Home | History | Annotate | Download | only in CodeGen
      1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
     11 // register allocator for LLVM. This allocator works by constructing a PBQP
     12 // problem representing the register allocation problem under consideration,
     13 // solving this using a PBQP solver, and mapping the solution back to a
     14 // register assignment. If any variables are selected for spilling then spill
     15 // code is inserted and the process repeated.
     16 //
     17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
     18 // for register allocation. For more information on PBQP for register
     19 // allocation, see the following papers:
     20 //
     21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
     22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
     23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
     24 //
     25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
     26 //   architectures. In Proceedings of the Joint Conference on Languages,
     27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
     28 //   NY, USA, 139-148.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #include "llvm/CodeGen/RegAllocPBQP.h"
     33 #include "RegisterCoalescer.h"
     34 #include "Spiller.h"
     35 #include "llvm/Analysis/AliasAnalysis.h"
     36 #include "llvm/CodeGen/CalcSpillWeights.h"
     37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     38 #include "llvm/CodeGen/LiveRangeEdit.h"
     39 #include "llvm/CodeGen/LiveStackAnalysis.h"
     40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     41 #include "llvm/CodeGen/MachineDominators.h"
     42 #include "llvm/CodeGen/MachineFunctionPass.h"
     43 #include "llvm/CodeGen/MachineLoopInfo.h"
     44 #include "llvm/CodeGen/MachineRegisterInfo.h"
     45 #include "llvm/CodeGen/RegAllocRegistry.h"
     46 #include "llvm/CodeGen/VirtRegMap.h"
     47 #include "llvm/IR/Module.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/FileSystem.h"
     50 #include "llvm/Support/Printable.h"
     51 #include "llvm/Support/raw_ostream.h"
     52 #include "llvm/Target/TargetInstrInfo.h"
     53 #include "llvm/Target/TargetSubtargetInfo.h"
     54 #include <limits>
     55 #include <memory>
     56 #include <queue>
     57 #include <set>
     58 #include <sstream>
     59 #include <vector>
     60 
     61 using namespace llvm;
     62 
     63 #define DEBUG_TYPE "regalloc"
     64 
     65 static RegisterRegAlloc
     66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
     67                        createDefaultPBQPRegisterAllocator);
     68 
     69 static cl::opt<bool>
     70 PBQPCoalescing("pbqp-coalescing",
     71                 cl::desc("Attempt coalescing during PBQP register allocation."),
     72                 cl::init(false), cl::Hidden);
     73 
     74 #ifndef NDEBUG
     75 static cl::opt<bool>
     76 PBQPDumpGraphs("pbqp-dump-graphs",
     77                cl::desc("Dump graphs for each function/round in the compilation unit."),
     78                cl::init(false), cl::Hidden);
     79 #endif
     80 
     81 namespace {
     82 
     83 ///
     84 /// PBQP based allocators solve the register allocation problem by mapping
     85 /// register allocation problems to Partitioned Boolean Quadratic
     86 /// Programming problems.
     87 class RegAllocPBQP : public MachineFunctionPass {
     88 public:
     89 
     90   static char ID;
     91 
     92   /// Construct a PBQP register allocator.
     93   RegAllocPBQP(char *cPassID = nullptr)
     94       : MachineFunctionPass(ID), customPassID(cPassID) {
     95     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
     96     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     97     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
     98     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
     99   }
    100 
    101   /// Return the pass name.
    102   const char* getPassName() const override {
    103     return "PBQP Register Allocator";
    104   }
    105 
    106   /// PBQP analysis usage.
    107   void getAnalysisUsage(AnalysisUsage &au) const override;
    108 
    109   /// Perform register allocation
    110   bool runOnMachineFunction(MachineFunction &MF) override;
    111 
    112 private:
    113 
    114   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
    115   typedef std::vector<const LiveInterval*> Node2LIMap;
    116   typedef std::vector<unsigned> AllowedSet;
    117   typedef std::vector<AllowedSet> AllowedSetMap;
    118   typedef std::pair<unsigned, unsigned> RegPair;
    119   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
    120   typedef std::set<unsigned> RegSet;
    121 
    122   char *customPassID;
    123 
    124   RegSet VRegsToAlloc, EmptyIntervalVRegs;
    125 
    126   /// Inst which is a def of an original reg and whose defs are already all
    127   /// dead after remat is saved in DeadRemats. The deletion of such inst is
    128   /// postponed till all the allocations are done, so its remat expr is
    129   /// always available for the remat of all the siblings of the original reg.
    130   SmallPtrSet<MachineInstr *, 32> DeadRemats;
    131 
    132   /// \brief Finds the initial set of vreg intervals to allocate.
    133   void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
    134 
    135   /// \brief Constructs an initial graph.
    136   void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
    137 
    138   /// \brief Spill the given VReg.
    139   void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
    140                  MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
    141                  Spiller &VRegSpiller);
    142 
    143   /// \brief Given a solved PBQP problem maps this solution back to a register
    144   /// assignment.
    145   bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
    146                          const PBQP::Solution &Solution,
    147                          VirtRegMap &VRM,
    148                          Spiller &VRegSpiller);
    149 
    150   /// \brief Postprocessing before final spilling. Sets basic block "live in"
    151   /// variables.
    152   void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
    153                      VirtRegMap &VRM) const;
    154 
    155   void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
    156 };
    157 
    158 char RegAllocPBQP::ID = 0;
    159 
    160 /// @brief Set spill costs for each node in the PBQP reg-alloc graph.
    161 class SpillCosts : public PBQPRAConstraint {
    162 public:
    163   void apply(PBQPRAGraph &G) override {
    164     LiveIntervals &LIS = G.getMetadata().LIS;
    165 
    166     // A minimum spill costs, so that register constraints can can be set
    167     // without normalization in the [0.0:MinSpillCost( interval.
    168     const PBQP::PBQPNum MinSpillCost = 10.0;
    169 
    170     for (auto NId : G.nodeIds()) {
    171       PBQP::PBQPNum SpillCost =
    172         LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
    173       if (SpillCost == 0.0)
    174         SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
    175       else
    176         SpillCost += MinSpillCost;
    177       PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
    178       NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
    179       G.setNodeCosts(NId, std::move(NodeCosts));
    180     }
    181   }
    182 };
    183 
    184 /// @brief Add interference edges between overlapping vregs.
    185 class Interference : public PBQPRAConstraint {
    186 private:
    187 
    188   typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
    189   typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
    190   typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
    191   typedef DenseSet<IKey> DisjointAllowedRegsCache;
    192   typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
    193   typedef DenseSet<IEdgeKey> IEdgeCache;
    194 
    195   bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
    196                                PBQPRAGraph::NodeId MId,
    197                                const DisjointAllowedRegsCache &D) const {
    198     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
    199     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
    200 
    201     if (NRegs == MRegs)
    202       return false;
    203 
    204     if (NRegs < MRegs)
    205       return D.count(IKey(NRegs, MRegs)) > 0;
    206 
    207     return D.count(IKey(MRegs, NRegs)) > 0;
    208   }
    209 
    210   void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
    211                               PBQPRAGraph::NodeId MId,
    212                               DisjointAllowedRegsCache &D) {
    213     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
    214     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
    215 
    216     assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
    217 
    218     if (NRegs < MRegs)
    219       D.insert(IKey(NRegs, MRegs));
    220     else
    221       D.insert(IKey(MRegs, NRegs));
    222   }
    223 
    224   // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
    225   // for the fast interference graph construction algorithm. The last is there
    226   // to save us from looking up node ids via the VRegToNode map in the graph
    227   // metadata.
    228   typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
    229     IntervalInfo;
    230 
    231   static SlotIndex getStartPoint(const IntervalInfo &I) {
    232     return std::get<0>(I)->segments[std::get<1>(I)].start;
    233   }
    234 
    235   static SlotIndex getEndPoint(const IntervalInfo &I) {
    236     return std::get<0>(I)->segments[std::get<1>(I)].end;
    237   }
    238 
    239   static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
    240     return std::get<2>(I);
    241   }
    242 
    243   static bool lowestStartPoint(const IntervalInfo &I1,
    244                                const IntervalInfo &I2) {
    245     // Condition reversed because priority queue has the *highest* element at
    246     // the front, rather than the lowest.
    247     return getStartPoint(I1) > getStartPoint(I2);
    248   }
    249 
    250   static bool lowestEndPoint(const IntervalInfo &I1,
    251                              const IntervalInfo &I2) {
    252     SlotIndex E1 = getEndPoint(I1);
    253     SlotIndex E2 = getEndPoint(I2);
    254 
    255     if (E1 < E2)
    256       return true;
    257 
    258     if (E1 > E2)
    259       return false;
    260 
    261     // If two intervals end at the same point, we need a way to break the tie or
    262     // the set will assume they're actually equal and refuse to insert a
    263     // "duplicate". Just compare the vregs - fast and guaranteed unique.
    264     return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
    265   }
    266 
    267   static bool isAtLastSegment(const IntervalInfo &I) {
    268     return std::get<1>(I) == std::get<0>(I)->size() - 1;
    269   }
    270 
    271   static IntervalInfo nextSegment(const IntervalInfo &I) {
    272     return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
    273   }
    274 
    275 public:
    276 
    277   void apply(PBQPRAGraph &G) override {
    278     // The following is loosely based on the linear scan algorithm introduced in
    279     // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
    280     // isn't linear, because the size of the active set isn't bound by the
    281     // number of registers, but rather the size of the largest clique in the
    282     // graph. Still, we expect this to be better than N^2.
    283     LiveIntervals &LIS = G.getMetadata().LIS;
    284 
    285     // Interferenc matrices are incredibly regular - they're only a function of
    286     // the allowed sets, so we cache them to avoid the overhead of constructing
    287     // and uniquing them.
    288     IMatrixCache C;
    289 
    290     // Finding an edge is expensive in the worst case (O(max_clique(G))). So
    291     // cache locally edges we have already seen.
    292     IEdgeCache EC;
    293 
    294     // Cache known disjoint allowed registers pairs
    295     DisjointAllowedRegsCache D;
    296 
    297     typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
    298     typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
    299                                 decltype(&lowestStartPoint)> IntervalQueue;
    300     IntervalSet Active(lowestEndPoint);
    301     IntervalQueue Inactive(lowestStartPoint);
    302 
    303     // Start by building the inactive set.
    304     for (auto NId : G.nodeIds()) {
    305       unsigned VReg = G.getNodeMetadata(NId).getVReg();
    306       LiveInterval &LI = LIS.getInterval(VReg);
    307       assert(!LI.empty() && "PBQP graph contains node for empty interval");
    308       Inactive.push(std::make_tuple(&LI, 0, NId));
    309     }
    310 
    311     while (!Inactive.empty()) {
    312       // Tentatively grab the "next" interval - this choice may be overriden
    313       // below.
    314       IntervalInfo Cur = Inactive.top();
    315 
    316       // Retire any active intervals that end before Cur starts.
    317       IntervalSet::iterator RetireItr = Active.begin();
    318       while (RetireItr != Active.end() &&
    319              (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
    320         // If this interval has subsequent segments, add the next one to the
    321         // inactive list.
    322         if (!isAtLastSegment(*RetireItr))
    323           Inactive.push(nextSegment(*RetireItr));
    324 
    325         ++RetireItr;
    326       }
    327       Active.erase(Active.begin(), RetireItr);
    328 
    329       // One of the newly retired segments may actually start before the
    330       // Cur segment, so re-grab the front of the inactive list.
    331       Cur = Inactive.top();
    332       Inactive.pop();
    333 
    334       // At this point we know that Cur overlaps all active intervals. Add the
    335       // interference edges.
    336       PBQP::GraphBase::NodeId NId = getNodeId(Cur);
    337       for (const auto &A : Active) {
    338         PBQP::GraphBase::NodeId MId = getNodeId(A);
    339 
    340         // Do not add an edge when the nodes' allowed registers do not
    341         // intersect: there is obviously no interference.
    342         if (haveDisjointAllowedRegs(G, NId, MId, D))
    343           continue;
    344 
    345         // Check that we haven't already added this edge
    346         IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
    347         if (EC.count(EK))
    348           continue;
    349 
    350         // This is a new edge - add it to the graph.
    351         if (!createInterferenceEdge(G, NId, MId, C))
    352           setDisjointAllowedRegs(G, NId, MId, D);
    353         else
    354           EC.insert(EK);
    355       }
    356 
    357       // Finally, add Cur to the Active set.
    358       Active.insert(Cur);
    359     }
    360   }
    361 
    362 private:
    363 
    364   // Create an Interference edge and add it to the graph, unless it is
    365   // a null matrix, meaning the nodes' allowed registers do not have any
    366   // interference. This case occurs frequently between integer and floating
    367   // point registers for example.
    368   // return true iff both nodes interferes.
    369   bool createInterferenceEdge(PBQPRAGraph &G,
    370                               PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
    371                               IMatrixCache &C) {
    372 
    373     const TargetRegisterInfo &TRI =
    374         *G.getMetadata().MF.getSubtarget().getRegisterInfo();
    375     const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
    376     const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
    377 
    378     // Try looking the edge costs up in the IMatrixCache first.
    379     IKey K(&NRegs, &MRegs);
    380     IMatrixCache::iterator I = C.find(K);
    381     if (I != C.end()) {
    382       G.addEdgeBypassingCostAllocator(NId, MId, I->second);
    383       return true;
    384     }
    385 
    386     PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
    387     bool NodesInterfere = false;
    388     for (unsigned I = 0; I != NRegs.size(); ++I) {
    389       unsigned PRegN = NRegs[I];
    390       for (unsigned J = 0; J != MRegs.size(); ++J) {
    391         unsigned PRegM = MRegs[J];
    392         if (TRI.regsOverlap(PRegN, PRegM)) {
    393           M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
    394           NodesInterfere = true;
    395         }
    396       }
    397     }
    398 
    399     if (!NodesInterfere)
    400       return false;
    401 
    402     PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
    403     C[K] = G.getEdgeCostsPtr(EId);
    404 
    405     return true;
    406   }
    407 };
    408 
    409 
    410 class Coalescing : public PBQPRAConstraint {
    411 public:
    412   void apply(PBQPRAGraph &G) override {
    413     MachineFunction &MF = G.getMetadata().MF;
    414     MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
    415     CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
    416 
    417     // Scan the machine function and add a coalescing cost whenever CoalescerPair
    418     // gives the Ok.
    419     for (const auto &MBB : MF) {
    420       for (const auto &MI : MBB) {
    421 
    422         // Skip not-coalescable or already coalesced copies.
    423         if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
    424           continue;
    425 
    426         unsigned DstReg = CP.getDstReg();
    427         unsigned SrcReg = CP.getSrcReg();
    428 
    429         const float Scale = 1.0f / MBFI.getEntryFreq();
    430         PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
    431 
    432         if (CP.isPhys()) {
    433           if (!MF.getRegInfo().isAllocatable(DstReg))
    434             continue;
    435 
    436           PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
    437 
    438           const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
    439             G.getNodeMetadata(NId).getAllowedRegs();
    440 
    441           unsigned PRegOpt = 0;
    442           while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
    443             ++PRegOpt;
    444 
    445           if (PRegOpt < Allowed.size()) {
    446             PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
    447             NewCosts[PRegOpt + 1] -= CBenefit;
    448             G.setNodeCosts(NId, std::move(NewCosts));
    449           }
    450         } else {
    451           PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
    452           PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
    453           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
    454             &G.getNodeMetadata(N1Id).getAllowedRegs();
    455           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
    456             &G.getNodeMetadata(N2Id).getAllowedRegs();
    457 
    458           PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
    459           if (EId == G.invalidEdgeId()) {
    460             PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
    461                                          Allowed2->size() + 1, 0);
    462             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
    463             G.addEdge(N1Id, N2Id, std::move(Costs));
    464           } else {
    465             if (G.getEdgeNode1Id(EId) == N2Id) {
    466               std::swap(N1Id, N2Id);
    467               std::swap(Allowed1, Allowed2);
    468             }
    469             PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
    470             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
    471             G.updateEdgeCosts(EId, std::move(Costs));
    472           }
    473         }
    474       }
    475     }
    476   }
    477 
    478 private:
    479 
    480   void addVirtRegCoalesce(
    481                     PBQPRAGraph::RawMatrix &CostMat,
    482                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
    483                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
    484                     PBQP::PBQPNum Benefit) {
    485     assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
    486     assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
    487     for (unsigned I = 0; I != Allowed1.size(); ++I) {
    488       unsigned PReg1 = Allowed1[I];
    489       for (unsigned J = 0; J != Allowed2.size(); ++J) {
    490         unsigned PReg2 = Allowed2[J];
    491         if (PReg1 == PReg2)
    492           CostMat[I + 1][J + 1] -= Benefit;
    493       }
    494     }
    495   }
    496 
    497 };
    498 
    499 } // End anonymous namespace.
    500 
    501 // Out-of-line destructor/anchor for PBQPRAConstraint.
    502 PBQPRAConstraint::~PBQPRAConstraint() {}
    503 void PBQPRAConstraint::anchor() {}
    504 void PBQPRAConstraintList::anchor() {}
    505 
    506 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
    507   au.setPreservesCFG();
    508   au.addRequired<AAResultsWrapperPass>();
    509   au.addPreserved<AAResultsWrapperPass>();
    510   au.addRequired<SlotIndexes>();
    511   au.addPreserved<SlotIndexes>();
    512   au.addRequired<LiveIntervals>();
    513   au.addPreserved<LiveIntervals>();
    514   //au.addRequiredID(SplitCriticalEdgesID);
    515   if (customPassID)
    516     au.addRequiredID(*customPassID);
    517   au.addRequired<LiveStacks>();
    518   au.addPreserved<LiveStacks>();
    519   au.addRequired<MachineBlockFrequencyInfo>();
    520   au.addPreserved<MachineBlockFrequencyInfo>();
    521   au.addRequired<MachineLoopInfo>();
    522   au.addPreserved<MachineLoopInfo>();
    523   au.addRequired<MachineDominatorTree>();
    524   au.addPreserved<MachineDominatorTree>();
    525   au.addRequired<VirtRegMap>();
    526   au.addPreserved<VirtRegMap>();
    527   MachineFunctionPass::getAnalysisUsage(au);
    528 }
    529 
    530 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
    531                                             LiveIntervals &LIS) {
    532   const MachineRegisterInfo &MRI = MF.getRegInfo();
    533 
    534   // Iterate over all live ranges.
    535   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
    536     unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
    537     if (MRI.reg_nodbg_empty(Reg))
    538       continue;
    539     LiveInterval &LI = LIS.getInterval(Reg);
    540 
    541     // If this live interval is non-empty we will use pbqp to allocate it.
    542     // Empty intervals we allocate in a simple post-processing stage in
    543     // finalizeAlloc.
    544     if (!LI.empty()) {
    545       VRegsToAlloc.insert(LI.reg);
    546     } else {
    547       EmptyIntervalVRegs.insert(LI.reg);
    548     }
    549   }
    550 }
    551 
    552 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
    553                                    const MachineFunction &MF) {
    554   const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
    555   for (unsigned i = 0; CSR[i] != 0; ++i)
    556     if (TRI.regsOverlap(reg, CSR[i]))
    557       return true;
    558   return false;
    559 }
    560 
    561 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
    562                                    Spiller &VRegSpiller) {
    563   MachineFunction &MF = G.getMetadata().MF;
    564 
    565   LiveIntervals &LIS = G.getMetadata().LIS;
    566   const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
    567   const TargetRegisterInfo &TRI =
    568       *G.getMetadata().MF.getSubtarget().getRegisterInfo();
    569 
    570   std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
    571 
    572   while (!Worklist.empty()) {
    573     unsigned VReg = Worklist.back();
    574     Worklist.pop_back();
    575 
    576     const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
    577     LiveInterval &VRegLI = LIS.getInterval(VReg);
    578 
    579     // Record any overlaps with regmask operands.
    580     BitVector RegMaskOverlaps;
    581     LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
    582 
    583     // Compute an initial allowed set for the current vreg.
    584     std::vector<unsigned> VRegAllowed;
    585     ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
    586     for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
    587       unsigned PReg = RawPRegOrder[I];
    588       if (MRI.isReserved(PReg))
    589         continue;
    590 
    591       // vregLI crosses a regmask operand that clobbers preg.
    592       if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
    593         continue;
    594 
    595       // vregLI overlaps fixed regunit interference.
    596       bool Interference = false;
    597       for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
    598         if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
    599           Interference = true;
    600           break;
    601         }
    602       }
    603       if (Interference)
    604         continue;
    605 
    606       // preg is usable for this virtual register.
    607       VRegAllowed.push_back(PReg);
    608     }
    609 
    610     // Check for vregs that have no allowed registers. These should be
    611     // pre-spilled and the new vregs added to the worklist.
    612     if (VRegAllowed.empty()) {
    613       SmallVector<unsigned, 8> NewVRegs;
    614       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
    615       Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
    616       continue;
    617     }
    618 
    619     PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
    620 
    621     // Tweak cost of callee saved registers, as using then force spilling and
    622     // restoring them. This would only happen in the prologue / epilogue though.
    623     for (unsigned i = 0; i != VRegAllowed.size(); ++i)
    624       if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
    625         NodeCosts[1 + i] += 1.0;
    626 
    627     PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
    628     G.getNodeMetadata(NId).setVReg(VReg);
    629     G.getNodeMetadata(NId).setAllowedRegs(
    630       G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
    631     G.getMetadata().setNodeIdForVReg(VReg, NId);
    632   }
    633 }
    634 
    635 void RegAllocPBQP::spillVReg(unsigned VReg,
    636                              SmallVectorImpl<unsigned> &NewIntervals,
    637                              MachineFunction &MF, LiveIntervals &LIS,
    638                              VirtRegMap &VRM, Spiller &VRegSpiller) {
    639 
    640   VRegsToAlloc.erase(VReg);
    641   LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
    642                     nullptr, &DeadRemats);
    643   VRegSpiller.spill(LRE);
    644 
    645   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
    646   (void)TRI;
    647   DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
    648                << LRE.getParent().weight << ", New vregs: ");
    649 
    650   // Copy any newly inserted live intervals into the list of regs to
    651   // allocate.
    652   for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
    653        I != E; ++I) {
    654     const LiveInterval &LI = LIS.getInterval(*I);
    655     assert(!LI.empty() && "Empty spill range.");
    656     DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
    657     VRegsToAlloc.insert(LI.reg);
    658   }
    659 
    660   DEBUG(dbgs() << ")\n");
    661 }
    662 
    663 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
    664                                      const PBQP::Solution &Solution,
    665                                      VirtRegMap &VRM,
    666                                      Spiller &VRegSpiller) {
    667   MachineFunction &MF = G.getMetadata().MF;
    668   LiveIntervals &LIS = G.getMetadata().LIS;
    669   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
    670   (void)TRI;
    671 
    672   // Set to true if we have any spills
    673   bool AnotherRoundNeeded = false;
    674 
    675   // Clear the existing allocation.
    676   VRM.clearAllVirt();
    677 
    678   // Iterate over the nodes mapping the PBQP solution to a register
    679   // assignment.
    680   for (auto NId : G.nodeIds()) {
    681     unsigned VReg = G.getNodeMetadata(NId).getVReg();
    682     unsigned AllocOption = Solution.getSelection(NId);
    683 
    684     if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
    685       unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
    686       DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
    687             << TRI.getName(PReg) << "\n");
    688       assert(PReg != 0 && "Invalid preg selected.");
    689       VRM.assignVirt2Phys(VReg, PReg);
    690     } else {
    691       // Spill VReg. If this introduces new intervals we'll need another round
    692       // of allocation.
    693       SmallVector<unsigned, 8> NewVRegs;
    694       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
    695       AnotherRoundNeeded |= !NewVRegs.empty();
    696     }
    697   }
    698 
    699   return !AnotherRoundNeeded;
    700 }
    701 
    702 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
    703                                  LiveIntervals &LIS,
    704                                  VirtRegMap &VRM) const {
    705   MachineRegisterInfo &MRI = MF.getRegInfo();
    706 
    707   // First allocate registers for the empty intervals.
    708   for (RegSet::const_iterator
    709          I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
    710          I != E; ++I) {
    711     LiveInterval &LI = LIS.getInterval(*I);
    712 
    713     unsigned PReg = MRI.getSimpleHint(LI.reg);
    714 
    715     if (PReg == 0) {
    716       const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
    717       PReg = RC.getRawAllocationOrder(MF).front();
    718     }
    719 
    720     VRM.assignVirt2Phys(LI.reg, PReg);
    721   }
    722 }
    723 
    724 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
    725   VRegSpiller.postOptimization();
    726   /// Remove dead defs because of rematerialization.
    727   for (auto DeadInst : DeadRemats) {
    728     LIS.RemoveMachineInstrFromMaps(*DeadInst);
    729     DeadInst->eraseFromParent();
    730   }
    731   DeadRemats.clear();
    732 }
    733 
    734 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
    735                                          unsigned NumInstr) {
    736   // All intervals have a spill weight that is mostly proportional to the number
    737   // of uses, with uses in loops having a bigger weight.
    738   return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
    739 }
    740 
    741 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
    742   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
    743   MachineBlockFrequencyInfo &MBFI =
    744     getAnalysis<MachineBlockFrequencyInfo>();
    745 
    746   VirtRegMap &VRM = getAnalysis<VirtRegMap>();
    747 
    748   calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
    749                                 MBFI, normalizePBQPSpillWeight);
    750 
    751   std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
    752 
    753   MF.getRegInfo().freezeReservedRegs(MF);
    754 
    755   DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
    756 
    757   // Allocator main loop:
    758   //
    759   // * Map current regalloc problem to a PBQP problem
    760   // * Solve the PBQP problem
    761   // * Map the solution back to a register allocation
    762   // * Spill if necessary
    763   //
    764   // This process is continued till no more spills are generated.
    765 
    766   // Find the vreg intervals in need of allocation.
    767   findVRegIntervalsToAlloc(MF, LIS);
    768 
    769 #ifndef NDEBUG
    770   const Function &F = *MF.getFunction();
    771   std::string FullyQualifiedName =
    772     F.getParent()->getModuleIdentifier() + "." + F.getName().str();
    773 #endif
    774 
    775   // If there are non-empty intervals allocate them using pbqp.
    776   if (!VRegsToAlloc.empty()) {
    777 
    778     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
    779     std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
    780       llvm::make_unique<PBQPRAConstraintList>();
    781     ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
    782     ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
    783     if (PBQPCoalescing)
    784       ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
    785     ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
    786 
    787     bool PBQPAllocComplete = false;
    788     unsigned Round = 0;
    789 
    790     while (!PBQPAllocComplete) {
    791       DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
    792 
    793       PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
    794       initializeGraph(G, VRM, *VRegSpiller);
    795       ConstraintsRoot->apply(G);
    796 
    797 #ifndef NDEBUG
    798       if (PBQPDumpGraphs) {
    799         std::ostringstream RS;
    800         RS << Round;
    801         std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
    802                                     ".pbqpgraph";
    803         std::error_code EC;
    804         raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
    805         DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
    806               << GraphFileName << "\"\n");
    807         G.dump(OS);
    808       }
    809 #endif
    810 
    811       PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
    812       PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
    813       ++Round;
    814     }
    815   }
    816 
    817   // Finalise allocation, allocate empty ranges.
    818   finalizeAlloc(MF, LIS, VRM);
    819   postOptimization(*VRegSpiller, LIS);
    820   VRegsToAlloc.clear();
    821   EmptyIntervalVRegs.clear();
    822 
    823   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
    824 
    825   return true;
    826 }
    827 
    828 /// Create Printable object for node and register info.
    829 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
    830                                const PBQP::RegAlloc::PBQPRAGraph &G) {
    831   return Printable([NId, &G](raw_ostream &OS) {
    832     const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
    833     const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
    834     unsigned VReg = G.getNodeMetadata(NId).getVReg();
    835     const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
    836     OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
    837   });
    838 }
    839 
    840 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
    841   for (auto NId : nodeIds()) {
    842     const Vector &Costs = getNodeCosts(NId);
    843     assert(Costs.getLength() != 0 && "Empty vector in graph.");
    844     OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
    845   }
    846   OS << '\n';
    847 
    848   for (auto EId : edgeIds()) {
    849     NodeId N1Id = getEdgeNode1Id(EId);
    850     NodeId N2Id = getEdgeNode2Id(EId);
    851     assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
    852     const Matrix &M = getEdgeCosts(EId);
    853     assert(M.getRows() != 0 && "No rows in matrix.");
    854     assert(M.getCols() != 0 && "No cols in matrix.");
    855     OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
    856     OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
    857     OS << M << '\n';
    858   }
    859 }
    860 
    861 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
    862 
    863 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
    864   OS << "graph {\n";
    865   for (auto NId : nodeIds()) {
    866     OS << "  node" << NId << " [ label=\""
    867        << PrintNodeInfo(NId, *this) << "\\n"
    868        << getNodeCosts(NId) << "\" ]\n";
    869   }
    870 
    871   OS << "  edge [ len=" << nodeIds().size() << " ]\n";
    872   for (auto EId : edgeIds()) {
    873     OS << "  node" << getEdgeNode1Id(EId)
    874        << " -- node" << getEdgeNode2Id(EId)
    875        << " [ label=\"";
    876     const Matrix &EdgeCosts = getEdgeCosts(EId);
    877     for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
    878       OS << EdgeCosts.getRowAsVector(i) << "\\n";
    879     }
    880     OS << "\" ]\n";
    881   }
    882   OS << "}\n";
    883 }
    884 
    885 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
    886   return new RegAllocPBQP(customPassID);
    887 }
    888 
    889 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
    890   return createPBQPRegisterAllocator();
    891 }
    892 
    893 #undef DEBUG_TYPE
    894