Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
      6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
      7 
      8 #include "src/arm64/assembler-arm64.h"
      9 #include "src/assembler.h"
     10 #include "src/debug/debug.h"
     11 #include "src/objects-inl.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 
     17 bool CpuFeatures::SupportsCrankshaft() { return true; }
     18 
     19 bool CpuFeatures::SupportsSimd128() { return false; }
     20 
     21 void RelocInfo::apply(intptr_t delta) {
     22   // On arm64 only internal references need extra work.
     23   DCHECK(RelocInfo::IsInternalReference(rmode_));
     24 
     25   // Absolute code pointer inside code object moves with the code object.
     26   intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
     27   *p += delta;  // Relocate entry.
     28 }
     29 
     30 inline int CPURegister::code() const {
     31   DCHECK(IsValid());
     32   return reg_code;
     33 }
     34 
     35 
     36 inline CPURegister::RegisterType CPURegister::type() const {
     37   DCHECK(IsValidOrNone());
     38   return reg_type;
     39 }
     40 
     41 
     42 inline RegList CPURegister::Bit() const {
     43   DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte));
     44   return IsValid() ? 1UL << reg_code : 0;
     45 }
     46 
     47 
     48 inline int CPURegister::SizeInBits() const {
     49   DCHECK(IsValid());
     50   return reg_size;
     51 }
     52 
     53 
     54 inline int CPURegister::SizeInBytes() const {
     55   DCHECK(IsValid());
     56   DCHECK(SizeInBits() % 8 == 0);
     57   return reg_size / 8;
     58 }
     59 
     60 
     61 inline bool CPURegister::Is32Bits() const {
     62   DCHECK(IsValid());
     63   return reg_size == 32;
     64 }
     65 
     66 
     67 inline bool CPURegister::Is64Bits() const {
     68   DCHECK(IsValid());
     69   return reg_size == 64;
     70 }
     71 
     72 
     73 inline bool CPURegister::IsValid() const {
     74   if (IsValidRegister() || IsValidFPRegister()) {
     75     DCHECK(!IsNone());
     76     return true;
     77   } else {
     78     DCHECK(IsNone());
     79     return false;
     80   }
     81 }
     82 
     83 
     84 inline bool CPURegister::IsValidRegister() const {
     85   return IsRegister() &&
     86          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
     87          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
     88 }
     89 
     90 
     91 inline bool CPURegister::IsValidFPRegister() const {
     92   return IsFPRegister() &&
     93          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
     94          (reg_code < kNumberOfFPRegisters);
     95 }
     96 
     97 
     98 inline bool CPURegister::IsNone() const {
     99   // kNoRegister types should always have size 0 and code 0.
    100   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
    101   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
    102 
    103   return reg_type == kNoRegister;
    104 }
    105 
    106 
    107 inline bool CPURegister::Is(const CPURegister& other) const {
    108   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    109   return Aliases(other) && (reg_size == other.reg_size);
    110 }
    111 
    112 
    113 inline bool CPURegister::Aliases(const CPURegister& other) const {
    114   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    115   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
    116 }
    117 
    118 
    119 inline bool CPURegister::IsRegister() const {
    120   return reg_type == kRegister;
    121 }
    122 
    123 
    124 inline bool CPURegister::IsFPRegister() const {
    125   return reg_type == kFPRegister;
    126 }
    127 
    128 
    129 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
    130   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
    131 }
    132 
    133 
    134 inline bool CPURegister::IsValidOrNone() const {
    135   return IsValid() || IsNone();
    136 }
    137 
    138 
    139 inline bool CPURegister::IsZero() const {
    140   DCHECK(IsValid());
    141   return IsRegister() && (reg_code == kZeroRegCode);
    142 }
    143 
    144 
    145 inline bool CPURegister::IsSP() const {
    146   DCHECK(IsValid());
    147   return IsRegister() && (reg_code == kSPRegInternalCode);
    148 }
    149 
    150 
    151 inline void CPURegList::Combine(const CPURegList& other) {
    152   DCHECK(IsValid());
    153   DCHECK(other.type() == type_);
    154   DCHECK(other.RegisterSizeInBits() == size_);
    155   list_ |= other.list();
    156 }
    157 
    158 
    159 inline void CPURegList::Remove(const CPURegList& other) {
    160   DCHECK(IsValid());
    161   if (other.type() == type_) {
    162     list_ &= ~other.list();
    163   }
    164 }
    165 
    166 
    167 inline void CPURegList::Combine(const CPURegister& other) {
    168   DCHECK(other.type() == type_);
    169   DCHECK(other.SizeInBits() == size_);
    170   Combine(other.code());
    171 }
    172 
    173 
    174 inline void CPURegList::Remove(const CPURegister& other1,
    175                                const CPURegister& other2,
    176                                const CPURegister& other3,
    177                                const CPURegister& other4) {
    178   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
    179   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
    180   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
    181   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
    182 }
    183 
    184 
    185 inline void CPURegList::Combine(int code) {
    186   DCHECK(IsValid());
    187   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    188   list_ |= (1UL << code);
    189 }
    190 
    191 
    192 inline void CPURegList::Remove(int code) {
    193   DCHECK(IsValid());
    194   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    195   list_ &= ~(1UL << code);
    196 }
    197 
    198 
    199 inline Register Register::XRegFromCode(unsigned code) {
    200   if (code == kSPRegInternalCode) {
    201     return csp;
    202   } else {
    203     DCHECK(code < kNumberOfRegisters);
    204     return Register::Create(code, kXRegSizeInBits);
    205   }
    206 }
    207 
    208 
    209 inline Register Register::WRegFromCode(unsigned code) {
    210   if (code == kSPRegInternalCode) {
    211     return wcsp;
    212   } else {
    213     DCHECK(code < kNumberOfRegisters);
    214     return Register::Create(code, kWRegSizeInBits);
    215   }
    216 }
    217 
    218 
    219 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
    220   DCHECK(code < kNumberOfFPRegisters);
    221   return FPRegister::Create(code, kSRegSizeInBits);
    222 }
    223 
    224 
    225 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
    226   DCHECK(code < kNumberOfFPRegisters);
    227   return FPRegister::Create(code, kDRegSizeInBits);
    228 }
    229 
    230 
    231 inline Register CPURegister::W() const {
    232   DCHECK(IsValidRegister());
    233   return Register::WRegFromCode(reg_code);
    234 }
    235 
    236 
    237 inline Register CPURegister::X() const {
    238   DCHECK(IsValidRegister());
    239   return Register::XRegFromCode(reg_code);
    240 }
    241 
    242 
    243 inline FPRegister CPURegister::S() const {
    244   DCHECK(IsValidFPRegister());
    245   return FPRegister::SRegFromCode(reg_code);
    246 }
    247 
    248 
    249 inline FPRegister CPURegister::D() const {
    250   DCHECK(IsValidFPRegister());
    251   return FPRegister::DRegFromCode(reg_code);
    252 }
    253 
    254 
    255 // Immediate.
    256 // Default initializer is for int types
    257 template<typename T>
    258 struct ImmediateInitializer {
    259   static const bool kIsIntType = true;
    260   static inline RelocInfo::Mode rmode_for(T) {
    261     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
    262   }
    263   static inline int64_t immediate_for(T t) {
    264     STATIC_ASSERT(sizeof(T) <= 8);
    265     return t;
    266   }
    267 };
    268 
    269 
    270 template<>
    271 struct ImmediateInitializer<Smi*> {
    272   static const bool kIsIntType = false;
    273   static inline RelocInfo::Mode rmode_for(Smi* t) {
    274     return RelocInfo::NONE64;
    275   }
    276   static inline int64_t immediate_for(Smi* t) {;
    277     return reinterpret_cast<int64_t>(t);
    278   }
    279 };
    280 
    281 
    282 template<>
    283 struct ImmediateInitializer<ExternalReference> {
    284   static const bool kIsIntType = false;
    285   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
    286     return RelocInfo::EXTERNAL_REFERENCE;
    287   }
    288   static inline int64_t immediate_for(ExternalReference t) {;
    289     return reinterpret_cast<int64_t>(t.address());
    290   }
    291 };
    292 
    293 
    294 template<typename T>
    295 Immediate::Immediate(Handle<T> value) {
    296   InitializeHandle(value);
    297 }
    298 
    299 
    300 template<typename T>
    301 Immediate::Immediate(T t)
    302     : value_(ImmediateInitializer<T>::immediate_for(t)),
    303       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
    304 
    305 
    306 template<typename T>
    307 Immediate::Immediate(T t, RelocInfo::Mode rmode)
    308     : value_(ImmediateInitializer<T>::immediate_for(t)),
    309       rmode_(rmode) {
    310   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
    311 }
    312 
    313 
    314 // Operand.
    315 template<typename T>
    316 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
    317 
    318 
    319 template<typename T>
    320 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
    321 
    322 
    323 template<typename T>
    324 Operand::Operand(T t, RelocInfo::Mode rmode)
    325     : immediate_(t, rmode),
    326       reg_(NoReg) {}
    327 
    328 
    329 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
    330     : immediate_(0),
    331       reg_(reg),
    332       shift_(shift),
    333       extend_(NO_EXTEND),
    334       shift_amount_(shift_amount) {
    335   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
    336   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
    337   DCHECK(!reg.IsSP());
    338 }
    339 
    340 
    341 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
    342     : immediate_(0),
    343       reg_(reg),
    344       shift_(NO_SHIFT),
    345       extend_(extend),
    346       shift_amount_(shift_amount) {
    347   DCHECK(reg.IsValid());
    348   DCHECK(shift_amount <= 4);
    349   DCHECK(!reg.IsSP());
    350 
    351   // Extend modes SXTX and UXTX require a 64-bit register.
    352   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
    353 }
    354 
    355 
    356 bool Operand::IsImmediate() const {
    357   return reg_.Is(NoReg);
    358 }
    359 
    360 
    361 bool Operand::IsShiftedRegister() const {
    362   return reg_.IsValid() && (shift_ != NO_SHIFT);
    363 }
    364 
    365 
    366 bool Operand::IsExtendedRegister() const {
    367   return reg_.IsValid() && (extend_ != NO_EXTEND);
    368 }
    369 
    370 
    371 bool Operand::IsZero() const {
    372   if (IsImmediate()) {
    373     return ImmediateValue() == 0;
    374   } else {
    375     return reg().IsZero();
    376   }
    377 }
    378 
    379 
    380 Operand Operand::ToExtendedRegister() const {
    381   DCHECK(IsShiftedRegister());
    382   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
    383   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
    384 }
    385 
    386 
    387 Immediate Operand::immediate() const {
    388   DCHECK(IsImmediate());
    389   return immediate_;
    390 }
    391 
    392 
    393 int64_t Operand::ImmediateValue() const {
    394   DCHECK(IsImmediate());
    395   return immediate_.value();
    396 }
    397 
    398 
    399 Register Operand::reg() const {
    400   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    401   return reg_;
    402 }
    403 
    404 
    405 Shift Operand::shift() const {
    406   DCHECK(IsShiftedRegister());
    407   return shift_;
    408 }
    409 
    410 
    411 Extend Operand::extend() const {
    412   DCHECK(IsExtendedRegister());
    413   return extend_;
    414 }
    415 
    416 
    417 unsigned Operand::shift_amount() const {
    418   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    419   return shift_amount_;
    420 }
    421 
    422 
    423 Operand Operand::UntagSmi(Register smi) {
    424   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    425                                                          kSmiValueSize));
    426   DCHECK(smi.Is64Bits());
    427   return Operand(smi, ASR, kSmiShift);
    428 }
    429 
    430 
    431 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
    432   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    433                                                          kSmiValueSize));
    434   DCHECK(smi.Is64Bits());
    435   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
    436   if (scale > kSmiShift) {
    437     return Operand(smi, LSL, scale - kSmiShift);
    438   } else if (scale < kSmiShift) {
    439     return Operand(smi, ASR, kSmiShift - scale);
    440   }
    441   return Operand(smi);
    442 }
    443 
    444 
    445 MemOperand::MemOperand()
    446   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
    447     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    448 }
    449 
    450 
    451 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
    452   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
    453     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    454   DCHECK(base.Is64Bits() && !base.IsZero());
    455 }
    456 
    457 
    458 MemOperand::MemOperand(Register base,
    459                        Register regoffset,
    460                        Extend extend,
    461                        unsigned shift_amount)
    462   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    463     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
    464   DCHECK(base.Is64Bits() && !base.IsZero());
    465   DCHECK(!regoffset.IsSP());
    466   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
    467 
    468   // SXTX extend mode requires a 64-bit offset register.
    469   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
    470 }
    471 
    472 
    473 MemOperand::MemOperand(Register base,
    474                        Register regoffset,
    475                        Shift shift,
    476                        unsigned shift_amount)
    477   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    478     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
    479   DCHECK(base.Is64Bits() && !base.IsZero());
    480   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
    481   DCHECK(shift == LSL);
    482 }
    483 
    484 
    485 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
    486   : base_(base), addrmode_(addrmode) {
    487   DCHECK(base.Is64Bits() && !base.IsZero());
    488 
    489   if (offset.IsImmediate()) {
    490     offset_ = offset.ImmediateValue();
    491 
    492     regoffset_ = NoReg;
    493   } else if (offset.IsShiftedRegister()) {
    494     DCHECK(addrmode == Offset);
    495 
    496     regoffset_ = offset.reg();
    497     shift_ = offset.shift();
    498     shift_amount_ = offset.shift_amount();
    499 
    500     extend_ = NO_EXTEND;
    501     offset_ = 0;
    502 
    503     // These assertions match those in the shifted-register constructor.
    504     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
    505     DCHECK(shift_ == LSL);
    506   } else {
    507     DCHECK(offset.IsExtendedRegister());
    508     DCHECK(addrmode == Offset);
    509 
    510     regoffset_ = offset.reg();
    511     extend_ = offset.extend();
    512     shift_amount_ = offset.shift_amount();
    513 
    514     shift_ = NO_SHIFT;
    515     offset_ = 0;
    516 
    517     // These assertions match those in the extended-register constructor.
    518     DCHECK(!regoffset_.IsSP());
    519     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
    520     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
    521   }
    522 }
    523 
    524 bool MemOperand::IsImmediateOffset() const {
    525   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
    526 }
    527 
    528 
    529 bool MemOperand::IsRegisterOffset() const {
    530   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
    531 }
    532 
    533 
    534 bool MemOperand::IsPreIndex() const {
    535   return addrmode_ == PreIndex;
    536 }
    537 
    538 
    539 bool MemOperand::IsPostIndex() const {
    540   return addrmode_ == PostIndex;
    541 }
    542 
    543 Operand MemOperand::OffsetAsOperand() const {
    544   if (IsImmediateOffset()) {
    545     return offset();
    546   } else {
    547     DCHECK(IsRegisterOffset());
    548     if (extend() == NO_EXTEND) {
    549       return Operand(regoffset(), shift(), shift_amount());
    550     } else {
    551       return Operand(regoffset(), extend(), shift_amount());
    552     }
    553   }
    554 }
    555 
    556 
    557 void Assembler::Unreachable() {
    558 #ifdef USE_SIMULATOR
    559   debug("UNREACHABLE", __LINE__, BREAK);
    560 #else
    561   // Crash by branching to 0. lr now points near the fault.
    562   Emit(BLR | Rn(xzr));
    563 #endif
    564 }
    565 
    566 
    567 Address Assembler::target_pointer_address_at(Address pc) {
    568   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    569   DCHECK(instr->IsLdrLiteralX());
    570   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
    571 }
    572 
    573 
    574 // Read/Modify the code target address in the branch/call instruction at pc.
    575 Address Assembler::target_address_at(Address pc, Address constant_pool) {
    576   return Memory::Address_at(target_pointer_address_at(pc));
    577 }
    578 
    579 
    580 Address Assembler::target_address_at(Address pc, Code* code) {
    581   Address constant_pool = code ? code->constant_pool() : NULL;
    582   return target_address_at(pc, constant_pool);
    583 }
    584 
    585 
    586 Address Assembler::target_address_from_return_address(Address pc) {
    587   // Returns the address of the call target from the return address that will
    588   // be returned to after a call.
    589   // Call sequence on ARM64 is:
    590   //  ldr ip0, #... @ load from literal pool
    591   //  blr ip0
    592   Address candidate = pc - 2 * kInstructionSize;
    593   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
    594   USE(instr);
    595   DCHECK(instr->IsLdrLiteralX());
    596   return candidate;
    597 }
    598 
    599 
    600 Address Assembler::return_address_from_call_start(Address pc) {
    601   // The call, generated by MacroAssembler::Call, is one of two possible
    602   // sequences:
    603   //
    604   // Without relocation:
    605   //  movz  temp, #(target & 0x000000000000ffff)
    606   //  movk  temp, #(target & 0x00000000ffff0000)
    607   //  movk  temp, #(target & 0x0000ffff00000000)
    608   //  blr   temp
    609   //
    610   // With relocation:
    611   //  ldr   temp, =target
    612   //  blr   temp
    613   //
    614   // The return address is immediately after the blr instruction in both cases,
    615   // so it can be found by adding the call size to the address at the start of
    616   // the call sequence.
    617   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
    618   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
    619 
    620   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    621   if (instr->IsMovz()) {
    622     // Verify the instruction sequence.
    623     DCHECK(instr->following(1)->IsMovk());
    624     DCHECK(instr->following(2)->IsMovk());
    625     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
    626     return pc + Assembler::kCallSizeWithoutRelocation;
    627   } else {
    628     // Verify the instruction sequence.
    629     DCHECK(instr->IsLdrLiteralX());
    630     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
    631     return pc + Assembler::kCallSizeWithRelocation;
    632   }
    633 }
    634 
    635 
    636 void Assembler::deserialization_set_special_target_at(
    637     Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
    638   Memory::Address_at(constant_pool_entry) = target;
    639 }
    640 
    641 
    642 void Assembler::deserialization_set_target_internal_reference_at(
    643     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
    644   Memory::Address_at(pc) = target;
    645 }
    646 
    647 
    648 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
    649                                       Address constant_pool, Address target,
    650                                       ICacheFlushMode icache_flush_mode) {
    651   Memory::Address_at(target_pointer_address_at(pc)) = target;
    652   // Intuitively, we would think it is necessary to always flush the
    653   // instruction cache after patching a target address in the code as follows:
    654   //   Assembler::FlushICache(isolate(), pc, sizeof(target));
    655   // However, on ARM, an instruction is actually patched in the case of
    656   // embedded constants of the form:
    657   // ldr   ip, [pc, #...]
    658   // since the instruction accessing this address in the constant pool remains
    659   // unchanged, a flush is not required.
    660 }
    661 
    662 
    663 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
    664                                       Address target,
    665                                       ICacheFlushMode icache_flush_mode) {
    666   Address constant_pool = code ? code->constant_pool() : NULL;
    667   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
    668 }
    669 
    670 
    671 int RelocInfo::target_address_size() {
    672   return kPointerSize;
    673 }
    674 
    675 
    676 Address RelocInfo::target_address() {
    677   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    678   return Assembler::target_address_at(pc_, host_);
    679 }
    680 
    681 Address RelocInfo::target_address_address() {
    682   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    683                               || rmode_ == EMBEDDED_OBJECT
    684                               || rmode_ == EXTERNAL_REFERENCE);
    685   return Assembler::target_pointer_address_at(pc_);
    686 }
    687 
    688 
    689 Address RelocInfo::constant_pool_entry_address() {
    690   DCHECK(IsInConstantPool());
    691   return Assembler::target_pointer_address_at(pc_);
    692 }
    693 
    694 
    695 Object* RelocInfo::target_object() {
    696   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    697   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    698 }
    699 
    700 
    701 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    702   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    703   return Handle<Object>(reinterpret_cast<Object**>(
    704       Assembler::target_address_at(pc_, host_)));
    705 }
    706 
    707 
    708 void RelocInfo::set_target_object(Object* target,
    709                                   WriteBarrierMode write_barrier_mode,
    710                                   ICacheFlushMode icache_flush_mode) {
    711   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    712   Assembler::set_target_address_at(isolate_, pc_, host_,
    713                                    reinterpret_cast<Address>(target),
    714                                    icache_flush_mode);
    715   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    716       host() != NULL &&
    717       target->IsHeapObject()) {
    718     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    719         host(), this, HeapObject::cast(target));
    720     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
    721   }
    722 }
    723 
    724 
    725 Address RelocInfo::target_external_reference() {
    726   DCHECK(rmode_ == EXTERNAL_REFERENCE);
    727   return Assembler::target_address_at(pc_, host_);
    728 }
    729 
    730 
    731 Address RelocInfo::target_internal_reference() {
    732   DCHECK(rmode_ == INTERNAL_REFERENCE);
    733   return Memory::Address_at(pc_);
    734 }
    735 
    736 
    737 Address RelocInfo::target_internal_reference_address() {
    738   DCHECK(rmode_ == INTERNAL_REFERENCE);
    739   return reinterpret_cast<Address>(pc_);
    740 }
    741 
    742 
    743 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    744   DCHECK(IsRuntimeEntry(rmode_));
    745   return target_address();
    746 }
    747 
    748 
    749 void RelocInfo::set_target_runtime_entry(Address target,
    750                                          WriteBarrierMode write_barrier_mode,
    751                                          ICacheFlushMode icache_flush_mode) {
    752   DCHECK(IsRuntimeEntry(rmode_));
    753   if (target_address() != target) {
    754     set_target_address(target, write_barrier_mode, icache_flush_mode);
    755   }
    756 }
    757 
    758 
    759 Handle<Cell> RelocInfo::target_cell_handle() {
    760   UNIMPLEMENTED();
    761   Cell *null_cell = NULL;
    762   return Handle<Cell>(null_cell);
    763 }
    764 
    765 
    766 Cell* RelocInfo::target_cell() {
    767   DCHECK(rmode_ == RelocInfo::CELL);
    768   return Cell::FromValueAddress(Memory::Address_at(pc_));
    769 }
    770 
    771 
    772 void RelocInfo::set_target_cell(Cell* cell,
    773                                 WriteBarrierMode write_barrier_mode,
    774                                 ICacheFlushMode icache_flush_mode) {
    775   UNIMPLEMENTED();
    776 }
    777 
    778 
    779 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
    780 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
    781 
    782 
    783 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    784   UNREACHABLE();  // This should never be reached on ARM64.
    785   return Handle<Object>();
    786 }
    787 
    788 
    789 Code* RelocInfo::code_age_stub() {
    790   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    791   // Read the stub entry point from the code age sequence.
    792   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    793   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
    794 }
    795 
    796 
    797 void RelocInfo::set_code_age_stub(Code* stub,
    798                                   ICacheFlushMode icache_flush_mode) {
    799   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    800   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
    801   // Overwrite the stub entry point in the code age sequence. This is loaded as
    802   // a literal so there is no need to call FlushICache here.
    803   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    804   Memory::Address_at(stub_entry_address) = stub->instruction_start();
    805 }
    806 
    807 
    808 Address RelocInfo::debug_call_address() {
    809   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    810   // For the above sequences the Relocinfo points to the load literal loading
    811   // the call address.
    812   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
    813   return Assembler::target_address_at(pc_, host_);
    814 }
    815 
    816 
    817 void RelocInfo::set_debug_call_address(Address target) {
    818   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    819   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
    820   Assembler::set_target_address_at(isolate_, pc_, host_, target);
    821   if (host() != NULL) {
    822     Object* target_code = Code::GetCodeFromTargetAddress(target);
    823     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    824         host(), this, HeapObject::cast(target_code));
    825   }
    826 }
    827 
    828 
    829 void RelocInfo::WipeOut() {
    830   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
    831          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
    832          IsInternalReference(rmode_));
    833   if (IsInternalReference(rmode_)) {
    834     Memory::Address_at(pc_) = NULL;
    835   } else {
    836     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
    837   }
    838 }
    839 
    840 template <typename ObjectVisitor>
    841 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    842   RelocInfo::Mode mode = rmode();
    843   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    844     visitor->VisitEmbeddedPointer(this);
    845   } else if (RelocInfo::IsCodeTarget(mode)) {
    846     visitor->VisitCodeTarget(this);
    847   } else if (mode == RelocInfo::CELL) {
    848     visitor->VisitCell(this);
    849   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    850     visitor->VisitExternalReference(this);
    851   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    852     visitor->VisitInternalReference(this);
    853   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    854              IsPatchedDebugBreakSlotSequence()) {
    855     visitor->VisitDebugTarget(this);
    856   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    857     visitor->VisitRuntimeEntry(this);
    858   }
    859 }
    860 
    861 
    862 template<typename StaticVisitor>
    863 void RelocInfo::Visit(Heap* heap) {
    864   RelocInfo::Mode mode = rmode();
    865   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    866     StaticVisitor::VisitEmbeddedPointer(heap, this);
    867   } else if (RelocInfo::IsCodeTarget(mode)) {
    868     StaticVisitor::VisitCodeTarget(heap, this);
    869   } else if (mode == RelocInfo::CELL) {
    870     StaticVisitor::VisitCell(heap, this);
    871   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    872     StaticVisitor::VisitExternalReference(this);
    873   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    874     StaticVisitor::VisitInternalReference(this);
    875   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    876              IsPatchedDebugBreakSlotSequence()) {
    877     StaticVisitor::VisitDebugTarget(heap, this);
    878   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    879     StaticVisitor::VisitRuntimeEntry(this);
    880   }
    881 }
    882 
    883 
    884 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
    885   DCHECK(rt.IsValid());
    886   if (rt.IsRegister()) {
    887     return rt.Is64Bits() ? LDR_x : LDR_w;
    888   } else {
    889     DCHECK(rt.IsFPRegister());
    890     return rt.Is64Bits() ? LDR_d : LDR_s;
    891   }
    892 }
    893 
    894 
    895 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
    896                                          const CPURegister& rt2) {
    897   DCHECK(AreSameSizeAndType(rt, rt2));
    898   USE(rt2);
    899   if (rt.IsRegister()) {
    900     return rt.Is64Bits() ? LDP_x : LDP_w;
    901   } else {
    902     DCHECK(rt.IsFPRegister());
    903     return rt.Is64Bits() ? LDP_d : LDP_s;
    904   }
    905 }
    906 
    907 
    908 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
    909   DCHECK(rt.IsValid());
    910   if (rt.IsRegister()) {
    911     return rt.Is64Bits() ? STR_x : STR_w;
    912   } else {
    913     DCHECK(rt.IsFPRegister());
    914     return rt.Is64Bits() ? STR_d : STR_s;
    915   }
    916 }
    917 
    918 
    919 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
    920                                           const CPURegister& rt2) {
    921   DCHECK(AreSameSizeAndType(rt, rt2));
    922   USE(rt2);
    923   if (rt.IsRegister()) {
    924     return rt.Is64Bits() ? STP_x : STP_w;
    925   } else {
    926     DCHECK(rt.IsFPRegister());
    927     return rt.Is64Bits() ? STP_d : STP_s;
    928   }
    929 }
    930 
    931 
    932 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
    933   if (rt.IsRegister()) {
    934     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
    935   } else {
    936     DCHECK(rt.IsFPRegister());
    937     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
    938   }
    939 }
    940 
    941 
    942 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
    943   DCHECK(kStartOfLabelLinkChain == 0);
    944   int offset = LinkAndGetByteOffsetTo(label);
    945   DCHECK(IsAligned(offset, kInstructionSize));
    946   return offset >> kInstructionSizeLog2;
    947 }
    948 
    949 
    950 Instr Assembler::Flags(FlagsUpdate S) {
    951   if (S == SetFlags) {
    952     return 1 << FlagsUpdate_offset;
    953   } else if (S == LeaveFlags) {
    954     return 0 << FlagsUpdate_offset;
    955   }
    956   UNREACHABLE();
    957   return 0;
    958 }
    959 
    960 
    961 Instr Assembler::Cond(Condition cond) {
    962   return cond << Condition_offset;
    963 }
    964 
    965 
    966 Instr Assembler::ImmPCRelAddress(int imm21) {
    967   CHECK(is_int21(imm21));
    968   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
    969   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
    970   Instr immlo = imm << ImmPCRelLo_offset;
    971   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
    972 }
    973 
    974 
    975 Instr Assembler::ImmUncondBranch(int imm26) {
    976   CHECK(is_int26(imm26));
    977   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
    978 }
    979 
    980 
    981 Instr Assembler::ImmCondBranch(int imm19) {
    982   CHECK(is_int19(imm19));
    983   return truncate_to_int19(imm19) << ImmCondBranch_offset;
    984 }
    985 
    986 
    987 Instr Assembler::ImmCmpBranch(int imm19) {
    988   CHECK(is_int19(imm19));
    989   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
    990 }
    991 
    992 
    993 Instr Assembler::ImmTestBranch(int imm14) {
    994   CHECK(is_int14(imm14));
    995   return truncate_to_int14(imm14) << ImmTestBranch_offset;
    996 }
    997 
    998 
    999 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
   1000   DCHECK(is_uint6(bit_pos));
   1001   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
   1002   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
   1003   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
   1004   b5 &= ImmTestBranchBit5_mask;
   1005   b40 &= ImmTestBranchBit40_mask;
   1006   return b5 | b40;
   1007 }
   1008 
   1009 
   1010 Instr Assembler::SF(Register rd) {
   1011     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
   1012 }
   1013 
   1014 
   1015 Instr Assembler::ImmAddSub(int imm) {
   1016   DCHECK(IsImmAddSub(imm));
   1017   if (is_uint12(imm)) {  // No shift required.
   1018     imm <<= ImmAddSub_offset;
   1019   } else {
   1020     imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
   1021   }
   1022   return imm;
   1023 }
   1024 
   1025 
   1026 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
   1027   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
   1028          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
   1029   USE(reg_size);
   1030   return imms << ImmS_offset;
   1031 }
   1032 
   1033 
   1034 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
   1035   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1036          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1037   USE(reg_size);
   1038   DCHECK(is_uint6(immr));
   1039   return immr << ImmR_offset;
   1040 }
   1041 
   1042 
   1043 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
   1044   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1045   DCHECK(is_uint6(imms));
   1046   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
   1047   USE(reg_size);
   1048   return imms << ImmSetBits_offset;
   1049 }
   1050 
   1051 
   1052 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
   1053   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1054   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1055          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1056   USE(reg_size);
   1057   return immr << ImmRotate_offset;
   1058 }
   1059 
   1060 
   1061 Instr Assembler::ImmLLiteral(int imm19) {
   1062   CHECK(is_int19(imm19));
   1063   return truncate_to_int19(imm19) << ImmLLiteral_offset;
   1064 }
   1065 
   1066 
   1067 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
   1068   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1069   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
   1070   USE(reg_size);
   1071   return bitn << BitN_offset;
   1072 }
   1073 
   1074 
   1075 Instr Assembler::ShiftDP(Shift shift) {
   1076   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
   1077   return shift << ShiftDP_offset;
   1078 }
   1079 
   1080 
   1081 Instr Assembler::ImmDPShift(unsigned amount) {
   1082   DCHECK(is_uint6(amount));
   1083   return amount << ImmDPShift_offset;
   1084 }
   1085 
   1086 
   1087 Instr Assembler::ExtendMode(Extend extend) {
   1088   return extend << ExtendMode_offset;
   1089 }
   1090 
   1091 
   1092 Instr Assembler::ImmExtendShift(unsigned left_shift) {
   1093   DCHECK(left_shift <= 4);
   1094   return left_shift << ImmExtendShift_offset;
   1095 }
   1096 
   1097 
   1098 Instr Assembler::ImmCondCmp(unsigned imm) {
   1099   DCHECK(is_uint5(imm));
   1100   return imm << ImmCondCmp_offset;
   1101 }
   1102 
   1103 
   1104 Instr Assembler::Nzcv(StatusFlags nzcv) {
   1105   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
   1106 }
   1107 
   1108 
   1109 Instr Assembler::ImmLSUnsigned(int imm12) {
   1110   DCHECK(is_uint12(imm12));
   1111   return imm12 << ImmLSUnsigned_offset;
   1112 }
   1113 
   1114 
   1115 Instr Assembler::ImmLS(int imm9) {
   1116   DCHECK(is_int9(imm9));
   1117   return truncate_to_int9(imm9) << ImmLS_offset;
   1118 }
   1119 
   1120 
   1121 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
   1122   DCHECK(((imm7 >> size) << size) == imm7);
   1123   int scaled_imm7 = imm7 >> size;
   1124   DCHECK(is_int7(scaled_imm7));
   1125   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   1126 }
   1127 
   1128 
   1129 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
   1130   DCHECK(is_uint1(shift_amount));
   1131   return shift_amount << ImmShiftLS_offset;
   1132 }
   1133 
   1134 
   1135 Instr Assembler::ImmException(int imm16) {
   1136   DCHECK(is_uint16(imm16));
   1137   return imm16 << ImmException_offset;
   1138 }
   1139 
   1140 
   1141 Instr Assembler::ImmSystemRegister(int imm15) {
   1142   DCHECK(is_uint15(imm15));
   1143   return imm15 << ImmSystemRegister_offset;
   1144 }
   1145 
   1146 
   1147 Instr Assembler::ImmHint(int imm7) {
   1148   DCHECK(is_uint7(imm7));
   1149   return imm7 << ImmHint_offset;
   1150 }
   1151 
   1152 
   1153 Instr Assembler::ImmBarrierDomain(int imm2) {
   1154   DCHECK(is_uint2(imm2));
   1155   return imm2 << ImmBarrierDomain_offset;
   1156 }
   1157 
   1158 
   1159 Instr Assembler::ImmBarrierType(int imm2) {
   1160   DCHECK(is_uint2(imm2));
   1161   return imm2 << ImmBarrierType_offset;
   1162 }
   1163 
   1164 
   1165 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
   1166   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
   1167   return static_cast<LSDataSize>(op >> SizeLS_offset);
   1168 }
   1169 
   1170 
   1171 Instr Assembler::ImmMoveWide(int imm) {
   1172   DCHECK(is_uint16(imm));
   1173   return imm << ImmMoveWide_offset;
   1174 }
   1175 
   1176 
   1177 Instr Assembler::ShiftMoveWide(int shift) {
   1178   DCHECK(is_uint2(shift));
   1179   return shift << ShiftMoveWide_offset;
   1180 }
   1181 
   1182 
   1183 Instr Assembler::FPType(FPRegister fd) {
   1184   return fd.Is64Bits() ? FP64 : FP32;
   1185 }
   1186 
   1187 
   1188 Instr Assembler::FPScale(unsigned scale) {
   1189   DCHECK(is_uint6(scale));
   1190   return scale << FPScale_offset;
   1191 }
   1192 
   1193 
   1194 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
   1195   return reg.Is64Bits() ? xzr : wzr;
   1196 }
   1197 
   1198 
   1199 inline void Assembler::CheckBufferSpace() {
   1200   DCHECK(pc_ < (buffer_ + buffer_size_));
   1201   if (buffer_space() < kGap) {
   1202     GrowBuffer();
   1203   }
   1204 }
   1205 
   1206 
   1207 inline void Assembler::CheckBuffer() {
   1208   CheckBufferSpace();
   1209   if (pc_offset() >= next_veneer_pool_check_) {
   1210     CheckVeneerPool(false, true);
   1211   }
   1212   if (pc_offset() >= next_constant_pool_check_) {
   1213     CheckConstPool(false, true);
   1214   }
   1215 }
   1216 
   1217 
   1218 TypeFeedbackId Assembler::RecordedAstId() {
   1219   DCHECK(!recorded_ast_id_.IsNone());
   1220   return recorded_ast_id_;
   1221 }
   1222 
   1223 
   1224 void Assembler::ClearRecordedAstId() {
   1225   recorded_ast_id_ = TypeFeedbackId::None();
   1226 }
   1227 
   1228 
   1229 }  // namespace internal
   1230 }  // namespace v8
   1231 
   1232 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
   1233