Home | History | Annotate | Download | only in SelectionDAG
      1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAG class, which is a base class used by
     11 // scheduling implementation classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "pre-RA-sched"
     16 #include "SDNodeDbgValue.h"
     17 #include "ScheduleDAGSDNodes.h"
     18 #include "InstrEmitter.h"
     19 #include "llvm/CodeGen/SelectionDAG.h"
     20 #include "llvm/MC/MCInstrItineraries.h"
     21 #include "llvm/Target/TargetMachine.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 #include "llvm/Target/TargetRegisterInfo.h"
     25 #include "llvm/Target/TargetSubtargetInfo.h"
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/ADT/SmallPtrSet.h"
     28 #include "llvm/ADT/SmallSet.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 using namespace llvm;
     35 
     36 STATISTIC(LoadsClustered, "Number of loads clustered together");
     37 
     38 // This allows latency based scheduler to notice high latency instructions
     39 // without a target itinerary. The choise if number here has more to do with
     40 // balancing scheduler heursitics than with the actual machine latency.
     41 static cl::opt<int> HighLatencyCycles(
     42   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
     43   cl::desc("Roughly estimate the number of cycles that 'long latency'"
     44            "instructions take for targets with no itinerary"));
     45 
     46 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
     47   : ScheduleDAG(mf),
     48     InstrItins(mf.getTarget().getInstrItineraryData()) {}
     49 
     50 /// Run - perform scheduling.
     51 ///
     52 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
     53                              MachineBasicBlock::iterator insertPos) {
     54   DAG = dag;
     55   ScheduleDAG::Run(bb, insertPos);
     56 }
     57 
     58 /// NewSUnit - Creates a new SUnit and return a ptr to it.
     59 ///
     60 SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
     61 #ifndef NDEBUG
     62   const SUnit *Addr = 0;
     63   if (!SUnits.empty())
     64     Addr = &SUnits[0];
     65 #endif
     66   SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
     67   assert((Addr == 0 || Addr == &SUnits[0]) &&
     68          "SUnits std::vector reallocated on the fly!");
     69   SUnits.back().OrigNode = &SUnits.back();
     70   SUnit *SU = &SUnits.back();
     71   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
     72   if (!N ||
     73       (N->isMachineOpcode() &&
     74        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
     75     SU->SchedulingPref = Sched::None;
     76   else
     77     SU->SchedulingPref = TLI.getSchedulingPreference(N);
     78   return SU;
     79 }
     80 
     81 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
     82   SUnit *SU = NewSUnit(Old->getNode());
     83   SU->OrigNode = Old->OrigNode;
     84   SU->Latency = Old->Latency;
     85   SU->isVRegCycle = Old->isVRegCycle;
     86   SU->isCall = Old->isCall;
     87   SU->isCallOp = Old->isCallOp;
     88   SU->isTwoAddress = Old->isTwoAddress;
     89   SU->isCommutable = Old->isCommutable;
     90   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
     91   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
     92   SU->isScheduleHigh = Old->isScheduleHigh;
     93   SU->isScheduleLow = Old->isScheduleLow;
     94   SU->SchedulingPref = Old->SchedulingPref;
     95   Old->isCloned = true;
     96   return SU;
     97 }
     98 
     99 /// CheckForPhysRegDependency - Check if the dependency between def and use of
    100 /// a specified operand is a physical register dependency. If so, returns the
    101 /// register and the cost of copying the register.
    102 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
    103                                       const TargetRegisterInfo *TRI,
    104                                       const TargetInstrInfo *TII,
    105                                       unsigned &PhysReg, int &Cost) {
    106   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
    107     return;
    108 
    109   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
    110   if (TargetRegisterInfo::isVirtualRegister(Reg))
    111     return;
    112 
    113   unsigned ResNo = User->getOperand(2).getResNo();
    114   if (Def->isMachineOpcode()) {
    115     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
    116     if (ResNo >= II.getNumDefs() &&
    117         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
    118       PhysReg = Reg;
    119       const TargetRegisterClass *RC =
    120         TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
    121       Cost = RC->getCopyCost();
    122     }
    123   }
    124 }
    125 
    126 static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
    127   SmallVector<EVT, 4> VTs;
    128   SDNode *GlueDestNode = Glue.getNode();
    129 
    130   // Don't add glue from a node to itself.
    131   if (GlueDestNode == N) return;
    132 
    133   // Don't add glue to something which already has glue.
    134   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
    135 
    136   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
    137     VTs.push_back(N->getValueType(I));
    138 
    139   if (AddGlue)
    140     VTs.push_back(MVT::Glue);
    141 
    142   SmallVector<SDValue, 4> Ops;
    143   for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
    144     Ops.push_back(N->getOperand(I));
    145 
    146   if (GlueDestNode)
    147     Ops.push_back(Glue);
    148 
    149   SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
    150   MachineSDNode::mmo_iterator Begin = 0, End = 0;
    151   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
    152 
    153   // Store memory references.
    154   if (MN) {
    155     Begin = MN->memoperands_begin();
    156     End = MN->memoperands_end();
    157   }
    158 
    159   DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
    160 
    161   // Reset the memory references
    162   if (MN)
    163     MN->setMemRefs(Begin, End);
    164 }
    165 
    166 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
    167 /// This function finds loads of the same base and different offsets. If the
    168 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
    169 /// outputs to ensure they are scheduled together and in order. This
    170 /// optimization may benefit some targets by improving cache locality.
    171 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
    172   SDNode *Chain = 0;
    173   unsigned NumOps = Node->getNumOperands();
    174   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
    175     Chain = Node->getOperand(NumOps-1).getNode();
    176   if (!Chain)
    177     return;
    178 
    179   // Look for other loads of the same chain. Find loads that are loading from
    180   // the same base pointer and different offsets.
    181   SmallPtrSet<SDNode*, 16> Visited;
    182   SmallVector<int64_t, 4> Offsets;
    183   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
    184   bool Cluster = false;
    185   SDNode *Base = Node;
    186   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
    187        I != E; ++I) {
    188     SDNode *User = *I;
    189     if (User == Node || !Visited.insert(User))
    190       continue;
    191     int64_t Offset1, Offset2;
    192     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
    193         Offset1 == Offset2)
    194       // FIXME: Should be ok if they addresses are identical. But earlier
    195       // optimizations really should have eliminated one of the loads.
    196       continue;
    197     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
    198       Offsets.push_back(Offset1);
    199     O2SMap.insert(std::make_pair(Offset2, User));
    200     Offsets.push_back(Offset2);
    201     if (Offset2 < Offset1)
    202       Base = User;
    203     Cluster = true;
    204   }
    205 
    206   if (!Cluster)
    207     return;
    208 
    209   // Sort them in increasing order.
    210   std::sort(Offsets.begin(), Offsets.end());
    211 
    212   // Check if the loads are close enough.
    213   SmallVector<SDNode*, 4> Loads;
    214   unsigned NumLoads = 0;
    215   int64_t BaseOff = Offsets[0];
    216   SDNode *BaseLoad = O2SMap[BaseOff];
    217   Loads.push_back(BaseLoad);
    218   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
    219     int64_t Offset = Offsets[i];
    220     SDNode *Load = O2SMap[Offset];
    221     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
    222       break; // Stop right here. Ignore loads that are further away.
    223     Loads.push_back(Load);
    224     ++NumLoads;
    225   }
    226 
    227   if (NumLoads == 0)
    228     return;
    229 
    230   // Cluster loads by adding MVT::Glue outputs and inputs. This also
    231   // ensure they are scheduled in order of increasing addresses.
    232   SDNode *Lead = Loads[0];
    233   AddGlue(Lead, SDValue(0, 0), true, DAG);
    234 
    235   SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
    236   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
    237     bool OutGlue = I < E - 1;
    238     SDNode *Load = Loads[I];
    239 
    240     AddGlue(Load, InGlue, OutGlue, DAG);
    241 
    242     if (OutGlue)
    243       InGlue = SDValue(Load, Load->getNumValues() - 1);
    244 
    245     ++LoadsClustered;
    246   }
    247 }
    248 
    249 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
    250 ///
    251 void ScheduleDAGSDNodes::ClusterNodes() {
    252   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
    253        E = DAG->allnodes_end(); NI != E; ++NI) {
    254     SDNode *Node = &*NI;
    255     if (!Node || !Node->isMachineOpcode())
    256       continue;
    257 
    258     unsigned Opc = Node->getMachineOpcode();
    259     const MCInstrDesc &MCID = TII->get(Opc);
    260     if (MCID.mayLoad())
    261       // Cluster loads from "near" addresses into combined SUnits.
    262       ClusterNeighboringLoads(Node);
    263   }
    264 }
    265 
    266 void ScheduleDAGSDNodes::BuildSchedUnits() {
    267   // During scheduling, the NodeId field of SDNode is used to map SDNodes
    268   // to their associated SUnits by holding SUnits table indices. A value
    269   // of -1 means the SDNode does not yet have an associated SUnit.
    270   unsigned NumNodes = 0;
    271   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
    272        E = DAG->allnodes_end(); NI != E; ++NI) {
    273     NI->setNodeId(-1);
    274     ++NumNodes;
    275   }
    276 
    277   // Reserve entries in the vector for each of the SUnits we are creating.  This
    278   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
    279   // invalidated.
    280   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
    281   // This is a temporary workaround.
    282   SUnits.reserve(NumNodes * 2);
    283 
    284   // Add all nodes in depth first order.
    285   SmallVector<SDNode*, 64> Worklist;
    286   SmallPtrSet<SDNode*, 64> Visited;
    287   Worklist.push_back(DAG->getRoot().getNode());
    288   Visited.insert(DAG->getRoot().getNode());
    289 
    290   SmallVector<SUnit*, 8> CallSUnits;
    291   while (!Worklist.empty()) {
    292     SDNode *NI = Worklist.pop_back_val();
    293 
    294     // Add all operands to the worklist unless they've already been added.
    295     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
    296       if (Visited.insert(NI->getOperand(i).getNode()))
    297         Worklist.push_back(NI->getOperand(i).getNode());
    298 
    299     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
    300       continue;
    301 
    302     // If this node has already been processed, stop now.
    303     if (NI->getNodeId() != -1) continue;
    304 
    305     SUnit *NodeSUnit = NewSUnit(NI);
    306 
    307     // See if anything is glued to this node, if so, add them to glued
    308     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
    309     // is required to be the last operand and result of a node.
    310 
    311     // Scan up to find glued preds.
    312     SDNode *N = NI;
    313     while (N->getNumOperands() &&
    314            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    315       N = N->getOperand(N->getNumOperands()-1).getNode();
    316       assert(N->getNodeId() == -1 && "Node already inserted!");
    317       N->setNodeId(NodeSUnit->NodeNum);
    318       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    319         NodeSUnit->isCall = true;
    320     }
    321 
    322     // Scan down to find any glued succs.
    323     N = NI;
    324     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
    325       SDValue GlueVal(N, N->getNumValues()-1);
    326 
    327       // There are either zero or one users of the Glue result.
    328       bool HasGlueUse = false;
    329       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    330            UI != E; ++UI)
    331         if (GlueVal.isOperandOf(*UI)) {
    332           HasGlueUse = true;
    333           assert(N->getNodeId() == -1 && "Node already inserted!");
    334           N->setNodeId(NodeSUnit->NodeNum);
    335           N = *UI;
    336           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    337             NodeSUnit->isCall = true;
    338           break;
    339         }
    340       if (!HasGlueUse) break;
    341     }
    342 
    343     if (NodeSUnit->isCall)
    344       CallSUnits.push_back(NodeSUnit);
    345 
    346     // Schedule zero-latency TokenFactor below any nodes that may increase the
    347     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
    348     // have false stalls.
    349     if (NI->getOpcode() == ISD::TokenFactor)
    350       NodeSUnit->isScheduleLow = true;
    351 
    352     // If there are glue operands involved, N is now the bottom-most node
    353     // of the sequence of nodes that are glued together.
    354     // Update the SUnit.
    355     NodeSUnit->setNode(N);
    356     assert(N->getNodeId() == -1 && "Node already inserted!");
    357     N->setNodeId(NodeSUnit->NodeNum);
    358 
    359     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
    360     InitNumRegDefsLeft(NodeSUnit);
    361 
    362     // Assign the Latency field of NodeSUnit using target-provided information.
    363     ComputeLatency(NodeSUnit);
    364   }
    365 
    366   // Find all call operands.
    367   while (!CallSUnits.empty()) {
    368     SUnit *SU = CallSUnits.pop_back_val();
    369     for (const SDNode *SUNode = SU->getNode(); SUNode;
    370          SUNode = SUNode->getGluedNode()) {
    371       if (SUNode->getOpcode() != ISD::CopyToReg)
    372         continue;
    373       SDNode *SrcN = SUNode->getOperand(2).getNode();
    374       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
    375       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
    376       SrcSU->isCallOp = true;
    377     }
    378   }
    379 }
    380 
    381 void ScheduleDAGSDNodes::AddSchedEdges() {
    382   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    383 
    384   // Check to see if the scheduler cares about latencies.
    385   bool UnitLatencies = ForceUnitLatencies();
    386 
    387   // Pass 2: add the preds, succs, etc.
    388   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    389     SUnit *SU = &SUnits[su];
    390     SDNode *MainNode = SU->getNode();
    391 
    392     if (MainNode->isMachineOpcode()) {
    393       unsigned Opc = MainNode->getMachineOpcode();
    394       const MCInstrDesc &MCID = TII->get(Opc);
    395       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    396         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    397           SU->isTwoAddress = true;
    398           break;
    399         }
    400       }
    401       if (MCID.isCommutable())
    402         SU->isCommutable = true;
    403     }
    404 
    405     // Find all predecessors and successors of the group.
    406     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
    407       if (N->isMachineOpcode() &&
    408           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
    409         SU->hasPhysRegClobbers = true;
    410         unsigned NumUsed = InstrEmitter::CountResults(N);
    411         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
    412           --NumUsed;    // Skip over unused values at the end.
    413         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
    414           SU->hasPhysRegDefs = true;
    415       }
    416 
    417       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    418         SDNode *OpN = N->getOperand(i).getNode();
    419         if (isPassiveNode(OpN)) continue;   // Not scheduled.
    420         SUnit *OpSU = &SUnits[OpN->getNodeId()];
    421         assert(OpSU && "Node has no SUnit!");
    422         if (OpSU == SU) continue;           // In the same group.
    423 
    424         EVT OpVT = N->getOperand(i).getValueType();
    425         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
    426         bool isChain = OpVT == MVT::Other;
    427 
    428         unsigned PhysReg = 0;
    429         int Cost = 1;
    430         // Determine if this is a physical register dependency.
    431         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
    432         assert((PhysReg == 0 || !isChain) &&
    433                "Chain dependence via physreg data?");
    434         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
    435         // emits a copy from the physical register to a virtual register unless
    436         // it requires a cross class copy (cost < 0). That means we are only
    437         // treating "expensive to copy" register dependency as physical register
    438         // dependency. This may change in the future though.
    439         if (Cost >= 0 && !StressSched)
    440           PhysReg = 0;
    441 
    442         // If this is a ctrl dep, latency is 1.
    443         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
    444         // Special-case TokenFactor chains as zero-latency.
    445         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
    446           OpLatency = 0;
    447 
    448         const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
    449                                OpLatency, PhysReg);
    450         if (!isChain && !UnitLatencies) {
    451           ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
    452           ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
    453         }
    454 
    455         if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
    456           // Multiple register uses are combined in the same SUnit. For example,
    457           // we could have a set of glued nodes with all their defs consumed by
    458           // another set of glued nodes. Register pressure tracking sees this as
    459           // a single use, so to keep pressure balanced we reduce the defs.
    460           //
    461           // We can't tell (without more book-keeping) if this results from
    462           // glued nodes or duplicate operands. As long as we don't reduce
    463           // NumRegDefsLeft to zero, we handle the common cases well.
    464           --OpSU->NumRegDefsLeft;
    465         }
    466       }
    467     }
    468   }
    469 }
    470 
    471 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
    472 /// are input.  This SUnit graph is similar to the SelectionDAG, but
    473 /// excludes nodes that aren't interesting to scheduling, and represents
    474 /// glued together nodes with a single SUnit.
    475 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
    476   // Cluster certain nodes which should be scheduled together.
    477   ClusterNodes();
    478   // Populate the SUnits array.
    479   BuildSchedUnits();
    480   // Compute all the scheduling dependencies between nodes.
    481   AddSchedEdges();
    482 }
    483 
    484 // Initialize NumNodeDefs for the current Node's opcode.
    485 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
    486   // Check for phys reg copy.
    487   if (!Node)
    488     return;
    489 
    490   if (!Node->isMachineOpcode()) {
    491     if (Node->getOpcode() == ISD::CopyFromReg)
    492       NodeNumDefs = 1;
    493     else
    494       NodeNumDefs = 0;
    495     return;
    496   }
    497   unsigned POpc = Node->getMachineOpcode();
    498   if (POpc == TargetOpcode::IMPLICIT_DEF) {
    499     // No register need be allocated for this.
    500     NodeNumDefs = 0;
    501     return;
    502   }
    503   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
    504   // Some instructions define regs that are not represented in the selection DAG
    505   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
    506   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
    507   DefIdx = 0;
    508 }
    509 
    510 // Construct a RegDefIter for this SUnit and find the first valid value.
    511 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
    512                                            const ScheduleDAGSDNodes *SD)
    513   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
    514   InitNodeNumDefs();
    515   Advance();
    516 }
    517 
    518 // Advance to the next valid value defined by the SUnit.
    519 void ScheduleDAGSDNodes::RegDefIter::Advance() {
    520   for (;Node;) { // Visit all glued nodes.
    521     for (;DefIdx < NodeNumDefs; ++DefIdx) {
    522       if (!Node->hasAnyUseOfValue(DefIdx))
    523         continue;
    524       ValueType = Node->getValueType(DefIdx);
    525       ++DefIdx;
    526       return; // Found a normal regdef.
    527     }
    528     Node = Node->getGluedNode();
    529     if (Node == NULL) {
    530       return; // No values left to visit.
    531     }
    532     InitNodeNumDefs();
    533   }
    534 }
    535 
    536 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
    537   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
    538   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
    539     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
    540     ++SU->NumRegDefsLeft;
    541   }
    542 }
    543 
    544 void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
    545   SDNode *N = SU->getNode();
    546 
    547   // TokenFactor operands are considered zero latency, and some schedulers
    548   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
    549   // whenever node latency is nonzero.
    550   if (N && N->getOpcode() == ISD::TokenFactor) {
    551     SU->Latency = 0;
    552     return;
    553   }
    554 
    555   // Check to see if the scheduler cares about latencies.
    556   if (ForceUnitLatencies()) {
    557     SU->Latency = 1;
    558     return;
    559   }
    560 
    561   if (!InstrItins || InstrItins->isEmpty()) {
    562     if (N && N->isMachineOpcode() &&
    563         TII->isHighLatencyDef(N->getMachineOpcode()))
    564       SU->Latency = HighLatencyCycles;
    565     else
    566       SU->Latency = 1;
    567     return;
    568   }
    569 
    570   // Compute the latency for the node.  We use the sum of the latencies for
    571   // all nodes glued together into this SUnit.
    572   SU->Latency = 0;
    573   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
    574     if (N->isMachineOpcode())
    575       SU->Latency += TII->getInstrLatency(InstrItins, N);
    576 }
    577 
    578 void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
    579                                                unsigned OpIdx, SDep& dep) const{
    580   // Check to see if the scheduler cares about latencies.
    581   if (ForceUnitLatencies())
    582     return;
    583 
    584   if (dep.getKind() != SDep::Data)
    585     return;
    586 
    587   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
    588   if (Use->isMachineOpcode())
    589     // Adjust the use operand index by num of defs.
    590     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
    591   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
    592   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
    593       !BB->succ_empty()) {
    594     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
    595     if (TargetRegisterInfo::isVirtualRegister(Reg))
    596       // This copy is a liveout value. It is likely coalesced, so reduce the
    597       // latency so not to penalize the def.
    598       // FIXME: need target specific adjustment here?
    599       Latency = (Latency > 1) ? Latency - 1 : 1;
    600   }
    601   if (Latency >= 0)
    602     dep.setLatency(Latency);
    603 }
    604 
    605 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
    606   if (!SU->getNode()) {
    607     dbgs() << "PHYS REG COPY\n";
    608     return;
    609   }
    610 
    611   SU->getNode()->dump(DAG);
    612   dbgs() << "\n";
    613   SmallVector<SDNode *, 4> GluedNodes;
    614   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
    615     GluedNodes.push_back(N);
    616   while (!GluedNodes.empty()) {
    617     dbgs() << "    ";
    618     GluedNodes.back()->dump(DAG);
    619     dbgs() << "\n";
    620     GluedNodes.pop_back();
    621   }
    622 }
    623 
    624 namespace {
    625   struct OrderSorter {
    626     bool operator()(const std::pair<unsigned, MachineInstr*> &A,
    627                     const std::pair<unsigned, MachineInstr*> &B) {
    628       return A.first < B.first;
    629     }
    630   };
    631 }
    632 
    633 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
    634 static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
    635                                InstrEmitter &Emitter,
    636                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
    637                             DenseMap<SDValue, unsigned> &VRBaseMap,
    638                             unsigned Order) {
    639   if (!N->getHasDebugValue())
    640     return;
    641 
    642   // Opportunistically insert immediate dbg_value uses, i.e. those with source
    643   // order number right after the N.
    644   MachineBasicBlock *BB = Emitter.getBlock();
    645   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
    646   ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
    647   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
    648     if (DVs[i]->isInvalidated())
    649       continue;
    650     unsigned DVOrder = DVs[i]->getOrder();
    651     if (!Order || DVOrder == ++Order) {
    652       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
    653       if (DbgMI) {
    654         Orders.push_back(std::make_pair(DVOrder, DbgMI));
    655         BB->insert(InsertPos, DbgMI);
    656       }
    657       DVs[i]->setIsInvalidated();
    658     }
    659   }
    660 }
    661 
    662 // ProcessSourceNode - Process nodes with source order numbers. These are added
    663 // to a vector which EmitSchedule uses to determine how to insert dbg_value
    664 // instructions in the right order.
    665 static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
    666                            InstrEmitter &Emitter,
    667                            DenseMap<SDValue, unsigned> &VRBaseMap,
    668                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
    669                            SmallSet<unsigned, 8> &Seen) {
    670   unsigned Order = DAG->GetOrdering(N);
    671   if (!Order || !Seen.insert(Order)) {
    672     // Process any valid SDDbgValues even if node does not have any order
    673     // assigned.
    674     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
    675     return;
    676   }
    677 
    678   MachineBasicBlock *BB = Emitter.getBlock();
    679   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
    680     // Did not insert any instruction.
    681     Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
    682     return;
    683   }
    684 
    685   Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
    686   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
    687 }
    688 
    689 
    690 /// EmitSchedule - Emit the machine code in scheduled order.
    691 MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
    692   InstrEmitter Emitter(BB, InsertPos);
    693   DenseMap<SDValue, unsigned> VRBaseMap;
    694   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
    695   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
    696   SmallSet<unsigned, 8> Seen;
    697   bool HasDbg = DAG->hasDebugValues();
    698 
    699   // If this is the first BB, emit byval parameter dbg_value's.
    700   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
    701     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
    702     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
    703     for (; PDI != PDE; ++PDI) {
    704       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
    705       if (DbgMI)
    706         BB->insert(InsertPos, DbgMI);
    707     }
    708   }
    709 
    710   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    711     SUnit *SU = Sequence[i];
    712     if (!SU) {
    713       // Null SUnit* is a noop.
    714       EmitNoop();
    715       continue;
    716     }
    717 
    718     // For pre-regalloc scheduling, create instructions corresponding to the
    719     // SDNode and any glued SDNodes and append them to the block.
    720     if (!SU->getNode()) {
    721       // Emit a copy.
    722       EmitPhysRegCopy(SU, CopyVRBaseMap);
    723       continue;
    724     }
    725 
    726     SmallVector<SDNode *, 4> GluedNodes;
    727     for (SDNode *N = SU->getNode()->getGluedNode(); N;
    728          N = N->getGluedNode())
    729       GluedNodes.push_back(N);
    730     while (!GluedNodes.empty()) {
    731       SDNode *N = GluedNodes.back();
    732       Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
    733                        VRBaseMap);
    734       // Remember the source order of the inserted instruction.
    735       if (HasDbg)
    736         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
    737       GluedNodes.pop_back();
    738     }
    739     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
    740                      VRBaseMap);
    741     // Remember the source order of the inserted instruction.
    742     if (HasDbg)
    743       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
    744                         Seen);
    745   }
    746 
    747   // Insert all the dbg_values which have not already been inserted in source
    748   // order sequence.
    749   if (HasDbg) {
    750     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
    751 
    752     // Sort the source order instructions and use the order to insert debug
    753     // values.
    754     std::sort(Orders.begin(), Orders.end(), OrderSorter());
    755 
    756     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
    757     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
    758     // Now emit the rest according to source order.
    759     unsigned LastOrder = 0;
    760     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
    761       unsigned Order = Orders[i].first;
    762       MachineInstr *MI = Orders[i].second;
    763       // Insert all SDDbgValue's whose order(s) are before "Order".
    764       if (!MI)
    765         continue;
    766       for (; DI != DE &&
    767              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
    768         if ((*DI)->isInvalidated())
    769           continue;
    770         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
    771         if (DbgMI) {
    772           if (!LastOrder)
    773             // Insert to start of the BB (after PHIs).
    774             BB->insert(BBBegin, DbgMI);
    775           else {
    776             // Insert at the instruction, which may be in a different
    777             // block, if the block was split by a custom inserter.
    778             MachineBasicBlock::iterator Pos = MI;
    779             MI->getParent()->insert(llvm::next(Pos), DbgMI);
    780           }
    781         }
    782       }
    783       LastOrder = Order;
    784     }
    785     // Add trailing DbgValue's before the terminator. FIXME: May want to add
    786     // some of them before one or more conditional branches?
    787     while (DI != DE) {
    788       MachineBasicBlock *InsertBB = Emitter.getBlock();
    789       MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
    790       if (!(*DI)->isInvalidated()) {
    791         MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
    792         if (DbgMI)
    793           InsertBB->insert(Pos, DbgMI);
    794       }
    795       ++DI;
    796     }
    797   }
    798 
    799   BB = Emitter.getBlock();
    800   InsertPos = Emitter.getInsertPos();
    801   return BB;
    802 }
    803