1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAG class, which is a base class used by 11 // scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "pre-RA-sched" 16 #include "SDNodeDbgValue.h" 17 #include "ScheduleDAGSDNodes.h" 18 #include "InstrEmitter.h" 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/Target/TargetMachine.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetLowering.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 STATISTIC(LoadsClustered, "Number of loads clustered together"); 37 38 // This allows latency based scheduler to notice high latency instructions 39 // without a target itinerary. The choise if number here has more to do with 40 // balancing scheduler heursitics than with the actual machine latency. 41 static cl::opt<int> HighLatencyCycles( 42 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 43 cl::desc("Roughly estimate the number of cycles that 'long latency'" 44 "instructions take for targets with no itinerary")); 45 46 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 47 : ScheduleDAG(mf), 48 InstrItins(mf.getTarget().getInstrItineraryData()) {} 49 50 /// Run - perform scheduling. 51 /// 52 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb, 53 MachineBasicBlock::iterator insertPos) { 54 DAG = dag; 55 ScheduleDAG::Run(bb, insertPos); 56 } 57 58 /// NewSUnit - Creates a new SUnit and return a ptr to it. 59 /// 60 SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) { 61 #ifndef NDEBUG 62 const SUnit *Addr = 0; 63 if (!SUnits.empty()) 64 Addr = &SUnits[0]; 65 #endif 66 SUnits.push_back(SUnit(N, (unsigned)SUnits.size())); 67 assert((Addr == 0 || Addr == &SUnits[0]) && 68 "SUnits std::vector reallocated on the fly!"); 69 SUnits.back().OrigNode = &SUnits.back(); 70 SUnit *SU = &SUnits.back(); 71 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 72 if (!N || 73 (N->isMachineOpcode() && 74 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 75 SU->SchedulingPref = Sched::None; 76 else 77 SU->SchedulingPref = TLI.getSchedulingPreference(N); 78 return SU; 79 } 80 81 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 82 SUnit *SU = NewSUnit(Old->getNode()); 83 SU->OrigNode = Old->OrigNode; 84 SU->Latency = Old->Latency; 85 SU->isVRegCycle = Old->isVRegCycle; 86 SU->isCall = Old->isCall; 87 SU->isCallOp = Old->isCallOp; 88 SU->isTwoAddress = Old->isTwoAddress; 89 SU->isCommutable = Old->isCommutable; 90 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 91 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 92 SU->isScheduleHigh = Old->isScheduleHigh; 93 SU->isScheduleLow = Old->isScheduleLow; 94 SU->SchedulingPref = Old->SchedulingPref; 95 Old->isCloned = true; 96 return SU; 97 } 98 99 /// CheckForPhysRegDependency - Check if the dependency between def and use of 100 /// a specified operand is a physical register dependency. If so, returns the 101 /// register and the cost of copying the register. 102 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 103 const TargetRegisterInfo *TRI, 104 const TargetInstrInfo *TII, 105 unsigned &PhysReg, int &Cost) { 106 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 107 return; 108 109 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 110 if (TargetRegisterInfo::isVirtualRegister(Reg)) 111 return; 112 113 unsigned ResNo = User->getOperand(2).getResNo(); 114 if (Def->isMachineOpcode()) { 115 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 116 if (ResNo >= II.getNumDefs() && 117 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { 118 PhysReg = Reg; 119 const TargetRegisterClass *RC = 120 TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo)); 121 Cost = RC->getCopyCost(); 122 } 123 } 124 } 125 126 static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 127 SmallVector<EVT, 4> VTs; 128 SDNode *GlueDestNode = Glue.getNode(); 129 130 // Don't add glue from a node to itself. 131 if (GlueDestNode == N) return; 132 133 // Don't add glue to something which already has glue. 134 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return; 135 136 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 137 VTs.push_back(N->getValueType(I)); 138 139 if (AddGlue) 140 VTs.push_back(MVT::Glue); 141 142 SmallVector<SDValue, 4> Ops; 143 for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I) 144 Ops.push_back(N->getOperand(I)); 145 146 if (GlueDestNode) 147 Ops.push_back(Glue); 148 149 SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); 150 MachineSDNode::mmo_iterator Begin = 0, End = 0; 151 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 152 153 // Store memory references. 154 if (MN) { 155 Begin = MN->memoperands_begin(); 156 End = MN->memoperands_end(); 157 } 158 159 DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); 160 161 // Reset the memory references 162 if (MN) 163 MN->setMemRefs(Begin, End); 164 } 165 166 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 167 /// This function finds loads of the same base and different offsets. If the 168 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 169 /// outputs to ensure they are scheduled together and in order. This 170 /// optimization may benefit some targets by improving cache locality. 171 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 172 SDNode *Chain = 0; 173 unsigned NumOps = Node->getNumOperands(); 174 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 175 Chain = Node->getOperand(NumOps-1).getNode(); 176 if (!Chain) 177 return; 178 179 // Look for other loads of the same chain. Find loads that are loading from 180 // the same base pointer and different offsets. 181 SmallPtrSet<SDNode*, 16> Visited; 182 SmallVector<int64_t, 4> Offsets; 183 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 184 bool Cluster = false; 185 SDNode *Base = Node; 186 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 187 I != E; ++I) { 188 SDNode *User = *I; 189 if (User == Node || !Visited.insert(User)) 190 continue; 191 int64_t Offset1, Offset2; 192 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 193 Offset1 == Offset2) 194 // FIXME: Should be ok if they addresses are identical. But earlier 195 // optimizations really should have eliminated one of the loads. 196 continue; 197 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 198 Offsets.push_back(Offset1); 199 O2SMap.insert(std::make_pair(Offset2, User)); 200 Offsets.push_back(Offset2); 201 if (Offset2 < Offset1) 202 Base = User; 203 Cluster = true; 204 } 205 206 if (!Cluster) 207 return; 208 209 // Sort them in increasing order. 210 std::sort(Offsets.begin(), Offsets.end()); 211 212 // Check if the loads are close enough. 213 SmallVector<SDNode*, 4> Loads; 214 unsigned NumLoads = 0; 215 int64_t BaseOff = Offsets[0]; 216 SDNode *BaseLoad = O2SMap[BaseOff]; 217 Loads.push_back(BaseLoad); 218 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 219 int64_t Offset = Offsets[i]; 220 SDNode *Load = O2SMap[Offset]; 221 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 222 break; // Stop right here. Ignore loads that are further away. 223 Loads.push_back(Load); 224 ++NumLoads; 225 } 226 227 if (NumLoads == 0) 228 return; 229 230 // Cluster loads by adding MVT::Glue outputs and inputs. This also 231 // ensure they are scheduled in order of increasing addresses. 232 SDNode *Lead = Loads[0]; 233 AddGlue(Lead, SDValue(0, 0), true, DAG); 234 235 SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1); 236 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 237 bool OutGlue = I < E - 1; 238 SDNode *Load = Loads[I]; 239 240 AddGlue(Load, InGlue, OutGlue, DAG); 241 242 if (OutGlue) 243 InGlue = SDValue(Load, Load->getNumValues() - 1); 244 245 ++LoadsClustered; 246 } 247 } 248 249 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 250 /// 251 void ScheduleDAGSDNodes::ClusterNodes() { 252 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), 253 E = DAG->allnodes_end(); NI != E; ++NI) { 254 SDNode *Node = &*NI; 255 if (!Node || !Node->isMachineOpcode()) 256 continue; 257 258 unsigned Opc = Node->getMachineOpcode(); 259 const MCInstrDesc &MCID = TII->get(Opc); 260 if (MCID.mayLoad()) 261 // Cluster loads from "near" addresses into combined SUnits. 262 ClusterNeighboringLoads(Node); 263 } 264 } 265 266 void ScheduleDAGSDNodes::BuildSchedUnits() { 267 // During scheduling, the NodeId field of SDNode is used to map SDNodes 268 // to their associated SUnits by holding SUnits table indices. A value 269 // of -1 means the SDNode does not yet have an associated SUnit. 270 unsigned NumNodes = 0; 271 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), 272 E = DAG->allnodes_end(); NI != E; ++NI) { 273 NI->setNodeId(-1); 274 ++NumNodes; 275 } 276 277 // Reserve entries in the vector for each of the SUnits we are creating. This 278 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 279 // invalidated. 280 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 281 // This is a temporary workaround. 282 SUnits.reserve(NumNodes * 2); 283 284 // Add all nodes in depth first order. 285 SmallVector<SDNode*, 64> Worklist; 286 SmallPtrSet<SDNode*, 64> Visited; 287 Worklist.push_back(DAG->getRoot().getNode()); 288 Visited.insert(DAG->getRoot().getNode()); 289 290 SmallVector<SUnit*, 8> CallSUnits; 291 while (!Worklist.empty()) { 292 SDNode *NI = Worklist.pop_back_val(); 293 294 // Add all operands to the worklist unless they've already been added. 295 for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) 296 if (Visited.insert(NI->getOperand(i).getNode())) 297 Worklist.push_back(NI->getOperand(i).getNode()); 298 299 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 300 continue; 301 302 // If this node has already been processed, stop now. 303 if (NI->getNodeId() != -1) continue; 304 305 SUnit *NodeSUnit = NewSUnit(NI); 306 307 // See if anything is glued to this node, if so, add them to glued 308 // nodes. Nodes can have at most one glue input and one glue output. Glue 309 // is required to be the last operand and result of a node. 310 311 // Scan up to find glued preds. 312 SDNode *N = NI; 313 while (N->getNumOperands() && 314 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 315 N = N->getOperand(N->getNumOperands()-1).getNode(); 316 assert(N->getNodeId() == -1 && "Node already inserted!"); 317 N->setNodeId(NodeSUnit->NodeNum); 318 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 319 NodeSUnit->isCall = true; 320 } 321 322 // Scan down to find any glued succs. 323 N = NI; 324 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 325 SDValue GlueVal(N, N->getNumValues()-1); 326 327 // There are either zero or one users of the Glue result. 328 bool HasGlueUse = false; 329 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 330 UI != E; ++UI) 331 if (GlueVal.isOperandOf(*UI)) { 332 HasGlueUse = true; 333 assert(N->getNodeId() == -1 && "Node already inserted!"); 334 N->setNodeId(NodeSUnit->NodeNum); 335 N = *UI; 336 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 337 NodeSUnit->isCall = true; 338 break; 339 } 340 if (!HasGlueUse) break; 341 } 342 343 if (NodeSUnit->isCall) 344 CallSUnits.push_back(NodeSUnit); 345 346 // Schedule zero-latency TokenFactor below any nodes that may increase the 347 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 348 // have false stalls. 349 if (NI->getOpcode() == ISD::TokenFactor) 350 NodeSUnit->isScheduleLow = true; 351 352 // If there are glue operands involved, N is now the bottom-most node 353 // of the sequence of nodes that are glued together. 354 // Update the SUnit. 355 NodeSUnit->setNode(N); 356 assert(N->getNodeId() == -1 && "Node already inserted!"); 357 N->setNodeId(NodeSUnit->NodeNum); 358 359 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 360 InitNumRegDefsLeft(NodeSUnit); 361 362 // Assign the Latency field of NodeSUnit using target-provided information. 363 ComputeLatency(NodeSUnit); 364 } 365 366 // Find all call operands. 367 while (!CallSUnits.empty()) { 368 SUnit *SU = CallSUnits.pop_back_val(); 369 for (const SDNode *SUNode = SU->getNode(); SUNode; 370 SUNode = SUNode->getGluedNode()) { 371 if (SUNode->getOpcode() != ISD::CopyToReg) 372 continue; 373 SDNode *SrcN = SUNode->getOperand(2).getNode(); 374 if (isPassiveNode(SrcN)) continue; // Not scheduled. 375 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 376 SrcSU->isCallOp = true; 377 } 378 } 379 } 380 381 void ScheduleDAGSDNodes::AddSchedEdges() { 382 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 383 384 // Check to see if the scheduler cares about latencies. 385 bool UnitLatencies = ForceUnitLatencies(); 386 387 // Pass 2: add the preds, succs, etc. 388 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { 389 SUnit *SU = &SUnits[su]; 390 SDNode *MainNode = SU->getNode(); 391 392 if (MainNode->isMachineOpcode()) { 393 unsigned Opc = MainNode->getMachineOpcode(); 394 const MCInstrDesc &MCID = TII->get(Opc); 395 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 396 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 397 SU->isTwoAddress = true; 398 break; 399 } 400 } 401 if (MCID.isCommutable()) 402 SU->isCommutable = true; 403 } 404 405 // Find all predecessors and successors of the group. 406 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { 407 if (N->isMachineOpcode() && 408 TII->get(N->getMachineOpcode()).getImplicitDefs()) { 409 SU->hasPhysRegClobbers = true; 410 unsigned NumUsed = InstrEmitter::CountResults(N); 411 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 412 --NumUsed; // Skip over unused values at the end. 413 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 414 SU->hasPhysRegDefs = true; 415 } 416 417 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 418 SDNode *OpN = N->getOperand(i).getNode(); 419 if (isPassiveNode(OpN)) continue; // Not scheduled. 420 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 421 assert(OpSU && "Node has no SUnit!"); 422 if (OpSU == SU) continue; // In the same group. 423 424 EVT OpVT = N->getOperand(i).getValueType(); 425 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 426 bool isChain = OpVT == MVT::Other; 427 428 unsigned PhysReg = 0; 429 int Cost = 1; 430 // Determine if this is a physical register dependency. 431 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); 432 assert((PhysReg == 0 || !isChain) && 433 "Chain dependence via physreg data?"); 434 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 435 // emits a copy from the physical register to a virtual register unless 436 // it requires a cross class copy (cost < 0). That means we are only 437 // treating "expensive to copy" register dependency as physical register 438 // dependency. This may change in the future though. 439 if (Cost >= 0 && !StressSched) 440 PhysReg = 0; 441 442 // If this is a ctrl dep, latency is 1. 443 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 444 // Special-case TokenFactor chains as zero-latency. 445 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 446 OpLatency = 0; 447 448 const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data, 449 OpLatency, PhysReg); 450 if (!isChain && !UnitLatencies) { 451 ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep)); 452 ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep)); 453 } 454 455 if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 456 // Multiple register uses are combined in the same SUnit. For example, 457 // we could have a set of glued nodes with all their defs consumed by 458 // another set of glued nodes. Register pressure tracking sees this as 459 // a single use, so to keep pressure balanced we reduce the defs. 460 // 461 // We can't tell (without more book-keeping) if this results from 462 // glued nodes or duplicate operands. As long as we don't reduce 463 // NumRegDefsLeft to zero, we handle the common cases well. 464 --OpSU->NumRegDefsLeft; 465 } 466 } 467 } 468 } 469 } 470 471 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 472 /// are input. This SUnit graph is similar to the SelectionDAG, but 473 /// excludes nodes that aren't interesting to scheduling, and represents 474 /// glued together nodes with a single SUnit. 475 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { 476 // Cluster certain nodes which should be scheduled together. 477 ClusterNodes(); 478 // Populate the SUnits array. 479 BuildSchedUnits(); 480 // Compute all the scheduling dependencies between nodes. 481 AddSchedEdges(); 482 } 483 484 // Initialize NumNodeDefs for the current Node's opcode. 485 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 486 // Check for phys reg copy. 487 if (!Node) 488 return; 489 490 if (!Node->isMachineOpcode()) { 491 if (Node->getOpcode() == ISD::CopyFromReg) 492 NodeNumDefs = 1; 493 else 494 NodeNumDefs = 0; 495 return; 496 } 497 unsigned POpc = Node->getMachineOpcode(); 498 if (POpc == TargetOpcode::IMPLICIT_DEF) { 499 // No register need be allocated for this. 500 NodeNumDefs = 0; 501 return; 502 } 503 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 504 // Some instructions define regs that are not represented in the selection DAG 505 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 506 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 507 DefIdx = 0; 508 } 509 510 // Construct a RegDefIter for this SUnit and find the first valid value. 511 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 512 const ScheduleDAGSDNodes *SD) 513 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { 514 InitNodeNumDefs(); 515 Advance(); 516 } 517 518 // Advance to the next valid value defined by the SUnit. 519 void ScheduleDAGSDNodes::RegDefIter::Advance() { 520 for (;Node;) { // Visit all glued nodes. 521 for (;DefIdx < NodeNumDefs; ++DefIdx) { 522 if (!Node->hasAnyUseOfValue(DefIdx)) 523 continue; 524 ValueType = Node->getValueType(DefIdx); 525 ++DefIdx; 526 return; // Found a normal regdef. 527 } 528 Node = Node->getGluedNode(); 529 if (Node == NULL) { 530 return; // No values left to visit. 531 } 532 InitNodeNumDefs(); 533 } 534 } 535 536 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 537 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 538 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 539 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 540 ++SU->NumRegDefsLeft; 541 } 542 } 543 544 void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { 545 SDNode *N = SU->getNode(); 546 547 // TokenFactor operands are considered zero latency, and some schedulers 548 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 549 // whenever node latency is nonzero. 550 if (N && N->getOpcode() == ISD::TokenFactor) { 551 SU->Latency = 0; 552 return; 553 } 554 555 // Check to see if the scheduler cares about latencies. 556 if (ForceUnitLatencies()) { 557 SU->Latency = 1; 558 return; 559 } 560 561 if (!InstrItins || InstrItins->isEmpty()) { 562 if (N && N->isMachineOpcode() && 563 TII->isHighLatencyDef(N->getMachineOpcode())) 564 SU->Latency = HighLatencyCycles; 565 else 566 SU->Latency = 1; 567 return; 568 } 569 570 // Compute the latency for the node. We use the sum of the latencies for 571 // all nodes glued together into this SUnit. 572 SU->Latency = 0; 573 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 574 if (N->isMachineOpcode()) 575 SU->Latency += TII->getInstrLatency(InstrItins, N); 576 } 577 578 void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use, 579 unsigned OpIdx, SDep& dep) const{ 580 // Check to see if the scheduler cares about latencies. 581 if (ForceUnitLatencies()) 582 return; 583 584 if (dep.getKind() != SDep::Data) 585 return; 586 587 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 588 if (Use->isMachineOpcode()) 589 // Adjust the use operand index by num of defs. 590 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 591 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 592 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && 593 !BB->succ_empty()) { 594 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 595 if (TargetRegisterInfo::isVirtualRegister(Reg)) 596 // This copy is a liveout value. It is likely coalesced, so reduce the 597 // latency so not to penalize the def. 598 // FIXME: need target specific adjustment here? 599 Latency = (Latency > 1) ? Latency - 1 : 1; 600 } 601 if (Latency >= 0) 602 dep.setLatency(Latency); 603 } 604 605 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { 606 if (!SU->getNode()) { 607 dbgs() << "PHYS REG COPY\n"; 608 return; 609 } 610 611 SU->getNode()->dump(DAG); 612 dbgs() << "\n"; 613 SmallVector<SDNode *, 4> GluedNodes; 614 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 615 GluedNodes.push_back(N); 616 while (!GluedNodes.empty()) { 617 dbgs() << " "; 618 GluedNodes.back()->dump(DAG); 619 dbgs() << "\n"; 620 GluedNodes.pop_back(); 621 } 622 } 623 624 namespace { 625 struct OrderSorter { 626 bool operator()(const std::pair<unsigned, MachineInstr*> &A, 627 const std::pair<unsigned, MachineInstr*> &B) { 628 return A.first < B.first; 629 } 630 }; 631 } 632 633 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 634 static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, 635 InstrEmitter &Emitter, 636 SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, 637 DenseMap<SDValue, unsigned> &VRBaseMap, 638 unsigned Order) { 639 if (!N->getHasDebugValue()) 640 return; 641 642 // Opportunistically insert immediate dbg_value uses, i.e. those with source 643 // order number right after the N. 644 MachineBasicBlock *BB = Emitter.getBlock(); 645 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 646 ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N); 647 for (unsigned i = 0, e = DVs.size(); i != e; ++i) { 648 if (DVs[i]->isInvalidated()) 649 continue; 650 unsigned DVOrder = DVs[i]->getOrder(); 651 if (!Order || DVOrder == ++Order) { 652 MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap); 653 if (DbgMI) { 654 Orders.push_back(std::make_pair(DVOrder, DbgMI)); 655 BB->insert(InsertPos, DbgMI); 656 } 657 DVs[i]->setIsInvalidated(); 658 } 659 } 660 } 661 662 // ProcessSourceNode - Process nodes with source order numbers. These are added 663 // to a vector which EmitSchedule uses to determine how to insert dbg_value 664 // instructions in the right order. 665 static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, 666 InstrEmitter &Emitter, 667 DenseMap<SDValue, unsigned> &VRBaseMap, 668 SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, 669 SmallSet<unsigned, 8> &Seen) { 670 unsigned Order = DAG->GetOrdering(N); 671 if (!Order || !Seen.insert(Order)) { 672 // Process any valid SDDbgValues even if node does not have any order 673 // assigned. 674 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 675 return; 676 } 677 678 MachineBasicBlock *BB = Emitter.getBlock(); 679 if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) { 680 // Did not insert any instruction. 681 Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); 682 return; 683 } 684 685 Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos()))); 686 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 687 } 688 689 690 /// EmitSchedule - Emit the machine code in scheduled order. 691 MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() { 692 InstrEmitter Emitter(BB, InsertPos); 693 DenseMap<SDValue, unsigned> VRBaseMap; 694 DenseMap<SUnit*, unsigned> CopyVRBaseMap; 695 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 696 SmallSet<unsigned, 8> Seen; 697 bool HasDbg = DAG->hasDebugValues(); 698 699 // If this is the first BB, emit byval parameter dbg_value's. 700 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 701 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 702 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 703 for (; PDI != PDE; ++PDI) { 704 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 705 if (DbgMI) 706 BB->insert(InsertPos, DbgMI); 707 } 708 } 709 710 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 711 SUnit *SU = Sequence[i]; 712 if (!SU) { 713 // Null SUnit* is a noop. 714 EmitNoop(); 715 continue; 716 } 717 718 // For pre-regalloc scheduling, create instructions corresponding to the 719 // SDNode and any glued SDNodes and append them to the block. 720 if (!SU->getNode()) { 721 // Emit a copy. 722 EmitPhysRegCopy(SU, CopyVRBaseMap); 723 continue; 724 } 725 726 SmallVector<SDNode *, 4> GluedNodes; 727 for (SDNode *N = SU->getNode()->getGluedNode(); N; 728 N = N->getGluedNode()) 729 GluedNodes.push_back(N); 730 while (!GluedNodes.empty()) { 731 SDNode *N = GluedNodes.back(); 732 Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned, 733 VRBaseMap); 734 // Remember the source order of the inserted instruction. 735 if (HasDbg) 736 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); 737 GluedNodes.pop_back(); 738 } 739 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, 740 VRBaseMap); 741 // Remember the source order of the inserted instruction. 742 if (HasDbg) 743 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, 744 Seen); 745 } 746 747 // Insert all the dbg_values which have not already been inserted in source 748 // order sequence. 749 if (HasDbg) { 750 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 751 752 // Sort the source order instructions and use the order to insert debug 753 // values. 754 std::sort(Orders.begin(), Orders.end(), OrderSorter()); 755 756 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 757 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 758 // Now emit the rest according to source order. 759 unsigned LastOrder = 0; 760 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 761 unsigned Order = Orders[i].first; 762 MachineInstr *MI = Orders[i].second; 763 // Insert all SDDbgValue's whose order(s) are before "Order". 764 if (!MI) 765 continue; 766 for (; DI != DE && 767 (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { 768 if ((*DI)->isInvalidated()) 769 continue; 770 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 771 if (DbgMI) { 772 if (!LastOrder) 773 // Insert to start of the BB (after PHIs). 774 BB->insert(BBBegin, DbgMI); 775 else { 776 // Insert at the instruction, which may be in a different 777 // block, if the block was split by a custom inserter. 778 MachineBasicBlock::iterator Pos = MI; 779 MI->getParent()->insert(llvm::next(Pos), DbgMI); 780 } 781 } 782 } 783 LastOrder = Order; 784 } 785 // Add trailing DbgValue's before the terminator. FIXME: May want to add 786 // some of them before one or more conditional branches? 787 while (DI != DE) { 788 MachineBasicBlock *InsertBB = Emitter.getBlock(); 789 MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator(); 790 if (!(*DI)->isInvalidated()) { 791 MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap); 792 if (DbgMI) 793 InsertBB->insert(Pos, DbgMI); 794 } 795 ++DI; 796 } 797 } 798 799 BB = Emitter.getBlock(); 800 InsertPos = Emitter.getInsertPos(); 801 return BB; 802 } 803