1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based 11 // register allocator for LLVM. This allocator works by constructing a PBQP 12 // problem representing the register allocation problem under consideration, 13 // solving this using a PBQP solver, and mapping the solution back to a 14 // register assignment. If any variables are selected for spilling then spill 15 // code is inserted and the process repeated. 16 // 17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned 18 // for register allocation. For more information on PBQP for register 19 // allocation, see the following papers: 20 // 21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with 22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference 23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. 24 // 25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular 26 // architectures. In Proceedings of the Joint Conference on Languages, 27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, 28 // NY, USA, 139-148. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/RegAllocPBQP.h" 33 #include "RegisterCoalescer.h" 34 #include "Spiller.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/CalcSpillWeights.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveStackAnalysis.h" 40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 41 #include "llvm/CodeGen/MachineDominators.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineLoopInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/Printable.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetInstrInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 #include <limits> 55 #include <memory> 56 #include <queue> 57 #include <set> 58 #include <sstream> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 static RegisterRegAlloc 66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", 67 createDefaultPBQPRegisterAllocator); 68 69 static cl::opt<bool> 70 PBQPCoalescing("pbqp-coalescing", 71 cl::desc("Attempt coalescing during PBQP register allocation."), 72 cl::init(false), cl::Hidden); 73 74 #ifndef NDEBUG 75 static cl::opt<bool> 76 PBQPDumpGraphs("pbqp-dump-graphs", 77 cl::desc("Dump graphs for each function/round in the compilation unit."), 78 cl::init(false), cl::Hidden); 79 #endif 80 81 namespace { 82 83 /// 84 /// PBQP based allocators solve the register allocation problem by mapping 85 /// register allocation problems to Partitioned Boolean Quadratic 86 /// Programming problems. 87 class RegAllocPBQP : public MachineFunctionPass { 88 public: 89 90 static char ID; 91 92 /// Construct a PBQP register allocator. 93 RegAllocPBQP(char *cPassID = nullptr) 94 : MachineFunctionPass(ID), customPassID(cPassID) { 95 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 96 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 97 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 98 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 99 } 100 101 /// Return the pass name. 102 const char* getPassName() const override { 103 return "PBQP Register Allocator"; 104 } 105 106 /// PBQP analysis usage. 107 void getAnalysisUsage(AnalysisUsage &au) const override; 108 109 /// Perform register allocation 110 bool runOnMachineFunction(MachineFunction &MF) override; 111 112 private: 113 114 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; 115 typedef std::vector<const LiveInterval*> Node2LIMap; 116 typedef std::vector<unsigned> AllowedSet; 117 typedef std::vector<AllowedSet> AllowedSetMap; 118 typedef std::pair<unsigned, unsigned> RegPair; 119 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; 120 typedef std::set<unsigned> RegSet; 121 122 char *customPassID; 123 124 RegSet VRegsToAlloc, EmptyIntervalVRegs; 125 126 /// Inst which is a def of an original reg and whose defs are already all 127 /// dead after remat is saved in DeadRemats. The deletion of such inst is 128 /// postponed till all the allocations are done, so its remat expr is 129 /// always available for the remat of all the siblings of the original reg. 130 SmallPtrSet<MachineInstr *, 32> DeadRemats; 131 132 /// \brief Finds the initial set of vreg intervals to allocate. 133 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); 134 135 /// \brief Constructs an initial graph. 136 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); 137 138 /// \brief Spill the given VReg. 139 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, 140 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, 141 Spiller &VRegSpiller); 142 143 /// \brief Given a solved PBQP problem maps this solution back to a register 144 /// assignment. 145 bool mapPBQPToRegAlloc(const PBQPRAGraph &G, 146 const PBQP::Solution &Solution, 147 VirtRegMap &VRM, 148 Spiller &VRegSpiller); 149 150 /// \brief Postprocessing before final spilling. Sets basic block "live in" 151 /// variables. 152 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, 153 VirtRegMap &VRM) const; 154 155 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); 156 }; 157 158 char RegAllocPBQP::ID = 0; 159 160 /// @brief Set spill costs for each node in the PBQP reg-alloc graph. 161 class SpillCosts : public PBQPRAConstraint { 162 public: 163 void apply(PBQPRAGraph &G) override { 164 LiveIntervals &LIS = G.getMetadata().LIS; 165 166 // A minimum spill costs, so that register constraints can can be set 167 // without normalization in the [0.0:MinSpillCost( interval. 168 const PBQP::PBQPNum MinSpillCost = 10.0; 169 170 for (auto NId : G.nodeIds()) { 171 PBQP::PBQPNum SpillCost = 172 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; 173 if (SpillCost == 0.0) 174 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); 175 else 176 SpillCost += MinSpillCost; 177 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); 178 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; 179 G.setNodeCosts(NId, std::move(NodeCosts)); 180 } 181 } 182 }; 183 184 /// @brief Add interference edges between overlapping vregs. 185 class Interference : public PBQPRAConstraint { 186 private: 187 188 typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; 189 typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey; 190 typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache; 191 typedef DenseSet<IKey> DisjointAllowedRegsCache; 192 typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey; 193 typedef DenseSet<IEdgeKey> IEdgeCache; 194 195 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 196 PBQPRAGraph::NodeId MId, 197 const DisjointAllowedRegsCache &D) const { 198 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 199 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 200 201 if (NRegs == MRegs) 202 return false; 203 204 if (NRegs < MRegs) 205 return D.count(IKey(NRegs, MRegs)) > 0; 206 207 return D.count(IKey(MRegs, NRegs)) > 0; 208 } 209 210 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, 211 PBQPRAGraph::NodeId MId, 212 DisjointAllowedRegsCache &D) { 213 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); 214 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); 215 216 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); 217 218 if (NRegs < MRegs) 219 D.insert(IKey(NRegs, MRegs)); 220 else 221 D.insert(IKey(MRegs, NRegs)); 222 } 223 224 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required 225 // for the fast interference graph construction algorithm. The last is there 226 // to save us from looking up node ids via the VRegToNode map in the graph 227 // metadata. 228 typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> 229 IntervalInfo; 230 231 static SlotIndex getStartPoint(const IntervalInfo &I) { 232 return std::get<0>(I)->segments[std::get<1>(I)].start; 233 } 234 235 static SlotIndex getEndPoint(const IntervalInfo &I) { 236 return std::get<0>(I)->segments[std::get<1>(I)].end; 237 } 238 239 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { 240 return std::get<2>(I); 241 } 242 243 static bool lowestStartPoint(const IntervalInfo &I1, 244 const IntervalInfo &I2) { 245 // Condition reversed because priority queue has the *highest* element at 246 // the front, rather than the lowest. 247 return getStartPoint(I1) > getStartPoint(I2); 248 } 249 250 static bool lowestEndPoint(const IntervalInfo &I1, 251 const IntervalInfo &I2) { 252 SlotIndex E1 = getEndPoint(I1); 253 SlotIndex E2 = getEndPoint(I2); 254 255 if (E1 < E2) 256 return true; 257 258 if (E1 > E2) 259 return false; 260 261 // If two intervals end at the same point, we need a way to break the tie or 262 // the set will assume they're actually equal and refuse to insert a 263 // "duplicate". Just compare the vregs - fast and guaranteed unique. 264 return std::get<0>(I1)->reg < std::get<0>(I2)->reg; 265 } 266 267 static bool isAtLastSegment(const IntervalInfo &I) { 268 return std::get<1>(I) == std::get<0>(I)->size() - 1; 269 } 270 271 static IntervalInfo nextSegment(const IntervalInfo &I) { 272 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); 273 } 274 275 public: 276 277 void apply(PBQPRAGraph &G) override { 278 // The following is loosely based on the linear scan algorithm introduced in 279 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version 280 // isn't linear, because the size of the active set isn't bound by the 281 // number of registers, but rather the size of the largest clique in the 282 // graph. Still, we expect this to be better than N^2. 283 LiveIntervals &LIS = G.getMetadata().LIS; 284 285 // Interferenc matrices are incredibly regular - they're only a function of 286 // the allowed sets, so we cache them to avoid the overhead of constructing 287 // and uniquing them. 288 IMatrixCache C; 289 290 // Finding an edge is expensive in the worst case (O(max_clique(G))). So 291 // cache locally edges we have already seen. 292 IEdgeCache EC; 293 294 // Cache known disjoint allowed registers pairs 295 DisjointAllowedRegsCache D; 296 297 typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; 298 typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, 299 decltype(&lowestStartPoint)> IntervalQueue; 300 IntervalSet Active(lowestEndPoint); 301 IntervalQueue Inactive(lowestStartPoint); 302 303 // Start by building the inactive set. 304 for (auto NId : G.nodeIds()) { 305 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 306 LiveInterval &LI = LIS.getInterval(VReg); 307 assert(!LI.empty() && "PBQP graph contains node for empty interval"); 308 Inactive.push(std::make_tuple(&LI, 0, NId)); 309 } 310 311 while (!Inactive.empty()) { 312 // Tentatively grab the "next" interval - this choice may be overriden 313 // below. 314 IntervalInfo Cur = Inactive.top(); 315 316 // Retire any active intervals that end before Cur starts. 317 IntervalSet::iterator RetireItr = Active.begin(); 318 while (RetireItr != Active.end() && 319 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { 320 // If this interval has subsequent segments, add the next one to the 321 // inactive list. 322 if (!isAtLastSegment(*RetireItr)) 323 Inactive.push(nextSegment(*RetireItr)); 324 325 ++RetireItr; 326 } 327 Active.erase(Active.begin(), RetireItr); 328 329 // One of the newly retired segments may actually start before the 330 // Cur segment, so re-grab the front of the inactive list. 331 Cur = Inactive.top(); 332 Inactive.pop(); 333 334 // At this point we know that Cur overlaps all active intervals. Add the 335 // interference edges. 336 PBQP::GraphBase::NodeId NId = getNodeId(Cur); 337 for (const auto &A : Active) { 338 PBQP::GraphBase::NodeId MId = getNodeId(A); 339 340 // Do not add an edge when the nodes' allowed registers do not 341 // intersect: there is obviously no interference. 342 if (haveDisjointAllowedRegs(G, NId, MId, D)) 343 continue; 344 345 // Check that we haven't already added this edge 346 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); 347 if (EC.count(EK)) 348 continue; 349 350 // This is a new edge - add it to the graph. 351 if (!createInterferenceEdge(G, NId, MId, C)) 352 setDisjointAllowedRegs(G, NId, MId, D); 353 else 354 EC.insert(EK); 355 } 356 357 // Finally, add Cur to the Active set. 358 Active.insert(Cur); 359 } 360 } 361 362 private: 363 364 // Create an Interference edge and add it to the graph, unless it is 365 // a null matrix, meaning the nodes' allowed registers do not have any 366 // interference. This case occurs frequently between integer and floating 367 // point registers for example. 368 // return true iff both nodes interferes. 369 bool createInterferenceEdge(PBQPRAGraph &G, 370 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, 371 IMatrixCache &C) { 372 373 const TargetRegisterInfo &TRI = 374 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 375 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); 376 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); 377 378 // Try looking the edge costs up in the IMatrixCache first. 379 IKey K(&NRegs, &MRegs); 380 IMatrixCache::iterator I = C.find(K); 381 if (I != C.end()) { 382 G.addEdgeBypassingCostAllocator(NId, MId, I->second); 383 return true; 384 } 385 386 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); 387 bool NodesInterfere = false; 388 for (unsigned I = 0; I != NRegs.size(); ++I) { 389 unsigned PRegN = NRegs[I]; 390 for (unsigned J = 0; J != MRegs.size(); ++J) { 391 unsigned PRegM = MRegs[J]; 392 if (TRI.regsOverlap(PRegN, PRegM)) { 393 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); 394 NodesInterfere = true; 395 } 396 } 397 } 398 399 if (!NodesInterfere) 400 return false; 401 402 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); 403 C[K] = G.getEdgeCostsPtr(EId); 404 405 return true; 406 } 407 }; 408 409 410 class Coalescing : public PBQPRAConstraint { 411 public: 412 void apply(PBQPRAGraph &G) override { 413 MachineFunction &MF = G.getMetadata().MF; 414 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; 415 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); 416 417 // Scan the machine function and add a coalescing cost whenever CoalescerPair 418 // gives the Ok. 419 for (const auto &MBB : MF) { 420 for (const auto &MI : MBB) { 421 422 // Skip not-coalescable or already coalesced copies. 423 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) 424 continue; 425 426 unsigned DstReg = CP.getDstReg(); 427 unsigned SrcReg = CP.getSrcReg(); 428 429 const float Scale = 1.0f / MBFI.getEntryFreq(); 430 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; 431 432 if (CP.isPhys()) { 433 if (!MF.getRegInfo().isAllocatable(DstReg)) 434 continue; 435 436 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); 437 438 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = 439 G.getNodeMetadata(NId).getAllowedRegs(); 440 441 unsigned PRegOpt = 0; 442 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) 443 ++PRegOpt; 444 445 if (PRegOpt < Allowed.size()) { 446 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); 447 NewCosts[PRegOpt + 1] -= CBenefit; 448 G.setNodeCosts(NId, std::move(NewCosts)); 449 } 450 } else { 451 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); 452 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); 453 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = 454 &G.getNodeMetadata(N1Id).getAllowedRegs(); 455 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = 456 &G.getNodeMetadata(N2Id).getAllowedRegs(); 457 458 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); 459 if (EId == G.invalidEdgeId()) { 460 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, 461 Allowed2->size() + 1, 0); 462 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 463 G.addEdge(N1Id, N2Id, std::move(Costs)); 464 } else { 465 if (G.getEdgeNode1Id(EId) == N2Id) { 466 std::swap(N1Id, N2Id); 467 std::swap(Allowed1, Allowed2); 468 } 469 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); 470 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); 471 G.updateEdgeCosts(EId, std::move(Costs)); 472 } 473 } 474 } 475 } 476 } 477 478 private: 479 480 void addVirtRegCoalesce( 481 PBQPRAGraph::RawMatrix &CostMat, 482 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, 483 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, 484 PBQP::PBQPNum Benefit) { 485 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); 486 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); 487 for (unsigned I = 0; I != Allowed1.size(); ++I) { 488 unsigned PReg1 = Allowed1[I]; 489 for (unsigned J = 0; J != Allowed2.size(); ++J) { 490 unsigned PReg2 = Allowed2[J]; 491 if (PReg1 == PReg2) 492 CostMat[I + 1][J + 1] -= Benefit; 493 } 494 } 495 } 496 497 }; 498 499 } // End anonymous namespace. 500 501 // Out-of-line destructor/anchor for PBQPRAConstraint. 502 PBQPRAConstraint::~PBQPRAConstraint() {} 503 void PBQPRAConstraint::anchor() {} 504 void PBQPRAConstraintList::anchor() {} 505 506 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { 507 au.setPreservesCFG(); 508 au.addRequired<AAResultsWrapperPass>(); 509 au.addPreserved<AAResultsWrapperPass>(); 510 au.addRequired<SlotIndexes>(); 511 au.addPreserved<SlotIndexes>(); 512 au.addRequired<LiveIntervals>(); 513 au.addPreserved<LiveIntervals>(); 514 //au.addRequiredID(SplitCriticalEdgesID); 515 if (customPassID) 516 au.addRequiredID(*customPassID); 517 au.addRequired<LiveStacks>(); 518 au.addPreserved<LiveStacks>(); 519 au.addRequired<MachineBlockFrequencyInfo>(); 520 au.addPreserved<MachineBlockFrequencyInfo>(); 521 au.addRequired<MachineLoopInfo>(); 522 au.addPreserved<MachineLoopInfo>(); 523 au.addRequired<MachineDominatorTree>(); 524 au.addPreserved<MachineDominatorTree>(); 525 au.addRequired<VirtRegMap>(); 526 au.addPreserved<VirtRegMap>(); 527 MachineFunctionPass::getAnalysisUsage(au); 528 } 529 530 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, 531 LiveIntervals &LIS) { 532 const MachineRegisterInfo &MRI = MF.getRegInfo(); 533 534 // Iterate over all live ranges. 535 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { 536 unsigned Reg = TargetRegisterInfo::index2VirtReg(I); 537 if (MRI.reg_nodbg_empty(Reg)) 538 continue; 539 LiveInterval &LI = LIS.getInterval(Reg); 540 541 // If this live interval is non-empty we will use pbqp to allocate it. 542 // Empty intervals we allocate in a simple post-processing stage in 543 // finalizeAlloc. 544 if (!LI.empty()) { 545 VRegsToAlloc.insert(LI.reg); 546 } else { 547 EmptyIntervalVRegs.insert(LI.reg); 548 } 549 } 550 } 551 552 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, 553 const MachineFunction &MF) { 554 const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF); 555 for (unsigned i = 0; CSR[i] != 0; ++i) 556 if (TRI.regsOverlap(reg, CSR[i])) 557 return true; 558 return false; 559 } 560 561 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, 562 Spiller &VRegSpiller) { 563 MachineFunction &MF = G.getMetadata().MF; 564 565 LiveIntervals &LIS = G.getMetadata().LIS; 566 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 567 const TargetRegisterInfo &TRI = 568 *G.getMetadata().MF.getSubtarget().getRegisterInfo(); 569 570 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); 571 572 while (!Worklist.empty()) { 573 unsigned VReg = Worklist.back(); 574 Worklist.pop_back(); 575 576 const TargetRegisterClass *TRC = MRI.getRegClass(VReg); 577 LiveInterval &VRegLI = LIS.getInterval(VReg); 578 579 // Record any overlaps with regmask operands. 580 BitVector RegMaskOverlaps; 581 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); 582 583 // Compute an initial allowed set for the current vreg. 584 std::vector<unsigned> VRegAllowed; 585 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); 586 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { 587 unsigned PReg = RawPRegOrder[I]; 588 if (MRI.isReserved(PReg)) 589 continue; 590 591 // vregLI crosses a regmask operand that clobbers preg. 592 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) 593 continue; 594 595 // vregLI overlaps fixed regunit interference. 596 bool Interference = false; 597 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { 598 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { 599 Interference = true; 600 break; 601 } 602 } 603 if (Interference) 604 continue; 605 606 // preg is usable for this virtual register. 607 VRegAllowed.push_back(PReg); 608 } 609 610 // Check for vregs that have no allowed registers. These should be 611 // pre-spilled and the new vregs added to the worklist. 612 if (VRegAllowed.empty()) { 613 SmallVector<unsigned, 8> NewVRegs; 614 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 615 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); 616 continue; 617 } 618 619 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); 620 621 // Tweak cost of callee saved registers, as using then force spilling and 622 // restoring them. This would only happen in the prologue / epilogue though. 623 for (unsigned i = 0; i != VRegAllowed.size(); ++i) 624 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) 625 NodeCosts[1 + i] += 1.0; 626 627 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); 628 G.getNodeMetadata(NId).setVReg(VReg); 629 G.getNodeMetadata(NId).setAllowedRegs( 630 G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); 631 G.getMetadata().setNodeIdForVReg(VReg, NId); 632 } 633 } 634 635 void RegAllocPBQP::spillVReg(unsigned VReg, 636 SmallVectorImpl<unsigned> &NewIntervals, 637 MachineFunction &MF, LiveIntervals &LIS, 638 VirtRegMap &VRM, Spiller &VRegSpiller) { 639 640 VRegsToAlloc.erase(VReg); 641 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, 642 nullptr, &DeadRemats); 643 VRegSpiller.spill(LRE); 644 645 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 646 (void)TRI; 647 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " 648 << LRE.getParent().weight << ", New vregs: "); 649 650 // Copy any newly inserted live intervals into the list of regs to 651 // allocate. 652 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); 653 I != E; ++I) { 654 const LiveInterval &LI = LIS.getInterval(*I); 655 assert(!LI.empty() && "Empty spill range."); 656 DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); 657 VRegsToAlloc.insert(LI.reg); 658 } 659 660 DEBUG(dbgs() << ")\n"); 661 } 662 663 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, 664 const PBQP::Solution &Solution, 665 VirtRegMap &VRM, 666 Spiller &VRegSpiller) { 667 MachineFunction &MF = G.getMetadata().MF; 668 LiveIntervals &LIS = G.getMetadata().LIS; 669 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 670 (void)TRI; 671 672 // Set to true if we have any spills 673 bool AnotherRoundNeeded = false; 674 675 // Clear the existing allocation. 676 VRM.clearAllVirt(); 677 678 // Iterate over the nodes mapping the PBQP solution to a register 679 // assignment. 680 for (auto NId : G.nodeIds()) { 681 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 682 unsigned AllocOption = Solution.getSelection(NId); 683 684 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { 685 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; 686 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " 687 << TRI.getName(PReg) << "\n"); 688 assert(PReg != 0 && "Invalid preg selected."); 689 VRM.assignVirt2Phys(VReg, PReg); 690 } else { 691 // Spill VReg. If this introduces new intervals we'll need another round 692 // of allocation. 693 SmallVector<unsigned, 8> NewVRegs; 694 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); 695 AnotherRoundNeeded |= !NewVRegs.empty(); 696 } 697 } 698 699 return !AnotherRoundNeeded; 700 } 701 702 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, 703 LiveIntervals &LIS, 704 VirtRegMap &VRM) const { 705 MachineRegisterInfo &MRI = MF.getRegInfo(); 706 707 // First allocate registers for the empty intervals. 708 for (RegSet::const_iterator 709 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); 710 I != E; ++I) { 711 LiveInterval &LI = LIS.getInterval(*I); 712 713 unsigned PReg = MRI.getSimpleHint(LI.reg); 714 715 if (PReg == 0) { 716 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); 717 PReg = RC.getRawAllocationOrder(MF).front(); 718 } 719 720 VRM.assignVirt2Phys(LI.reg, PReg); 721 } 722 } 723 724 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { 725 VRegSpiller.postOptimization(); 726 /// Remove dead defs because of rematerialization. 727 for (auto DeadInst : DeadRemats) { 728 LIS.RemoveMachineInstrFromMaps(*DeadInst); 729 DeadInst->eraseFromParent(); 730 } 731 DeadRemats.clear(); 732 } 733 734 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, 735 unsigned NumInstr) { 736 // All intervals have a spill weight that is mostly proportional to the number 737 // of uses, with uses in loops having a bigger weight. 738 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); 739 } 740 741 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { 742 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 743 MachineBlockFrequencyInfo &MBFI = 744 getAnalysis<MachineBlockFrequencyInfo>(); 745 746 VirtRegMap &VRM = getAnalysis<VirtRegMap>(); 747 748 calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(), 749 MBFI, normalizePBQPSpillWeight); 750 751 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); 752 753 MF.getRegInfo().freezeReservedRegs(MF); 754 755 DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); 756 757 // Allocator main loop: 758 // 759 // * Map current regalloc problem to a PBQP problem 760 // * Solve the PBQP problem 761 // * Map the solution back to a register allocation 762 // * Spill if necessary 763 // 764 // This process is continued till no more spills are generated. 765 766 // Find the vreg intervals in need of allocation. 767 findVRegIntervalsToAlloc(MF, LIS); 768 769 #ifndef NDEBUG 770 const Function &F = *MF.getFunction(); 771 std::string FullyQualifiedName = 772 F.getParent()->getModuleIdentifier() + "." + F.getName().str(); 773 #endif 774 775 // If there are non-empty intervals allocate them using pbqp. 776 if (!VRegsToAlloc.empty()) { 777 778 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 779 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = 780 llvm::make_unique<PBQPRAConstraintList>(); 781 ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); 782 ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); 783 if (PBQPCoalescing) 784 ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); 785 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); 786 787 bool PBQPAllocComplete = false; 788 unsigned Round = 0; 789 790 while (!PBQPAllocComplete) { 791 DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); 792 793 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); 794 initializeGraph(G, VRM, *VRegSpiller); 795 ConstraintsRoot->apply(G); 796 797 #ifndef NDEBUG 798 if (PBQPDumpGraphs) { 799 std::ostringstream RS; 800 RS << Round; 801 std::string GraphFileName = FullyQualifiedName + "." + RS.str() + 802 ".pbqpgraph"; 803 std::error_code EC; 804 raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); 805 DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" 806 << GraphFileName << "\"\n"); 807 G.dump(OS); 808 } 809 #endif 810 811 PBQP::Solution Solution = PBQP::RegAlloc::solve(G); 812 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); 813 ++Round; 814 } 815 } 816 817 // Finalise allocation, allocate empty ranges. 818 finalizeAlloc(MF, LIS, VRM); 819 postOptimization(*VRegSpiller, LIS); 820 VRegsToAlloc.clear(); 821 EmptyIntervalVRegs.clear(); 822 823 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); 824 825 return true; 826 } 827 828 /// Create Printable object for node and register info. 829 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, 830 const PBQP::RegAlloc::PBQPRAGraph &G) { 831 return Printable([NId, &G](raw_ostream &OS) { 832 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); 833 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 834 unsigned VReg = G.getNodeMetadata(NId).getVReg(); 835 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); 836 OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')'; 837 }); 838 } 839 840 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { 841 for (auto NId : nodeIds()) { 842 const Vector &Costs = getNodeCosts(NId); 843 assert(Costs.getLength() != 0 && "Empty vector in graph."); 844 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; 845 } 846 OS << '\n'; 847 848 for (auto EId : edgeIds()) { 849 NodeId N1Id = getEdgeNode1Id(EId); 850 NodeId N2Id = getEdgeNode2Id(EId); 851 assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); 852 const Matrix &M = getEdgeCosts(EId); 853 assert(M.getRows() != 0 && "No rows in matrix."); 854 assert(M.getCols() != 0 && "No cols in matrix."); 855 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; 856 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; 857 OS << M << '\n'; 858 } 859 } 860 861 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); } 862 863 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { 864 OS << "graph {\n"; 865 for (auto NId : nodeIds()) { 866 OS << " node" << NId << " [ label=\"" 867 << PrintNodeInfo(NId, *this) << "\\n" 868 << getNodeCosts(NId) << "\" ]\n"; 869 } 870 871 OS << " edge [ len=" << nodeIds().size() << " ]\n"; 872 for (auto EId : edgeIds()) { 873 OS << " node" << getEdgeNode1Id(EId) 874 << " -- node" << getEdgeNode2Id(EId) 875 << " [ label=\""; 876 const Matrix &EdgeCosts = getEdgeCosts(EId); 877 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { 878 OS << EdgeCosts.getRowAsVector(i) << "\\n"; 879 } 880 OS << "\" ]\n"; 881 } 882 OS << "}\n"; 883 } 884 885 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { 886 return new RegAllocPBQP(customPassID); 887 } 888 889 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { 890 return createPBQPRegisterAllocator(); 891 } 892 893 #undef DEBUG_TYPE 894