture is not initially nested.
   13668           if (IsTargetCap)
   13669             FunctionScopesIndex--;
   13670 
   13671           if (IsTargetCap || isOpenMPPrivateDecl(Var, RSI->OpenMPLevel)) {
   13672             Nested = !IsTargetCap;
   13673             DeclRefType = DeclRefType.getUnqualifiedType();
   13674             CaptureType = Context.getLValueReferenceType(DeclRefType);
   13675             break;
   13676           }
   13677         }
   13678       }
   13679     }
   13680     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
   13681       // No capture-default, and this is not an explicit capture
   13682       // so cannot capture this variable.
   13683       if (BuildAndDiagnose) {
   13684         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   13685         Diag(Var->getLocation(), diag::note_previous_decl)
   13686           << Var->getDeclName();
   13687         if (cast<LambdaScopeInfo>(CSI)->Lambda)
   13688           Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
   13689                diag::note_lambda_decl);
   13690         // FIXME: If we error out because an outer lambda can not implicitly
   13691         // capture a variable that an inner lambda explicitly captures, we
   13692         // should have the inner lambda do the explicit capture - because
   13693         // it makes for cleaner diagnostics later.  This would purely be done
   13694         // so that the diagnostic does not misleadingly claim that a variable
   13695         // can not be captured by a lambda implicitly even though it is captured
   13696         // explicitly.  Suggestion:
   13697         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
   13698         //    at the function head
   13699         //  - cache the StartingDeclContext - this must be a lambda
   13700         //  - captureInLambda in the innermost lambda the variable.
   13701       }
   13702       return true;
   13703     }
   13704 
   13705     FunctionScopesIndex--;
   13706     DC = ParentDC;
   13707     Explicit = false;
   13708   } while (!VarDC->Equals(DC));
   13709 
   13710   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
   13711   // computing the type of the capture at each step, checking type-specific
   13712   // requirements, and adding captures if requested.
   13713   // If the variable had already been captured previously, we start capturing
   13714   // at the lambda nested within that one.
   13715   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
   13716        ++I) {
   13717     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
   13718 
   13719     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
   13720       if (!captureInBlock(BSI, Var, ExprLoc,
   13721                           BuildAndDiagnose, CaptureType,
   13722                           DeclRefType, Nested, *this))
   13723         return true;
   13724       Nested = true;
   13725     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   13726       if (!captureInCapturedRegion(RSI, Var, ExprLoc,
   13727                                    BuildAndDiagnose, CaptureType,
   13728                                    DeclRefType, Nested, *this))
   13729         return true;
   13730       Nested = true;
   13731     } else {
   13732       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   13733       if (!captureInLambda(LSI, Var, ExprLoc,
   13734                            BuildAndDiagnose, CaptureType,
   13735                            DeclRefType, Nested, Kind, EllipsisLoc,
   13736                             /*IsTopScope*/I == N - 1, *this))
   13737         return true;
   13738       Nested = true;
   13739     }
   13740   }
   13741   return false;
   13742 }
   13743 
   13744 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
   13745                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
   13746   QualType CaptureType;
   13747   QualType DeclRefType;
   13748   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
   13749                             /*BuildAndDiagnose=*/true, CaptureType,
   13750                             DeclRefType, nullptr);
   13751 }
   13752 
   13753 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
   13754   QualType CaptureType;
   13755   QualType DeclRefType;
   13756   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   13757                              /*BuildAndDiagnose=*/false, CaptureType,
   13758                              DeclRefType, nullptr);
   13759 }
   13760 
   13761 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
   13762   QualType CaptureType;
   13763   QualType DeclRefType;
   13764 
   13765   // Determine whether we can capture this variable.
   13766   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   13767                          /*BuildAndDiagnose=*/false, CaptureType,
   13768                          DeclRefType, nullptr))
   13769     return QualType();
   13770 
   13771   return DeclRefType;
   13772 }
   13773 
   13774 
   13775 
   13776 // If either the type of the variable or the initializer is dependent,
   13777 // return false. Otherwise, determine whether the variable is a constant
   13778 // expression. Use this if you need to know if a variable that might or
   13779 // might not be dependent is truly a constant expression.
   13780 static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
   13781     ASTContext &Context) {
   13782 
   13783   if (Var->getType()->isDependentType())
   13784     return false;
   13785   const VarDecl *DefVD = nullptr;
   13786   Var->getAnyInitializer(DefVD);
   13787   if (!DefVD)
   13788     return false;
   13789   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
   13790   Expr *Init = cast<Expr>(Eval->Value);
   13791   if (Init->isValueDependent())
   13792     return false;
   13793   return IsVariableAConstantExpression(Var, Context);
   13794 }
   13795 
   13796 
   13797 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
   13798   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
   13799   // an object that satisfies the requirements for appearing in a
   13800   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
   13801   // is immediately applied."  This function handles the lvalue-to-rvalue
   13802   // conversion part.
   13803   MaybeODRUseExprs.erase(E->IgnoreParens());
   13804 
   13805   // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
   13806   // to a variable that is a constant expression, and if so, identify it as
   13807   // a reference to a variable that does not involve an odr-use of that
   13808   // variable.
   13809   if (LambdaScopeInfo *LSI = getCurLambda()) {
   13810     Expr *SansParensExpr = E->IgnoreParens();
   13811     VarDecl *Var = nullptr;
   13812     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
   13813       Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
   13814     else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
   13815       Var = dyn_cast<VarDecl>(ME->getMemberDecl());
   13816 
   13817     if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
   13818       LSI->markVariableExprAsNonODRUsed(SansParensExpr);
   13819   }
   13820 }
   13821 
   13822 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
   13823   Res = CorrectDelayedTyposInExpr(Res);
   13824 
   13825   if (!Res.isUsable())
   13826     return Res;
   13827 
   13828   // If a constant-expression is a reference to a variable where we delay
   13829   // deciding whether it is an odr-use, just assume we will apply the
   13830   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
   13831   // (a non-type template argument), we have special handling anyway.
   13832   UpdateMarkingForLValueToRValue(Res.get());
   13833   return Res;
   13834 }
   13835 
   13836 void Sema::CleanupVarDeclMarking() {
   13837   for (Expr *E : MaybeODRUseExprs) {
   13838     VarDecl *Var;
   13839     SourceLocation Loc;
   13840     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   13841       Var = cast<VarDecl>(DRE->getDecl());
   13842       Loc = DRE->getLocation();
   13843     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   13844       Var = cast<VarDecl>(ME->getMemberDecl());
   13845       Loc = ME->getMemberLoc();
   13846     } else {
   13847       llvm_unreachable("Unexpected expression");
   13848     }
   13849 
   13850     MarkVarDeclODRUsed(Var, Loc, *this,
   13851                        /*MaxFunctionScopeIndex Pointer*/ nullptr);
   13852   }
   13853 
   13854   MaybeODRUseExprs.clear();
   13855 }
   13856 
   13857 
   13858 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
   13859                                     VarDecl *Var, Expr *E) {
   13860   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
   13861          "Invalid Expr argument to DoMarkVarDeclReferenced");
   13862   Var->setReferenced();
   13863 
   13864   TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
   13865   bool MarkODRUsed = true;
   13866 
   13867   // If the context is not potentially evaluated, this is not an odr-use and
   13868   // does not trigger instantiation.
   13869   if (!IsPotentiallyEvaluatedContext(SemaRef)) {
   13870     if (SemaRef.isUnevaluatedContext())
   13871       return;
   13872 
   13873     // If we don't yet know whether this context is going to end up being an
   13874     // evaluated context, and we're referencing a variable from an enclosing
   13875     // scope, add a potential capture.
   13876     //
   13877     // FIXME: Is this necessary? These contexts are only used for default
   13878     // arguments, where local variables can't be used.
   13879     const bool RefersToEnclosingScope =
   13880         (SemaRef.CurContext != Var->getDeclContext() &&
   13881          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
   13882     if (RefersToEnclosingScope) {
   13883       if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
   13884         // If a variable could potentially be odr-used, defer marking it so
   13885         // until we finish analyzing the full expression for any
   13886         // lvalue-to-rvalue
   13887         // or discarded value conversions that would obviate odr-use.
   13888         // Add it to the list of potential captures that will be analyzed
   13889         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
   13890         // unless the variable is a reference that was initialized by a constant
   13891         // expression (this will never need to be captured or odr-used).
   13892         assert(E && "Capture variable should be used in an expression.");
   13893         if (!Var->getType()->isReferenceType() ||
   13894             !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
   13895           LSI->addPotentialCapture(E->IgnoreParens());
   13896       }
   13897     }
   13898 
   13899     if (!isTemplateInstantiation(TSK))
   13900       return;
   13901 
   13902     // Instantiate, but do not mark as odr-used, variable templates.
   13903     MarkODRUsed = false;
   13904   }
   13905 
   13906   VarTemplateSpecializationDecl *VarSpec =
   13907       dyn_cast<VarTemplateSpecializationDecl>(Var);
   13908   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
   13909          "Can't instantiate a partial template specialization.");
   13910 
   13911   // If this might be a member specialization of a static data member, check
   13912   // the specialization is visible. We already did the checks for variable
   13913   // template specializations when we created them.
   13914   if (TSK != TSK_Undeclared && !isa<VarTemplateSpecializationDecl>(Var))
   13915     SemaRef.checkSpecializationVisibility(Loc, Var);
   13916 
   13917   // Perform implicit instantiation of static data members, static data member
   13918   // templates of class templates, and variable template specializations. Delay
   13919   // instantiations of variable templates, except for those that could be used
   13920   // in a constant expression.
   13921   if (isTemplateInstantiation(TSK)) {
   13922     bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
   13923 
   13924     if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
   13925       if (Var->getPointOfInstantiation().isInvalid()) {
   13926         // This is a modification of an existing AST node. Notify listeners.
   13927         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
   13928           L->StaticDataMemberInstantiated(Var);
   13929       } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
   13930         // Don't bother trying to instantiate it again, unless we might need
   13931         // its initializer before we get to the end of the TU.
   13932         TryInstantiating = false;
   13933     }
   13934 
   13935     if (Var->getPointOfInstantiation().isInvalid())
   13936       Var->setTemplateSpecializationKind(TSK, Loc);
   13937 
   13938     if (TryInstantiating) {
   13939       SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
   13940       bool InstantiationDependent = false;
   13941       bool IsNonDependent =
   13942           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
   13943                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
   13944                   : true;
   13945 
   13946       // Do not instantiate specializations that are still type-dependent.
   13947       if (IsNonDependent) {
   13948         if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
   13949           // Do not defer instantiations of variables which could be used in a
   13950           // constant expression.
   13951           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
   13952         } else {
   13953           SemaRef.PendingInstantiations
   13954               .push_back(std::make_pair(Var, PointOfInstantiation));
   13955         }
   13956       }
   13957     }
   13958   }
   13959 
   13960   if (!MarkODRUsed)
   13961     return;
   13962 
   13963   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
   13964   // the requirements for appearing in a constant expression (5.19) and, if
   13965   // it is an object, the lvalue-to-rvalue conversion (4.1)
   13966   // is immediately applied."  We check the first part here, and
   13967   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
   13968   // Note that we use the C++11 definition everywhere because nothing in
   13969   // C++03 depends on whether we get the C++03 version correct. The second
   13970   // part does not apply to references, since they are not objects.
   13971   if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
   13972     // A reference initialized by a constant expression can never be
   13973     // odr-used, so simply ignore it.
   13974     if (!Var->getType()->isReferenceType())
   13975       SemaRef.MaybeODRUseExprs.insert(E);
   13976   } else
   13977     MarkVarDeclODRUsed(Var, Loc, SemaRef,
   13978                        /*MaxFunctionScopeIndex ptr*/ nullptr);
   13979 }
   13980 
   13981 /// \brief Mark a variable referenced, and check whether it is odr-used
   13982 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
   13983 /// used directly for normal expressions referring to VarDecl.
   13984 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
   13985   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
   13986 }
   13987 
   13988 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
   13989                                Decl *D, Expr *E, bool MightBeOdrUse) {
   13990   if (SemaRef.isInOpenMPDeclareTargetContext())
   13991     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
   13992 
   13993   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
   13994     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
   13995     return;
   13996   }
   13997 
   13998   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
   13999 
   14000   // If this is a call to a method via a cast, also mark the method in the
   14001   // derived class used in case codegen can devirtualize the call.
   14002   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   14003   if (!ME)
   14004     return;
   14005   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
   14006   if (!MD)
   14007     return;
   14008   // Only attempt to devirtualize if this is truly a virtual call.
   14009   bool IsVirtualCall = MD->isVirtual() &&
   14010                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
   14011   if (!IsVirtualCall)
   14012     return;
   14013   const Expr *Base = ME->getBase();
   14014   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   14015   if (!MostDerivedClassDecl)
   14016     return;
   14017   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
   14018   if (!DM || DM->isPure())
   14019     return;
   14020   SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
   14021 }
   14022 
   14023 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
   14024 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
   14025   // TODO: update this with DR# once a defect report is filed.
   14026   // C++11 defect. The address of a pure member should not be an ODR use, even
   14027   // if it's a qualified reference.
   14028   bool OdrUse = true;
   14029   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
   14030     if (Method->isVirtual())
   14031       OdrUse = false;
   14032   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
   14033 }
   14034 
   14035 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
   14036 void Sema::MarkMemberReferenced(MemberExpr *E) {
   14037   // C++11 [basic.def.odr]p2:
   14038   //   A non-overloaded function whose name appears as a potentially-evaluated
   14039   //   expression or a member of a set of candidate functions, if selected by
   14040   //   overload resolution when referred to from a potentially-evaluated
   14041   //   expression, is odr-used, unless it is a pure virtual function and its
   14042   //   name is not explicitly qualified.
   14043   bool MightBeOdrUse = true;
   14044   if (E->performsVirtualDispatch(getLangOpts())) {
   14045     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
   14046       if (Method->isPure())
   14047         MightBeOdrUse = false;
   14048   }
   14049   SourceLocation Loc = E->getMemberLoc().isValid() ?
   14050                             E->getMemberLoc() : E->getLocStart();
   14051   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
   14052 }
   14053 
   14054 /// \brief Perform marking for a reference to an arbitrary declaration.  It
   14055 /// marks the declaration referenced, and performs odr-use checking for
   14056 /// functions and variables. This method should not be used when building a
   14057 /// normal expression which refers to a variable.
   14058 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
   14059                                  bool MightBeOdrUse) {
   14060   if (MightBeOdrUse) {
   14061     if (auto *VD = dyn_cast<VarDecl>(D)) {
   14062       MarkVariableReferenced(Loc, VD);
   14063       return;
   14064     }
   14065   }
   14066   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
   14067     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
   14068     return;
   14069   }
   14070   D->setReferenced();
   14071 }
   14072 
   14073 namespace {
   14074   // Mark all of the declarations referenced
   14075   // FIXME: Not fully implemented yet! We need to have a better understanding
   14076   // of when we're entering
   14077   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
   14078     Sema &S;
   14079     SourceLocation Loc;
   14080 
   14081   public:
   14082     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
   14083 
   14084     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
   14085 
   14086     bool TraverseTemplateArgument(const TemplateArgument &Arg);
   14087     bool TraverseRecordType(RecordType *T);
   14088   };
   14089 }
   14090 
   14091 bool MarkReferencedDecls::TraverseTemplateArgument(
   14092     const TemplateArgument &Arg) {
   14093   if (Arg.getKind() == TemplateArgument::Declaration) {
   14094     if (Decl *D = Arg.getAsDecl())
   14095       S.MarkAnyDeclReferenced(Loc, D, true);
   14096   }
   14097 
   14098   return Inherited::TraverseTemplateArgument(Arg);
   14099 }
   14100 
   14101 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
   14102   if (ClassTemplateSpecializationDecl *Spec
   14103                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
   14104     const TemplateArgumentList &Args = Spec->getTemplateArgs();
   14105     return TraverseTemplateArguments(Args.data(), Args.size());
   14106   }
   14107 
   14108   return true;
   14109 }
   14110 
   14111 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
   14112   MarkReferencedDecls Marker(*this, Loc);
   14113   Marker.TraverseType(Context.getCanonicalType(T));
   14114 }
   14115 
   14116 namespace {
   14117   /// \brief Helper class that marks all of the declarations referenced by
   14118   /// potentially-evaluated subexpressions as "referenced".
   14119   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
   14120     Sema &S;
   14121     bool SkipLocalVariables;
   14122 
   14123   public:
   14124     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
   14125 
   14126     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
   14127       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
   14128 
   14129     void VisitDeclRefExpr(DeclRefExpr *E) {
   14130       // If we were asked not to visit local variables, don't.
   14131       if (SkipLocalVariables) {
   14132         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   14133           if (VD->hasLocalStorage())
   14134             return;
   14135       }
   14136 
   14137       S.MarkDeclRefReferenced(E);
   14138     }
   14139 
   14140     void VisitMemberExpr(MemberExpr *E) {
   14141       S.MarkMemberReferenced(E);
   14142       Inherited::VisitMemberExpr(E);
   14143     }
   14144 
   14145     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
   14146       S.MarkFunctionReferenced(E->getLocStart(),
   14147             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
   14148       Visit(E->getSubExpr());
   14149     }
   14150 
   14151     void VisitCXXNewExpr(CXXNewExpr *E) {
   14152       if (E->getOperatorNew())
   14153         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
   14154       if (E->getOperatorDelete())
   14155         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   14156       Inherited::VisitCXXNewExpr(E);
   14157     }
   14158 
   14159     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
   14160       if (E->getOperatorDelete())
   14161         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   14162       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
   14163       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
   14164         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
   14165         S.MarkFunctionReferenced(E->getLocStart(),
   14166                                     S.LookupDestructor(Record));
   14167       }
   14168 
   14169       Inherited::VisitCXXDeleteExpr(E);
   14170     }
   14171 
   14172     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   14173       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
   14174       Inherited::VisitCXXConstructExpr(E);
   14175     }
   14176 
   14177     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
   14178       Visit(E->getExpr());
   14179     }
   14180 
   14181     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   14182       Inherited::VisitImplicitCastExpr(E);
   14183 
   14184       if (E->getCastKind() == CK_LValueToRValue)
   14185         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
   14186     }
   14187   };
   14188 }
   14189 
   14190 /// \brief Mark any declarations that appear within this expression or any
   14191 /// potentially-evaluated subexpressions as "referenced".
   14192 ///
   14193 /// \param SkipLocalVariables If true, don't mark local variables as
   14194 /// 'referenced'.
   14195 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
   14196                                             bool SkipLocalVariables) {
   14197   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
   14198 }
   14199 
   14200 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
   14201 /// of the program being compiled.
   14202 ///
   14203 /// This routine emits the given diagnostic when the code currently being
   14204 /// type-checked is "potentially evaluated", meaning that there is a
   14205 /// possibility that the code will actually be executable. Code in sizeof()
   14206 /// expressions, code used only during overload resolution, etc., are not
   14207 /// potentially evaluated. This routine will suppress such diagnostics or,
   14208 /// in the absolutely nutty case of potentially potentially evaluated
   14209 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
   14210 /// later.
   14211 ///
   14212 /// This routine should be used for all diagnostics that describe the run-time
   14213 /// behavior of a program, such as passing a non-POD value through an ellipsis.
   14214 /// Failure to do so will likely result in spurious diagnostics or failures
   14215 /// during overload resolution or within sizeof/alignof/typeof/typeid.
   14216 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
   14217                                const PartialDiagnostic &PD) {
   14218   switch (ExprEvalContexts.back().Context) {
   14219   case Unevaluated:
   14220   case UnevaluatedAbstract:
   14221   case DiscardedStatement:
   14222     // The argument will never be evaluated, so don't complain.
   14223     break;
   14224 
   14225   case ConstantEvaluated:
   14226     // Relevant diagnostics should be produced by constant evaluation.
   14227     break;
   14228 
   14229   case PotentiallyEvaluated:
   14230   case PotentiallyEvaluatedIfUsed:
   14231     if (Statement && getCurFunctionOrMethodDecl()) {
   14232       FunctionScopes.back()->PossiblyUnreachableDiags.
   14233         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
   14234     }
   14235     else
   14236       Diag(Loc, PD);
   14237 
   14238     return true;
   14239   }
   14240 
   14241   return false;
   14242 }
   14243 
   14244 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
   14245                                CallExpr *CE, FunctionDecl *FD) {
   14246   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
   14247     return false;
   14248 
   14249   // If we're inside a decltype's expression, don't check for a valid return
   14250   // type or construct temporaries until we know whether this is the last call.
   14251   if (ExprEvalContexts.back().IsDecltype) {
   14252     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
   14253     return false;
   14254   }
   14255 
   14256   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
   14257     FunctionDecl *FD;
   14258     CallExpr *CE;
   14259 
   14260   public:
   14261     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
   14262       : FD(FD), CE(CE) { }
   14263 
   14264     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   14265       if (!FD) {
   14266         S.Diag(Loc, diag::err_call_incomplete_return)
   14267           << T << CE->getSourceRange();
   14268         return;
   14269       }
   14270 
   14271       S.Diag(Loc, diag::err_call_function_incomplete_return)
   14272         << CE->getSourceRange() << FD->getDeclName() << T;
   14273       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
   14274           << FD->getDeclName();
   14275     }
   14276   } Diagnoser(FD, CE);
   14277 
   14278   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
   14279     return true;
   14280 
   14281   return false;
   14282 }
   14283 
   14284 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
   14285 // will prevent this condition from triggering, which is what we want.
   14286 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
   14287   SourceLocation Loc;
   14288 
   14289   unsigned diagnostic = diag::warn_condition_is_assignment;
   14290   bool IsOrAssign = false;
   14291 
   14292   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
   14293     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
   14294       return;
   14295 
   14296     IsOrAssign = Op->getOpcode() == BO_OrAssign;
   14297 
   14298     // Greylist some idioms by putting them into a warning subcategory.
   14299     if (ObjCMessageExpr *ME
   14300           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
   14301       Selector Sel = ME->getSelector();
   14302 
   14303       // self = [<foo> init...]
   14304       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
   14305         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   14306 
   14307       // <foo> = [<bar> nextObject]
   14308       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
   14309         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   14310     }
   14311 
   14312     Loc = Op->getOperatorLoc();
   14313   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
   14314     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
   14315       return;
   14316 
   14317     IsOrAssign = Op->getOperator() == OO_PipeEqual;
   14318     Loc = Op->getOperatorLoc();
   14319   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
   14320     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
   14321   else {
   14322     // Not an assignment.
   14323     return;
   14324   }
   14325 
   14326   Diag(Loc, diagnostic) << E->getSourceRange();
   14327 
   14328   SourceLocation Open = E->getLocStart();
   14329   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
   14330   Diag(Loc, diag::note_condition_assign_silence)
   14331         << FixItHint::CreateInsertion(Open, "(")
   14332         << FixItHint::CreateInsertion(Close, ")");
   14333 
   14334   if (IsOrAssign)
   14335     Diag(Loc, diag::note_condition_or_assign_to_comparison)
   14336       << FixItHint::CreateReplacement(Loc, "!=");
   14337   else
   14338     Diag(Loc, diag::note_condition_assign_to_comparison)
   14339       << FixItHint::CreateReplacement(Loc, "==");
   14340 }
   14341 
   14342 /// \brief Redundant parentheses over an equality comparison can indicate
   14343 /// that the user intended an assignment used as condition.
   14344 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
   14345   // Don't warn if the parens came from a macro.
   14346   SourceLocation parenLoc = ParenE->getLocStart();
   14347   if (parenLoc.isInvalid() || parenLoc.isMacroID())
   14348     return;
   14349   // Don't warn for dependent expressions.
   14350   if (ParenE->isTypeDependent())
   14351     return;
   14352 
   14353   Expr *E = ParenE->IgnoreParens();
   14354 
   14355   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
   14356     if (opE->getOpcode() == BO_EQ &&
   14357         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
   14358                                                            == Expr::MLV_Valid) {
   14359       SourceLocation Loc = opE->getOperatorLoc();
   14360 
   14361       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
   14362       SourceRange ParenERange = ParenE->getSourceRange();
   14363       Diag(Loc, diag::note_equality_comparison_silence)
   14364         << FixItHint::CreateRemoval(ParenERange.getBegin())
   14365         << FixItHint::CreateRemoval(ParenERange.getEnd());
   14366       Diag(Loc, diag::note_equality_comparison_to_assign)
   14367         << FixItHint::CreateReplacement(Loc, "=");
   14368     }
   14369 }
   14370 
   14371 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
   14372                                        bool IsConstexpr) {
   14373   DiagnoseAssignmentAsCondition(E);
   14374   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
   14375     DiagnoseEqualityWithExtraParens(parenE);
   14376 
   14377   ExprResult result = CheckPlaceholderExpr(E);
   14378   if (result.isInvalid()) return ExprError();
   14379   E = result.get();
   14380 
   14381   if (!E->isTypeDependent()) {
   14382     if (getLangOpts().CPlusPlus)
   14383       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
   14384 
   14385     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
   14386     if (ERes.isInvalid())
   14387       return ExprError();
   14388     E = ERes.get();
   14389 
   14390     QualType T = E->getType();
   14391     if (!T->isScalarType()) { // C99 6.8.4.1p1
   14392       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
   14393         << T << E->getSourceRange();
   14394       return ExprError();
   14395     }
   14396     CheckBoolLikeConversion(E, Loc);
   14397   }
   14398 
   14399   return E;
   14400 }
   14401 
   14402 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
   14403                                            Expr *SubExpr, ConditionKind CK) {
   14404   // Empty conditions are valid in for-statements.
   14405   if (!SubExpr)
   14406     return ConditionResult();
   14407 
   14408   ExprResult Cond;
   14409   switch (CK) {
   14410   case ConditionKind::Boolean:
   14411     Cond = CheckBooleanCondition(Loc, SubExpr);
   14412     break;
   14413 
   14414   case ConditionKind::ConstexprIf:
   14415     Cond = CheckBooleanCondition(Loc, SubExpr, true);
   14416     break;
   14417 
   14418   case ConditionKind::Switch:
   14419     Cond = CheckSwitchCondition(Loc, SubExpr);
   14420     break;
   14421   }
   14422   if (Cond.isInvalid())
   14423     return ConditionError();
   14424 
   14425   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
   14426   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
   14427   if (!FullExpr.get())
   14428     return ConditionError();
   14429 
   14430   return ConditionResult(*this, nullptr, FullExpr,
   14431                          CK == ConditionKind::ConstexprIf);
   14432 }
   14433 
   14434 namespace {
   14435   /// A visitor for rebuilding a call to an __unknown_any expression
   14436   /// to have an appropriate type.
   14437   struct RebuildUnknownAnyFunction
   14438     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
   14439 
   14440     Sema &S;
   14441 
   14442     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
   14443 
   14444     ExprResult VisitStmt(Stmt *S) {
   14445       llvm_unreachable("unexpected statement!");
   14446     }
   14447 
   14448     ExprResult VisitExpr(Expr *E) {
   14449       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
   14450         << E->getSourceRange();
   14451       return ExprError();
   14452     }
   14453 
   14454     /// Rebuild an expression which simply semantically wraps another
   14455     /// expression which it shares the type and value kind of.
   14456     template <class T> ExprResult rebuildSugarExpr(T *E) {
   14457       ExprResult SubResult = Visit(E->getSubExpr());
   14458       if (SubResult.isInvalid()) return ExprError();
   14459 
   14460       Expr *SubExpr = SubResult.get();
   14461       E->setSubExpr(SubExpr);
   14462       E->setType(SubExpr->getType());
   14463       E->setValueKind(SubExpr->getValueKind());
   14464       assert(E->getObjectKind() == OK_Ordinary);
   14465       return E;
   14466     }
   14467 
   14468     ExprResult VisitParenExpr(ParenExpr *E) {
   14469       return rebuildSugarExpr(E);
   14470     }
   14471 
   14472     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   14473       return rebuildSugarExpr(E);
   14474     }
   14475 
   14476     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   14477       ExprResult SubResult = Visit(E->getSubExpr());
   14478       if (SubResult.isInvalid()) return ExprError();
   14479 
   14480       Expr *SubExpr = SubResult.get();
   14481       E->setSubExpr(SubExpr);
   14482       E->setType(S.Context.getPointerType(SubExpr->getType()));
   14483       assert(E->getValueKind() == VK_RValue);
   14484       assert(E->getObjectKind() == OK_Ordinary);
   14485       return E;
   14486     }
   14487 
   14488     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
   14489       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
   14490 
   14491       E->setType(VD->getType());
   14492 
   14493       assert(E->getValueKind() == VK_RValue);
   14494       if (S.getLangOpts().CPlusPlus &&
   14495           !(isa<CXXMethodDecl>(VD) &&
   14496             cast<CXXMethodDecl>(VD)->isInstance()))
   14497         E->setValueKind(VK_LValue);
   14498 
   14499       return E;
   14500     }
   14501 
   14502     ExprResult VisitMemberExpr(MemberExpr *E) {
   14503       return resolveDecl(E, E->getMemberDecl());
   14504     }
   14505 
   14506     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   14507       return resolveDecl(E, E->getDecl());
   14508     }
   14509   };
   14510 }
   14511 
   14512 /// Given a function expression of unknown-any type, try to rebuild it
   14513 /// to have a function type.
   14514 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
   14515   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
   14516   if (Result.isInvalid()) return ExprError();
   14517   return S.DefaultFunctionArrayConversion(Result.get());
   14518 }
   14519 
   14520 namespace {
   14521   /// A visitor for rebuilding an expression of type __unknown_anytype
   14522   /// into one which resolves the type directly on the referring
   14523   /// expression.  Strict preservation of the original source
   14524   /// structure is not a goal.
   14525   struct RebuildUnknownAnyExpr
   14526     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
   14527 
   14528     Sema &S;
   14529 
   14530     /// The current destination type.
   14531     QualType DestType;
   14532 
   14533     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
   14534       : S(S), DestType(CastType) {}
   14535 
   14536     ExprResult VisitStmt(Stmt *S) {
   14537       llvm_unreachable("unexpected statement!");
   14538     }
   14539 
   14540     ExprResult VisitExpr(Expr *E) {
   14541       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   14542         << E->getSourceRange();
   14543       return ExprError();
   14544     }
   14545 
   14546     ExprResult VisitCallExpr(CallExpr *E);
   14547     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
   14548 
   14549     /// Rebuild an expression which simply semantically wraps another
   14550     /// expression which it shares the type and value kind of.
   14551     template <class T> ExprResult rebuildSugarExpr(T *E) {
   14552       ExprResult SubResult = Visit(E->getSubExpr());
   14553       if (SubResult.isInvalid()) return ExprError();
   14554       Expr *SubExpr = SubResult.get();
   14555       E->setSubExpr(SubExpr);
   14556       E->setType(SubExpr->getType());
   14557       E->setValueKind(SubExpr->getValueKind());
   14558       assert(E->getObjectKind() == OK_Ordinary);
   14559       return E;
   14560     }
   14561 
   14562     ExprResult VisitParenExpr(ParenExpr *E) {
   14563       return rebuildSugarExpr(E);
   14564     }
   14565 
   14566     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   14567       return rebuildSugarExpr(E);
   14568     }
   14569 
   14570     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   14571       const PointerType *Ptr = DestType->getAs<PointerType>();
   14572       if (!Ptr) {
   14573         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
   14574           << E->getSourceRange();
   14575         return ExprError();
   14576       }
   14577       assert(E->getValueKind() == VK_RValue);
   14578       assert(E->getObjectKind() == OK_Ordinary);
   14579       E->setType(DestType);
   14580 
   14581       // Build the sub-expression as if it were an object of the pointee type.
   14582       DestType = Ptr->getPointeeType();
   14583       ExprResult SubResult = Visit(E->getSubExpr());
   14584       if (SubResult.isInvalid()) return ExprError();
   14585       E->setSubExpr(SubResult.get());
   14586       return E;
   14587     }
   14588 
   14589     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
   14590 
   14591     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
   14592 
   14593     ExprResult VisitMemberExpr(MemberExpr *E) {
   14594       return resolveDecl(E, E->getMemberDecl());
   14595     }
   14596 
   14597     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   14598       return resolveDecl(E, E->getDecl());
   14599     }
   14600   };
   14601 }
   14602 
   14603 /// Rebuilds a call expression which yielded __unknown_anytype.
   14604 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
   14605   Expr *CalleeExpr = E->getCallee();
   14606 
   14607   enum FnKind {
   14608     FK_MemberFunction,
   14609     FK_FunctionPointer,
   14610     FK_BlockPointer
   14611   };
   14612 
   14613   FnKind Kind;
   14614   QualType CalleeType = CalleeExpr->getType();
   14615   if (CalleeType == S.Context.BoundMemberTy) {
   14616     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
   14617     Kind = FK_MemberFunction;
   14618     CalleeType = Expr::findBoundMemberType(CalleeExpr);
   14619   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
   14620     CalleeType = Ptr->getPointeeType();
   14621     Kind = FK_FunctionPointer;
   14622   } else {
   14623     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
   14624     Kind = FK_BlockPointer;
   14625   }
   14626   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   14627 
   14628   // Verify that this is a legal result type of a function.
   14629   if (DestType->isArrayType() || DestType->isFunctionType()) {
   14630     unsigned diagID = diag::err_func_returning_array_function;
   14631     if (Kind == FK_BlockPointer)
   14632       diagID = diag::err_block_returning_array_function;
   14633 
   14634     S.Diag(E->getExprLoc(), diagID)
   14635       << DestType->isFunctionType() << DestType;
   14636     return ExprError();
   14637   }
   14638 
   14639   // Otherwise, go ahead and set DestType as the call's result.
   14640   E->setType(DestType.getNonLValueExprType(S.Context));
   14641   E->setValueKind(Expr::getValueKindForType(DestType));
   14642   assert(E->getObjectKind() == OK_Ordinary);
   14643 
   14644   // Rebuild the function type, replacing the result type with DestType.
   14645   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
   14646   if (Proto) {
   14647     // __unknown_anytype(...) is a special case used by the debugger when
   14648     // it has no idea what a function's signature is.
   14649     //
   14650     // We want to build this call essentially under the K&R
   14651     // unprototyped rules, but making a FunctionNoProtoType in C++
   14652     // would foul up all sorts of assumptions.  However, we cannot
   14653     // simply pass all arguments as variadic arguments, nor can we
   14654     // portably just call the function under a non-variadic type; see
   14655     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
   14656     // However, it turns out that in practice it is generally safe to
   14657     // call a function declared as "A foo(B,C,D);" under the prototype
   14658     // "A foo(B,C,D,...);".  The only known exception is with the
   14659     // Windows ABI, where any variadic function is implicitly cdecl
   14660     // regardless of its normal CC.  Therefore we change the parameter
   14661     // types to match the types of the arguments.
   14662     //
   14663     // This is a hack, but it is far superior to moving the
   14664     // corresponding target-specific code from IR-gen to Sema/AST.
   14665 
   14666     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
   14667     SmallVector<QualType, 8> ArgTypes;
   14668     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
   14669       ArgTypes.reserve(E->getNumArgs());
   14670       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
   14671         Expr *Arg = E->getArg(i);
   14672         QualType ArgType = Arg->getType();
   14673         if (E->isLValue()) {
   14674           ArgType = S.Context.getLValueReferenceType(ArgType);
   14675         } else if (E->isXValue()) {
   14676           ArgType = S.Context.getRValueReferenceType(ArgType);
   14677         }
   14678         ArgTypes.push_back(ArgType);
   14679       }
   14680       ParamTypes = ArgTypes;
   14681     }
   14682     DestType = S.Context.getFunctionType(DestType, ParamTypes,
   14683                                          Proto->getExtProtoInfo());
   14684   } else {
   14685     DestType = S.Context.getFunctionNoProtoType(DestType,
   14686                                                 FnType->getExtInfo());
   14687   }
   14688 
   14689   // Rebuild the appropriate pointer-to-function type.
   14690   switch (Kind) {
   14691   case FK_MemberFunction:
   14692     // Nothing to do.
   14693     break;
   14694 
   14695   case FK_FunctionPointer:
   14696     DestType = S.Context.getPointerType(DestType);
   14697     break;
   14698 
   14699   case FK_BlockPointer:
   14700     DestType = S.Context.getBlockPointerType(DestType);
   14701     break;
   14702   }
   14703 
   14704   // Finally, we can recurse.
   14705   ExprResult CalleeResult = Visit(CalleeExpr);
   14706   if (!CalleeResult.isUsable()) return ExprError();
   14707   E->setCallee(CalleeResult.get());
   14708 
   14709   // Bind a temporary if necessary.
   14710   return S.MaybeBindToTemporary(E);
   14711 }
   14712 
   14713 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
   14714   // Verify that this is a legal result type of a call.
   14715   if (DestType->isArrayType() || DestType->isFunctionType()) {
   14716     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
   14717       << DestType->isFunctionType() << DestType;
   14718     return ExprError();
   14719   }
   14720 
   14721   // Rewrite the method result type if available.
   14722   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
   14723     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
   14724     Method->setReturnType(DestType);
   14725   }
   14726 
   14727   // Change the type of the message.
   14728   E->setType(DestType.getNonReferenceType());
   14729   E->setValueKind(Expr::getValueKindForType(DestType));
   14730 
   14731   return S.MaybeBindToTemporary(E);
   14732 }
   14733 
   14734 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
   14735   // The only case we should ever see here is a function-to-pointer decay.
   14736   if (E->getCastKind() == CK_FunctionToPointerDecay) {
   14737     assert(E->getValueKind() == VK_RValue);
   14738     assert(E->getObjectKind() == OK_Ordinary);
   14739 
   14740     E->setType(DestType);
   14741 
   14742     // Rebuild the sub-expression as the pointee (function) type.
   14743     DestType = DestType->castAs<PointerType>()->getPointeeType();
   14744 
   14745     ExprResult Result = Visit(E->getSubExpr());
   14746     if (!Result.isUsable()) return ExprError();
   14747 
   14748     E->setSubExpr(Result.get());
   14749     return E;
   14750   } else if (E->getCastKind() == CK_LValueToRValue) {
   14751     assert(E->getValueKind() == VK_RValue);
   14752     assert(E->getObjectKind() == OK_Ordinary);
   14753 
   14754     assert(isa<BlockPointerType>(E->getType()));
   14755 
   14756     E->setType(DestType);
   14757 
   14758     // The sub-expression has to be a lvalue reference, so rebuild it as such.
   14759     DestType = S.Context.getLValueReferenceType(DestType);
   14760 
   14761     ExprResult Result = Visit(E->getSubExpr());
   14762     if (!Result.isUsable()) return ExprError();
   14763 
   14764     E->setSubExpr(Result.get());
   14765     return E;
   14766   } else {
   14767     llvm_unreachable("Unhandled cast type!");
   14768   }
   14769 }
   14770 
   14771 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
   14772   ExprValueKind ValueKind = VK_LValue;
   14773   QualType Type = DestType;
   14774 
   14775   // We know how to make this work for certain kinds of decls:
   14776 
   14777   //  - functions
   14778   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
   14779     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
   14780       DestType = Ptr->getPointeeType();
   14781       ExprResult Result = resolveDecl(E, VD);
   14782       if (Result.isInvalid()) return ExprError();
   14783       return S.ImpCastExprToType(Result.get(), Type,
   14784                                  CK_FunctionToPointerDecay, VK_RValue);
   14785     }
   14786 
   14787     if (!Type->isFunctionType()) {
   14788       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
   14789         << VD << E->getSourceRange();
   14790       return ExprError();
   14791     }
   14792     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
   14793       // We must match the FunctionDecl's type to the hack introduced in
   14794       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
   14795       // type. See the lengthy commentary in that routine.
   14796       QualType FDT = FD->getType();
   14797       const FunctionType *FnType = FDT->castAs<FunctionType>();
   14798       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
   14799       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   14800       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
   14801         SourceLocation Loc = FD->getLocation();
   14802         FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
   14803                                       FD->getDeclContext(),
   14804                                       Loc, Loc, FD->getNameInfo().getName(),
   14805                                       DestType, FD->getTypeSourceInfo(),
   14806                                       SC_None, false/*isInlineSpecified*/,
   14807                                       FD->hasPrototype(),
   14808                                       false/*isConstexprSpecified*/);
   14809 
   14810         if (FD->getQualifier())
   14811           NewFD->setQualifierInfo(FD->getQualifierLoc());
   14812 
   14813         SmallVector<ParmVarDecl*, 16> Params;
   14814         for (const auto &AI : FT->param_types()) {
   14815           ParmVarDecl *Param =
   14816             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
   14817           Param->setScopeInfo(0, Params.size());
   14818           Params.push_back(Param);
   14819         }
   14820         NewFD->setParams(Params);
   14821         DRE->setDecl(NewFD);
   14822         VD = DRE->getDecl();
   14823       }
   14824     }
   14825 
   14826     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   14827       if (MD->isInstance()) {
   14828         ValueKind = VK_RValue;
   14829         Type = S.Context.BoundMemberTy;
   14830       }
   14831 
   14832     // Function references aren't l-values in C.
   14833     if (!S.getLangOpts().CPlusPlus)
   14834       ValueKind = VK_RValue;
   14835 
   14836   //  - variables
   14837   } else if (isa<VarDecl>(VD)) {
   14838     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
   14839       Type = RefTy->getPointeeType();
   14840     } else if (Type->isFunctionType()) {
   14841       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
   14842         << VD << E->getSourceRange();
   14843       return ExprError();
   14844     }
   14845 
   14846   //  - nothing else
   14847   } else {
   14848     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
   14849       << VD << E->getSourceRange();
   14850     return ExprError();
   14851   }
   14852 
   14853   // Modifying the declaration like this is friendly to IR-gen but
   14854   // also really dangerous.
   14855   VD->setType(DestType);
   14856   E->setType(Type);
   14857   E->setValueKind(ValueKind);
   14858   return E;
   14859 }
   14860 
   14861 /// Check a cast of an unknown-any type.  We intentionally only
   14862 /// trigger this for C-style casts.
   14863 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
   14864                                      Expr *CastExpr, CastKind &CastKind,
   14865                                      ExprValueKind &VK, CXXCastPath &Path) {
   14866   // The type we're casting to must be either void or complete.
   14867   if (!CastType->isVoidType() &&
   14868       RequireCompleteType(TypeRange.getBegin(), CastType,
   14869                           diag::err_typecheck_cast_to_incomplete))
   14870     return ExprError();
   14871 
   14872   // Rewrite the casted expression from scratch.
   14873   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
   14874   if (!result.isUsable()) return ExprError();
   14875 
   14876   CastExpr = result.get();
   14877   VK = CastExpr->getValueKind();
   14878   CastKind = CK_NoOp;
   14879 
   14880   return CastExpr;
   14881 }
   14882 
   14883 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
   14884   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
   14885 }
   14886 
   14887 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
   14888                                     Expr *arg, QualType &paramType) {
   14889   // If the syntactic form of the argument is not an explicit cast of
   14890   // any sort, just do default argument promotion.
   14891   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
   14892   if (!castArg) {
   14893     ExprResult result = DefaultArgumentPromotion(arg);
   14894     if (result.isInvalid()) return ExprError();
   14895     paramType = result.get()->getType();
   14896     return result;
   14897   }
   14898 
   14899   // Otherwise, use the type that was written in the explicit cast.
   14900   assert(!arg->hasPlaceholderType());
   14901   paramType = castArg->getTypeAsWritten();
   14902 
   14903   // Copy-initialize a parameter of that type.
   14904   InitializedEntity entity =
   14905     InitializedEntity::InitializeParameter(Context, paramType,
   14906                                            /*consumed*/ false);
   14907   return PerformCopyInitialization(entity, callLoc, arg);
   14908 }
   14909 
   14910 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
   14911   Expr *orig = E;
   14912   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
   14913   while (true) {
   14914     E = E->IgnoreParenImpCasts();
   14915     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
   14916       E = call->getCallee();
   14917       diagID = diag::err_uncasted_call_of_unknown_any;
   14918     } else {
   14919       break;
   14920     }
   14921   }
   14922 
   14923   SourceLocation loc;
   14924   NamedDecl *d;
   14925   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
   14926     loc = ref->getLocation();
   14927     d = ref->getDecl();
   14928   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
   14929     loc = mem->getMemberLoc();
   14930     d = mem->getMemberDecl();
   14931   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
   14932     diagID = diag::err_uncasted_call_of_unknown_any;
   14933     loc = msg->getSelectorStartLoc();
   14934     d = msg->getMethodDecl();
   14935     if (!d) {
   14936       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
   14937         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
   14938         << orig->getSourceRange();
   14939       return ExprError();
   14940     }
   14941   } else {
   14942     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   14943       << E->getSourceRange();
   14944     return ExprError();
   14945   }
   14946 
   14947   S.Diag(loc, diagID) << d << orig->getSourceRange();
   14948 
   14949   // Never recoverable.
   14950   return ExprError();
   14951 }
   14952 
   14953 /// Check for operands with placeholder types and complain if found.
   14954 /// Returns true if there was an error and no recovery was possible.
   14955 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
   14956   if (!getLangOpts().CPlusPlus) {
   14957     // C cannot handle TypoExpr nodes on either side of a binop because it
   14958     // doesn't handle dependent types properly, so make sure any TypoExprs have
   14959     // been dealt with before checking the operands.
   14960     ExprResult Result = CorrectDelayedTyposInExpr(E);
   14961     if (!Result.isUsable()) return ExprError();
   14962     E = Result.get();
   14963   }
   14964 
   14965   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
   14966   if (!placeholderType) return E;
   14967 
   14968   switch (placeholderType->getKind()) {
   14969 
   14970   // Overloaded expressions.
   14971   case BuiltinType::Overload: {
   14972     // Try to resolve a single function template specialization.
   14973     // This is obligatory.
   14974     ExprResult Result = E;
   14975     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
   14976       return Result;
   14977 
   14978     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
   14979     // leaves Result unchanged on failure.
   14980     Result = E;
   14981     if (resolveAndFixAddressOfOnlyViableOverloadCandidate(Result))
   14982       return Result;
   14983 
   14984     // If that failed, try to recover with a call.
   14985     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
   14986                          /*complain*/ true);
   14987     return Result;
   14988   }
   14989 
   14990   // Bound member functions.
   14991   case BuiltinType::BoundMember: {
   14992     ExprResult result = E;
   14993     const Expr *BME = E->IgnoreParens();
   14994     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
   14995     // Try to give a nicer diagnostic if it is a bound member that we recognize.
   14996     if (isa<CXXPseudoDestructorExpr>(BME)) {
   14997       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
   14998     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
   14999       if (ME->getMemberNameInfo().getName().getNameKind() ==
   15000           DeclarationName::CXXDestructorName)
   15001         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
   15002     }
   15003     tryToRecoverWithCall(result, PD,
   15004                          /*complain*/ true);
   15005     return result;
   15006   }
   15007 
   15008   // ARC unbridged casts.
   15009   case BuiltinType::ARCUnbridgedCast: {
   15010     Expr *realCast = stripARCUnbridgedCast(E);
   15011     diagnoseARCUnbridgedCast(realCast);
   15012     return realCast;
   15013   }
   15014 
   15015   // Expressions of unknown type.
   15016   case BuiltinType::UnknownAny:
   15017     return diagnoseUnknownAnyExpr(*this, E);
   15018 
   15019   // Pseudo-objects.
   15020   case BuiltinType::PseudoObject:
   15021     return checkPseudoObjectRValue(E);
   15022 
   15023   case BuiltinType::BuiltinFn: {
   15024     // Accept __noop without parens by implicitly converting it to a call expr.
   15025     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
   15026     if (DRE) {
   15027       auto *FD = cast<FunctionDecl>(DRE->getDecl());
   15028       if (FD->getBuiltinID() == Builtin::BI__noop) {
   15029         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
   15030                               CK_BuiltinFnToFnPtr).get();
   15031         return new (Context) CallExpr(Context, E, None, Context.IntTy,
   15032                                       VK_RValue, SourceLocation());
   15033       }
   15034     }
   15035 
   15036     Diag(E->getLocStart(), diag::err_builtin_fn_use);
   15037     return ExprError();
   15038   }
   15039 
   15040   // Expressions of unknown type.
   15041   case BuiltinType::OMPArraySection:
   15042     Diag(E->getLocStart(), diag::err_omp_array_section_use);
   15043     return ExprError();
   15044 
   15045   // Everything else should be impossible.
   15046 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   15047   case BuiltinType::Id:
   15048 #include "clang/Basic/OpenCLImageTypes.def"
   15049 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
   15050 #define PLACEHOLDER_TYPE(Id, SingletonId)
   15051 #include "clang/AST/BuiltinTypes.def"
   15052     break;
   15053   }
   15054 
   15055   llvm_unreachable("invalid placeholder type!");
   15056 }
   15057 
   15058 bool Sema::CheckCaseExpression(Expr *E) {
   15059   if (E->isTypeDependent())
   15060     return true;
   15061   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
   15062     return E->getType()->isIntegralOrEnumerationType();
   15063   return false;
   15064 }
   15065 
   15066 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
   15067 ExprResult
   15068 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
   15069   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
   15070          "Unknown Objective-C Boolean value!");
   15071   QualType BoolT = Context.ObjCBuiltinBoolTy;
   15072   if (!Context.getBOOLDecl()) {
   15073     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
   15074                         Sema::LookupOrdinaryName);
   15075     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
   15076       NamedDecl *ND = Result.getFoundDecl();
   15077       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
   15078         Context.setBOOLDecl(TD);
   15079     }
   15080   }
   15081   if (Context.getBOOLDecl())
   15082     BoolT = Context.getBOOLType();
   15083   return new (Context)
   15084       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
   15085 }
   15086