Home | History | Annotate | Download | only in v3
      1 /*
      2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 #include <arch.h>
      8 #include <arch_helpers.h>
      9 #include <assert.h>
     10 #include <debug.h>
     11 #include <gicv3.h>
     12 #include <interrupt_props.h>
     13 #include <spinlock.h>
     14 #include "gicv3_private.h"
     15 
     16 const gicv3_driver_data_t *gicv3_driver_data;
     17 static unsigned int gicv2_compat;
     18 
     19 /*
     20  * Spinlock to guard registers needing read-modify-write. APIs protected by this
     21  * spinlock are used either at boot time (when only a single CPU is active), or
     22  * when the system is fully coherent.
     23  */
     24 spinlock_t gic_lock;
     25 
     26 /*
     27  * Redistributor power operations are weakly bound so that they can be
     28  * overridden
     29  */
     30 #pragma weak gicv3_rdistif_off
     31 #pragma weak gicv3_rdistif_on
     32 
     33 
     34 /* Helper macros to save and restore GICD registers to and from the context */
     35 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
     36 	do {								\
     37 		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
     38 				int_id += (1 << REG##_SHIFT)) {		\
     39 			gicd_write_##reg(base, int_id,			\
     40 				ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \
     41 		}							\
     42 	} while (0)
     43 
     44 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
     45 	do {								\
     46 		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
     47 				int_id += (1 << REG##_SHIFT)) {		\
     48 			ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\
     49 					gicd_read_##reg(base, int_id);	\
     50 		}							\
     51 	} while (0)
     52 
     53 
     54 /*******************************************************************************
     55  * This function initialises the ARM GICv3 driver in EL3 with provided platform
     56  * inputs.
     57  ******************************************************************************/
     58 void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
     59 {
     60 	unsigned int gic_version;
     61 
     62 	assert(plat_driver_data);
     63 	assert(plat_driver_data->gicd_base);
     64 	assert(plat_driver_data->gicr_base);
     65 	assert(plat_driver_data->rdistif_num);
     66 	assert(plat_driver_data->rdistif_base_addrs);
     67 
     68 	assert(IS_IN_EL3());
     69 
     70 #if !ERROR_DEPRECATED
     71 	if (plat_driver_data->interrupt_props == NULL) {
     72 		/* Interrupt properties array size must be 0 */
     73 		assert(plat_driver_data->interrupt_props_num == 0);
     74 
     75 		/*
     76 		 * The platform should provide a list of at least one type of
     77 		 * interrupt.
     78 		 */
     79 		assert(plat_driver_data->g0_interrupt_array ||
     80 				plat_driver_data->g1s_interrupt_array);
     81 
     82 		/*
     83 		 * If there are no interrupts of a particular type, then the
     84 		 * number of interrupts of that type should be 0 and vice-versa.
     85 		 */
     86 		assert(plat_driver_data->g0_interrupt_array ?
     87 				plat_driver_data->g0_interrupt_num :
     88 				plat_driver_data->g0_interrupt_num == 0);
     89 		assert(plat_driver_data->g1s_interrupt_array ?
     90 				plat_driver_data->g1s_interrupt_num :
     91 				plat_driver_data->g1s_interrupt_num == 0);
     92 	}
     93 #else
     94 	assert(plat_driver_data->interrupt_props != NULL);
     95 	assert(plat_driver_data->interrupt_props_num > 0);
     96 #endif
     97 
     98 	/* Check for system register support */
     99 #ifdef AARCH32
    100 	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
    101 #else
    102 	assert(read_id_aa64pfr0_el1() &
    103 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
    104 #endif /* AARCH32 */
    105 
    106 	/* The GIC version should be 3.0 */
    107 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
    108 	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
    109 	gic_version &= PIDR2_ARCH_REV_MASK;
    110 	assert(gic_version == ARCH_REV_GICV3);
    111 
    112 	/*
    113 	 * Find out whether the GIC supports the GICv2 compatibility mode. The
    114 	 * ARE_S bit resets to 0 if supported
    115 	 */
    116 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
    117 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
    118 	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
    119 
    120 	/*
    121 	 * Find the base address of each implemented Redistributor interface.
    122 	 * The number of interfaces should be equal to the number of CPUs in the
    123 	 * system. The memory for saving these addresses has to be allocated by
    124 	 * the platform port
    125 	 */
    126 	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
    127 					   plat_driver_data->rdistif_num,
    128 					   plat_driver_data->gicr_base,
    129 					   plat_driver_data->mpidr_to_core_pos);
    130 
    131 	gicv3_driver_data = plat_driver_data;
    132 
    133 	/*
    134 	 * The GIC driver data is initialized by the primary CPU with caches
    135 	 * enabled. When the secondary CPU boots up, it initializes the
    136 	 * GICC/GICR interface with the caches disabled. Hence flush the
    137 	 * driver data to ensure coherency. This is not required if the
    138 	 * platform has HW_ASSISTED_COHERENCY enabled.
    139 	 */
    140 #if !HW_ASSISTED_COHERENCY
    141 	flush_dcache_range((uintptr_t) &gicv3_driver_data,
    142 			sizeof(gicv3_driver_data));
    143 	flush_dcache_range((uintptr_t) gicv3_driver_data,
    144 			sizeof(*gicv3_driver_data));
    145 #endif
    146 
    147 	INFO("GICv3 %s legacy support detected."
    148 			" ARM GICV3 driver initialized in EL3\n",
    149 			gicv2_compat ? "with" : "without");
    150 }
    151 
    152 /*******************************************************************************
    153  * This function initialises the GIC distributor interface based upon the data
    154  * provided by the platform while initialising the driver.
    155  ******************************************************************************/
    156 void gicv3_distif_init(void)
    157 {
    158 	unsigned int bitmap = 0;
    159 
    160 	assert(gicv3_driver_data);
    161 	assert(gicv3_driver_data->gicd_base);
    162 
    163 	assert(IS_IN_EL3());
    164 
    165 	/*
    166 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
    167 	 * the ARE_S bit. The Distributor might generate a system error
    168 	 * otherwise.
    169 	 */
    170 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
    171 		      CTLR_ENABLE_G0_BIT |
    172 		      CTLR_ENABLE_G1S_BIT |
    173 		      CTLR_ENABLE_G1NS_BIT,
    174 		      RWP_TRUE);
    175 
    176 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
    177 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
    178 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
    179 
    180 	/* Set the default attribute of all SPIs */
    181 	gicv3_spis_configure_defaults(gicv3_driver_data->gicd_base);
    182 
    183 #if !ERROR_DEPRECATED
    184 	if (gicv3_driver_data->interrupt_props != NULL) {
    185 #endif
    186 		bitmap = gicv3_secure_spis_configure_props(
    187 				gicv3_driver_data->gicd_base,
    188 				gicv3_driver_data->interrupt_props,
    189 				gicv3_driver_data->interrupt_props_num);
    190 #if !ERROR_DEPRECATED
    191 	} else {
    192 		assert(gicv3_driver_data->g1s_interrupt_array ||
    193 				gicv3_driver_data->g0_interrupt_array);
    194 
    195 		/* Configure the G1S SPIs */
    196 		if (gicv3_driver_data->g1s_interrupt_array) {
    197 			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
    198 					gicv3_driver_data->g1s_interrupt_num,
    199 					gicv3_driver_data->g1s_interrupt_array,
    200 					INTR_GROUP1S);
    201 			bitmap |= CTLR_ENABLE_G1S_BIT;
    202 		}
    203 
    204 		/* Configure the G0 SPIs */
    205 		if (gicv3_driver_data->g0_interrupt_array) {
    206 			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
    207 					gicv3_driver_data->g0_interrupt_num,
    208 					gicv3_driver_data->g0_interrupt_array,
    209 					INTR_GROUP0);
    210 			bitmap |= CTLR_ENABLE_G0_BIT;
    211 		}
    212 	}
    213 #endif
    214 
    215 	/* Enable the secure SPIs now that they have been configured */
    216 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
    217 }
    218 
    219 /*******************************************************************************
    220  * This function initialises the GIC Redistributor interface of the calling CPU
    221  * (identified by the 'proc_num' parameter) based upon the data provided by the
    222  * platform while initialising the driver.
    223  ******************************************************************************/
    224 void gicv3_rdistif_init(unsigned int proc_num)
    225 {
    226 	uintptr_t gicr_base;
    227 
    228 	assert(gicv3_driver_data);
    229 	assert(proc_num < gicv3_driver_data->rdistif_num);
    230 	assert(gicv3_driver_data->rdistif_base_addrs);
    231 	assert(gicv3_driver_data->gicd_base);
    232 	assert(gicd_read_ctlr(gicv3_driver_data->gicd_base) & CTLR_ARE_S_BIT);
    233 
    234 	assert(IS_IN_EL3());
    235 
    236 	/* Power on redistributor */
    237 	gicv3_rdistif_on(proc_num);
    238 
    239 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    240 
    241 	/* Set the default attribute of all SGIs and PPIs */
    242 	gicv3_ppi_sgi_configure_defaults(gicr_base);
    243 
    244 #if !ERROR_DEPRECATED
    245 	if (gicv3_driver_data->interrupt_props != NULL) {
    246 #endif
    247 		gicv3_secure_ppi_sgi_configure_props(gicr_base,
    248 				gicv3_driver_data->interrupt_props,
    249 				gicv3_driver_data->interrupt_props_num);
    250 #if !ERROR_DEPRECATED
    251 	} else {
    252 		assert(gicv3_driver_data->g1s_interrupt_array ||
    253 		       gicv3_driver_data->g0_interrupt_array);
    254 
    255 		/* Configure the G1S SGIs/PPIs */
    256 		if (gicv3_driver_data->g1s_interrupt_array) {
    257 			gicv3_secure_ppi_sgi_configure(gicr_base,
    258 					gicv3_driver_data->g1s_interrupt_num,
    259 					gicv3_driver_data->g1s_interrupt_array,
    260 					INTR_GROUP1S);
    261 		}
    262 
    263 		/* Configure the G0 SGIs/PPIs */
    264 		if (gicv3_driver_data->g0_interrupt_array) {
    265 			gicv3_secure_ppi_sgi_configure(gicr_base,
    266 					gicv3_driver_data->g0_interrupt_num,
    267 					gicv3_driver_data->g0_interrupt_array,
    268 					INTR_GROUP0);
    269 		}
    270 	}
    271 #endif
    272 }
    273 
    274 /*******************************************************************************
    275  * Functions to perform power operations on GIC Redistributor
    276  ******************************************************************************/
    277 void gicv3_rdistif_off(unsigned int proc_num)
    278 {
    279 	return;
    280 }
    281 
    282 void gicv3_rdistif_on(unsigned int proc_num)
    283 {
    284 	return;
    285 }
    286 
    287 /*******************************************************************************
    288  * This function enables the GIC CPU interface of the calling CPU using only
    289  * system register accesses.
    290  ******************************************************************************/
    291 void gicv3_cpuif_enable(unsigned int proc_num)
    292 {
    293 	uintptr_t gicr_base;
    294 	unsigned int scr_el3;
    295 	unsigned int icc_sre_el3;
    296 
    297 	assert(gicv3_driver_data);
    298 	assert(proc_num < gicv3_driver_data->rdistif_num);
    299 	assert(gicv3_driver_data->rdistif_base_addrs);
    300 	assert(IS_IN_EL3());
    301 
    302 	/* Mark the connected core as awake */
    303 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    304 	gicv3_rdistif_mark_core_awake(gicr_base);
    305 
    306 	/* Disable the legacy interrupt bypass */
    307 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
    308 
    309 	/*
    310 	 * Enable system register access for EL3 and allow lower exception
    311 	 * levels to configure the same for themselves. If the legacy mode is
    312 	 * not supported, the SRE bit is RAO/WI
    313 	 */
    314 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
    315 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
    316 
    317 	scr_el3 = read_scr_el3();
    318 
    319 	/*
    320 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
    321 	 * ICC_SRE_EL2 registers.
    322 	 */
    323 	write_scr_el3(scr_el3 | SCR_NS_BIT);
    324 	isb();
    325 
    326 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
    327 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
    328 	isb();
    329 
    330 	/* Switch to secure state. */
    331 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
    332 	isb();
    333 
    334 	/* Program the idle priority in the PMR */
    335 	write_icc_pmr_el1(GIC_PRI_MASK);
    336 
    337 	/* Enable Group0 interrupts */
    338 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
    339 
    340 	/* Enable Group1 Secure interrupts */
    341 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
    342 				IGRPEN1_EL3_ENABLE_G1S_BIT);
    343 
    344 	/* Write the secure ICC_SRE_EL1 register */
    345 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
    346 	isb();
    347 }
    348 
    349 /*******************************************************************************
    350  * This function disables the GIC CPU interface of the calling CPU using
    351  * only system register accesses.
    352  ******************************************************************************/
    353 void gicv3_cpuif_disable(unsigned int proc_num)
    354 {
    355 	uintptr_t gicr_base;
    356 
    357 	assert(gicv3_driver_data);
    358 	assert(proc_num < gicv3_driver_data->rdistif_num);
    359 	assert(gicv3_driver_data->rdistif_base_addrs);
    360 
    361 	assert(IS_IN_EL3());
    362 
    363 	/* Disable legacy interrupt bypass */
    364 	write_icc_sre_el3(read_icc_sre_el3() |
    365 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
    366 
    367 	/* Disable Group0 interrupts */
    368 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
    369 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
    370 
    371 	/* Disable Group1 Secure and Non-Secure interrupts */
    372 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
    373 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
    374 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
    375 
    376 	/* Synchronise accesses to group enable registers */
    377 	isb();
    378 
    379 	/* Mark the connected core as asleep */
    380 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    381 	gicv3_rdistif_mark_core_asleep(gicr_base);
    382 }
    383 
    384 /*******************************************************************************
    385  * This function returns the id of the highest priority pending interrupt at
    386  * the GIC cpu interface.
    387  ******************************************************************************/
    388 unsigned int gicv3_get_pending_interrupt_id(void)
    389 {
    390 	unsigned int id;
    391 
    392 	assert(IS_IN_EL3());
    393 	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
    394 
    395 	/*
    396 	 * If the ID is special identifier corresponding to G1S or G1NS
    397 	 * interrupt, then read the highest pending group 1 interrupt.
    398 	 */
    399 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
    400 		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
    401 
    402 	return id;
    403 }
    404 
    405 /*******************************************************************************
    406  * This function returns the type of the highest priority pending interrupt at
    407  * the GIC cpu interface. The return values can be one of the following :
    408  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
    409  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
    410  *   0 - 1019           : The interrupt type is secure Group 0.
    411  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
    412  *                            sufficient priority to be signaled
    413  ******************************************************************************/
    414 unsigned int gicv3_get_pending_interrupt_type(void)
    415 {
    416 	assert(IS_IN_EL3());
    417 	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
    418 }
    419 
    420 /*******************************************************************************
    421  * This function returns the type of the interrupt id depending upon the group
    422  * this interrupt has been configured under by the interrupt controller i.e.
    423  * group0 or group1 Secure / Non Secure. The return value can be one of the
    424  * following :
    425  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
    426  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
    427  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
    428  *                   interrupt.
    429  ******************************************************************************/
    430 unsigned int gicv3_get_interrupt_type(unsigned int id,
    431 					  unsigned int proc_num)
    432 {
    433 	unsigned int igroup, grpmodr;
    434 	uintptr_t gicr_base;
    435 
    436 	assert(IS_IN_EL3());
    437 	assert(gicv3_driver_data);
    438 
    439 	/* Ensure the parameters are valid */
    440 	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
    441 	assert(proc_num < gicv3_driver_data->rdistif_num);
    442 
    443 	/* All LPI interrupts are Group 1 non secure */
    444 	if (id >= MIN_LPI_ID)
    445 		return INTR_GROUP1NS;
    446 
    447 	if (id < MIN_SPI_ID) {
    448 		assert(gicv3_driver_data->rdistif_base_addrs);
    449 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    450 		igroup = gicr_get_igroupr0(gicr_base, id);
    451 		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
    452 	} else {
    453 		assert(gicv3_driver_data->gicd_base);
    454 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
    455 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
    456 	}
    457 
    458 	/*
    459 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
    460 	 * interrupt
    461 	 */
    462 	if (igroup)
    463 		return INTR_GROUP1NS;
    464 
    465 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
    466 	if (grpmodr)
    467 		return INTR_GROUP1S;
    468 
    469 	/* Else it is a Group 0 Secure interrupt */
    470 	return INTR_GROUP0;
    471 }
    472 
    473 /*****************************************************************************
    474  * Function to save and disable the GIC ITS register context. The power
    475  * management of GIC ITS is implementation-defined and this function doesn't
    476  * save any memory structures required to support ITS. As the sequence to save
    477  * this state is implementation defined, it should be executed in platform
    478  * specific code. Calling this function alone and then powering down the GIC and
    479  * ITS without implementing the aforementioned platform specific code will
    480  * corrupt the ITS state.
    481  *
    482  * This function must be invoked after the GIC CPU interface is disabled.
    483  *****************************************************************************/
    484 void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx)
    485 {
    486 	int i;
    487 
    488 	assert(gicv3_driver_data);
    489 	assert(IS_IN_EL3());
    490 	assert(its_ctx);
    491 	assert(gits_base);
    492 
    493 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
    494 
    495 	/* Disable the ITS */
    496 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
    497 					(~GITS_CTLR_ENABLED_BIT));
    498 
    499 	/* Wait for quiescent state */
    500 	gits_wait_for_quiescent_bit(gits_base);
    501 
    502 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
    503 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
    504 
    505 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
    506 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
    507 }
    508 
    509 /*****************************************************************************
    510  * Function to restore the GIC ITS register context. The power
    511  * management of GIC ITS is implementation defined and this function doesn't
    512  * restore any memory structures required to support ITS. The assumption is
    513  * that these structures are in memory and are retained during system suspend.
    514  *
    515  * This must be invoked before the GIC CPU interface is enabled.
    516  *****************************************************************************/
    517 void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx)
    518 {
    519 	int i;
    520 
    521 	assert(gicv3_driver_data);
    522 	assert(IS_IN_EL3());
    523 	assert(its_ctx);
    524 	assert(gits_base);
    525 
    526 	/* Assert that the GITS is disabled and quiescent */
    527 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0);
    528 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0);
    529 
    530 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
    531 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
    532 
    533 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
    534 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
    535 
    536 	/* Restore the ITS CTLR but leave the ITS disabled */
    537 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
    538 			(~GITS_CTLR_ENABLED_BIT));
    539 }
    540 
    541 /*****************************************************************************
    542  * Function to save the GIC Redistributor register context. This function
    543  * must be invoked after CPU interface disable and prior to Distributor save.
    544  *****************************************************************************/
    545 void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx)
    546 {
    547 	uintptr_t gicr_base;
    548 	unsigned int int_id;
    549 
    550 	assert(gicv3_driver_data);
    551 	assert(proc_num < gicv3_driver_data->rdistif_num);
    552 	assert(gicv3_driver_data->rdistif_base_addrs);
    553 	assert(IS_IN_EL3());
    554 	assert(rdist_ctx);
    555 
    556 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    557 
    558 	/*
    559 	 * Wait for any write to GICR_CTLR to complete before trying to save any
    560 	 * state.
    561 	 */
    562 	gicr_wait_for_pending_write(gicr_base);
    563 
    564 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
    565 
    566 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
    567 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
    568 
    569 	rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base);
    570 	rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base);
    571 	rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base);
    572 	rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base);
    573 	rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base);
    574 	rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base);
    575 	rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base);
    576 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
    577 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
    578 			int_id += (1 << IPRIORITYR_SHIFT)) {
    579 		rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] =
    580 				gicr_read_ipriorityr(gicr_base, int_id);
    581 	}
    582 
    583 
    584 	/*
    585 	 * Call the pre-save hook that implements the IMP DEF sequence that may
    586 	 * be required on some GIC implementations. As this may need to access
    587 	 * the Redistributor registers, we pass it proc_num.
    588 	 */
    589 	gicv3_distif_pre_save(proc_num);
    590 }
    591 
    592 /*****************************************************************************
    593  * Function to restore the GIC Redistributor register context. We disable
    594  * LPI and per-cpu interrupts before we start restore of the Redistributor.
    595  * This function must be invoked after Distributor restore but prior to
    596  * CPU interface enable. The pending and active interrupts are restored
    597  * after the interrupts are fully configured and enabled.
    598  *****************************************************************************/
    599 void gicv3_rdistif_init_restore(unsigned int proc_num,
    600 				const gicv3_redist_ctx_t * const rdist_ctx)
    601 {
    602 	uintptr_t gicr_base;
    603 	unsigned int int_id;
    604 
    605 	assert(gicv3_driver_data);
    606 	assert(proc_num < gicv3_driver_data->rdistif_num);
    607 	assert(gicv3_driver_data->rdistif_base_addrs);
    608 	assert(IS_IN_EL3());
    609 	assert(rdist_ctx);
    610 
    611 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    612 
    613 	/* Power on redistributor */
    614 	gicv3_rdistif_on(proc_num);
    615 
    616 	/*
    617 	 * Call the post-restore hook that implements the IMP DEF sequence that
    618 	 * may be required on some GIC implementations. As this may need to
    619 	 * access the Redistributor registers, we pass it proc_num.
    620 	 */
    621 	gicv3_distif_post_restore(proc_num);
    622 
    623 	/*
    624 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
    625 	 * more scalable approach as it avoids clearing the enable bits in the
    626 	 * GICD_CTLR
    627 	 */
    628 	gicr_write_icenabler0(gicr_base, ~0);
    629 	/* Wait for pending writes to GICR_ICENABLER */
    630 	gicr_wait_for_pending_write(gicr_base);
    631 
    632 	/*
    633 	 * Disable the LPIs to avoid unpredictable behavior when writing to
    634 	 * GICR_PROPBASER and GICR_PENDBASER.
    635 	 */
    636 	gicr_write_ctlr(gicr_base,
    637 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
    638 
    639 	/* Restore registers' content */
    640 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
    641 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
    642 
    643 	gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0);
    644 
    645 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
    646 			int_id += (1 << IPRIORITYR_SHIFT)) {
    647 		gicr_write_ipriorityr(gicr_base, int_id,
    648 		rdist_ctx->gicr_ipriorityr[
    649 				(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]);
    650 	}
    651 
    652 	gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0);
    653 	gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1);
    654 	gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0);
    655 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
    656 
    657 	/* Restore after group and priorities are set */
    658 	gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0);
    659 	gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0);
    660 
    661 	/*
    662 	 * Wait for all writes to the Distributor to complete before enabling
    663 	 * the SGI and PPIs.
    664 	 */
    665 	gicr_wait_for_upstream_pending_write(gicr_base);
    666 	gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0);
    667 
    668 	/*
    669 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
    670 	 * the first write to GICR_CTLR was still in flight (this write only
    671 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
    672 	 * bit).
    673 	 */
    674 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
    675 	gicr_wait_for_pending_write(gicr_base);
    676 }
    677 
    678 /*****************************************************************************
    679  * Function to save the GIC Distributor register context. This function
    680  * must be invoked after CPU interface disable and Redistributor save.
    681  *****************************************************************************/
    682 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
    683 {
    684 	unsigned int num_ints;
    685 
    686 	assert(gicv3_driver_data);
    687 	assert(gicv3_driver_data->gicd_base);
    688 	assert(IS_IN_EL3());
    689 	assert(dist_ctx);
    690 
    691 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
    692 
    693 	num_ints = gicd_read_typer(gicd_base);
    694 	num_ints &= TYPER_IT_LINES_NO_MASK;
    695 	num_ints = (num_ints + 1) << 5;
    696 
    697 	assert(num_ints <= MAX_SPI_ID + 1);
    698 
    699 	/* Wait for pending write to complete */
    700 	gicd_wait_for_pending_write(gicd_base);
    701 
    702 	/* Save the GICD_CTLR */
    703 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
    704 
    705 	/* Save GICD_IGROUPR for INTIDs 32 - 1020 */
    706 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
    707 
    708 	/* Save GICD_ISENABLER for INT_IDs 32 - 1020 */
    709 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
    710 
    711 	/* Save GICD_ISPENDR for INTIDs 32 - 1020 */
    712 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
    713 
    714 	/* Save GICD_ISACTIVER for INTIDs 32 - 1020 */
    715 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
    716 
    717 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */
    718 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
    719 
    720 	/* Save GICD_ICFGR for INTIDs 32 - 1020 */
    721 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
    722 
    723 	/* Save GICD_IGRPMODR for INTIDs 32 - 1020 */
    724 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
    725 
    726 	/* Save GICD_NSACR for INTIDs 32 - 1020 */
    727 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
    728 
    729 	/* Save GICD_IROUTER for INTIDs 32 - 1024 */
    730 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
    731 
    732 	/*
    733 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
    734 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
    735 	 * driver.
    736 	 */
    737 }
    738 
    739 /*****************************************************************************
    740  * Function to restore the GIC Distributor register context. We disable G0, G1S
    741  * and G1NS interrupt groups before we start restore of the Distributor. This
    742  * function must be invoked prior to Redistributor restore and CPU interface
    743  * enable. The pending and active interrupts are restored after the interrupts
    744  * are fully configured and enabled.
    745  *****************************************************************************/
    746 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
    747 {
    748 	unsigned int num_ints = 0;
    749 
    750 	assert(gicv3_driver_data);
    751 	assert(gicv3_driver_data->gicd_base);
    752 	assert(IS_IN_EL3());
    753 	assert(dist_ctx);
    754 
    755 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
    756 
    757 	/*
    758 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
    759 	 * the ARE_S bit. The Distributor might generate a system error
    760 	 * otherwise.
    761 	 */
    762 	gicd_clr_ctlr(gicd_base,
    763 		      CTLR_ENABLE_G0_BIT |
    764 		      CTLR_ENABLE_G1S_BIT |
    765 		      CTLR_ENABLE_G1NS_BIT,
    766 		      RWP_TRUE);
    767 
    768 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
    769 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
    770 
    771 	num_ints = gicd_read_typer(gicd_base);
    772 	num_ints &= TYPER_IT_LINES_NO_MASK;
    773 	num_ints = (num_ints + 1) << 5;
    774 
    775 	assert(num_ints <= MAX_SPI_ID + 1);
    776 
    777 	/* Restore GICD_IGROUPR for INTIDs 32 - 1020 */
    778 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
    779 
    780 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */
    781 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
    782 
    783 	/* Restore GICD_ICFGR for INTIDs 32 - 1020 */
    784 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
    785 
    786 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */
    787 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
    788 
    789 	/* Restore GICD_NSACR for INTIDs 32 - 1020 */
    790 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
    791 
    792 	/* Restore GICD_IROUTER for INTIDs 32 - 1020 */
    793 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
    794 
    795 	/*
    796 	 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are
    797 	 * configured.
    798 	 */
    799 
    800 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */
    801 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
    802 
    803 	/* Restore GICD_ISPENDR for INTIDs 32 - 1020 */
    804 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
    805 
    806 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */
    807 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
    808 
    809 	/* Restore the GICD_CTLR */
    810 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
    811 	gicd_wait_for_pending_write(gicd_base);
    812 
    813 }
    814 
    815 /*******************************************************************************
    816  * This function gets the priority of the interrupt the processor is currently
    817  * servicing.
    818  ******************************************************************************/
    819 unsigned int gicv3_get_running_priority(void)
    820 {
    821 	return read_icc_rpr_el1();
    822 }
    823 
    824 /*******************************************************************************
    825  * This function checks if the interrupt identified by id is active (whether the
    826  * state is either active, or active and pending). The proc_num is used if the
    827  * interrupt is SGI or PPI and programs the corresponding Redistributor
    828  * interface.
    829  ******************************************************************************/
    830 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
    831 {
    832 	unsigned int value;
    833 
    834 	assert(gicv3_driver_data);
    835 	assert(gicv3_driver_data->gicd_base);
    836 	assert(proc_num < gicv3_driver_data->rdistif_num);
    837 	assert(gicv3_driver_data->rdistif_base_addrs);
    838 	assert(id <= MAX_SPI_ID);
    839 
    840 	if (id < MIN_SPI_ID) {
    841 		/* For SGIs and PPIs */
    842 		value = gicr_get_isactiver0(
    843 				gicv3_driver_data->rdistif_base_addrs[proc_num], id);
    844 	} else {
    845 		value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
    846 	}
    847 
    848 	return value;
    849 }
    850 
    851 /*******************************************************************************
    852  * This function enables the interrupt identified by id. The proc_num
    853  * is used if the interrupt is SGI or PPI, and programs the corresponding
    854  * Redistributor interface.
    855  ******************************************************************************/
    856 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
    857 {
    858 	assert(gicv3_driver_data);
    859 	assert(gicv3_driver_data->gicd_base);
    860 	assert(proc_num < gicv3_driver_data->rdistif_num);
    861 	assert(gicv3_driver_data->rdistif_base_addrs);
    862 	assert(id <= MAX_SPI_ID);
    863 
    864 	/*
    865 	 * Ensure that any shared variable updates depending on out of band
    866 	 * interrupt trigger are observed before enabling interrupt.
    867 	 */
    868 	dsbishst();
    869 	if (id < MIN_SPI_ID) {
    870 		/* For SGIs and PPIs */
    871 		gicr_set_isenabler0(
    872 				gicv3_driver_data->rdistif_base_addrs[proc_num],
    873 				id);
    874 	} else {
    875 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
    876 	}
    877 }
    878 
    879 /*******************************************************************************
    880  * This function disables the interrupt identified by id. The proc_num
    881  * is used if the interrupt is SGI or PPI, and programs the corresponding
    882  * Redistributor interface.
    883  ******************************************************************************/
    884 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
    885 {
    886 	assert(gicv3_driver_data);
    887 	assert(gicv3_driver_data->gicd_base);
    888 	assert(proc_num < gicv3_driver_data->rdistif_num);
    889 	assert(gicv3_driver_data->rdistif_base_addrs);
    890 	assert(id <= MAX_SPI_ID);
    891 
    892 	/*
    893 	 * Disable interrupt, and ensure that any shared variable updates
    894 	 * depending on out of band interrupt trigger are observed afterwards.
    895 	 */
    896 	if (id < MIN_SPI_ID) {
    897 		/* For SGIs and PPIs */
    898 		gicr_set_icenabler0(
    899 				gicv3_driver_data->rdistif_base_addrs[proc_num],
    900 				id);
    901 
    902 		/* Write to clear enable requires waiting for pending writes */
    903 		gicr_wait_for_pending_write(
    904 				gicv3_driver_data->rdistif_base_addrs[proc_num]);
    905 	} else {
    906 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
    907 
    908 		/* Write to clear enable requires waiting for pending writes */
    909 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
    910 	}
    911 
    912 	dsbishst();
    913 }
    914 
    915 /*******************************************************************************
    916  * This function sets the interrupt priority as supplied for the given interrupt
    917  * id.
    918  ******************************************************************************/
    919 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
    920 		unsigned int priority)
    921 {
    922 	uintptr_t gicr_base;
    923 
    924 	assert(gicv3_driver_data);
    925 	assert(gicv3_driver_data->gicd_base);
    926 	assert(proc_num < gicv3_driver_data->rdistif_num);
    927 	assert(gicv3_driver_data->rdistif_base_addrs);
    928 	assert(id <= MAX_SPI_ID);
    929 
    930 	if (id < MIN_SPI_ID) {
    931 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    932 		gicr_set_ipriorityr(gicr_base, id, priority);
    933 	} else {
    934 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
    935 	}
    936 }
    937 
    938 /*******************************************************************************
    939  * This function assigns group for the interrupt identified by id. The proc_num
    940  * is used if the interrupt is SGI or PPI, and programs the corresponding
    941  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
    942  ******************************************************************************/
    943 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
    944 		unsigned int type)
    945 {
    946 	unsigned int igroup = 0, grpmod = 0;
    947 	uintptr_t gicr_base;
    948 
    949 	assert(gicv3_driver_data);
    950 	assert(gicv3_driver_data->gicd_base);
    951 	assert(proc_num < gicv3_driver_data->rdistif_num);
    952 	assert(gicv3_driver_data->rdistif_base_addrs);
    953 
    954 	switch (type) {
    955 	case INTR_GROUP1S:
    956 		igroup = 0;
    957 		grpmod = 1;
    958 		break;
    959 	case INTR_GROUP0:
    960 		igroup = 0;
    961 		grpmod = 0;
    962 		break;
    963 	case INTR_GROUP1NS:
    964 		igroup = 1;
    965 		grpmod = 0;
    966 		break;
    967 	default:
    968 		assert(0);
    969 	}
    970 
    971 	if (id < MIN_SPI_ID) {
    972 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
    973 		if (igroup)
    974 			gicr_set_igroupr0(gicr_base, id);
    975 		else
    976 			gicr_clr_igroupr0(gicr_base, id);
    977 
    978 		if (grpmod)
    979 			gicr_set_igrpmodr0(gicr_base, id);
    980 		else
    981 			gicr_clr_igrpmodr0(gicr_base, id);
    982 	} else {
    983 		/* Serialize read-modify-write to Distributor registers */
    984 		spin_lock(&gic_lock);
    985 		if (igroup)
    986 			gicd_set_igroupr(gicv3_driver_data->gicd_base, id);
    987 		else
    988 			gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
    989 
    990 		if (grpmod)
    991 			gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id);
    992 		else
    993 			gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
    994 		spin_unlock(&gic_lock);
    995 	}
    996 }
    997 
    998 /*******************************************************************************
    999  * This function raises the specified Secure Group 0 SGI.
   1000  *
   1001  * The target parameter must be a valid MPIDR in the system.
   1002  ******************************************************************************/
   1003 void gicv3_raise_secure_g0_sgi(int sgi_num, u_register_t target)
   1004 {
   1005 	unsigned int tgt, aff3, aff2, aff1, aff0;
   1006 	uint64_t sgi_val;
   1007 
   1008 	/* Verify interrupt number is in the SGI range */
   1009 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
   1010 
   1011 	/* Extract affinity fields from target */
   1012 	aff0 = MPIDR_AFFLVL0_VAL(target);
   1013 	aff1 = MPIDR_AFFLVL1_VAL(target);
   1014 	aff2 = MPIDR_AFFLVL2_VAL(target);
   1015 	aff3 = MPIDR_AFFLVL3_VAL(target);
   1016 
   1017 	/*
   1018 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
   1019 	 * this PE.
   1020 	 */
   1021 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
   1022 	tgt = BIT(aff0);
   1023 
   1024 	/* Raise SGI to PE specified by its affinity */
   1025 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
   1026 			tgt);
   1027 
   1028 	/*
   1029 	 * Ensure that any shared variable updates depending on out of band
   1030 	 * interrupt trigger are observed before raising SGI.
   1031 	 */
   1032 	dsbishst();
   1033 	write_icc_sgi0r_el1(sgi_val);
   1034 	isb();
   1035 }
   1036 
   1037 /*******************************************************************************
   1038  * This function sets the interrupt routing for the given SPI interrupt id.
   1039  * The interrupt routing is specified in routing mode and mpidr.
   1040  *
   1041  * The routing mode can be either of:
   1042  *  - GICV3_IRM_ANY
   1043  *  - GICV3_IRM_PE
   1044  *
   1045  * The mpidr is the affinity of the PE to which the interrupt will be routed,
   1046  * and is ignored for routing mode GICV3_IRM_ANY.
   1047  ******************************************************************************/
   1048 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
   1049 {
   1050 	unsigned long long aff;
   1051 	uint64_t router;
   1052 
   1053 	assert(gicv3_driver_data);
   1054 	assert(gicv3_driver_data->gicd_base);
   1055 
   1056 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
   1057 	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);
   1058 
   1059 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
   1060 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
   1061 
   1062 	/*
   1063 	 * In implementations that do not require 1 of N distribution of SPIs,
   1064 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
   1065 	 */
   1066 	if (irm == GICV3_IRM_ANY) {
   1067 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
   1068 		if (!((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK)) {
   1069 			ERROR("GICv3 implementation doesn't support routing ANY\n");
   1070 			panic();
   1071 		}
   1072 	}
   1073 }
   1074 
   1075 /*******************************************************************************
   1076  * This function clears the pending status of an interrupt identified by id.
   1077  * The proc_num is used if the interrupt is SGI or PPI, and programs the
   1078  * corresponding Redistributor interface.
   1079  ******************************************************************************/
   1080 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
   1081 {
   1082 	assert(gicv3_driver_data);
   1083 	assert(gicv3_driver_data->gicd_base);
   1084 	assert(proc_num < gicv3_driver_data->rdistif_num);
   1085 	assert(gicv3_driver_data->rdistif_base_addrs);
   1086 
   1087 	/*
   1088 	 * Clear pending interrupt, and ensure that any shared variable updates
   1089 	 * depending on out of band interrupt trigger are observed afterwards.
   1090 	 */
   1091 	if (id < MIN_SPI_ID) {
   1092 		/* For SGIs and PPIs */
   1093 		gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
   1094 				id);
   1095 	} else {
   1096 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
   1097 	}
   1098 	dsbishst();
   1099 }
   1100 
   1101 /*******************************************************************************
   1102  * This function sets the pending status of an interrupt identified by id.
   1103  * The proc_num is used if the interrupt is SGI or PPI and programs the
   1104  * corresponding Redistributor interface.
   1105  ******************************************************************************/
   1106 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
   1107 {
   1108 	assert(gicv3_driver_data);
   1109 	assert(gicv3_driver_data->gicd_base);
   1110 	assert(proc_num < gicv3_driver_data->rdistif_num);
   1111 	assert(gicv3_driver_data->rdistif_base_addrs);
   1112 
   1113 	/*
   1114 	 * Ensure that any shared variable updates depending on out of band
   1115 	 * interrupt trigger are observed before setting interrupt pending.
   1116 	 */
   1117 	dsbishst();
   1118 	if (id < MIN_SPI_ID) {
   1119 		/* For SGIs and PPIs */
   1120 		gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
   1121 				id);
   1122 	} else {
   1123 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
   1124 	}
   1125 }
   1126 
   1127 /*******************************************************************************
   1128  * This function sets the PMR register with the supplied value. Returns the
   1129  * original PMR.
   1130  ******************************************************************************/
   1131 unsigned int gicv3_set_pmr(unsigned int mask)
   1132 {
   1133 	unsigned int old_mask;
   1134 
   1135 	old_mask = read_icc_pmr_el1();
   1136 
   1137 	/*
   1138 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
   1139 	 * before potential out of band interrupt trigger because of PMR update.
   1140 	 * PMR system register writes are self-synchronizing, so no ISB required
   1141 	 * thereafter.
   1142 	 */
   1143 	dsbishst();
   1144 	write_icc_pmr_el1(mask);
   1145 
   1146 	return old_mask;
   1147 }
   1148