Home | History | Annotate | Download | only in Mips
      1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Subclass of MipsTargetLowering specialized for mips16.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "Mips16ISelLowering.h"
     14 #include "MCTargetDesc/MipsBaseInfo.h"
     15 #include "Mips16HardFloatInfo.h"
     16 #include "MipsMachineFunction.h"
     17 #include "MipsRegisterInfo.h"
     18 #include "MipsTargetMachine.h"
     19 #include "llvm/CodeGen/MachineInstrBuilder.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Target/TargetInstrInfo.h"
     22 
     23 using namespace llvm;
     24 
     25 #define DEBUG_TYPE "mips-lower"
     26 
     27 static cl::opt<bool> DontExpandCondPseudos16(
     28   "mips16-dont-expand-cond-pseudo",
     29   cl::init(false),
     30   cl::desc("Don't expand conditional move related "
     31            "pseudos for Mips 16"),
     32   cl::Hidden);
     33 
     34 namespace {
     35 struct Mips16Libcall {
     36   RTLIB::Libcall Libcall;
     37   const char *Name;
     38 
     39   bool operator<(const Mips16Libcall &RHS) const {
     40     return std::strcmp(Name, RHS.Name) < 0;
     41   }
     42 };
     43 
     44 struct Mips16IntrinsicHelperType{
     45   const char* Name;
     46   const char* Helper;
     47 
     48   bool operator<(const Mips16IntrinsicHelperType &RHS) const {
     49     return std::strcmp(Name, RHS.Name) < 0;
     50   }
     51   bool operator==(const Mips16IntrinsicHelperType &RHS) const {
     52     return std::strcmp(Name, RHS.Name) == 0;
     53   }
     54 };
     55 }
     56 
     57 // Libcalls for which no helper is generated. Sorted by name for binary search.
     58 static const Mips16Libcall HardFloatLibCalls[] = {
     59   { RTLIB::ADD_F64, "__mips16_adddf3" },
     60   { RTLIB::ADD_F32, "__mips16_addsf3" },
     61   { RTLIB::DIV_F64, "__mips16_divdf3" },
     62   { RTLIB::DIV_F32, "__mips16_divsf3" },
     63   { RTLIB::OEQ_F64, "__mips16_eqdf2" },
     64   { RTLIB::OEQ_F32, "__mips16_eqsf2" },
     65   { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
     66   { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
     67   { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
     68   { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
     69   { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
     70   { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
     71   { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
     72   { RTLIB::OGE_F64, "__mips16_gedf2" },
     73   { RTLIB::OGE_F32, "__mips16_gesf2" },
     74   { RTLIB::OGT_F64, "__mips16_gtdf2" },
     75   { RTLIB::OGT_F32, "__mips16_gtsf2" },
     76   { RTLIB::OLE_F64, "__mips16_ledf2" },
     77   { RTLIB::OLE_F32, "__mips16_lesf2" },
     78   { RTLIB::OLT_F64, "__mips16_ltdf2" },
     79   { RTLIB::OLT_F32, "__mips16_ltsf2" },
     80   { RTLIB::MUL_F64, "__mips16_muldf3" },
     81   { RTLIB::MUL_F32, "__mips16_mulsf3" },
     82   { RTLIB::UNE_F64, "__mips16_nedf2" },
     83   { RTLIB::UNE_F32, "__mips16_nesf2" },
     84   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
     85   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
     86   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
     87   { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
     88   { RTLIB::SUB_F64, "__mips16_subdf3" },
     89   { RTLIB::SUB_F32, "__mips16_subsf3" },
     90   { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
     91   { RTLIB::UO_F64, "__mips16_unorddf2" },
     92   { RTLIB::UO_F32, "__mips16_unordsf2" }
     93 };
     94 
     95 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
     96   {"__fixunsdfsi", "__mips16_call_stub_2" },
     97   {"ceil",  "__mips16_call_stub_df_2"},
     98   {"ceilf", "__mips16_call_stub_sf_1"},
     99   {"copysign",  "__mips16_call_stub_df_10"},
    100   {"copysignf", "__mips16_call_stub_sf_5"},
    101   {"cos",  "__mips16_call_stub_df_2"},
    102   {"cosf", "__mips16_call_stub_sf_1"},
    103   {"exp2",  "__mips16_call_stub_df_2"},
    104   {"exp2f", "__mips16_call_stub_sf_1"},
    105   {"floor",  "__mips16_call_stub_df_2"},
    106   {"floorf", "__mips16_call_stub_sf_1"},
    107   {"log2",  "__mips16_call_stub_df_2"},
    108   {"log2f", "__mips16_call_stub_sf_1"},
    109   {"nearbyint",  "__mips16_call_stub_df_2"},
    110   {"nearbyintf", "__mips16_call_stub_sf_1"},
    111   {"rint",  "__mips16_call_stub_df_2"},
    112   {"rintf", "__mips16_call_stub_sf_1"},
    113   {"sin",  "__mips16_call_stub_df_2"},
    114   {"sinf", "__mips16_call_stub_sf_1"},
    115   {"sqrt",  "__mips16_call_stub_df_2"},
    116   {"sqrtf", "__mips16_call_stub_sf_1"},
    117   {"trunc",  "__mips16_call_stub_df_2"},
    118   {"truncf", "__mips16_call_stub_sf_1"},
    119 };
    120 
    121 Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
    122                                            const MipsSubtarget &STI)
    123     : MipsTargetLowering(TM, STI) {
    124 
    125   // Set up the register classes
    126   addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
    127 
    128   if (!Subtarget.useSoftFloat())
    129     setMips16HardFloatLibCalls();
    130 
    131   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
    132   setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
    133   setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
    134   setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
    135   setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
    136   setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
    137   setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
    138   setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
    139   setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
    140   setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
    141   setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
    142   setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
    143   setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);
    144 
    145   setOperationAction(ISD::ROTR, MVT::i32,  Expand);
    146   setOperationAction(ISD::ROTR, MVT::i64,  Expand);
    147   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    148   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
    149 
    150   computeRegisterProperties(STI.getRegisterInfo());
    151 }
    152 
    153 const MipsTargetLowering *
    154 llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
    155                                  const MipsSubtarget &STI) {
    156   return new Mips16TargetLowering(TM, STI);
    157 }
    158 
    159 bool
    160 Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
    161                                                      unsigned,
    162                                                      unsigned,
    163                                                      bool *Fast) const {
    164   return false;
    165 }
    166 
    167 MachineBasicBlock *
    168 Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
    169                                                   MachineBasicBlock *BB) const {
    170   switch (MI.getOpcode()) {
    171   default:
    172     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
    173   case Mips::SelBeqZ:
    174     return emitSel16(Mips::BeqzRxImm16, MI, BB);
    175   case Mips::SelBneZ:
    176     return emitSel16(Mips::BnezRxImm16, MI, BB);
    177   case Mips::SelTBteqZCmpi:
    178     return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
    179   case Mips::SelTBteqZSlti:
    180     return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
    181   case Mips::SelTBteqZSltiu:
    182     return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
    183   case Mips::SelTBtneZCmpi:
    184     return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
    185   case Mips::SelTBtneZSlti:
    186     return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
    187   case Mips::SelTBtneZSltiu:
    188     return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
    189   case Mips::SelTBteqZCmp:
    190     return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
    191   case Mips::SelTBteqZSlt:
    192     return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
    193   case Mips::SelTBteqZSltu:
    194     return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
    195   case Mips::SelTBtneZCmp:
    196     return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
    197   case Mips::SelTBtneZSlt:
    198     return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
    199   case Mips::SelTBtneZSltu:
    200     return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
    201   case Mips::BteqzT8CmpX16:
    202     return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
    203   case Mips::BteqzT8SltX16:
    204     return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
    205   case Mips::BteqzT8SltuX16:
    206     // TBD: figure out a way to get this or remove the instruction
    207     // altogether.
    208     return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
    209   case Mips::BtnezT8CmpX16:
    210     return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
    211   case Mips::BtnezT8SltX16:
    212     return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
    213   case Mips::BtnezT8SltuX16:
    214     // TBD: figure out a way to get this or remove the instruction
    215     // altogether.
    216     return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
    217   case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
    218     Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
    219   case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
    220     Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
    221   case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
    222     Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
    223   case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
    224     Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
    225   case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
    226     Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
    227   case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
    228     Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
    229     break;
    230   case Mips::SltCCRxRy16:
    231     return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
    232     break;
    233   case Mips::SltiCCRxImmX16:
    234     return emitFEXT_CCRXI16_ins
    235       (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
    236   case Mips::SltiuCCRxImmX16:
    237     return emitFEXT_CCRXI16_ins
    238       (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
    239   case Mips::SltuCCRxRy16:
    240     return emitFEXT_CCRX16_ins
    241       (Mips::SltuRxRy16, MI, BB);
    242   }
    243 }
    244 
    245 bool Mips16TargetLowering::isEligibleForTailCallOptimization(
    246     const CCState &CCInfo, unsigned NextStackOffset,
    247     const MipsFunctionInfo &FI) const {
    248   // No tail call optimization for mips16.
    249   return false;
    250 }
    251 
    252 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
    253   for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
    254     assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
    255            "Array not sorted!");
    256     if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
    257       setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
    258   }
    259 
    260   setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
    261   setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
    262 }
    263 
    264 //
    265 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
    266 // cleaner way to do all of this but it will have to wait until the traditional
    267 // gcc mechanism is completed.
    268 //
    269 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
    270 // have either arguments or returned values placed in floating point registers,
    271 // we use a set of helper functions. (This includes functions which return type
    272 //  complex which on Mips are returned in a pair of floating point registers).
    273 //
    274 // This is an encoding that we inherited from gcc.
    275 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
    276 // floating point argument registers 1,2 only when the first and optionally
    277 // the second arguments are float (sf) or double (df).
    278 // For Mips16 we are only concerned with the situations where floating point
    279 // arguments are being passed in floating point registers by the ABI, because
    280 // Mips16 mode code cannot execute floating point instructions to load those
    281 // values and hence helper functions are needed.
    282 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
    283 // the helper function suffixs for these are:
    284 //                        0,  1,    5,        9,         2,   6,        10
    285 // this suffix can then be calculated as follows:
    286 // for a given argument Arg:
    287 //     Arg1x, Arg2x = 1 :  Arg is sf
    288 //                    2 :  Arg is df
    289 //                    0:   Arg is neither sf or df
    290 // So this stub is the string for number Arg1x + Arg2x*4.
    291 // However not all numbers between 0 and 10 are possible, we check anyway and
    292 // assert if the impossible exists.
    293 //
    294 
    295 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
    296   (ArgListTy &Args) const {
    297   unsigned int resultNum = 0;
    298   if (Args.size() >= 1) {
    299     Type *t = Args[0].Ty;
    300     if (t->isFloatTy()) {
    301       resultNum = 1;
    302     }
    303     else if (t->isDoubleTy()) {
    304       resultNum = 2;
    305     }
    306   }
    307   if (resultNum) {
    308     if (Args.size() >=2) {
    309       Type *t = Args[1].Ty;
    310       if (t->isFloatTy()) {
    311         resultNum += 4;
    312       }
    313       else if (t->isDoubleTy()) {
    314         resultNum += 8;
    315       }
    316     }
    317   }
    318   return resultNum;
    319 }
    320 
    321 //
    322 // Prefixes are attached to stub numbers depending on the return type.
    323 // return type: float  sf_
    324 //              double df_
    325 //              single complex sc_
    326 //              double complext dc_
    327 //              others  NO PREFIX
    328 //
    329 //
    330 // The full name of a helper function is__mips16_call_stub +
    331 //    return type dependent prefix + stub number
    332 //
    333 // FIXME: This is something that probably should be in a different source file
    334 // and perhaps done differently but my main purpose is to not waste runtime
    335 // on something that we can enumerate in the source. Another possibility is
    336 // to have a python script to generate these mapping tables. This will do
    337 // for now. There are a whole series of helper function mapping arrays, one
    338 // for each return type class as outlined above. There there are 11 possible
    339 // entries. Ones with 0 are ones which should never be selected.
    340 //
    341 // All the arrays are similar except for ones which return neither
    342 // sf, df, sc, dc, in which we only care about ones which have sf or df as a
    343 // first parameter.
    344 //
    345 #define P_ "__mips16_call_stub_"
    346 #define MAX_STUB_NUMBER 10
    347 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
    348 #define T P "0" , T1
    349 #define P P_
    350 static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
    351   {nullptr, T1 };
    352 #undef P
    353 #define P P_ "sf_"
    354 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
    355   { T };
    356 #undef P
    357 #define P P_ "df_"
    358 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
    359   { T };
    360 #undef P
    361 #define P P_ "sc_"
    362 static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
    363   { T };
    364 #undef P
    365 #define P P_ "dc_"
    366 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
    367   { T };
    368 #undef P
    369 #undef P_
    370 
    371 
    372 const char* Mips16TargetLowering::
    373   getMips16HelperFunction
    374     (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
    375   const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
    376 #ifndef NDEBUG
    377   const unsigned int maxStubNum = 10;
    378   assert(stubNum <= maxStubNum);
    379   const bool validStubNum[maxStubNum+1] =
    380     {true, true, true, false, false, true, true, false, false, true, true};
    381   assert(validStubNum[stubNum]);
    382 #endif
    383   const char *result;
    384   if (RetTy->isFloatTy()) {
    385     result = sfMips16Helper[stubNum];
    386   }
    387   else if (RetTy ->isDoubleTy()) {
    388     result = dfMips16Helper[stubNum];
    389   }
    390   else if (RetTy->isStructTy()) {
    391     // check if it's complex
    392     if (RetTy->getNumContainedTypes() == 2) {
    393       if ((RetTy->getContainedType(0)->isFloatTy()) &&
    394           (RetTy->getContainedType(1)->isFloatTy())) {
    395         result = scMips16Helper[stubNum];
    396       }
    397       else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
    398                (RetTy->getContainedType(1)->isDoubleTy())) {
    399         result = dcMips16Helper[stubNum];
    400       }
    401       else {
    402         llvm_unreachable("Uncovered condition");
    403       }
    404     }
    405     else {
    406       llvm_unreachable("Uncovered condition");
    407     }
    408   }
    409   else {
    410     if (stubNum == 0) {
    411       needHelper = false;
    412       return "";
    413     }
    414     result = vMips16Helper[stubNum];
    415   }
    416   needHelper = true;
    417   return result;
    418 }
    419 
    420 void Mips16TargetLowering::
    421 getOpndList(SmallVectorImpl<SDValue> &Ops,
    422             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
    423             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
    424             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
    425             SDValue Chain) const {
    426   SelectionDAG &DAG = CLI.DAG;
    427   MachineFunction &MF = DAG.getMachineFunction();
    428   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
    429   const char* Mips16HelperFunction = nullptr;
    430   bool NeedMips16Helper = false;
    431 
    432   if (Subtarget.inMips16HardFloat()) {
    433     //
    434     // currently we don't have symbols tagged with the mips16 or mips32
    435     // qualifier so we will assume that we don't know what kind it is.
    436     // and generate the helper
    437     //
    438     bool LookupHelper = true;
    439     if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
    440       Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
    441 
    442       if (std::binary_search(std::begin(HardFloatLibCalls),
    443                              std::end(HardFloatLibCalls), Find))
    444         LookupHelper = false;
    445       else {
    446         const char *Symbol = S->getSymbol();
    447         Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
    448         const Mips16HardFloatInfo::FuncSignature *Signature =
    449             Mips16HardFloatInfo::findFuncSignature(Symbol);
    450         if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
    451                                          FuncInfo->StubsNeeded.end()))) {
    452           FuncInfo->StubsNeeded[Symbol] = Signature;
    453           //
    454           // S2 is normally saved if the stub is for a function which
    455           // returns a float or double value and is not otherwise. This is
    456           // because more work is required after the function the stub
    457           // is calling completes, and so the stub cannot directly return
    458           // and the stub has no stack space to store the return address so
    459           // S2 is used for that purpose.
    460           // In order to take advantage of not saving S2, we need to also
    461           // optimize the call in the stub and this requires some further
    462           // functionality in MipsAsmPrinter which we don't have yet.
    463           // So for now we always save S2. The optimization will be done
    464           // in a follow-on patch.
    465           //
    466           if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
    467             FuncInfo->setSaveS2();
    468         }
    469         // one more look at list of intrinsics
    470         const Mips16IntrinsicHelperType *Helper =
    471             std::lower_bound(std::begin(Mips16IntrinsicHelper),
    472                              std::end(Mips16IntrinsicHelper), IntrinsicFind);
    473         if (Helper != std::end(Mips16IntrinsicHelper) &&
    474             *Helper == IntrinsicFind) {
    475           Mips16HelperFunction = Helper->Helper;
    476           NeedMips16Helper = true;
    477           LookupHelper = false;
    478         }
    479 
    480       }
    481     } else if (GlobalAddressSDNode *G =
    482                    dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
    483       Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
    484                              G->getGlobal()->getName().data() };
    485 
    486       if (std::binary_search(std::begin(HardFloatLibCalls),
    487                              std::end(HardFloatLibCalls), Find))
    488         LookupHelper = false;
    489     }
    490     if (LookupHelper)
    491       Mips16HelperFunction =
    492         getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
    493   }
    494 
    495   SDValue JumpTarget = Callee;
    496 
    497   // T9 should contain the address of the callee function if
    498   // -relocation-model=pic or it is an indirect call.
    499   if (IsPICCall || !GlobalOrExternal) {
    500     unsigned V0Reg = Mips::V0;
    501     if (NeedMips16Helper) {
    502       RegsToPass.push_front(std::make_pair(V0Reg, Callee));
    503       JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction,
    504                                          getPointerTy(DAG.getDataLayout()));
    505       ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
    506       JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
    507                                  MipsII::MO_GOT, Chain,
    508                                  FuncInfo->callPtrInfo(S->getSymbol()));
    509     } else
    510       RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
    511   }
    512 
    513   Ops.push_back(JumpTarget);
    514 
    515   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
    516                                   InternalLinkage, IsCallReloc, CLI, Callee,
    517                                   Chain);
    518 }
    519 
    520 MachineBasicBlock *
    521 Mips16TargetLowering::emitSel16(unsigned Opc, MachineInstr &MI,
    522                                 MachineBasicBlock *BB) const {
    523   if (DontExpandCondPseudos16)
    524     return BB;
    525   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
    526   DebugLoc DL = MI.getDebugLoc();
    527   // To "insert" a SELECT_CC instruction, we actually have to insert the
    528   // diamond control-flow pattern.  The incoming instruction knows the
    529   // destination vreg to set, the condition code register to branch on, the
    530   // true/false values to select between, and a branch opcode to use.
    531   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    532   MachineFunction::iterator It = ++BB->getIterator();
    533 
    534   //  thisMBB:
    535   //  ...
    536   //   TrueVal = ...
    537   //   setcc r1, r2, r3
    538   //   bNE   r1, r0, copy1MBB
    539   //   fallthrough --> copy0MBB
    540   MachineBasicBlock *thisMBB  = BB;
    541   MachineFunction *F = BB->getParent();
    542   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    543   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    544   F->insert(It, copy0MBB);
    545   F->insert(It, sinkMBB);
    546 
    547   // Transfer the remainder of BB and its successor edges to sinkMBB.
    548   sinkMBB->splice(sinkMBB->begin(), BB,
    549                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
    550   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
    551 
    552   // Next, add the true and fallthrough blocks as its successors.
    553   BB->addSuccessor(copy0MBB);
    554   BB->addSuccessor(sinkMBB);
    555 
    556   BuildMI(BB, DL, TII->get(Opc))
    557       .addReg(MI.getOperand(3).getReg())
    558       .addMBB(sinkMBB);
    559 
    560   //  copy0MBB:
    561   //   %FalseValue = ...
    562   //   # fallthrough to sinkMBB
    563   BB = copy0MBB;
    564 
    565   // Update machine-CFG edges
    566   BB->addSuccessor(sinkMBB);
    567 
    568   //  sinkMBB:
    569   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
    570   //  ...
    571   BB = sinkMBB;
    572 
    573   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
    574       .addReg(MI.getOperand(1).getReg())
    575       .addMBB(thisMBB)
    576       .addReg(MI.getOperand(2).getReg())
    577       .addMBB(copy0MBB);
    578 
    579   MI.eraseFromParent(); // The pseudo instruction is gone now.
    580   return BB;
    581 }
    582 
    583 MachineBasicBlock *
    584 Mips16TargetLowering::emitSelT16(unsigned Opc1, unsigned Opc2, MachineInstr &MI,
    585                                  MachineBasicBlock *BB) const {
    586   if (DontExpandCondPseudos16)
    587     return BB;
    588   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
    589   DebugLoc DL = MI.getDebugLoc();
    590   // To "insert" a SELECT_CC instruction, we actually have to insert the
    591   // diamond control-flow pattern.  The incoming instruction knows the
    592   // destination vreg to set, the condition code register to branch on, the
    593   // true/false values to select between, and a branch opcode to use.
    594   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    595   MachineFunction::iterator It = ++BB->getIterator();
    596 
    597   //  thisMBB:
    598   //  ...
    599   //   TrueVal = ...
    600   //   setcc r1, r2, r3
    601   //   bNE   r1, r0, copy1MBB
    602   //   fallthrough --> copy0MBB
    603   MachineBasicBlock *thisMBB  = BB;
    604   MachineFunction *F = BB->getParent();
    605   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    606   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    607   F->insert(It, copy0MBB);
    608   F->insert(It, sinkMBB);
    609 
    610   // Transfer the remainder of BB and its successor edges to sinkMBB.
    611   sinkMBB->splice(sinkMBB->begin(), BB,
    612                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
    613   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
    614 
    615   // Next, add the true and fallthrough blocks as its successors.
    616   BB->addSuccessor(copy0MBB);
    617   BB->addSuccessor(sinkMBB);
    618 
    619   BuildMI(BB, DL, TII->get(Opc2))
    620       .addReg(MI.getOperand(3).getReg())
    621       .addReg(MI.getOperand(4).getReg());
    622   BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
    623 
    624   //  copy0MBB:
    625   //   %FalseValue = ...
    626   //   # fallthrough to sinkMBB
    627   BB = copy0MBB;
    628 
    629   // Update machine-CFG edges
    630   BB->addSuccessor(sinkMBB);
    631 
    632   //  sinkMBB:
    633   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
    634   //  ...
    635   BB = sinkMBB;
    636 
    637   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
    638       .addReg(MI.getOperand(1).getReg())
    639       .addMBB(thisMBB)
    640       .addReg(MI.getOperand(2).getReg())
    641       .addMBB(copy0MBB);
    642 
    643   MI.eraseFromParent(); // The pseudo instruction is gone now.
    644   return BB;
    645 
    646 }
    647 
    648 MachineBasicBlock *
    649 Mips16TargetLowering::emitSeliT16(unsigned Opc1, unsigned Opc2,
    650                                   MachineInstr &MI,
    651                                   MachineBasicBlock *BB) const {
    652   if (DontExpandCondPseudos16)
    653     return BB;
    654   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
    655   DebugLoc DL = MI.getDebugLoc();
    656   // To "insert" a SELECT_CC instruction, we actually have to insert the
    657   // diamond control-flow pattern.  The incoming instruction knows the
    658   // destination vreg to set, the condition code register to branch on, the
    659   // true/false values to select between, and a branch opcode to use.
    660   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    661   MachineFunction::iterator It = ++BB->getIterator();
    662 
    663   //  thisMBB:
    664   //  ...
    665   //   TrueVal = ...
    666   //   setcc r1, r2, r3
    667   //   bNE   r1, r0, copy1MBB
    668   //   fallthrough --> copy0MBB
    669   MachineBasicBlock *thisMBB  = BB;
    670   MachineFunction *F = BB->getParent();
    671   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    672   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    673   F->insert(It, copy0MBB);
    674   F->insert(It, sinkMBB);
    675 
    676   // Transfer the remainder of BB and its successor edges to sinkMBB.
    677   sinkMBB->splice(sinkMBB->begin(), BB,
    678                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
    679   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
    680 
    681   // Next, add the true and fallthrough blocks as its successors.
    682   BB->addSuccessor(copy0MBB);
    683   BB->addSuccessor(sinkMBB);
    684 
    685   BuildMI(BB, DL, TII->get(Opc2))
    686       .addReg(MI.getOperand(3).getReg())
    687       .addImm(MI.getOperand(4).getImm());
    688   BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
    689 
    690   //  copy0MBB:
    691   //   %FalseValue = ...
    692   //   # fallthrough to sinkMBB
    693   BB = copy0MBB;
    694 
    695   // Update machine-CFG edges
    696   BB->addSuccessor(sinkMBB);
    697 
    698   //  sinkMBB:
    699   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
    700   //  ...
    701   BB = sinkMBB;
    702 
    703   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
    704       .addReg(MI.getOperand(1).getReg())
    705       .addMBB(thisMBB)
    706       .addReg(MI.getOperand(2).getReg())
    707       .addMBB(copy0MBB);
    708 
    709   MI.eraseFromParent(); // The pseudo instruction is gone now.
    710   return BB;
    711 
    712 }
    713 
    714 MachineBasicBlock *
    715 Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
    716                                           MachineInstr &MI,
    717                                           MachineBasicBlock *BB) const {
    718   if (DontExpandCondPseudos16)
    719     return BB;
    720   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
    721   unsigned regX = MI.getOperand(0).getReg();
    722   unsigned regY = MI.getOperand(1).getReg();
    723   MachineBasicBlock *target = MI.getOperand(2).getMBB();
    724   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc))
    725       .addReg(regX)
    726       .addReg(regY);
    727   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
    728   MI.eraseFromParent(); // The pseudo instruction is gone now.
    729   return BB;
    730 }
    731 
    732 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
    733     unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
    734     MachineInstr &MI, MachineBasicBlock *BB) const {
    735   if (DontExpandCondPseudos16)
    736     return BB;
    737   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
    738   unsigned regX = MI.getOperand(0).getReg();
    739   int64_t imm = MI.getOperand(1).getImm();
    740   MachineBasicBlock *target = MI.getOperand(2).getMBB();
    741   unsigned CmpOpc;
    742   if (isUInt<8>(imm))
    743     CmpOpc = CmpiOpc;
    744   else if ((!ImmSigned && isUInt<16>(imm)) ||
    745            (ImmSigned && isInt<16>(imm)))
    746     CmpOpc = CmpiXOpc;
    747   else
    748     llvm_unreachable("immediate field not usable");
    749   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm);
    750   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
    751   MI.eraseFromParent(); // The pseudo instruction is gone now.
    752   return BB;
    753 }
    754 
    755 static unsigned Mips16WhichOp8uOr16simm
    756   (unsigned shortOp, unsigned longOp, int64_t Imm) {
    757   if (isUInt<8>(Imm))
    758     return shortOp;
    759   else if (isInt<16>(Imm))
    760     return longOp;
    761   else
    762     llvm_unreachable("immediate field not usable");
    763 }
    764 
    765 MachineBasicBlock *
    766 Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc, MachineInstr &MI,
    767                                           MachineBasicBlock *BB) const {
    768   if (DontExpandCondPseudos16)
    769     return BB;
    770   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
    771   unsigned CC = MI.getOperand(0).getReg();
    772   unsigned regX = MI.getOperand(1).getReg();
    773   unsigned regY = MI.getOperand(2).getReg();
    774   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc))
    775       .addReg(regX)
    776       .addReg(regY);
    777   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
    778       .addReg(Mips::T8);
    779   MI.eraseFromParent(); // The pseudo instruction is gone now.
    780   return BB;
    781 }
    782 
    783 MachineBasicBlock *
    784 Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc, unsigned SltiXOpc,
    785                                            MachineInstr &MI,
    786                                            MachineBasicBlock *BB) const {
    787   if (DontExpandCondPseudos16)
    788     return BB;
    789   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
    790   unsigned CC = MI.getOperand(0).getReg();
    791   unsigned regX = MI.getOperand(1).getReg();
    792   int64_t Imm = MI.getOperand(2).getImm();
    793   unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
    794   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm);
    795   BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
    796       .addReg(Mips::T8);
    797   MI.eraseFromParent(); // The pseudo instruction is gone now.
    798   return BB;
    799 
    800 }
    801