1 /* 2 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <arch.h> 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <debug.h> 11 #include <gicv3.h> 12 #include <interrupt_props.h> 13 #include <spinlock.h> 14 #include "gicv3_private.h" 15 16 const gicv3_driver_data_t *gicv3_driver_data; 17 static unsigned int gicv2_compat; 18 19 /* 20 * Spinlock to guard registers needing read-modify-write. APIs protected by this 21 * spinlock are used either at boot time (when only a single CPU is active), or 22 * when the system is fully coherent. 23 */ 24 spinlock_t gic_lock; 25 26 /* 27 * Redistributor power operations are weakly bound so that they can be 28 * overridden 29 */ 30 #pragma weak gicv3_rdistif_off 31 #pragma weak gicv3_rdistif_on 32 33 34 /* Helper macros to save and restore GICD registers to and from the context */ 35 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG) \ 36 do { \ 37 for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \ 38 int_id += (1 << REG##_SHIFT)) { \ 39 gicd_write_##reg(base, int_id, \ 40 ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \ 41 } \ 42 } while (0) 43 44 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG) \ 45 do { \ 46 for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \ 47 int_id += (1 << REG##_SHIFT)) { \ 48 ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\ 49 gicd_read_##reg(base, int_id); \ 50 } \ 51 } while (0) 52 53 54 /******************************************************************************* 55 * This function initialises the ARM GICv3 driver in EL3 with provided platform 56 * inputs. 57 ******************************************************************************/ 58 void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data) 59 { 60 unsigned int gic_version; 61 62 assert(plat_driver_data); 63 assert(plat_driver_data->gicd_base); 64 assert(plat_driver_data->gicr_base); 65 assert(plat_driver_data->rdistif_num); 66 assert(plat_driver_data->rdistif_base_addrs); 67 68 assert(IS_IN_EL3()); 69 70 #if !ERROR_DEPRECATED 71 if (plat_driver_data->interrupt_props == NULL) { 72 /* Interrupt properties array size must be 0 */ 73 assert(plat_driver_data->interrupt_props_num == 0); 74 75 /* 76 * The platform should provide a list of at least one type of 77 * interrupt. 78 */ 79 assert(plat_driver_data->g0_interrupt_array || 80 plat_driver_data->g1s_interrupt_array); 81 82 /* 83 * If there are no interrupts of a particular type, then the 84 * number of interrupts of that type should be 0 and vice-versa. 85 */ 86 assert(plat_driver_data->g0_interrupt_array ? 87 plat_driver_data->g0_interrupt_num : 88 plat_driver_data->g0_interrupt_num == 0); 89 assert(plat_driver_data->g1s_interrupt_array ? 90 plat_driver_data->g1s_interrupt_num : 91 plat_driver_data->g1s_interrupt_num == 0); 92 } 93 #else 94 assert(plat_driver_data->interrupt_props != NULL); 95 assert(plat_driver_data->interrupt_props_num > 0); 96 #endif 97 98 /* Check for system register support */ 99 #ifdef AARCH32 100 assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)); 101 #else 102 assert(read_id_aa64pfr0_el1() & 103 (ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)); 104 #endif /* AARCH32 */ 105 106 /* The GIC version should be 3.0 */ 107 gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); 108 gic_version >>= PIDR2_ARCH_REV_SHIFT; 109 gic_version &= PIDR2_ARCH_REV_MASK; 110 assert(gic_version == ARCH_REV_GICV3); 111 112 /* 113 * Find out whether the GIC supports the GICv2 compatibility mode. The 114 * ARE_S bit resets to 0 if supported 115 */ 116 gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base); 117 gicv2_compat >>= CTLR_ARE_S_SHIFT; 118 gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK); 119 120 /* 121 * Find the base address of each implemented Redistributor interface. 122 * The number of interfaces should be equal to the number of CPUs in the 123 * system. The memory for saving these addresses has to be allocated by 124 * the platform port 125 */ 126 gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs, 127 plat_driver_data->rdistif_num, 128 plat_driver_data->gicr_base, 129 plat_driver_data->mpidr_to_core_pos); 130 131 gicv3_driver_data = plat_driver_data; 132 133 /* 134 * The GIC driver data is initialized by the primary CPU with caches 135 * enabled. When the secondary CPU boots up, it initializes the 136 * GICC/GICR interface with the caches disabled. Hence flush the 137 * driver data to ensure coherency. This is not required if the 138 * platform has HW_ASSISTED_COHERENCY enabled. 139 */ 140 #if !HW_ASSISTED_COHERENCY 141 flush_dcache_range((uintptr_t) &gicv3_driver_data, 142 sizeof(gicv3_driver_data)); 143 flush_dcache_range((uintptr_t) gicv3_driver_data, 144 sizeof(*gicv3_driver_data)); 145 #endif 146 147 INFO("GICv3 %s legacy support detected." 148 " ARM GICV3 driver initialized in EL3\n", 149 gicv2_compat ? "with" : "without"); 150 } 151 152 /******************************************************************************* 153 * This function initialises the GIC distributor interface based upon the data 154 * provided by the platform while initialising the driver. 155 ******************************************************************************/ 156 void gicv3_distif_init(void) 157 { 158 unsigned int bitmap = 0; 159 160 assert(gicv3_driver_data); 161 assert(gicv3_driver_data->gicd_base); 162 163 assert(IS_IN_EL3()); 164 165 /* 166 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring 167 * the ARE_S bit. The Distributor might generate a system error 168 * otherwise. 169 */ 170 gicd_clr_ctlr(gicv3_driver_data->gicd_base, 171 CTLR_ENABLE_G0_BIT | 172 CTLR_ENABLE_G1S_BIT | 173 CTLR_ENABLE_G1NS_BIT, 174 RWP_TRUE); 175 176 /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ 177 gicd_set_ctlr(gicv3_driver_data->gicd_base, 178 CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); 179 180 /* Set the default attribute of all SPIs */ 181 gicv3_spis_configure_defaults(gicv3_driver_data->gicd_base); 182 183 #if !ERROR_DEPRECATED 184 if (gicv3_driver_data->interrupt_props != NULL) { 185 #endif 186 bitmap = gicv3_secure_spis_configure_props( 187 gicv3_driver_data->gicd_base, 188 gicv3_driver_data->interrupt_props, 189 gicv3_driver_data->interrupt_props_num); 190 #if !ERROR_DEPRECATED 191 } else { 192 assert(gicv3_driver_data->g1s_interrupt_array || 193 gicv3_driver_data->g0_interrupt_array); 194 195 /* Configure the G1S SPIs */ 196 if (gicv3_driver_data->g1s_interrupt_array) { 197 gicv3_secure_spis_configure(gicv3_driver_data->gicd_base, 198 gicv3_driver_data->g1s_interrupt_num, 199 gicv3_driver_data->g1s_interrupt_array, 200 INTR_GROUP1S); 201 bitmap |= CTLR_ENABLE_G1S_BIT; 202 } 203 204 /* Configure the G0 SPIs */ 205 if (gicv3_driver_data->g0_interrupt_array) { 206 gicv3_secure_spis_configure(gicv3_driver_data->gicd_base, 207 gicv3_driver_data->g0_interrupt_num, 208 gicv3_driver_data->g0_interrupt_array, 209 INTR_GROUP0); 210 bitmap |= CTLR_ENABLE_G0_BIT; 211 } 212 } 213 #endif 214 215 /* Enable the secure SPIs now that they have been configured */ 216 gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE); 217 } 218 219 /******************************************************************************* 220 * This function initialises the GIC Redistributor interface of the calling CPU 221 * (identified by the 'proc_num' parameter) based upon the data provided by the 222 * platform while initialising the driver. 223 ******************************************************************************/ 224 void gicv3_rdistif_init(unsigned int proc_num) 225 { 226 uintptr_t gicr_base; 227 228 assert(gicv3_driver_data); 229 assert(proc_num < gicv3_driver_data->rdistif_num); 230 assert(gicv3_driver_data->rdistif_base_addrs); 231 assert(gicv3_driver_data->gicd_base); 232 assert(gicd_read_ctlr(gicv3_driver_data->gicd_base) & CTLR_ARE_S_BIT); 233 234 assert(IS_IN_EL3()); 235 236 /* Power on redistributor */ 237 gicv3_rdistif_on(proc_num); 238 239 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 240 241 /* Set the default attribute of all SGIs and PPIs */ 242 gicv3_ppi_sgi_configure_defaults(gicr_base); 243 244 #if !ERROR_DEPRECATED 245 if (gicv3_driver_data->interrupt_props != NULL) { 246 #endif 247 gicv3_secure_ppi_sgi_configure_props(gicr_base, 248 gicv3_driver_data->interrupt_props, 249 gicv3_driver_data->interrupt_props_num); 250 #if !ERROR_DEPRECATED 251 } else { 252 assert(gicv3_driver_data->g1s_interrupt_array || 253 gicv3_driver_data->g0_interrupt_array); 254 255 /* Configure the G1S SGIs/PPIs */ 256 if (gicv3_driver_data->g1s_interrupt_array) { 257 gicv3_secure_ppi_sgi_configure(gicr_base, 258 gicv3_driver_data->g1s_interrupt_num, 259 gicv3_driver_data->g1s_interrupt_array, 260 INTR_GROUP1S); 261 } 262 263 /* Configure the G0 SGIs/PPIs */ 264 if (gicv3_driver_data->g0_interrupt_array) { 265 gicv3_secure_ppi_sgi_configure(gicr_base, 266 gicv3_driver_data->g0_interrupt_num, 267 gicv3_driver_data->g0_interrupt_array, 268 INTR_GROUP0); 269 } 270 } 271 #endif 272 } 273 274 /******************************************************************************* 275 * Functions to perform power operations on GIC Redistributor 276 ******************************************************************************/ 277 void gicv3_rdistif_off(unsigned int proc_num) 278 { 279 return; 280 } 281 282 void gicv3_rdistif_on(unsigned int proc_num) 283 { 284 return; 285 } 286 287 /******************************************************************************* 288 * This function enables the GIC CPU interface of the calling CPU using only 289 * system register accesses. 290 ******************************************************************************/ 291 void gicv3_cpuif_enable(unsigned int proc_num) 292 { 293 uintptr_t gicr_base; 294 unsigned int scr_el3; 295 unsigned int icc_sre_el3; 296 297 assert(gicv3_driver_data); 298 assert(proc_num < gicv3_driver_data->rdistif_num); 299 assert(gicv3_driver_data->rdistif_base_addrs); 300 assert(IS_IN_EL3()); 301 302 /* Mark the connected core as awake */ 303 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 304 gicv3_rdistif_mark_core_awake(gicr_base); 305 306 /* Disable the legacy interrupt bypass */ 307 icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT; 308 309 /* 310 * Enable system register access for EL3 and allow lower exception 311 * levels to configure the same for themselves. If the legacy mode is 312 * not supported, the SRE bit is RAO/WI 313 */ 314 icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT); 315 write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3); 316 317 scr_el3 = read_scr_el3(); 318 319 /* 320 * Switch to NS state to write Non secure ICC_SRE_EL1 and 321 * ICC_SRE_EL2 registers. 322 */ 323 write_scr_el3(scr_el3 | SCR_NS_BIT); 324 isb(); 325 326 write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3); 327 write_icc_sre_el1(ICC_SRE_SRE_BIT); 328 isb(); 329 330 /* Switch to secure state. */ 331 write_scr_el3(scr_el3 & (~SCR_NS_BIT)); 332 isb(); 333 334 /* Program the idle priority in the PMR */ 335 write_icc_pmr_el1(GIC_PRI_MASK); 336 337 /* Enable Group0 interrupts */ 338 write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT); 339 340 /* Enable Group1 Secure interrupts */ 341 write_icc_igrpen1_el3(read_icc_igrpen1_el3() | 342 IGRPEN1_EL3_ENABLE_G1S_BIT); 343 344 /* Write the secure ICC_SRE_EL1 register */ 345 write_icc_sre_el1(ICC_SRE_SRE_BIT); 346 isb(); 347 } 348 349 /******************************************************************************* 350 * This function disables the GIC CPU interface of the calling CPU using 351 * only system register accesses. 352 ******************************************************************************/ 353 void gicv3_cpuif_disable(unsigned int proc_num) 354 { 355 uintptr_t gicr_base; 356 357 assert(gicv3_driver_data); 358 assert(proc_num < gicv3_driver_data->rdistif_num); 359 assert(gicv3_driver_data->rdistif_base_addrs); 360 361 assert(IS_IN_EL3()); 362 363 /* Disable legacy interrupt bypass */ 364 write_icc_sre_el3(read_icc_sre_el3() | 365 (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT)); 366 367 /* Disable Group0 interrupts */ 368 write_icc_igrpen0_el1(read_icc_igrpen0_el1() & 369 ~IGRPEN1_EL1_ENABLE_G0_BIT); 370 371 /* Disable Group1 Secure and Non-Secure interrupts */ 372 write_icc_igrpen1_el3(read_icc_igrpen1_el3() & 373 ~(IGRPEN1_EL3_ENABLE_G1NS_BIT | 374 IGRPEN1_EL3_ENABLE_G1S_BIT)); 375 376 /* Synchronise accesses to group enable registers */ 377 isb(); 378 379 /* Mark the connected core as asleep */ 380 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 381 gicv3_rdistif_mark_core_asleep(gicr_base); 382 } 383 384 /******************************************************************************* 385 * This function returns the id of the highest priority pending interrupt at 386 * the GIC cpu interface. 387 ******************************************************************************/ 388 unsigned int gicv3_get_pending_interrupt_id(void) 389 { 390 unsigned int id; 391 392 assert(IS_IN_EL3()); 393 id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; 394 395 /* 396 * If the ID is special identifier corresponding to G1S or G1NS 397 * interrupt, then read the highest pending group 1 interrupt. 398 */ 399 if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) 400 return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK; 401 402 return id; 403 } 404 405 /******************************************************************************* 406 * This function returns the type of the highest priority pending interrupt at 407 * the GIC cpu interface. The return values can be one of the following : 408 * PENDING_G1S_INTID : The interrupt type is secure Group 1. 409 * PENDING_G1NS_INTID : The interrupt type is non secure Group 1. 410 * 0 - 1019 : The interrupt type is secure Group 0. 411 * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with 412 * sufficient priority to be signaled 413 ******************************************************************************/ 414 unsigned int gicv3_get_pending_interrupt_type(void) 415 { 416 assert(IS_IN_EL3()); 417 return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; 418 } 419 420 /******************************************************************************* 421 * This function returns the type of the interrupt id depending upon the group 422 * this interrupt has been configured under by the interrupt controller i.e. 423 * group0 or group1 Secure / Non Secure. The return value can be one of the 424 * following : 425 * INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt 426 * INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt 427 * INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure 428 * interrupt. 429 ******************************************************************************/ 430 unsigned int gicv3_get_interrupt_type(unsigned int id, 431 unsigned int proc_num) 432 { 433 unsigned int igroup, grpmodr; 434 uintptr_t gicr_base; 435 436 assert(IS_IN_EL3()); 437 assert(gicv3_driver_data); 438 439 /* Ensure the parameters are valid */ 440 assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID); 441 assert(proc_num < gicv3_driver_data->rdistif_num); 442 443 /* All LPI interrupts are Group 1 non secure */ 444 if (id >= MIN_LPI_ID) 445 return INTR_GROUP1NS; 446 447 if (id < MIN_SPI_ID) { 448 assert(gicv3_driver_data->rdistif_base_addrs); 449 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 450 igroup = gicr_get_igroupr0(gicr_base, id); 451 grpmodr = gicr_get_igrpmodr0(gicr_base, id); 452 } else { 453 assert(gicv3_driver_data->gicd_base); 454 igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id); 455 grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id); 456 } 457 458 /* 459 * If the IGROUP bit is set, then it is a Group 1 Non secure 460 * interrupt 461 */ 462 if (igroup) 463 return INTR_GROUP1NS; 464 465 /* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */ 466 if (grpmodr) 467 return INTR_GROUP1S; 468 469 /* Else it is a Group 0 Secure interrupt */ 470 return INTR_GROUP0; 471 } 472 473 /***************************************************************************** 474 * Function to save and disable the GIC ITS register context. The power 475 * management of GIC ITS is implementation-defined and this function doesn't 476 * save any memory structures required to support ITS. As the sequence to save 477 * this state is implementation defined, it should be executed in platform 478 * specific code. Calling this function alone and then powering down the GIC and 479 * ITS without implementing the aforementioned platform specific code will 480 * corrupt the ITS state. 481 * 482 * This function must be invoked after the GIC CPU interface is disabled. 483 *****************************************************************************/ 484 void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx) 485 { 486 int i; 487 488 assert(gicv3_driver_data); 489 assert(IS_IN_EL3()); 490 assert(its_ctx); 491 assert(gits_base); 492 493 its_ctx->gits_ctlr = gits_read_ctlr(gits_base); 494 495 /* Disable the ITS */ 496 gits_write_ctlr(gits_base, its_ctx->gits_ctlr & 497 (~GITS_CTLR_ENABLED_BIT)); 498 499 /* Wait for quiescent state */ 500 gits_wait_for_quiescent_bit(gits_base); 501 502 its_ctx->gits_cbaser = gits_read_cbaser(gits_base); 503 its_ctx->gits_cwriter = gits_read_cwriter(gits_base); 504 505 for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++) 506 its_ctx->gits_baser[i] = gits_read_baser(gits_base, i); 507 } 508 509 /***************************************************************************** 510 * Function to restore the GIC ITS register context. The power 511 * management of GIC ITS is implementation defined and this function doesn't 512 * restore any memory structures required to support ITS. The assumption is 513 * that these structures are in memory and are retained during system suspend. 514 * 515 * This must be invoked before the GIC CPU interface is enabled. 516 *****************************************************************************/ 517 void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx) 518 { 519 int i; 520 521 assert(gicv3_driver_data); 522 assert(IS_IN_EL3()); 523 assert(its_ctx); 524 assert(gits_base); 525 526 /* Assert that the GITS is disabled and quiescent */ 527 assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0); 528 assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0); 529 530 gits_write_cbaser(gits_base, its_ctx->gits_cbaser); 531 gits_write_cwriter(gits_base, its_ctx->gits_cwriter); 532 533 for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++) 534 gits_write_baser(gits_base, i, its_ctx->gits_baser[i]); 535 536 /* Restore the ITS CTLR but leave the ITS disabled */ 537 gits_write_ctlr(gits_base, its_ctx->gits_ctlr & 538 (~GITS_CTLR_ENABLED_BIT)); 539 } 540 541 /***************************************************************************** 542 * Function to save the GIC Redistributor register context. This function 543 * must be invoked after CPU interface disable and prior to Distributor save. 544 *****************************************************************************/ 545 void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx) 546 { 547 uintptr_t gicr_base; 548 unsigned int int_id; 549 550 assert(gicv3_driver_data); 551 assert(proc_num < gicv3_driver_data->rdistif_num); 552 assert(gicv3_driver_data->rdistif_base_addrs); 553 assert(IS_IN_EL3()); 554 assert(rdist_ctx); 555 556 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 557 558 /* 559 * Wait for any write to GICR_CTLR to complete before trying to save any 560 * state. 561 */ 562 gicr_wait_for_pending_write(gicr_base); 563 564 rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base); 565 566 rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base); 567 rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base); 568 569 rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base); 570 rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base); 571 rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base); 572 rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base); 573 rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base); 574 rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base); 575 rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base); 576 rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base); 577 for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM; 578 int_id += (1 << IPRIORITYR_SHIFT)) { 579 rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] = 580 gicr_read_ipriorityr(gicr_base, int_id); 581 } 582 583 584 /* 585 * Call the pre-save hook that implements the IMP DEF sequence that may 586 * be required on some GIC implementations. As this may need to access 587 * the Redistributor registers, we pass it proc_num. 588 */ 589 gicv3_distif_pre_save(proc_num); 590 } 591 592 /***************************************************************************** 593 * Function to restore the GIC Redistributor register context. We disable 594 * LPI and per-cpu interrupts before we start restore of the Redistributor. 595 * This function must be invoked after Distributor restore but prior to 596 * CPU interface enable. The pending and active interrupts are restored 597 * after the interrupts are fully configured and enabled. 598 *****************************************************************************/ 599 void gicv3_rdistif_init_restore(unsigned int proc_num, 600 const gicv3_redist_ctx_t * const rdist_ctx) 601 { 602 uintptr_t gicr_base; 603 unsigned int int_id; 604 605 assert(gicv3_driver_data); 606 assert(proc_num < gicv3_driver_data->rdistif_num); 607 assert(gicv3_driver_data->rdistif_base_addrs); 608 assert(IS_IN_EL3()); 609 assert(rdist_ctx); 610 611 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 612 613 /* Power on redistributor */ 614 gicv3_rdistif_on(proc_num); 615 616 /* 617 * Call the post-restore hook that implements the IMP DEF sequence that 618 * may be required on some GIC implementations. As this may need to 619 * access the Redistributor registers, we pass it proc_num. 620 */ 621 gicv3_distif_post_restore(proc_num); 622 623 /* 624 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a 625 * more scalable approach as it avoids clearing the enable bits in the 626 * GICD_CTLR 627 */ 628 gicr_write_icenabler0(gicr_base, ~0); 629 /* Wait for pending writes to GICR_ICENABLER */ 630 gicr_wait_for_pending_write(gicr_base); 631 632 /* 633 * Disable the LPIs to avoid unpredictable behavior when writing to 634 * GICR_PROPBASER and GICR_PENDBASER. 635 */ 636 gicr_write_ctlr(gicr_base, 637 rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT)); 638 639 /* Restore registers' content */ 640 gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser); 641 gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser); 642 643 gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0); 644 645 for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM; 646 int_id += (1 << IPRIORITYR_SHIFT)) { 647 gicr_write_ipriorityr(gicr_base, int_id, 648 rdist_ctx->gicr_ipriorityr[ 649 (int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]); 650 } 651 652 gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0); 653 gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1); 654 gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0); 655 gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr); 656 657 /* Restore after group and priorities are set */ 658 gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0); 659 gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0); 660 661 /* 662 * Wait for all writes to the Distributor to complete before enabling 663 * the SGI and PPIs. 664 */ 665 gicr_wait_for_upstream_pending_write(gicr_base); 666 gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0); 667 668 /* 669 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case 670 * the first write to GICR_CTLR was still in flight (this write only 671 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this 672 * bit). 673 */ 674 gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr); 675 gicr_wait_for_pending_write(gicr_base); 676 } 677 678 /***************************************************************************** 679 * Function to save the GIC Distributor register context. This function 680 * must be invoked after CPU interface disable and Redistributor save. 681 *****************************************************************************/ 682 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx) 683 { 684 unsigned int num_ints; 685 686 assert(gicv3_driver_data); 687 assert(gicv3_driver_data->gicd_base); 688 assert(IS_IN_EL3()); 689 assert(dist_ctx); 690 691 uintptr_t gicd_base = gicv3_driver_data->gicd_base; 692 693 num_ints = gicd_read_typer(gicd_base); 694 num_ints &= TYPER_IT_LINES_NO_MASK; 695 num_ints = (num_ints + 1) << 5; 696 697 assert(num_ints <= MAX_SPI_ID + 1); 698 699 /* Wait for pending write to complete */ 700 gicd_wait_for_pending_write(gicd_base); 701 702 /* Save the GICD_CTLR */ 703 dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base); 704 705 /* Save GICD_IGROUPR for INTIDs 32 - 1020 */ 706 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR); 707 708 /* Save GICD_ISENABLER for INT_IDs 32 - 1020 */ 709 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER); 710 711 /* Save GICD_ISPENDR for INTIDs 32 - 1020 */ 712 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR); 713 714 /* Save GICD_ISACTIVER for INTIDs 32 - 1020 */ 715 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER); 716 717 /* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */ 718 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR); 719 720 /* Save GICD_ICFGR for INTIDs 32 - 1020 */ 721 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR); 722 723 /* Save GICD_IGRPMODR for INTIDs 32 - 1020 */ 724 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR); 725 726 /* Save GICD_NSACR for INTIDs 32 - 1020 */ 727 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR); 728 729 /* Save GICD_IROUTER for INTIDs 32 - 1024 */ 730 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER); 731 732 /* 733 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when 734 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3 735 * driver. 736 */ 737 } 738 739 /***************************************************************************** 740 * Function to restore the GIC Distributor register context. We disable G0, G1S 741 * and G1NS interrupt groups before we start restore of the Distributor. This 742 * function must be invoked prior to Redistributor restore and CPU interface 743 * enable. The pending and active interrupts are restored after the interrupts 744 * are fully configured and enabled. 745 *****************************************************************************/ 746 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx) 747 { 748 unsigned int num_ints = 0; 749 750 assert(gicv3_driver_data); 751 assert(gicv3_driver_data->gicd_base); 752 assert(IS_IN_EL3()); 753 assert(dist_ctx); 754 755 uintptr_t gicd_base = gicv3_driver_data->gicd_base; 756 757 /* 758 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring 759 * the ARE_S bit. The Distributor might generate a system error 760 * otherwise. 761 */ 762 gicd_clr_ctlr(gicd_base, 763 CTLR_ENABLE_G0_BIT | 764 CTLR_ENABLE_G1S_BIT | 765 CTLR_ENABLE_G1NS_BIT, 766 RWP_TRUE); 767 768 /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ 769 gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); 770 771 num_ints = gicd_read_typer(gicd_base); 772 num_ints &= TYPER_IT_LINES_NO_MASK; 773 num_ints = (num_ints + 1) << 5; 774 775 assert(num_ints <= MAX_SPI_ID + 1); 776 777 /* Restore GICD_IGROUPR for INTIDs 32 - 1020 */ 778 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR); 779 780 /* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */ 781 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR); 782 783 /* Restore GICD_ICFGR for INTIDs 32 - 1020 */ 784 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR); 785 786 /* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */ 787 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR); 788 789 /* Restore GICD_NSACR for INTIDs 32 - 1020 */ 790 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR); 791 792 /* Restore GICD_IROUTER for INTIDs 32 - 1020 */ 793 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER); 794 795 /* 796 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are 797 * configured. 798 */ 799 800 /* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */ 801 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER); 802 803 /* Restore GICD_ISPENDR for INTIDs 32 - 1020 */ 804 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR); 805 806 /* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */ 807 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER); 808 809 /* Restore the GICD_CTLR */ 810 gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr); 811 gicd_wait_for_pending_write(gicd_base); 812 813 } 814 815 /******************************************************************************* 816 * This function gets the priority of the interrupt the processor is currently 817 * servicing. 818 ******************************************************************************/ 819 unsigned int gicv3_get_running_priority(void) 820 { 821 return read_icc_rpr_el1(); 822 } 823 824 /******************************************************************************* 825 * This function checks if the interrupt identified by id is active (whether the 826 * state is either active, or active and pending). The proc_num is used if the 827 * interrupt is SGI or PPI and programs the corresponding Redistributor 828 * interface. 829 ******************************************************************************/ 830 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num) 831 { 832 unsigned int value; 833 834 assert(gicv3_driver_data); 835 assert(gicv3_driver_data->gicd_base); 836 assert(proc_num < gicv3_driver_data->rdistif_num); 837 assert(gicv3_driver_data->rdistif_base_addrs); 838 assert(id <= MAX_SPI_ID); 839 840 if (id < MIN_SPI_ID) { 841 /* For SGIs and PPIs */ 842 value = gicr_get_isactiver0( 843 gicv3_driver_data->rdistif_base_addrs[proc_num], id); 844 } else { 845 value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id); 846 } 847 848 return value; 849 } 850 851 /******************************************************************************* 852 * This function enables the interrupt identified by id. The proc_num 853 * is used if the interrupt is SGI or PPI, and programs the corresponding 854 * Redistributor interface. 855 ******************************************************************************/ 856 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num) 857 { 858 assert(gicv3_driver_data); 859 assert(gicv3_driver_data->gicd_base); 860 assert(proc_num < gicv3_driver_data->rdistif_num); 861 assert(gicv3_driver_data->rdistif_base_addrs); 862 assert(id <= MAX_SPI_ID); 863 864 /* 865 * Ensure that any shared variable updates depending on out of band 866 * interrupt trigger are observed before enabling interrupt. 867 */ 868 dsbishst(); 869 if (id < MIN_SPI_ID) { 870 /* For SGIs and PPIs */ 871 gicr_set_isenabler0( 872 gicv3_driver_data->rdistif_base_addrs[proc_num], 873 id); 874 } else { 875 gicd_set_isenabler(gicv3_driver_data->gicd_base, id); 876 } 877 } 878 879 /******************************************************************************* 880 * This function disables the interrupt identified by id. The proc_num 881 * is used if the interrupt is SGI or PPI, and programs the corresponding 882 * Redistributor interface. 883 ******************************************************************************/ 884 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num) 885 { 886 assert(gicv3_driver_data); 887 assert(gicv3_driver_data->gicd_base); 888 assert(proc_num < gicv3_driver_data->rdistif_num); 889 assert(gicv3_driver_data->rdistif_base_addrs); 890 assert(id <= MAX_SPI_ID); 891 892 /* 893 * Disable interrupt, and ensure that any shared variable updates 894 * depending on out of band interrupt trigger are observed afterwards. 895 */ 896 if (id < MIN_SPI_ID) { 897 /* For SGIs and PPIs */ 898 gicr_set_icenabler0( 899 gicv3_driver_data->rdistif_base_addrs[proc_num], 900 id); 901 902 /* Write to clear enable requires waiting for pending writes */ 903 gicr_wait_for_pending_write( 904 gicv3_driver_data->rdistif_base_addrs[proc_num]); 905 } else { 906 gicd_set_icenabler(gicv3_driver_data->gicd_base, id); 907 908 /* Write to clear enable requires waiting for pending writes */ 909 gicd_wait_for_pending_write(gicv3_driver_data->gicd_base); 910 } 911 912 dsbishst(); 913 } 914 915 /******************************************************************************* 916 * This function sets the interrupt priority as supplied for the given interrupt 917 * id. 918 ******************************************************************************/ 919 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num, 920 unsigned int priority) 921 { 922 uintptr_t gicr_base; 923 924 assert(gicv3_driver_data); 925 assert(gicv3_driver_data->gicd_base); 926 assert(proc_num < gicv3_driver_data->rdistif_num); 927 assert(gicv3_driver_data->rdistif_base_addrs); 928 assert(id <= MAX_SPI_ID); 929 930 if (id < MIN_SPI_ID) { 931 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 932 gicr_set_ipriorityr(gicr_base, id, priority); 933 } else { 934 gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority); 935 } 936 } 937 938 /******************************************************************************* 939 * This function assigns group for the interrupt identified by id. The proc_num 940 * is used if the interrupt is SGI or PPI, and programs the corresponding 941 * Redistributor interface. The group can be any of GICV3_INTR_GROUP* 942 ******************************************************************************/ 943 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num, 944 unsigned int type) 945 { 946 unsigned int igroup = 0, grpmod = 0; 947 uintptr_t gicr_base; 948 949 assert(gicv3_driver_data); 950 assert(gicv3_driver_data->gicd_base); 951 assert(proc_num < gicv3_driver_data->rdistif_num); 952 assert(gicv3_driver_data->rdistif_base_addrs); 953 954 switch (type) { 955 case INTR_GROUP1S: 956 igroup = 0; 957 grpmod = 1; 958 break; 959 case INTR_GROUP0: 960 igroup = 0; 961 grpmod = 0; 962 break; 963 case INTR_GROUP1NS: 964 igroup = 1; 965 grpmod = 0; 966 break; 967 default: 968 assert(0); 969 } 970 971 if (id < MIN_SPI_ID) { 972 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 973 if (igroup) 974 gicr_set_igroupr0(gicr_base, id); 975 else 976 gicr_clr_igroupr0(gicr_base, id); 977 978 if (grpmod) 979 gicr_set_igrpmodr0(gicr_base, id); 980 else 981 gicr_clr_igrpmodr0(gicr_base, id); 982 } else { 983 /* Serialize read-modify-write to Distributor registers */ 984 spin_lock(&gic_lock); 985 if (igroup) 986 gicd_set_igroupr(gicv3_driver_data->gicd_base, id); 987 else 988 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id); 989 990 if (grpmod) 991 gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id); 992 else 993 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id); 994 spin_unlock(&gic_lock); 995 } 996 } 997 998 /******************************************************************************* 999 * This function raises the specified Secure Group 0 SGI. 1000 * 1001 * The target parameter must be a valid MPIDR in the system. 1002 ******************************************************************************/ 1003 void gicv3_raise_secure_g0_sgi(int sgi_num, u_register_t target) 1004 { 1005 unsigned int tgt, aff3, aff2, aff1, aff0; 1006 uint64_t sgi_val; 1007 1008 /* Verify interrupt number is in the SGI range */ 1009 assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID)); 1010 1011 /* Extract affinity fields from target */ 1012 aff0 = MPIDR_AFFLVL0_VAL(target); 1013 aff1 = MPIDR_AFFLVL1_VAL(target); 1014 aff2 = MPIDR_AFFLVL2_VAL(target); 1015 aff3 = MPIDR_AFFLVL3_VAL(target); 1016 1017 /* 1018 * Make target list from affinity 0, and ensure GICv3 SGI can target 1019 * this PE. 1020 */ 1021 assert(aff0 < GICV3_MAX_SGI_TARGETS); 1022 tgt = BIT(aff0); 1023 1024 /* Raise SGI to PE specified by its affinity */ 1025 sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF, 1026 tgt); 1027 1028 /* 1029 * Ensure that any shared variable updates depending on out of band 1030 * interrupt trigger are observed before raising SGI. 1031 */ 1032 dsbishst(); 1033 write_icc_sgi0r_el1(sgi_val); 1034 isb(); 1035 } 1036 1037 /******************************************************************************* 1038 * This function sets the interrupt routing for the given SPI interrupt id. 1039 * The interrupt routing is specified in routing mode and mpidr. 1040 * 1041 * The routing mode can be either of: 1042 * - GICV3_IRM_ANY 1043 * - GICV3_IRM_PE 1044 * 1045 * The mpidr is the affinity of the PE to which the interrupt will be routed, 1046 * and is ignored for routing mode GICV3_IRM_ANY. 1047 ******************************************************************************/ 1048 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr) 1049 { 1050 unsigned long long aff; 1051 uint64_t router; 1052 1053 assert(gicv3_driver_data); 1054 assert(gicv3_driver_data->gicd_base); 1055 1056 assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE)); 1057 assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID); 1058 1059 aff = gicd_irouter_val_from_mpidr(mpidr, irm); 1060 gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff); 1061 1062 /* 1063 * In implementations that do not require 1 of N distribution of SPIs, 1064 * IRM might be RAZ/WI. Read back and verify IRM bit. 1065 */ 1066 if (irm == GICV3_IRM_ANY) { 1067 router = gicd_read_irouter(gicv3_driver_data->gicd_base, id); 1068 if (!((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK)) { 1069 ERROR("GICv3 implementation doesn't support routing ANY\n"); 1070 panic(); 1071 } 1072 } 1073 } 1074 1075 /******************************************************************************* 1076 * This function clears the pending status of an interrupt identified by id. 1077 * The proc_num is used if the interrupt is SGI or PPI, and programs the 1078 * corresponding Redistributor interface. 1079 ******************************************************************************/ 1080 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num) 1081 { 1082 assert(gicv3_driver_data); 1083 assert(gicv3_driver_data->gicd_base); 1084 assert(proc_num < gicv3_driver_data->rdistif_num); 1085 assert(gicv3_driver_data->rdistif_base_addrs); 1086 1087 /* 1088 * Clear pending interrupt, and ensure that any shared variable updates 1089 * depending on out of band interrupt trigger are observed afterwards. 1090 */ 1091 if (id < MIN_SPI_ID) { 1092 /* For SGIs and PPIs */ 1093 gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num], 1094 id); 1095 } else { 1096 gicd_set_icpendr(gicv3_driver_data->gicd_base, id); 1097 } 1098 dsbishst(); 1099 } 1100 1101 /******************************************************************************* 1102 * This function sets the pending status of an interrupt identified by id. 1103 * The proc_num is used if the interrupt is SGI or PPI and programs the 1104 * corresponding Redistributor interface. 1105 ******************************************************************************/ 1106 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num) 1107 { 1108 assert(gicv3_driver_data); 1109 assert(gicv3_driver_data->gicd_base); 1110 assert(proc_num < gicv3_driver_data->rdistif_num); 1111 assert(gicv3_driver_data->rdistif_base_addrs); 1112 1113 /* 1114 * Ensure that any shared variable updates depending on out of band 1115 * interrupt trigger are observed before setting interrupt pending. 1116 */ 1117 dsbishst(); 1118 if (id < MIN_SPI_ID) { 1119 /* For SGIs and PPIs */ 1120 gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num], 1121 id); 1122 } else { 1123 gicd_set_ispendr(gicv3_driver_data->gicd_base, id); 1124 } 1125 } 1126 1127 /******************************************************************************* 1128 * This function sets the PMR register with the supplied value. Returns the 1129 * original PMR. 1130 ******************************************************************************/ 1131 unsigned int gicv3_set_pmr(unsigned int mask) 1132 { 1133 unsigned int old_mask; 1134 1135 old_mask = read_icc_pmr_el1(); 1136 1137 /* 1138 * Order memory updates w.r.t. PMR write, and ensure they're visible 1139 * before potential out of band interrupt trigger because of PMR update. 1140 * PMR system register writes are self-synchronizing, so no ISB required 1141 * thereafter. 1142 */ 1143 dsbishst(); 1144 write_icc_pmr_el1(mask); 1145 1146 return old_mask; 1147 } 1148