Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines structures to encapsulate information gleaned from the
     11 // target register and register class definitions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenRegisters.h"
     16 #include "CodeGenTarget.h"
     17 #include "llvm/ADT/IntEqClasses.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/ADT/Twine.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/TableGen/Error.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "regalloc-emitter"
     28 
     29 //===----------------------------------------------------------------------===//
     30 //                             CodeGenSubRegIndex
     31 //===----------------------------------------------------------------------===//
     32 
     33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
     34   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     35   Name = R->getName();
     36   if (R->getValue("Namespace"))
     37     Namespace = R->getValueAsString("Namespace");
     38   Size = R->getValueAsInt("Size");
     39   Offset = R->getValueAsInt("Offset");
     40 }
     41 
     42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
     43                                        unsigned Enum)
     44   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
     45     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     46 }
     47 
     48 std::string CodeGenSubRegIndex::getQualifiedName() const {
     49   std::string N = getNamespace();
     50   if (!N.empty())
     51     N += "::";
     52   N += getName();
     53   return N;
     54 }
     55 
     56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
     57   if (!TheDef)
     58     return;
     59 
     60   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
     61   if (!Comps.empty()) {
     62     if (Comps.size() != 2)
     63       PrintFatalError(TheDef->getLoc(),
     64                       "ComposedOf must have exactly two entries");
     65     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
     66     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
     67     CodeGenSubRegIndex *X = A->addComposite(B, this);
     68     if (X)
     69       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
     70   }
     71 
     72   std::vector<Record*> Parts =
     73     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
     74   if (!Parts.empty()) {
     75     if (Parts.size() < 2)
     76       PrintFatalError(TheDef->getLoc(),
     77                       "CoveredBySubRegs must have two or more entries");
     78     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
     79     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
     80       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
     81     RegBank.addConcatSubRegIndex(IdxParts, this);
     82   }
     83 }
     84 
     85 unsigned CodeGenSubRegIndex::computeLaneMask() const {
     86   // Already computed?
     87   if (LaneMask)
     88     return LaneMask;
     89 
     90   // Recursion guard, shouldn't be required.
     91   LaneMask = ~0u;
     92 
     93   // The lane mask is simply the union of all sub-indices.
     94   unsigned M = 0;
     95   for (const auto &C : Composed)
     96     M |= C.second->computeLaneMask();
     97   assert(M && "Missing lane mask, sub-register cycle?");
     98   LaneMask = M;
     99   return LaneMask;
    100 }
    101 
    102 //===----------------------------------------------------------------------===//
    103 //                              CodeGenRegister
    104 //===----------------------------------------------------------------------===//
    105 
    106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
    107   : TheDef(R),
    108     EnumValue(Enum),
    109     CostPerUse(R->getValueAsInt("CostPerUse")),
    110     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
    111     HasDisjunctSubRegs(false),
    112     SubRegsComplete(false),
    113     SuperRegsComplete(false),
    114     TopoSig(~0u)
    115 {}
    116 
    117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
    118   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
    119   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
    120 
    121   if (SRIs.size() != SRs.size())
    122     PrintFatalError(TheDef->getLoc(),
    123                     "SubRegs and SubRegIndices must have the same size");
    124 
    125   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
    126     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
    127     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
    128   }
    129 
    130   // Also compute leading super-registers. Each register has a list of
    131   // covered-by-subregs super-registers where it appears as the first explicit
    132   // sub-register.
    133   //
    134   // This is used by computeSecondarySubRegs() to find candidates.
    135   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    136     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
    137 
    138   // Add ad hoc alias links. This is a symmetric relationship between two
    139   // registers, so build a symmetric graph by adding links in both ends.
    140   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
    141   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
    142     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
    143     ExplicitAliases.push_back(Reg);
    144     Reg->ExplicitAliases.push_back(this);
    145   }
    146 }
    147 
    148 const std::string &CodeGenRegister::getName() const {
    149   assert(TheDef && "no def");
    150   return TheDef->getName();
    151 }
    152 
    153 namespace {
    154 // Iterate over all register units in a set of registers.
    155 class RegUnitIterator {
    156   CodeGenRegister::Vec::const_iterator RegI, RegE;
    157   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
    158 
    159 public:
    160   RegUnitIterator(const CodeGenRegister::Vec &Regs):
    161     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
    162 
    163     if (RegI != RegE) {
    164       UnitI = (*RegI)->getRegUnits().begin();
    165       UnitE = (*RegI)->getRegUnits().end();
    166       advance();
    167     }
    168   }
    169 
    170   bool isValid() const { return UnitI != UnitE; }
    171 
    172   unsigned operator* () const { assert(isValid()); return *UnitI; }
    173 
    174   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
    175 
    176   /// Preincrement.  Move to the next unit.
    177   void operator++() {
    178     assert(isValid() && "Cannot advance beyond the last operand");
    179     ++UnitI;
    180     advance();
    181   }
    182 
    183 protected:
    184   void advance() {
    185     while (UnitI == UnitE) {
    186       if (++RegI == RegE)
    187         break;
    188       UnitI = (*RegI)->getRegUnits().begin();
    189       UnitE = (*RegI)->getRegUnits().end();
    190     }
    191   }
    192 };
    193 } // namespace
    194 
    195 // Return true of this unit appears in RegUnits.
    196 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
    197   return RegUnits.test(Unit);
    198 }
    199 
    200 // Inherit register units from subregisters.
    201 // Return true if the RegUnits changed.
    202 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
    203   bool changed = false;
    204   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    205        I != E; ++I) {
    206     CodeGenRegister *SR = I->second;
    207     // Merge the subregister's units into this register's RegUnits.
    208     changed |= (RegUnits |= SR->RegUnits);
    209   }
    210 
    211   return changed;
    212 }
    213 
    214 const CodeGenRegister::SubRegMap &
    215 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
    216   // Only compute this map once.
    217   if (SubRegsComplete)
    218     return SubRegs;
    219   SubRegsComplete = true;
    220 
    221   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
    222 
    223   // First insert the explicit subregs and make sure they are fully indexed.
    224   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    225     CodeGenRegister *SR = ExplicitSubRegs[i];
    226     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
    227     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
    228       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
    229                       " appears twice in Register " + getName());
    230     // Map explicit sub-registers first, so the names take precedence.
    231     // The inherited sub-registers are mapped below.
    232     SubReg2Idx.insert(std::make_pair(SR, Idx));
    233   }
    234 
    235   // Keep track of inherited subregs and how they can be reached.
    236   SmallPtrSet<CodeGenRegister*, 8> Orphans;
    237 
    238   // Clone inherited subregs and place duplicate entries in Orphans.
    239   // Here the order is important - earlier subregs take precedence.
    240   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    241     CodeGenRegister *SR = ExplicitSubRegs[i];
    242     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    243     HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
    244 
    245     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    246          ++SI) {
    247       if (!SubRegs.insert(*SI).second)
    248         Orphans.insert(SI->second);
    249     }
    250   }
    251 
    252   // Expand any composed subreg indices.
    253   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
    254   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
    255   // expanded subreg indices recursively.
    256   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
    257   for (unsigned i = 0; i != Indices.size(); ++i) {
    258     CodeGenSubRegIndex *Idx = Indices[i];
    259     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    260     CodeGenRegister *SR = SubRegs[Idx];
    261     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    262 
    263     // Look at the possible compositions of Idx.
    264     // They may not all be supported by SR.
    265     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
    266            E = Comps.end(); I != E; ++I) {
    267       SubRegMap::const_iterator SRI = Map.find(I->first);
    268       if (SRI == Map.end())
    269         continue; // Idx + I->first doesn't exist in SR.
    270       // Add I->second as a name for the subreg SRI->second, assuming it is
    271       // orphaned, and the name isn't already used for something else.
    272       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
    273         continue;
    274       // We found a new name for the orphaned sub-register.
    275       SubRegs.insert(std::make_pair(I->second, SRI->second));
    276       Indices.push_back(I->second);
    277     }
    278   }
    279 
    280   // Now Orphans contains the inherited subregisters without a direct index.
    281   // Create inferred indexes for all missing entries.
    282   // Work backwards in the Indices vector in order to compose subregs bottom-up.
    283   // Consider this subreg sequence:
    284   //
    285   //   qsub_1 -> dsub_0 -> ssub_0
    286   //
    287   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
    288   // can be reached in two different ways:
    289   //
    290   //   qsub_1 -> ssub_0
    291   //   dsub_2 -> ssub_0
    292   //
    293   // We pick the latter composition because another register may have [dsub_0,
    294   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
    295   // dsub_2 -> ssub_0 composition can be shared.
    296   while (!Indices.empty() && !Orphans.empty()) {
    297     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    298     CodeGenRegister *SR = SubRegs[Idx];
    299     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    300     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    301          ++SI)
    302       if (Orphans.erase(SI->second))
    303         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
    304   }
    305 
    306   // Compute the inverse SubReg -> Idx map.
    307   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
    308        SI != SE; ++SI) {
    309     if (SI->second == this) {
    310       ArrayRef<SMLoc> Loc;
    311       if (TheDef)
    312         Loc = TheDef->getLoc();
    313       PrintFatalError(Loc, "Register " + getName() +
    314                       " has itself as a sub-register");
    315     }
    316 
    317     // Compute AllSuperRegsCovered.
    318     if (!CoveredBySubRegs)
    319       SI->first->AllSuperRegsCovered = false;
    320 
    321     // Ensure that every sub-register has a unique name.
    322     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
    323       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
    324     if (Ins->second == SI->first)
    325       continue;
    326     // Trouble: Two different names for SI->second.
    327     ArrayRef<SMLoc> Loc;
    328     if (TheDef)
    329       Loc = TheDef->getLoc();
    330     PrintFatalError(Loc, "Sub-register can't have two names: " +
    331                   SI->second->getName() + " available as " +
    332                   SI->first->getName() + " and " + Ins->second->getName());
    333   }
    334 
    335   // Derive possible names for sub-register concatenations from any explicit
    336   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
    337   // that getConcatSubRegIndex() won't invent any concatenated indices that the
    338   // user already specified.
    339   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    340     CodeGenRegister *SR = ExplicitSubRegs[i];
    341     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
    342       continue;
    343 
    344     // SR is composed of multiple sub-regs. Find their names in this register.
    345     SmallVector<CodeGenSubRegIndex*, 8> Parts;
    346     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
    347       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    348 
    349     // Offer this as an existing spelling for the concatenation of Parts.
    350     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
    351   }
    352 
    353   // Initialize RegUnitList. Because getSubRegs is called recursively, this
    354   // processes the register hierarchy in postorder.
    355   //
    356   // Inherit all sub-register units. It is good enough to look at the explicit
    357   // sub-registers, the other registers won't contribute any more units.
    358   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    359     CodeGenRegister *SR = ExplicitSubRegs[i];
    360     RegUnits |= SR->RegUnits;
    361   }
    362 
    363   // Absent any ad hoc aliasing, we create one register unit per leaf register.
    364   // These units correspond to the maximal cliques in the register overlap
    365   // graph which is optimal.
    366   //
    367   // When there is ad hoc aliasing, we simply create one unit per edge in the
    368   // undirected ad hoc aliasing graph. Technically, we could do better by
    369   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
    370   // are extremely rare anyway (I've never seen one), so we don't bother with
    371   // the added complexity.
    372   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
    373     CodeGenRegister *AR = ExplicitAliases[i];
    374     // Only visit each edge once.
    375     if (AR->SubRegsComplete)
    376       continue;
    377     // Create a RegUnit representing this alias edge, and add it to both
    378     // registers.
    379     unsigned Unit = RegBank.newRegUnit(this, AR);
    380     RegUnits.set(Unit);
    381     AR->RegUnits.set(Unit);
    382   }
    383 
    384   // Finally, create units for leaf registers without ad hoc aliases. Note that
    385   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
    386   // necessary. This means the aliasing leaf registers can share a single unit.
    387   if (RegUnits.empty())
    388     RegUnits.set(RegBank.newRegUnit(this));
    389 
    390   // We have now computed the native register units. More may be adopted later
    391   // for balancing purposes.
    392   NativeRegUnits = RegUnits;
    393 
    394   return SubRegs;
    395 }
    396 
    397 // In a register that is covered by its sub-registers, try to find redundant
    398 // sub-registers. For example:
    399 //
    400 //   QQ0 = {Q0, Q1}
    401 //   Q0 = {D0, D1}
    402 //   Q1 = {D2, D3}
    403 //
    404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
    405 // the register definition.
    406 //
    407 // The explicitly specified registers form a tree. This function discovers
    408 // sub-register relationships that would force a DAG.
    409 //
    410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
    411   // Collect new sub-registers first, add them later.
    412   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
    413 
    414   // Look at the leading super-registers of each sub-register. Those are the
    415   // candidates for new sub-registers, assuming they are fully contained in
    416   // this register.
    417   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
    418     const CodeGenRegister *SubReg = I->second;
    419     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    420     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
    421       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
    422       // Already got this sub-register?
    423       if (Cand == this || getSubRegIndex(Cand))
    424         continue;
    425       // Check if each component of Cand is already a sub-register.
    426       // We know that the first component is I->second, and is present with the
    427       // name I->first.
    428       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
    429       assert(!Cand->ExplicitSubRegs.empty() &&
    430              "Super-register has no sub-registers");
    431       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
    432         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
    433           Parts.push_back(Idx);
    434         else {
    435           // Sub-register doesn't exist.
    436           Parts.clear();
    437           break;
    438         }
    439       }
    440       // If some Cand sub-register is not part of this register, or if Cand only
    441       // has one sub-register, there is nothing to do.
    442       if (Parts.size() <= 1)
    443         continue;
    444 
    445       // Each part of Cand is a sub-register of this. Make the full Cand also
    446       // a sub-register with a concatenated sub-register index.
    447       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
    448       NewSubRegs.push_back(std::make_pair(Concat, Cand));
    449     }
    450   }
    451 
    452   // Now add all the new sub-registers.
    453   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    454     // Don't add Cand if another sub-register is already using the index.
    455     if (!SubRegs.insert(NewSubRegs[i]).second)
    456       continue;
    457 
    458     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    459     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    460     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
    461   }
    462 
    463   // Create sub-register index composition maps for the synthesized indices.
    464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    465     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    466     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    467     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
    468            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
    469       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
    470       if (!SubIdx)
    471         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
    472                         SI->second->getName() + " in " + getName());
    473       NewIdx->addComposite(SI->first, SubIdx);
    474     }
    475   }
    476 }
    477 
    478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
    479   // Only visit each register once.
    480   if (SuperRegsComplete)
    481     return;
    482   SuperRegsComplete = true;
    483 
    484   // Make sure all sub-registers have been visited first, so the super-reg
    485   // lists will be topologically ordered.
    486   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    487        I != E; ++I)
    488     I->second->computeSuperRegs(RegBank);
    489 
    490   // Now add this as a super-register on all sub-registers.
    491   // Also compute the TopoSigId in post-order.
    492   TopoSigId Id;
    493   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    494        I != E; ++I) {
    495     // Topological signature computed from SubIdx, TopoId(SubReg).
    496     // Loops and idempotent indices have TopoSig = ~0u.
    497     Id.push_back(I->first->EnumValue);
    498     Id.push_back(I->second->TopoSig);
    499 
    500     // Don't add duplicate entries.
    501     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
    502       continue;
    503     I->second->SuperRegs.push_back(this);
    504   }
    505   TopoSig = RegBank.getTopoSig(Id);
    506 }
    507 
    508 void
    509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
    510                                     CodeGenRegBank &RegBank) const {
    511   assert(SubRegsComplete && "Must precompute sub-registers");
    512   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    513     CodeGenRegister *SR = ExplicitSubRegs[i];
    514     if (OSet.insert(SR))
    515       SR->addSubRegsPreOrder(OSet, RegBank);
    516   }
    517   // Add any secondary sub-registers that weren't part of the explicit tree.
    518   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    519        I != E; ++I)
    520     OSet.insert(I->second);
    521 }
    522 
    523 // Get the sum of this register's unit weights.
    524 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
    525   unsigned Weight = 0;
    526   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
    527        I != E; ++I) {
    528     Weight += RegBank.getRegUnit(*I).Weight;
    529   }
    530   return Weight;
    531 }
    532 
    533 //===----------------------------------------------------------------------===//
    534 //                               RegisterTuples
    535 //===----------------------------------------------------------------------===//
    536 
    537 // A RegisterTuples def is used to generate pseudo-registers from lists of
    538 // sub-registers. We provide a SetTheory expander class that returns the new
    539 // registers.
    540 namespace {
    541 struct TupleExpander : SetTheory::Expander {
    542   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
    543     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    544     unsigned Dim = Indices.size();
    545     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    546     if (Dim != SubRegs->size())
    547       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    548     if (Dim < 2)
    549       PrintFatalError(Def->getLoc(),
    550                       "Tuples must have at least 2 sub-registers");
    551 
    552     // Evaluate the sub-register lists to be zipped.
    553     unsigned Length = ~0u;
    554     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    555     for (unsigned i = 0; i != Dim; ++i) {
    556       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
    557       Length = std::min(Length, unsigned(Lists[i].size()));
    558     }
    559 
    560     if (Length == 0)
    561       return;
    562 
    563     // Precompute some types.
    564     Record *RegisterCl = Def->getRecords().getClass("Register");
    565     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    566     StringInit *BlankName = StringInit::get("");
    567 
    568     // Zip them up.
    569     for (unsigned n = 0; n != Length; ++n) {
    570       std::string Name;
    571       Record *Proto = Lists[0][n];
    572       std::vector<Init*> Tuple;
    573       unsigned CostPerUse = 0;
    574       for (unsigned i = 0; i != Dim; ++i) {
    575         Record *Reg = Lists[i][n];
    576         if (i) Name += '_';
    577         Name += Reg->getName();
    578         Tuple.push_back(DefInit::get(Reg));
    579         CostPerUse = std::max(CostPerUse,
    580                               unsigned(Reg->getValueAsInt("CostPerUse")));
    581       }
    582 
    583       // Create a new Record representing the synthesized register. This record
    584       // is only for consumption by CodeGenRegister, it is not added to the
    585       // RecordKeeper.
    586       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
    587       Elts.insert(NewReg);
    588 
    589       // Copy Proto super-classes.
    590       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
    591       for (const auto &SuperPair : Supers)
    592         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
    593 
    594       // Copy Proto fields.
    595       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
    596         RecordVal RV = Proto->getValues()[i];
    597 
    598         // Skip existing fields, like NAME.
    599         if (NewReg->getValue(RV.getNameInit()))
    600           continue;
    601 
    602         StringRef Field = RV.getName();
    603 
    604         // Replace the sub-register list with Tuple.
    605         if (Field == "SubRegs")
    606           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
    607 
    608         // Provide a blank AsmName. MC hacks are required anyway.
    609         if (Field == "AsmName")
    610           RV.setValue(BlankName);
    611 
    612         // CostPerUse is aggregated from all Tuple members.
    613         if (Field == "CostPerUse")
    614           RV.setValue(IntInit::get(CostPerUse));
    615 
    616         // Composite registers are always covered by sub-registers.
    617         if (Field == "CoveredBySubRegs")
    618           RV.setValue(BitInit::get(true));
    619 
    620         // Copy fields from the RegisterTuples def.
    621         if (Field == "SubRegIndices" ||
    622             Field == "CompositeIndices") {
    623           NewReg->addValue(*Def->getValue(Field));
    624           continue;
    625         }
    626 
    627         // Some fields get their default uninitialized value.
    628         if (Field == "DwarfNumbers" ||
    629             Field == "DwarfAlias" ||
    630             Field == "Aliases") {
    631           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
    632             NewReg->addValue(*DefRV);
    633           continue;
    634         }
    635 
    636         // Everything else is copied from Proto.
    637         NewReg->addValue(RV);
    638       }
    639     }
    640   }
    641 };
    642 }
    643 
    644 //===----------------------------------------------------------------------===//
    645 //                            CodeGenRegisterClass
    646 //===----------------------------------------------------------------------===//
    647 
    648 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
    649   std::sort(M.begin(), M.end(), deref<llvm::less>());
    650   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
    651 }
    652 
    653 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    654   : TheDef(R),
    655     Name(R->getName()),
    656     TopoSigs(RegBank.getNumTopoSigs()),
    657     EnumValue(-1),
    658     LaneMask(0) {
    659   // Rename anonymous register classes.
    660   if (R->getName().size() > 9 && R->getName()[9] == '.') {
    661     static unsigned AnonCounter = 0;
    662     R->setName("AnonRegClass_" + utostr(AnonCounter++));
    663   }
    664 
    665   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
    666   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    667     Record *Type = TypeList[i];
    668     if (!Type->isSubClassOf("ValueType"))
    669       PrintFatalError("RegTypes list member '" + Type->getName() +
    670         "' does not derive from the ValueType class!");
    671     VTs.push_back(getValueType(Type));
    672   }
    673   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
    674 
    675   // Allocation order 0 is the full set. AltOrders provides others.
    676   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
    677   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
    678   Orders.resize(1 + AltOrders->size());
    679 
    680   // Default allocation order always contains all registers.
    681   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    682     Orders[0].push_back((*Elements)[i]);
    683     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
    684     Members.push_back(Reg);
    685     TopoSigs.set(Reg->getTopoSig());
    686   }
    687   sortAndUniqueRegisters(Members);
    688 
    689   // Alternative allocation orders may be subsets.
    690   SetTheory::RecSet Order;
    691   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    692     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
    693     Orders[1 + i].append(Order.begin(), Order.end());
    694     // Verify that all altorder members are regclass members.
    695     while (!Order.empty()) {
    696       CodeGenRegister *Reg = RegBank.getReg(Order.back());
    697       Order.pop_back();
    698       if (!contains(Reg))
    699         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
    700                       " is not a class member");
    701     }
    702   }
    703 
    704   // Allow targets to override the size in bits of the RegisterClass.
    705   unsigned Size = R->getValueAsInt("Size");
    706 
    707   Namespace = R->getValueAsString("Namespace");
    708   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
    709   SpillAlignment = R->getValueAsInt("Alignment");
    710   CopyCost = R->getValueAsInt("CopyCost");
    711   Allocatable = R->getValueAsBit("isAllocatable");
    712   AltOrderSelect = R->getValueAsString("AltOrderSelect");
    713   int AllocationPriority = R->getValueAsInt("AllocationPriority");
    714   if (AllocationPriority < 0 || AllocationPriority > 63)
    715     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
    716   this->AllocationPriority = AllocationPriority;
    717 }
    718 
    719 // Create an inferred register class that was missing from the .td files.
    720 // Most properties will be inherited from the closest super-class after the
    721 // class structure has been computed.
    722 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
    723                                            StringRef Name, Key Props)
    724   : Members(*Props.Members),
    725     TheDef(nullptr),
    726     Name(Name),
    727     TopoSigs(RegBank.getNumTopoSigs()),
    728     EnumValue(-1),
    729     SpillSize(Props.SpillSize),
    730     SpillAlignment(Props.SpillAlignment),
    731     CopyCost(0),
    732     Allocatable(true),
    733     AllocationPriority(0) {
    734   for (const auto R : Members)
    735     TopoSigs.set(R->getTopoSig());
    736 }
    737 
    738 // Compute inherited propertied for a synthesized register class.
    739 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
    740   assert(!getDef() && "Only synthesized classes can inherit properties");
    741   assert(!SuperClasses.empty() && "Synthesized class without super class");
    742 
    743   // The last super-class is the smallest one.
    744   CodeGenRegisterClass &Super = *SuperClasses.back();
    745 
    746   // Most properties are copied directly.
    747   // Exceptions are members, size, and alignment
    748   Namespace = Super.Namespace;
    749   VTs = Super.VTs;
    750   CopyCost = Super.CopyCost;
    751   Allocatable = Super.Allocatable;
    752   AltOrderSelect = Super.AltOrderSelect;
    753   AllocationPriority = Super.AllocationPriority;
    754 
    755   // Copy all allocation orders, filter out foreign registers from the larger
    756   // super-class.
    757   Orders.resize(Super.Orders.size());
    758   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    759     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
    760       if (contains(RegBank.getReg(Super.Orders[i][j])))
    761         Orders[i].push_back(Super.Orders[i][j]);
    762 }
    763 
    764 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
    765   return std::binary_search(Members.begin(), Members.end(), Reg,
    766                             deref<llvm::less>());
    767 }
    768 
    769 namespace llvm {
    770   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    771     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
    772     for (const auto R : *K.Members)
    773       OS << ", " << R->getName();
    774     return OS << " }";
    775   }
    776 }
    777 
    778 // This is a simple lexicographical order that can be used to search for sets.
    779 // It is not the same as the topological order provided by TopoOrderRC.
    780 bool CodeGenRegisterClass::Key::
    781 operator<(const CodeGenRegisterClass::Key &B) const {
    782   assert(Members && B.Members);
    783   return std::tie(*Members, SpillSize, SpillAlignment) <
    784          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
    785 }
    786 
    787 // Returns true if RC is a strict subclass.
    788 // RC is a sub-class of this class if it is a valid replacement for any
    789 // instruction operand where a register of this classis required. It must
    790 // satisfy these conditions:
    791 //
    792 // 1. All RC registers are also in this.
    793 // 2. The RC spill size must not be smaller than our spill size.
    794 // 3. RC spill alignment must be compatible with ours.
    795 //
    796 static bool testSubClass(const CodeGenRegisterClass *A,
    797                          const CodeGenRegisterClass *B) {
    798   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
    799          A->SpillSize <= B->SpillSize &&
    800          std::includes(A->getMembers().begin(), A->getMembers().end(),
    801                        B->getMembers().begin(), B->getMembers().end(),
    802                        deref<llvm::less>());
    803 }
    804 
    805 /// Sorting predicate for register classes.  This provides a topological
    806 /// ordering that arranges all register classes before their sub-classes.
    807 ///
    808 /// Register classes with the same registers, spill size, and alignment form a
    809 /// clique.  They will be ordered alphabetically.
    810 ///
    811 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
    812                         const CodeGenRegisterClass &PB) {
    813   auto *A = &PA;
    814   auto *B = &PB;
    815   if (A == B)
    816     return 0;
    817 
    818   // Order by ascending spill size.
    819   if (A->SpillSize < B->SpillSize)
    820     return true;
    821   if (A->SpillSize > B->SpillSize)
    822     return false;
    823 
    824   // Order by ascending spill alignment.
    825   if (A->SpillAlignment < B->SpillAlignment)
    826     return true;
    827   if (A->SpillAlignment > B->SpillAlignment)
    828     return false;
    829 
    830   // Order by descending set size.  Note that the classes' allocation order may
    831   // not have been computed yet.  The Members set is always vaild.
    832   if (A->getMembers().size() > B->getMembers().size())
    833     return true;
    834   if (A->getMembers().size() < B->getMembers().size())
    835     return false;
    836 
    837   // Finally order by name as a tie breaker.
    838   return StringRef(A->getName()) < B->getName();
    839 }
    840 
    841 std::string CodeGenRegisterClass::getQualifiedName() const {
    842   if (Namespace.empty())
    843     return getName();
    844   else
    845     return Namespace + "::" + getName();
    846 }
    847 
    848 // Compute sub-classes of all register classes.
    849 // Assume the classes are ordered topologically.
    850 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
    851   auto &RegClasses = RegBank.getRegClasses();
    852 
    853   // Visit backwards so sub-classes are seen first.
    854   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
    855     CodeGenRegisterClass &RC = *I;
    856     RC.SubClasses.resize(RegClasses.size());
    857     RC.SubClasses.set(RC.EnumValue);
    858 
    859     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    860     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
    861       CodeGenRegisterClass &SubRC = *I2;
    862       if (RC.SubClasses.test(SubRC.EnumValue))
    863         continue;
    864       if (!testSubClass(&RC, &SubRC))
    865         continue;
    866       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
    867       // check them again.
    868       RC.SubClasses |= SubRC.SubClasses;
    869     }
    870 
    871     // Sweep up missed clique members.  They will be immediately preceding RC.
    872     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
    873       RC.SubClasses.set(I2->EnumValue);
    874   }
    875 
    876   // Compute the SuperClasses lists from the SubClasses vectors.
    877   for (auto &RC : RegClasses) {
    878     const BitVector &SC = RC.getSubClasses();
    879     auto I = RegClasses.begin();
    880     for (int s = 0, next_s = SC.find_first(); next_s != -1;
    881          next_s = SC.find_next(s)) {
    882       std::advance(I, next_s - s);
    883       s = next_s;
    884       if (&*I == &RC)
    885         continue;
    886       I->SuperClasses.push_back(&RC);
    887     }
    888   }
    889 
    890   // With the class hierarchy in place, let synthesized register classes inherit
    891   // properties from their closest super-class. The iteration order here can
    892   // propagate properties down multiple levels.
    893   for (auto &RC : RegClasses)
    894     if (!RC.getDef())
    895       RC.inheritProperties(RegBank);
    896 }
    897 
    898 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
    899                                               BitVector &Out) const {
    900   auto FindI = SuperRegClasses.find(SubIdx);
    901   if (FindI == SuperRegClasses.end())
    902     return;
    903   for (CodeGenRegisterClass *RC : FindI->second)
    904     Out.set(RC->EnumValue);
    905 }
    906 
    907 // Populate a unique sorted list of units from a register set.
    908 void CodeGenRegisterClass::buildRegUnitSet(
    909   std::vector<unsigned> &RegUnits) const {
    910   std::vector<unsigned> TmpUnits;
    911   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
    912     TmpUnits.push_back(*UnitI);
    913   std::sort(TmpUnits.begin(), TmpUnits.end());
    914   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
    915                    std::back_inserter(RegUnits));
    916 }
    917 
    918 //===----------------------------------------------------------------------===//
    919 //                               CodeGenRegBank
    920 //===----------------------------------------------------------------------===//
    921 
    922 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
    923   // Configure register Sets to understand register classes and tuples.
    924   Sets.addFieldExpander("RegisterClass", "MemberList");
    925   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
    926   Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
    927 
    928   // Read in the user-defined (named) sub-register indices.
    929   // More indices will be synthesized later.
    930   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
    931   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
    932   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
    933     getSubRegIdx(SRIs[i]);
    934   // Build composite maps from ComposedOf fields.
    935   for (auto &Idx : SubRegIndices)
    936     Idx.updateComponents(*this);
    937 
    938   // Read in the register definitions.
    939   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
    940   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
    941   // Assign the enumeration values.
    942   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    943     getReg(Regs[i]);
    944 
    945   // Expand tuples and number the new registers.
    946   std::vector<Record*> Tups =
    947     Records.getAllDerivedDefinitions("RegisterTuples");
    948 
    949   for (Record *R : Tups) {
    950     std::vector<Record *> TupRegs = *Sets.expand(R);
    951     std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
    952     for (Record *RC : TupRegs)
    953       getReg(RC);
    954   }
    955 
    956   // Now all the registers are known. Build the object graph of explicit
    957   // register-register references.
    958   for (auto &Reg : Registers)
    959     Reg.buildObjectGraph(*this);
    960 
    961   // Compute register name map.
    962   for (auto &Reg : Registers)
    963     // FIXME: This could just be RegistersByName[name] = register, except that
    964     // causes some failures in MIPS - perhaps they have duplicate register name
    965     // entries? (or maybe there's a reason for it - I don't know much about this
    966     // code, just drive-by refactoring)
    967     RegistersByName.insert(
    968         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
    969 
    970   // Precompute all sub-register maps.
    971   // This will create Composite entries for all inferred sub-register indices.
    972   for (auto &Reg : Registers)
    973     Reg.computeSubRegs(*this);
    974 
    975   // Infer even more sub-registers by combining leading super-registers.
    976   for (auto &Reg : Registers)
    977     if (Reg.CoveredBySubRegs)
    978       Reg.computeSecondarySubRegs(*this);
    979 
    980   // After the sub-register graph is complete, compute the topologically
    981   // ordered SuperRegs list.
    982   for (auto &Reg : Registers)
    983     Reg.computeSuperRegs(*this);
    984 
    985   // Native register units are associated with a leaf register. They've all been
    986   // discovered now.
    987   NumNativeRegUnits = RegUnits.size();
    988 
    989   // Read in register class definitions.
    990   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
    991   if (RCs.empty())
    992     PrintFatalError("No 'RegisterClass' subclasses defined!");
    993 
    994   // Allocate user-defined register classes.
    995   for (auto *RC : RCs) {
    996     RegClasses.emplace_back(*this, RC);
    997     addToMaps(&RegClasses.back());
    998   }
    999 
   1000   // Infer missing classes to create a full algebra.
   1001   computeInferredRegisterClasses();
   1002 
   1003   // Order register classes topologically and assign enum values.
   1004   RegClasses.sort(TopoOrderRC);
   1005   unsigned i = 0;
   1006   for (auto &RC : RegClasses)
   1007     RC.EnumValue = i++;
   1008   CodeGenRegisterClass::computeSubClasses(*this);
   1009 }
   1010 
   1011 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
   1012 CodeGenSubRegIndex*
   1013 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
   1014   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
   1015   return &SubRegIndices.back();
   1016 }
   1017 
   1018 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
   1019   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
   1020   if (Idx)
   1021     return Idx;
   1022   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
   1023   Idx = &SubRegIndices.back();
   1024   return Idx;
   1025 }
   1026 
   1027 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
   1028   CodeGenRegister *&Reg = Def2Reg[Def];
   1029   if (Reg)
   1030     return Reg;
   1031   Registers.emplace_back(Def, Registers.size() + 1);
   1032   Reg = &Registers.back();
   1033   return Reg;
   1034 }
   1035 
   1036 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
   1037   if (Record *Def = RC->getDef())
   1038     Def2RC.insert(std::make_pair(Def, RC));
   1039 
   1040   // Duplicate classes are rejected by insert().
   1041   // That's OK, we only care about the properties handled by CGRC::Key.
   1042   CodeGenRegisterClass::Key K(*RC);
   1043   Key2RC.insert(std::make_pair(K, RC));
   1044 }
   1045 
   1046 // Create a synthetic sub-class if it is missing.
   1047 CodeGenRegisterClass*
   1048 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
   1049                                     const CodeGenRegister::Vec *Members,
   1050                                     StringRef Name) {
   1051   // Synthetic sub-class has the same size and alignment as RC.
   1052   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
   1053   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
   1054   if (FoundI != Key2RC.end())
   1055     return FoundI->second;
   1056 
   1057   // Sub-class doesn't exist, create a new one.
   1058   RegClasses.emplace_back(*this, Name, K);
   1059   addToMaps(&RegClasses.back());
   1060   return &RegClasses.back();
   1061 }
   1062 
   1063 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
   1064   if (CodeGenRegisterClass *RC = Def2RC[Def])
   1065     return RC;
   1066 
   1067   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
   1068 }
   1069 
   1070 CodeGenSubRegIndex*
   1071 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
   1072                                         CodeGenSubRegIndex *B) {
   1073   // Look for an existing entry.
   1074   CodeGenSubRegIndex *Comp = A->compose(B);
   1075   if (Comp)
   1076     return Comp;
   1077 
   1078   // None exists, synthesize one.
   1079   std::string Name = A->getName() + "_then_" + B->getName();
   1080   Comp = createSubRegIndex(Name, A->getNamespace());
   1081   A->addComposite(B, Comp);
   1082   return Comp;
   1083 }
   1084 
   1085 CodeGenSubRegIndex *CodeGenRegBank::
   1086 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
   1087   assert(Parts.size() > 1 && "Need two parts to concatenate");
   1088 
   1089   // Look for an existing entry.
   1090   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
   1091   if (Idx)
   1092     return Idx;
   1093 
   1094   // None exists, synthesize one.
   1095   std::string Name = Parts.front()->getName();
   1096   // Determine whether all parts are contiguous.
   1097   bool isContinuous = true;
   1098   unsigned Size = Parts.front()->Size;
   1099   unsigned LastOffset = Parts.front()->Offset;
   1100   unsigned LastSize = Parts.front()->Size;
   1101   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
   1102     Name += '_';
   1103     Name += Parts[i]->getName();
   1104     Size += Parts[i]->Size;
   1105     if (Parts[i]->Offset != (LastOffset + LastSize))
   1106       isContinuous = false;
   1107     LastOffset = Parts[i]->Offset;
   1108     LastSize = Parts[i]->Size;
   1109   }
   1110   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
   1111   Idx->Size = Size;
   1112   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
   1113   return Idx;
   1114 }
   1115 
   1116 void CodeGenRegBank::computeComposites() {
   1117   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
   1118   // and many registers will share TopoSigs on regular architectures.
   1119   BitVector TopoSigs(getNumTopoSigs());
   1120 
   1121   for (const auto &Reg1 : Registers) {
   1122     // Skip identical subreg structures already processed.
   1123     if (TopoSigs.test(Reg1.getTopoSig()))
   1124       continue;
   1125     TopoSigs.set(Reg1.getTopoSig());
   1126 
   1127     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
   1128     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
   1129          e1 = SRM1.end(); i1 != e1; ++i1) {
   1130       CodeGenSubRegIndex *Idx1 = i1->first;
   1131       CodeGenRegister *Reg2 = i1->second;
   1132       // Ignore identity compositions.
   1133       if (&Reg1 == Reg2)
   1134         continue;
   1135       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
   1136       // Try composing Idx1 with another SubRegIndex.
   1137       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
   1138            e2 = SRM2.end(); i2 != e2; ++i2) {
   1139         CodeGenSubRegIndex *Idx2 = i2->first;
   1140         CodeGenRegister *Reg3 = i2->second;
   1141         // Ignore identity compositions.
   1142         if (Reg2 == Reg3)
   1143           continue;
   1144         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
   1145         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
   1146         assert(Idx3 && "Sub-register doesn't have an index");
   1147 
   1148         // Conflicting composition? Emit a warning but allow it.
   1149         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
   1150           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
   1151                        " and " + Idx2->getQualifiedName() +
   1152                        " compose ambiguously as " + Prev->getQualifiedName() +
   1153                        " or " + Idx3->getQualifiedName());
   1154       }
   1155     }
   1156   }
   1157 }
   1158 
   1159 // Compute lane masks. This is similar to register units, but at the
   1160 // sub-register index level. Each bit in the lane mask is like a register unit
   1161 // class, and two lane masks will have a bit in common if two sub-register
   1162 // indices overlap in some register.
   1163 //
   1164 // Conservatively share a lane mask bit if two sub-register indices overlap in
   1165 // some registers, but not in others. That shouldn't happen a lot.
   1166 void CodeGenRegBank::computeSubRegLaneMasks() {
   1167   // First assign individual bits to all the leaf indices.
   1168   unsigned Bit = 0;
   1169   // Determine mask of lanes that cover their registers.
   1170   CoveringLanes = ~0u;
   1171   for (auto &Idx : SubRegIndices) {
   1172     if (Idx.getComposites().empty()) {
   1173       if (Bit > 32) {
   1174         PrintFatalError(
   1175           Twine("Ran out of lanemask bits to represent subregister ")
   1176           + Idx.getName());
   1177       }
   1178       Idx.LaneMask = 1u << Bit;
   1179       ++Bit;
   1180     } else {
   1181       Idx.LaneMask = 0;
   1182     }
   1183   }
   1184 
   1185   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
   1186   // here is that for each possible target subregister we look at the leafs
   1187   // in the subregister graph that compose for this target and create
   1188   // transformation sequences for the lanemasks. Each step in the sequence
   1189   // consists of a bitmask and a bitrotate operation. As the rotation amounts
   1190   // are usually the same for many subregisters we can easily combine the steps
   1191   // by combining the masks.
   1192   for (const auto &Idx : SubRegIndices) {
   1193     const auto &Composites = Idx.getComposites();
   1194     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
   1195 
   1196     if (Composites.empty()) {
   1197       // Moving from a class with no subregisters we just had a single lane:
   1198       // The subregister must be a leaf subregister and only occupies 1 bit.
   1199       // Move the bit from the class without subregisters into that position.
   1200       unsigned DstBit = Log2_32(Idx.LaneMask);
   1201       assert(Idx.LaneMask == 1u << DstBit && "Must be a leaf subregister");
   1202       MaskRolPair MaskRol = { 1, (uint8_t)DstBit };
   1203       LaneTransforms.push_back(MaskRol);
   1204     } else {
   1205       // Go through all leaf subregisters and find the ones that compose with
   1206       // Idx. These make out all possible valid bits in the lane mask we want to
   1207       // transform. Looking only at the leafs ensure that only a single bit in
   1208       // the mask is set.
   1209       unsigned NextBit = 0;
   1210       for (auto &Idx2 : SubRegIndices) {
   1211         // Skip non-leaf subregisters.
   1212         if (!Idx2.getComposites().empty())
   1213           continue;
   1214         // Replicate the behaviour from the lane mask generation loop above.
   1215         unsigned SrcBit = NextBit;
   1216         unsigned SrcMask = 1u << SrcBit;
   1217         if (NextBit < 31)
   1218           ++NextBit;
   1219         assert(Idx2.LaneMask == SrcMask);
   1220 
   1221         // Get the composed subregister if there is any.
   1222         auto C = Composites.find(&Idx2);
   1223         if (C == Composites.end())
   1224           continue;
   1225         const CodeGenSubRegIndex *Composite = C->second;
   1226         // The Composed subreg should be a leaf subreg too
   1227         assert(Composite->getComposites().empty());
   1228 
   1229         // Create Mask+Rotate operation and merge with existing ops if possible.
   1230         unsigned DstBit = Log2_32(Composite->LaneMask);
   1231         int Shift = DstBit - SrcBit;
   1232         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
   1233         for (auto &I : LaneTransforms) {
   1234           if (I.RotateLeft == RotateLeft) {
   1235             I.Mask |= SrcMask;
   1236             SrcMask = 0;
   1237           }
   1238         }
   1239         if (SrcMask != 0) {
   1240           MaskRolPair MaskRol = { SrcMask, RotateLeft };
   1241           LaneTransforms.push_back(MaskRol);
   1242         }
   1243       }
   1244     }
   1245 
   1246     // Optimize if the transformation consists of one step only: Set mask to
   1247     // 0xffffffff (including some irrelevant invalid bits) so that it should
   1248     // merge with more entries later while compressing the table.
   1249     if (LaneTransforms.size() == 1)
   1250       LaneTransforms[0].Mask = ~0u;
   1251 
   1252     // Further compression optimization: For invalid compositions resulting
   1253     // in a sequence with 0 entries we can just pick any other. Choose
   1254     // Mask 0xffffffff with Rotation 0.
   1255     if (LaneTransforms.size() == 0) {
   1256       MaskRolPair P = { ~0u, 0 };
   1257       LaneTransforms.push_back(P);
   1258     }
   1259   }
   1260 
   1261   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
   1262   // by the sub-register graph? This doesn't occur in any known targets.
   1263 
   1264   // Inherit lanes from composites.
   1265   for (const auto &Idx : SubRegIndices) {
   1266     unsigned Mask = Idx.computeLaneMask();
   1267     // If some super-registers without CoveredBySubRegs use this index, we can
   1268     // no longer assume that the lanes are covering their registers.
   1269     if (!Idx.AllSuperRegsCovered)
   1270       CoveringLanes &= ~Mask;
   1271   }
   1272 
   1273   // Compute lane mask combinations for register classes.
   1274   for (auto &RegClass : RegClasses) {
   1275     unsigned LaneMask = 0;
   1276     for (const auto &SubRegIndex : SubRegIndices) {
   1277       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
   1278         continue;
   1279       LaneMask |= SubRegIndex.LaneMask;
   1280     }
   1281 
   1282     // For classes without any subregisters set LaneMask to 1 instead of 0.
   1283     // This makes it easier for client code to handle classes uniformly.
   1284     if (LaneMask == 0)
   1285       LaneMask = 1;
   1286 
   1287     RegClass.LaneMask = LaneMask;
   1288   }
   1289 }
   1290 
   1291 namespace {
   1292 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
   1293 // the transitive closure of the union of overlapping register
   1294 // classes. Together, the UberRegSets form a partition of the registers. If we
   1295 // consider overlapping register classes to be connected, then each UberRegSet
   1296 // is a set of connected components.
   1297 //
   1298 // An UberRegSet will likely be a horizontal slice of register names of
   1299 // the same width. Nontrivial subregisters should then be in a separate
   1300 // UberRegSet. But this property isn't required for valid computation of
   1301 // register unit weights.
   1302 //
   1303 // A Weight field caches the max per-register unit weight in each UberRegSet.
   1304 //
   1305 // A set of SingularDeterminants flags single units of some register in this set
   1306 // for which the unit weight equals the set weight. These units should not have
   1307 // their weight increased.
   1308 struct UberRegSet {
   1309   CodeGenRegister::Vec Regs;
   1310   unsigned Weight;
   1311   CodeGenRegister::RegUnitList SingularDeterminants;
   1312 
   1313   UberRegSet(): Weight(0) {}
   1314 };
   1315 } // namespace
   1316 
   1317 // Partition registers into UberRegSets, where each set is the transitive
   1318 // closure of the union of overlapping register classes.
   1319 //
   1320 // UberRegSets[0] is a special non-allocatable set.
   1321 static void computeUberSets(std::vector<UberRegSet> &UberSets,
   1322                             std::vector<UberRegSet*> &RegSets,
   1323                             CodeGenRegBank &RegBank) {
   1324 
   1325   const auto &Registers = RegBank.getRegisters();
   1326 
   1327   // The Register EnumValue is one greater than its index into Registers.
   1328   assert(Registers.size() == Registers.back().EnumValue &&
   1329          "register enum value mismatch");
   1330 
   1331   // For simplicitly make the SetID the same as EnumValue.
   1332   IntEqClasses UberSetIDs(Registers.size()+1);
   1333   std::set<unsigned> AllocatableRegs;
   1334   for (auto &RegClass : RegBank.getRegClasses()) {
   1335     if (!RegClass.Allocatable)
   1336       continue;
   1337 
   1338     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
   1339     if (Regs.empty())
   1340       continue;
   1341 
   1342     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
   1343     assert(USetID && "register number 0 is invalid");
   1344 
   1345     AllocatableRegs.insert((*Regs.begin())->EnumValue);
   1346     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
   1347       AllocatableRegs.insert((*I)->EnumValue);
   1348       UberSetIDs.join(USetID, (*I)->EnumValue);
   1349     }
   1350   }
   1351   // Combine non-allocatable regs.
   1352   for (const auto &Reg : Registers) {
   1353     unsigned RegNum = Reg.EnumValue;
   1354     if (AllocatableRegs.count(RegNum))
   1355       continue;
   1356 
   1357     UberSetIDs.join(0, RegNum);
   1358   }
   1359   UberSetIDs.compress();
   1360 
   1361   // Make the first UberSet a special unallocatable set.
   1362   unsigned ZeroID = UberSetIDs[0];
   1363 
   1364   // Insert Registers into the UberSets formed by union-find.
   1365   // Do not resize after this.
   1366   UberSets.resize(UberSetIDs.getNumClasses());
   1367   unsigned i = 0;
   1368   for (const CodeGenRegister &Reg : Registers) {
   1369     unsigned USetID = UberSetIDs[Reg.EnumValue];
   1370     if (!USetID)
   1371       USetID = ZeroID;
   1372     else if (USetID == ZeroID)
   1373       USetID = 0;
   1374 
   1375     UberRegSet *USet = &UberSets[USetID];
   1376     USet->Regs.push_back(&Reg);
   1377     sortAndUniqueRegisters(USet->Regs);
   1378     RegSets[i++] = USet;
   1379   }
   1380 }
   1381 
   1382 // Recompute each UberSet weight after changing unit weights.
   1383 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
   1384                                CodeGenRegBank &RegBank) {
   1385   // Skip the first unallocatable set.
   1386   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
   1387          E = UberSets.end(); I != E; ++I) {
   1388 
   1389     // Initialize all unit weights in this set, and remember the max units/reg.
   1390     const CodeGenRegister *Reg = nullptr;
   1391     unsigned MaxWeight = 0, Weight = 0;
   1392     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
   1393       if (Reg != UnitI.getReg()) {
   1394         if (Weight > MaxWeight)
   1395           MaxWeight = Weight;
   1396         Reg = UnitI.getReg();
   1397         Weight = 0;
   1398       }
   1399       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
   1400       if (!UWeight) {
   1401         UWeight = 1;
   1402         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
   1403       }
   1404       Weight += UWeight;
   1405     }
   1406     if (Weight > MaxWeight)
   1407       MaxWeight = Weight;
   1408     if (I->Weight != MaxWeight) {
   1409       DEBUG(
   1410         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
   1411         for (auto &Unit : I->Regs)
   1412           dbgs() << " " << Unit->getName();
   1413         dbgs() << "\n");
   1414       // Update the set weight.
   1415       I->Weight = MaxWeight;
   1416     }
   1417 
   1418     // Find singular determinants.
   1419     for (const auto R : I->Regs) {
   1420       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
   1421         I->SingularDeterminants |= R->getRegUnits();
   1422       }
   1423     }
   1424   }
   1425 }
   1426 
   1427 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
   1428 // a register and its subregisters so that they have the same weight as their
   1429 // UberSet. Self-recursion processes the subregister tree in postorder so
   1430 // subregisters are normalized first.
   1431 //
   1432 // Side effects:
   1433 // - creates new adopted register units
   1434 // - causes superregisters to inherit adopted units
   1435 // - increases the weight of "singular" units
   1436 // - induces recomputation of UberWeights.
   1437 static bool normalizeWeight(CodeGenRegister *Reg,
   1438                             std::vector<UberRegSet> &UberSets,
   1439                             std::vector<UberRegSet*> &RegSets,
   1440                             SparseBitVector<> &NormalRegs,
   1441                             CodeGenRegister::RegUnitList &NormalUnits,
   1442                             CodeGenRegBank &RegBank) {
   1443   if (NormalRegs.test(Reg->EnumValue))
   1444     return false;
   1445   NormalRegs.set(Reg->EnumValue);
   1446 
   1447   bool Changed = false;
   1448   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
   1449   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
   1450          SRE = SRM.end(); SRI != SRE; ++SRI) {
   1451     if (SRI->second == Reg)
   1452       continue; // self-cycles happen
   1453 
   1454     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
   1455                                NormalRegs, NormalUnits, RegBank);
   1456   }
   1457   // Postorder register normalization.
   1458 
   1459   // Inherit register units newly adopted by subregisters.
   1460   if (Reg->inheritRegUnits(RegBank))
   1461     computeUberWeights(UberSets, RegBank);
   1462 
   1463   // Check if this register is too skinny for its UberRegSet.
   1464   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
   1465 
   1466   unsigned RegWeight = Reg->getWeight(RegBank);
   1467   if (UberSet->Weight > RegWeight) {
   1468     // A register unit's weight can be adjusted only if it is the singular unit
   1469     // for this register, has not been used to normalize a subregister's set,
   1470     // and has not already been used to singularly determine this UberRegSet.
   1471     unsigned AdjustUnit = *Reg->getRegUnits().begin();
   1472     if (Reg->getRegUnits().count() != 1
   1473         || hasRegUnit(NormalUnits, AdjustUnit)
   1474         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
   1475       // We don't have an adjustable unit, so adopt a new one.
   1476       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
   1477       Reg->adoptRegUnit(AdjustUnit);
   1478       // Adopting a unit does not immediately require recomputing set weights.
   1479     }
   1480     else {
   1481       // Adjust the existing single unit.
   1482       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
   1483       // The unit may be shared among sets and registers within this set.
   1484       computeUberWeights(UberSets, RegBank);
   1485     }
   1486     Changed = true;
   1487   }
   1488 
   1489   // Mark these units normalized so superregisters can't change their weights.
   1490   NormalUnits |= Reg->getRegUnits();
   1491 
   1492   return Changed;
   1493 }
   1494 
   1495 // Compute a weight for each register unit created during getSubRegs.
   1496 //
   1497 // The goal is that two registers in the same class will have the same weight,
   1498 // where each register's weight is defined as sum of its units' weights.
   1499 void CodeGenRegBank::computeRegUnitWeights() {
   1500   std::vector<UberRegSet> UberSets;
   1501   std::vector<UberRegSet*> RegSets(Registers.size());
   1502   computeUberSets(UberSets, RegSets, *this);
   1503   // UberSets and RegSets are now immutable.
   1504 
   1505   computeUberWeights(UberSets, *this);
   1506 
   1507   // Iterate over each Register, normalizing the unit weights until reaching
   1508   // a fix point.
   1509   unsigned NumIters = 0;
   1510   for (bool Changed = true; Changed; ++NumIters) {
   1511     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
   1512     Changed = false;
   1513     for (auto &Reg : Registers) {
   1514       CodeGenRegister::RegUnitList NormalUnits;
   1515       SparseBitVector<> NormalRegs;
   1516       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
   1517                                  NormalUnits, *this);
   1518     }
   1519   }
   1520 }
   1521 
   1522 // Find a set in UniqueSets with the same elements as Set.
   1523 // Return an iterator into UniqueSets.
   1524 static std::vector<RegUnitSet>::const_iterator
   1525 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
   1526                const RegUnitSet &Set) {
   1527   std::vector<RegUnitSet>::const_iterator
   1528     I = UniqueSets.begin(), E = UniqueSets.end();
   1529   for(;I != E; ++I) {
   1530     if (I->Units == Set.Units)
   1531       break;
   1532   }
   1533   return I;
   1534 }
   1535 
   1536 // Return true if the RUSubSet is a subset of RUSuperSet.
   1537 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
   1538                             const std::vector<unsigned> &RUSuperSet) {
   1539   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
   1540                        RUSubSet.begin(), RUSubSet.end());
   1541 }
   1542 
   1543 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
   1544 /// but with one or two registers removed. We occasionally have registers like
   1545 /// APSR and PC thrown in with the general registers. We also see many
   1546 /// special-purpose register subsets, such as tail-call and Thumb
   1547 /// encodings. Generating all possible overlapping sets is combinatorial and
   1548 /// overkill for modeling pressure. Ideally we could fix this statically in
   1549 /// tablegen by (1) having the target define register classes that only include
   1550 /// the allocatable registers and marking other classes as non-allocatable and
   1551 /// (2) having a way to mark special purpose classes as "don't-care" classes for
   1552 /// the purpose of pressure.  However, we make an attempt to handle targets that
   1553 /// are not nicely defined by merging nearly identical register unit sets
   1554 /// statically. This generates smaller tables. Then, dynamically, we adjust the
   1555 /// set limit by filtering the reserved registers.
   1556 ///
   1557 /// Merge sets only if the units have the same weight. For example, on ARM,
   1558 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
   1559 /// should not expand the S set to include D regs.
   1560 void CodeGenRegBank::pruneUnitSets() {
   1561   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
   1562 
   1563   // Form an equivalence class of UnitSets with no significant difference.
   1564   std::vector<unsigned> SuperSetIDs;
   1565   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
   1566        SubIdx != EndIdx; ++SubIdx) {
   1567     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
   1568     unsigned SuperIdx = 0;
   1569     for (; SuperIdx != EndIdx; ++SuperIdx) {
   1570       if (SuperIdx == SubIdx)
   1571         continue;
   1572 
   1573       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
   1574       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
   1575       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
   1576           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
   1577           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
   1578           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
   1579         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
   1580               << "\n");
   1581         // We can pick any of the set names for the merged set. Go for the
   1582         // shortest one to avoid picking the name of one of the classes that are
   1583         // artificially created by tablegen. So "FPR128_lo" instead of
   1584         // "QQQQ_with_qsub3_in_FPR128_lo".
   1585         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
   1586           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
   1587         break;
   1588       }
   1589     }
   1590     if (SuperIdx == EndIdx)
   1591       SuperSetIDs.push_back(SubIdx);
   1592   }
   1593   // Populate PrunedUnitSets with each equivalence class's superset.
   1594   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
   1595   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
   1596     unsigned SuperIdx = SuperSetIDs[i];
   1597     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
   1598     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
   1599   }
   1600   RegUnitSets.swap(PrunedUnitSets);
   1601 }
   1602 
   1603 // Create a RegUnitSet for each RegClass that contains all units in the class
   1604 // including adopted units that are necessary to model register pressure. Then
   1605 // iteratively compute RegUnitSets such that the union of any two overlapping
   1606 // RegUnitSets is repreresented.
   1607 //
   1608 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
   1609 // RegUnitSet that is a superset of that RegUnitClass.
   1610 void CodeGenRegBank::computeRegUnitSets() {
   1611   assert(RegUnitSets.empty() && "dirty RegUnitSets");
   1612 
   1613   // Compute a unique RegUnitSet for each RegClass.
   1614   auto &RegClasses = getRegClasses();
   1615   for (auto &RC : RegClasses) {
   1616     if (!RC.Allocatable)
   1617       continue;
   1618 
   1619     // Speculatively grow the RegUnitSets to hold the new set.
   1620     RegUnitSets.resize(RegUnitSets.size() + 1);
   1621     RegUnitSets.back().Name = RC.getName();
   1622 
   1623     // Compute a sorted list of units in this class.
   1624     RC.buildRegUnitSet(RegUnitSets.back().Units);
   1625 
   1626     // Find an existing RegUnitSet.
   1627     std::vector<RegUnitSet>::const_iterator SetI =
   1628       findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1629     if (SetI != std::prev(RegUnitSets.end()))
   1630       RegUnitSets.pop_back();
   1631   }
   1632 
   1633   DEBUG(dbgs() << "\nBefore pruning:\n";
   1634         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1635              USIdx < USEnd; ++USIdx) {
   1636           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1637                  << ":";
   1638           for (auto &U : RegUnitSets[USIdx].Units)
   1639             dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1640           dbgs() << "\n";
   1641         });
   1642 
   1643   // Iteratively prune unit sets.
   1644   pruneUnitSets();
   1645 
   1646   DEBUG(dbgs() << "\nBefore union:\n";
   1647         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1648              USIdx < USEnd; ++USIdx) {
   1649           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1650                  << ":";
   1651           for (auto &U : RegUnitSets[USIdx].Units)
   1652             dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1653           dbgs() << "\n";
   1654         }
   1655         dbgs() << "\nUnion sets:\n");
   1656 
   1657   // Iterate over all unit sets, including new ones added by this loop.
   1658   unsigned NumRegUnitSubSets = RegUnitSets.size();
   1659   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1660     // In theory, this is combinatorial. In practice, it needs to be bounded
   1661     // by a small number of sets for regpressure to be efficient.
   1662     // If the assert is hit, we need to implement pruning.
   1663     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
   1664 
   1665     // Compare new sets with all original classes.
   1666     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
   1667          SearchIdx != EndIdx; ++SearchIdx) {
   1668       std::set<unsigned> Intersection;
   1669       std::set_intersection(RegUnitSets[Idx].Units.begin(),
   1670                             RegUnitSets[Idx].Units.end(),
   1671                             RegUnitSets[SearchIdx].Units.begin(),
   1672                             RegUnitSets[SearchIdx].Units.end(),
   1673                             std::inserter(Intersection, Intersection.begin()));
   1674       if (Intersection.empty())
   1675         continue;
   1676 
   1677       // Speculatively grow the RegUnitSets to hold the new set.
   1678       RegUnitSets.resize(RegUnitSets.size() + 1);
   1679       RegUnitSets.back().Name =
   1680         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
   1681 
   1682       std::set_union(RegUnitSets[Idx].Units.begin(),
   1683                      RegUnitSets[Idx].Units.end(),
   1684                      RegUnitSets[SearchIdx].Units.begin(),
   1685                      RegUnitSets[SearchIdx].Units.end(),
   1686                      std::inserter(RegUnitSets.back().Units,
   1687                                    RegUnitSets.back().Units.begin()));
   1688 
   1689       // Find an existing RegUnitSet, or add the union to the unique sets.
   1690       std::vector<RegUnitSet>::const_iterator SetI =
   1691         findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1692       if (SetI != std::prev(RegUnitSets.end()))
   1693         RegUnitSets.pop_back();
   1694       else {
   1695         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
   1696               << " " << RegUnitSets.back().Name << ":";
   1697               for (auto &U : RegUnitSets.back().Units)
   1698                 dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1699               dbgs() << "\n";);
   1700       }
   1701     }
   1702   }
   1703 
   1704   // Iteratively prune unit sets after inferring supersets.
   1705   pruneUnitSets();
   1706 
   1707   DEBUG(dbgs() << "\n";
   1708         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1709              USIdx < USEnd; ++USIdx) {
   1710           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1711                  << ":";
   1712           for (auto &U : RegUnitSets[USIdx].Units)
   1713             dbgs() << " " << RegUnits[U].Roots[0]->getName();
   1714           dbgs() << "\n";
   1715         });
   1716 
   1717   // For each register class, list the UnitSets that are supersets.
   1718   RegClassUnitSets.resize(RegClasses.size());
   1719   int RCIdx = -1;
   1720   for (auto &RC : RegClasses) {
   1721     ++RCIdx;
   1722     if (!RC.Allocatable)
   1723       continue;
   1724 
   1725     // Recompute the sorted list of units in this class.
   1726     std::vector<unsigned> RCRegUnits;
   1727     RC.buildRegUnitSet(RCRegUnits);
   1728 
   1729     // Don't increase pressure for unallocatable regclasses.
   1730     if (RCRegUnits.empty())
   1731       continue;
   1732 
   1733     DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
   1734           for (auto &U : RCRegUnits)
   1735             dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
   1736           dbgs() << "\n  UnitSetIDs:");
   1737 
   1738     // Find all supersets.
   1739     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1740          USIdx != USEnd; ++USIdx) {
   1741       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
   1742         DEBUG(dbgs() << " " << USIdx);
   1743         RegClassUnitSets[RCIdx].push_back(USIdx);
   1744       }
   1745     }
   1746     DEBUG(dbgs() << "\n");
   1747     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
   1748   }
   1749 
   1750   // For each register unit, ensure that we have the list of UnitSets that
   1751   // contain the unit. Normally, this matches an existing list of UnitSets for a
   1752   // register class. If not, we create a new entry in RegClassUnitSets as a
   1753   // "fake" register class.
   1754   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
   1755        UnitIdx < UnitEnd; ++UnitIdx) {
   1756     std::vector<unsigned> RUSets;
   1757     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
   1758       RegUnitSet &RUSet = RegUnitSets[i];
   1759       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
   1760           == RUSet.Units.end())
   1761         continue;
   1762       RUSets.push_back(i);
   1763     }
   1764     unsigned RCUnitSetsIdx = 0;
   1765     for (unsigned e = RegClassUnitSets.size();
   1766          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
   1767       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
   1768         break;
   1769       }
   1770     }
   1771     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
   1772     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
   1773       // Create a new list of UnitSets as a "fake" register class.
   1774       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
   1775       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
   1776     }
   1777   }
   1778 }
   1779 
   1780 void CodeGenRegBank::computeRegUnitLaneMasks() {
   1781   for (auto &Register : Registers) {
   1782     // Create an initial lane mask for all register units.
   1783     const auto &RegUnits = Register.getRegUnits();
   1784     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
   1785     // Iterate through SubRegisters.
   1786     typedef CodeGenRegister::SubRegMap SubRegMap;
   1787     const SubRegMap &SubRegs = Register.getSubRegs();
   1788     for (SubRegMap::const_iterator S = SubRegs.begin(),
   1789          SE = SubRegs.end(); S != SE; ++S) {
   1790       CodeGenRegister *SubReg = S->second;
   1791       // Ignore non-leaf subregisters, their lane masks are fully covered by
   1792       // the leaf subregisters anyway.
   1793       if (SubReg->getSubRegs().size() != 0)
   1794         continue;
   1795       CodeGenSubRegIndex *SubRegIndex = S->first;
   1796       const CodeGenRegister *SubRegister = S->second;
   1797       unsigned LaneMask = SubRegIndex->LaneMask;
   1798       // Distribute LaneMask to Register Units touched.
   1799       for (unsigned SUI : SubRegister->getRegUnits()) {
   1800         bool Found = false;
   1801         unsigned u = 0;
   1802         for (unsigned RU : RegUnits) {
   1803           if (SUI == RU) {
   1804             RegUnitLaneMasks[u] |= LaneMask;
   1805             assert(!Found);
   1806             Found = true;
   1807           }
   1808           ++u;
   1809         }
   1810         (void)Found;
   1811         assert(Found);
   1812       }
   1813     }
   1814     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
   1815   }
   1816 }
   1817 
   1818 void CodeGenRegBank::computeDerivedInfo() {
   1819   computeComposites();
   1820   computeSubRegLaneMasks();
   1821 
   1822   // Compute a weight for each register unit created during getSubRegs.
   1823   // This may create adopted register units (with unit # >= NumNativeRegUnits).
   1824   computeRegUnitWeights();
   1825 
   1826   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
   1827   // supersets for the union of overlapping sets.
   1828   computeRegUnitSets();
   1829 
   1830   computeRegUnitLaneMasks();
   1831 
   1832   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
   1833   for (CodeGenRegisterClass &RC : RegClasses) {
   1834     RC.HasDisjunctSubRegs = false;
   1835     RC.CoveredBySubRegs = true;
   1836     for (const CodeGenRegister *Reg : RC.getMembers()) {
   1837       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
   1838       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
   1839     }
   1840   }
   1841 
   1842   // Get the weight of each set.
   1843   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1844     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
   1845 
   1846   // Find the order of each set.
   1847   RegUnitSetOrder.reserve(RegUnitSets.size());
   1848   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1849     RegUnitSetOrder.push_back(Idx);
   1850 
   1851   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
   1852                    [this](unsigned ID1, unsigned ID2) {
   1853     return getRegPressureSet(ID1).Units.size() <
   1854            getRegPressureSet(ID2).Units.size();
   1855   });
   1856   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1857     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
   1858   }
   1859 }
   1860 
   1861 //
   1862 // Synthesize missing register class intersections.
   1863 //
   1864 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
   1865 // returns a maximal register class for all X.
   1866 //
   1867 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
   1868   assert(!RegClasses.empty());
   1869   // Stash the iterator to the last element so that this loop doesn't visit
   1870   // elements added by the getOrCreateSubClass call within it.
   1871   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
   1872        I != std::next(E); ++I) {
   1873     CodeGenRegisterClass *RC1 = RC;
   1874     CodeGenRegisterClass *RC2 = &*I;
   1875     if (RC1 == RC2)
   1876       continue;
   1877 
   1878     // Compute the set intersection of RC1 and RC2.
   1879     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
   1880     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
   1881     CodeGenRegister::Vec Intersection;
   1882     std::set_intersection(
   1883         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
   1884         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
   1885 
   1886     // Skip disjoint class pairs.
   1887     if (Intersection.empty())
   1888       continue;
   1889 
   1890     // If RC1 and RC2 have different spill sizes or alignments, use the
   1891     // larger size for sub-classing.  If they are equal, prefer RC1.
   1892     if (RC2->SpillSize > RC1->SpillSize ||
   1893         (RC2->SpillSize == RC1->SpillSize &&
   1894          RC2->SpillAlignment > RC1->SpillAlignment))
   1895       std::swap(RC1, RC2);
   1896 
   1897     getOrCreateSubClass(RC1, &Intersection,
   1898                         RC1->getName() + "_and_" + RC2->getName());
   1899   }
   1900 }
   1901 
   1902 //
   1903 // Synthesize missing sub-classes for getSubClassWithSubReg().
   1904 //
   1905 // Make sure that the set of registers in RC with a given SubIdx sub-register
   1906 // form a register class.  Update RC->SubClassWithSubReg.
   1907 //
   1908 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
   1909   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
   1910   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
   1911                    deref<llvm::less>> SubReg2SetMap;
   1912 
   1913   // Compute the set of registers supporting each SubRegIndex.
   1914   SubReg2SetMap SRSets;
   1915   for (const auto R : RC->getMembers()) {
   1916     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
   1917     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1918          E = SRM.end(); I != E; ++I)
   1919       SRSets[I->first].push_back(R);
   1920   }
   1921 
   1922   for (auto I : SRSets)
   1923     sortAndUniqueRegisters(I.second);
   1924 
   1925   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
   1926   // numerical order to visit synthetic indices last.
   1927   for (const auto &SubIdx : SubRegIndices) {
   1928     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
   1929     // Unsupported SubRegIndex. Skip it.
   1930     if (I == SRSets.end())
   1931       continue;
   1932     // In most cases, all RC registers support the SubRegIndex.
   1933     if (I->second.size() == RC->getMembers().size()) {
   1934       RC->setSubClassWithSubReg(&SubIdx, RC);
   1935       continue;
   1936     }
   1937     // This is a real subset.  See if we have a matching class.
   1938     CodeGenRegisterClass *SubRC =
   1939       getOrCreateSubClass(RC, &I->second,
   1940                           RC->getName() + "_with_" + I->first->getName());
   1941     RC->setSubClassWithSubReg(&SubIdx, SubRC);
   1942   }
   1943 }
   1944 
   1945 //
   1946 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
   1947 //
   1948 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
   1949 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
   1950 //
   1951 
   1952 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
   1953                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
   1954   SmallVector<std::pair<const CodeGenRegister*,
   1955                         const CodeGenRegister*>, 16> SSPairs;
   1956   BitVector TopoSigs(getNumTopoSigs());
   1957 
   1958   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
   1959   for (auto &SubIdx : SubRegIndices) {
   1960     // Skip indexes that aren't fully supported by RC's registers. This was
   1961     // computed by inferSubClassWithSubReg() above which should have been
   1962     // called first.
   1963     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
   1964       continue;
   1965 
   1966     // Build list of (Super, Sub) pairs for this SubIdx.
   1967     SSPairs.clear();
   1968     TopoSigs.reset();
   1969     for (const auto Super : RC->getMembers()) {
   1970       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
   1971       assert(Sub && "Missing sub-register");
   1972       SSPairs.push_back(std::make_pair(Super, Sub));
   1973       TopoSigs.set(Sub->getTopoSig());
   1974     }
   1975 
   1976     // Iterate over sub-register class candidates.  Ignore classes created by
   1977     // this loop. They will never be useful.
   1978     // Store an iterator to the last element (not end) so that this loop doesn't
   1979     // visit newly inserted elements.
   1980     assert(!RegClasses.empty());
   1981     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
   1982          I != std::next(E); ++I) {
   1983       CodeGenRegisterClass &SubRC = *I;
   1984       // Topological shortcut: SubRC members have the wrong shape.
   1985       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
   1986         continue;
   1987       // Compute the subset of RC that maps into SubRC.
   1988       CodeGenRegister::Vec SubSetVec;
   1989       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
   1990         if (SubRC.contains(SSPairs[i].second))
   1991           SubSetVec.push_back(SSPairs[i].first);
   1992 
   1993       if (SubSetVec.empty())
   1994         continue;
   1995 
   1996       // RC injects completely into SubRC.
   1997       sortAndUniqueRegisters(SubSetVec);
   1998       if (SubSetVec.size() == SSPairs.size()) {
   1999         SubRC.addSuperRegClass(&SubIdx, RC);
   2000         continue;
   2001       }
   2002 
   2003       // Only a subset of RC maps into SubRC. Make sure it is represented by a
   2004       // class.
   2005       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
   2006                                           SubIdx.getName() + "_in_" +
   2007                                           SubRC.getName());
   2008     }
   2009   }
   2010 }
   2011 
   2012 
   2013 //
   2014 // Infer missing register classes.
   2015 //
   2016 void CodeGenRegBank::computeInferredRegisterClasses() {
   2017   assert(!RegClasses.empty());
   2018   // When this function is called, the register classes have not been sorted
   2019   // and assigned EnumValues yet.  That means getSubClasses(),
   2020   // getSuperClasses(), and hasSubClass() functions are defunct.
   2021 
   2022   // Use one-before-the-end so it doesn't move forward when new elements are
   2023   // added.
   2024   auto FirstNewRC = std::prev(RegClasses.end());
   2025 
   2026   // Visit all register classes, including the ones being added by the loop.
   2027   // Watch out for iterator invalidation here.
   2028   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
   2029     CodeGenRegisterClass *RC = &*I;
   2030 
   2031     // Synthesize answers for getSubClassWithSubReg().
   2032     inferSubClassWithSubReg(RC);
   2033 
   2034     // Synthesize answers for getCommonSubClass().
   2035     inferCommonSubClass(RC);
   2036 
   2037     // Synthesize answers for getMatchingSuperRegClass().
   2038     inferMatchingSuperRegClass(RC);
   2039 
   2040     // New register classes are created while this loop is running, and we need
   2041     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
   2042     // to match old super-register classes with sub-register classes created
   2043     // after inferMatchingSuperRegClass was called.  At this point,
   2044     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
   2045     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
   2046     if (I == FirstNewRC) {
   2047       auto NextNewRC = std::prev(RegClasses.end());
   2048       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
   2049            ++I2)
   2050         inferMatchingSuperRegClass(&*I2, E2);
   2051       FirstNewRC = NextNewRC;
   2052     }
   2053   }
   2054 }
   2055 
   2056 /// getRegisterClassForRegister - Find the register class that contains the
   2057 /// specified physical register.  If the register is not in a register class,
   2058 /// return null. If the register is in multiple classes, and the classes have a
   2059 /// superset-subset relationship and the same set of types, return the
   2060 /// superclass.  Otherwise return null.
   2061 const CodeGenRegisterClass*
   2062 CodeGenRegBank::getRegClassForRegister(Record *R) {
   2063   const CodeGenRegister *Reg = getReg(R);
   2064   const CodeGenRegisterClass *FoundRC = nullptr;
   2065   for (const auto &RC : getRegClasses()) {
   2066     if (!RC.contains(Reg))
   2067       continue;
   2068 
   2069     // If this is the first class that contains the register,
   2070     // make a note of it and go on to the next class.
   2071     if (!FoundRC) {
   2072       FoundRC = &RC;
   2073       continue;
   2074     }
   2075 
   2076     // If a register's classes have different types, return null.
   2077     if (RC.getValueTypes() != FoundRC->getValueTypes())
   2078       return nullptr;
   2079 
   2080     // Check to see if the previously found class that contains
   2081     // the register is a subclass of the current class. If so,
   2082     // prefer the superclass.
   2083     if (RC.hasSubClass(FoundRC)) {
   2084       FoundRC = &RC;
   2085       continue;
   2086     }
   2087 
   2088     // Check to see if the previously found class that contains
   2089     // the register is a superclass of the current class. If so,
   2090     // prefer the superclass.
   2091     if (FoundRC->hasSubClass(&RC))
   2092       continue;
   2093 
   2094     // Multiple classes, and neither is a superclass of the other.
   2095     // Return null.
   2096     return nullptr;
   2097   }
   2098   return FoundRC;
   2099 }
   2100 
   2101 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
   2102   SetVector<const CodeGenRegister*> Set;
   2103 
   2104   // First add Regs with all sub-registers.
   2105   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   2106     CodeGenRegister *Reg = getReg(Regs[i]);
   2107     if (Set.insert(Reg))
   2108       // Reg is new, add all sub-registers.
   2109       // The pre-ordering is not important here.
   2110       Reg->addSubRegsPreOrder(Set, *this);
   2111   }
   2112 
   2113   // Second, find all super-registers that are completely covered by the set.
   2114   for (unsigned i = 0; i != Set.size(); ++i) {
   2115     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
   2116     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
   2117       const CodeGenRegister *Super = SR[j];
   2118       if (!Super->CoveredBySubRegs || Set.count(Super))
   2119         continue;
   2120       // This new super-register is covered by its sub-registers.
   2121       bool AllSubsInSet = true;
   2122       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
   2123       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   2124              E = SRM.end(); I != E; ++I)
   2125         if (!Set.count(I->second)) {
   2126           AllSubsInSet = false;
   2127           break;
   2128         }
   2129       // All sub-registers in Set, add Super as well.
   2130       // We will visit Super later to recheck its super-registers.
   2131       if (AllSubsInSet)
   2132         Set.insert(Super);
   2133     }
   2134   }
   2135 
   2136   // Convert to BitVector.
   2137   BitVector BV(Registers.size() + 1);
   2138   for (unsigned i = 0, e = Set.size(); i != e; ++i)
   2139     BV.set(Set[i]->EnumValue);
   2140   return BV;
   2141 }
   2142