Home | History | Annotate | Download | only in Target
      1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes an abstract interface used to get information about a
     11 // target machines register file.  This information is used for a variety of
     12 // purposed, especially register allocation.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
     17 #define LLVM_TARGET_TARGETREGISTERINFO_H
     18 
     19 #include "llvm/MC/MCRegisterInfo.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/CodeGen/ValueTypes.h"
     22 #include "llvm/ADT/ArrayRef.h"
     23 #include <cassert>
     24 #include <functional>
     25 
     26 namespace llvm {
     27 
     28 class BitVector;
     29 class MachineFunction;
     30 class RegScavenger;
     31 template<class T> class SmallVectorImpl;
     32 class raw_ostream;
     33 
     34 class TargetRegisterClass {
     35 public:
     36   typedef const unsigned* iterator;
     37   typedef const unsigned* const_iterator;
     38   typedef const EVT* vt_iterator;
     39   typedef const TargetRegisterClass* const * sc_iterator;
     40 private:
     41   const MCRegisterClass *MC;
     42   const vt_iterator VTs;
     43   const unsigned *SubClassMask;
     44   const sc_iterator SuperClasses;
     45   const sc_iterator SuperRegClasses;
     46 public:
     47   TargetRegisterClass(const MCRegisterClass *MC, const EVT *vts,
     48                       const unsigned *subcm,
     49                       const TargetRegisterClass * const *supcs,
     50                       const TargetRegisterClass * const *superregcs)
     51     : MC(MC), VTs(vts), SubClassMask(subcm), SuperClasses(supcs),
     52       SuperRegClasses(superregcs) {}
     53 
     54   virtual ~TargetRegisterClass() {}     // Allow subclasses
     55 
     56   /// getID() - Return the register class ID number.
     57   ///
     58   unsigned getID() const { return MC->getID(); }
     59 
     60   /// getName() - Return the register class name for debugging.
     61   ///
     62   const char *getName() const { return MC->getName(); }
     63 
     64   /// begin/end - Return all of the registers in this class.
     65   ///
     66   iterator       begin() const { return MC->begin(); }
     67   iterator         end() const { return MC->end(); }
     68 
     69   /// getNumRegs - Return the number of registers in this class.
     70   ///
     71   unsigned getNumRegs() const { return MC->getNumRegs(); }
     72 
     73   /// getRegister - Return the specified register in the class.
     74   ///
     75   unsigned getRegister(unsigned i) const {
     76     return MC->getRegister(i);
     77   }
     78 
     79   /// contains - Return true if the specified register is included in this
     80   /// register class.  This does not include virtual registers.
     81   bool contains(unsigned Reg) const {
     82     return MC->contains(Reg);
     83   }
     84 
     85   /// contains - Return true if both registers are in this class.
     86   bool contains(unsigned Reg1, unsigned Reg2) const {
     87     return MC->contains(Reg1, Reg2);
     88   }
     89 
     90   /// getSize - Return the size of the register in bytes, which is also the size
     91   /// of a stack slot allocated to hold a spilled copy of this register.
     92   unsigned getSize() const { return MC->getSize(); }
     93 
     94   /// getAlignment - Return the minimum required alignment for a register of
     95   /// this class.
     96   unsigned getAlignment() const { return MC->getAlignment(); }
     97 
     98   /// getCopyCost - Return the cost of copying a value between two registers in
     99   /// this class. A negative number means the register class is very expensive
    100   /// to copy e.g. status flag register classes.
    101   int getCopyCost() const { return MC->getCopyCost(); }
    102 
    103   /// isAllocatable - Return true if this register class may be used to create
    104   /// virtual registers.
    105   bool isAllocatable() const { return MC->isAllocatable(); }
    106 
    107   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
    108   ///
    109   bool hasType(EVT vt) const {
    110     for(int i = 0; VTs[i] != MVT::Other; ++i)
    111       if (VTs[i] == vt)
    112         return true;
    113     return false;
    114   }
    115 
    116   /// vt_begin / vt_end - Loop over all of the value types that can be
    117   /// represented by values in this register class.
    118   vt_iterator vt_begin() const {
    119     return VTs;
    120   }
    121 
    122   vt_iterator vt_end() const {
    123     vt_iterator I = VTs;
    124     while (*I != MVT::Other) ++I;
    125     return I;
    126   }
    127 
    128   /// superregclasses_begin / superregclasses_end - Loop over all of
    129   /// the superreg register classes of this register class.
    130   sc_iterator superregclasses_begin() const {
    131     return SuperRegClasses;
    132   }
    133 
    134   sc_iterator superregclasses_end() const {
    135     sc_iterator I = SuperRegClasses;
    136     while (*I != NULL) ++I;
    137     return I;
    138   }
    139 
    140   /// hasSubClass - return true if the specified TargetRegisterClass
    141   /// is a proper sub-class of this TargetRegisterClass.
    142   bool hasSubClass(const TargetRegisterClass *RC) const {
    143     return RC != this && hasSubClassEq(RC);
    144   }
    145 
    146   /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
    147   /// class.
    148   bool hasSubClassEq(const TargetRegisterClass *RC) const {
    149     unsigned ID = RC->getID();
    150     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
    151   }
    152 
    153   /// hasSuperClass - return true if the specified TargetRegisterClass is a
    154   /// proper super-class of this TargetRegisterClass.
    155   bool hasSuperClass(const TargetRegisterClass *RC) const {
    156     return RC->hasSubClass(this);
    157   }
    158 
    159   /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
    160   /// class.
    161   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
    162     return RC->hasSubClassEq(this);
    163   }
    164 
    165   /// getSubClassMask - Returns a bit vector of subclasses, including this one.
    166   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
    167   /// use it.
    168   const unsigned *getSubClassMask() const {
    169     return SubClassMask;
    170   }
    171 
    172   /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
    173   /// classes are ordered by ID which is also a topological ordering from large
    174   /// to small classes.  The list does NOT include the current class.
    175   sc_iterator getSuperClasses() const {
    176     return SuperClasses;
    177   }
    178 
    179   /// isASubClass - return true if this TargetRegisterClass is a subset
    180   /// class of at least one other TargetRegisterClass.
    181   bool isASubClass() const {
    182     return SuperClasses[0] != 0;
    183   }
    184 
    185   /// getRawAllocationOrder - Returns the preferred order for allocating
    186   /// registers from this register class in MF. The raw order comes directly
    187   /// from the .td file and may include reserved registers that are not
    188   /// allocatable. Register allocators should also make sure to allocate
    189   /// callee-saved registers only after all the volatiles are used. The
    190   /// RegisterClassInfo class provides filtered allocation orders with
    191   /// callee-saved registers moved to the end.
    192   ///
    193   /// The MachineFunction argument can be used to tune the allocatable
    194   /// registers based on the characteristics of the function, subtarget, or
    195   /// other criteria.
    196   ///
    197   /// By default, this method returns all registers in the class.
    198   ///
    199   virtual
    200   ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
    201     return makeArrayRef(begin(), getNumRegs());
    202   }
    203 };
    204 
    205 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
    206 /// registers. These are used by codegen, not by MC.
    207 struct TargetRegisterInfoDesc {
    208   unsigned CostPerUse;          // Extra cost of instructions using register.
    209   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
    210 };
    211 
    212 /// TargetRegisterInfo base class - We assume that the target defines a static
    213 /// array of TargetRegisterDesc objects that represent all of the machine
    214 /// registers that the target has.  As such, we simply have to track a pointer
    215 /// to this array so that we can turn register number into a register
    216 /// descriptor.
    217 ///
    218 class TargetRegisterInfo : public MCRegisterInfo {
    219 public:
    220   typedef const TargetRegisterClass * const * regclass_iterator;
    221 private:
    222   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
    223   const char *const *SubRegIndexNames;        // Names of subreg indexes.
    224   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
    225 
    226 protected:
    227   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
    228                      regclass_iterator RegClassBegin,
    229                      regclass_iterator RegClassEnd,
    230                      const char *const *subregindexnames);
    231   virtual ~TargetRegisterInfo();
    232 public:
    233 
    234   // Register numbers can represent physical registers, virtual registers, and
    235   // sometimes stack slots. The unsigned values are divided into these ranges:
    236   //
    237   //   0           Not a register, can be used as a sentinel.
    238   //   [1;2^30)    Physical registers assigned by TableGen.
    239   //   [2^30;2^31) Stack slots. (Rarely used.)
    240   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
    241   //
    242   // Further sentinels can be allocated from the small negative integers.
    243   // DenseMapInfo<unsigned> uses -1u and -2u.
    244 
    245   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
    246   /// frame index in a variable that normally holds a register. isStackSlot()
    247   /// returns true if Reg is in the range used for stack slots.
    248   ///
    249   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
    250   /// slots, so if a variable may contains a stack slot, always check
    251   /// isStackSlot() first.
    252   ///
    253   static bool isStackSlot(unsigned Reg) {
    254     return int(Reg) >= (1 << 30);
    255   }
    256 
    257   /// stackSlot2Index - Compute the frame index from a register value
    258   /// representing a stack slot.
    259   static int stackSlot2Index(unsigned Reg) {
    260     assert(isStackSlot(Reg) && "Not a stack slot");
    261     return int(Reg - (1u << 30));
    262   }
    263 
    264   /// index2StackSlot - Convert a non-negative frame index to a stack slot
    265   /// register value.
    266   static unsigned index2StackSlot(int FI) {
    267     assert(FI >= 0 && "Cannot hold a negative frame index.");
    268     return FI + (1u << 30);
    269   }
    270 
    271   /// isPhysicalRegister - Return true if the specified register number is in
    272   /// the physical register namespace.
    273   static bool isPhysicalRegister(unsigned Reg) {
    274     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    275     return int(Reg) > 0;
    276   }
    277 
    278   /// isVirtualRegister - Return true if the specified register number is in
    279   /// the virtual register namespace.
    280   static bool isVirtualRegister(unsigned Reg) {
    281     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    282     return int(Reg) < 0;
    283   }
    284 
    285   /// virtReg2Index - Convert a virtual register number to a 0-based index.
    286   /// The first virtual register in a function will get the index 0.
    287   static unsigned virtReg2Index(unsigned Reg) {
    288     assert(isVirtualRegister(Reg) && "Not a virtual register");
    289     return Reg & ~(1u << 31);
    290   }
    291 
    292   /// index2VirtReg - Convert a 0-based index to a virtual register number.
    293   /// This is the inverse operation of VirtReg2IndexFunctor below.
    294   static unsigned index2VirtReg(unsigned Index) {
    295     return Index | (1u << 31);
    296   }
    297 
    298   /// getMinimalPhysRegClass - Returns the Register Class of a physical
    299   /// register of the given type, picking the most sub register class of
    300   /// the right type that contains this physreg.
    301   const TargetRegisterClass *
    302     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
    303 
    304   /// getAllocatableSet - Returns a bitset indexed by register number
    305   /// indicating if a register is allocatable or not. If a register class is
    306   /// specified, returns the subset for the class.
    307   BitVector getAllocatableSet(const MachineFunction &MF,
    308                               const TargetRegisterClass *RC = NULL) const;
    309 
    310   /// getCostPerUse - Return the additional cost of using this register instead
    311   /// of other registers in its class.
    312   unsigned getCostPerUse(unsigned RegNo) const {
    313     return InfoDesc[RegNo].CostPerUse;
    314   }
    315 
    316   /// isInAllocatableClass - Return true if the register is in the allocation
    317   /// of any register class.
    318   bool isInAllocatableClass(unsigned RegNo) const {
    319     return InfoDesc[RegNo].inAllocatableClass;
    320   }
    321 
    322   /// getSubRegIndexName - Return the human-readable symbolic target-specific
    323   /// name for the specified SubRegIndex.
    324   const char *getSubRegIndexName(unsigned SubIdx) const {
    325     assert(SubIdx && "This is not a subregister index");
    326     return SubRegIndexNames[SubIdx-1];
    327   }
    328 
    329   /// regsOverlap - Returns true if the two registers are equal or alias each
    330   /// other. The registers may be virtual register.
    331   bool regsOverlap(unsigned regA, unsigned regB) const {
    332     if (regA == regB) return true;
    333     if (isVirtualRegister(regA) || isVirtualRegister(regB))
    334       return false;
    335     for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
    336       if (*regList == regB) return true;
    337     }
    338     return false;
    339   }
    340 
    341   /// isSubRegister - Returns true if regB is a sub-register of regA.
    342   ///
    343   bool isSubRegister(unsigned regA, unsigned regB) const {
    344     return isSuperRegister(regB, regA);
    345   }
    346 
    347   /// isSuperRegister - Returns true if regB is a super-register of regA.
    348   ///
    349   bool isSuperRegister(unsigned regA, unsigned regB) const {
    350     for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
    351       if (*regList == regB) return true;
    352     }
    353     return false;
    354   }
    355 
    356   /// getCalleeSavedRegs - Return a null-terminated list of all of the
    357   /// callee saved registers on this target. The register should be in the
    358   /// order of desired callee-save stack frame offset. The first register is
    359   /// closed to the incoming stack pointer if stack grows down, and vice versa.
    360   virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
    361                                                                       const = 0;
    362 
    363 
    364   /// getReservedRegs - Returns a bitset indexed by physical register number
    365   /// indicating if a register is a special register that has particular uses
    366   /// and should be considered unavailable at all times, e.g. SP, RA. This is
    367   /// used by register scavenger to determine what registers are free.
    368   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
    369 
    370   /// getSubReg - Returns the physical register number of sub-register "Index"
    371   /// for physical register RegNo. Return zero if the sub-register does not
    372   /// exist.
    373   virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
    374 
    375   /// getSubRegIndex - For a given register pair, return the sub-register index
    376   /// if the second register is a sub-register of the first. Return zero
    377   /// otherwise.
    378   virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
    379 
    380   /// getMatchingSuperReg - Return a super-register of the specified register
    381   /// Reg so its sub-register of index SubIdx is Reg.
    382   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
    383                                const TargetRegisterClass *RC) const {
    384     for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
    385       if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
    386         return SR;
    387     return 0;
    388   }
    389 
    390   /// canCombineSubRegIndices - Given a register class and a list of
    391   /// subregister indices, return true if it's possible to combine the
    392   /// subregister indices into one that corresponds to a larger
    393   /// subregister. Return the new subregister index by reference. Note the
    394   /// new index may be zero if the given subregisters can be combined to
    395   /// form the whole register.
    396   virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
    397                                        SmallVectorImpl<unsigned> &SubIndices,
    398                                        unsigned &NewSubIdx) const {
    399     return 0;
    400   }
    401 
    402   /// getMatchingSuperRegClass - Return a subclass of the specified register
    403   /// class A so that each register in it has a sub-register of the
    404   /// specified sub-register index which is in the specified register class B.
    405   virtual const TargetRegisterClass *
    406   getMatchingSuperRegClass(const TargetRegisterClass *A,
    407                            const TargetRegisterClass *B, unsigned Idx) const {
    408     return 0;
    409   }
    410 
    411   /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
    412   /// supports the sub-register index Idx.
    413   /// If no such sub-class exists, return NULL.
    414   /// If all registers in RC already have an Idx sub-register, return RC.
    415   ///
    416   /// TableGen generates a version of this function that is good enough in most
    417   /// cases.  Targets can override if they have constraints that TableGen
    418   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
    419   /// supported by the full GR32 register class in 64-bit mode, but only by the
    420   /// GR32_ABCD regiister class in 32-bit mode.
    421   ///
    422   virtual const TargetRegisterClass *
    423   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
    424 
    425   /// composeSubRegIndices - Return the subregister index you get from composing
    426   /// two subregister indices.
    427   ///
    428   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
    429   /// returns c. Note that composeSubRegIndices does not tell you about illegal
    430   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
    431   /// b, composeSubRegIndices doesn't tell you.
    432   ///
    433   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
    434   /// ssub_0:S0 - ssub_3:S3 subregs.
    435   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
    436   ///
    437   virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    438     // This default implementation is correct for most targets.
    439     return b;
    440   }
    441 
    442   //===--------------------------------------------------------------------===//
    443   // Register Class Information
    444   //
    445 
    446   /// Register class iterators
    447   ///
    448   regclass_iterator regclass_begin() const { return RegClassBegin; }
    449   regclass_iterator regclass_end() const { return RegClassEnd; }
    450 
    451   unsigned getNumRegClasses() const {
    452     return (unsigned)(regclass_end()-regclass_begin());
    453   }
    454 
    455   /// getRegClass - Returns the register class associated with the enumeration
    456   /// value.  See class MCOperandInfo.
    457   const TargetRegisterClass *getRegClass(unsigned i) const {
    458     assert(i < getNumRegClasses() && "Register Class ID out of range");
    459     return RegClassBegin[i];
    460   }
    461 
    462   /// getCommonSubClass - find the largest common subclass of A and B. Return
    463   /// NULL if there is no common subclass.
    464   const TargetRegisterClass *
    465   getCommonSubClass(const TargetRegisterClass *A,
    466                     const TargetRegisterClass *B) const;
    467 
    468   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
    469   /// values.  If a target supports multiple different pointer register classes,
    470   /// kind specifies which one is indicated.
    471   virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
    472     assert(0 && "Target didn't implement getPointerRegClass!");
    473     return 0; // Must return a value in order to compile with VS 2005
    474   }
    475 
    476   /// getCrossCopyRegClass - Returns a legal register class to copy a register
    477   /// in the specified class to or from. If it is possible to copy the register
    478   /// directly without using a cross register class copy, return the specified
    479   /// RC. Returns NULL if it is not possible to copy between a two registers of
    480   /// the specified class.
    481   virtual const TargetRegisterClass *
    482   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    483     return RC;
    484   }
    485 
    486   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
    487   /// legal to use in the current sub-target and has the same spill size.
    488   /// The returned register class can be used to create virtual registers which
    489   /// means that all its registers can be copied and spilled.
    490   virtual const TargetRegisterClass*
    491   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
    492     /// The default implementation is very conservative and doesn't allow the
    493     /// register allocator to inflate register classes.
    494     return RC;
    495   }
    496 
    497   /// getRegPressureLimit - Return the register pressure "high water mark" for
    498   /// the specific register class. The scheduler is in high register pressure
    499   /// mode (for the specific register class) if it goes over the limit.
    500   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
    501                                        MachineFunction &MF) const {
    502     return 0;
    503   }
    504 
    505   /// getRawAllocationOrder - Returns the register allocation order for a
    506   /// specified register class with a target-dependent hint. The returned list
    507   /// may contain reserved registers that cannot be allocated.
    508   ///
    509   /// Register allocators need only call this function to resolve
    510   /// target-dependent hints, but it should work without hinting as well.
    511   virtual ArrayRef<unsigned>
    512   getRawAllocationOrder(const TargetRegisterClass *RC,
    513                         unsigned HintType, unsigned HintReg,
    514                         const MachineFunction &MF) const {
    515     return RC->getRawAllocationOrder(MF);
    516   }
    517 
    518   /// ResolveRegAllocHint - Resolves the specified register allocation hint
    519   /// to a physical register. Returns the physical register if it is successful.
    520   virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
    521                                        const MachineFunction &MF) const {
    522     if (Type == 0 && Reg && isPhysicalRegister(Reg))
    523       return Reg;
    524     return 0;
    525   }
    526 
    527   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
    528   /// writing a register from RC in two consecutive instructions.
    529   /// This can avoid pipeline stalls on certain architectures.
    530   /// It does cause increased register pressure, though.
    531   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
    532     return false;
    533   }
    534 
    535   /// UpdateRegAllocHint - A callback to allow target a chance to update
    536   /// register allocation hints when a register is "changed" (e.g. coalesced)
    537   /// to another register. e.g. On ARM, some virtual registers should target
    538   /// register pairs, if one of pair is coalesced to another register, the
    539   /// allocation hint of the other half of the pair should be changed to point
    540   /// to the new register.
    541   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
    542                                   MachineFunction &MF) const {
    543     // Do nothing.
    544   }
    545 
    546   /// requiresRegisterScavenging - returns true if the target requires (and can
    547   /// make use of) the register scavenger.
    548   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    549     return false;
    550   }
    551 
    552   /// useFPForScavengingIndex - returns true if the target wants to use
    553   /// frame pointer based accesses to spill to the scavenger emergency spill
    554   /// slot.
    555   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    556     return true;
    557   }
    558 
    559   /// requiresFrameIndexScavenging - returns true if the target requires post
    560   /// PEI scavenging of registers for materializing frame index constants.
    561   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    562     return false;
    563   }
    564 
    565   /// requiresVirtualBaseRegisters - Returns true if the target wants the
    566   /// LocalStackAllocation pass to be run and virtual base registers
    567   /// used for more efficient stack access.
    568   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    569     return false;
    570   }
    571 
    572   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
    573   /// the stack frame of the given function for the specified register. e.g. On
    574   /// x86, if the frame register is required, the first fixed stack object is
    575   /// reserved as its spill slot. This tells PEI not to create a new stack frame
    576   /// object for the given register. It should be called only after
    577   /// processFunctionBeforeCalleeSavedScan().
    578   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
    579                                     int &FrameIdx) const {
    580     return false;
    581   }
    582 
    583   /// needsStackRealignment - true if storage within the function requires the
    584   /// stack pointer to be aligned more than the normal calling convention calls
    585   /// for.
    586   virtual bool needsStackRealignment(const MachineFunction &MF) const {
    587     return false;
    588   }
    589 
    590   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
    591   /// index in the instruction, if there is one.
    592   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
    593                                            int Idx) const {
    594     return 0;
    595   }
    596 
    597   /// needsFrameBaseReg - Returns true if the instruction's frame index
    598   /// reference would be better served by a base register other than FP
    599   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
    600   /// references it should create new base registers for.
    601   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    602     return false;
    603   }
    604 
    605   /// materializeFrameBaseRegister - Insert defining instruction(s) for
    606   /// BaseReg to be a pointer to FrameIdx before insertion point I.
    607   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
    608                                             unsigned BaseReg, int FrameIdx,
    609                                             int64_t Offset) const {
    610     assert(0 && "materializeFrameBaseRegister does not exist on this target");
    611   }
    612 
    613   /// resolveFrameIndex - Resolve a frame index operand of an instruction
    614   /// to reference the indicated base register plus offset instead.
    615   virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
    616                                  unsigned BaseReg, int64_t Offset) const {
    617     assert(0 && "resolveFrameIndex does not exist on this target");
    618   }
    619 
    620   /// isFrameOffsetLegal - Determine whether a given offset immediate is
    621   /// encodable to resolve a frame index.
    622   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
    623                                   int64_t Offset) const {
    624     assert(0 && "isFrameOffsetLegal does not exist on this target");
    625     return false; // Must return a value in order to compile with VS 2005
    626   }
    627 
    628   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
    629   /// code insertion to eliminate call frame setup and destroy pseudo
    630   /// instructions (but only if the Target is using them).  It is responsible
    631   /// for eliminating these instructions, replacing them with concrete
    632   /// instructions.  This method need only be implemented if using call frame
    633   /// setup/destroy pseudo instructions.
    634   ///
    635   virtual void
    636   eliminateCallFramePseudoInstr(MachineFunction &MF,
    637                                 MachineBasicBlock &MBB,
    638                                 MachineBasicBlock::iterator MI) const {
    639     assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
    640   }
    641 
    642 
    643   /// saveScavengerRegister - Spill the register so it can be used by the
    644   /// register scavenger. Return true if the register was spilled, false
    645   /// otherwise. If this function does not spill the register, the scavenger
    646   /// will instead spill it to the emergency spill slot.
    647   ///
    648   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
    649                                      MachineBasicBlock::iterator I,
    650                                      MachineBasicBlock::iterator &UseMI,
    651                                      const TargetRegisterClass *RC,
    652                                      unsigned Reg) const {
    653     return false;
    654   }
    655 
    656   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
    657   /// frame indices from instructions which may use them.  The instruction
    658   /// referenced by the iterator contains an MO_FrameIndex operand which must be
    659   /// eliminated by this method.  This method may modify or replace the
    660   /// specified instruction, as long as it keeps the iterator pointing at the
    661   /// finished product. SPAdj is the SP adjustment due to call frame setup
    662   /// instruction.
    663   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
    664                                    int SPAdj, RegScavenger *RS=NULL) const = 0;
    665 
    666   //===--------------------------------------------------------------------===//
    667   /// Debug information queries.
    668 
    669   /// getFrameRegister - This method should return the register used as a base
    670   /// for values allocated in the current stack frame.
    671   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
    672 
    673   /// getCompactUnwindRegNum - This function maps the register to the number for
    674   /// compact unwind encoding. Return -1 if the register isn't valid.
    675   virtual int getCompactUnwindRegNum(unsigned, bool) const {
    676     return -1;
    677   }
    678 };
    679 
    680 
    681 // This is useful when building IndexedMaps keyed on virtual registers
    682 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
    683   unsigned operator()(unsigned Reg) const {
    684     return TargetRegisterInfo::virtReg2Index(Reg);
    685   }
    686 };
    687 
    688 /// PrintReg - Helper class for printing registers on a raw_ostream.
    689 /// Prints virtual and physical registers with or without a TRI instance.
    690 ///
    691 /// The format is:
    692 ///   %noreg          - NoRegister
    693 ///   %vreg5          - a virtual register.
    694 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
    695 ///   %EAX            - a physical register
    696 ///   %physreg17      - a physical register when no TRI instance given.
    697 ///
    698 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
    699 ///
    700 class PrintReg {
    701   const TargetRegisterInfo *TRI;
    702   unsigned Reg;
    703   unsigned SubIdx;
    704 public:
    705   PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
    706     : TRI(tri), Reg(reg), SubIdx(subidx) {}
    707   void print(raw_ostream&) const;
    708 };
    709 
    710 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
    711   PR.print(OS);
    712   return OS;
    713 }
    714 
    715 } // End llvm namespace
    716 
    717 #endif
    718