Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Stmt nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGDebugInfo.h"
     16 #include "CodeGenModule.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtVisitor.h"
     19 #include "clang/Basic/Builtins.h"
     20 #include "clang/Basic/PrettyStackTrace.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/Sema/LoopHint.h"
     23 #include "clang/Sema/SemaDiagnostic.h"
     24 #include "llvm/ADT/StringExtras.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/MDBuilder.h"
     30 
     31 using namespace clang;
     32 using namespace CodeGen;
     33 
     34 //===----------------------------------------------------------------------===//
     35 //                              Statement Emission
     36 //===----------------------------------------------------------------------===//
     37 
     38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
     39   if (CGDebugInfo *DI = getDebugInfo()) {
     40     SourceLocation Loc;
     41     Loc = S->getLocStart();
     42     DI->EmitLocation(Builder, Loc);
     43 
     44     LastStopPoint = Loc;
     45   }
     46 }
     47 
     48 void CodeGenFunction::EmitStmt(const Stmt *S) {
     49   assert(S && "Null statement?");
     50   PGO.setCurrentStmt(S);
     51 
     52   // These statements have their own debug info handling.
     53   if (EmitSimpleStmt(S))
     54     return;
     55 
     56   // Check if we are generating unreachable code.
     57   if (!HaveInsertPoint()) {
     58     // If so, and the statement doesn't contain a label, then we do not need to
     59     // generate actual code. This is safe because (1) the current point is
     60     // unreachable, so we don't need to execute the code, and (2) we've already
     61     // handled the statements which update internal data structures (like the
     62     // local variable map) which could be used by subsequent statements.
     63     if (!ContainsLabel(S)) {
     64       // Verify that any decl statements were handled as simple, they may be in
     65       // scope of subsequent reachable statements.
     66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
     67       return;
     68     }
     69 
     70     // Otherwise, make a new block to hold the code.
     71     EnsureInsertPoint();
     72   }
     73 
     74   // Generate a stoppoint if we are emitting debug info.
     75   EmitStopPoint(S);
     76 
     77   switch (S->getStmtClass()) {
     78   case Stmt::NoStmtClass:
     79   case Stmt::CXXCatchStmtClass:
     80   case Stmt::SEHExceptStmtClass:
     81   case Stmt::SEHFinallyStmtClass:
     82   case Stmt::MSDependentExistsStmtClass:
     83     llvm_unreachable("invalid statement class to emit generically");
     84   case Stmt::NullStmtClass:
     85   case Stmt::CompoundStmtClass:
     86   case Stmt::DeclStmtClass:
     87   case Stmt::LabelStmtClass:
     88   case Stmt::AttributedStmtClass:
     89   case Stmt::GotoStmtClass:
     90   case Stmt::BreakStmtClass:
     91   case Stmt::ContinueStmtClass:
     92   case Stmt::DefaultStmtClass:
     93   case Stmt::CaseStmtClass:
     94   case Stmt::SEHLeaveStmtClass:
     95     llvm_unreachable("should have emitted these statements as simple");
     96 
     97 #define STMT(Type, Base)
     98 #define ABSTRACT_STMT(Op)
     99 #define EXPR(Type, Base) \
    100   case Stmt::Type##Class:
    101 #include "clang/AST/StmtNodes.inc"
    102   {
    103     // Remember the block we came in on.
    104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
    105     assert(incoming && "expression emission must have an insertion point");
    106 
    107     EmitIgnoredExpr(cast<Expr>(S));
    108 
    109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    110     assert(outgoing && "expression emission cleared block!");
    111 
    112     // The expression emitters assume (reasonably!) that the insertion
    113     // point is always set.  To maintain that, the call-emission code
    114     // for noreturn functions has to enter a new block with no
    115     // predecessors.  We want to kill that block and mark the current
    116     // insertion point unreachable in the common case of a call like
    117     // "exit();".  Since expression emission doesn't otherwise create
    118     // blocks with no predecessors, we can just test for that.
    119     // However, we must be careful not to do this to our incoming
    120     // block, because *statement* emission does sometimes create
    121     // reachable blocks which will have no predecessors until later in
    122     // the function.  This occurs with, e.g., labels that are not
    123     // reachable by fallthrough.
    124     if (incoming != outgoing && outgoing->use_empty()) {
    125       outgoing->eraseFromParent();
    126       Builder.ClearInsertionPoint();
    127     }
    128     break;
    129   }
    130 
    131   case Stmt::IndirectGotoStmtClass:
    132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
    133 
    134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
    135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
    136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
    137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
    138 
    139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
    140 
    141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
    142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
    143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
    144   case Stmt::CoroutineBodyStmtClass:
    145   case Stmt::CoreturnStmtClass:
    146     CGM.ErrorUnsupported(S, "coroutine");
    147     break;
    148   case Stmt::CapturedStmtClass: {
    149     const CapturedStmt *CS = cast<CapturedStmt>(S);
    150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
    151     }
    152     break;
    153   case Stmt::ObjCAtTryStmtClass:
    154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    155     break;
    156   case Stmt::ObjCAtCatchStmtClass:
    157     llvm_unreachable(
    158                     "@catch statements should be handled by EmitObjCAtTryStmt");
    159   case Stmt::ObjCAtFinallyStmtClass:
    160     llvm_unreachable(
    161                   "@finally statements should be handled by EmitObjCAtTryStmt");
    162   case Stmt::ObjCAtThrowStmtClass:
    163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    164     break;
    165   case Stmt::ObjCAtSynchronizedStmtClass:
    166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    167     break;
    168   case Stmt::ObjCForCollectionStmtClass:
    169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    170     break;
    171   case Stmt::ObjCAutoreleasePoolStmtClass:
    172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    173     break;
    174 
    175   case Stmt::CXXTryStmtClass:
    176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    177     break;
    178   case Stmt::CXXForRangeStmtClass:
    179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
    180     break;
    181   case Stmt::SEHTryStmtClass:
    182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
    183     break;
    184   case Stmt::OMPParallelDirectiveClass:
    185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
    186     break;
    187   case Stmt::OMPSimdDirectiveClass:
    188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
    189     break;
    190   case Stmt::OMPForDirectiveClass:
    191     EmitOMPForDirective(cast<OMPForDirective>(*S));
    192     break;
    193   case Stmt::OMPForSimdDirectiveClass:
    194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
    195     break;
    196   case Stmt::OMPSectionsDirectiveClass:
    197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
    198     break;
    199   case Stmt::OMPSectionDirectiveClass:
    200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
    201     break;
    202   case Stmt::OMPSingleDirectiveClass:
    203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
    204     break;
    205   case Stmt::OMPMasterDirectiveClass:
    206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
    207     break;
    208   case Stmt::OMPCriticalDirectiveClass:
    209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
    210     break;
    211   case Stmt::OMPParallelForDirectiveClass:
    212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
    213     break;
    214   case Stmt::OMPParallelForSimdDirectiveClass:
    215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
    216     break;
    217   case Stmt::OMPParallelSectionsDirectiveClass:
    218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
    219     break;
    220   case Stmt::OMPTaskDirectiveClass:
    221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
    222     break;
    223   case Stmt::OMPTaskyieldDirectiveClass:
    224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
    225     break;
    226   case Stmt::OMPBarrierDirectiveClass:
    227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
    228     break;
    229   case Stmt::OMPTaskwaitDirectiveClass:
    230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
    231     break;
    232   case Stmt::OMPTaskgroupDirectiveClass:
    233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
    234     break;
    235   case Stmt::OMPFlushDirectiveClass:
    236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
    237     break;
    238   case Stmt::OMPOrderedDirectiveClass:
    239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
    240     break;
    241   case Stmt::OMPAtomicDirectiveClass:
    242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
    243     break;
    244   case Stmt::OMPTargetDirectiveClass:
    245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
    246     break;
    247   case Stmt::OMPTeamsDirectiveClass:
    248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
    249     break;
    250   case Stmt::OMPCancellationPointDirectiveClass:
    251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
    252     break;
    253   case Stmt::OMPCancelDirectiveClass:
    254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
    255     break;
    256   case Stmt::OMPTargetDataDirectiveClass:
    257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
    258     break;
    259   case Stmt::OMPTargetEnterDataDirectiveClass:
    260     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
    261     break;
    262   case Stmt::OMPTargetExitDataDirectiveClass:
    263     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
    264     break;
    265   case Stmt::OMPTargetParallelDirectiveClass:
    266     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
    267     break;
    268   case Stmt::OMPTargetParallelForDirectiveClass:
    269     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
    270     break;
    271   case Stmt::OMPTaskLoopDirectiveClass:
    272     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
    273     break;
    274   case Stmt::OMPTaskLoopSimdDirectiveClass:
    275     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
    276     break;
    277   case Stmt::OMPDistributeDirectiveClass:
    278     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
    279     break;
    280   case Stmt::OMPTargetUpdateDirectiveClass:
    281     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
    282     break;
    283   case Stmt::OMPDistributeParallelForDirectiveClass:
    284     EmitOMPDistributeParallelForDirective(
    285         cast<OMPDistributeParallelForDirective>(*S));
    286     break;
    287   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
    288     EmitOMPDistributeParallelForSimdDirective(
    289         cast<OMPDistributeParallelForSimdDirective>(*S));
    290     break;
    291   case Stmt::OMPDistributeSimdDirectiveClass:
    292     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
    293     break;
    294   case Stmt::OMPTargetParallelForSimdDirectiveClass:
    295     EmitOMPTargetParallelForSimdDirective(
    296         cast<OMPTargetParallelForSimdDirective>(*S));
    297     break;
    298   }
    299 }
    300 
    301 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
    302   switch (S->getStmtClass()) {
    303   default: return false;
    304   case Stmt::NullStmtClass: break;
    305   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
    306   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
    307   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
    308   case Stmt::AttributedStmtClass:
    309                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
    310   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
    311   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
    312   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
    313   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
    314   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
    315   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
    316   }
    317 
    318   return true;
    319 }
    320 
    321 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
    322 /// this captures the expression result of the last sub-statement and returns it
    323 /// (for use by the statement expression extension).
    324 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
    325                                           AggValueSlot AggSlot) {
    326   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
    327                              "LLVM IR generation of compound statement ('{}')");
    328 
    329   // Keep track of the current cleanup stack depth, including debug scopes.
    330   LexicalScope Scope(*this, S.getSourceRange());
    331 
    332   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
    333 }
    334 
    335 Address
    336 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
    337                                               bool GetLast,
    338                                               AggValueSlot AggSlot) {
    339 
    340   for (CompoundStmt::const_body_iterator I = S.body_begin(),
    341        E = S.body_end()-GetLast; I != E; ++I)
    342     EmitStmt(*I);
    343 
    344   Address RetAlloca = Address::invalid();
    345   if (GetLast) {
    346     // We have to special case labels here.  They are statements, but when put
    347     // at the end of a statement expression, they yield the value of their
    348     // subexpression.  Handle this by walking through all labels we encounter,
    349     // emitting them before we evaluate the subexpr.
    350     const Stmt *LastStmt = S.body_back();
    351     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
    352       EmitLabel(LS->getDecl());
    353       LastStmt = LS->getSubStmt();
    354     }
    355 
    356     EnsureInsertPoint();
    357 
    358     QualType ExprTy = cast<Expr>(LastStmt)->getType();
    359     if (hasAggregateEvaluationKind(ExprTy)) {
    360       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
    361     } else {
    362       // We can't return an RValue here because there might be cleanups at
    363       // the end of the StmtExpr.  Because of that, we have to emit the result
    364       // here into a temporary alloca.
    365       RetAlloca = CreateMemTemp(ExprTy);
    366       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
    367                        /*IsInit*/false);
    368     }
    369 
    370   }
    371 
    372   return RetAlloca;
    373 }
    374 
    375 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
    376   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
    377 
    378   // If there is a cleanup stack, then we it isn't worth trying to
    379   // simplify this block (we would need to remove it from the scope map
    380   // and cleanup entry).
    381   if (!EHStack.empty())
    382     return;
    383 
    384   // Can only simplify direct branches.
    385   if (!BI || !BI->isUnconditional())
    386     return;
    387 
    388   // Can only simplify empty blocks.
    389   if (BI->getIterator() != BB->begin())
    390     return;
    391 
    392   BB->replaceAllUsesWith(BI->getSuccessor(0));
    393   BI->eraseFromParent();
    394   BB->eraseFromParent();
    395 }
    396 
    397 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
    398   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    399 
    400   // Fall out of the current block (if necessary).
    401   EmitBranch(BB);
    402 
    403   if (IsFinished && BB->use_empty()) {
    404     delete BB;
    405     return;
    406   }
    407 
    408   // Place the block after the current block, if possible, or else at
    409   // the end of the function.
    410   if (CurBB && CurBB->getParent())
    411     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
    412   else
    413     CurFn->getBasicBlockList().push_back(BB);
    414   Builder.SetInsertPoint(BB);
    415 }
    416 
    417 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
    418   // Emit a branch from the current block to the target one if this
    419   // was a real block.  If this was just a fall-through block after a
    420   // terminator, don't emit it.
    421   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    422 
    423   if (!CurBB || CurBB->getTerminator()) {
    424     // If there is no insert point or the previous block is already
    425     // terminated, don't touch it.
    426   } else {
    427     // Otherwise, create a fall-through branch.
    428     Builder.CreateBr(Target);
    429   }
    430 
    431   Builder.ClearInsertionPoint();
    432 }
    433 
    434 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
    435   bool inserted = false;
    436   for (llvm::User *u : block->users()) {
    437     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
    438       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
    439                                              block);
    440       inserted = true;
    441       break;
    442     }
    443   }
    444 
    445   if (!inserted)
    446     CurFn->getBasicBlockList().push_back(block);
    447 
    448   Builder.SetInsertPoint(block);
    449 }
    450 
    451 CodeGenFunction::JumpDest
    452 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
    453   JumpDest &Dest = LabelMap[D];
    454   if (Dest.isValid()) return Dest;
    455 
    456   // Create, but don't insert, the new block.
    457   Dest = JumpDest(createBasicBlock(D->getName()),
    458                   EHScopeStack::stable_iterator::invalid(),
    459                   NextCleanupDestIndex++);
    460   return Dest;
    461 }
    462 
    463 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
    464   // Add this label to the current lexical scope if we're within any
    465   // normal cleanups.  Jumps "in" to this label --- when permitted by
    466   // the language --- may need to be routed around such cleanups.
    467   if (EHStack.hasNormalCleanups() && CurLexicalScope)
    468     CurLexicalScope->addLabel(D);
    469 
    470   JumpDest &Dest = LabelMap[D];
    471 
    472   // If we didn't need a forward reference to this label, just go
    473   // ahead and create a destination at the current scope.
    474   if (!Dest.isValid()) {
    475     Dest = getJumpDestInCurrentScope(D->getName());
    476 
    477   // Otherwise, we need to give this label a target depth and remove
    478   // it from the branch-fixups list.
    479   } else {
    480     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    481     Dest.setScopeDepth(EHStack.stable_begin());
    482     ResolveBranchFixups(Dest.getBlock());
    483   }
    484 
    485   EmitBlock(Dest.getBlock());
    486   incrementProfileCounter(D->getStmt());
    487 }
    488 
    489 /// Change the cleanup scope of the labels in this lexical scope to
    490 /// match the scope of the enclosing context.
    491 void CodeGenFunction::LexicalScope::rescopeLabels() {
    492   assert(!Labels.empty());
    493   EHScopeStack::stable_iterator innermostScope
    494     = CGF.EHStack.getInnermostNormalCleanup();
    495 
    496   // Change the scope depth of all the labels.
    497   for (SmallVectorImpl<const LabelDecl*>::const_iterator
    498          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
    499     assert(CGF.LabelMap.count(*i));
    500     JumpDest &dest = CGF.LabelMap.find(*i)->second;
    501     assert(dest.getScopeDepth().isValid());
    502     assert(innermostScope.encloses(dest.getScopeDepth()));
    503     dest.setScopeDepth(innermostScope);
    504   }
    505 
    506   // Reparent the labels if the new scope also has cleanups.
    507   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
    508     ParentScope->Labels.append(Labels.begin(), Labels.end());
    509   }
    510 }
    511 
    512 
    513 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
    514   EmitLabel(S.getDecl());
    515   EmitStmt(S.getSubStmt());
    516 }
    517 
    518 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
    519   const Stmt *SubStmt = S.getSubStmt();
    520   switch (SubStmt->getStmtClass()) {
    521   case Stmt::DoStmtClass:
    522     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
    523     break;
    524   case Stmt::ForStmtClass:
    525     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
    526     break;
    527   case Stmt::WhileStmtClass:
    528     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
    529     break;
    530   case Stmt::CXXForRangeStmtClass:
    531     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
    532     break;
    533   default:
    534     EmitStmt(SubStmt);
    535   }
    536 }
    537 
    538 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
    539   // If this code is reachable then emit a stop point (if generating
    540   // debug info). We have to do this ourselves because we are on the
    541   // "simple" statement path.
    542   if (HaveInsertPoint())
    543     EmitStopPoint(&S);
    544 
    545   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
    546 }
    547 
    548 
    549 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
    550   if (const LabelDecl *Target = S.getConstantTarget()) {
    551     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    552     return;
    553   }
    554 
    555   // Ensure that we have an i8* for our PHI node.
    556   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
    557                                          Int8PtrTy, "addr");
    558   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    559 
    560   // Get the basic block for the indirect goto.
    561   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
    562 
    563   // The first instruction in the block has to be the PHI for the switch dest,
    564   // add an entry for this branch.
    565   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
    566 
    567   EmitBranch(IndGotoBB);
    568 }
    569 
    570 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
    571   // C99 6.8.4.1: The first substatement is executed if the expression compares
    572   // unequal to 0.  The condition must be a scalar type.
    573   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
    574 
    575   if (S.getInit())
    576     EmitStmt(S.getInit());
    577 
    578   if (S.getConditionVariable())
    579     EmitAutoVarDecl(*S.getConditionVariable());
    580 
    581   // If the condition constant folds and can be elided, try to avoid emitting
    582   // the condition and the dead arm of the if/else.
    583   bool CondConstant;
    584   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
    585                                    S.isConstexpr())) {
    586     // Figure out which block (then or else) is executed.
    587     const Stmt *Executed = S.getThen();
    588     const Stmt *Skipped  = S.getElse();
    589     if (!CondConstant)  // Condition false?
    590       std::swap(Executed, Skipped);
    591 
    592     // If the skipped block has no labels in it, just emit the executed block.
    593     // This avoids emitting dead code and simplifies the CFG substantially.
    594     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
    595       if (CondConstant)
    596         incrementProfileCounter(&S);
    597       if (Executed) {
    598         RunCleanupsScope ExecutedScope(*this);
    599         EmitStmt(Executed);
    600       }
    601       return;
    602     }
    603   }
    604 
    605   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
    606   // the conditional branch.
    607   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
    608   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
    609   llvm::BasicBlock *ElseBlock = ContBlock;
    610   if (S.getElse())
    611     ElseBlock = createBasicBlock("if.else");
    612 
    613   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
    614                        getProfileCount(S.getThen()));
    615 
    616   // Emit the 'then' code.
    617   EmitBlock(ThenBlock);
    618   incrementProfileCounter(&S);
    619   {
    620     RunCleanupsScope ThenScope(*this);
    621     EmitStmt(S.getThen());
    622   }
    623   {
    624     auto CurBlock = Builder.GetInsertBlock();
    625     EmitBranch(ContBlock);
    626     // Eliminate any empty blocks that may have been created by nested
    627     // control flow statements in the 'then' clause.
    628     if (CurBlock)
    629       SimplifyForwardingBlocks(CurBlock);
    630   }
    631 
    632   // Emit the 'else' code if present.
    633   if (const Stmt *Else = S.getElse()) {
    634     {
    635       // There is no need to emit line number for an unconditional branch.
    636       auto NL = ApplyDebugLocation::CreateEmpty(*this);
    637       EmitBlock(ElseBlock);
    638     }
    639     {
    640       RunCleanupsScope ElseScope(*this);
    641       EmitStmt(Else);
    642     }
    643     {
    644       // There is no need to emit line number for an unconditional branch.
    645       auto NL = ApplyDebugLocation::CreateEmpty(*this);
    646       auto CurBlock = Builder.GetInsertBlock();
    647       EmitBranch(ContBlock);
    648       // Eliminate any empty blocks that may have been created by nested
    649       // control flow statements emitted in the 'else' clause.
    650       if (CurBlock)
    651         SimplifyForwardingBlocks(CurBlock);
    652     }
    653   }
    654 
    655   // Emit the continuation block for code after the if.
    656   EmitBlock(ContBlock, true);
    657 }
    658 
    659 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
    660                                     ArrayRef<const Attr *> WhileAttrs) {
    661   // Emit the header for the loop, which will also become
    662   // the continue target.
    663   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
    664   EmitBlock(LoopHeader.getBlock());
    665 
    666   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
    667                  Builder.getCurrentDebugLocation());
    668 
    669   // Create an exit block for when the condition fails, which will
    670   // also become the break target.
    671   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
    672 
    673   // Store the blocks to use for break and continue.
    674   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
    675 
    676   // C++ [stmt.while]p2:
    677   //   When the condition of a while statement is a declaration, the
    678   //   scope of the variable that is declared extends from its point
    679   //   of declaration (3.3.2) to the end of the while statement.
    680   //   [...]
    681   //   The object created in a condition is destroyed and created
    682   //   with each iteration of the loop.
    683   RunCleanupsScope ConditionScope(*this);
    684 
    685   if (S.getConditionVariable())
    686     EmitAutoVarDecl(*S.getConditionVariable());
    687 
    688   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
    689   // evaluation of the controlling expression takes place before each
    690   // execution of the loop body.
    691   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    692 
    693   // while(1) is common, avoid extra exit blocks.  Be sure
    694   // to correctly handle break/continue though.
    695   bool EmitBoolCondBranch = true;
    696   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    697     if (C->isOne())
    698       EmitBoolCondBranch = false;
    699 
    700   // As long as the condition is true, go to the loop body.
    701   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
    702   if (EmitBoolCondBranch) {
    703     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    704     if (ConditionScope.requiresCleanups())
    705       ExitBlock = createBasicBlock("while.exit");
    706     Builder.CreateCondBr(
    707         BoolCondVal, LoopBody, ExitBlock,
    708         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
    709 
    710     if (ExitBlock != LoopExit.getBlock()) {
    711       EmitBlock(ExitBlock);
    712       EmitBranchThroughCleanup(LoopExit);
    713     }
    714   }
    715 
    716   // Emit the loop body.  We have to emit this in a cleanup scope
    717   // because it might be a singleton DeclStmt.
    718   {
    719     RunCleanupsScope BodyScope(*this);
    720     EmitBlock(LoopBody);
    721     incrementProfileCounter(&S);
    722     EmitStmt(S.getBody());
    723   }
    724 
    725   BreakContinueStack.pop_back();
    726 
    727   // Immediately force cleanup.
    728   ConditionScope.ForceCleanup();
    729 
    730   EmitStopPoint(&S);
    731   // Branch to the loop header again.
    732   EmitBranch(LoopHeader.getBlock());
    733 
    734   LoopStack.pop();
    735 
    736   // Emit the exit block.
    737   EmitBlock(LoopExit.getBlock(), true);
    738 
    739   // The LoopHeader typically is just a branch if we skipped emitting
    740   // a branch, try to erase it.
    741   if (!EmitBoolCondBranch)
    742     SimplifyForwardingBlocks(LoopHeader.getBlock());
    743 }
    744 
    745 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
    746                                  ArrayRef<const Attr *> DoAttrs) {
    747   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
    748   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
    749 
    750   uint64_t ParentCount = getCurrentProfileCount();
    751 
    752   // Store the blocks to use for break and continue.
    753   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
    754 
    755   // Emit the body of the loop.
    756   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
    757 
    758   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
    759                  Builder.getCurrentDebugLocation());
    760 
    761   EmitBlockWithFallThrough(LoopBody, &S);
    762   {
    763     RunCleanupsScope BodyScope(*this);
    764     EmitStmt(S.getBody());
    765   }
    766 
    767   EmitBlock(LoopCond.getBlock());
    768 
    769   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
    770   // after each execution of the loop body."
    771 
    772   // Evaluate the conditional in the while header.
    773   // C99 6.8.5p2/p4: The first substatement is executed if the expression
    774   // compares unequal to 0.  The condition must be a scalar type.
    775   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    776 
    777   BreakContinueStack.pop_back();
    778 
    779   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
    780   // to correctly handle break/continue though.
    781   bool EmitBoolCondBranch = true;
    782   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    783     if (C->isZero())
    784       EmitBoolCondBranch = false;
    785 
    786   // As long as the condition is true, iterate the loop.
    787   if (EmitBoolCondBranch) {
    788     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
    789     Builder.CreateCondBr(
    790         BoolCondVal, LoopBody, LoopExit.getBlock(),
    791         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
    792   }
    793 
    794   LoopStack.pop();
    795 
    796   // Emit the exit block.
    797   EmitBlock(LoopExit.getBlock());
    798 
    799   // The DoCond block typically is just a branch if we skipped
    800   // emitting a branch, try to erase it.
    801   if (!EmitBoolCondBranch)
    802     SimplifyForwardingBlocks(LoopCond.getBlock());
    803 }
    804 
    805 void CodeGenFunction::EmitForStmt(const ForStmt &S,
    806                                   ArrayRef<const Attr *> ForAttrs) {
    807   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    808 
    809   LexicalScope ForScope(*this, S.getSourceRange());
    810 
    811   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
    812 
    813   // Evaluate the first part before the loop.
    814   if (S.getInit())
    815     EmitStmt(S.getInit());
    816 
    817   // Start the loop with a block that tests the condition.
    818   // If there's an increment, the continue scope will be overwritten
    819   // later.
    820   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
    821   llvm::BasicBlock *CondBlock = Continue.getBlock();
    822   EmitBlock(CondBlock);
    823 
    824   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
    825 
    826   // If the for loop doesn't have an increment we can just use the
    827   // condition as the continue block.  Otherwise we'll need to create
    828   // a block for it (in the current scope, i.e. in the scope of the
    829   // condition), and that we will become our continue block.
    830   if (S.getInc())
    831     Continue = getJumpDestInCurrentScope("for.inc");
    832 
    833   // Store the blocks to use for break and continue.
    834   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    835 
    836   // Create a cleanup scope for the condition variable cleanups.
    837   LexicalScope ConditionScope(*this, S.getSourceRange());
    838 
    839   if (S.getCond()) {
    840     // If the for statement has a condition scope, emit the local variable
    841     // declaration.
    842     if (S.getConditionVariable()) {
    843       EmitAutoVarDecl(*S.getConditionVariable());
    844     }
    845 
    846     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    847     // If there are any cleanups between here and the loop-exit scope,
    848     // create a block to stage a loop exit along.
    849     if (ForScope.requiresCleanups())
    850       ExitBlock = createBasicBlock("for.cond.cleanup");
    851 
    852     // As long as the condition is true, iterate the loop.
    853     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    854 
    855     // C99 6.8.5p2/p4: The first substatement is executed if the expression
    856     // compares unequal to 0.  The condition must be a scalar type.
    857     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    858     Builder.CreateCondBr(
    859         BoolCondVal, ForBody, ExitBlock,
    860         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
    861 
    862     if (ExitBlock != LoopExit.getBlock()) {
    863       EmitBlock(ExitBlock);
    864       EmitBranchThroughCleanup(LoopExit);
    865     }
    866 
    867     EmitBlock(ForBody);
    868   } else {
    869     // Treat it as a non-zero constant.  Don't even create a new block for the
    870     // body, just fall into it.
    871   }
    872   incrementProfileCounter(&S);
    873 
    874   {
    875     // Create a separate cleanup scope for the body, in case it is not
    876     // a compound statement.
    877     RunCleanupsScope BodyScope(*this);
    878     EmitStmt(S.getBody());
    879   }
    880 
    881   // If there is an increment, emit it next.
    882   if (S.getInc()) {
    883     EmitBlock(Continue.getBlock());
    884     EmitStmt(S.getInc());
    885   }
    886 
    887   BreakContinueStack.pop_back();
    888 
    889   ConditionScope.ForceCleanup();
    890 
    891   EmitStopPoint(&S);
    892   EmitBranch(CondBlock);
    893 
    894   ForScope.ForceCleanup();
    895 
    896   LoopStack.pop();
    897 
    898   // Emit the fall-through block.
    899   EmitBlock(LoopExit.getBlock(), true);
    900 }
    901 
    902 void
    903 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
    904                                      ArrayRef<const Attr *> ForAttrs) {
    905   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    906 
    907   LexicalScope ForScope(*this, S.getSourceRange());
    908 
    909   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
    910 
    911   // Evaluate the first pieces before the loop.
    912   EmitStmt(S.getRangeStmt());
    913   EmitStmt(S.getBeginStmt());
    914   EmitStmt(S.getEndStmt());
    915 
    916   // Start the loop with a block that tests the condition.
    917   // If there's an increment, the continue scope will be overwritten
    918   // later.
    919   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
    920   EmitBlock(CondBlock);
    921 
    922   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
    923 
    924   // If there are any cleanups between here and the loop-exit scope,
    925   // create a block to stage a loop exit along.
    926   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    927   if (ForScope.requiresCleanups())
    928     ExitBlock = createBasicBlock("for.cond.cleanup");
    929 
    930   // The loop body, consisting of the specified body and the loop variable.
    931   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    932 
    933   // The body is executed if the expression, contextually converted
    934   // to bool, is true.
    935   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    936   Builder.CreateCondBr(
    937       BoolCondVal, ForBody, ExitBlock,
    938       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
    939 
    940   if (ExitBlock != LoopExit.getBlock()) {
    941     EmitBlock(ExitBlock);
    942     EmitBranchThroughCleanup(LoopExit);
    943   }
    944 
    945   EmitBlock(ForBody);
    946   incrementProfileCounter(&S);
    947 
    948   // Create a block for the increment. In case of a 'continue', we jump there.
    949   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
    950 
    951   // Store the blocks to use for break and continue.
    952   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    953 
    954   {
    955     // Create a separate cleanup scope for the loop variable and body.
    956     LexicalScope BodyScope(*this, S.getSourceRange());
    957     EmitStmt(S.getLoopVarStmt());
    958     EmitStmt(S.getBody());
    959   }
    960 
    961   EmitStopPoint(&S);
    962   // If there is an increment, emit it next.
    963   EmitBlock(Continue.getBlock());
    964   EmitStmt(S.getInc());
    965 
    966   BreakContinueStack.pop_back();
    967 
    968   EmitBranch(CondBlock);
    969 
    970   ForScope.ForceCleanup();
    971 
    972   LoopStack.pop();
    973 
    974   // Emit the fall-through block.
    975   EmitBlock(LoopExit.getBlock(), true);
    976 }
    977 
    978 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
    979   if (RV.isScalar()) {
    980     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
    981   } else if (RV.isAggregate()) {
    982     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
    983   } else {
    984     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
    985                        /*init*/ true);
    986   }
    987   EmitBranchThroughCleanup(ReturnBlock);
    988 }
    989 
    990 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
    991 /// if the function returns void, or may be missing one if the function returns
    992 /// non-void.  Fun stuff :).
    993 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
    994   // Returning from an outlined SEH helper is UB, and we already warn on it.
    995   if (IsOutlinedSEHHelper) {
    996     Builder.CreateUnreachable();
    997     Builder.ClearInsertionPoint();
    998   }
    999 
   1000   // Emit the result value, even if unused, to evalute the side effects.
   1001   const Expr *RV = S.getRetValue();
   1002 
   1003   // Treat block literals in a return expression as if they appeared
   1004   // in their own scope.  This permits a small, easily-implemented
   1005   // exception to our over-conservative rules about not jumping to
   1006   // statements following block literals with non-trivial cleanups.
   1007   RunCleanupsScope cleanupScope(*this);
   1008   if (const ExprWithCleanups *cleanups =
   1009         dyn_cast_or_null<ExprWithCleanups>(RV)) {
   1010     enterFullExpression(cleanups);
   1011     RV = cleanups->getSubExpr();
   1012   }
   1013 
   1014   // FIXME: Clean this up by using an LValue for ReturnTemp,
   1015   // EmitStoreThroughLValue, and EmitAnyExpr.
   1016   if (getLangOpts().ElideConstructors &&
   1017       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
   1018     // Apply the named return value optimization for this return statement,
   1019     // which means doing nothing: the appropriate result has already been
   1020     // constructed into the NRVO variable.
   1021 
   1022     // If there is an NRVO flag for this variable, set it to 1 into indicate
   1023     // that the cleanup code should not destroy the variable.
   1024     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
   1025       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
   1026   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
   1027     // Make sure not to return anything, but evaluate the expression
   1028     // for side effects.
   1029     if (RV)
   1030       EmitAnyExpr(RV);
   1031   } else if (!RV) {
   1032     // Do nothing (return value is left uninitialized)
   1033   } else if (FnRetTy->isReferenceType()) {
   1034     // If this function returns a reference, take the address of the expression
   1035     // rather than the value.
   1036     RValue Result = EmitReferenceBindingToExpr(RV);
   1037     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
   1038   } else {
   1039     switch (getEvaluationKind(RV->getType())) {
   1040     case TEK_Scalar:
   1041       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
   1042       break;
   1043     case TEK_Complex:
   1044       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
   1045                                 /*isInit*/ true);
   1046       break;
   1047     case TEK_Aggregate:
   1048       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
   1049                                             Qualifiers(),
   1050                                             AggValueSlot::IsDestructed,
   1051                                             AggValueSlot::DoesNotNeedGCBarriers,
   1052                                             AggValueSlot::IsNotAliased));
   1053       break;
   1054     }
   1055   }
   1056 
   1057   ++NumReturnExprs;
   1058   if (!RV || RV->isEvaluatable(getContext()))
   1059     ++NumSimpleReturnExprs;
   1060 
   1061   cleanupScope.ForceCleanup();
   1062   EmitBranchThroughCleanup(ReturnBlock);
   1063 }
   1064 
   1065 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
   1066   // As long as debug info is modeled with instructions, we have to ensure we
   1067   // have a place to insert here and write the stop point here.
   1068   if (HaveInsertPoint())
   1069     EmitStopPoint(&S);
   1070 
   1071   for (const auto *I : S.decls())
   1072     EmitDecl(*I);
   1073 }
   1074 
   1075 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
   1076   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
   1077 
   1078   // If this code is reachable then emit a stop point (if generating
   1079   // debug info). We have to do this ourselves because we are on the
   1080   // "simple" statement path.
   1081   if (HaveInsertPoint())
   1082     EmitStopPoint(&S);
   1083 
   1084   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
   1085 }
   1086 
   1087 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
   1088   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
   1089 
   1090   // If this code is reachable then emit a stop point (if generating
   1091   // debug info). We have to do this ourselves because we are on the
   1092   // "simple" statement path.
   1093   if (HaveInsertPoint())
   1094     EmitStopPoint(&S);
   1095 
   1096   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
   1097 }
   1098 
   1099 /// EmitCaseStmtRange - If case statement range is not too big then
   1100 /// add multiple cases to switch instruction, one for each value within
   1101 /// the range. If range is too big then emit "if" condition check.
   1102 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
   1103   assert(S.getRHS() && "Expected RHS value in CaseStmt");
   1104 
   1105   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
   1106   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
   1107 
   1108   // Emit the code for this case. We do this first to make sure it is
   1109   // properly chained from our predecessor before generating the
   1110   // switch machinery to enter this block.
   1111   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
   1112   EmitBlockWithFallThrough(CaseDest, &S);
   1113   EmitStmt(S.getSubStmt());
   1114 
   1115   // If range is empty, do nothing.
   1116   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
   1117     return;
   1118 
   1119   llvm::APInt Range = RHS - LHS;
   1120   // FIXME: parameters such as this should not be hardcoded.
   1121   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
   1122     // Range is small enough to add multiple switch instruction cases.
   1123     uint64_t Total = getProfileCount(&S);
   1124     unsigned NCases = Range.getZExtValue() + 1;
   1125     // We only have one region counter for the entire set of cases here, so we
   1126     // need to divide the weights evenly between the generated cases, ensuring
   1127     // that the total weight is preserved. E.g., a weight of 5 over three cases
   1128     // will be distributed as weights of 2, 2, and 1.
   1129     uint64_t Weight = Total / NCases, Rem = Total % NCases;
   1130     for (unsigned I = 0; I != NCases; ++I) {
   1131       if (SwitchWeights)
   1132         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
   1133       if (Rem)
   1134         Rem--;
   1135       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
   1136       LHS++;
   1137     }
   1138     return;
   1139   }
   1140 
   1141   // The range is too big. Emit "if" condition into a new block,
   1142   // making sure to save and restore the current insertion point.
   1143   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
   1144 
   1145   // Push this test onto the chain of range checks (which terminates
   1146   // in the default basic block). The switch's default will be changed
   1147   // to the top of this chain after switch emission is complete.
   1148   llvm::BasicBlock *FalseDest = CaseRangeBlock;
   1149   CaseRangeBlock = createBasicBlock("sw.caserange");
   1150 
   1151   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
   1152   Builder.SetInsertPoint(CaseRangeBlock);
   1153 
   1154   // Emit range check.
   1155   llvm::Value *Diff =
   1156     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
   1157   llvm::Value *Cond =
   1158     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
   1159 
   1160   llvm::MDNode *Weights = nullptr;
   1161   if (SwitchWeights) {
   1162     uint64_t ThisCount = getProfileCount(&S);
   1163     uint64_t DefaultCount = (*SwitchWeights)[0];
   1164     Weights = createProfileWeights(ThisCount, DefaultCount);
   1165 
   1166     // Since we're chaining the switch default through each large case range, we
   1167     // need to update the weight for the default, ie, the first case, to include
   1168     // this case.
   1169     (*SwitchWeights)[0] += ThisCount;
   1170   }
   1171   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
   1172 
   1173   // Restore the appropriate insertion point.
   1174   if (RestoreBB)
   1175     Builder.SetInsertPoint(RestoreBB);
   1176   else
   1177     Builder.ClearInsertionPoint();
   1178 }
   1179 
   1180 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
   1181   // If there is no enclosing switch instance that we're aware of, then this
   1182   // case statement and its block can be elided.  This situation only happens
   1183   // when we've constant-folded the switch, are emitting the constant case,
   1184   // and part of the constant case includes another case statement.  For
   1185   // instance: switch (4) { case 4: do { case 5: } while (1); }
   1186   if (!SwitchInsn) {
   1187     EmitStmt(S.getSubStmt());
   1188     return;
   1189   }
   1190 
   1191   // Handle case ranges.
   1192   if (S.getRHS()) {
   1193     EmitCaseStmtRange(S);
   1194     return;
   1195   }
   1196 
   1197   llvm::ConstantInt *CaseVal =
   1198     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
   1199 
   1200   // If the body of the case is just a 'break', try to not emit an empty block.
   1201   // If we're profiling or we're not optimizing, leave the block in for better
   1202   // debug and coverage analysis.
   1203   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
   1204       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1205       isa<BreakStmt>(S.getSubStmt())) {
   1206     JumpDest Block = BreakContinueStack.back().BreakBlock;
   1207 
   1208     // Only do this optimization if there are no cleanups that need emitting.
   1209     if (isObviouslyBranchWithoutCleanups(Block)) {
   1210       if (SwitchWeights)
   1211         SwitchWeights->push_back(getProfileCount(&S));
   1212       SwitchInsn->addCase(CaseVal, Block.getBlock());
   1213 
   1214       // If there was a fallthrough into this case, make sure to redirect it to
   1215       // the end of the switch as well.
   1216       if (Builder.GetInsertBlock()) {
   1217         Builder.CreateBr(Block.getBlock());
   1218         Builder.ClearInsertionPoint();
   1219       }
   1220       return;
   1221     }
   1222   }
   1223 
   1224   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
   1225   EmitBlockWithFallThrough(CaseDest, &S);
   1226   if (SwitchWeights)
   1227     SwitchWeights->push_back(getProfileCount(&S));
   1228   SwitchInsn->addCase(CaseVal, CaseDest);
   1229 
   1230   // Recursively emitting the statement is acceptable, but is not wonderful for
   1231   // code where we have many case statements nested together, i.e.:
   1232   //  case 1:
   1233   //    case 2:
   1234   //      case 3: etc.
   1235   // Handling this recursively will create a new block for each case statement
   1236   // that falls through to the next case which is IR intensive.  It also causes
   1237   // deep recursion which can run into stack depth limitations.  Handle
   1238   // sequential non-range case statements specially.
   1239   const CaseStmt *CurCase = &S;
   1240   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
   1241 
   1242   // Otherwise, iteratively add consecutive cases to this switch stmt.
   1243   while (NextCase && NextCase->getRHS() == nullptr) {
   1244     CurCase = NextCase;
   1245     llvm::ConstantInt *CaseVal =
   1246       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
   1247 
   1248     if (SwitchWeights)
   1249       SwitchWeights->push_back(getProfileCount(NextCase));
   1250     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
   1251       CaseDest = createBasicBlock("sw.bb");
   1252       EmitBlockWithFallThrough(CaseDest, &S);
   1253     }
   1254 
   1255     SwitchInsn->addCase(CaseVal, CaseDest);
   1256     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
   1257   }
   1258 
   1259   // Normal default recursion for non-cases.
   1260   EmitStmt(CurCase->getSubStmt());
   1261 }
   1262 
   1263 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
   1264   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
   1265   assert(DefaultBlock->empty() &&
   1266          "EmitDefaultStmt: Default block already defined?");
   1267 
   1268   EmitBlockWithFallThrough(DefaultBlock, &S);
   1269 
   1270   EmitStmt(S.getSubStmt());
   1271 }
   1272 
   1273 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
   1274 /// constant value that is being switched on, see if we can dead code eliminate
   1275 /// the body of the switch to a simple series of statements to emit.  Basically,
   1276 /// on a switch (5) we want to find these statements:
   1277 ///    case 5:
   1278 ///      printf(...);    <--
   1279 ///      ++i;            <--
   1280 ///      break;
   1281 ///
   1282 /// and add them to the ResultStmts vector.  If it is unsafe to do this
   1283 /// transformation (for example, one of the elided statements contains a label
   1284 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
   1285 /// should include statements after it (e.g. the printf() line is a substmt of
   1286 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
   1287 /// statement, then return CSFC_Success.
   1288 ///
   1289 /// If Case is non-null, then we are looking for the specified case, checking
   1290 /// that nothing we jump over contains labels.  If Case is null, then we found
   1291 /// the case and are looking for the break.
   1292 ///
   1293 /// If the recursive walk actually finds our Case, then we set FoundCase to
   1294 /// true.
   1295 ///
   1296 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
   1297 static CSFC_Result CollectStatementsForCase(const Stmt *S,
   1298                                             const SwitchCase *Case,
   1299                                             bool &FoundCase,
   1300                               SmallVectorImpl<const Stmt*> &ResultStmts) {
   1301   // If this is a null statement, just succeed.
   1302   if (!S)
   1303     return Case ? CSFC_Success : CSFC_FallThrough;
   1304 
   1305   // If this is the switchcase (case 4: or default) that we're looking for, then
   1306   // we're in business.  Just add the substatement.
   1307   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
   1308     if (S == Case) {
   1309       FoundCase = true;
   1310       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
   1311                                       ResultStmts);
   1312     }
   1313 
   1314     // Otherwise, this is some other case or default statement, just ignore it.
   1315     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
   1316                                     ResultStmts);
   1317   }
   1318 
   1319   // If we are in the live part of the code and we found our break statement,
   1320   // return a success!
   1321   if (!Case && isa<BreakStmt>(S))
   1322     return CSFC_Success;
   1323 
   1324   // If this is a switch statement, then it might contain the SwitchCase, the
   1325   // break, or neither.
   1326   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
   1327     // Handle this as two cases: we might be looking for the SwitchCase (if so
   1328     // the skipped statements must be skippable) or we might already have it.
   1329     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
   1330     if (Case) {
   1331       // Keep track of whether we see a skipped declaration.  The code could be
   1332       // using the declaration even if it is skipped, so we can't optimize out
   1333       // the decl if the kept statements might refer to it.
   1334       bool HadSkippedDecl = false;
   1335 
   1336       // If we're looking for the case, just see if we can skip each of the
   1337       // substatements.
   1338       for (; Case && I != E; ++I) {
   1339         HadSkippedDecl |= isa<DeclStmt>(*I);
   1340 
   1341         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
   1342         case CSFC_Failure: return CSFC_Failure;
   1343         case CSFC_Success:
   1344           // A successful result means that either 1) that the statement doesn't
   1345           // have the case and is skippable, or 2) does contain the case value
   1346           // and also contains the break to exit the switch.  In the later case,
   1347           // we just verify the rest of the statements are elidable.
   1348           if (FoundCase) {
   1349             // If we found the case and skipped declarations, we can't do the
   1350             // optimization.
   1351             if (HadSkippedDecl)
   1352               return CSFC_Failure;
   1353 
   1354             for (++I; I != E; ++I)
   1355               if (CodeGenFunction::ContainsLabel(*I, true))
   1356                 return CSFC_Failure;
   1357             return CSFC_Success;
   1358           }
   1359           break;
   1360         case CSFC_FallThrough:
   1361           // If we have a fallthrough condition, then we must have found the
   1362           // case started to include statements.  Consider the rest of the
   1363           // statements in the compound statement as candidates for inclusion.
   1364           assert(FoundCase && "Didn't find case but returned fallthrough?");
   1365           // We recursively found Case, so we're not looking for it anymore.
   1366           Case = nullptr;
   1367 
   1368           // If we found the case and skipped declarations, we can't do the
   1369           // optimization.
   1370           if (HadSkippedDecl)
   1371             return CSFC_Failure;
   1372           break;
   1373         }
   1374       }
   1375     }
   1376 
   1377     // If we have statements in our range, then we know that the statements are
   1378     // live and need to be added to the set of statements we're tracking.
   1379     for (; I != E; ++I) {
   1380       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
   1381       case CSFC_Failure: return CSFC_Failure;
   1382       case CSFC_FallThrough:
   1383         // A fallthrough result means that the statement was simple and just
   1384         // included in ResultStmt, keep adding them afterwards.
   1385         break;
   1386       case CSFC_Success:
   1387         // A successful result means that we found the break statement and
   1388         // stopped statement inclusion.  We just ensure that any leftover stmts
   1389         // are skippable and return success ourselves.
   1390         for (++I; I != E; ++I)
   1391           if (CodeGenFunction::ContainsLabel(*I, true))
   1392             return CSFC_Failure;
   1393         return CSFC_Success;
   1394       }
   1395     }
   1396 
   1397     return Case ? CSFC_Success : CSFC_FallThrough;
   1398   }
   1399 
   1400   // Okay, this is some other statement that we don't handle explicitly, like a
   1401   // for statement or increment etc.  If we are skipping over this statement,
   1402   // just verify it doesn't have labels, which would make it invalid to elide.
   1403   if (Case) {
   1404     if (CodeGenFunction::ContainsLabel(S, true))
   1405       return CSFC_Failure;
   1406     return CSFC_Success;
   1407   }
   1408 
   1409   // Otherwise, we want to include this statement.  Everything is cool with that
   1410   // so long as it doesn't contain a break out of the switch we're in.
   1411   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
   1412 
   1413   // Otherwise, everything is great.  Include the statement and tell the caller
   1414   // that we fall through and include the next statement as well.
   1415   ResultStmts.push_back(S);
   1416   return CSFC_FallThrough;
   1417 }
   1418 
   1419 /// FindCaseStatementsForValue - Find the case statement being jumped to and
   1420 /// then invoke CollectStatementsForCase to find the list of statements to emit
   1421 /// for a switch on constant.  See the comment above CollectStatementsForCase
   1422 /// for more details.
   1423 static bool FindCaseStatementsForValue(const SwitchStmt &S,
   1424                                        const llvm::APSInt &ConstantCondValue,
   1425                                 SmallVectorImpl<const Stmt*> &ResultStmts,
   1426                                        ASTContext &C,
   1427                                        const SwitchCase *&ResultCase) {
   1428   // First step, find the switch case that is being branched to.  We can do this
   1429   // efficiently by scanning the SwitchCase list.
   1430   const SwitchCase *Case = S.getSwitchCaseList();
   1431   const DefaultStmt *DefaultCase = nullptr;
   1432 
   1433   for (; Case; Case = Case->getNextSwitchCase()) {
   1434     // It's either a default or case.  Just remember the default statement in
   1435     // case we're not jumping to any numbered cases.
   1436     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
   1437       DefaultCase = DS;
   1438       continue;
   1439     }
   1440 
   1441     // Check to see if this case is the one we're looking for.
   1442     const CaseStmt *CS = cast<CaseStmt>(Case);
   1443     // Don't handle case ranges yet.
   1444     if (CS->getRHS()) return false;
   1445 
   1446     // If we found our case, remember it as 'case'.
   1447     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
   1448       break;
   1449   }
   1450 
   1451   // If we didn't find a matching case, we use a default if it exists, or we
   1452   // elide the whole switch body!
   1453   if (!Case) {
   1454     // It is safe to elide the body of the switch if it doesn't contain labels
   1455     // etc.  If it is safe, return successfully with an empty ResultStmts list.
   1456     if (!DefaultCase)
   1457       return !CodeGenFunction::ContainsLabel(&S);
   1458     Case = DefaultCase;
   1459   }
   1460 
   1461   // Ok, we know which case is being jumped to, try to collect all the
   1462   // statements that follow it.  This can fail for a variety of reasons.  Also,
   1463   // check to see that the recursive walk actually found our case statement.
   1464   // Insane cases like this can fail to find it in the recursive walk since we
   1465   // don't handle every stmt kind:
   1466   // switch (4) {
   1467   //   while (1) {
   1468   //     case 4: ...
   1469   bool FoundCase = false;
   1470   ResultCase = Case;
   1471   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
   1472                                   ResultStmts) != CSFC_Failure &&
   1473          FoundCase;
   1474 }
   1475 
   1476 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
   1477   // Handle nested switch statements.
   1478   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
   1479   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
   1480   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
   1481 
   1482   // See if we can constant fold the condition of the switch and therefore only
   1483   // emit the live case statement (if any) of the switch.
   1484   llvm::APSInt ConstantCondValue;
   1485   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
   1486     SmallVector<const Stmt*, 4> CaseStmts;
   1487     const SwitchCase *Case = nullptr;
   1488     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
   1489                                    getContext(), Case)) {
   1490       if (Case)
   1491         incrementProfileCounter(Case);
   1492       RunCleanupsScope ExecutedScope(*this);
   1493 
   1494       if (S.getInit())
   1495         EmitStmt(S.getInit());
   1496 
   1497       // Emit the condition variable if needed inside the entire cleanup scope
   1498       // used by this special case for constant folded switches.
   1499       if (S.getConditionVariable())
   1500         EmitAutoVarDecl(*S.getConditionVariable());
   1501 
   1502       // At this point, we are no longer "within" a switch instance, so
   1503       // we can temporarily enforce this to ensure that any embedded case
   1504       // statements are not emitted.
   1505       SwitchInsn = nullptr;
   1506 
   1507       // Okay, we can dead code eliminate everything except this case.  Emit the
   1508       // specified series of statements and we're good.
   1509       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
   1510         EmitStmt(CaseStmts[i]);
   1511       incrementProfileCounter(&S);
   1512 
   1513       // Now we want to restore the saved switch instance so that nested
   1514       // switches continue to function properly
   1515       SwitchInsn = SavedSwitchInsn;
   1516 
   1517       return;
   1518     }
   1519   }
   1520 
   1521   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
   1522 
   1523   RunCleanupsScope ConditionScope(*this);
   1524 
   1525   if (S.getInit())
   1526     EmitStmt(S.getInit());
   1527 
   1528   if (S.getConditionVariable())
   1529     EmitAutoVarDecl(*S.getConditionVariable());
   1530   llvm::Value *CondV = EmitScalarExpr(S.getCond());
   1531 
   1532   // Create basic block to hold stuff that comes after switch
   1533   // statement. We also need to create a default block now so that
   1534   // explicit case ranges tests can have a place to jump to on
   1535   // failure.
   1536   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
   1537   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
   1538   if (PGO.haveRegionCounts()) {
   1539     // Walk the SwitchCase list to find how many there are.
   1540     uint64_t DefaultCount = 0;
   1541     unsigned NumCases = 0;
   1542     for (const SwitchCase *Case = S.getSwitchCaseList();
   1543          Case;
   1544          Case = Case->getNextSwitchCase()) {
   1545       if (isa<DefaultStmt>(Case))
   1546         DefaultCount = getProfileCount(Case);
   1547       NumCases += 1;
   1548     }
   1549     SwitchWeights = new SmallVector<uint64_t, 16>();
   1550     SwitchWeights->reserve(NumCases);
   1551     // The default needs to be first. We store the edge count, so we already
   1552     // know the right weight.
   1553     SwitchWeights->push_back(DefaultCount);
   1554   }
   1555   CaseRangeBlock = DefaultBlock;
   1556 
   1557   // Clear the insertion point to indicate we are in unreachable code.
   1558   Builder.ClearInsertionPoint();
   1559 
   1560   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
   1561   // then reuse last ContinueBlock.
   1562   JumpDest OuterContinue;
   1563   if (!BreakContinueStack.empty())
   1564     OuterContinue = BreakContinueStack.back().ContinueBlock;
   1565 
   1566   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
   1567 
   1568   // Emit switch body.
   1569   EmitStmt(S.getBody());
   1570 
   1571   BreakContinueStack.pop_back();
   1572 
   1573   // Update the default block in case explicit case range tests have
   1574   // been chained on top.
   1575   SwitchInsn->setDefaultDest(CaseRangeBlock);
   1576 
   1577   // If a default was never emitted:
   1578   if (!DefaultBlock->getParent()) {
   1579     // If we have cleanups, emit the default block so that there's a
   1580     // place to jump through the cleanups from.
   1581     if (ConditionScope.requiresCleanups()) {
   1582       EmitBlock(DefaultBlock);
   1583 
   1584     // Otherwise, just forward the default block to the switch end.
   1585     } else {
   1586       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
   1587       delete DefaultBlock;
   1588     }
   1589   }
   1590 
   1591   ConditionScope.ForceCleanup();
   1592 
   1593   // Emit continuation.
   1594   EmitBlock(SwitchExit.getBlock(), true);
   1595   incrementProfileCounter(&S);
   1596 
   1597   // If the switch has a condition wrapped by __builtin_unpredictable,
   1598   // create metadata that specifies that the switch is unpredictable.
   1599   // Don't bother if not optimizing because that metadata would not be used.
   1600   auto *Call = dyn_cast<CallExpr>(S.getCond());
   1601   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
   1602     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
   1603     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
   1604       llvm::MDBuilder MDHelper(getLLVMContext());
   1605       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
   1606                               MDHelper.createUnpredictable());
   1607     }
   1608   }
   1609 
   1610   if (SwitchWeights) {
   1611     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
   1612            "switch weights do not match switch cases");
   1613     // If there's only one jump destination there's no sense weighting it.
   1614     if (SwitchWeights->size() > 1)
   1615       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
   1616                               createProfileWeights(*SwitchWeights));
   1617     delete SwitchWeights;
   1618   }
   1619   SwitchInsn = SavedSwitchInsn;
   1620   SwitchWeights = SavedSwitchWeights;
   1621   CaseRangeBlock = SavedCRBlock;
   1622 }
   1623 
   1624 static std::string
   1625 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
   1626                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
   1627   std::string Result;
   1628 
   1629   while (*Constraint) {
   1630     switch (*Constraint) {
   1631     default:
   1632       Result += Target.convertConstraint(Constraint);
   1633       break;
   1634     // Ignore these
   1635     case '*':
   1636     case '?':
   1637     case '!':
   1638     case '=': // Will see this and the following in mult-alt constraints.
   1639     case '+':
   1640       break;
   1641     case '#': // Ignore the rest of the constraint alternative.
   1642       while (Constraint[1] && Constraint[1] != ',')
   1643         Constraint++;
   1644       break;
   1645     case '&':
   1646     case '%':
   1647       Result += *Constraint;
   1648       while (Constraint[1] && Constraint[1] == *Constraint)
   1649         Constraint++;
   1650       break;
   1651     case ',':
   1652       Result += "|";
   1653       break;
   1654     case 'g':
   1655       Result += "imr";
   1656       break;
   1657     case '[': {
   1658       assert(OutCons &&
   1659              "Must pass output names to constraints with a symbolic name");
   1660       unsigned Index;
   1661       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
   1662       assert(result && "Could not resolve symbolic name"); (void)result;
   1663       Result += llvm::utostr(Index);
   1664       break;
   1665     }
   1666     }
   1667 
   1668     Constraint++;
   1669   }
   1670 
   1671   return Result;
   1672 }
   1673 
   1674 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
   1675 /// as using a particular register add that as a constraint that will be used
   1676 /// in this asm stmt.
   1677 static std::string
   1678 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
   1679                        const TargetInfo &Target, CodeGenModule &CGM,
   1680                        const AsmStmt &Stmt, const bool EarlyClobber) {
   1681   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
   1682   if (!AsmDeclRef)
   1683     return Constraint;
   1684   const ValueDecl &Value = *AsmDeclRef->getDecl();
   1685   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
   1686   if (!Variable)
   1687     return Constraint;
   1688   if (Variable->getStorageClass() != SC_Register)
   1689     return Constraint;
   1690   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
   1691   if (!Attr)
   1692     return Constraint;
   1693   StringRef Register = Attr->getLabel();
   1694   assert(Target.isValidGCCRegisterName(Register));
   1695   // We're using validateOutputConstraint here because we only care if
   1696   // this is a register constraint.
   1697   TargetInfo::ConstraintInfo Info(Constraint, "");
   1698   if (Target.validateOutputConstraint(Info) &&
   1699       !Info.allowsRegister()) {
   1700     CGM.ErrorUnsupported(&Stmt, "__asm__");
   1701     return Constraint;
   1702   }
   1703   // Canonicalize the register here before returning it.
   1704   Register = Target.getNormalizedGCCRegisterName(Register);
   1705   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
   1706 }
   1707 
   1708 llvm::Value*
   1709 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   1710                                     LValue InputValue, QualType InputType,
   1711                                     std::string &ConstraintStr,
   1712                                     SourceLocation Loc) {
   1713   llvm::Value *Arg;
   1714   if (Info.allowsRegister() || !Info.allowsMemory()) {
   1715     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
   1716       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
   1717     } else {
   1718       llvm::Type *Ty = ConvertType(InputType);
   1719       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
   1720       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
   1721         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
   1722         Ty = llvm::PointerType::getUnqual(Ty);
   1723 
   1724         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
   1725                                                        Ty));
   1726       } else {
   1727         Arg = InputValue.getPointer();
   1728         ConstraintStr += '*';
   1729       }
   1730     }
   1731   } else {
   1732     Arg = InputValue.getPointer();
   1733     ConstraintStr += '*';
   1734   }
   1735 
   1736   return Arg;
   1737 }
   1738 
   1739 llvm::Value* CodeGenFunction::EmitAsmInput(
   1740                                          const TargetInfo::ConstraintInfo &Info,
   1741                                            const Expr *InputExpr,
   1742                                            std::string &ConstraintStr) {
   1743   // If this can't be a register or memory, i.e., has to be a constant
   1744   // (immediate or symbolic), try to emit it as such.
   1745   if (!Info.allowsRegister() && !Info.allowsMemory()) {
   1746     llvm::APSInt Result;
   1747     if (InputExpr->EvaluateAsInt(Result, getContext()))
   1748       return llvm::ConstantInt::get(getLLVMContext(), Result);
   1749     assert(!Info.requiresImmediateConstant() &&
   1750            "Required-immediate inlineasm arg isn't constant?");
   1751   }
   1752 
   1753   if (Info.allowsRegister() || !Info.allowsMemory())
   1754     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
   1755       return EmitScalarExpr(InputExpr);
   1756   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
   1757     return EmitScalarExpr(InputExpr);
   1758   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
   1759   LValue Dest = EmitLValue(InputExpr);
   1760   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
   1761                             InputExpr->getExprLoc());
   1762 }
   1763 
   1764 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
   1765 /// asm call instruction.  The !srcloc MDNode contains a list of constant
   1766 /// integers which are the source locations of the start of each line in the
   1767 /// asm.
   1768 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
   1769                                       CodeGenFunction &CGF) {
   1770   SmallVector<llvm::Metadata *, 8> Locs;
   1771   // Add the location of the first line to the MDNode.
   1772   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
   1773       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
   1774   StringRef StrVal = Str->getString();
   1775   if (!StrVal.empty()) {
   1776     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
   1777     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
   1778     unsigned StartToken = 0;
   1779     unsigned ByteOffset = 0;
   1780 
   1781     // Add the location of the start of each subsequent line of the asm to the
   1782     // MDNode.
   1783     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
   1784       if (StrVal[i] != '\n') continue;
   1785       SourceLocation LineLoc = Str->getLocationOfByte(
   1786           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
   1787       Locs.push_back(llvm::ConstantAsMetadata::get(
   1788           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
   1789     }
   1790   }
   1791 
   1792   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
   1793 }
   1794 
   1795 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
   1796   // Assemble the final asm string.
   1797   std::string AsmString = S.generateAsmString(getContext());
   1798 
   1799   // Get all the output and input constraints together.
   1800   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
   1801   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
   1802 
   1803   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1804     StringRef Name;
   1805     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
   1806       Name = GAS->getOutputName(i);
   1807     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
   1808     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
   1809     assert(IsValid && "Failed to parse output constraint");
   1810     OutputConstraintInfos.push_back(Info);
   1811   }
   1812 
   1813   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1814     StringRef Name;
   1815     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
   1816       Name = GAS->getInputName(i);
   1817     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
   1818     bool IsValid =
   1819       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
   1820     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
   1821     InputConstraintInfos.push_back(Info);
   1822   }
   1823 
   1824   std::string Constraints;
   1825 
   1826   std::vector<LValue> ResultRegDests;
   1827   std::vector<QualType> ResultRegQualTys;
   1828   std::vector<llvm::Type *> ResultRegTypes;
   1829   std::vector<llvm::Type *> ResultTruncRegTypes;
   1830   std::vector<llvm::Type *> ArgTypes;
   1831   std::vector<llvm::Value*> Args;
   1832 
   1833   // Keep track of inout constraints.
   1834   std::string InOutConstraints;
   1835   std::vector<llvm::Value*> InOutArgs;
   1836   std::vector<llvm::Type*> InOutArgTypes;
   1837 
   1838   // An inline asm can be marked readonly if it meets the following conditions:
   1839   //  - it doesn't have any sideeffects
   1840   //  - it doesn't clobber memory
   1841   //  - it doesn't return a value by-reference
   1842   // It can be marked readnone if it doesn't have any input memory constraints
   1843   // in addition to meeting the conditions listed above.
   1844   bool ReadOnly = true, ReadNone = true;
   1845 
   1846   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1847     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
   1848 
   1849     // Simplify the output constraint.
   1850     std::string OutputConstraint(S.getOutputConstraint(i));
   1851     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
   1852                                           getTarget());
   1853 
   1854     const Expr *OutExpr = S.getOutputExpr(i);
   1855     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
   1856 
   1857     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
   1858                                               getTarget(), CGM, S,
   1859                                               Info.earlyClobber());
   1860 
   1861     LValue Dest = EmitLValue(OutExpr);
   1862     if (!Constraints.empty())
   1863       Constraints += ',';
   1864 
   1865     // If this is a register output, then make the inline asm return it
   1866     // by-value.  If this is a memory result, return the value by-reference.
   1867     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
   1868       Constraints += "=" + OutputConstraint;
   1869       ResultRegQualTys.push_back(OutExpr->getType());
   1870       ResultRegDests.push_back(Dest);
   1871       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
   1872       ResultTruncRegTypes.push_back(ResultRegTypes.back());
   1873 
   1874       // If this output is tied to an input, and if the input is larger, then
   1875       // we need to set the actual result type of the inline asm node to be the
   1876       // same as the input type.
   1877       if (Info.hasMatchingInput()) {
   1878         unsigned InputNo;
   1879         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
   1880           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
   1881           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
   1882             break;
   1883         }
   1884         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
   1885 
   1886         QualType InputTy = S.getInputExpr(InputNo)->getType();
   1887         QualType OutputType = OutExpr->getType();
   1888 
   1889         uint64_t InputSize = getContext().getTypeSize(InputTy);
   1890         if (getContext().getTypeSize(OutputType) < InputSize) {
   1891           // Form the asm to return the value as a larger integer or fp type.
   1892           ResultRegTypes.back() = ConvertType(InputTy);
   1893         }
   1894       }
   1895       if (llvm::Type* AdjTy =
   1896             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1897                                                  ResultRegTypes.back()))
   1898         ResultRegTypes.back() = AdjTy;
   1899       else {
   1900         CGM.getDiags().Report(S.getAsmLoc(),
   1901                               diag::err_asm_invalid_type_in_input)
   1902             << OutExpr->getType() << OutputConstraint;
   1903       }
   1904     } else {
   1905       ArgTypes.push_back(Dest.getAddress().getType());
   1906       Args.push_back(Dest.getPointer());
   1907       Constraints += "=*";
   1908       Constraints += OutputConstraint;
   1909       ReadOnly = ReadNone = false;
   1910     }
   1911 
   1912     if (Info.isReadWrite()) {
   1913       InOutConstraints += ',';
   1914 
   1915       const Expr *InputExpr = S.getOutputExpr(i);
   1916       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
   1917                                             InOutConstraints,
   1918                                             InputExpr->getExprLoc());
   1919 
   1920       if (llvm::Type* AdjTy =
   1921           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1922                                                Arg->getType()))
   1923         Arg = Builder.CreateBitCast(Arg, AdjTy);
   1924 
   1925       if (Info.allowsRegister())
   1926         InOutConstraints += llvm::utostr(i);
   1927       else
   1928         InOutConstraints += OutputConstraint;
   1929 
   1930       InOutArgTypes.push_back(Arg->getType());
   1931       InOutArgs.push_back(Arg);
   1932     }
   1933   }
   1934 
   1935   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
   1936   // to the return value slot. Only do this when returning in registers.
   1937   if (isa<MSAsmStmt>(&S)) {
   1938     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
   1939     if (RetAI.isDirect() || RetAI.isExtend()) {
   1940       // Make a fake lvalue for the return value slot.
   1941       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
   1942       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
   1943           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
   1944           ResultRegDests, AsmString, S.getNumOutputs());
   1945       SawAsmBlock = true;
   1946     }
   1947   }
   1948 
   1949   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1950     const Expr *InputExpr = S.getInputExpr(i);
   1951 
   1952     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
   1953 
   1954     if (Info.allowsMemory())
   1955       ReadNone = false;
   1956 
   1957     if (!Constraints.empty())
   1958       Constraints += ',';
   1959 
   1960     // Simplify the input constraint.
   1961     std::string InputConstraint(S.getInputConstraint(i));
   1962     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
   1963                                          &OutputConstraintInfos);
   1964 
   1965     InputConstraint = AddVariableConstraints(
   1966         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
   1967         getTarget(), CGM, S, false /* No EarlyClobber */);
   1968 
   1969     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
   1970 
   1971     // If this input argument is tied to a larger output result, extend the
   1972     // input to be the same size as the output.  The LLVM backend wants to see
   1973     // the input and output of a matching constraint be the same size.  Note
   1974     // that GCC does not define what the top bits are here.  We use zext because
   1975     // that is usually cheaper, but LLVM IR should really get an anyext someday.
   1976     if (Info.hasTiedOperand()) {
   1977       unsigned Output = Info.getTiedOperand();
   1978       QualType OutputType = S.getOutputExpr(Output)->getType();
   1979       QualType InputTy = InputExpr->getType();
   1980 
   1981       if (getContext().getTypeSize(OutputType) >
   1982           getContext().getTypeSize(InputTy)) {
   1983         // Use ptrtoint as appropriate so that we can do our extension.
   1984         if (isa<llvm::PointerType>(Arg->getType()))
   1985           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
   1986         llvm::Type *OutputTy = ConvertType(OutputType);
   1987         if (isa<llvm::IntegerType>(OutputTy))
   1988           Arg = Builder.CreateZExt(Arg, OutputTy);
   1989         else if (isa<llvm::PointerType>(OutputTy))
   1990           Arg = Builder.CreateZExt(Arg, IntPtrTy);
   1991         else {
   1992           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
   1993           Arg = Builder.CreateFPExt(Arg, OutputTy);
   1994         }
   1995       }
   1996     }
   1997     if (llvm::Type* AdjTy =
   1998               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
   1999                                                    Arg->getType()))
   2000       Arg = Builder.CreateBitCast(Arg, AdjTy);
   2001     else
   2002       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
   2003           << InputExpr->getType() << InputConstraint;
   2004 
   2005     ArgTypes.push_back(Arg->getType());
   2006     Args.push_back(Arg);
   2007     Constraints += InputConstraint;
   2008   }
   2009 
   2010   // Append the "input" part of inout constraints last.
   2011   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
   2012     ArgTypes.push_back(InOutArgTypes[i]);
   2013     Args.push_back(InOutArgs[i]);
   2014   }
   2015   Constraints += InOutConstraints;
   2016 
   2017   // Clobbers
   2018   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
   2019     StringRef Clobber = S.getClobber(i);
   2020 
   2021     if (Clobber == "memory")
   2022       ReadOnly = ReadNone = false;
   2023     else if (Clobber != "cc")
   2024       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
   2025 
   2026     if (!Constraints.empty())
   2027       Constraints += ',';
   2028 
   2029     Constraints += "~{";
   2030     Constraints += Clobber;
   2031     Constraints += '}';
   2032   }
   2033 
   2034   // Add machine specific clobbers
   2035   std::string MachineClobbers = getTarget().getClobbers();
   2036   if (!MachineClobbers.empty()) {
   2037     if (!Constraints.empty())
   2038       Constraints += ',';
   2039     Constraints += MachineClobbers;
   2040   }
   2041 
   2042   llvm::Type *ResultType;
   2043   if (ResultRegTypes.empty())
   2044     ResultType = VoidTy;
   2045   else if (ResultRegTypes.size() == 1)
   2046     ResultType = ResultRegTypes[0];
   2047   else
   2048     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
   2049 
   2050   llvm::FunctionType *FTy =
   2051     llvm::FunctionType::get(ResultType, ArgTypes, false);
   2052 
   2053   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
   2054   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
   2055     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
   2056   llvm::InlineAsm *IA =
   2057     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
   2058                          /* IsAlignStack */ false, AsmDialect);
   2059   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
   2060   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2061                        llvm::Attribute::NoUnwind);
   2062 
   2063   if (isa<MSAsmStmt>(&S)) {
   2064     // If the assembly contains any labels, mark the call noduplicate to prevent
   2065     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
   2066     // works.
   2067     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
   2068       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2069                            llvm::Attribute::NoDuplicate);
   2070   }
   2071 
   2072   // Attach readnone and readonly attributes.
   2073   if (!HasSideEffect) {
   2074     if (ReadNone)
   2075       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2076                            llvm::Attribute::ReadNone);
   2077     else if (ReadOnly)
   2078       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2079                            llvm::Attribute::ReadOnly);
   2080   }
   2081 
   2082   // Slap the source location of the inline asm into a !srcloc metadata on the
   2083   // call.
   2084   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
   2085     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
   2086                                                    *this));
   2087   } else {
   2088     // At least put the line number on MS inline asm blobs.
   2089     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
   2090     Result->setMetadata("srcloc",
   2091                         llvm::MDNode::get(getLLVMContext(),
   2092                                           llvm::ConstantAsMetadata::get(Loc)));
   2093   }
   2094 
   2095   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
   2096     // Conservatively, mark all inline asm blocks in CUDA as convergent
   2097     // (meaning, they may call an intrinsically convergent op, such as bar.sync,
   2098     // and so can't have certain optimizations applied around them).
   2099     Result->addAttribute(llvm::AttributeSet::FunctionIndex,
   2100                          llvm::Attribute::Convergent);
   2101   }
   2102 
   2103   // Extract all of the register value results from the asm.
   2104   std::vector<llvm::Value*> RegResults;
   2105   if (ResultRegTypes.size() == 1) {
   2106     RegResults.push_back(Result);
   2107   } else {
   2108     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
   2109       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
   2110       RegResults.push_back(Tmp);
   2111     }
   2112   }
   2113 
   2114   assert(RegResults.size() == ResultRegTypes.size());
   2115   assert(RegResults.size() == ResultTruncRegTypes.size());
   2116   assert(RegResults.size() == ResultRegDests.size());
   2117   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
   2118     llvm::Value *Tmp = RegResults[i];
   2119 
   2120     // If the result type of the LLVM IR asm doesn't match the result type of
   2121     // the expression, do the conversion.
   2122     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
   2123       llvm::Type *TruncTy = ResultTruncRegTypes[i];
   2124 
   2125       // Truncate the integer result to the right size, note that TruncTy can be
   2126       // a pointer.
   2127       if (TruncTy->isFloatingPointTy())
   2128         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
   2129       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
   2130         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
   2131         Tmp = Builder.CreateTrunc(Tmp,
   2132                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
   2133         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
   2134       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
   2135         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
   2136         Tmp = Builder.CreatePtrToInt(Tmp,
   2137                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
   2138         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   2139       } else if (TruncTy->isIntegerTy()) {
   2140         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   2141       } else if (TruncTy->isVectorTy()) {
   2142         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
   2143       }
   2144     }
   2145 
   2146     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
   2147   }
   2148 }
   2149 
   2150 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
   2151   const RecordDecl *RD = S.getCapturedRecordDecl();
   2152   QualType RecordTy = getContext().getRecordType(RD);
   2153 
   2154   // Initialize the captured struct.
   2155   LValue SlotLV =
   2156     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
   2157 
   2158   RecordDecl::field_iterator CurField = RD->field_begin();
   2159   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
   2160                                                  E = S.capture_init_end();
   2161        I != E; ++I, ++CurField) {
   2162     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
   2163     if (CurField->hasCapturedVLAType()) {
   2164       auto VAT = CurField->getCapturedVLAType();
   2165       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
   2166     } else {
   2167       EmitInitializerForField(*CurField, LV, *I, None);
   2168     }
   2169   }
   2170 
   2171   return SlotLV;
   2172 }
   2173 
   2174 /// Generate an outlined function for the body of a CapturedStmt, store any
   2175 /// captured variables into the captured struct, and call the outlined function.
   2176 llvm::Function *
   2177 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
   2178   LValue CapStruct = InitCapturedStruct(S);
   2179 
   2180   // Emit the CapturedDecl
   2181   CodeGenFunction CGF(CGM, true);
   2182   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
   2183   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
   2184   delete CGF.CapturedStmtInfo;
   2185 
   2186   // Emit call to the helper function.
   2187   EmitCallOrInvoke(F, CapStruct.getPointer());
   2188 
   2189   return F;
   2190 }
   2191 
   2192 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
   2193   LValue CapStruct = InitCapturedStruct(S);
   2194   return CapStruct.getAddress();
   2195 }
   2196 
   2197 /// Creates the outlined function for a CapturedStmt.
   2198 llvm::Function *
   2199 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
   2200   assert(CapturedStmtInfo &&
   2201     "CapturedStmtInfo should be set when generating the captured function");
   2202   const CapturedDecl *CD = S.getCapturedDecl();
   2203   const RecordDecl *RD = S.getCapturedRecordDecl();
   2204   SourceLocation Loc = S.getLocStart();
   2205   assert(CD->hasBody() && "missing CapturedDecl body");
   2206 
   2207   // Build the argument list.
   2208   ASTContext &Ctx = CGM.getContext();
   2209   FunctionArgList Args;
   2210   Args.append(CD->param_begin(), CD->param_end());
   2211 
   2212   // Create the function declaration.
   2213   FunctionType::ExtInfo ExtInfo;
   2214   const CGFunctionInfo &FuncInfo =
   2215     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
   2216   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
   2217 
   2218   llvm::Function *F =
   2219     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
   2220                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
   2221   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
   2222   if (CD->isNothrow())
   2223     F->addFnAttr(llvm::Attribute::NoUnwind);
   2224 
   2225   // Generate the function.
   2226   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
   2227                 CD->getLocation(),
   2228                 CD->getBody()->getLocStart());
   2229   // Set the context parameter in CapturedStmtInfo.
   2230   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
   2231   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
   2232 
   2233   // Initialize variable-length arrays.
   2234   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
   2235                                            Ctx.getTagDeclType(RD));
   2236   for (auto *FD : RD->fields()) {
   2237     if (FD->hasCapturedVLAType()) {
   2238       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
   2239                                        S.getLocStart()).getScalarVal();
   2240       auto VAT = FD->getCapturedVLAType();
   2241       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
   2242     }
   2243   }
   2244 
   2245   // If 'this' is captured, load it into CXXThisValue.
   2246   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
   2247     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
   2248     LValue ThisLValue = EmitLValueForField(Base, FD);
   2249     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
   2250   }
   2251 
   2252   PGO.assignRegionCounters(GlobalDecl(CD), F);
   2253   CapturedStmtInfo->EmitBody(*this, CD->getBody());
   2254   FinishFunction(CD->getBodyRBrace());
   2255 
   2256   return F;
   2257 }
   2258