Home | History | Annotate | Download | only in radeonsi
      1 /*
      2  * Copyright 2012 Advanced Micro Devices, Inc.
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * on the rights to use, copy, modify, merge, publish, distribute, sub
      8  * license, and/or sell copies of the Software, and to permit persons to whom
      9  * the Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *      Christian Knig <christian.koenig (at) amd.com>
     25  *      Marek Olk <maraeo (at) gmail.com>
     26  */
     27 
     28 #include "si_pipe.h"
     29 #include "sid.h"
     30 #include "radeon/r600_cs.h"
     31 
     32 #include "tgsi/tgsi_parse.h"
     33 #include "tgsi/tgsi_ureg.h"
     34 #include "util/hash_table.h"
     35 #include "util/crc32.h"
     36 #include "util/u_memory.h"
     37 #include "util/u_prim.h"
     38 
     39 /* SHADER_CACHE */
     40 
     41 /**
     42  * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
     43  * integer.
     44  */
     45 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
     46 {
     47 	unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
     48 			     sizeof(struct tgsi_token);
     49 	unsigned size = 4 + tgsi_size + sizeof(sel->so);
     50 	char *result = (char*)MALLOC(size);
     51 
     52 	if (!result)
     53 		return NULL;
     54 
     55 	*((uint32_t*)result) = size;
     56 	memcpy(result + 4, sel->tokens, tgsi_size);
     57 	memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
     58 	return result;
     59 }
     60 
     61 /** Copy "data" to "ptr" and return the next dword following copied data. */
     62 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
     63 {
     64 	/* data may be NULL if size == 0 */
     65 	if (size)
     66 		memcpy(ptr, data, size);
     67 	ptr += DIV_ROUND_UP(size, 4);
     68 	return ptr;
     69 }
     70 
     71 /** Read data from "ptr". Return the next dword following the data. */
     72 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
     73 {
     74 	memcpy(data, ptr, size);
     75 	ptr += DIV_ROUND_UP(size, 4);
     76 	return ptr;
     77 }
     78 
     79 /**
     80  * Write the size as uint followed by the data. Return the next dword
     81  * following the copied data.
     82  */
     83 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
     84 {
     85 	*ptr++ = size;
     86 	return write_data(ptr, data, size);
     87 }
     88 
     89 /**
     90  * Read the size as uint followed by the data. Return both via parameters.
     91  * Return the next dword following the data.
     92  */
     93 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
     94 {
     95 	*size = *ptr++;
     96 	assert(*data == NULL);
     97 	if (!*size)
     98 		return ptr;
     99 	*data = malloc(*size);
    100 	return read_data(ptr, *data, *size);
    101 }
    102 
    103 /**
    104  * Return the shader binary in a buffer. The first 4 bytes contain its size
    105  * as integer.
    106  */
    107 static void *si_get_shader_binary(struct si_shader *shader)
    108 {
    109 	/* There is always a size of data followed by the data itself. */
    110 	unsigned relocs_size = shader->binary.reloc_count *
    111 			       sizeof(shader->binary.relocs[0]);
    112 	unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
    113 	unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
    114 				strlen(shader->binary.llvm_ir_string) + 1 : 0;
    115 	unsigned size =
    116 		4 + /* total size */
    117 		4 + /* CRC32 of the data below */
    118 		align(sizeof(shader->config), 4) +
    119 		align(sizeof(shader->info), 4) +
    120 		4 + align(shader->binary.code_size, 4) +
    121 		4 + align(shader->binary.rodata_size, 4) +
    122 		4 + align(relocs_size, 4) +
    123 		4 + align(disasm_size, 4) +
    124 		4 + align(llvm_ir_size, 4);
    125 	void *buffer = CALLOC(1, size);
    126 	uint32_t *ptr = (uint32_t*)buffer;
    127 
    128 	if (!buffer)
    129 		return NULL;
    130 
    131 	*ptr++ = size;
    132 	ptr++; /* CRC32 is calculated at the end. */
    133 
    134 	ptr = write_data(ptr, &shader->config, sizeof(shader->config));
    135 	ptr = write_data(ptr, &shader->info, sizeof(shader->info));
    136 	ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
    137 	ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
    138 	ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
    139 	ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
    140 	ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
    141 	assert((char *)ptr - (char *)buffer == size);
    142 
    143 	/* Compute CRC32. */
    144 	ptr = (uint32_t*)buffer;
    145 	ptr++;
    146 	*ptr = util_hash_crc32(ptr + 1, size - 8);
    147 
    148 	return buffer;
    149 }
    150 
    151 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
    152 {
    153 	uint32_t *ptr = (uint32_t*)binary;
    154 	uint32_t size = *ptr++;
    155 	uint32_t crc32 = *ptr++;
    156 	unsigned chunk_size;
    157 
    158 	if (util_hash_crc32(ptr, size - 8) != crc32) {
    159 		fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
    160 		return false;
    161 	}
    162 
    163 	ptr = read_data(ptr, &shader->config, sizeof(shader->config));
    164 	ptr = read_data(ptr, &shader->info, sizeof(shader->info));
    165 	ptr = read_chunk(ptr, (void**)&shader->binary.code,
    166 			 &shader->binary.code_size);
    167 	ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
    168 			 &shader->binary.rodata_size);
    169 	ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
    170 	shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
    171 	ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
    172 	ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
    173 
    174 	return true;
    175 }
    176 
    177 /**
    178  * Insert a shader into the cache. It's assumed the shader is not in the cache.
    179  * Use si_shader_cache_load_shader before calling this.
    180  *
    181  * Returns false on failure, in which case the tgsi_binary should be freed.
    182  */
    183 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
    184 					  void *tgsi_binary,
    185 					  struct si_shader *shader)
    186 {
    187 	void *hw_binary;
    188 	struct hash_entry *entry;
    189 
    190 	entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
    191 	if (entry)
    192 		return false; /* already added */
    193 
    194 	hw_binary = si_get_shader_binary(shader);
    195 	if (!hw_binary)
    196 		return false;
    197 
    198 	if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
    199 				    hw_binary) == NULL) {
    200 		FREE(hw_binary);
    201 		return false;
    202 	}
    203 
    204 	return true;
    205 }
    206 
    207 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
    208 					void *tgsi_binary,
    209 				        struct si_shader *shader)
    210 {
    211 	struct hash_entry *entry =
    212 		_mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
    213 	if (!entry)
    214 		return false;
    215 
    216 	if (!si_load_shader_binary(shader, entry->data))
    217 		return false;
    218 
    219 	p_atomic_inc(&sscreen->b.num_shader_cache_hits);
    220 	return true;
    221 }
    222 
    223 static uint32_t si_shader_cache_key_hash(const void *key)
    224 {
    225 	/* The first dword is the key size. */
    226 	return util_hash_crc32(key, *(uint32_t*)key);
    227 }
    228 
    229 static bool si_shader_cache_key_equals(const void *a, const void *b)
    230 {
    231 	uint32_t *keya = (uint32_t*)a;
    232 	uint32_t *keyb = (uint32_t*)b;
    233 
    234 	/* The first dword is the key size. */
    235 	if (*keya != *keyb)
    236 		return false;
    237 
    238 	return memcmp(keya, keyb, *keya) == 0;
    239 }
    240 
    241 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
    242 {
    243 	FREE((void*)entry->key);
    244 	FREE(entry->data);
    245 }
    246 
    247 bool si_init_shader_cache(struct si_screen *sscreen)
    248 {
    249 	pipe_mutex_init(sscreen->shader_cache_mutex);
    250 	sscreen->shader_cache =
    251 		_mesa_hash_table_create(NULL,
    252 					si_shader_cache_key_hash,
    253 					si_shader_cache_key_equals);
    254 	return sscreen->shader_cache != NULL;
    255 }
    256 
    257 void si_destroy_shader_cache(struct si_screen *sscreen)
    258 {
    259 	if (sscreen->shader_cache)
    260 		_mesa_hash_table_destroy(sscreen->shader_cache,
    261 					 si_destroy_shader_cache_entry);
    262 	pipe_mutex_destroy(sscreen->shader_cache_mutex);
    263 }
    264 
    265 /* SHADER STATES */
    266 
    267 static void si_set_tesseval_regs(struct si_screen *sscreen,
    268 				 struct si_shader *shader,
    269 				 struct si_pm4_state *pm4)
    270 {
    271 	struct tgsi_shader_info *info = &shader->selector->info;
    272 	unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
    273 	unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
    274 	bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
    275 	bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
    276 	unsigned type, partitioning, topology, distribution_mode;
    277 
    278 	switch (tes_prim_mode) {
    279 	case PIPE_PRIM_LINES:
    280 		type = V_028B6C_TESS_ISOLINE;
    281 		break;
    282 	case PIPE_PRIM_TRIANGLES:
    283 		type = V_028B6C_TESS_TRIANGLE;
    284 		break;
    285 	case PIPE_PRIM_QUADS:
    286 		type = V_028B6C_TESS_QUAD;
    287 		break;
    288 	default:
    289 		assert(0);
    290 		return;
    291 	}
    292 
    293 	switch (tes_spacing) {
    294 	case PIPE_TESS_SPACING_FRACTIONAL_ODD:
    295 		partitioning = V_028B6C_PART_FRAC_ODD;
    296 		break;
    297 	case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
    298 		partitioning = V_028B6C_PART_FRAC_EVEN;
    299 		break;
    300 	case PIPE_TESS_SPACING_EQUAL:
    301 		partitioning = V_028B6C_PART_INTEGER;
    302 		break;
    303 	default:
    304 		assert(0);
    305 		return;
    306 	}
    307 
    308 	if (tes_point_mode)
    309 		topology = V_028B6C_OUTPUT_POINT;
    310 	else if (tes_prim_mode == PIPE_PRIM_LINES)
    311 		topology = V_028B6C_OUTPUT_LINE;
    312 	else if (tes_vertex_order_cw)
    313 		/* for some reason, this must be the other way around */
    314 		topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
    315 	else
    316 		topology = V_028B6C_OUTPUT_TRIANGLE_CW;
    317 
    318 	if (sscreen->has_distributed_tess) {
    319 		if (sscreen->b.family == CHIP_FIJI ||
    320 		    sscreen->b.family >= CHIP_POLARIS10)
    321 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
    322 		else
    323 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
    324 	} else
    325 		distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
    326 
    327 	si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
    328 		       S_028B6C_TYPE(type) |
    329 		       S_028B6C_PARTITIONING(partitioning) |
    330 		       S_028B6C_TOPOLOGY(topology) |
    331 		       S_028B6C_DISTRIBUTION_MODE(distribution_mode));
    332 }
    333 
    334 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
    335 {
    336 	if (shader->pm4)
    337 		si_pm4_clear_state(shader->pm4);
    338 	else
    339 		shader->pm4 = CALLOC_STRUCT(si_pm4_state);
    340 
    341 	return shader->pm4;
    342 }
    343 
    344 static void si_shader_ls(struct si_shader *shader)
    345 {
    346 	struct si_pm4_state *pm4;
    347 	unsigned vgpr_comp_cnt;
    348 	uint64_t va;
    349 
    350 	pm4 = si_get_shader_pm4_state(shader);
    351 	if (!pm4)
    352 		return;
    353 
    354 	va = shader->bo->gpu_address;
    355 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
    356 
    357 	/* We need at least 2 components for LS.
    358 	 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
    359 	vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
    360 
    361 	si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
    362 	si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
    363 
    364 	shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
    365 			   S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
    366 		           S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
    367 			   S_00B528_DX10_CLAMP(1) |
    368 			   S_00B528_FLOAT_MODE(shader->config.float_mode);
    369 	shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
    370 			   S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
    371 }
    372 
    373 static void si_shader_hs(struct si_shader *shader)
    374 {
    375 	struct si_pm4_state *pm4;
    376 	uint64_t va;
    377 
    378 	pm4 = si_get_shader_pm4_state(shader);
    379 	if (!pm4)
    380 		return;
    381 
    382 	va = shader->bo->gpu_address;
    383 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
    384 
    385 	si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
    386 	si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
    387 	si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
    388 		       S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
    389 		       S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
    390 		       S_00B428_DX10_CLAMP(1) |
    391 		       S_00B428_FLOAT_MODE(shader->config.float_mode));
    392 	si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
    393 		       S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
    394 		       S_00B42C_OC_LDS_EN(1) |
    395 		       S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
    396 }
    397 
    398 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
    399 {
    400 	struct si_pm4_state *pm4;
    401 	unsigned num_user_sgprs;
    402 	unsigned vgpr_comp_cnt;
    403 	uint64_t va;
    404 	unsigned oc_lds_en;
    405 
    406 	pm4 = si_get_shader_pm4_state(shader);
    407 	if (!pm4)
    408 		return;
    409 
    410 	va = shader->bo->gpu_address;
    411 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
    412 
    413 	if (shader->selector->type == PIPE_SHADER_VERTEX) {
    414 		vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
    415 		num_user_sgprs = SI_ES_NUM_USER_SGPR;
    416 	} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
    417 		vgpr_comp_cnt = 3; /* all components are needed for TES */
    418 		num_user_sgprs = SI_TES_NUM_USER_SGPR;
    419 	} else
    420 		unreachable("invalid shader selector type");
    421 
    422 	oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
    423 
    424 	si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
    425 		       shader->selector->esgs_itemsize / 4);
    426 	si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
    427 	si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
    428 	si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
    429 		       S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
    430 		       S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
    431 		       S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
    432 		       S_00B328_DX10_CLAMP(1) |
    433 		       S_00B328_FLOAT_MODE(shader->config.float_mode));
    434 	si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
    435 		       S_00B32C_USER_SGPR(num_user_sgprs) |
    436 		       S_00B32C_OC_LDS_EN(oc_lds_en) |
    437 		       S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
    438 
    439 	if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
    440 		si_set_tesseval_regs(sscreen, shader, pm4);
    441 }
    442 
    443 /**
    444  * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
    445  * geometry shader.
    446  */
    447 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
    448 {
    449 	unsigned gs_max_vert_out = sel->gs_max_out_vertices;
    450 	unsigned cut_mode;
    451 
    452 	if (gs_max_vert_out <= 128) {
    453 		cut_mode = V_028A40_GS_CUT_128;
    454 	} else if (gs_max_vert_out <= 256) {
    455 		cut_mode = V_028A40_GS_CUT_256;
    456 	} else if (gs_max_vert_out <= 512) {
    457 		cut_mode = V_028A40_GS_CUT_512;
    458 	} else {
    459 		assert(gs_max_vert_out <= 1024);
    460 		cut_mode = V_028A40_GS_CUT_1024;
    461 	}
    462 
    463 	return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
    464 	       S_028A40_CUT_MODE(cut_mode)|
    465 	       S_028A40_ES_WRITE_OPTIMIZE(1) |
    466 	       S_028A40_GS_WRITE_OPTIMIZE(1);
    467 }
    468 
    469 static void si_shader_gs(struct si_shader *shader)
    470 {
    471 	struct si_shader_selector *sel = shader->selector;
    472 	const ubyte *num_components = sel->info.num_stream_output_components;
    473 	unsigned gs_num_invocations = sel->gs_num_invocations;
    474 	struct si_pm4_state *pm4;
    475 	uint64_t va;
    476 	unsigned max_stream = sel->max_gs_stream;
    477 	unsigned offset;
    478 
    479 	pm4 = si_get_shader_pm4_state(shader);
    480 	if (!pm4)
    481 		return;
    482 
    483 	si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader->selector));
    484 
    485 	offset = num_components[0] * sel->gs_max_out_vertices;
    486 	si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
    487 	if (max_stream >= 1)
    488 		offset += num_components[1] * sel->gs_max_out_vertices;
    489 	si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
    490 	if (max_stream >= 2)
    491 		offset += num_components[2] * sel->gs_max_out_vertices;
    492 	si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
    493 	if (max_stream >= 3)
    494 		offset += num_components[3] * sel->gs_max_out_vertices;
    495 	si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
    496 
    497 	/* The GSVS_RING_ITEMSIZE register takes 15 bits */
    498 	assert(offset < (1 << 15));
    499 
    500 	si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
    501 
    502 	si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
    503 	si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
    504 	si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
    505 	si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
    506 
    507 	si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
    508 		       S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
    509 		       S_028B90_ENABLE(gs_num_invocations > 0));
    510 
    511 	va = shader->bo->gpu_address;
    512 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
    513 	si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
    514 	si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
    515 
    516 	si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
    517 		       S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
    518 		       S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
    519 		       S_00B228_DX10_CLAMP(1) |
    520 		       S_00B228_FLOAT_MODE(shader->config.float_mode));
    521 	si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
    522 		       S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
    523 		       S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
    524 }
    525 
    526 /**
    527  * Compute the state for \p shader, which will run as a vertex shader on the
    528  * hardware.
    529  *
    530  * If \p gs is non-NULL, it points to the geometry shader for which this shader
    531  * is the copy shader.
    532  */
    533 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
    534                          struct si_shader_selector *gs)
    535 {
    536 	struct si_pm4_state *pm4;
    537 	unsigned num_user_sgprs;
    538 	unsigned nparams, vgpr_comp_cnt;
    539 	uint64_t va;
    540 	unsigned oc_lds_en;
    541 	unsigned window_space =
    542 	   shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
    543 	bool enable_prim_id = si_vs_exports_prim_id(shader);
    544 
    545 	pm4 = si_get_shader_pm4_state(shader);
    546 	if (!pm4)
    547 		return;
    548 
    549 	/* We always write VGT_GS_MODE in the VS state, because every switch
    550 	 * between different shader pipelines involving a different GS or no
    551 	 * GS at all involves a switch of the VS (different GS use different
    552 	 * copy shaders). On the other hand, when the API switches from a GS to
    553 	 * no GS and then back to the same GS used originally, the GS state is
    554 	 * not sent again.
    555 	 */
    556 	if (!gs) {
    557 		si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
    558 			       S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
    559 		si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
    560 	} else {
    561 		si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
    562 		si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
    563 	}
    564 
    565 	va = shader->bo->gpu_address;
    566 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
    567 
    568 	if (gs) {
    569 		vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
    570 		num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
    571 	} else if (shader->selector->type == PIPE_SHADER_VERTEX) {
    572 		vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
    573 		num_user_sgprs = SI_VS_NUM_USER_SGPR;
    574 	} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
    575 		vgpr_comp_cnt = 3; /* all components are needed for TES */
    576 		num_user_sgprs = SI_TES_NUM_USER_SGPR;
    577 	} else
    578 		unreachable("invalid shader selector type");
    579 
    580 	/* VS is required to export at least one param. */
    581 	nparams = MAX2(shader->info.nr_param_exports, 1);
    582 	si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
    583 		       S_0286C4_VS_EXPORT_COUNT(nparams - 1));
    584 
    585 	si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
    586 		       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
    587 		       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
    588 						   V_02870C_SPI_SHADER_4COMP :
    589 						   V_02870C_SPI_SHADER_NONE) |
    590 		       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
    591 						   V_02870C_SPI_SHADER_4COMP :
    592 						   V_02870C_SPI_SHADER_NONE) |
    593 		       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
    594 						   V_02870C_SPI_SHADER_4COMP :
    595 						   V_02870C_SPI_SHADER_NONE));
    596 
    597 	oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
    598 
    599 	si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
    600 	si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
    601 	si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
    602 		       S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
    603 		       S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
    604 		       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
    605 		       S_00B128_DX10_CLAMP(1) |
    606 		       S_00B128_FLOAT_MODE(shader->config.float_mode));
    607 	si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
    608 		       S_00B12C_USER_SGPR(num_user_sgprs) |
    609 		       S_00B12C_OC_LDS_EN(oc_lds_en) |
    610 		       S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
    611 		       S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
    612 		       S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
    613 		       S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
    614 		       S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
    615 		       S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
    616 	if (window_space)
    617 		si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
    618 			       S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
    619 	else
    620 		si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
    621 			       S_028818_VTX_W0_FMT(1) |
    622 			       S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
    623 			       S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
    624 			       S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
    625 
    626 	if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
    627 		si_set_tesseval_regs(sscreen, shader, pm4);
    628 }
    629 
    630 static unsigned si_get_ps_num_interp(struct si_shader *ps)
    631 {
    632 	struct tgsi_shader_info *info = &ps->selector->info;
    633 	unsigned num_colors = !!(info->colors_read & 0x0f) +
    634 			      !!(info->colors_read & 0xf0);
    635 	unsigned num_interp = ps->selector->info.num_inputs +
    636 			      (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
    637 
    638 	assert(num_interp <= 32);
    639 	return MIN2(num_interp, 32);
    640 }
    641 
    642 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
    643 {
    644 	unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
    645 	unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
    646 
    647 	/* If the i-th target format is set, all previous target formats must
    648 	 * be non-zero to avoid hangs.
    649 	 */
    650 	for (i = 0; i < num_targets; i++)
    651 		if (!(value & (0xf << (i * 4))))
    652 			value |= V_028714_SPI_SHADER_32_R << (i * 4);
    653 
    654 	return value;
    655 }
    656 
    657 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
    658 {
    659 	unsigned i, cb_shader_mask = 0;
    660 
    661 	for (i = 0; i < 8; i++) {
    662 		switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
    663 		case V_028714_SPI_SHADER_ZERO:
    664 			break;
    665 		case V_028714_SPI_SHADER_32_R:
    666 			cb_shader_mask |= 0x1 << (i * 4);
    667 			break;
    668 		case V_028714_SPI_SHADER_32_GR:
    669 			cb_shader_mask |= 0x3 << (i * 4);
    670 			break;
    671 		case V_028714_SPI_SHADER_32_AR:
    672 			cb_shader_mask |= 0x9 << (i * 4);
    673 			break;
    674 		case V_028714_SPI_SHADER_FP16_ABGR:
    675 		case V_028714_SPI_SHADER_UNORM16_ABGR:
    676 		case V_028714_SPI_SHADER_SNORM16_ABGR:
    677 		case V_028714_SPI_SHADER_UINT16_ABGR:
    678 		case V_028714_SPI_SHADER_SINT16_ABGR:
    679 		case V_028714_SPI_SHADER_32_ABGR:
    680 			cb_shader_mask |= 0xf << (i * 4);
    681 			break;
    682 		default:
    683 			assert(0);
    684 		}
    685 	}
    686 	return cb_shader_mask;
    687 }
    688 
    689 static void si_shader_ps(struct si_shader *shader)
    690 {
    691 	struct tgsi_shader_info *info = &shader->selector->info;
    692 	struct si_pm4_state *pm4;
    693 	unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
    694 	unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
    695 	uint64_t va;
    696 	unsigned input_ena = shader->config.spi_ps_input_ena;
    697 
    698 	/* we need to enable at least one of them, otherwise we hang the GPU */
    699 	assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
    700 	       G_0286CC_PERSP_CENTER_ENA(input_ena) ||
    701 	       G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
    702 	       G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
    703 	       G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
    704 	       G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
    705 	       G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
    706 	       G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
    707 	/* POS_W_FLOAT_ENA requires one of the perspective weights. */
    708 	assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
    709 	       G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
    710 	       G_0286CC_PERSP_CENTER_ENA(input_ena) ||
    711 	       G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
    712 	       G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
    713 
    714 	/* Validate interpolation optimization flags (read as implications). */
    715 	assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
    716 	       (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
    717 		G_0286CC_PERSP_CENTROID_ENA(input_ena)));
    718 	assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
    719 	       (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
    720 		G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
    721 	assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
    722 	       (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
    723 		!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
    724 	assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
    725 	       (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
    726 		!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
    727 	assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
    728 	       (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
    729 		!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
    730 	assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
    731 	       (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
    732 		!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
    733 
    734 	/* Validate cases when the optimizations are off (read as implications). */
    735 	assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
    736 	       !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
    737 	       !G_0286CC_PERSP_CENTROID_ENA(input_ena));
    738 	assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
    739 	       !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
    740 	       !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
    741 
    742 	pm4 = si_get_shader_pm4_state(shader);
    743 	if (!pm4)
    744 		return;
    745 
    746 	/* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
    747 	 * Possible vaules:
    748 	 * 0 -> Position = pixel center
    749 	 * 1 -> Position = pixel centroid
    750 	 * 2 -> Position = at sample position
    751 	 *
    752 	 * From GLSL 4.5 specification, section 7.1:
    753 	 *   "The variable gl_FragCoord is available as an input variable from
    754 	 *    within fragment shaders and it holds the window relative coordinates
    755 	 *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
    756 	 *    value can be for any location within the pixel, or one of the
    757 	 *    fragment samples. The use of centroid does not further restrict
    758 	 *    this value to be inside the current primitive."
    759 	 *
    760 	 * Meaning that centroid has no effect and we can return anything within
    761 	 * the pixel. Thus, return the value at sample position, because that's
    762 	 * the most accurate one shaders can get.
    763 	 */
    764 	spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
    765 
    766 	if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
    767 	    TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
    768 		spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
    769 
    770 	spi_shader_col_format = si_get_spi_shader_col_format(shader);
    771 	cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
    772 
    773 	/* Ensure that some export memory is always allocated, for two reasons:
    774 	 *
    775 	 * 1) Correctness: The hardware ignores the EXEC mask if no export
    776 	 *    memory is allocated, so KILL and alpha test do not work correctly
    777 	 *    without this.
    778 	 * 2) Performance: Every shader needs at least a NULL export, even when
    779 	 *    it writes no color/depth output. The NULL export instruction
    780 	 *    stalls without this setting.
    781 	 *
    782 	 * Don't add this to CB_SHADER_MASK.
    783 	 */
    784 	if (!spi_shader_col_format &&
    785 	    !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
    786 		spi_shader_col_format = V_028714_SPI_SHADER_32_R;
    787 
    788 	si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
    789 	si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
    790 		       shader->config.spi_ps_input_addr);
    791 
    792 	/* Set interpolation controls. */
    793 	spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
    794 
    795 	/* Set registers. */
    796 	si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
    797 	si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
    798 
    799 	si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
    800 		       si_get_spi_shader_z_format(info->writes_z,
    801 						  info->writes_stencil,
    802 						  info->writes_samplemask));
    803 
    804 	si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
    805 	si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
    806 
    807 	va = shader->bo->gpu_address;
    808 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
    809 	si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
    810 	si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
    811 
    812 	si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
    813 		       S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
    814 		       S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
    815 		       S_00B028_DX10_CLAMP(1) |
    816 		       S_00B028_FLOAT_MODE(shader->config.float_mode));
    817 	si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
    818 		       S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
    819 		       S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
    820 		       S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
    821 }
    822 
    823 static void si_shader_init_pm4_state(struct si_screen *sscreen,
    824                                      struct si_shader *shader)
    825 {
    826 	switch (shader->selector->type) {
    827 	case PIPE_SHADER_VERTEX:
    828 		if (shader->key.as_ls)
    829 			si_shader_ls(shader);
    830 		else if (shader->key.as_es)
    831 			si_shader_es(sscreen, shader);
    832 		else
    833 			si_shader_vs(sscreen, shader, NULL);
    834 		break;
    835 	case PIPE_SHADER_TESS_CTRL:
    836 		si_shader_hs(shader);
    837 		break;
    838 	case PIPE_SHADER_TESS_EVAL:
    839 		if (shader->key.as_es)
    840 			si_shader_es(sscreen, shader);
    841 		else
    842 			si_shader_vs(sscreen, shader, NULL);
    843 		break;
    844 	case PIPE_SHADER_GEOMETRY:
    845 		si_shader_gs(shader);
    846 		break;
    847 	case PIPE_SHADER_FRAGMENT:
    848 		si_shader_ps(shader);
    849 		break;
    850 	default:
    851 		assert(0);
    852 	}
    853 }
    854 
    855 static unsigned si_get_alpha_test_func(struct si_context *sctx)
    856 {
    857 	/* Alpha-test should be disabled if colorbuffer 0 is integer. */
    858 	if (sctx->queued.named.dsa)
    859 		return sctx->queued.named.dsa->alpha_func;
    860 
    861 	return PIPE_FUNC_ALWAYS;
    862 }
    863 
    864 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
    865 					 struct si_shader_selector *vs,
    866 					 struct si_shader_key *key)
    867 {
    868 	struct si_shader_selector *ps = sctx->ps_shader.cso;
    869 
    870 	key->opt.hw_vs.clip_disable =
    871 		sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
    872 		(vs->info.clipdist_writemask ||
    873 		 vs->info.writes_clipvertex) &&
    874 		!vs->info.culldist_writemask;
    875 
    876 	/* Find out if PS is disabled. */
    877 	bool ps_disabled = true;
    878 	if (ps) {
    879 		bool ps_modifies_zs = ps->info.uses_kill ||
    880 				      ps->info.writes_z ||
    881 				      ps->info.writes_stencil ||
    882 				      ps->info.writes_samplemask ||
    883 				      si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
    884 
    885 		unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
    886 					sctx->queued.named.blend->cb_target_mask;
    887 		if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
    888 			ps_colormask &= ps->colors_written_4bit;
    889 
    890 		ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
    891 			      (!ps_colormask &&
    892 			       !ps_modifies_zs &&
    893 			       !ps->info.writes_memory);
    894 	}
    895 
    896 	/* Find out which VS outputs aren't used by the PS. */
    897 	uint64_t outputs_written = vs->outputs_written;
    898 	uint32_t outputs_written2 = vs->outputs_written2;
    899 	uint64_t inputs_read = 0;
    900 	uint32_t inputs_read2 = 0;
    901 
    902 	outputs_written &= ~0x3; /* ignore POSITION, PSIZE */
    903 
    904 	if (!ps_disabled) {
    905 		inputs_read = ps->inputs_read;
    906 		inputs_read2 = ps->inputs_read2;
    907 	}
    908 
    909 	uint64_t linked = outputs_written & inputs_read;
    910 	uint32_t linked2 = outputs_written2 & inputs_read2;
    911 
    912 	key->opt.hw_vs.kill_outputs = ~linked & outputs_written;
    913 	key->opt.hw_vs.kill_outputs2 = ~linked2 & outputs_written2;
    914 }
    915 
    916 /* Compute the key for the hw shader variant */
    917 static inline void si_shader_selector_key(struct pipe_context *ctx,
    918 					  struct si_shader_selector *sel,
    919 					  struct si_shader_key *key)
    920 {
    921 	struct si_context *sctx = (struct si_context *)ctx;
    922 	unsigned i;
    923 
    924 	memset(key, 0, sizeof(*key));
    925 
    926 	switch (sel->type) {
    927 	case PIPE_SHADER_VERTEX:
    928 		if (sctx->vertex_elements) {
    929 			unsigned count = MIN2(sel->info.num_inputs,
    930 					      sctx->vertex_elements->count);
    931 			for (i = 0; i < count; ++i)
    932 				key->part.vs.prolog.instance_divisors[i] =
    933 					sctx->vertex_elements->elements[i].instance_divisor;
    934 
    935 			key->mono.vs.fix_fetch =
    936 				sctx->vertex_elements->fix_fetch &
    937 				u_bit_consecutive64(0, 4 * count);
    938 		}
    939 		if (sctx->tes_shader.cso)
    940 			key->as_ls = 1;
    941 		else if (sctx->gs_shader.cso)
    942 			key->as_es = 1;
    943 		else {
    944 			si_shader_selector_key_hw_vs(sctx, sel, key);
    945 
    946 			if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
    947 				key->part.vs.epilog.export_prim_id = 1;
    948 		}
    949 		break;
    950 	case PIPE_SHADER_TESS_CTRL:
    951 		key->part.tcs.epilog.prim_mode =
    952 			sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
    953 
    954 		if (sel == sctx->fixed_func_tcs_shader.cso)
    955 			key->mono.tcs.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
    956 		break;
    957 	case PIPE_SHADER_TESS_EVAL:
    958 		if (sctx->gs_shader.cso)
    959 			key->as_es = 1;
    960 		else {
    961 			si_shader_selector_key_hw_vs(sctx, sel, key);
    962 
    963 			if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
    964 				key->part.tes.epilog.export_prim_id = 1;
    965 		}
    966 		break;
    967 	case PIPE_SHADER_GEOMETRY:
    968 		key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
    969 		break;
    970 	case PIPE_SHADER_FRAGMENT: {
    971 		struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
    972 		struct si_state_blend *blend = sctx->queued.named.blend;
    973 
    974 		if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
    975 		    sel->info.colors_written == 0x1)
    976 			key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
    977 
    978 		if (blend) {
    979 			/* Select the shader color format based on whether
    980 			 * blending or alpha are needed.
    981 			 */
    982 			key->part.ps.epilog.spi_shader_col_format =
    983 				(blend->blend_enable_4bit & blend->need_src_alpha_4bit &
    984 				 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
    985 				(blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
    986 				 sctx->framebuffer.spi_shader_col_format_blend) |
    987 				(~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
    988 				 sctx->framebuffer.spi_shader_col_format_alpha) |
    989 				(~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
    990 				 sctx->framebuffer.spi_shader_col_format);
    991 
    992 			/* The output for dual source blending should have
    993 			 * the same format as the first output.
    994 			 */
    995 			if (blend->dual_src_blend)
    996 				key->part.ps.epilog.spi_shader_col_format |=
    997 					(key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
    998 		} else
    999 			key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
   1000 
   1001 		/* If alpha-to-coverage is enabled, we have to export alpha
   1002 		 * even if there is no color buffer.
   1003 		 */
   1004 		if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
   1005 		    blend && blend->alpha_to_coverage)
   1006 			key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
   1007 
   1008 		/* On SI and CIK except Hawaii, the CB doesn't clamp outputs
   1009 		 * to the range supported by the type if a channel has less
   1010 		 * than 16 bits and the export format is 16_ABGR.
   1011 		 */
   1012 		if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
   1013 			key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
   1014 			key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
   1015 		}
   1016 
   1017 		/* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
   1018 		if (!key->part.ps.epilog.last_cbuf) {
   1019 			key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
   1020 			key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
   1021 			key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
   1022 		}
   1023 
   1024 		if (rs) {
   1025 			bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
   1026 					sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
   1027 				       sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
   1028 			bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
   1029 
   1030 			key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
   1031 			key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
   1032 
   1033 			if (sctx->queued.named.blend) {
   1034 				key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
   1035 							      rs->multisample_enable;
   1036 			}
   1037 
   1038 			key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
   1039 			key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
   1040 							      (is_line && rs->line_smooth)) &&
   1041 							     sctx->framebuffer.nr_samples <= 1;
   1042 			key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
   1043 
   1044 			if (rs->force_persample_interp &&
   1045 			    rs->multisample_enable &&
   1046 			    sctx->framebuffer.nr_samples > 1 &&
   1047 			    sctx->ps_iter_samples > 1) {
   1048 				key->part.ps.prolog.force_persp_sample_interp =
   1049 					sel->info.uses_persp_center ||
   1050 					sel->info.uses_persp_centroid;
   1051 
   1052 				key->part.ps.prolog.force_linear_sample_interp =
   1053 					sel->info.uses_linear_center ||
   1054 					sel->info.uses_linear_centroid;
   1055 			} else if (rs->multisample_enable &&
   1056 				   sctx->framebuffer.nr_samples > 1) {
   1057 				key->part.ps.prolog.bc_optimize_for_persp =
   1058 					sel->info.uses_persp_center &&
   1059 					sel->info.uses_persp_centroid;
   1060 				key->part.ps.prolog.bc_optimize_for_linear =
   1061 					sel->info.uses_linear_center &&
   1062 					sel->info.uses_linear_centroid;
   1063 			} else {
   1064 				/* Make sure SPI doesn't compute more than 1 pair
   1065 				 * of (i,j), which is the optimization here. */
   1066 				key->part.ps.prolog.force_persp_center_interp =
   1067 					sel->info.uses_persp_center +
   1068 					sel->info.uses_persp_centroid +
   1069 					sel->info.uses_persp_sample > 1;
   1070 
   1071 				key->part.ps.prolog.force_linear_center_interp =
   1072 					sel->info.uses_linear_center +
   1073 					sel->info.uses_linear_centroid +
   1074 					sel->info.uses_linear_sample > 1;
   1075 			}
   1076 		}
   1077 
   1078 		key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
   1079 		break;
   1080 	}
   1081 	default:
   1082 		assert(0);
   1083 	}
   1084 }
   1085 
   1086 static void si_build_shader_variant(void *job, int thread_index)
   1087 {
   1088 	struct si_shader *shader = (struct si_shader *)job;
   1089 	struct si_shader_selector *sel = shader->selector;
   1090 	struct si_screen *sscreen = sel->screen;
   1091 	LLVMTargetMachineRef tm;
   1092 	struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
   1093 	int r;
   1094 
   1095 	if (thread_index >= 0) {
   1096 		assert(thread_index < ARRAY_SIZE(sscreen->tm));
   1097 		tm = sscreen->tm[thread_index];
   1098 		if (!debug->async)
   1099 			debug = NULL;
   1100 	} else {
   1101 		tm = shader->compiler_ctx_state.tm;
   1102 	}
   1103 
   1104 	r = si_shader_create(sscreen, tm, shader, debug);
   1105 	if (unlikely(r)) {
   1106 		R600_ERR("Failed to build shader variant (type=%u) %d\n",
   1107 			 sel->type, r);
   1108 		shader->compilation_failed = true;
   1109 		return;
   1110 	}
   1111 
   1112 	if (shader->compiler_ctx_state.is_debug_context) {
   1113 		FILE *f = open_memstream(&shader->shader_log,
   1114 					 &shader->shader_log_size);
   1115 		if (f) {
   1116 			si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
   1117 			fclose(f);
   1118 		}
   1119 	}
   1120 
   1121 	si_shader_init_pm4_state(sscreen, shader);
   1122 }
   1123 
   1124 /* Select the hw shader variant depending on the current state. */
   1125 static int si_shader_select_with_key(struct si_screen *sscreen,
   1126 				     struct si_shader_ctx_state *state,
   1127 				     struct si_compiler_ctx_state *compiler_state,
   1128 				     struct si_shader_key *key,
   1129 				     int thread_index)
   1130 {
   1131 	static const struct si_shader_key zeroed;
   1132 	struct si_shader_selector *sel = state->cso;
   1133 	struct si_shader *current = state->current;
   1134 	struct si_shader *iter, *shader = NULL;
   1135 
   1136 	if (unlikely(sscreen->b.debug_flags & DBG_NO_OPT_VARIANT)) {
   1137 		memset(&key->opt, 0, sizeof(key->opt));
   1138 	}
   1139 
   1140 again:
   1141 	/* Check if we don't need to change anything.
   1142 	 * This path is also used for most shaders that don't need multiple
   1143 	 * variants, it will cost just a computation of the key and this
   1144 	 * test. */
   1145 	if (likely(current &&
   1146 		   memcmp(&current->key, key, sizeof(*key)) == 0 &&
   1147 		   (!current->is_optimized ||
   1148 		    util_queue_fence_is_signalled(&current->optimized_ready))))
   1149 		return current->compilation_failed ? -1 : 0;
   1150 
   1151 	/* This must be done before the mutex is locked, because async GS
   1152 	 * compilation calls this function too, and therefore must enter
   1153 	 * the mutex first.
   1154 	 *
   1155 	 * Only wait if we are in a draw call. Don't wait if we are
   1156 	 * in a compiler thread.
   1157 	 */
   1158 	if (thread_index < 0)
   1159 		util_queue_job_wait(&sel->ready);
   1160 
   1161 	pipe_mutex_lock(sel->mutex);
   1162 
   1163 	/* Find the shader variant. */
   1164 	for (iter = sel->first_variant; iter; iter = iter->next_variant) {
   1165 		/* Don't check the "current" shader. We checked it above. */
   1166 		if (current != iter &&
   1167 		    memcmp(&iter->key, key, sizeof(*key)) == 0) {
   1168 			/* If it's an optimized shader and its compilation has
   1169 			 * been started but isn't done, use the unoptimized
   1170 			 * shader so as not to cause a stall due to compilation.
   1171 			 */
   1172 			if (iter->is_optimized &&
   1173 			    !util_queue_fence_is_signalled(&iter->optimized_ready)) {
   1174 				memset(&key->opt, 0, sizeof(key->opt));
   1175 				pipe_mutex_unlock(sel->mutex);
   1176 				goto again;
   1177 			}
   1178 
   1179 			if (iter->compilation_failed) {
   1180 				pipe_mutex_unlock(sel->mutex);
   1181 				return -1; /* skip the draw call */
   1182 			}
   1183 
   1184 			state->current = iter;
   1185 			pipe_mutex_unlock(sel->mutex);
   1186 			return 0;
   1187 		}
   1188 	}
   1189 
   1190 	/* Build a new shader. */
   1191 	shader = CALLOC_STRUCT(si_shader);
   1192 	if (!shader) {
   1193 		pipe_mutex_unlock(sel->mutex);
   1194 		return -ENOMEM;
   1195 	}
   1196 	shader->selector = sel;
   1197 	shader->key = *key;
   1198 	shader->compiler_ctx_state = *compiler_state;
   1199 
   1200 	/* Monolithic-only shaders don't make a distinction between optimized
   1201 	 * and unoptimized. */
   1202 	shader->is_monolithic =
   1203 		!sel->main_shader_part ||
   1204 		sel->main_shader_part->key.as_ls != key->as_ls ||
   1205 		sel->main_shader_part->key.as_es != key->as_es ||
   1206 		memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0 ||
   1207 		memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
   1208 
   1209 	shader->is_optimized =
   1210 		!sscreen->use_monolithic_shaders &&
   1211 		memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
   1212 	if (shader->is_optimized)
   1213 		util_queue_fence_init(&shader->optimized_ready);
   1214 
   1215 	if (!sel->last_variant) {
   1216 		sel->first_variant = shader;
   1217 		sel->last_variant = shader;
   1218 	} else {
   1219 		sel->last_variant->next_variant = shader;
   1220 		sel->last_variant = shader;
   1221 	}
   1222 
   1223 	/* If it's an optimized shader, compile it asynchronously. */
   1224 	if (shader->is_optimized &&
   1225 	    thread_index < 0) {
   1226 		/* Compile it asynchronously. */
   1227 		util_queue_add_job(&sscreen->shader_compiler_queue,
   1228 				   shader, &shader->optimized_ready,
   1229 				   si_build_shader_variant, NULL);
   1230 
   1231 		/* Use the default (unoptimized) shader for now. */
   1232 		memset(&key->opt, 0, sizeof(key->opt));
   1233 		pipe_mutex_unlock(sel->mutex);
   1234 		goto again;
   1235 	}
   1236 
   1237 	assert(!shader->is_optimized);
   1238 	si_build_shader_variant(shader, thread_index);
   1239 
   1240 	if (!shader->compilation_failed)
   1241 		state->current = shader;
   1242 
   1243 	pipe_mutex_unlock(sel->mutex);
   1244 	return shader->compilation_failed ? -1 : 0;
   1245 }
   1246 
   1247 static int si_shader_select(struct pipe_context *ctx,
   1248 			    struct si_shader_ctx_state *state,
   1249 			    struct si_compiler_ctx_state *compiler_state)
   1250 {
   1251 	struct si_context *sctx = (struct si_context *)ctx;
   1252 	struct si_shader_key key;
   1253 
   1254 	si_shader_selector_key(ctx, state->cso, &key);
   1255 	return si_shader_select_with_key(sctx->screen, state, compiler_state,
   1256 					 &key, -1);
   1257 }
   1258 
   1259 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
   1260 					  struct si_shader_key *key)
   1261 {
   1262 	unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
   1263 
   1264 	switch (info->processor) {
   1265 	case PIPE_SHADER_VERTEX:
   1266 		switch (next_shader) {
   1267 		case PIPE_SHADER_GEOMETRY:
   1268 			key->as_es = 1;
   1269 			break;
   1270 		case PIPE_SHADER_TESS_CTRL:
   1271 		case PIPE_SHADER_TESS_EVAL:
   1272 			key->as_ls = 1;
   1273 			break;
   1274 		default:
   1275 			/* If POSITION isn't written, it can't be a HW VS.
   1276 			 * Assume that it's a HW LS. (the next shader is TCS)
   1277 			 * This heuristic is needed for separate shader objects.
   1278 			 */
   1279 			if (!info->writes_position)
   1280 				key->as_ls = 1;
   1281 		}
   1282 		break;
   1283 
   1284 	case PIPE_SHADER_TESS_EVAL:
   1285 		if (next_shader == PIPE_SHADER_GEOMETRY ||
   1286 		    !info->writes_position)
   1287 			key->as_es = 1;
   1288 		break;
   1289 	}
   1290 }
   1291 
   1292 /**
   1293  * Compile the main shader part or the monolithic shader as part of
   1294  * si_shader_selector initialization. Since it can be done asynchronously,
   1295  * there is no way to report compile failures to applications.
   1296  */
   1297 void si_init_shader_selector_async(void *job, int thread_index)
   1298 {
   1299 	struct si_shader_selector *sel = (struct si_shader_selector *)job;
   1300 	struct si_screen *sscreen = sel->screen;
   1301 	LLVMTargetMachineRef tm;
   1302 	struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
   1303 	unsigned i;
   1304 
   1305 	if (thread_index >= 0) {
   1306 		assert(thread_index < ARRAY_SIZE(sscreen->tm));
   1307 		tm = sscreen->tm[thread_index];
   1308 		if (!debug->async)
   1309 			debug = NULL;
   1310 	} else {
   1311 		tm = sel->compiler_ctx_state.tm;
   1312 	}
   1313 
   1314 	/* Compile the main shader part for use with a prolog and/or epilog.
   1315 	 * If this fails, the driver will try to compile a monolithic shader
   1316 	 * on demand.
   1317 	 */
   1318 	if (!sscreen->use_monolithic_shaders) {
   1319 		struct si_shader *shader = CALLOC_STRUCT(si_shader);
   1320 		void *tgsi_binary;
   1321 
   1322 		if (!shader) {
   1323 			fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
   1324 			return;
   1325 		}
   1326 
   1327 		shader->selector = sel;
   1328 		si_parse_next_shader_property(&sel->info, &shader->key);
   1329 
   1330 		tgsi_binary = si_get_tgsi_binary(sel);
   1331 
   1332 		/* Try to load the shader from the shader cache. */
   1333 		pipe_mutex_lock(sscreen->shader_cache_mutex);
   1334 
   1335 		if (tgsi_binary &&
   1336 		    si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
   1337 			FREE(tgsi_binary);
   1338 			pipe_mutex_unlock(sscreen->shader_cache_mutex);
   1339 		} else {
   1340 			pipe_mutex_unlock(sscreen->shader_cache_mutex);
   1341 
   1342 			/* Compile the shader if it hasn't been loaded from the cache. */
   1343 			if (si_compile_tgsi_shader(sscreen, tm, shader, false,
   1344 						   debug) != 0) {
   1345 				FREE(shader);
   1346 				FREE(tgsi_binary);
   1347 				fprintf(stderr, "radeonsi: can't compile a main shader part\n");
   1348 				return;
   1349 			}
   1350 
   1351 			if (tgsi_binary) {
   1352 				pipe_mutex_lock(sscreen->shader_cache_mutex);
   1353 				if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
   1354 					FREE(tgsi_binary);
   1355 				pipe_mutex_unlock(sscreen->shader_cache_mutex);
   1356 			}
   1357 		}
   1358 
   1359 		sel->main_shader_part = shader;
   1360 
   1361 		/* Unset "outputs_written" flags for outputs converted to
   1362 		 * DEFAULT_VAL, so that later inter-shader optimizations don't
   1363 		 * try to eliminate outputs that don't exist in the final
   1364 		 * shader.
   1365 		 *
   1366 		 * This is only done if non-monolithic shaders are enabled.
   1367 		 */
   1368 		if ((sel->type == PIPE_SHADER_VERTEX ||
   1369 		     sel->type == PIPE_SHADER_TESS_EVAL) &&
   1370 		    !shader->key.as_ls &&
   1371 		    !shader->key.as_es) {
   1372 			unsigned i;
   1373 
   1374 			for (i = 0; i < sel->info.num_outputs; i++) {
   1375 				unsigned offset = shader->info.vs_output_param_offset[i];
   1376 
   1377 				if (offset <= EXP_PARAM_OFFSET_31)
   1378 					continue;
   1379 
   1380 				unsigned name = sel->info.output_semantic_name[i];
   1381 				unsigned index = sel->info.output_semantic_index[i];
   1382 				unsigned id;
   1383 
   1384 				switch (name) {
   1385 				case TGSI_SEMANTIC_GENERIC:
   1386 					/* don't process indices the function can't handle */
   1387 					if (index >= 60)
   1388 						break;
   1389 					/* fall through */
   1390 				case TGSI_SEMANTIC_CLIPDIST:
   1391 					id = si_shader_io_get_unique_index(name, index);
   1392 					sel->outputs_written &= ~(1ull << id);
   1393 					break;
   1394 				case TGSI_SEMANTIC_POSITION: /* ignore these */
   1395 				case TGSI_SEMANTIC_PSIZE:
   1396 				case TGSI_SEMANTIC_CLIPVERTEX:
   1397 				case TGSI_SEMANTIC_EDGEFLAG:
   1398 					break;
   1399 				default:
   1400 					id = si_shader_io_get_unique_index2(name, index);
   1401 					sel->outputs_written2 &= ~(1u << id);
   1402 				}
   1403 			}
   1404 		}
   1405 	}
   1406 
   1407 	/* Pre-compilation. */
   1408 	if (sscreen->b.debug_flags & DBG_PRECOMPILE) {
   1409 		struct si_shader_ctx_state state = {sel};
   1410 		struct si_shader_key key;
   1411 
   1412 		memset(&key, 0, sizeof(key));
   1413 		si_parse_next_shader_property(&sel->info, &key);
   1414 
   1415 		/* Set reasonable defaults, so that the shader key doesn't
   1416 		 * cause any code to be eliminated.
   1417 		 */
   1418 		switch (sel->type) {
   1419 		case PIPE_SHADER_TESS_CTRL:
   1420 			key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
   1421 			break;
   1422 		case PIPE_SHADER_FRAGMENT:
   1423 			key.part.ps.prolog.bc_optimize_for_persp =
   1424 				sel->info.uses_persp_center &&
   1425 				sel->info.uses_persp_centroid;
   1426 			key.part.ps.prolog.bc_optimize_for_linear =
   1427 				sel->info.uses_linear_center &&
   1428 				sel->info.uses_linear_centroid;
   1429 			key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
   1430 			for (i = 0; i < 8; i++)
   1431 				if (sel->info.colors_written & (1 << i))
   1432 					key.part.ps.epilog.spi_shader_col_format |=
   1433 						V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
   1434 			break;
   1435 		}
   1436 
   1437 		if (si_shader_select_with_key(sscreen, &state,
   1438 					      &sel->compiler_ctx_state, &key,
   1439 					      thread_index))
   1440 			fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
   1441 	}
   1442 
   1443 	/* The GS copy shader is always pre-compiled. */
   1444 	if (sel->type == PIPE_SHADER_GEOMETRY) {
   1445 		sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
   1446 		if (!sel->gs_copy_shader) {
   1447 			fprintf(stderr, "radeonsi: can't create GS copy shader\n");
   1448 			return;
   1449 		}
   1450 
   1451 		si_shader_vs(sscreen, sel->gs_copy_shader, sel);
   1452 	}
   1453 }
   1454 
   1455 static void *si_create_shader_selector(struct pipe_context *ctx,
   1456 				       const struct pipe_shader_state *state)
   1457 {
   1458 	struct si_screen *sscreen = (struct si_screen *)ctx->screen;
   1459 	struct si_context *sctx = (struct si_context*)ctx;
   1460 	struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
   1461 	int i;
   1462 
   1463 	if (!sel)
   1464 		return NULL;
   1465 
   1466 	sel->screen = sscreen;
   1467 	sel->compiler_ctx_state.tm = sctx->tm;
   1468 	sel->compiler_ctx_state.debug = sctx->b.debug;
   1469 	sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
   1470 	sel->tokens = tgsi_dup_tokens(state->tokens);
   1471 	if (!sel->tokens) {
   1472 		FREE(sel);
   1473 		return NULL;
   1474 	}
   1475 
   1476 	sel->so = state->stream_output;
   1477 	tgsi_scan_shader(state->tokens, &sel->info);
   1478 	sel->type = sel->info.processor;
   1479 	p_atomic_inc(&sscreen->b.num_shaders_created);
   1480 
   1481 	/* Set which opcode uses which (i,j) pair. */
   1482 	if (sel->info.uses_persp_opcode_interp_centroid)
   1483 		sel->info.uses_persp_centroid = true;
   1484 
   1485 	if (sel->info.uses_linear_opcode_interp_centroid)
   1486 		sel->info.uses_linear_centroid = true;
   1487 
   1488 	if (sel->info.uses_persp_opcode_interp_offset ||
   1489 	    sel->info.uses_persp_opcode_interp_sample)
   1490 		sel->info.uses_persp_center = true;
   1491 
   1492 	if (sel->info.uses_linear_opcode_interp_offset ||
   1493 	    sel->info.uses_linear_opcode_interp_sample)
   1494 		sel->info.uses_linear_center = true;
   1495 
   1496 	switch (sel->type) {
   1497 	case PIPE_SHADER_GEOMETRY:
   1498 		sel->gs_output_prim =
   1499 			sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
   1500 		sel->gs_max_out_vertices =
   1501 			sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
   1502 		sel->gs_num_invocations =
   1503 			sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
   1504 		sel->gsvs_vertex_size = sel->info.num_outputs * 16;
   1505 		sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
   1506 					  sel->gs_max_out_vertices;
   1507 
   1508 		sel->max_gs_stream = 0;
   1509 		for (i = 0; i < sel->so.num_outputs; i++)
   1510 			sel->max_gs_stream = MAX2(sel->max_gs_stream,
   1511 						  sel->so.output[i].stream);
   1512 
   1513 		sel->gs_input_verts_per_prim =
   1514 			u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
   1515 		break;
   1516 
   1517 	case PIPE_SHADER_TESS_CTRL:
   1518 		/* Always reserve space for these. */
   1519 		sel->patch_outputs_written |=
   1520 			(1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
   1521 			(1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
   1522 		/* fall through */
   1523 	case PIPE_SHADER_VERTEX:
   1524 	case PIPE_SHADER_TESS_EVAL:
   1525 		for (i = 0; i < sel->info.num_outputs; i++) {
   1526 			unsigned name = sel->info.output_semantic_name[i];
   1527 			unsigned index = sel->info.output_semantic_index[i];
   1528 
   1529 			switch (name) {
   1530 			case TGSI_SEMANTIC_TESSINNER:
   1531 			case TGSI_SEMANTIC_TESSOUTER:
   1532 			case TGSI_SEMANTIC_PATCH:
   1533 				sel->patch_outputs_written |=
   1534 					1llu << si_shader_io_get_unique_index(name, index);
   1535 				break;
   1536 
   1537 			case TGSI_SEMANTIC_GENERIC:
   1538 				/* don't process indices the function can't handle */
   1539 				if (index >= 60)
   1540 					break;
   1541 				/* fall through */
   1542 			case TGSI_SEMANTIC_POSITION:
   1543 			case TGSI_SEMANTIC_PSIZE:
   1544 			case TGSI_SEMANTIC_CLIPDIST:
   1545 				sel->outputs_written |=
   1546 					1llu << si_shader_io_get_unique_index(name, index);
   1547 				break;
   1548 			case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
   1549 			case TGSI_SEMANTIC_EDGEFLAG:
   1550 				break;
   1551 			default:
   1552 				sel->outputs_written2 |=
   1553 					1u << si_shader_io_get_unique_index2(name, index);
   1554 			}
   1555 		}
   1556 		sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
   1557 		break;
   1558 
   1559 	case PIPE_SHADER_FRAGMENT:
   1560 		for (i = 0; i < sel->info.num_inputs; i++) {
   1561 			unsigned name = sel->info.input_semantic_name[i];
   1562 			unsigned index = sel->info.input_semantic_index[i];
   1563 
   1564 			switch (name) {
   1565 			case TGSI_SEMANTIC_CLIPDIST:
   1566 			case TGSI_SEMANTIC_GENERIC:
   1567 				sel->inputs_read |=
   1568 					1llu << si_shader_io_get_unique_index(name, index);
   1569 				break;
   1570 			case TGSI_SEMANTIC_PCOORD: /* ignore this */
   1571 				break;
   1572 			default:
   1573 				sel->inputs_read2 |=
   1574 					1u << si_shader_io_get_unique_index2(name, index);
   1575 			}
   1576 		}
   1577 
   1578 		for (i = 0; i < 8; i++)
   1579 			if (sel->info.colors_written & (1 << i))
   1580 				sel->colors_written_4bit |= 0xf << (4 * i);
   1581 
   1582 		for (i = 0; i < sel->info.num_inputs; i++) {
   1583 			if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
   1584 				int index = sel->info.input_semantic_index[i];
   1585 				sel->color_attr_index[index] = i;
   1586 			}
   1587 		}
   1588 		break;
   1589 	}
   1590 
   1591 	/* DB_SHADER_CONTROL */
   1592 	sel->db_shader_control =
   1593 		S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
   1594 		S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
   1595 		S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
   1596 		S_02880C_KILL_ENABLE(sel->info.uses_kill);
   1597 
   1598 	switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
   1599 	case TGSI_FS_DEPTH_LAYOUT_GREATER:
   1600 		sel->db_shader_control |=
   1601 			S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
   1602 		break;
   1603 	case TGSI_FS_DEPTH_LAYOUT_LESS:
   1604 		sel->db_shader_control |=
   1605 			S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
   1606 		break;
   1607 	}
   1608 
   1609 	/* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
   1610 	 *
   1611 	 *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
   1612 	 * --|-----------|------------|------------|--------------------|-------------------|-------------
   1613 	 * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
   1614 	 * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
   1615 	 * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
   1616 	 * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
   1617 	 * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
   1618 	 *
   1619 	 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
   1620 	 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
   1621 	 *
   1622 	 * Don't use ReZ without profiling !!!
   1623 	 *
   1624 	 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
   1625 	 * shaders.
   1626 	 */
   1627 	if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
   1628 		/* Cases 3, 4. */
   1629 		sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
   1630 					  S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
   1631 					  S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
   1632 	} else if (sel->info.writes_memory) {
   1633 		/* Case 2. */
   1634 		sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
   1635 					  S_02880C_EXEC_ON_HIER_FAIL(1);
   1636 	} else {
   1637 		/* Case 1. */
   1638 		sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
   1639 	}
   1640 
   1641 	pipe_mutex_init(sel->mutex);
   1642 	util_queue_fence_init(&sel->ready);
   1643 
   1644 	if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
   1645 	    sctx->is_debug ||
   1646 	    r600_can_dump_shader(&sscreen->b, sel->info.processor) ||
   1647 	    !util_queue_is_initialized(&sscreen->shader_compiler_queue))
   1648 		si_init_shader_selector_async(sel, -1);
   1649 	else
   1650 		util_queue_add_job(&sscreen->shader_compiler_queue, sel,
   1651                                    &sel->ready, si_init_shader_selector_async,
   1652                                    NULL);
   1653 
   1654 	return sel;
   1655 }
   1656 
   1657 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
   1658 {
   1659 	struct si_context *sctx = (struct si_context *)ctx;
   1660 	struct si_shader_selector *sel = state;
   1661 
   1662 	if (sctx->vs_shader.cso == sel)
   1663 		return;
   1664 
   1665 	sctx->vs_shader.cso = sel;
   1666 	sctx->vs_shader.current = sel ? sel->first_variant : NULL;
   1667 	sctx->do_update_shaders = true;
   1668 	si_mark_atom_dirty(sctx, &sctx->clip_regs);
   1669 	r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
   1670 }
   1671 
   1672 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
   1673 {
   1674 	struct si_context *sctx = (struct si_context *)ctx;
   1675 	struct si_shader_selector *sel = state;
   1676 	bool enable_changed = !!sctx->gs_shader.cso != !!sel;
   1677 
   1678 	if (sctx->gs_shader.cso == sel)
   1679 		return;
   1680 
   1681 	sctx->gs_shader.cso = sel;
   1682 	sctx->gs_shader.current = sel ? sel->first_variant : NULL;
   1683 	sctx->do_update_shaders = true;
   1684 	si_mark_atom_dirty(sctx, &sctx->clip_regs);
   1685 	sctx->last_rast_prim = -1; /* reset this so that it gets updated */
   1686 
   1687 	if (enable_changed)
   1688 		si_shader_change_notify(sctx);
   1689 	r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
   1690 }
   1691 
   1692 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
   1693 {
   1694 	struct si_context *sctx = (struct si_context *)ctx;
   1695 	struct si_shader_selector *sel = state;
   1696 	bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
   1697 
   1698 	if (sctx->tcs_shader.cso == sel)
   1699 		return;
   1700 
   1701 	sctx->tcs_shader.cso = sel;
   1702 	sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
   1703 	sctx->do_update_shaders = true;
   1704 
   1705 	if (enable_changed)
   1706 		sctx->last_tcs = NULL; /* invalidate derived tess state */
   1707 }
   1708 
   1709 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
   1710 {
   1711 	struct si_context *sctx = (struct si_context *)ctx;
   1712 	struct si_shader_selector *sel = state;
   1713 	bool enable_changed = !!sctx->tes_shader.cso != !!sel;
   1714 
   1715 	if (sctx->tes_shader.cso == sel)
   1716 		return;
   1717 
   1718 	sctx->tes_shader.cso = sel;
   1719 	sctx->tes_shader.current = sel ? sel->first_variant : NULL;
   1720 	sctx->do_update_shaders = true;
   1721 	si_mark_atom_dirty(sctx, &sctx->clip_regs);
   1722 	sctx->last_rast_prim = -1; /* reset this so that it gets updated */
   1723 
   1724 	if (enable_changed) {
   1725 		si_shader_change_notify(sctx);
   1726 		sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
   1727 	}
   1728 	r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
   1729 }
   1730 
   1731 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
   1732 {
   1733 	struct si_context *sctx = (struct si_context *)ctx;
   1734 	struct si_shader_selector *sel = state;
   1735 
   1736 	/* skip if supplied shader is one already in use */
   1737 	if (sctx->ps_shader.cso == sel)
   1738 		return;
   1739 
   1740 	sctx->ps_shader.cso = sel;
   1741 	sctx->ps_shader.current = sel ? sel->first_variant : NULL;
   1742 	sctx->do_update_shaders = true;
   1743 	si_mark_atom_dirty(sctx, &sctx->cb_render_state);
   1744 }
   1745 
   1746 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
   1747 {
   1748 	if (shader->is_optimized) {
   1749 		util_queue_job_wait(&shader->optimized_ready);
   1750 		util_queue_fence_destroy(&shader->optimized_ready);
   1751 	}
   1752 
   1753 	if (shader->pm4) {
   1754 		switch (shader->selector->type) {
   1755 		case PIPE_SHADER_VERTEX:
   1756 			if (shader->key.as_ls)
   1757 				si_pm4_delete_state(sctx, ls, shader->pm4);
   1758 			else if (shader->key.as_es)
   1759 				si_pm4_delete_state(sctx, es, shader->pm4);
   1760 			else
   1761 				si_pm4_delete_state(sctx, vs, shader->pm4);
   1762 			break;
   1763 		case PIPE_SHADER_TESS_CTRL:
   1764 			si_pm4_delete_state(sctx, hs, shader->pm4);
   1765 			break;
   1766 		case PIPE_SHADER_TESS_EVAL:
   1767 			if (shader->key.as_es)
   1768 				si_pm4_delete_state(sctx, es, shader->pm4);
   1769 			else
   1770 				si_pm4_delete_state(sctx, vs, shader->pm4);
   1771 			break;
   1772 		case PIPE_SHADER_GEOMETRY:
   1773 			if (shader->is_gs_copy_shader)
   1774 				si_pm4_delete_state(sctx, vs, shader->pm4);
   1775 			else
   1776 				si_pm4_delete_state(sctx, gs, shader->pm4);
   1777 			break;
   1778 		case PIPE_SHADER_FRAGMENT:
   1779 			si_pm4_delete_state(sctx, ps, shader->pm4);
   1780 			break;
   1781 		}
   1782 	}
   1783 
   1784 	si_shader_destroy(shader);
   1785 	free(shader);
   1786 }
   1787 
   1788 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
   1789 {
   1790 	struct si_context *sctx = (struct si_context *)ctx;
   1791 	struct si_shader_selector *sel = (struct si_shader_selector *)state;
   1792 	struct si_shader *p = sel->first_variant, *c;
   1793 	struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
   1794 		[PIPE_SHADER_VERTEX] = &sctx->vs_shader,
   1795 		[PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
   1796 		[PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
   1797 		[PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
   1798 		[PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
   1799 	};
   1800 
   1801 	util_queue_job_wait(&sel->ready);
   1802 
   1803 	if (current_shader[sel->type]->cso == sel) {
   1804 		current_shader[sel->type]->cso = NULL;
   1805 		current_shader[sel->type]->current = NULL;
   1806 	}
   1807 
   1808 	while (p) {
   1809 		c = p->next_variant;
   1810 		si_delete_shader(sctx, p);
   1811 		p = c;
   1812 	}
   1813 
   1814 	if (sel->main_shader_part)
   1815 		si_delete_shader(sctx, sel->main_shader_part);
   1816 	if (sel->gs_copy_shader)
   1817 		si_delete_shader(sctx, sel->gs_copy_shader);
   1818 
   1819 	util_queue_fence_destroy(&sel->ready);
   1820 	pipe_mutex_destroy(sel->mutex);
   1821 	free(sel->tokens);
   1822 	free(sel);
   1823 }
   1824 
   1825 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
   1826 				     struct si_shader *vs, unsigned name,
   1827 				     unsigned index, unsigned interpolate)
   1828 {
   1829 	struct tgsi_shader_info *vsinfo = &vs->selector->info;
   1830 	unsigned j, offset, ps_input_cntl = 0;
   1831 
   1832 	if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
   1833 	    (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
   1834 		ps_input_cntl |= S_028644_FLAT_SHADE(1);
   1835 
   1836 	if (name == TGSI_SEMANTIC_PCOORD ||
   1837 	    (name == TGSI_SEMANTIC_TEXCOORD &&
   1838 	     sctx->sprite_coord_enable & (1 << index))) {
   1839 		ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
   1840 	}
   1841 
   1842 	for (j = 0; j < vsinfo->num_outputs; j++) {
   1843 		if (name == vsinfo->output_semantic_name[j] &&
   1844 		    index == vsinfo->output_semantic_index[j]) {
   1845 			offset = vs->info.vs_output_param_offset[j];
   1846 
   1847 			if (offset <= EXP_PARAM_OFFSET_31) {
   1848 				/* The input is loaded from parameter memory. */
   1849 				ps_input_cntl |= S_028644_OFFSET(offset);
   1850 			} else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
   1851 				if (offset == EXP_PARAM_UNDEFINED) {
   1852 					/* This can happen with depth-only rendering. */
   1853 					offset = 0;
   1854 				} else {
   1855 					/* The input is a DEFAULT_VAL constant. */
   1856 					assert(offset >= EXP_PARAM_DEFAULT_VAL_0000 &&
   1857 					       offset <= EXP_PARAM_DEFAULT_VAL_1111);
   1858 					offset -= EXP_PARAM_DEFAULT_VAL_0000;
   1859 				}
   1860 
   1861 				ps_input_cntl = S_028644_OFFSET(0x20) |
   1862 						S_028644_DEFAULT_VAL(offset);
   1863 			}
   1864 			break;
   1865 		}
   1866 	}
   1867 
   1868 	if (name == TGSI_SEMANTIC_PRIMID)
   1869 		/* PrimID is written after the last output. */
   1870 		ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
   1871 	else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
   1872 		/* No corresponding output found, load defaults into input.
   1873 		 * Don't set any other bits.
   1874 		 * (FLAT_SHADE=1 completely changes behavior) */
   1875 		ps_input_cntl = S_028644_OFFSET(0x20);
   1876 		/* D3D 9 behaviour. GL is undefined */
   1877 		if (name == TGSI_SEMANTIC_COLOR && index == 0)
   1878 			ps_input_cntl |= S_028644_DEFAULT_VAL(3);
   1879 	}
   1880 	return ps_input_cntl;
   1881 }
   1882 
   1883 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
   1884 {
   1885 	struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
   1886 	struct si_shader *ps = sctx->ps_shader.current;
   1887 	struct si_shader *vs = si_get_vs_state(sctx);
   1888 	struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
   1889 	unsigned i, num_interp, num_written = 0, bcol_interp[2];
   1890 
   1891 	if (!ps || !ps->selector->info.num_inputs)
   1892 		return;
   1893 
   1894 	num_interp = si_get_ps_num_interp(ps);
   1895 	assert(num_interp > 0);
   1896 	radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
   1897 
   1898 	for (i = 0; i < psinfo->num_inputs; i++) {
   1899 		unsigned name = psinfo->input_semantic_name[i];
   1900 		unsigned index = psinfo->input_semantic_index[i];
   1901 		unsigned interpolate = psinfo->input_interpolate[i];
   1902 
   1903 		radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
   1904 						     interpolate));
   1905 		num_written++;
   1906 
   1907 		if (name == TGSI_SEMANTIC_COLOR) {
   1908 			assert(index < ARRAY_SIZE(bcol_interp));
   1909 			bcol_interp[index] = interpolate;
   1910 		}
   1911 	}
   1912 
   1913 	if (ps->key.part.ps.prolog.color_two_side) {
   1914 		unsigned bcol = TGSI_SEMANTIC_BCOLOR;
   1915 
   1916 		for (i = 0; i < 2; i++) {
   1917 			if (!(psinfo->colors_read & (0xf << (i * 4))))
   1918 				continue;
   1919 
   1920 			radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
   1921 							     i, bcol_interp[i]));
   1922 			num_written++;
   1923 		}
   1924 	}
   1925 	assert(num_interp == num_written);
   1926 }
   1927 
   1928 /**
   1929  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
   1930  */
   1931 static void si_init_config_add_vgt_flush(struct si_context *sctx)
   1932 {
   1933 	if (sctx->init_config_has_vgt_flush)
   1934 		return;
   1935 
   1936 	/* Done by Vulkan before VGT_FLUSH. */
   1937 	si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
   1938 	si_pm4_cmd_add(sctx->init_config,
   1939 		       EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
   1940 	si_pm4_cmd_end(sctx->init_config, false);
   1941 
   1942 	/* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
   1943 	si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
   1944 	si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
   1945 	si_pm4_cmd_end(sctx->init_config, false);
   1946 	sctx->init_config_has_vgt_flush = true;
   1947 }
   1948 
   1949 /* Initialize state related to ESGS / GSVS ring buffers */
   1950 static bool si_update_gs_ring_buffers(struct si_context *sctx)
   1951 {
   1952 	struct si_shader_selector *es =
   1953 		sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
   1954 	struct si_shader_selector *gs = sctx->gs_shader.cso;
   1955 	struct si_pm4_state *pm4;
   1956 
   1957 	/* Chip constants. */
   1958 	unsigned num_se = sctx->screen->b.info.max_se;
   1959 	unsigned wave_size = 64;
   1960 	unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
   1961 	unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
   1962 	unsigned alignment = 256 * num_se;
   1963 	/* The maximum size is 63.999 MB per SE. */
   1964 	unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
   1965 
   1966 	/* Calculate the minimum size. */
   1967 	unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
   1968 					    wave_size, alignment);
   1969 
   1970 	/* These are recommended sizes, not minimum sizes. */
   1971 	unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
   1972 				  es->esgs_itemsize * gs->gs_input_verts_per_prim;
   1973 	unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
   1974 				  gs->max_gsvs_emit_size;
   1975 
   1976 	min_esgs_ring_size = align(min_esgs_ring_size, alignment);
   1977 	esgs_ring_size = align(esgs_ring_size, alignment);
   1978 	gsvs_ring_size = align(gsvs_ring_size, alignment);
   1979 
   1980 	esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
   1981 	gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
   1982 
   1983 	/* Some rings don't have to be allocated if shaders don't use them.
   1984 	 * (e.g. no varyings between ES and GS or GS and VS)
   1985 	 */
   1986 	bool update_esgs = esgs_ring_size &&
   1987 			   (!sctx->esgs_ring ||
   1988 			    sctx->esgs_ring->width0 < esgs_ring_size);
   1989 	bool update_gsvs = gsvs_ring_size &&
   1990 			   (!sctx->gsvs_ring ||
   1991 			    sctx->gsvs_ring->width0 < gsvs_ring_size);
   1992 
   1993 	if (!update_esgs && !update_gsvs)
   1994 		return true;
   1995 
   1996 	if (update_esgs) {
   1997 		pipe_resource_reference(&sctx->esgs_ring, NULL);
   1998 		sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
   1999 						     PIPE_USAGE_DEFAULT,
   2000 						     esgs_ring_size);
   2001 		if (!sctx->esgs_ring)
   2002 			return false;
   2003 	}
   2004 
   2005 	if (update_gsvs) {
   2006 		pipe_resource_reference(&sctx->gsvs_ring, NULL);
   2007 		sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
   2008 						     PIPE_USAGE_DEFAULT,
   2009 						     gsvs_ring_size);
   2010 		if (!sctx->gsvs_ring)
   2011 			return false;
   2012 	}
   2013 
   2014 	/* Create the "init_config_gs_rings" state. */
   2015 	pm4 = CALLOC_STRUCT(si_pm4_state);
   2016 	if (!pm4)
   2017 		return false;
   2018 
   2019 	if (sctx->b.chip_class >= CIK) {
   2020 		if (sctx->esgs_ring)
   2021 			si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
   2022 				       sctx->esgs_ring->width0 / 256);
   2023 		if (sctx->gsvs_ring)
   2024 			si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
   2025 				       sctx->gsvs_ring->width0 / 256);
   2026 	} else {
   2027 		if (sctx->esgs_ring)
   2028 			si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
   2029 				       sctx->esgs_ring->width0 / 256);
   2030 		if (sctx->gsvs_ring)
   2031 			si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
   2032 				       sctx->gsvs_ring->width0 / 256);
   2033 	}
   2034 
   2035 	/* Set the state. */
   2036 	if (sctx->init_config_gs_rings)
   2037 		si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
   2038 	sctx->init_config_gs_rings = pm4;
   2039 
   2040 	if (!sctx->init_config_has_vgt_flush) {
   2041 		si_init_config_add_vgt_flush(sctx);
   2042 		si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
   2043 	}
   2044 
   2045 	/* Flush the context to re-emit both init_config states. */
   2046 	sctx->b.initial_gfx_cs_size = 0; /* force flush */
   2047 	si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
   2048 
   2049 	/* Set ring bindings. */
   2050 	if (sctx->esgs_ring) {
   2051 		si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
   2052 				   sctx->esgs_ring, 0, sctx->esgs_ring->width0,
   2053 				   true, true, 4, 64, 0);
   2054 		si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
   2055 				   sctx->esgs_ring, 0, sctx->esgs_ring->width0,
   2056 				   false, false, 0, 0, 0);
   2057 	}
   2058 	if (sctx->gsvs_ring) {
   2059 		si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
   2060 				   sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
   2061 				   false, false, 0, 0, 0);
   2062 	}
   2063 
   2064 	return true;
   2065 }
   2066 
   2067 /**
   2068  * @returns 1 if \p sel has been updated to use a new scratch buffer
   2069  *          0 if not
   2070  *          < 0 if there was a failure
   2071  */
   2072 static int si_update_scratch_buffer(struct si_context *sctx,
   2073 				    struct si_shader *shader)
   2074 {
   2075 	uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
   2076 	int r;
   2077 
   2078 	if (!shader)
   2079 		return 0;
   2080 
   2081 	/* This shader doesn't need a scratch buffer */
   2082 	if (shader->config.scratch_bytes_per_wave == 0)
   2083 		return 0;
   2084 
   2085 	/* This shader is already configured to use the current
   2086 	 * scratch buffer. */
   2087 	if (shader->scratch_bo == sctx->scratch_buffer)
   2088 		return 0;
   2089 
   2090 	assert(sctx->scratch_buffer);
   2091 
   2092 	si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
   2093 
   2094 	/* Replace the shader bo with a new bo that has the relocs applied. */
   2095 	r = si_shader_binary_upload(sctx->screen, shader);
   2096 	if (r)
   2097 		return r;
   2098 
   2099 	/* Update the shader state to use the new shader bo. */
   2100 	si_shader_init_pm4_state(sctx->screen, shader);
   2101 
   2102 	r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
   2103 
   2104 	return 1;
   2105 }
   2106 
   2107 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
   2108 {
   2109 	return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
   2110 }
   2111 
   2112 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
   2113 {
   2114 	return shader ? shader->config.scratch_bytes_per_wave : 0;
   2115 }
   2116 
   2117 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
   2118 {
   2119 	unsigned bytes = 0;
   2120 
   2121 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
   2122 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
   2123 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
   2124 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
   2125 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
   2126 	return bytes;
   2127 }
   2128 
   2129 static bool si_update_spi_tmpring_size(struct si_context *sctx)
   2130 {
   2131 	unsigned current_scratch_buffer_size =
   2132 		si_get_current_scratch_buffer_size(sctx);
   2133 	unsigned scratch_bytes_per_wave =
   2134 		si_get_max_scratch_bytes_per_wave(sctx);
   2135 	unsigned scratch_needed_size = scratch_bytes_per_wave *
   2136 		sctx->scratch_waves;
   2137 	unsigned spi_tmpring_size;
   2138 	int r;
   2139 
   2140 	if (scratch_needed_size > 0) {
   2141 		if (scratch_needed_size > current_scratch_buffer_size) {
   2142 			/* Create a bigger scratch buffer */
   2143 			r600_resource_reference(&sctx->scratch_buffer, NULL);
   2144 
   2145 			sctx->scratch_buffer = (struct r600_resource*)
   2146 					pipe_buffer_create(&sctx->screen->b.b, 0,
   2147 	                                PIPE_USAGE_DEFAULT, scratch_needed_size);
   2148 			if (!sctx->scratch_buffer)
   2149 				return false;
   2150 			sctx->emit_scratch_reloc = true;
   2151 		}
   2152 
   2153 		/* Update the shaders, so they are using the latest scratch.  The
   2154 		 * scratch buffer may have been changed since these shaders were
   2155 		 * last used, so we still need to try to update them, even if
   2156 		 * they require scratch buffers smaller than the current size.
   2157 		 */
   2158 		r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
   2159 		if (r < 0)
   2160 			return false;
   2161 		if (r == 1)
   2162 			si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
   2163 
   2164 		r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
   2165 		if (r < 0)
   2166 			return false;
   2167 		if (r == 1)
   2168 			si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
   2169 
   2170 		r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
   2171 		if (r < 0)
   2172 			return false;
   2173 		if (r == 1)
   2174 			si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
   2175 
   2176 		/* VS can be bound as LS, ES, or VS. */
   2177 		r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
   2178 		if (r < 0)
   2179 			return false;
   2180 		if (r == 1) {
   2181 			if (sctx->tes_shader.current)
   2182 				si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
   2183 			else if (sctx->gs_shader.current)
   2184 				si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
   2185 			else
   2186 				si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
   2187 		}
   2188 
   2189 		/* TES can be bound as ES or VS. */
   2190 		r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
   2191 		if (r < 0)
   2192 			return false;
   2193 		if (r == 1) {
   2194 			if (sctx->gs_shader.current)
   2195 				si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
   2196 			else
   2197 				si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
   2198 		}
   2199 	}
   2200 
   2201 	/* The LLVM shader backend should be reporting aligned scratch_sizes. */
   2202 	assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
   2203 		"scratch size should already be aligned correctly.");
   2204 
   2205 	spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
   2206 			   S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
   2207 	if (spi_tmpring_size != sctx->spi_tmpring_size) {
   2208 		sctx->spi_tmpring_size = spi_tmpring_size;
   2209 		sctx->emit_scratch_reloc = true;
   2210 	}
   2211 	return true;
   2212 }
   2213 
   2214 static void si_init_tess_factor_ring(struct si_context *sctx)
   2215 {
   2216 	bool double_offchip_buffers = sctx->b.chip_class >= CIK &&
   2217 				      sctx->b.family != CHIP_CARRIZO &&
   2218 				      sctx->b.family != CHIP_STONEY;
   2219 	unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
   2220 	unsigned max_offchip_buffers = max_offchip_buffers_per_se *
   2221 				       sctx->screen->b.info.max_se;
   2222 	unsigned offchip_granularity;
   2223 
   2224 	switch (sctx->screen->tess_offchip_block_dw_size) {
   2225 	default:
   2226 		assert(0);
   2227 		/* fall through */
   2228 	case 8192:
   2229 		offchip_granularity = V_03093C_X_8K_DWORDS;
   2230 		break;
   2231 	case 4096:
   2232 		offchip_granularity = V_03093C_X_4K_DWORDS;
   2233 		break;
   2234 	}
   2235 
   2236 	switch (sctx->b.chip_class) {
   2237 	case SI:
   2238 		max_offchip_buffers = MIN2(max_offchip_buffers, 126);
   2239 		break;
   2240 	case CIK:
   2241 		max_offchip_buffers = MIN2(max_offchip_buffers, 508);
   2242 		break;
   2243 	case VI:
   2244 	default:
   2245 		max_offchip_buffers = MIN2(max_offchip_buffers, 512);
   2246 		break;
   2247 	}
   2248 
   2249 	assert(!sctx->tf_ring);
   2250 	sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, 0,
   2251 					   PIPE_USAGE_DEFAULT,
   2252 					   32768 * sctx->screen->b.info.max_se);
   2253 	if (!sctx->tf_ring)
   2254 		return;
   2255 
   2256 	assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
   2257 
   2258 	sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen, 0,
   2259 	                                             PIPE_USAGE_DEFAULT,
   2260 	                                             max_offchip_buffers *
   2261 	                                             sctx->screen->tess_offchip_block_dw_size * 4);
   2262 	if (!sctx->tess_offchip_ring)
   2263 		return;
   2264 
   2265 	si_init_config_add_vgt_flush(sctx);
   2266 
   2267 	/* Append these registers to the init config state. */
   2268 	if (sctx->b.chip_class >= CIK) {
   2269 		if (sctx->b.chip_class >= VI)
   2270 			--max_offchip_buffers;
   2271 
   2272 		si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
   2273 			       S_030938_SIZE(sctx->tf_ring->width0 / 4));
   2274 		si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
   2275 			       r600_resource(sctx->tf_ring)->gpu_address >> 8);
   2276 		si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
   2277 		             S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
   2278 		             S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
   2279 	} else {
   2280 		assert(offchip_granularity == V_03093C_X_8K_DWORDS);
   2281 		si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
   2282 			       S_008988_SIZE(sctx->tf_ring->width0 / 4));
   2283 		si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
   2284 			       r600_resource(sctx->tf_ring)->gpu_address >> 8);
   2285 		si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
   2286 		               S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
   2287 	}
   2288 
   2289 	/* Flush the context to re-emit the init_config state.
   2290 	 * This is done only once in a lifetime of a context.
   2291 	 */
   2292 	si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
   2293 	sctx->b.initial_gfx_cs_size = 0; /* force flush */
   2294 	si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
   2295 
   2296 	si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
   2297 			   0, sctx->tf_ring->width0, false, false, 0, 0, 0);
   2298 
   2299 	si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
   2300 	                   sctx->tess_offchip_ring, 0,
   2301 	                   sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
   2302 }
   2303 
   2304 /**
   2305  * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
   2306  * VS passes its outputs to TES directly, so the fixed-function shader only
   2307  * has to write TESSOUTER and TESSINNER.
   2308  */
   2309 static void si_generate_fixed_func_tcs(struct si_context *sctx)
   2310 {
   2311 	struct ureg_src outer, inner;
   2312 	struct ureg_dst tessouter, tessinner;
   2313 	struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
   2314 
   2315 	if (!ureg)
   2316 		return; /* if we get here, we're screwed */
   2317 
   2318 	assert(!sctx->fixed_func_tcs_shader.cso);
   2319 
   2320 	outer = ureg_DECL_system_value(ureg,
   2321 				       TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
   2322 	inner = ureg_DECL_system_value(ureg,
   2323 				       TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
   2324 
   2325 	tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
   2326 	tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
   2327 
   2328 	ureg_MOV(ureg, tessouter, outer);
   2329 	ureg_MOV(ureg, tessinner, inner);
   2330 	ureg_END(ureg);
   2331 
   2332 	sctx->fixed_func_tcs_shader.cso =
   2333 		ureg_create_shader_and_destroy(ureg, &sctx->b.b);
   2334 }
   2335 
   2336 static void si_update_vgt_shader_config(struct si_context *sctx)
   2337 {
   2338 	/* Calculate the index of the config.
   2339 	 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
   2340 	unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
   2341 	struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
   2342 
   2343 	if (!*pm4) {
   2344 		uint32_t stages = 0;
   2345 
   2346 		*pm4 = CALLOC_STRUCT(si_pm4_state);
   2347 
   2348 		if (sctx->tes_shader.cso) {
   2349 			stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
   2350 				  S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
   2351 
   2352 			if (sctx->gs_shader.cso)
   2353 				stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
   2354 					  S_028B54_GS_EN(1) |
   2355 				          S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
   2356 			else
   2357 				stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
   2358 		} else if (sctx->gs_shader.cso) {
   2359 			stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
   2360 				  S_028B54_GS_EN(1) |
   2361 			          S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
   2362 		}
   2363 
   2364 		si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
   2365 	}
   2366 	si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
   2367 }
   2368 
   2369 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
   2370 {
   2371 	struct pipe_stream_output_info *so = &shader->so;
   2372 	uint32_t enabled_stream_buffers_mask = 0;
   2373 	int i;
   2374 
   2375 	for (i = 0; i < so->num_outputs; i++)
   2376 		enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
   2377 	sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
   2378 	sctx->b.streamout.stride_in_dw = shader->so.stride;
   2379 }
   2380 
   2381 bool si_update_shaders(struct si_context *sctx)
   2382 {
   2383 	struct pipe_context *ctx = (struct pipe_context*)sctx;
   2384 	struct si_compiler_ctx_state compiler_state;
   2385 	struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
   2386 	struct si_shader *old_vs = si_get_vs_state(sctx);
   2387 	bool old_clip_disable = old_vs ? old_vs->key.opt.hw_vs.clip_disable : false;
   2388 	int r;
   2389 
   2390 	compiler_state.tm = sctx->tm;
   2391 	compiler_state.debug = sctx->b.debug;
   2392 	compiler_state.is_debug_context = sctx->is_debug;
   2393 
   2394 	/* Update stages before GS. */
   2395 	if (sctx->tes_shader.cso) {
   2396 		if (!sctx->tf_ring) {
   2397 			si_init_tess_factor_ring(sctx);
   2398 			if (!sctx->tf_ring)
   2399 				return false;
   2400 		}
   2401 
   2402 		/* VS as LS */
   2403 		r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
   2404 		if (r)
   2405 			return false;
   2406 		si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
   2407 
   2408 		if (sctx->tcs_shader.cso) {
   2409 			r = si_shader_select(ctx, &sctx->tcs_shader,
   2410 					     &compiler_state);
   2411 			if (r)
   2412 				return false;
   2413 			si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
   2414 		} else {
   2415 			if (!sctx->fixed_func_tcs_shader.cso) {
   2416 				si_generate_fixed_func_tcs(sctx);
   2417 				if (!sctx->fixed_func_tcs_shader.cso)
   2418 					return false;
   2419 			}
   2420 
   2421 			r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
   2422 					     &compiler_state);
   2423 			if (r)
   2424 				return false;
   2425 			si_pm4_bind_state(sctx, hs,
   2426 					  sctx->fixed_func_tcs_shader.current->pm4);
   2427 		}
   2428 
   2429 		r = si_shader_select(ctx, &sctx->tes_shader, &compiler_state);
   2430 		if (r)
   2431 			return false;
   2432 
   2433 		if (sctx->gs_shader.cso) {
   2434 			/* TES as ES */
   2435 			si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
   2436 		} else {
   2437 			/* TES as VS */
   2438 			si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
   2439 			si_update_so(sctx, sctx->tes_shader.cso);
   2440 		}
   2441 	} else if (sctx->gs_shader.cso) {
   2442 		/* VS as ES */
   2443 		r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
   2444 		if (r)
   2445 			return false;
   2446 		si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
   2447 	} else {
   2448 		/* VS as VS */
   2449 		r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
   2450 		if (r)
   2451 			return false;
   2452 		si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
   2453 		si_update_so(sctx, sctx->vs_shader.cso);
   2454 	}
   2455 
   2456 	/* Update GS. */
   2457 	if (sctx->gs_shader.cso) {
   2458 		r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
   2459 		if (r)
   2460 			return false;
   2461 		si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
   2462 		si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
   2463 		si_update_so(sctx, sctx->gs_shader.cso);
   2464 
   2465 		if (!si_update_gs_ring_buffers(sctx))
   2466 			return false;
   2467 	} else {
   2468 		si_pm4_bind_state(sctx, gs, NULL);
   2469 		si_pm4_bind_state(sctx, es, NULL);
   2470 	}
   2471 
   2472 	si_update_vgt_shader_config(sctx);
   2473 
   2474 	if (old_clip_disable != si_get_vs_state(sctx)->key.opt.hw_vs.clip_disable)
   2475 		si_mark_atom_dirty(sctx, &sctx->clip_regs);
   2476 
   2477 	if (sctx->ps_shader.cso) {
   2478 		unsigned db_shader_control;
   2479 
   2480 		r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
   2481 		if (r)
   2482 			return false;
   2483 		si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
   2484 
   2485 		db_shader_control =
   2486 			sctx->ps_shader.cso->db_shader_control |
   2487 			S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
   2488 
   2489 		if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
   2490 		    sctx->sprite_coord_enable != rs->sprite_coord_enable ||
   2491 		    sctx->flatshade != rs->flatshade) {
   2492 			sctx->sprite_coord_enable = rs->sprite_coord_enable;
   2493 			sctx->flatshade = rs->flatshade;
   2494 			si_mark_atom_dirty(sctx, &sctx->spi_map);
   2495 		}
   2496 
   2497 		if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
   2498 			si_mark_atom_dirty(sctx, &sctx->cb_render_state);
   2499 
   2500 		if (sctx->ps_db_shader_control != db_shader_control) {
   2501 			sctx->ps_db_shader_control = db_shader_control;
   2502 			si_mark_atom_dirty(sctx, &sctx->db_render_state);
   2503 		}
   2504 
   2505 		if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
   2506 			sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
   2507 			si_mark_atom_dirty(sctx, &sctx->msaa_config);
   2508 
   2509 			if (sctx->b.chip_class == SI)
   2510 				si_mark_atom_dirty(sctx, &sctx->db_render_state);
   2511 
   2512 			if (sctx->framebuffer.nr_samples <= 1)
   2513 				si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
   2514 		}
   2515 	}
   2516 
   2517 	if (si_pm4_state_changed(sctx, ls) ||
   2518 	    si_pm4_state_changed(sctx, hs) ||
   2519 	    si_pm4_state_changed(sctx, es) ||
   2520 	    si_pm4_state_changed(sctx, gs) ||
   2521 	    si_pm4_state_changed(sctx, vs) ||
   2522 	    si_pm4_state_changed(sctx, ps)) {
   2523 		if (!si_update_spi_tmpring_size(sctx))
   2524 			return false;
   2525 	}
   2526 
   2527 	sctx->do_update_shaders = false;
   2528 	return true;
   2529 }
   2530 
   2531 void si_init_shader_functions(struct si_context *sctx)
   2532 {
   2533 	si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
   2534 
   2535 	sctx->b.b.create_vs_state = si_create_shader_selector;
   2536 	sctx->b.b.create_tcs_state = si_create_shader_selector;
   2537 	sctx->b.b.create_tes_state = si_create_shader_selector;
   2538 	sctx->b.b.create_gs_state = si_create_shader_selector;
   2539 	sctx->b.b.create_fs_state = si_create_shader_selector;
   2540 
   2541 	sctx->b.b.bind_vs_state = si_bind_vs_shader;
   2542 	sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
   2543 	sctx->b.b.bind_tes_state = si_bind_tes_shader;
   2544 	sctx->b.b.bind_gs_state = si_bind_gs_shader;
   2545 	sctx->b.b.bind_fs_state = si_bind_ps_shader;
   2546 
   2547 	sctx->b.b.delete_vs_state = si_delete_shader_selector;
   2548 	sctx->b.b.delete_tcs_state = si_delete_shader_selector;
   2549 	sctx->b.b.delete_tes_state = si_delete_shader_selector;
   2550 	sctx->b.b.delete_gs_state = si_delete_shader_selector;
   2551 	sctx->b.b.delete_fs_state = si_delete_shader_selector;
   2552 }
   2553