Home | History | Annotate | Download | only in VMCore
      1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements all of the non-inline methods for the LLVM instruction
     11 // classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "LLVMContextImpl.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/Function.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Operator.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/CallSite.h"
     24 #include "llvm/Support/ConstantRange.h"
     25 #include "llvm/Support/MathExtras.h"
     26 using namespace llvm;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                            CallSite Class
     30 //===----------------------------------------------------------------------===//
     31 
     32 User::op_iterator CallSite::getCallee() const {
     33   Instruction *II(getInstruction());
     34   return isCall()
     35     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
     36     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
     37 }
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                            TerminatorInst Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 // Out of line virtual method, so the vtable, etc has a home.
     44 TerminatorInst::~TerminatorInst() {
     45 }
     46 
     47 //===----------------------------------------------------------------------===//
     48 //                           UnaryInstruction Class
     49 //===----------------------------------------------------------------------===//
     50 
     51 // Out of line virtual method, so the vtable, etc has a home.
     52 UnaryInstruction::~UnaryInstruction() {
     53 }
     54 
     55 //===----------------------------------------------------------------------===//
     56 //                              SelectInst Class
     57 //===----------------------------------------------------------------------===//
     58 
     59 /// areInvalidOperands - Return a string if the specified operands are invalid
     60 /// for a select operation, otherwise return null.
     61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
     62   if (Op1->getType() != Op2->getType())
     63     return "both values to select must have same type";
     64 
     65   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
     66     // Vector select.
     67     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
     68       return "vector select condition element type must be i1";
     69     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
     70     if (ET == 0)
     71       return "selected values for vector select must be vectors";
     72     if (ET->getNumElements() != VT->getNumElements())
     73       return "vector select requires selected vectors to have "
     74                    "the same vector length as select condition";
     75   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
     76     return "select condition must be i1 or <n x i1>";
     77   }
     78   return 0;
     79 }
     80 
     81 
     82 //===----------------------------------------------------------------------===//
     83 //                               PHINode Class
     84 //===----------------------------------------------------------------------===//
     85 
     86 PHINode::PHINode(const PHINode &PN)
     87   : Instruction(PN.getType(), Instruction::PHI,
     88                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
     89     ReservedSpace(PN.getNumOperands()) {
     90   std::copy(PN.op_begin(), PN.op_end(), op_begin());
     91   std::copy(PN.block_begin(), PN.block_end(), block_begin());
     92   SubclassOptionalData = PN.SubclassOptionalData;
     93 }
     94 
     95 PHINode::~PHINode() {
     96   dropHungoffUses();
     97 }
     98 
     99 Use *PHINode::allocHungoffUses(unsigned N) const {
    100   // Allocate the array of Uses of the incoming values, followed by a pointer
    101   // (with bottom bit set) to the User, followed by the array of pointers to
    102   // the incoming basic blocks.
    103   size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
    104     + N * sizeof(BasicBlock*);
    105   Use *Begin = static_cast<Use*>(::operator new(size));
    106   Use *End = Begin + N;
    107   (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
    108   return Use::initTags(Begin, End);
    109 }
    110 
    111 // removeIncomingValue - Remove an incoming value.  This is useful if a
    112 // predecessor basic block is deleted.
    113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
    114   Value *Removed = getIncomingValue(Idx);
    115 
    116   // Move everything after this operand down.
    117   //
    118   // FIXME: we could just swap with the end of the list, then erase.  However,
    119   // clients might not expect this to happen.  The code as it is thrashes the
    120   // use/def lists, which is kinda lame.
    121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
    122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
    123 
    124   // Nuke the last value.
    125   Op<-1>().set(0);
    126   --NumOperands;
    127 
    128   // If the PHI node is dead, because it has zero entries, nuke it now.
    129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
    130     // If anyone is using this PHI, make them use a dummy value instead...
    131     replaceAllUsesWith(UndefValue::get(getType()));
    132     eraseFromParent();
    133   }
    134   return Removed;
    135 }
    136 
    137 /// growOperands - grow operands - This grows the operand list in response
    138 /// to a push_back style of operation.  This grows the number of ops by 1.5
    139 /// times.
    140 ///
    141 void PHINode::growOperands() {
    142   unsigned e = getNumOperands();
    143   unsigned NumOps = e + e / 2;
    144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
    145 
    146   Use *OldOps = op_begin();
    147   BasicBlock **OldBlocks = block_begin();
    148 
    149   ReservedSpace = NumOps;
    150   OperandList = allocHungoffUses(ReservedSpace);
    151 
    152   std::copy(OldOps, OldOps + e, op_begin());
    153   std::copy(OldBlocks, OldBlocks + e, block_begin());
    154 
    155   Use::zap(OldOps, OldOps + e, true);
    156 }
    157 
    158 /// hasConstantValue - If the specified PHI node always merges together the same
    159 /// value, return the value, otherwise return null.
    160 Value *PHINode::hasConstantValue() const {
    161   // Exploit the fact that phi nodes always have at least one entry.
    162   Value *ConstantValue = getIncomingValue(0);
    163   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
    164     if (getIncomingValue(i) != ConstantValue)
    165       return 0; // Incoming values not all the same.
    166   return ConstantValue;
    167 }
    168 
    169 //===----------------------------------------------------------------------===//
    170 //                       LandingPadInst Implementation
    171 //===----------------------------------------------------------------------===//
    172 
    173 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    174                                unsigned NumReservedValues, const Twine &NameStr,
    175                                Instruction *InsertBefore)
    176   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
    177   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    178 }
    179 
    180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    181                                unsigned NumReservedValues, const Twine &NameStr,
    182                                BasicBlock *InsertAtEnd)
    183   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
    184   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    185 }
    186 
    187 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
    188   : Instruction(LP.getType(), Instruction::LandingPad,
    189                 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
    190     ReservedSpace(LP.getNumOperands()) {
    191   Use *OL = OperandList, *InOL = LP.OperandList;
    192   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
    193     OL[I] = InOL[I];
    194 
    195   setCleanup(LP.isCleanup());
    196 }
    197 
    198 LandingPadInst::~LandingPadInst() {
    199   dropHungoffUses();
    200 }
    201 
    202 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    203                                        unsigned NumReservedClauses,
    204                                        const Twine &NameStr,
    205                                        Instruction *InsertBefore) {
    206   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    207                             InsertBefore);
    208 }
    209 
    210 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    211                                        unsigned NumReservedClauses,
    212                                        const Twine &NameStr,
    213                                        BasicBlock *InsertAtEnd) {
    214   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    215                             InsertAtEnd);
    216 }
    217 
    218 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
    219                           const Twine &NameStr) {
    220   ReservedSpace = NumReservedValues;
    221   NumOperands = 1;
    222   OperandList = allocHungoffUses(ReservedSpace);
    223   OperandList[0] = PersFn;
    224   setName(NameStr);
    225   setCleanup(false);
    226 }
    227 
    228 /// growOperands - grow operands - This grows the operand list in response to a
    229 /// push_back style of operation. This grows the number of ops by 2 times.
    230 void LandingPadInst::growOperands(unsigned Size) {
    231   unsigned e = getNumOperands();
    232   if (ReservedSpace >= e + Size) return;
    233   ReservedSpace = (e + Size / 2) * 2;
    234 
    235   Use *NewOps = allocHungoffUses(ReservedSpace);
    236   Use *OldOps = OperandList;
    237   for (unsigned i = 0; i != e; ++i)
    238       NewOps[i] = OldOps[i];
    239 
    240   OperandList = NewOps;
    241   Use::zap(OldOps, OldOps + e, true);
    242 }
    243 
    244 void LandingPadInst::addClause(Value *Val) {
    245   unsigned OpNo = getNumOperands();
    246   growOperands(1);
    247   assert(OpNo < ReservedSpace && "Growing didn't work!");
    248   ++NumOperands;
    249   OperandList[OpNo] = Val;
    250 }
    251 
    252 //===----------------------------------------------------------------------===//
    253 //                        CallInst Implementation
    254 //===----------------------------------------------------------------------===//
    255 
    256 CallInst::~CallInst() {
    257 }
    258 
    259 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
    260   assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
    261   Op<-1>() = Func;
    262 
    263 #ifndef NDEBUG
    264   FunctionType *FTy =
    265     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    266 
    267   assert((Args.size() == FTy->getNumParams() ||
    268           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    269          "Calling a function with bad signature!");
    270 
    271   for (unsigned i = 0; i != Args.size(); ++i)
    272     assert((i >= FTy->getNumParams() ||
    273             FTy->getParamType(i) == Args[i]->getType()) &&
    274            "Calling a function with a bad signature!");
    275 #endif
    276 
    277   std::copy(Args.begin(), Args.end(), op_begin());
    278   setName(NameStr);
    279 }
    280 
    281 void CallInst::init(Value *Func, const Twine &NameStr) {
    282   assert(NumOperands == 1 && "NumOperands not set up?");
    283   Op<-1>() = Func;
    284 
    285 #ifndef NDEBUG
    286   FunctionType *FTy =
    287     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    288 
    289   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
    290 #endif
    291 
    292   setName(NameStr);
    293 }
    294 
    295 CallInst::CallInst(Value *Func, const Twine &Name,
    296                    Instruction *InsertBefore)
    297   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    298                                    ->getElementType())->getReturnType(),
    299                 Instruction::Call,
    300                 OperandTraits<CallInst>::op_end(this) - 1,
    301                 1, InsertBefore) {
    302   init(Func, Name);
    303 }
    304 
    305 CallInst::CallInst(Value *Func, const Twine &Name,
    306                    BasicBlock *InsertAtEnd)
    307   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    308                                    ->getElementType())->getReturnType(),
    309                 Instruction::Call,
    310                 OperandTraits<CallInst>::op_end(this) - 1,
    311                 1, InsertAtEnd) {
    312   init(Func, Name);
    313 }
    314 
    315 CallInst::CallInst(const CallInst &CI)
    316   : Instruction(CI.getType(), Instruction::Call,
    317                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
    318                 CI.getNumOperands()) {
    319   setAttributes(CI.getAttributes());
    320   setTailCall(CI.isTailCall());
    321   setCallingConv(CI.getCallingConv());
    322 
    323   std::copy(CI.op_begin(), CI.op_end(), op_begin());
    324   SubclassOptionalData = CI.SubclassOptionalData;
    325 }
    326 
    327 void CallInst::addAttribute(unsigned i, Attributes attr) {
    328   AttrListPtr PAL = getAttributes();
    329   PAL = PAL.addAttr(i, attr);
    330   setAttributes(PAL);
    331 }
    332 
    333 void CallInst::removeAttribute(unsigned i, Attributes attr) {
    334   AttrListPtr PAL = getAttributes();
    335   PAL = PAL.removeAttr(i, attr);
    336   setAttributes(PAL);
    337 }
    338 
    339 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
    340   if (AttributeList.paramHasAttr(i, attr))
    341     return true;
    342   if (const Function *F = getCalledFunction())
    343     return F->paramHasAttr(i, attr);
    344   return false;
    345 }
    346 
    347 /// IsConstantOne - Return true only if val is constant int 1
    348 static bool IsConstantOne(Value *val) {
    349   assert(val && "IsConstantOne does not work with NULL val");
    350   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
    351 }
    352 
    353 static Instruction *createMalloc(Instruction *InsertBefore,
    354                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
    355                                  Type *AllocTy, Value *AllocSize,
    356                                  Value *ArraySize, Function *MallocF,
    357                                  const Twine &Name) {
    358   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    359          "createMalloc needs either InsertBefore or InsertAtEnd");
    360 
    361   // malloc(type) becomes:
    362   //       bitcast (i8* malloc(typeSize)) to type*
    363   // malloc(type, arraySize) becomes:
    364   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
    365   if (!ArraySize)
    366     ArraySize = ConstantInt::get(IntPtrTy, 1);
    367   else if (ArraySize->getType() != IntPtrTy) {
    368     if (InsertBefore)
    369       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    370                                               "", InsertBefore);
    371     else
    372       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    373                                               "", InsertAtEnd);
    374   }
    375 
    376   if (!IsConstantOne(ArraySize)) {
    377     if (IsConstantOne(AllocSize)) {
    378       AllocSize = ArraySize;         // Operand * 1 = Operand
    379     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
    380       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
    381                                                      false /*ZExt*/);
    382       // Malloc arg is constant product of type size and array size
    383       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
    384     } else {
    385       // Multiply type size by the array size...
    386       if (InsertBefore)
    387         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    388                                               "mallocsize", InsertBefore);
    389       else
    390         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    391                                               "mallocsize", InsertAtEnd);
    392     }
    393   }
    394 
    395   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
    396   // Create the call to Malloc.
    397   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    398   Module* M = BB->getParent()->getParent();
    399   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
    400   Value *MallocFunc = MallocF;
    401   if (!MallocFunc)
    402     // prototype malloc as "void *malloc(size_t)"
    403     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
    404   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
    405   CallInst *MCall = NULL;
    406   Instruction *Result = NULL;
    407   if (InsertBefore) {
    408     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
    409     Result = MCall;
    410     if (Result->getType() != AllocPtrType)
    411       // Create a cast instruction to convert to the right type...
    412       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
    413   } else {
    414     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
    415     Result = MCall;
    416     if (Result->getType() != AllocPtrType) {
    417       InsertAtEnd->getInstList().push_back(MCall);
    418       // Create a cast instruction to convert to the right type...
    419       Result = new BitCastInst(MCall, AllocPtrType, Name);
    420     }
    421   }
    422   MCall->setTailCall();
    423   if (Function *F = dyn_cast<Function>(MallocFunc)) {
    424     MCall->setCallingConv(F->getCallingConv());
    425     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
    426   }
    427   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
    428 
    429   return Result;
    430 }
    431 
    432 /// CreateMalloc - Generate the IR for a call to malloc:
    433 /// 1. Compute the malloc call's argument as the specified type's size,
    434 ///    possibly multiplied by the array size if the array size is not
    435 ///    constant 1.
    436 /// 2. Call malloc with that argument.
    437 /// 3. Bitcast the result of the malloc call to the specified type.
    438 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
    439                                     Type *IntPtrTy, Type *AllocTy,
    440                                     Value *AllocSize, Value *ArraySize,
    441                                     Function * MallocF,
    442                                     const Twine &Name) {
    443   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
    444                       ArraySize, MallocF, Name);
    445 }
    446 
    447 /// CreateMalloc - Generate the IR for a call to malloc:
    448 /// 1. Compute the malloc call's argument as the specified type's size,
    449 ///    possibly multiplied by the array size if the array size is not
    450 ///    constant 1.
    451 /// 2. Call malloc with that argument.
    452 /// 3. Bitcast the result of the malloc call to the specified type.
    453 /// Note: This function does not add the bitcast to the basic block, that is the
    454 /// responsibility of the caller.
    455 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
    456                                     Type *IntPtrTy, Type *AllocTy,
    457                                     Value *AllocSize, Value *ArraySize,
    458                                     Function *MallocF, const Twine &Name) {
    459   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
    460                       ArraySize, MallocF, Name);
    461 }
    462 
    463 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
    464                                BasicBlock *InsertAtEnd) {
    465   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    466          "createFree needs either InsertBefore or InsertAtEnd");
    467   assert(Source->getType()->isPointerTy() &&
    468          "Can not free something of nonpointer type!");
    469 
    470   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    471   Module* M = BB->getParent()->getParent();
    472 
    473   Type *VoidTy = Type::getVoidTy(M->getContext());
    474   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
    475   // prototype free as "void free(void*)"
    476   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
    477   CallInst* Result = NULL;
    478   Value *PtrCast = Source;
    479   if (InsertBefore) {
    480     if (Source->getType() != IntPtrTy)
    481       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
    482     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
    483   } else {
    484     if (Source->getType() != IntPtrTy)
    485       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
    486     Result = CallInst::Create(FreeFunc, PtrCast, "");
    487   }
    488   Result->setTailCall();
    489   if (Function *F = dyn_cast<Function>(FreeFunc))
    490     Result->setCallingConv(F->getCallingConv());
    491 
    492   return Result;
    493 }
    494 
    495 /// CreateFree - Generate the IR for a call to the builtin free function.
    496 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
    497   return createFree(Source, InsertBefore, NULL);
    498 }
    499 
    500 /// CreateFree - Generate the IR for a call to the builtin free function.
    501 /// Note: This function does not add the call to the basic block, that is the
    502 /// responsibility of the caller.
    503 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
    504   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
    505   assert(FreeCall && "CreateFree did not create a CallInst");
    506   return FreeCall;
    507 }
    508 
    509 //===----------------------------------------------------------------------===//
    510 //                        InvokeInst Implementation
    511 //===----------------------------------------------------------------------===//
    512 
    513 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
    514                       ArrayRef<Value *> Args, const Twine &NameStr) {
    515   assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
    516   Op<-3>() = Fn;
    517   Op<-2>() = IfNormal;
    518   Op<-1>() = IfException;
    519 
    520 #ifndef NDEBUG
    521   FunctionType *FTy =
    522     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
    523 
    524   assert(((Args.size() == FTy->getNumParams()) ||
    525           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    526          "Invoking a function with bad signature");
    527 
    528   for (unsigned i = 0, e = Args.size(); i != e; i++)
    529     assert((i >= FTy->getNumParams() ||
    530             FTy->getParamType(i) == Args[i]->getType()) &&
    531            "Invoking a function with a bad signature!");
    532 #endif
    533 
    534   std::copy(Args.begin(), Args.end(), op_begin());
    535   setName(NameStr);
    536 }
    537 
    538 InvokeInst::InvokeInst(const InvokeInst &II)
    539   : TerminatorInst(II.getType(), Instruction::Invoke,
    540                    OperandTraits<InvokeInst>::op_end(this)
    541                    - II.getNumOperands(),
    542                    II.getNumOperands()) {
    543   setAttributes(II.getAttributes());
    544   setCallingConv(II.getCallingConv());
    545   std::copy(II.op_begin(), II.op_end(), op_begin());
    546   SubclassOptionalData = II.SubclassOptionalData;
    547 }
    548 
    549 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
    550   return getSuccessor(idx);
    551 }
    552 unsigned InvokeInst::getNumSuccessorsV() const {
    553   return getNumSuccessors();
    554 }
    555 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    556   return setSuccessor(idx, B);
    557 }
    558 
    559 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
    560   if (AttributeList.paramHasAttr(i, attr))
    561     return true;
    562   if (const Function *F = getCalledFunction())
    563     return F->paramHasAttr(i, attr);
    564   return false;
    565 }
    566 
    567 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
    568   AttrListPtr PAL = getAttributes();
    569   PAL = PAL.addAttr(i, attr);
    570   setAttributes(PAL);
    571 }
    572 
    573 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
    574   AttrListPtr PAL = getAttributes();
    575   PAL = PAL.removeAttr(i, attr);
    576   setAttributes(PAL);
    577 }
    578 
    579 LandingPadInst *InvokeInst::getLandingPadInst() const {
    580   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
    581 }
    582 
    583 //===----------------------------------------------------------------------===//
    584 //                        ReturnInst Implementation
    585 //===----------------------------------------------------------------------===//
    586 
    587 ReturnInst::ReturnInst(const ReturnInst &RI)
    588   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
    589                    OperandTraits<ReturnInst>::op_end(this) -
    590                      RI.getNumOperands(),
    591                    RI.getNumOperands()) {
    592   if (RI.getNumOperands())
    593     Op<0>() = RI.Op<0>();
    594   SubclassOptionalData = RI.SubclassOptionalData;
    595 }
    596 
    597 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
    598   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    599                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    600                    InsertBefore) {
    601   if (retVal)
    602     Op<0>() = retVal;
    603 }
    604 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
    605   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    606                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    607                    InsertAtEnd) {
    608   if (retVal)
    609     Op<0>() = retVal;
    610 }
    611 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    612   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
    613                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
    614 }
    615 
    616 unsigned ReturnInst::getNumSuccessorsV() const {
    617   return getNumSuccessors();
    618 }
    619 
    620 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
    621 /// emit the vtable for the class in this translation unit.
    622 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    623   llvm_unreachable("ReturnInst has no successors!");
    624 }
    625 
    626 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
    627   llvm_unreachable("ReturnInst has no successors!");
    628   return 0;
    629 }
    630 
    631 ReturnInst::~ReturnInst() {
    632 }
    633 
    634 //===----------------------------------------------------------------------===//
    635 //                        UnwindInst Implementation
    636 //===----------------------------------------------------------------------===//
    637 
    638 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
    639   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
    640                    0, 0, InsertBefore) {
    641 }
    642 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    643   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
    644                    0, 0, InsertAtEnd) {
    645 }
    646 
    647 
    648 unsigned UnwindInst::getNumSuccessorsV() const {
    649   return getNumSuccessors();
    650 }
    651 
    652 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    653   llvm_unreachable("UnwindInst has no successors!");
    654 }
    655 
    656 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
    657   llvm_unreachable("UnwindInst has no successors!");
    658   return 0;
    659 }
    660 
    661 //===----------------------------------------------------------------------===//
    662 //                        ResumeInst Implementation
    663 //===----------------------------------------------------------------------===//
    664 
    665 ResumeInst::ResumeInst(const ResumeInst &RI)
    666   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
    667                    OperandTraits<ResumeInst>::op_begin(this), 1) {
    668   Op<0>() = RI.Op<0>();
    669 }
    670 
    671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
    672   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    673                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
    674   Op<0>() = Exn;
    675 }
    676 
    677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
    678   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    679                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
    680   Op<0>() = Exn;
    681 }
    682 
    683 unsigned ResumeInst::getNumSuccessorsV() const {
    684   return getNumSuccessors();
    685 }
    686 
    687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    688   llvm_unreachable("ResumeInst has no successors!");
    689 }
    690 
    691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
    692   llvm_unreachable("ResumeInst has no successors!");
    693   return 0;
    694 }
    695 
    696 //===----------------------------------------------------------------------===//
    697 //                      UnreachableInst Implementation
    698 //===----------------------------------------------------------------------===//
    699 
    700 UnreachableInst::UnreachableInst(LLVMContext &Context,
    701                                  Instruction *InsertBefore)
    702   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    703                    0, 0, InsertBefore) {
    704 }
    705 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    706   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    707                    0, 0, InsertAtEnd) {
    708 }
    709 
    710 unsigned UnreachableInst::getNumSuccessorsV() const {
    711   return getNumSuccessors();
    712 }
    713 
    714 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    715   llvm_unreachable("UnwindInst has no successors!");
    716 }
    717 
    718 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
    719   llvm_unreachable("UnwindInst has no successors!");
    720   return 0;
    721 }
    722 
    723 //===----------------------------------------------------------------------===//
    724 //                        BranchInst Implementation
    725 //===----------------------------------------------------------------------===//
    726 
    727 void BranchInst::AssertOK() {
    728   if (isConditional())
    729     assert(getCondition()->getType()->isIntegerTy(1) &&
    730            "May only branch on boolean predicates!");
    731 }
    732 
    733 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
    734   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    735                    OperandTraits<BranchInst>::op_end(this) - 1,
    736                    1, InsertBefore) {
    737   assert(IfTrue != 0 && "Branch destination may not be null!");
    738   Op<-1>() = IfTrue;
    739 }
    740 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    741                        Instruction *InsertBefore)
    742   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    743                    OperandTraits<BranchInst>::op_end(this) - 3,
    744                    3, InsertBefore) {
    745   Op<-1>() = IfTrue;
    746   Op<-2>() = IfFalse;
    747   Op<-3>() = Cond;
    748 #ifndef NDEBUG
    749   AssertOK();
    750 #endif
    751 }
    752 
    753 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
    754   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    755                    OperandTraits<BranchInst>::op_end(this) - 1,
    756                    1, InsertAtEnd) {
    757   assert(IfTrue != 0 && "Branch destination may not be null!");
    758   Op<-1>() = IfTrue;
    759 }
    760 
    761 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    762            BasicBlock *InsertAtEnd)
    763   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    764                    OperandTraits<BranchInst>::op_end(this) - 3,
    765                    3, InsertAtEnd) {
    766   Op<-1>() = IfTrue;
    767   Op<-2>() = IfFalse;
    768   Op<-3>() = Cond;
    769 #ifndef NDEBUG
    770   AssertOK();
    771 #endif
    772 }
    773 
    774 
    775 BranchInst::BranchInst(const BranchInst &BI) :
    776   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
    777                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
    778                  BI.getNumOperands()) {
    779   Op<-1>() = BI.Op<-1>();
    780   if (BI.getNumOperands() != 1) {
    781     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
    782     Op<-3>() = BI.Op<-3>();
    783     Op<-2>() = BI.Op<-2>();
    784   }
    785   SubclassOptionalData = BI.SubclassOptionalData;
    786 }
    787 
    788 void BranchInst::swapSuccessors() {
    789   assert(isConditional() &&
    790          "Cannot swap successors of an unconditional branch");
    791   Op<-1>().swap(Op<-2>());
    792 
    793   // Update profile metadata if present and it matches our structural
    794   // expectations.
    795   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
    796   if (!ProfileData || ProfileData->getNumOperands() != 3)
    797     return;
    798 
    799   // The first operand is the name. Fetch them backwards and build a new one.
    800   Value *Ops[] = {
    801     ProfileData->getOperand(0),
    802     ProfileData->getOperand(2),
    803     ProfileData->getOperand(1)
    804   };
    805   setMetadata(LLVMContext::MD_prof,
    806               MDNode::get(ProfileData->getContext(), Ops));
    807 }
    808 
    809 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
    810   return getSuccessor(idx);
    811 }
    812 unsigned BranchInst::getNumSuccessorsV() const {
    813   return getNumSuccessors();
    814 }
    815 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    816   setSuccessor(idx, B);
    817 }
    818 
    819 
    820 //===----------------------------------------------------------------------===//
    821 //                        AllocaInst Implementation
    822 //===----------------------------------------------------------------------===//
    823 
    824 static Value *getAISize(LLVMContext &Context, Value *Amt) {
    825   if (!Amt)
    826     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
    827   else {
    828     assert(!isa<BasicBlock>(Amt) &&
    829            "Passed basic block into allocation size parameter! Use other ctor");
    830     assert(Amt->getType()->isIntegerTy() &&
    831            "Allocation array size is not an integer!");
    832   }
    833   return Amt;
    834 }
    835 
    836 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    837                        const Twine &Name, Instruction *InsertBefore)
    838   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    839                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    840   setAlignment(0);
    841   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    842   setName(Name);
    843 }
    844 
    845 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    846                        const Twine &Name, BasicBlock *InsertAtEnd)
    847   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    848                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    849   setAlignment(0);
    850   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    851   setName(Name);
    852 }
    853 
    854 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    855                        Instruction *InsertBefore)
    856   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    857                      getAISize(Ty->getContext(), 0), InsertBefore) {
    858   setAlignment(0);
    859   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    860   setName(Name);
    861 }
    862 
    863 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    864                        BasicBlock *InsertAtEnd)
    865   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    866                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
    867   setAlignment(0);
    868   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    869   setName(Name);
    870 }
    871 
    872 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    873                        const Twine &Name, Instruction *InsertBefore)
    874   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    875                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    876   setAlignment(Align);
    877   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    878   setName(Name);
    879 }
    880 
    881 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    882                        const Twine &Name, BasicBlock *InsertAtEnd)
    883   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    884                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    885   setAlignment(Align);
    886   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    887   setName(Name);
    888 }
    889 
    890 // Out of line virtual method, so the vtable, etc has a home.
    891 AllocaInst::~AllocaInst() {
    892 }
    893 
    894 void AllocaInst::setAlignment(unsigned Align) {
    895   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
    896   assert(Align <= MaximumAlignment &&
    897          "Alignment is greater than MaximumAlignment!");
    898   setInstructionSubclassData(Log2_32(Align) + 1);
    899   assert(getAlignment() == Align && "Alignment representation error!");
    900 }
    901 
    902 bool AllocaInst::isArrayAllocation() const {
    903   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
    904     return !CI->isOne();
    905   return true;
    906 }
    907 
    908 Type *AllocaInst::getAllocatedType() const {
    909   return getType()->getElementType();
    910 }
    911 
    912 /// isStaticAlloca - Return true if this alloca is in the entry block of the
    913 /// function and is a constant size.  If so, the code generator will fold it
    914 /// into the prolog/epilog code, so it is basically free.
    915 bool AllocaInst::isStaticAlloca() const {
    916   // Must be constant size.
    917   if (!isa<ConstantInt>(getArraySize())) return false;
    918 
    919   // Must be in the entry block.
    920   const BasicBlock *Parent = getParent();
    921   return Parent == &Parent->getParent()->front();
    922 }
    923 
    924 //===----------------------------------------------------------------------===//
    925 //                           LoadInst Implementation
    926 //===----------------------------------------------------------------------===//
    927 
    928 void LoadInst::AssertOK() {
    929   assert(getOperand(0)->getType()->isPointerTy() &&
    930          "Ptr must have pointer type.");
    931   assert(!(isAtomic() && getAlignment() == 0) &&
    932          "Alignment required for atomic load");
    933 }
    934 
    935 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
    936   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    937                      Load, Ptr, InsertBef) {
    938   setVolatile(false);
    939   setAlignment(0);
    940   setAtomic(NotAtomic);
    941   AssertOK();
    942   setName(Name);
    943 }
    944 
    945 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
    946   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    947                      Load, Ptr, InsertAE) {
    948   setVolatile(false);
    949   setAlignment(0);
    950   setAtomic(NotAtomic);
    951   AssertOK();
    952   setName(Name);
    953 }
    954 
    955 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    956                    Instruction *InsertBef)
    957   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    958                      Load, Ptr, InsertBef) {
    959   setVolatile(isVolatile);
    960   setAlignment(0);
    961   setAtomic(NotAtomic);
    962   AssertOK();
    963   setName(Name);
    964 }
    965 
    966 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    967                    BasicBlock *InsertAE)
    968   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    969                      Load, Ptr, InsertAE) {
    970   setVolatile(isVolatile);
    971   setAlignment(0);
    972   setAtomic(NotAtomic);
    973   AssertOK();
    974   setName(Name);
    975 }
    976 
    977 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    978                    unsigned Align, Instruction *InsertBef)
    979   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    980                      Load, Ptr, InsertBef) {
    981   setVolatile(isVolatile);
    982   setAlignment(Align);
    983   setAtomic(NotAtomic);
    984   AssertOK();
    985   setName(Name);
    986 }
    987 
    988 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    989                    unsigned Align, BasicBlock *InsertAE)
    990   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    991                      Load, Ptr, InsertAE) {
    992   setVolatile(isVolatile);
    993   setAlignment(Align);
    994   setAtomic(NotAtomic);
    995   AssertOK();
    996   setName(Name);
    997 }
    998 
    999 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
   1000                    unsigned Align, AtomicOrdering Order,
   1001                    SynchronizationScope SynchScope,
   1002                    Instruction *InsertBef)
   1003   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1004                      Load, Ptr, InsertBef) {
   1005   setVolatile(isVolatile);
   1006   setAlignment(Align);
   1007   setAtomic(Order, SynchScope);
   1008   AssertOK();
   1009   setName(Name);
   1010 }
   1011 
   1012 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
   1013                    unsigned Align, AtomicOrdering Order,
   1014                    SynchronizationScope SynchScope,
   1015                    BasicBlock *InsertAE)
   1016   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1017                      Load, Ptr, InsertAE) {
   1018   setVolatile(isVolatile);
   1019   setAlignment(Align);
   1020   setAtomic(Order, SynchScope);
   1021   AssertOK();
   1022   setName(Name);
   1023 }
   1024 
   1025 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
   1026   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1027                      Load, Ptr, InsertBef) {
   1028   setVolatile(false);
   1029   setAlignment(0);
   1030   setAtomic(NotAtomic);
   1031   AssertOK();
   1032   if (Name && Name[0]) setName(Name);
   1033 }
   1034 
   1035 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
   1036   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1037                      Load, Ptr, InsertAE) {
   1038   setVolatile(false);
   1039   setAlignment(0);
   1040   setAtomic(NotAtomic);
   1041   AssertOK();
   1042   if (Name && Name[0]) setName(Name);
   1043 }
   1044 
   1045 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1046                    Instruction *InsertBef)
   1047 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1048                    Load, Ptr, InsertBef) {
   1049   setVolatile(isVolatile);
   1050   setAlignment(0);
   1051   setAtomic(NotAtomic);
   1052   AssertOK();
   1053   if (Name && Name[0]) setName(Name);
   1054 }
   1055 
   1056 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1057                    BasicBlock *InsertAE)
   1058   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1059                      Load, Ptr, InsertAE) {
   1060   setVolatile(isVolatile);
   1061   setAlignment(0);
   1062   setAtomic(NotAtomic);
   1063   AssertOK();
   1064   if (Name && Name[0]) setName(Name);
   1065 }
   1066 
   1067 void LoadInst::setAlignment(unsigned Align) {
   1068   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1069   assert(Align <= MaximumAlignment &&
   1070          "Alignment is greater than MaximumAlignment!");
   1071   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1072                              ((Log2_32(Align)+1)<<1));
   1073   assert(getAlignment() == Align && "Alignment representation error!");
   1074 }
   1075 
   1076 //===----------------------------------------------------------------------===//
   1077 //                           StoreInst Implementation
   1078 //===----------------------------------------------------------------------===//
   1079 
   1080 void StoreInst::AssertOK() {
   1081   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
   1082   assert(getOperand(1)->getType()->isPointerTy() &&
   1083          "Ptr must have pointer type!");
   1084   assert(getOperand(0)->getType() ==
   1085                  cast<PointerType>(getOperand(1)->getType())->getElementType()
   1086          && "Ptr must be a pointer to Val type!");
   1087   assert(!(isAtomic() && getAlignment() == 0) &&
   1088          "Alignment required for atomic load");
   1089 }
   1090 
   1091 
   1092 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
   1093   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1094                 OperandTraits<StoreInst>::op_begin(this),
   1095                 OperandTraits<StoreInst>::operands(this),
   1096                 InsertBefore) {
   1097   Op<0>() = val;
   1098   Op<1>() = addr;
   1099   setVolatile(false);
   1100   setAlignment(0);
   1101   setAtomic(NotAtomic);
   1102   AssertOK();
   1103 }
   1104 
   1105 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
   1106   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1107                 OperandTraits<StoreInst>::op_begin(this),
   1108                 OperandTraits<StoreInst>::operands(this),
   1109                 InsertAtEnd) {
   1110   Op<0>() = val;
   1111   Op<1>() = addr;
   1112   setVolatile(false);
   1113   setAlignment(0);
   1114   setAtomic(NotAtomic);
   1115   AssertOK();
   1116 }
   1117 
   1118 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1119                      Instruction *InsertBefore)
   1120   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1121                 OperandTraits<StoreInst>::op_begin(this),
   1122                 OperandTraits<StoreInst>::operands(this),
   1123                 InsertBefore) {
   1124   Op<0>() = val;
   1125   Op<1>() = addr;
   1126   setVolatile(isVolatile);
   1127   setAlignment(0);
   1128   setAtomic(NotAtomic);
   1129   AssertOK();
   1130 }
   1131 
   1132 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1133                      unsigned Align, Instruction *InsertBefore)
   1134   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1135                 OperandTraits<StoreInst>::op_begin(this),
   1136                 OperandTraits<StoreInst>::operands(this),
   1137                 InsertBefore) {
   1138   Op<0>() = val;
   1139   Op<1>() = addr;
   1140   setVolatile(isVolatile);
   1141   setAlignment(Align);
   1142   setAtomic(NotAtomic);
   1143   AssertOK();
   1144 }
   1145 
   1146 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1147                      unsigned Align, AtomicOrdering Order,
   1148                      SynchronizationScope SynchScope,
   1149                      Instruction *InsertBefore)
   1150   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1151                 OperandTraits<StoreInst>::op_begin(this),
   1152                 OperandTraits<StoreInst>::operands(this),
   1153                 InsertBefore) {
   1154   Op<0>() = val;
   1155   Op<1>() = addr;
   1156   setVolatile(isVolatile);
   1157   setAlignment(Align);
   1158   setAtomic(Order, SynchScope);
   1159   AssertOK();
   1160 }
   1161 
   1162 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1163                      BasicBlock *InsertAtEnd)
   1164   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1165                 OperandTraits<StoreInst>::op_begin(this),
   1166                 OperandTraits<StoreInst>::operands(this),
   1167                 InsertAtEnd) {
   1168   Op<0>() = val;
   1169   Op<1>() = addr;
   1170   setVolatile(isVolatile);
   1171   setAlignment(0);
   1172   setAtomic(NotAtomic);
   1173   AssertOK();
   1174 }
   1175 
   1176 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1177                      unsigned Align, BasicBlock *InsertAtEnd)
   1178   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1179                 OperandTraits<StoreInst>::op_begin(this),
   1180                 OperandTraits<StoreInst>::operands(this),
   1181                 InsertAtEnd) {
   1182   Op<0>() = val;
   1183   Op<1>() = addr;
   1184   setVolatile(isVolatile);
   1185   setAlignment(Align);
   1186   setAtomic(NotAtomic);
   1187   AssertOK();
   1188 }
   1189 
   1190 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1191                      unsigned Align, AtomicOrdering Order,
   1192                      SynchronizationScope SynchScope,
   1193                      BasicBlock *InsertAtEnd)
   1194   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1195                 OperandTraits<StoreInst>::op_begin(this),
   1196                 OperandTraits<StoreInst>::operands(this),
   1197                 InsertAtEnd) {
   1198   Op<0>() = val;
   1199   Op<1>() = addr;
   1200   setVolatile(isVolatile);
   1201   setAlignment(Align);
   1202   setAtomic(Order, SynchScope);
   1203   AssertOK();
   1204 }
   1205 
   1206 void StoreInst::setAlignment(unsigned Align) {
   1207   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1208   assert(Align <= MaximumAlignment &&
   1209          "Alignment is greater than MaximumAlignment!");
   1210   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1211                              ((Log2_32(Align)+1) << 1));
   1212   assert(getAlignment() == Align && "Alignment representation error!");
   1213 }
   1214 
   1215 //===----------------------------------------------------------------------===//
   1216 //                       AtomicCmpXchgInst Implementation
   1217 //===----------------------------------------------------------------------===//
   1218 
   1219 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
   1220                              AtomicOrdering Ordering,
   1221                              SynchronizationScope SynchScope) {
   1222   Op<0>() = Ptr;
   1223   Op<1>() = Cmp;
   1224   Op<2>() = NewVal;
   1225   setOrdering(Ordering);
   1226   setSynchScope(SynchScope);
   1227 
   1228   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
   1229          "All operands must be non-null!");
   1230   assert(getOperand(0)->getType()->isPointerTy() &&
   1231          "Ptr must have pointer type!");
   1232   assert(getOperand(1)->getType() ==
   1233                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1234          && "Ptr must be a pointer to Cmp type!");
   1235   assert(getOperand(2)->getType() ==
   1236                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1237          && "Ptr must be a pointer to NewVal type!");
   1238   assert(Ordering != NotAtomic &&
   1239          "AtomicCmpXchg instructions must be atomic!");
   1240 }
   1241 
   1242 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1243                                      AtomicOrdering Ordering,
   1244                                      SynchronizationScope SynchScope,
   1245                                      Instruction *InsertBefore)
   1246   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1247                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1248                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1249                 InsertBefore) {
   1250   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1251 }
   1252 
   1253 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1254                                      AtomicOrdering Ordering,
   1255                                      SynchronizationScope SynchScope,
   1256                                      BasicBlock *InsertAtEnd)
   1257   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1258                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1259                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1260                 InsertAtEnd) {
   1261   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1262 }
   1263 
   1264 //===----------------------------------------------------------------------===//
   1265 //                       AtomicRMWInst Implementation
   1266 //===----------------------------------------------------------------------===//
   1267 
   1268 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
   1269                          AtomicOrdering Ordering,
   1270                          SynchronizationScope SynchScope) {
   1271   Op<0>() = Ptr;
   1272   Op<1>() = Val;
   1273   setOperation(Operation);
   1274   setOrdering(Ordering);
   1275   setSynchScope(SynchScope);
   1276 
   1277   assert(getOperand(0) && getOperand(1) &&
   1278          "All operands must be non-null!");
   1279   assert(getOperand(0)->getType()->isPointerTy() &&
   1280          "Ptr must have pointer type!");
   1281   assert(getOperand(1)->getType() ==
   1282          cast<PointerType>(getOperand(0)->getType())->getElementType()
   1283          && "Ptr must be a pointer to Val type!");
   1284   assert(Ordering != NotAtomic &&
   1285          "AtomicRMW instructions must be atomic!");
   1286 }
   1287 
   1288 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1289                              AtomicOrdering Ordering,
   1290                              SynchronizationScope SynchScope,
   1291                              Instruction *InsertBefore)
   1292   : Instruction(Val->getType(), AtomicRMW,
   1293                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1294                 OperandTraits<AtomicRMWInst>::operands(this),
   1295                 InsertBefore) {
   1296   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1297 }
   1298 
   1299 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1300                              AtomicOrdering Ordering,
   1301                              SynchronizationScope SynchScope,
   1302                              BasicBlock *InsertAtEnd)
   1303   : Instruction(Val->getType(), AtomicRMW,
   1304                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1305                 OperandTraits<AtomicRMWInst>::operands(this),
   1306                 InsertAtEnd) {
   1307   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1308 }
   1309 
   1310 //===----------------------------------------------------------------------===//
   1311 //                       FenceInst Implementation
   1312 //===----------------------------------------------------------------------===//
   1313 
   1314 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1315                      SynchronizationScope SynchScope,
   1316                      Instruction *InsertBefore)
   1317   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
   1318   setOrdering(Ordering);
   1319   setSynchScope(SynchScope);
   1320 }
   1321 
   1322 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1323                      SynchronizationScope SynchScope,
   1324                      BasicBlock *InsertAtEnd)
   1325   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
   1326   setOrdering(Ordering);
   1327   setSynchScope(SynchScope);
   1328 }
   1329 
   1330 //===----------------------------------------------------------------------===//
   1331 //                       GetElementPtrInst Implementation
   1332 //===----------------------------------------------------------------------===//
   1333 
   1334 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
   1335                              const Twine &Name) {
   1336   assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
   1337   OperandList[0] = Ptr;
   1338   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
   1339   setName(Name);
   1340 }
   1341 
   1342 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
   1343   : Instruction(GEPI.getType(), GetElementPtr,
   1344                 OperandTraits<GetElementPtrInst>::op_end(this)
   1345                 - GEPI.getNumOperands(),
   1346                 GEPI.getNumOperands()) {
   1347   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
   1348   SubclassOptionalData = GEPI.SubclassOptionalData;
   1349 }
   1350 
   1351 /// getIndexedType - Returns the type of the element that would be accessed with
   1352 /// a gep instruction with the specified parameters.
   1353 ///
   1354 /// The Idxs pointer should point to a continuous piece of memory containing the
   1355 /// indices, either as Value* or uint64_t.
   1356 ///
   1357 /// A null type is returned if the indices are invalid for the specified
   1358 /// pointer type.
   1359 ///
   1360 template <typename IndexTy>
   1361 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
   1362   PointerType *PTy = dyn_cast<PointerType>(Ptr);
   1363   if (!PTy) return 0;   // Type isn't a pointer type!
   1364   Type *Agg = PTy->getElementType();
   1365 
   1366   // Handle the special case of the empty set index set, which is always valid.
   1367   if (IdxList.empty())
   1368     return Agg;
   1369 
   1370   // If there is at least one index, the top level type must be sized, otherwise
   1371   // it cannot be 'stepped over'.
   1372   if (!Agg->isSized())
   1373     return 0;
   1374 
   1375   unsigned CurIdx = 1;
   1376   for (; CurIdx != IdxList.size(); ++CurIdx) {
   1377     CompositeType *CT = dyn_cast<CompositeType>(Agg);
   1378     if (!CT || CT->isPointerTy()) return 0;
   1379     IndexTy Index = IdxList[CurIdx];
   1380     if (!CT->indexValid(Index)) return 0;
   1381     Agg = CT->getTypeAtIndex(Index);
   1382   }
   1383   return CurIdx == IdxList.size() ? Agg : 0;
   1384 }
   1385 
   1386 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
   1387   return getIndexedTypeInternal(Ptr, IdxList);
   1388 }
   1389 
   1390 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
   1391                                         ArrayRef<Constant *> IdxList) {
   1392   return getIndexedTypeInternal(Ptr, IdxList);
   1393 }
   1394 
   1395 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
   1396   return getIndexedTypeInternal(Ptr, IdxList);
   1397 }
   1398 
   1399 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
   1400 /// zeros.  If so, the result pointer and the first operand have the same
   1401 /// value, just potentially different types.
   1402 bool GetElementPtrInst::hasAllZeroIndices() const {
   1403   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1404     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
   1405       if (!CI->isZero()) return false;
   1406     } else {
   1407       return false;
   1408     }
   1409   }
   1410   return true;
   1411 }
   1412 
   1413 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
   1414 /// constant integers.  If so, the result pointer and the first operand have
   1415 /// a constant offset between them.
   1416 bool GetElementPtrInst::hasAllConstantIndices() const {
   1417   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1418     if (!isa<ConstantInt>(getOperand(i)))
   1419       return false;
   1420   }
   1421   return true;
   1422 }
   1423 
   1424 void GetElementPtrInst::setIsInBounds(bool B) {
   1425   cast<GEPOperator>(this)->setIsInBounds(B);
   1426 }
   1427 
   1428 bool GetElementPtrInst::isInBounds() const {
   1429   return cast<GEPOperator>(this)->isInBounds();
   1430 }
   1431 
   1432 //===----------------------------------------------------------------------===//
   1433 //                           ExtractElementInst Implementation
   1434 //===----------------------------------------------------------------------===//
   1435 
   1436 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1437                                        const Twine &Name,
   1438                                        Instruction *InsertBef)
   1439   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1440                 ExtractElement,
   1441                 OperandTraits<ExtractElementInst>::op_begin(this),
   1442                 2, InsertBef) {
   1443   assert(isValidOperands(Val, Index) &&
   1444          "Invalid extractelement instruction operands!");
   1445   Op<0>() = Val;
   1446   Op<1>() = Index;
   1447   setName(Name);
   1448 }
   1449 
   1450 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1451                                        const Twine &Name,
   1452                                        BasicBlock *InsertAE)
   1453   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1454                 ExtractElement,
   1455                 OperandTraits<ExtractElementInst>::op_begin(this),
   1456                 2, InsertAE) {
   1457   assert(isValidOperands(Val, Index) &&
   1458          "Invalid extractelement instruction operands!");
   1459 
   1460   Op<0>() = Val;
   1461   Op<1>() = Index;
   1462   setName(Name);
   1463 }
   1464 
   1465 
   1466 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
   1467   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
   1468     return false;
   1469   return true;
   1470 }
   1471 
   1472 
   1473 //===----------------------------------------------------------------------===//
   1474 //                           InsertElementInst Implementation
   1475 //===----------------------------------------------------------------------===//
   1476 
   1477 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1478                                      const Twine &Name,
   1479                                      Instruction *InsertBef)
   1480   : Instruction(Vec->getType(), InsertElement,
   1481                 OperandTraits<InsertElementInst>::op_begin(this),
   1482                 3, InsertBef) {
   1483   assert(isValidOperands(Vec, Elt, Index) &&
   1484          "Invalid insertelement instruction operands!");
   1485   Op<0>() = Vec;
   1486   Op<1>() = Elt;
   1487   Op<2>() = Index;
   1488   setName(Name);
   1489 }
   1490 
   1491 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1492                                      const Twine &Name,
   1493                                      BasicBlock *InsertAE)
   1494   : Instruction(Vec->getType(), InsertElement,
   1495                 OperandTraits<InsertElementInst>::op_begin(this),
   1496                 3, InsertAE) {
   1497   assert(isValidOperands(Vec, Elt, Index) &&
   1498          "Invalid insertelement instruction operands!");
   1499 
   1500   Op<0>() = Vec;
   1501   Op<1>() = Elt;
   1502   Op<2>() = Index;
   1503   setName(Name);
   1504 }
   1505 
   1506 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
   1507                                         const Value *Index) {
   1508   if (!Vec->getType()->isVectorTy())
   1509     return false;   // First operand of insertelement must be vector type.
   1510 
   1511   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
   1512     return false;// Second operand of insertelement must be vector element type.
   1513 
   1514   if (!Index->getType()->isIntegerTy(32))
   1515     return false;  // Third operand of insertelement must be i32.
   1516   return true;
   1517 }
   1518 
   1519 
   1520 //===----------------------------------------------------------------------===//
   1521 //                      ShuffleVectorInst Implementation
   1522 //===----------------------------------------------------------------------===//
   1523 
   1524 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1525                                      const Twine &Name,
   1526                                      Instruction *InsertBefore)
   1527 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1528                 cast<VectorType>(Mask->getType())->getNumElements()),
   1529               ShuffleVector,
   1530               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1531               OperandTraits<ShuffleVectorInst>::operands(this),
   1532               InsertBefore) {
   1533   assert(isValidOperands(V1, V2, Mask) &&
   1534          "Invalid shuffle vector instruction operands!");
   1535   Op<0>() = V1;
   1536   Op<1>() = V2;
   1537   Op<2>() = Mask;
   1538   setName(Name);
   1539 }
   1540 
   1541 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1542                                      const Twine &Name,
   1543                                      BasicBlock *InsertAtEnd)
   1544 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1545                 cast<VectorType>(Mask->getType())->getNumElements()),
   1546               ShuffleVector,
   1547               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1548               OperandTraits<ShuffleVectorInst>::operands(this),
   1549               InsertAtEnd) {
   1550   assert(isValidOperands(V1, V2, Mask) &&
   1551          "Invalid shuffle vector instruction operands!");
   1552 
   1553   Op<0>() = V1;
   1554   Op<1>() = V2;
   1555   Op<2>() = Mask;
   1556   setName(Name);
   1557 }
   1558 
   1559 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
   1560                                         const Value *Mask) {
   1561   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
   1562     return false;
   1563 
   1564   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
   1565   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
   1566     return false;
   1567 
   1568   // Check to see if Mask is valid.
   1569   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
   1570     VectorType *VTy = cast<VectorType>(V1->getType());
   1571     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
   1572       if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
   1573         if (CI->uge(VTy->getNumElements()*2))
   1574           return false;
   1575       } else if (!isa<UndefValue>(MV->getOperand(i))) {
   1576         return false;
   1577       }
   1578     }
   1579   }
   1580   else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
   1581     return false;
   1582 
   1583   return true;
   1584 }
   1585 
   1586 /// getMaskValue - Return the index from the shuffle mask for the specified
   1587 /// output result.  This is either -1 if the element is undef or a number less
   1588 /// than 2*numelements.
   1589 int ShuffleVectorInst::getMaskValue(unsigned i) const {
   1590   const Constant *Mask = cast<Constant>(getOperand(2));
   1591   if (isa<UndefValue>(Mask)) return -1;
   1592   if (isa<ConstantAggregateZero>(Mask)) return 0;
   1593   const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
   1594   assert(i < MaskCV->getNumOperands() && "Index out of range");
   1595 
   1596   if (isa<UndefValue>(MaskCV->getOperand(i)))
   1597     return -1;
   1598   return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
   1599 }
   1600 
   1601 //===----------------------------------------------------------------------===//
   1602 //                             InsertValueInst Class
   1603 //===----------------------------------------------------------------------===//
   1604 
   1605 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
   1606                            const Twine &Name) {
   1607   assert(NumOperands == 2 && "NumOperands not initialized?");
   1608 
   1609   // There's no fundamental reason why we require at least one index
   1610   // (other than weirdness with &*IdxBegin being invalid; see
   1611   // getelementptr's init routine for example). But there's no
   1612   // present need to support it.
   1613   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
   1614 
   1615   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
   1616          Val->getType() && "Inserted value must match indexed type!");
   1617   Op<0>() = Agg;
   1618   Op<1>() = Val;
   1619 
   1620   Indices.append(Idxs.begin(), Idxs.end());
   1621   setName(Name);
   1622 }
   1623 
   1624 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
   1625   : Instruction(IVI.getType(), InsertValue,
   1626                 OperandTraits<InsertValueInst>::op_begin(this), 2),
   1627     Indices(IVI.Indices) {
   1628   Op<0>() = IVI.getOperand(0);
   1629   Op<1>() = IVI.getOperand(1);
   1630   SubclassOptionalData = IVI.SubclassOptionalData;
   1631 }
   1632 
   1633 //===----------------------------------------------------------------------===//
   1634 //                             ExtractValueInst Class
   1635 //===----------------------------------------------------------------------===//
   1636 
   1637 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
   1638   assert(NumOperands == 1 && "NumOperands not initialized?");
   1639 
   1640   // There's no fundamental reason why we require at least one index.
   1641   // But there's no present need to support it.
   1642   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
   1643 
   1644   Indices.append(Idxs.begin(), Idxs.end());
   1645   setName(Name);
   1646 }
   1647 
   1648 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
   1649   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
   1650     Indices(EVI.Indices) {
   1651   SubclassOptionalData = EVI.SubclassOptionalData;
   1652 }
   1653 
   1654 // getIndexedType - Returns the type of the element that would be extracted
   1655 // with an extractvalue instruction with the specified parameters.
   1656 //
   1657 // A null type is returned if the indices are invalid for the specified
   1658 // pointer type.
   1659 //
   1660 Type *ExtractValueInst::getIndexedType(Type *Agg,
   1661                                        ArrayRef<unsigned> Idxs) {
   1662   for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
   1663     unsigned Index = Idxs[CurIdx];
   1664     // We can't use CompositeType::indexValid(Index) here.
   1665     // indexValid() always returns true for arrays because getelementptr allows
   1666     // out-of-bounds indices. Since we don't allow those for extractvalue and
   1667     // insertvalue we need to check array indexing manually.
   1668     // Since the only other types we can index into are struct types it's just
   1669     // as easy to check those manually as well.
   1670     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
   1671       if (Index >= AT->getNumElements())
   1672         return 0;
   1673     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
   1674       if (Index >= ST->getNumElements())
   1675         return 0;
   1676     } else {
   1677       // Not a valid type to index into.
   1678       return 0;
   1679     }
   1680 
   1681     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
   1682   }
   1683   return const_cast<Type*>(Agg);
   1684 }
   1685 
   1686 //===----------------------------------------------------------------------===//
   1687 //                             BinaryOperator Class
   1688 //===----------------------------------------------------------------------===//
   1689 
   1690 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1691                                Type *Ty, const Twine &Name,
   1692                                Instruction *InsertBefore)
   1693   : Instruction(Ty, iType,
   1694                 OperandTraits<BinaryOperator>::op_begin(this),
   1695                 OperandTraits<BinaryOperator>::operands(this),
   1696                 InsertBefore) {
   1697   Op<0>() = S1;
   1698   Op<1>() = S2;
   1699   init(iType);
   1700   setName(Name);
   1701 }
   1702 
   1703 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1704                                Type *Ty, const Twine &Name,
   1705                                BasicBlock *InsertAtEnd)
   1706   : Instruction(Ty, iType,
   1707                 OperandTraits<BinaryOperator>::op_begin(this),
   1708                 OperandTraits<BinaryOperator>::operands(this),
   1709                 InsertAtEnd) {
   1710   Op<0>() = S1;
   1711   Op<1>() = S2;
   1712   init(iType);
   1713   setName(Name);
   1714 }
   1715 
   1716 
   1717 void BinaryOperator::init(BinaryOps iType) {
   1718   Value *LHS = getOperand(0), *RHS = getOperand(1);
   1719   (void)LHS; (void)RHS; // Silence warnings.
   1720   assert(LHS->getType() == RHS->getType() &&
   1721          "Binary operator operand types must match!");
   1722 #ifndef NDEBUG
   1723   switch (iType) {
   1724   case Add: case Sub:
   1725   case Mul:
   1726     assert(getType() == LHS->getType() &&
   1727            "Arithmetic operation should return same type as operands!");
   1728     assert(getType()->isIntOrIntVectorTy() &&
   1729            "Tried to create an integer operation on a non-integer type!");
   1730     break;
   1731   case FAdd: case FSub:
   1732   case FMul:
   1733     assert(getType() == LHS->getType() &&
   1734            "Arithmetic operation should return same type as operands!");
   1735     assert(getType()->isFPOrFPVectorTy() &&
   1736            "Tried to create a floating-point operation on a "
   1737            "non-floating-point type!");
   1738     break;
   1739   case UDiv:
   1740   case SDiv:
   1741     assert(getType() == LHS->getType() &&
   1742            "Arithmetic operation should return same type as operands!");
   1743     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1744             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1745            "Incorrect operand type (not integer) for S/UDIV");
   1746     break;
   1747   case FDiv:
   1748     assert(getType() == LHS->getType() &&
   1749            "Arithmetic operation should return same type as operands!");
   1750     assert(getType()->isFPOrFPVectorTy() &&
   1751            "Incorrect operand type (not floating point) for FDIV");
   1752     break;
   1753   case URem:
   1754   case SRem:
   1755     assert(getType() == LHS->getType() &&
   1756            "Arithmetic operation should return same type as operands!");
   1757     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1758             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1759            "Incorrect operand type (not integer) for S/UREM");
   1760     break;
   1761   case FRem:
   1762     assert(getType() == LHS->getType() &&
   1763            "Arithmetic operation should return same type as operands!");
   1764     assert(getType()->isFPOrFPVectorTy() &&
   1765            "Incorrect operand type (not floating point) for FREM");
   1766     break;
   1767   case Shl:
   1768   case LShr:
   1769   case AShr:
   1770     assert(getType() == LHS->getType() &&
   1771            "Shift operation should return same type as operands!");
   1772     assert((getType()->isIntegerTy() ||
   1773             (getType()->isVectorTy() &&
   1774              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1775            "Tried to create a shift operation on a non-integral type!");
   1776     break;
   1777   case And: case Or:
   1778   case Xor:
   1779     assert(getType() == LHS->getType() &&
   1780            "Logical operation should return same type as operands!");
   1781     assert((getType()->isIntegerTy() ||
   1782             (getType()->isVectorTy() &&
   1783              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1784            "Tried to create a logical operation on a non-integral type!");
   1785     break;
   1786   default:
   1787     break;
   1788   }
   1789 #endif
   1790 }
   1791 
   1792 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1793                                        const Twine &Name,
   1794                                        Instruction *InsertBefore) {
   1795   assert(S1->getType() == S2->getType() &&
   1796          "Cannot create binary operator with two operands of differing type!");
   1797   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
   1798 }
   1799 
   1800 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1801                                        const Twine &Name,
   1802                                        BasicBlock *InsertAtEnd) {
   1803   BinaryOperator *Res = Create(Op, S1, S2, Name);
   1804   InsertAtEnd->getInstList().push_back(Res);
   1805   return Res;
   1806 }
   1807 
   1808 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1809                                           Instruction *InsertBefore) {
   1810   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1811   return new BinaryOperator(Instruction::Sub,
   1812                             zero, Op,
   1813                             Op->getType(), Name, InsertBefore);
   1814 }
   1815 
   1816 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1817                                           BasicBlock *InsertAtEnd) {
   1818   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1819   return new BinaryOperator(Instruction::Sub,
   1820                             zero, Op,
   1821                             Op->getType(), Name, InsertAtEnd);
   1822 }
   1823 
   1824 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1825                                              Instruction *InsertBefore) {
   1826   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1827   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
   1828 }
   1829 
   1830 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1831                                              BasicBlock *InsertAtEnd) {
   1832   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1833   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
   1834 }
   1835 
   1836 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1837                                              Instruction *InsertBefore) {
   1838   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1839   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
   1840 }
   1841 
   1842 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1843                                              BasicBlock *InsertAtEnd) {
   1844   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1845   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
   1846 }
   1847 
   1848 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1849                                            Instruction *InsertBefore) {
   1850   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1851   return new BinaryOperator(Instruction::FSub,
   1852                             zero, Op,
   1853                             Op->getType(), Name, InsertBefore);
   1854 }
   1855 
   1856 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1857                                            BasicBlock *InsertAtEnd) {
   1858   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1859   return new BinaryOperator(Instruction::FSub,
   1860                             zero, Op,
   1861                             Op->getType(), Name, InsertAtEnd);
   1862 }
   1863 
   1864 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1865                                           Instruction *InsertBefore) {
   1866   Constant *C;
   1867   if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
   1868     C = Constant::getAllOnesValue(PTy->getElementType());
   1869     C = ConstantVector::get(
   1870                               std::vector<Constant*>(PTy->getNumElements(), C));
   1871   } else {
   1872     C = Constant::getAllOnesValue(Op->getType());
   1873   }
   1874 
   1875   return new BinaryOperator(Instruction::Xor, Op, C,
   1876                             Op->getType(), Name, InsertBefore);
   1877 }
   1878 
   1879 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1880                                           BasicBlock *InsertAtEnd) {
   1881   Constant *AllOnes;
   1882   if (VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
   1883     // Create a vector of all ones values.
   1884     Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
   1885     AllOnes = ConstantVector::get(
   1886                             std::vector<Constant*>(PTy->getNumElements(), Elt));
   1887   } else {
   1888     AllOnes = Constant::getAllOnesValue(Op->getType());
   1889   }
   1890 
   1891   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
   1892                             Op->getType(), Name, InsertAtEnd);
   1893 }
   1894 
   1895 
   1896 // isConstantAllOnes - Helper function for several functions below
   1897 static inline bool isConstantAllOnes(const Value *V) {
   1898   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
   1899     return CI->isAllOnesValue();
   1900   if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
   1901     return CV->isAllOnesValue();
   1902   return false;
   1903 }
   1904 
   1905 bool BinaryOperator::isNeg(const Value *V) {
   1906   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1907     if (Bop->getOpcode() == Instruction::Sub)
   1908       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
   1909         return C->isNegativeZeroValue();
   1910   return false;
   1911 }
   1912 
   1913 bool BinaryOperator::isFNeg(const Value *V) {
   1914   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1915     if (Bop->getOpcode() == Instruction::FSub)
   1916       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
   1917         return C->isNegativeZeroValue();
   1918   return false;
   1919 }
   1920 
   1921 bool BinaryOperator::isNot(const Value *V) {
   1922   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1923     return (Bop->getOpcode() == Instruction::Xor &&
   1924             (isConstantAllOnes(Bop->getOperand(1)) ||
   1925              isConstantAllOnes(Bop->getOperand(0))));
   1926   return false;
   1927 }
   1928 
   1929 Value *BinaryOperator::getNegArgument(Value *BinOp) {
   1930   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1931 }
   1932 
   1933 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
   1934   return getNegArgument(const_cast<Value*>(BinOp));
   1935 }
   1936 
   1937 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
   1938   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1939 }
   1940 
   1941 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
   1942   return getFNegArgument(const_cast<Value*>(BinOp));
   1943 }
   1944 
   1945 Value *BinaryOperator::getNotArgument(Value *BinOp) {
   1946   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
   1947   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
   1948   Value *Op0 = BO->getOperand(0);
   1949   Value *Op1 = BO->getOperand(1);
   1950   if (isConstantAllOnes(Op0)) return Op1;
   1951 
   1952   assert(isConstantAllOnes(Op1));
   1953   return Op0;
   1954 }
   1955 
   1956 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
   1957   return getNotArgument(const_cast<Value*>(BinOp));
   1958 }
   1959 
   1960 
   1961 // swapOperands - Exchange the two operands to this instruction.  This
   1962 // instruction is safe to use on any binary instruction and does not
   1963 // modify the semantics of the instruction.  If the instruction is
   1964 // order dependent (SetLT f.e.) the opcode is changed.
   1965 //
   1966 bool BinaryOperator::swapOperands() {
   1967   if (!isCommutative())
   1968     return true; // Can't commute operands
   1969   Op<0>().swap(Op<1>());
   1970   return false;
   1971 }
   1972 
   1973 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
   1974   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
   1975 }
   1976 
   1977 void BinaryOperator::setHasNoSignedWrap(bool b) {
   1978   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
   1979 }
   1980 
   1981 void BinaryOperator::setIsExact(bool b) {
   1982   cast<PossiblyExactOperator>(this)->setIsExact(b);
   1983 }
   1984 
   1985 bool BinaryOperator::hasNoUnsignedWrap() const {
   1986   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
   1987 }
   1988 
   1989 bool BinaryOperator::hasNoSignedWrap() const {
   1990   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
   1991 }
   1992 
   1993 bool BinaryOperator::isExact() const {
   1994   return cast<PossiblyExactOperator>(this)->isExact();
   1995 }
   1996 
   1997 //===----------------------------------------------------------------------===//
   1998 //                                CastInst Class
   1999 //===----------------------------------------------------------------------===//
   2000 
   2001 // Just determine if this cast only deals with integral->integral conversion.
   2002 bool CastInst::isIntegerCast() const {
   2003   switch (getOpcode()) {
   2004     default: return false;
   2005     case Instruction::ZExt:
   2006     case Instruction::SExt:
   2007     case Instruction::Trunc:
   2008       return true;
   2009     case Instruction::BitCast:
   2010       return getOperand(0)->getType()->isIntegerTy() &&
   2011         getType()->isIntegerTy();
   2012   }
   2013 }
   2014 
   2015 bool CastInst::isLosslessCast() const {
   2016   // Only BitCast can be lossless, exit fast if we're not BitCast
   2017   if (getOpcode() != Instruction::BitCast)
   2018     return false;
   2019 
   2020   // Identity cast is always lossless
   2021   Type* SrcTy = getOperand(0)->getType();
   2022   Type* DstTy = getType();
   2023   if (SrcTy == DstTy)
   2024     return true;
   2025 
   2026   // Pointer to pointer is always lossless.
   2027   if (SrcTy->isPointerTy())
   2028     return DstTy->isPointerTy();
   2029   return false;  // Other types have no identity values
   2030 }
   2031 
   2032 /// This function determines if the CastInst does not require any bits to be
   2033 /// changed in order to effect the cast. Essentially, it identifies cases where
   2034 /// no code gen is necessary for the cast, hence the name no-op cast.  For
   2035 /// example, the following are all no-op casts:
   2036 /// # bitcast i32* %x to i8*
   2037 /// # bitcast <2 x i32> %x to <4 x i16>
   2038 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
   2039 /// @brief Determine if the described cast is a no-op.
   2040 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
   2041                           Type *SrcTy,
   2042                           Type *DestTy,
   2043                           Type *IntPtrTy) {
   2044   switch (Opcode) {
   2045     default:
   2046       assert(0 && "Invalid CastOp");
   2047     case Instruction::Trunc:
   2048     case Instruction::ZExt:
   2049     case Instruction::SExt:
   2050     case Instruction::FPTrunc:
   2051     case Instruction::FPExt:
   2052     case Instruction::UIToFP:
   2053     case Instruction::SIToFP:
   2054     case Instruction::FPToUI:
   2055     case Instruction::FPToSI:
   2056       return false; // These always modify bits
   2057     case Instruction::BitCast:
   2058       return true;  // BitCast never modifies bits.
   2059     case Instruction::PtrToInt:
   2060       return IntPtrTy->getScalarSizeInBits() ==
   2061              DestTy->getScalarSizeInBits();
   2062     case Instruction::IntToPtr:
   2063       return IntPtrTy->getScalarSizeInBits() ==
   2064              SrcTy->getScalarSizeInBits();
   2065   }
   2066 }
   2067 
   2068 /// @brief Determine if a cast is a no-op.
   2069 bool CastInst::isNoopCast(Type *IntPtrTy) const {
   2070   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
   2071 }
   2072 
   2073 /// This function determines if a pair of casts can be eliminated and what
   2074 /// opcode should be used in the elimination. This assumes that there are two
   2075 /// instructions like this:
   2076 /// *  %F = firstOpcode SrcTy %x to MidTy
   2077 /// *  %S = secondOpcode MidTy %F to DstTy
   2078 /// The function returns a resultOpcode so these two casts can be replaced with:
   2079 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
   2080 /// If no such cast is permited, the function returns 0.
   2081 unsigned CastInst::isEliminableCastPair(
   2082   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
   2083   Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) {
   2084   // Define the 144 possibilities for these two cast instructions. The values
   2085   // in this matrix determine what to do in a given situation and select the
   2086   // case in the switch below.  The rows correspond to firstOp, the columns
   2087   // correspond to secondOp.  In looking at the table below, keep in  mind
   2088   // the following cast properties:
   2089   //
   2090   //          Size Compare       Source               Destination
   2091   // Operator  Src ? Size   Type       Sign         Type       Sign
   2092   // -------- ------------ -------------------   ---------------------
   2093   // TRUNC         >       Integer      Any        Integral     Any
   2094   // ZEXT          <       Integral   Unsigned     Integer      Any
   2095   // SEXT          <       Integral    Signed      Integer      Any
   2096   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
   2097   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
   2098   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
   2099   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
   2100   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
   2101   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
   2102   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
   2103   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
   2104   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
   2105   //
   2106   // NOTE: some transforms are safe, but we consider them to be non-profitable.
   2107   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
   2108   // into "fptoui double to i64", but this loses information about the range
   2109   // of the produced value (we no longer know the top-part is all zeros).
   2110   // Further this conversion is often much more expensive for typical hardware,
   2111   // and causes issues when building libgcc.  We disallow fptosi+sext for the
   2112   // same reason.
   2113   const unsigned numCastOps =
   2114     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
   2115   static const uint8_t CastResults[numCastOps][numCastOps] = {
   2116     // T        F  F  U  S  F  F  P  I  B   -+
   2117     // R  Z  S  P  P  I  I  T  P  2  N  T    |
   2118     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
   2119     // N  X  X  U  S  F  F  N  X  N  2  V    |
   2120     // C  T  T  I  I  P  P  C  T  T  P  T   -+
   2121     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
   2122     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
   2123     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
   2124     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
   2125     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
   2126     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
   2127     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
   2128     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
   2129     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
   2130     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
   2131     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
   2132     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
   2133   };
   2134 
   2135   // If either of the casts are a bitcast from scalar to vector, disallow the
   2136   // merging. However, bitcast of A->B->A are allowed.
   2137   bool isFirstBitcast  = (firstOp == Instruction::BitCast);
   2138   bool isSecondBitcast = (secondOp == Instruction::BitCast);
   2139   bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
   2140 
   2141   // Check if any of the bitcasts convert scalars<->vectors.
   2142   if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
   2143       (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
   2144     // Unless we are bitcasing to the original type, disallow optimizations.
   2145     if (!chainedBitcast) return 0;
   2146 
   2147   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
   2148                             [secondOp-Instruction::CastOpsBegin];
   2149   switch (ElimCase) {
   2150     case 0:
   2151       // categorically disallowed
   2152       return 0;
   2153     case 1:
   2154       // allowed, use first cast's opcode
   2155       return firstOp;
   2156     case 2:
   2157       // allowed, use second cast's opcode
   2158       return secondOp;
   2159     case 3:
   2160       // no-op cast in second op implies firstOp as long as the DestTy
   2161       // is integer and we are not converting between a vector and a
   2162       // non vector type.
   2163       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
   2164         return firstOp;
   2165       return 0;
   2166     case 4:
   2167       // no-op cast in second op implies firstOp as long as the DestTy
   2168       // is floating point.
   2169       if (DstTy->isFloatingPointTy())
   2170         return firstOp;
   2171       return 0;
   2172     case 5:
   2173       // no-op cast in first op implies secondOp as long as the SrcTy
   2174       // is an integer.
   2175       if (SrcTy->isIntegerTy())
   2176         return secondOp;
   2177       return 0;
   2178     case 6:
   2179       // no-op cast in first op implies secondOp as long as the SrcTy
   2180       // is a floating point.
   2181       if (SrcTy->isFloatingPointTy())
   2182         return secondOp;
   2183       return 0;
   2184     case 7: {
   2185       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
   2186       if (!IntPtrTy)
   2187         return 0;
   2188       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
   2189       unsigned MidSize = MidTy->getScalarSizeInBits();
   2190       if (MidSize >= PtrSize)
   2191         return Instruction::BitCast;
   2192       return 0;
   2193     }
   2194     case 8: {
   2195       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
   2196       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
   2197       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
   2198       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2199       unsigned DstSize = DstTy->getScalarSizeInBits();
   2200       if (SrcSize == DstSize)
   2201         return Instruction::BitCast;
   2202       else if (SrcSize < DstSize)
   2203         return firstOp;
   2204       return secondOp;
   2205     }
   2206     case 9: // zext, sext -> zext, because sext can't sign extend after zext
   2207       return Instruction::ZExt;
   2208     case 10:
   2209       // fpext followed by ftrunc is allowed if the bit size returned to is
   2210       // the same as the original, in which case its just a bitcast
   2211       if (SrcTy == DstTy)
   2212         return Instruction::BitCast;
   2213       return 0; // If the types are not the same we can't eliminate it.
   2214     case 11:
   2215       // bitcast followed by ptrtoint is allowed as long as the bitcast
   2216       // is a pointer to pointer cast.
   2217       if (SrcTy->isPointerTy() && MidTy->isPointerTy())
   2218         return secondOp;
   2219       return 0;
   2220     case 12:
   2221       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
   2222       if (MidTy->isPointerTy() && DstTy->isPointerTy())
   2223         return firstOp;
   2224       return 0;
   2225     case 13: {
   2226       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
   2227       if (!IntPtrTy)
   2228         return 0;
   2229       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
   2230       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2231       unsigned DstSize = DstTy->getScalarSizeInBits();
   2232       if (SrcSize <= PtrSize && SrcSize == DstSize)
   2233         return Instruction::BitCast;
   2234       return 0;
   2235     }
   2236     case 99:
   2237       // cast combination can't happen (error in input). This is for all cases
   2238       // where the MidTy is not the same for the two cast instructions.
   2239       assert(0 && "Invalid Cast Combination");
   2240       return 0;
   2241     default:
   2242       assert(0 && "Error in CastResults table!!!");
   2243       return 0;
   2244   }
   2245   return 0;
   2246 }
   2247 
   2248 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2249   const Twine &Name, Instruction *InsertBefore) {
   2250   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2251   // Construct and return the appropriate CastInst subclass
   2252   switch (op) {
   2253     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
   2254     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
   2255     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
   2256     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
   2257     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
   2258     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
   2259     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
   2260     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
   2261     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
   2262     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
   2263     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
   2264     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
   2265     default:
   2266       assert(0 && "Invalid opcode provided");
   2267   }
   2268   return 0;
   2269 }
   2270 
   2271 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2272   const Twine &Name, BasicBlock *InsertAtEnd) {
   2273   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2274   // Construct and return the appropriate CastInst subclass
   2275   switch (op) {
   2276     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
   2277     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
   2278     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
   2279     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
   2280     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
   2281     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
   2282     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
   2283     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
   2284     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
   2285     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
   2286     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
   2287     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
   2288     default:
   2289       assert(0 && "Invalid opcode provided");
   2290   }
   2291   return 0;
   2292 }
   2293 
   2294 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2295                                         const Twine &Name,
   2296                                         Instruction *InsertBefore) {
   2297   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2298     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2299   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
   2300 }
   2301 
   2302 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2303                                         const Twine &Name,
   2304                                         BasicBlock *InsertAtEnd) {
   2305   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2306     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2307   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
   2308 }
   2309 
   2310 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2311                                         const Twine &Name,
   2312                                         Instruction *InsertBefore) {
   2313   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2314     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2315   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
   2316 }
   2317 
   2318 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2319                                         const Twine &Name,
   2320                                         BasicBlock *InsertAtEnd) {
   2321   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2322     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2323   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
   2324 }
   2325 
   2326 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2327                                          const Twine &Name,
   2328                                          Instruction *InsertBefore) {
   2329   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2330     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2331   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
   2332 }
   2333 
   2334 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2335                                          const Twine &Name,
   2336                                          BasicBlock *InsertAtEnd) {
   2337   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2338     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2339   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
   2340 }
   2341 
   2342 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2343                                       const Twine &Name,
   2344                                       BasicBlock *InsertAtEnd) {
   2345   assert(S->getType()->isPointerTy() && "Invalid cast");
   2346   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2347          "Invalid cast");
   2348 
   2349   if (Ty->isIntegerTy())
   2350     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
   2351   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2352 }
   2353 
   2354 /// @brief Create a BitCast or a PtrToInt cast instruction
   2355 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2356                                       const Twine &Name,
   2357                                       Instruction *InsertBefore) {
   2358   assert(S->getType()->isPointerTy() && "Invalid cast");
   2359   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2360          "Invalid cast");
   2361 
   2362   if (Ty->isIntegerTy())
   2363     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
   2364   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2365 }
   2366 
   2367 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2368                                       bool isSigned, const Twine &Name,
   2369                                       Instruction *InsertBefore) {
   2370   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2371          "Invalid integer cast");
   2372   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2373   unsigned DstBits = Ty->getScalarSizeInBits();
   2374   Instruction::CastOps opcode =
   2375     (SrcBits == DstBits ? Instruction::BitCast :
   2376      (SrcBits > DstBits ? Instruction::Trunc :
   2377       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2378   return Create(opcode, C, Ty, Name, InsertBefore);
   2379 }
   2380 
   2381 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2382                                       bool isSigned, const Twine &Name,
   2383                                       BasicBlock *InsertAtEnd) {
   2384   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2385          "Invalid cast");
   2386   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2387   unsigned DstBits = Ty->getScalarSizeInBits();
   2388   Instruction::CastOps opcode =
   2389     (SrcBits == DstBits ? Instruction::BitCast :
   2390      (SrcBits > DstBits ? Instruction::Trunc :
   2391       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2392   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2393 }
   2394 
   2395 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2396                                  const Twine &Name,
   2397                                  Instruction *InsertBefore) {
   2398   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2399          "Invalid cast");
   2400   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2401   unsigned DstBits = Ty->getScalarSizeInBits();
   2402   Instruction::CastOps opcode =
   2403     (SrcBits == DstBits ? Instruction::BitCast :
   2404      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2405   return Create(opcode, C, Ty, Name, InsertBefore);
   2406 }
   2407 
   2408 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2409                                  const Twine &Name,
   2410                                  BasicBlock *InsertAtEnd) {
   2411   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2412          "Invalid cast");
   2413   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2414   unsigned DstBits = Ty->getScalarSizeInBits();
   2415   Instruction::CastOps opcode =
   2416     (SrcBits == DstBits ? Instruction::BitCast :
   2417      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2418   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2419 }
   2420 
   2421 // Check whether it is valid to call getCastOpcode for these types.
   2422 // This routine must be kept in sync with getCastOpcode.
   2423 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
   2424   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
   2425     return false;
   2426 
   2427   if (SrcTy == DestTy)
   2428     return true;
   2429 
   2430   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2431     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2432       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2433         // An element by element cast.  Valid if casting the elements is valid.
   2434         SrcTy = SrcVecTy->getElementType();
   2435         DestTy = DestVecTy->getElementType();
   2436       }
   2437 
   2438   // Get the bit sizes, we'll need these
   2439   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2440   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2441 
   2442   // Run through the possibilities ...
   2443   if (DestTy->isIntegerTy()) {               // Casting to integral
   2444     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2445         return true;
   2446     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2447       return true;
   2448     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2449       return DestBits == SrcBits;
   2450     } else {                                   // Casting from something else
   2451       return SrcTy->isPointerTy();
   2452     }
   2453   } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
   2454     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2455       return true;
   2456     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2457       return true;
   2458     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2459       return DestBits == SrcBits;
   2460     } else {                                   // Casting from something else
   2461       return false;
   2462     }
   2463   } else if (DestTy->isVectorTy()) {         // Casting to vector
   2464     return DestBits == SrcBits;
   2465   } else if (DestTy->isPointerTy()) {        // Casting to pointer
   2466     if (SrcTy->isPointerTy()) {                // Casting from pointer
   2467       return true;
   2468     } else if (SrcTy->isIntegerTy()) {         // Casting from integral
   2469       return true;
   2470     } else {                                   // Casting from something else
   2471       return false;
   2472     }
   2473   } else if (DestTy->isX86_MMXTy()) {
   2474     if (SrcTy->isVectorTy()) {
   2475       return DestBits == SrcBits;       // 64-bit vector to MMX
   2476     } else {
   2477       return false;
   2478     }
   2479   } else {                                   // Casting to something else
   2480     return false;
   2481   }
   2482 }
   2483 
   2484 // Provide a way to get a "cast" where the cast opcode is inferred from the
   2485 // types and size of the operand. This, basically, is a parallel of the
   2486 // logic in the castIsValid function below.  This axiom should hold:
   2487 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
   2488 // should not assert in castIsValid. In other words, this produces a "correct"
   2489 // casting opcode for the arguments passed to it.
   2490 // This routine must be kept in sync with isCastable.
   2491 Instruction::CastOps
   2492 CastInst::getCastOpcode(
   2493   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
   2494   Type *SrcTy = Src->getType();
   2495 
   2496   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
   2497          "Only first class types are castable!");
   2498 
   2499   if (SrcTy == DestTy)
   2500     return BitCast;
   2501 
   2502   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2503     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2504       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2505         // An element by element cast.  Find the appropriate opcode based on the
   2506         // element types.
   2507         SrcTy = SrcVecTy->getElementType();
   2508         DestTy = DestVecTy->getElementType();
   2509       }
   2510 
   2511   // Get the bit sizes, we'll need these
   2512   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2513   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2514 
   2515   // Run through the possibilities ...
   2516   if (DestTy->isIntegerTy()) {                      // Casting to integral
   2517     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2518       if (DestBits < SrcBits)
   2519         return Trunc;                               // int -> smaller int
   2520       else if (DestBits > SrcBits) {                // its an extension
   2521         if (SrcIsSigned)
   2522           return SExt;                              // signed -> SEXT
   2523         else
   2524           return ZExt;                              // unsigned -> ZEXT
   2525       } else {
   2526         return BitCast;                             // Same size, No-op cast
   2527       }
   2528     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2529       if (DestIsSigned)
   2530         return FPToSI;                              // FP -> sint
   2531       else
   2532         return FPToUI;                              // FP -> uint
   2533     } else if (SrcTy->isVectorTy()) {
   2534       assert(DestBits == SrcBits &&
   2535              "Casting vector to integer of different width");
   2536       return BitCast;                             // Same size, no-op cast
   2537     } else {
   2538       assert(SrcTy->isPointerTy() &&
   2539              "Casting from a value that is not first-class type");
   2540       return PtrToInt;                              // ptr -> int
   2541     }
   2542   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
   2543     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2544       if (SrcIsSigned)
   2545         return SIToFP;                              // sint -> FP
   2546       else
   2547         return UIToFP;                              // uint -> FP
   2548     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2549       if (DestBits < SrcBits) {
   2550         return FPTrunc;                             // FP -> smaller FP
   2551       } else if (DestBits > SrcBits) {
   2552         return FPExt;                               // FP -> larger FP
   2553       } else  {
   2554         return BitCast;                             // same size, no-op cast
   2555       }
   2556     } else if (SrcTy->isVectorTy()) {
   2557       assert(DestBits == SrcBits &&
   2558              "Casting vector to floating point of different width");
   2559       return BitCast;                             // same size, no-op cast
   2560     } else {
   2561       llvm_unreachable("Casting pointer or non-first class to float");
   2562     }
   2563   } else if (DestTy->isVectorTy()) {
   2564     assert(DestBits == SrcBits &&
   2565            "Illegal cast to vector (wrong type or size)");
   2566     return BitCast;
   2567   } else if (DestTy->isPointerTy()) {
   2568     if (SrcTy->isPointerTy()) {
   2569       return BitCast;                               // ptr -> ptr
   2570     } else if (SrcTy->isIntegerTy()) {
   2571       return IntToPtr;                              // int -> ptr
   2572     } else {
   2573       assert(0 && "Casting pointer to other than pointer or int");
   2574     }
   2575   } else if (DestTy->isX86_MMXTy()) {
   2576     if (SrcTy->isVectorTy()) {
   2577       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
   2578       return BitCast;                               // 64-bit vector to MMX
   2579     } else {
   2580       assert(0 && "Illegal cast to X86_MMX");
   2581     }
   2582   } else {
   2583     assert(0 && "Casting to type that is not first-class");
   2584   }
   2585 
   2586   // If we fall through to here we probably hit an assertion cast above
   2587   // and assertions are not turned on. Anything we return is an error, so
   2588   // BitCast is as good a choice as any.
   2589   return BitCast;
   2590 }
   2591 
   2592 //===----------------------------------------------------------------------===//
   2593 //                    CastInst SubClass Constructors
   2594 //===----------------------------------------------------------------------===//
   2595 
   2596 /// Check that the construction parameters for a CastInst are correct. This
   2597 /// could be broken out into the separate constructors but it is useful to have
   2598 /// it in one place and to eliminate the redundant code for getting the sizes
   2599 /// of the types involved.
   2600 bool
   2601 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
   2602 
   2603   // Check for type sanity on the arguments
   2604   Type *SrcTy = S->getType();
   2605   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
   2606       SrcTy->isAggregateType() || DstTy->isAggregateType())
   2607     return false;
   2608 
   2609   // Get the size of the types in bits, we'll need this later
   2610   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2611   unsigned DstBitSize = DstTy->getScalarSizeInBits();
   2612 
   2613   // If these are vector types, get the lengths of the vectors (using zero for
   2614   // scalar types means that checking that vector lengths match also checks that
   2615   // scalars are not being converted to vectors or vectors to scalars).
   2616   unsigned SrcLength = SrcTy->isVectorTy() ?
   2617     cast<VectorType>(SrcTy)->getNumElements() : 0;
   2618   unsigned DstLength = DstTy->isVectorTy() ?
   2619     cast<VectorType>(DstTy)->getNumElements() : 0;
   2620 
   2621   // Switch on the opcode provided
   2622   switch (op) {
   2623   default: return false; // This is an input error
   2624   case Instruction::Trunc:
   2625     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2626       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2627   case Instruction::ZExt:
   2628     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2629       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2630   case Instruction::SExt:
   2631     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2632       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2633   case Instruction::FPTrunc:
   2634     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2635       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2636   case Instruction::FPExt:
   2637     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2638       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2639   case Instruction::UIToFP:
   2640   case Instruction::SIToFP:
   2641     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2642       SrcLength == DstLength;
   2643   case Instruction::FPToUI:
   2644   case Instruction::FPToSI:
   2645     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2646       SrcLength == DstLength;
   2647   case Instruction::PtrToInt:
   2648     return SrcTy->isPointerTy() && DstTy->isIntegerTy();
   2649   case Instruction::IntToPtr:
   2650     return SrcTy->isIntegerTy() && DstTy->isPointerTy();
   2651   case Instruction::BitCast:
   2652     // BitCast implies a no-op cast of type only. No bits change.
   2653     // However, you can't cast pointers to anything but pointers.
   2654     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
   2655       return false;
   2656 
   2657     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
   2658     // these cases, the cast is okay if the source and destination bit widths
   2659     // are identical.
   2660     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
   2661   }
   2662 }
   2663 
   2664 TruncInst::TruncInst(
   2665   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2666 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
   2667   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2668 }
   2669 
   2670 TruncInst::TruncInst(
   2671   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2672 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
   2673   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2674 }
   2675 
   2676 ZExtInst::ZExtInst(
   2677   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2678 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
   2679   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2680 }
   2681 
   2682 ZExtInst::ZExtInst(
   2683   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2684 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
   2685   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2686 }
   2687 SExtInst::SExtInst(
   2688   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2689 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
   2690   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2691 }
   2692 
   2693 SExtInst::SExtInst(
   2694   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2695 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
   2696   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2697 }
   2698 
   2699 FPTruncInst::FPTruncInst(
   2700   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2701 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
   2702   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2703 }
   2704 
   2705 FPTruncInst::FPTruncInst(
   2706   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2707 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
   2708   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2709 }
   2710 
   2711 FPExtInst::FPExtInst(
   2712   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2713 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
   2714   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2715 }
   2716 
   2717 FPExtInst::FPExtInst(
   2718   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2719 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
   2720   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2721 }
   2722 
   2723 UIToFPInst::UIToFPInst(
   2724   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2725 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
   2726   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2727 }
   2728 
   2729 UIToFPInst::UIToFPInst(
   2730   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2731 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
   2732   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2733 }
   2734 
   2735 SIToFPInst::SIToFPInst(
   2736   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2737 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
   2738   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2739 }
   2740 
   2741 SIToFPInst::SIToFPInst(
   2742   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2743 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
   2744   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2745 }
   2746 
   2747 FPToUIInst::FPToUIInst(
   2748   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2749 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
   2750   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2751 }
   2752 
   2753 FPToUIInst::FPToUIInst(
   2754   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2755 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
   2756   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2757 }
   2758 
   2759 FPToSIInst::FPToSIInst(
   2760   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2761 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
   2762   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2763 }
   2764 
   2765 FPToSIInst::FPToSIInst(
   2766   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2767 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
   2768   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2769 }
   2770 
   2771 PtrToIntInst::PtrToIntInst(
   2772   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2773 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
   2774   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2775 }
   2776 
   2777 PtrToIntInst::PtrToIntInst(
   2778   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2779 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
   2780   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2781 }
   2782 
   2783 IntToPtrInst::IntToPtrInst(
   2784   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2785 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
   2786   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2787 }
   2788 
   2789 IntToPtrInst::IntToPtrInst(
   2790   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2791 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
   2792   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2793 }
   2794 
   2795 BitCastInst::BitCastInst(
   2796   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2797 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
   2798   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2799 }
   2800 
   2801 BitCastInst::BitCastInst(
   2802   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2803 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
   2804   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2805 }
   2806 
   2807 //===----------------------------------------------------------------------===//
   2808 //                               CmpInst Classes
   2809 //===----------------------------------------------------------------------===//
   2810 
   2811 void CmpInst::Anchor() const {}
   2812 
   2813 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2814                  Value *LHS, Value *RHS, const Twine &Name,
   2815                  Instruction *InsertBefore)
   2816   : Instruction(ty, op,
   2817                 OperandTraits<CmpInst>::op_begin(this),
   2818                 OperandTraits<CmpInst>::operands(this),
   2819                 InsertBefore) {
   2820     Op<0>() = LHS;
   2821     Op<1>() = RHS;
   2822   setPredicate((Predicate)predicate);
   2823   setName(Name);
   2824 }
   2825 
   2826 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2827                  Value *LHS, Value *RHS, const Twine &Name,
   2828                  BasicBlock *InsertAtEnd)
   2829   : Instruction(ty, op,
   2830                 OperandTraits<CmpInst>::op_begin(this),
   2831                 OperandTraits<CmpInst>::operands(this),
   2832                 InsertAtEnd) {
   2833   Op<0>() = LHS;
   2834   Op<1>() = RHS;
   2835   setPredicate((Predicate)predicate);
   2836   setName(Name);
   2837 }
   2838 
   2839 CmpInst *
   2840 CmpInst::Create(OtherOps Op, unsigned short predicate,
   2841                 Value *S1, Value *S2,
   2842                 const Twine &Name, Instruction *InsertBefore) {
   2843   if (Op == Instruction::ICmp) {
   2844     if (InsertBefore)
   2845       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2846                           S1, S2, Name);
   2847     else
   2848       return new ICmpInst(CmpInst::Predicate(predicate),
   2849                           S1, S2, Name);
   2850   }
   2851 
   2852   if (InsertBefore)
   2853     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2854                         S1, S2, Name);
   2855   else
   2856     return new FCmpInst(CmpInst::Predicate(predicate),
   2857                         S1, S2, Name);
   2858 }
   2859 
   2860 CmpInst *
   2861 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
   2862                 const Twine &Name, BasicBlock *InsertAtEnd) {
   2863   if (Op == Instruction::ICmp) {
   2864     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2865                         S1, S2, Name);
   2866   }
   2867   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2868                       S1, S2, Name);
   2869 }
   2870 
   2871 void CmpInst::swapOperands() {
   2872   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2873     IC->swapOperands();
   2874   else
   2875     cast<FCmpInst>(this)->swapOperands();
   2876 }
   2877 
   2878 bool CmpInst::isCommutative() const {
   2879   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2880     return IC->isCommutative();
   2881   return cast<FCmpInst>(this)->isCommutative();
   2882 }
   2883 
   2884 bool CmpInst::isEquality() const {
   2885   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2886     return IC->isEquality();
   2887   return cast<FCmpInst>(this)->isEquality();
   2888 }
   2889 
   2890 
   2891 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
   2892   switch (pred) {
   2893     default: assert(0 && "Unknown cmp predicate!");
   2894     case ICMP_EQ: return ICMP_NE;
   2895     case ICMP_NE: return ICMP_EQ;
   2896     case ICMP_UGT: return ICMP_ULE;
   2897     case ICMP_ULT: return ICMP_UGE;
   2898     case ICMP_UGE: return ICMP_ULT;
   2899     case ICMP_ULE: return ICMP_UGT;
   2900     case ICMP_SGT: return ICMP_SLE;
   2901     case ICMP_SLT: return ICMP_SGE;
   2902     case ICMP_SGE: return ICMP_SLT;
   2903     case ICMP_SLE: return ICMP_SGT;
   2904 
   2905     case FCMP_OEQ: return FCMP_UNE;
   2906     case FCMP_ONE: return FCMP_UEQ;
   2907     case FCMP_OGT: return FCMP_ULE;
   2908     case FCMP_OLT: return FCMP_UGE;
   2909     case FCMP_OGE: return FCMP_ULT;
   2910     case FCMP_OLE: return FCMP_UGT;
   2911     case FCMP_UEQ: return FCMP_ONE;
   2912     case FCMP_UNE: return FCMP_OEQ;
   2913     case FCMP_UGT: return FCMP_OLE;
   2914     case FCMP_ULT: return FCMP_OGE;
   2915     case FCMP_UGE: return FCMP_OLT;
   2916     case FCMP_ULE: return FCMP_OGT;
   2917     case FCMP_ORD: return FCMP_UNO;
   2918     case FCMP_UNO: return FCMP_ORD;
   2919     case FCMP_TRUE: return FCMP_FALSE;
   2920     case FCMP_FALSE: return FCMP_TRUE;
   2921   }
   2922 }
   2923 
   2924 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
   2925   switch (pred) {
   2926     default: assert(0 && "Unknown icmp predicate!");
   2927     case ICMP_EQ: case ICMP_NE:
   2928     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
   2929        return pred;
   2930     case ICMP_UGT: return ICMP_SGT;
   2931     case ICMP_ULT: return ICMP_SLT;
   2932     case ICMP_UGE: return ICMP_SGE;
   2933     case ICMP_ULE: return ICMP_SLE;
   2934   }
   2935 }
   2936 
   2937 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
   2938   switch (pred) {
   2939     default: assert(0 && "Unknown icmp predicate!");
   2940     case ICMP_EQ: case ICMP_NE:
   2941     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
   2942        return pred;
   2943     case ICMP_SGT: return ICMP_UGT;
   2944     case ICMP_SLT: return ICMP_ULT;
   2945     case ICMP_SGE: return ICMP_UGE;
   2946     case ICMP_SLE: return ICMP_ULE;
   2947   }
   2948 }
   2949 
   2950 /// Initialize a set of values that all satisfy the condition with C.
   2951 ///
   2952 ConstantRange
   2953 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
   2954   APInt Lower(C);
   2955   APInt Upper(C);
   2956   uint32_t BitWidth = C.getBitWidth();
   2957   switch (pred) {
   2958   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
   2959   case ICmpInst::ICMP_EQ: Upper++; break;
   2960   case ICmpInst::ICMP_NE: Lower++; break;
   2961   case ICmpInst::ICMP_ULT:
   2962     Lower = APInt::getMinValue(BitWidth);
   2963     // Check for an empty-set condition.
   2964     if (Lower == Upper)
   2965       return ConstantRange(BitWidth, /*isFullSet=*/false);
   2966     break;
   2967   case ICmpInst::ICMP_SLT:
   2968     Lower = APInt::getSignedMinValue(BitWidth);
   2969     // Check for an empty-set condition.
   2970     if (Lower == Upper)
   2971       return ConstantRange(BitWidth, /*isFullSet=*/false);
   2972     break;
   2973   case ICmpInst::ICMP_UGT:
   2974     Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   2975     // Check for an empty-set condition.
   2976     if (Lower == Upper)
   2977       return ConstantRange(BitWidth, /*isFullSet=*/false);
   2978     break;
   2979   case ICmpInst::ICMP_SGT:
   2980     Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   2981     // Check for an empty-set condition.
   2982     if (Lower == Upper)
   2983       return ConstantRange(BitWidth, /*isFullSet=*/false);
   2984     break;
   2985   case ICmpInst::ICMP_ULE:
   2986     Lower = APInt::getMinValue(BitWidth); Upper++;
   2987     // Check for a full-set condition.
   2988     if (Lower == Upper)
   2989       return ConstantRange(BitWidth, /*isFullSet=*/true);
   2990     break;
   2991   case ICmpInst::ICMP_SLE:
   2992     Lower = APInt::getSignedMinValue(BitWidth); Upper++;
   2993     // Check for a full-set condition.
   2994     if (Lower == Upper)
   2995       return ConstantRange(BitWidth, /*isFullSet=*/true);
   2996     break;
   2997   case ICmpInst::ICMP_UGE:
   2998     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   2999     // Check for a full-set condition.
   3000     if (Lower == Upper)
   3001       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3002     break;
   3003   case ICmpInst::ICMP_SGE:
   3004     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   3005     // Check for a full-set condition.
   3006     if (Lower == Upper)
   3007       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3008     break;
   3009   }
   3010   return ConstantRange(Lower, Upper);
   3011 }
   3012 
   3013 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
   3014   switch (pred) {
   3015     default: assert(0 && "Unknown cmp predicate!");
   3016     case ICMP_EQ: case ICMP_NE:
   3017       return pred;
   3018     case ICMP_SGT: return ICMP_SLT;
   3019     case ICMP_SLT: return ICMP_SGT;
   3020     case ICMP_SGE: return ICMP_SLE;
   3021     case ICMP_SLE: return ICMP_SGE;
   3022     case ICMP_UGT: return ICMP_ULT;
   3023     case ICMP_ULT: return ICMP_UGT;
   3024     case ICMP_UGE: return ICMP_ULE;
   3025     case ICMP_ULE: return ICMP_UGE;
   3026 
   3027     case FCMP_FALSE: case FCMP_TRUE:
   3028     case FCMP_OEQ: case FCMP_ONE:
   3029     case FCMP_UEQ: case FCMP_UNE:
   3030     case FCMP_ORD: case FCMP_UNO:
   3031       return pred;
   3032     case FCMP_OGT: return FCMP_OLT;
   3033     case FCMP_OLT: return FCMP_OGT;
   3034     case FCMP_OGE: return FCMP_OLE;
   3035     case FCMP_OLE: return FCMP_OGE;
   3036     case FCMP_UGT: return FCMP_ULT;
   3037     case FCMP_ULT: return FCMP_UGT;
   3038     case FCMP_UGE: return FCMP_ULE;
   3039     case FCMP_ULE: return FCMP_UGE;
   3040   }
   3041 }
   3042 
   3043 bool CmpInst::isUnsigned(unsigned short predicate) {
   3044   switch (predicate) {
   3045     default: return false;
   3046     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
   3047     case ICmpInst::ICMP_UGE: return true;
   3048   }
   3049 }
   3050 
   3051 bool CmpInst::isSigned(unsigned short predicate) {
   3052   switch (predicate) {
   3053     default: return false;
   3054     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
   3055     case ICmpInst::ICMP_SGE: return true;
   3056   }
   3057 }
   3058 
   3059 bool CmpInst::isOrdered(unsigned short predicate) {
   3060   switch (predicate) {
   3061     default: return false;
   3062     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
   3063     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
   3064     case FCmpInst::FCMP_ORD: return true;
   3065   }
   3066 }
   3067 
   3068 bool CmpInst::isUnordered(unsigned short predicate) {
   3069   switch (predicate) {
   3070     default: return false;
   3071     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
   3072     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
   3073     case FCmpInst::FCMP_UNO: return true;
   3074   }
   3075 }
   3076 
   3077 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
   3078   switch(predicate) {
   3079     default: return false;
   3080     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
   3081     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
   3082   }
   3083 }
   3084 
   3085 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
   3086   switch(predicate) {
   3087   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
   3088   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
   3089   default: return false;
   3090   }
   3091 }
   3092 
   3093 
   3094 //===----------------------------------------------------------------------===//
   3095 //                        SwitchInst Implementation
   3096 //===----------------------------------------------------------------------===//
   3097 
   3098 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
   3099   assert(Value && Default && NumReserved);
   3100   ReservedSpace = NumReserved;
   3101   NumOperands = 2;
   3102   OperandList = allocHungoffUses(ReservedSpace);
   3103 
   3104   OperandList[0] = Value;
   3105   OperandList[1] = Default;
   3106 }
   3107 
   3108 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3109 /// switch on and a default destination.  The number of additional cases can
   3110 /// be specified here to make memory allocation more efficient.  This
   3111 /// constructor can also autoinsert before another instruction.
   3112 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3113                        Instruction *InsertBefore)
   3114   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3115                    0, 0, InsertBefore) {
   3116   init(Value, Default, 2+NumCases*2);
   3117 }
   3118 
   3119 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3120 /// switch on and a default destination.  The number of additional cases can
   3121 /// be specified here to make memory allocation more efficient.  This
   3122 /// constructor also autoinserts at the end of the specified BasicBlock.
   3123 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3124                        BasicBlock *InsertAtEnd)
   3125   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3126                    0, 0, InsertAtEnd) {
   3127   init(Value, Default, 2+NumCases*2);
   3128 }
   3129 
   3130 SwitchInst::SwitchInst(const SwitchInst &SI)
   3131   : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
   3132   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
   3133   NumOperands = SI.getNumOperands();
   3134   Use *OL = OperandList, *InOL = SI.OperandList;
   3135   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
   3136     OL[i] = InOL[i];
   3137     OL[i+1] = InOL[i+1];
   3138   }
   3139   SubclassOptionalData = SI.SubclassOptionalData;
   3140 }
   3141 
   3142 SwitchInst::~SwitchInst() {
   3143   dropHungoffUses();
   3144 }
   3145 
   3146 
   3147 /// addCase - Add an entry to the switch instruction...
   3148 ///
   3149 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
   3150   unsigned OpNo = NumOperands;
   3151   if (OpNo+2 > ReservedSpace)
   3152     growOperands();  // Get more space!
   3153   // Initialize some new operands.
   3154   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
   3155   NumOperands = OpNo+2;
   3156   OperandList[OpNo] = OnVal;
   3157   OperandList[OpNo+1] = Dest;
   3158 }
   3159 
   3160 /// removeCase - This method removes the specified successor from the switch
   3161 /// instruction.  Note that this cannot be used to remove the default
   3162 /// destination (successor #0).
   3163 ///
   3164 void SwitchInst::removeCase(unsigned idx) {
   3165   assert(idx != 0 && "Cannot remove the default case!");
   3166   assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
   3167 
   3168   unsigned NumOps = getNumOperands();
   3169   Use *OL = OperandList;
   3170 
   3171   // Overwrite this case with the end of the list.
   3172   if ((idx + 1) * 2 != NumOps) {
   3173     OL[idx * 2] = OL[NumOps - 2];
   3174     OL[idx * 2 + 1] = OL[NumOps - 1];
   3175   }
   3176 
   3177   // Nuke the last value.
   3178   OL[NumOps-2].set(0);
   3179   OL[NumOps-2+1].set(0);
   3180   NumOperands = NumOps-2;
   3181 }
   3182 
   3183 /// growOperands - grow operands - This grows the operand list in response
   3184 /// to a push_back style of operation.  This grows the number of ops by 3 times.
   3185 ///
   3186 void SwitchInst::growOperands() {
   3187   unsigned e = getNumOperands();
   3188   unsigned NumOps = e*3;
   3189 
   3190   ReservedSpace = NumOps;
   3191   Use *NewOps = allocHungoffUses(NumOps);
   3192   Use *OldOps = OperandList;
   3193   for (unsigned i = 0; i != e; ++i) {
   3194       NewOps[i] = OldOps[i];
   3195   }
   3196   OperandList = NewOps;
   3197   Use::zap(OldOps, OldOps + e, true);
   3198 }
   3199 
   3200 
   3201 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
   3202   return getSuccessor(idx);
   3203 }
   3204 unsigned SwitchInst::getNumSuccessorsV() const {
   3205   return getNumSuccessors();
   3206 }
   3207 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3208   setSuccessor(idx, B);
   3209 }
   3210 
   3211 //===----------------------------------------------------------------------===//
   3212 //                        IndirectBrInst Implementation
   3213 //===----------------------------------------------------------------------===//
   3214 
   3215 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
   3216   assert(Address && Address->getType()->isPointerTy() &&
   3217          "Address of indirectbr must be a pointer");
   3218   ReservedSpace = 1+NumDests;
   3219   NumOperands = 1;
   3220   OperandList = allocHungoffUses(ReservedSpace);
   3221 
   3222   OperandList[0] = Address;
   3223 }
   3224 
   3225 
   3226 /// growOperands - grow operands - This grows the operand list in response
   3227 /// to a push_back style of operation.  This grows the number of ops by 2 times.
   3228 ///
   3229 void IndirectBrInst::growOperands() {
   3230   unsigned e = getNumOperands();
   3231   unsigned NumOps = e*2;
   3232 
   3233   ReservedSpace = NumOps;
   3234   Use *NewOps = allocHungoffUses(NumOps);
   3235   Use *OldOps = OperandList;
   3236   for (unsigned i = 0; i != e; ++i)
   3237     NewOps[i] = OldOps[i];
   3238   OperandList = NewOps;
   3239   Use::zap(OldOps, OldOps + e, true);
   3240 }
   3241 
   3242 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3243                                Instruction *InsertBefore)
   3244 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3245                  0, 0, InsertBefore) {
   3246   init(Address, NumCases);
   3247 }
   3248 
   3249 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3250                                BasicBlock *InsertAtEnd)
   3251 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3252                  0, 0, InsertAtEnd) {
   3253   init(Address, NumCases);
   3254 }
   3255 
   3256 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
   3257   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
   3258                    allocHungoffUses(IBI.getNumOperands()),
   3259                    IBI.getNumOperands()) {
   3260   Use *OL = OperandList, *InOL = IBI.OperandList;
   3261   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
   3262     OL[i] = InOL[i];
   3263   SubclassOptionalData = IBI.SubclassOptionalData;
   3264 }
   3265 
   3266 IndirectBrInst::~IndirectBrInst() {
   3267   dropHungoffUses();
   3268 }
   3269 
   3270 /// addDestination - Add a destination.
   3271 ///
   3272 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
   3273   unsigned OpNo = NumOperands;
   3274   if (OpNo+1 > ReservedSpace)
   3275     growOperands();  // Get more space!
   3276   // Initialize some new operands.
   3277   assert(OpNo < ReservedSpace && "Growing didn't work!");
   3278   NumOperands = OpNo+1;
   3279   OperandList[OpNo] = DestBB;
   3280 }
   3281 
   3282 /// removeDestination - This method removes the specified successor from the
   3283 /// indirectbr instruction.
   3284 void IndirectBrInst::removeDestination(unsigned idx) {
   3285   assert(idx < getNumOperands()-1 && "Successor index out of range!");
   3286 
   3287   unsigned NumOps = getNumOperands();
   3288   Use *OL = OperandList;
   3289 
   3290   // Replace this value with the last one.
   3291   OL[idx+1] = OL[NumOps-1];
   3292 
   3293   // Nuke the last value.
   3294   OL[NumOps-1].set(0);
   3295   NumOperands = NumOps-1;
   3296 }
   3297 
   3298 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
   3299   return getSuccessor(idx);
   3300 }
   3301 unsigned IndirectBrInst::getNumSuccessorsV() const {
   3302   return getNumSuccessors();
   3303 }
   3304 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3305   setSuccessor(idx, B);
   3306 }
   3307 
   3308 //===----------------------------------------------------------------------===//
   3309 //                           clone_impl() implementations
   3310 //===----------------------------------------------------------------------===//
   3311 
   3312 // Define these methods here so vtables don't get emitted into every translation
   3313 // unit that uses these classes.
   3314 
   3315 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
   3316   return new (getNumOperands()) GetElementPtrInst(*this);
   3317 }
   3318 
   3319 BinaryOperator *BinaryOperator::clone_impl() const {
   3320   return Create(getOpcode(), Op<0>(), Op<1>());
   3321 }
   3322 
   3323 FCmpInst* FCmpInst::clone_impl() const {
   3324   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
   3325 }
   3326 
   3327 ICmpInst* ICmpInst::clone_impl() const {
   3328   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
   3329 }
   3330 
   3331 ExtractValueInst *ExtractValueInst::clone_impl() const {
   3332   return new ExtractValueInst(*this);
   3333 }
   3334 
   3335 InsertValueInst *InsertValueInst::clone_impl() const {
   3336   return new InsertValueInst(*this);
   3337 }
   3338 
   3339 AllocaInst *AllocaInst::clone_impl() const {
   3340   return new AllocaInst(getAllocatedType(),
   3341                         (Value*)getOperand(0),
   3342                         getAlignment());
   3343 }
   3344 
   3345 LoadInst *LoadInst::clone_impl() const {
   3346   return new LoadInst(getOperand(0), Twine(), isVolatile(),
   3347                       getAlignment(), getOrdering(), getSynchScope());
   3348 }
   3349 
   3350 StoreInst *StoreInst::clone_impl() const {
   3351   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
   3352                        getAlignment(), getOrdering(), getSynchScope());
   3353 
   3354 }
   3355 
   3356 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
   3357   AtomicCmpXchgInst *Result =
   3358     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
   3359                           getOrdering(), getSynchScope());
   3360   Result->setVolatile(isVolatile());
   3361   return Result;
   3362 }
   3363 
   3364 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
   3365   AtomicRMWInst *Result =
   3366     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
   3367                       getOrdering(), getSynchScope());
   3368   Result->setVolatile(isVolatile());
   3369   return Result;
   3370 }
   3371 
   3372 FenceInst *FenceInst::clone_impl() const {
   3373   return new FenceInst(getContext(), getOrdering(), getSynchScope());
   3374 }
   3375 
   3376 TruncInst *TruncInst::clone_impl() const {
   3377   return new TruncInst(getOperand(0), getType());
   3378 }
   3379 
   3380 ZExtInst *ZExtInst::clone_impl() const {
   3381   return new ZExtInst(getOperand(0), getType());
   3382 }
   3383 
   3384 SExtInst *SExtInst::clone_impl() const {
   3385   return new SExtInst(getOperand(0), getType());
   3386 }
   3387 
   3388 FPTruncInst *FPTruncInst::clone_impl() const {
   3389   return new FPTruncInst(getOperand(0), getType());
   3390 }
   3391 
   3392 FPExtInst *FPExtInst::clone_impl() const {
   3393   return new FPExtInst(getOperand(0), getType());
   3394 }
   3395 
   3396 UIToFPInst *UIToFPInst::clone_impl() const {
   3397   return new UIToFPInst(getOperand(0), getType());
   3398 }
   3399 
   3400 SIToFPInst *SIToFPInst::clone_impl() const {
   3401   return new SIToFPInst(getOperand(0), getType());
   3402 }
   3403 
   3404 FPToUIInst *FPToUIInst::clone_impl() const {
   3405   return new FPToUIInst(getOperand(0), getType());
   3406 }
   3407 
   3408 FPToSIInst *FPToSIInst::clone_impl() const {
   3409   return new FPToSIInst(getOperand(0), getType());
   3410 }
   3411 
   3412 PtrToIntInst *PtrToIntInst::clone_impl() const {
   3413   return new PtrToIntInst(getOperand(0), getType());
   3414 }
   3415 
   3416 IntToPtrInst *IntToPtrInst::clone_impl() const {
   3417   return new IntToPtrInst(getOperand(0), getType());
   3418 }
   3419 
   3420 BitCastInst *BitCastInst::clone_impl() const {
   3421   return new BitCastInst(getOperand(0), getType());
   3422 }
   3423 
   3424 CallInst *CallInst::clone_impl() const {
   3425   return  new(getNumOperands()) CallInst(*this);
   3426 }
   3427 
   3428 SelectInst *SelectInst::clone_impl() const {
   3429   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
   3430 }
   3431 
   3432 VAArgInst *VAArgInst::clone_impl() const {
   3433   return new VAArgInst(getOperand(0), getType());
   3434 }
   3435 
   3436 ExtractElementInst *ExtractElementInst::clone_impl() const {
   3437   return ExtractElementInst::Create(getOperand(0), getOperand(1));
   3438 }
   3439 
   3440 InsertElementInst *InsertElementInst::clone_impl() const {
   3441   return InsertElementInst::Create(getOperand(0),
   3442                                    getOperand(1),
   3443                                    getOperand(2));
   3444 }
   3445 
   3446 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
   3447   return new ShuffleVectorInst(getOperand(0),
   3448                            getOperand(1),
   3449                            getOperand(2));
   3450 }
   3451 
   3452 PHINode *PHINode::clone_impl() const {
   3453   return new PHINode(*this);
   3454 }
   3455 
   3456 LandingPadInst *LandingPadInst::clone_impl() const {
   3457   return new LandingPadInst(*this);
   3458 }
   3459 
   3460 ReturnInst *ReturnInst::clone_impl() const {
   3461   return new(getNumOperands()) ReturnInst(*this);
   3462 }
   3463 
   3464 BranchInst *BranchInst::clone_impl() const {
   3465   return new(getNumOperands()) BranchInst(*this);
   3466 }
   3467 
   3468 SwitchInst *SwitchInst::clone_impl() const {
   3469   return new SwitchInst(*this);
   3470 }
   3471 
   3472 IndirectBrInst *IndirectBrInst::clone_impl() const {
   3473   return new IndirectBrInst(*this);
   3474 }
   3475 
   3476 
   3477 InvokeInst *InvokeInst::clone_impl() const {
   3478   return new(getNumOperands()) InvokeInst(*this);
   3479 }
   3480 
   3481 ResumeInst *ResumeInst::clone_impl() const {
   3482   return new(1) ResumeInst(*this);
   3483 }
   3484 
   3485 UnwindInst *UnwindInst::clone_impl() const {
   3486   LLVMContext &Context = getContext();
   3487   return new UnwindInst(Context);
   3488 }
   3489 
   3490 UnreachableInst *UnreachableInst::clone_impl() const {
   3491   LLVMContext &Context = getContext();
   3492   return new UnreachableInst(Context);
   3493 }
   3494