Home | History | Annotate | Download | only in Sema
      1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for statements.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTDiagnostic.h"
     17 #include "clang/AST/CharUnits.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/AST/ExprObjC.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/AST/StmtObjC.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/AST/TypeOrdering.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "clang/Lex/Preprocessor.h"
     30 #include "clang/Sema/Initialization.h"
     31 #include "clang/Sema/Lookup.h"
     32 #include "clang/Sema/Scope.h"
     33 #include "clang/Sema/ScopeInfo.h"
     34 #include "llvm/ADT/ArrayRef.h"
     35 #include "llvm/ADT/DenseMap.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/ADT/SmallPtrSet.h"
     38 #include "llvm/ADT/SmallString.h"
     39 #include "llvm/ADT/SmallVector.h"
     40 
     41 using namespace clang;
     42 using namespace sema;
     43 
     44 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
     45   if (FE.isInvalid())
     46     return StmtError();
     47 
     48   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
     49                            /*DiscardedValue*/ true);
     50   if (FE.isInvalid())
     51     return StmtError();
     52 
     53   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
     54   // void expression for its side effects.  Conversion to void allows any
     55   // operand, even incomplete types.
     56 
     57   // Same thing in for stmt first clause (when expr) and third clause.
     58   return StmtResult(FE.getAs<Stmt>());
     59 }
     60 
     61 
     62 StmtResult Sema::ActOnExprStmtError() {
     63   DiscardCleanupsInEvaluationContext();
     64   return StmtError();
     65 }
     66 
     67 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
     68                                bool HasLeadingEmptyMacro) {
     69   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
     70 }
     71 
     72 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
     73                                SourceLocation EndLoc) {
     74   DeclGroupRef DG = dg.get();
     75 
     76   // If we have an invalid decl, just return an error.
     77   if (DG.isNull()) return StmtError();
     78 
     79   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
     80 }
     81 
     82 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
     83   DeclGroupRef DG = dg.get();
     84 
     85   // If we don't have a declaration, or we have an invalid declaration,
     86   // just return.
     87   if (DG.isNull() || !DG.isSingleDecl())
     88     return;
     89 
     90   Decl *decl = DG.getSingleDecl();
     91   if (!decl || decl->isInvalidDecl())
     92     return;
     93 
     94   // Only variable declarations are permitted.
     95   VarDecl *var = dyn_cast<VarDecl>(decl);
     96   if (!var) {
     97     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
     98     decl->setInvalidDecl();
     99     return;
    100   }
    101 
    102   // foreach variables are never actually initialized in the way that
    103   // the parser came up with.
    104   var->setInit(nullptr);
    105 
    106   // In ARC, we don't need to retain the iteration variable of a fast
    107   // enumeration loop.  Rather than actually trying to catch that
    108   // during declaration processing, we remove the consequences here.
    109   if (getLangOpts().ObjCAutoRefCount) {
    110     QualType type = var->getType();
    111 
    112     // Only do this if we inferred the lifetime.  Inferred lifetime
    113     // will show up as a local qualifier because explicit lifetime
    114     // should have shown up as an AttributedType instead.
    115     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
    116       // Add 'const' and mark the variable as pseudo-strong.
    117       var->setType(type.withConst());
    118       var->setARCPseudoStrong(true);
    119     }
    120   }
    121 }
    122 
    123 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
    124 /// For '==' and '!=', suggest fixits for '=' or '|='.
    125 ///
    126 /// Adding a cast to void (or other expression wrappers) will prevent the
    127 /// warning from firing.
    128 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
    129   SourceLocation Loc;
    130   bool IsNotEqual, CanAssign, IsRelational;
    131 
    132   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
    133     if (!Op->isComparisonOp())
    134       return false;
    135 
    136     IsRelational = Op->isRelationalOp();
    137     Loc = Op->getOperatorLoc();
    138     IsNotEqual = Op->getOpcode() == BO_NE;
    139     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
    140   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
    141     switch (Op->getOperator()) {
    142     default:
    143       return false;
    144     case OO_EqualEqual:
    145     case OO_ExclaimEqual:
    146       IsRelational = false;
    147       break;
    148     case OO_Less:
    149     case OO_Greater:
    150     case OO_GreaterEqual:
    151     case OO_LessEqual:
    152       IsRelational = true;
    153       break;
    154     }
    155 
    156     Loc = Op->getOperatorLoc();
    157     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
    158     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
    159   } else {
    160     // Not a typo-prone comparison.
    161     return false;
    162   }
    163 
    164   // Suppress warnings when the operator, suspicious as it may be, comes from
    165   // a macro expansion.
    166   if (S.SourceMgr.isMacroBodyExpansion(Loc))
    167     return false;
    168 
    169   S.Diag(Loc, diag::warn_unused_comparison)
    170     << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
    171 
    172   // If the LHS is a plausible entity to assign to, provide a fixit hint to
    173   // correct common typos.
    174   if (!IsRelational && CanAssign) {
    175     if (IsNotEqual)
    176       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
    177         << FixItHint::CreateReplacement(Loc, "|=");
    178     else
    179       S.Diag(Loc, diag::note_equality_comparison_to_assign)
    180         << FixItHint::CreateReplacement(Loc, "=");
    181   }
    182 
    183   return true;
    184 }
    185 
    186 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
    187   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
    188     return DiagnoseUnusedExprResult(Label->getSubStmt());
    189 
    190   const Expr *E = dyn_cast_or_null<Expr>(S);
    191   if (!E)
    192     return;
    193 
    194   // If we are in an unevaluated expression context, then there can be no unused
    195   // results because the results aren't expected to be used in the first place.
    196   if (isUnevaluatedContext())
    197     return;
    198 
    199   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
    200   // In most cases, we don't want to warn if the expression is written in a
    201   // macro body, or if the macro comes from a system header. If the offending
    202   // expression is a call to a function with the warn_unused_result attribute,
    203   // we warn no matter the location. Because of the order in which the various
    204   // checks need to happen, we factor out the macro-related test here.
    205   bool ShouldSuppress =
    206       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
    207       SourceMgr.isInSystemMacro(ExprLoc);
    208 
    209   const Expr *WarnExpr;
    210   SourceLocation Loc;
    211   SourceRange R1, R2;
    212   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
    213     return;
    214 
    215   // If this is a GNU statement expression expanded from a macro, it is probably
    216   // unused because it is a function-like macro that can be used as either an
    217   // expression or statement.  Don't warn, because it is almost certainly a
    218   // false positive.
    219   if (isa<StmtExpr>(E) && Loc.isMacroID())
    220     return;
    221 
    222   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
    223   // That macro is frequently used to suppress "unused parameter" warnings,
    224   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
    225   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
    226     SourceLocation SpellLoc = Loc;
    227     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
    228       return;
    229   }
    230 
    231   // Okay, we have an unused result.  Depending on what the base expression is,
    232   // we might want to make a more specific diagnostic.  Check for one of these
    233   // cases now.
    234   unsigned DiagID = diag::warn_unused_expr;
    235   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
    236     E = Temps->getSubExpr();
    237   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
    238     E = TempExpr->getSubExpr();
    239 
    240   if (DiagnoseUnusedComparison(*this, E))
    241     return;
    242 
    243   E = WarnExpr;
    244   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    245     if (E->getType()->isVoidType())
    246       return;
    247 
    248     // If the callee has attribute pure, const, or warn_unused_result, warn with
    249     // a more specific message to make it clear what is happening. If the call
    250     // is written in a macro body, only warn if it has the warn_unused_result
    251     // attribute.
    252     if (const Decl *FD = CE->getCalleeDecl()) {
    253       if (const Attr *A = isa<FunctionDecl>(FD)
    254                               ? cast<FunctionDecl>(FD)->getUnusedResultAttr()
    255                               : FD->getAttr<WarnUnusedResultAttr>()) {
    256         Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
    257         return;
    258       }
    259       if (ShouldSuppress)
    260         return;
    261       if (FD->hasAttr<PureAttr>()) {
    262         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
    263         return;
    264       }
    265       if (FD->hasAttr<ConstAttr>()) {
    266         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
    267         return;
    268       }
    269     }
    270   } else if (ShouldSuppress)
    271     return;
    272 
    273   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
    274     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
    275       Diag(Loc, diag::err_arc_unused_init_message) << R1;
    276       return;
    277     }
    278     const ObjCMethodDecl *MD = ME->getMethodDecl();
    279     if (MD) {
    280       if (const auto *A = MD->getAttr<WarnUnusedResultAttr>()) {
    281         Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
    282         return;
    283       }
    284     }
    285   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
    286     const Expr *Source = POE->getSyntacticForm();
    287     if (isa<ObjCSubscriptRefExpr>(Source))
    288       DiagID = diag::warn_unused_container_subscript_expr;
    289     else
    290       DiagID = diag::warn_unused_property_expr;
    291   } else if (const CXXFunctionalCastExpr *FC
    292                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
    293     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
    294         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
    295       return;
    296   }
    297   // Diagnose "(void*) blah" as a typo for "(void) blah".
    298   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
    299     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
    300     QualType T = TI->getType();
    301 
    302     // We really do want to use the non-canonical type here.
    303     if (T == Context.VoidPtrTy) {
    304       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
    305 
    306       Diag(Loc, diag::warn_unused_voidptr)
    307         << FixItHint::CreateRemoval(TL.getStarLoc());
    308       return;
    309     }
    310   }
    311 
    312   if (E->isGLValue() && E->getType().isVolatileQualified()) {
    313     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
    314     return;
    315   }
    316 
    317   DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
    318 }
    319 
    320 void Sema::ActOnStartOfCompoundStmt() {
    321   PushCompoundScope();
    322 }
    323 
    324 void Sema::ActOnFinishOfCompoundStmt() {
    325   PopCompoundScope();
    326 }
    327 
    328 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
    329   return getCurFunction()->CompoundScopes.back();
    330 }
    331 
    332 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
    333                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
    334   const unsigned NumElts = Elts.size();
    335 
    336   // If we're in C89 mode, check that we don't have any decls after stmts.  If
    337   // so, emit an extension diagnostic.
    338   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
    339     // Note that __extension__ can be around a decl.
    340     unsigned i = 0;
    341     // Skip over all declarations.
    342     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
    343       /*empty*/;
    344 
    345     // We found the end of the list or a statement.  Scan for another declstmt.
    346     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
    347       /*empty*/;
    348 
    349     if (i != NumElts) {
    350       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
    351       Diag(D->getLocation(), diag::ext_mixed_decls_code);
    352     }
    353   }
    354   // Warn about unused expressions in statements.
    355   for (unsigned i = 0; i != NumElts; ++i) {
    356     // Ignore statements that are last in a statement expression.
    357     if (isStmtExpr && i == NumElts - 1)
    358       continue;
    359 
    360     DiagnoseUnusedExprResult(Elts[i]);
    361   }
    362 
    363   // Check for suspicious empty body (null statement) in `for' and `while'
    364   // statements.  Don't do anything for template instantiations, this just adds
    365   // noise.
    366   if (NumElts != 0 && !CurrentInstantiationScope &&
    367       getCurCompoundScope().HasEmptyLoopBodies) {
    368     for (unsigned i = 0; i != NumElts - 1; ++i)
    369       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
    370   }
    371 
    372   return new (Context) CompoundStmt(Context, Elts, L, R);
    373 }
    374 
    375 StmtResult
    376 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
    377                     SourceLocation DotDotDotLoc, Expr *RHSVal,
    378                     SourceLocation ColonLoc) {
    379   assert(LHSVal && "missing expression in case statement");
    380 
    381   if (getCurFunction()->SwitchStack.empty()) {
    382     Diag(CaseLoc, diag::err_case_not_in_switch);
    383     return StmtError();
    384   }
    385 
    386   ExprResult LHS =
    387       CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
    388         if (!getLangOpts().CPlusPlus11)
    389           return VerifyIntegerConstantExpression(E);
    390         if (Expr *CondExpr =
    391                 getCurFunction()->SwitchStack.back()->getCond()) {
    392           QualType CondType = CondExpr->getType();
    393           llvm::APSInt TempVal;
    394           return CheckConvertedConstantExpression(E, CondType, TempVal,
    395                                                         CCEK_CaseValue);
    396         }
    397         return ExprError();
    398       });
    399   if (LHS.isInvalid())
    400     return StmtError();
    401   LHSVal = LHS.get();
    402 
    403   if (!getLangOpts().CPlusPlus11) {
    404     // C99 6.8.4.2p3: The expression shall be an integer constant.
    405     // However, GCC allows any evaluatable integer expression.
    406     if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
    407       LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
    408       if (!LHSVal)
    409         return StmtError();
    410     }
    411 
    412     // GCC extension: The expression shall be an integer constant.
    413 
    414     if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
    415       RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
    416       // Recover from an error by just forgetting about it.
    417     }
    418   }
    419 
    420   LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
    421                                  getLangOpts().CPlusPlus11);
    422   if (LHS.isInvalid())
    423     return StmtError();
    424 
    425   auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
    426                                           getLangOpts().CPlusPlus11)
    427                     : ExprResult();
    428   if (RHS.isInvalid())
    429     return StmtError();
    430 
    431   CaseStmt *CS = new (Context)
    432       CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
    433   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
    434   return CS;
    435 }
    436 
    437 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
    438 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
    439   DiagnoseUnusedExprResult(SubStmt);
    440 
    441   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
    442   CS->setSubStmt(SubStmt);
    443 }
    444 
    445 StmtResult
    446 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
    447                        Stmt *SubStmt, Scope *CurScope) {
    448   DiagnoseUnusedExprResult(SubStmt);
    449 
    450   if (getCurFunction()->SwitchStack.empty()) {
    451     Diag(DefaultLoc, diag::err_default_not_in_switch);
    452     return SubStmt;
    453   }
    454 
    455   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
    456   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
    457   return DS;
    458 }
    459 
    460 StmtResult
    461 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
    462                      SourceLocation ColonLoc, Stmt *SubStmt) {
    463   // If the label was multiply defined, reject it now.
    464   if (TheDecl->getStmt()) {
    465     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
    466     Diag(TheDecl->getLocation(), diag::note_previous_definition);
    467     return SubStmt;
    468   }
    469 
    470   // Otherwise, things are good.  Fill in the declaration and return it.
    471   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
    472   TheDecl->setStmt(LS);
    473   if (!TheDecl->isGnuLocal()) {
    474     TheDecl->setLocStart(IdentLoc);
    475     if (!TheDecl->isMSAsmLabel()) {
    476       // Don't update the location of MS ASM labels.  These will result in
    477       // a diagnostic, and changing the location here will mess that up.
    478       TheDecl->setLocation(IdentLoc);
    479     }
    480   }
    481   return LS;
    482 }
    483 
    484 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
    485                                      ArrayRef<const Attr*> Attrs,
    486                                      Stmt *SubStmt) {
    487   // Fill in the declaration and return it.
    488   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
    489   return LS;
    490 }
    491 
    492 namespace {
    493 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
    494   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
    495   Sema &SemaRef;
    496 public:
    497   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
    498   void VisitBinaryOperator(BinaryOperator *E) {
    499     if (E->getOpcode() == BO_Comma)
    500       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
    501     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
    502   }
    503 };
    504 }
    505 
    506 StmtResult
    507 Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
    508                   ConditionResult Cond,
    509                   Stmt *thenStmt, SourceLocation ElseLoc,
    510                   Stmt *elseStmt) {
    511   if (Cond.isInvalid())
    512     Cond = ConditionResult(
    513         *this, nullptr,
    514         MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
    515                                                    Context.BoolTy, VK_RValue),
    516                      IfLoc),
    517         false);
    518 
    519   Expr *CondExpr = Cond.get().second;
    520   if (!Diags.isIgnored(diag::warn_comma_operator,
    521                        CondExpr->getExprLoc()))
    522     CommaVisitor(*this).Visit(CondExpr);
    523 
    524   if (!elseStmt)
    525     DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), thenStmt,
    526                           diag::warn_empty_if_body);
    527 
    528   return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
    529                      elseStmt);
    530 }
    531 
    532 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
    533                              Stmt *InitStmt, ConditionResult Cond,
    534                              Stmt *thenStmt, SourceLocation ElseLoc,
    535                              Stmt *elseStmt) {
    536   if (Cond.isInvalid())
    537     return StmtError();
    538 
    539   if (IsConstexpr)
    540     getCurFunction()->setHasBranchProtectedScope();
    541 
    542   DiagnoseUnusedExprResult(thenStmt);
    543   DiagnoseUnusedExprResult(elseStmt);
    544 
    545   return new (Context)
    546       IfStmt(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
    547              Cond.get().second, thenStmt, ElseLoc, elseStmt);
    548 }
    549 
    550 namespace {
    551   struct CaseCompareFunctor {
    552     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    553                     const llvm::APSInt &RHS) {
    554       return LHS.first < RHS;
    555     }
    556     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    557                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    558       return LHS.first < RHS.first;
    559     }
    560     bool operator()(const llvm::APSInt &LHS,
    561                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    562       return LHS < RHS.first;
    563     }
    564   };
    565 }
    566 
    567 /// CmpCaseVals - Comparison predicate for sorting case values.
    568 ///
    569 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
    570                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
    571   if (lhs.first < rhs.first)
    572     return true;
    573 
    574   if (lhs.first == rhs.first &&
    575       lhs.second->getCaseLoc().getRawEncoding()
    576        < rhs.second->getCaseLoc().getRawEncoding())
    577     return true;
    578   return false;
    579 }
    580 
    581 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
    582 ///
    583 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    584                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    585 {
    586   return lhs.first < rhs.first;
    587 }
    588 
    589 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
    590 ///
    591 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    592                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    593 {
    594   return lhs.first == rhs.first;
    595 }
    596 
    597 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
    598 /// potentially integral-promoted expression @p expr.
    599 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
    600   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
    601     expr = cleanups->getSubExpr();
    602   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
    603     if (impcast->getCastKind() != CK_IntegralCast) break;
    604     expr = impcast->getSubExpr();
    605   }
    606   return expr->getType();
    607 }
    608 
    609 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
    610   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
    611     Expr *Cond;
    612 
    613   public:
    614     SwitchConvertDiagnoser(Expr *Cond)
    615         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
    616           Cond(Cond) {}
    617 
    618     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
    619                                          QualType T) override {
    620       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
    621     }
    622 
    623     SemaDiagnosticBuilder diagnoseIncomplete(
    624         Sema &S, SourceLocation Loc, QualType T) override {
    625       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
    626                << T << Cond->getSourceRange();
    627     }
    628 
    629     SemaDiagnosticBuilder diagnoseExplicitConv(
    630         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
    631       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
    632     }
    633 
    634     SemaDiagnosticBuilder noteExplicitConv(
    635         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
    636       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
    637         << ConvTy->isEnumeralType() << ConvTy;
    638     }
    639 
    640     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
    641                                             QualType T) override {
    642       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
    643     }
    644 
    645     SemaDiagnosticBuilder noteAmbiguous(
    646         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
    647       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
    648       << ConvTy->isEnumeralType() << ConvTy;
    649     }
    650 
    651     SemaDiagnosticBuilder diagnoseConversion(
    652         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
    653       llvm_unreachable("conversion functions are permitted");
    654     }
    655   } SwitchDiagnoser(Cond);
    656 
    657   ExprResult CondResult =
    658       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
    659   if (CondResult.isInvalid())
    660     return ExprError();
    661 
    662   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
    663   return UsualUnaryConversions(CondResult.get());
    664 }
    665 
    666 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
    667                                         Stmt *InitStmt, ConditionResult Cond) {
    668   if (Cond.isInvalid())
    669     return StmtError();
    670 
    671   getCurFunction()->setHasBranchIntoScope();
    672 
    673   SwitchStmt *SS = new (Context)
    674       SwitchStmt(Context, InitStmt, Cond.get().first, Cond.get().second);
    675   getCurFunction()->SwitchStack.push_back(SS);
    676   return SS;
    677 }
    678 
    679 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
    680   Val = Val.extOrTrunc(BitWidth);
    681   Val.setIsSigned(IsSigned);
    682 }
    683 
    684 /// Check the specified case value is in range for the given unpromoted switch
    685 /// type.
    686 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
    687                            unsigned UnpromotedWidth, bool UnpromotedSign) {
    688   // If the case value was signed and negative and the switch expression is
    689   // unsigned, don't bother to warn: this is implementation-defined behavior.
    690   // FIXME: Introduce a second, default-ignored warning for this case?
    691   if (UnpromotedWidth < Val.getBitWidth()) {
    692     llvm::APSInt ConvVal(Val);
    693     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
    694     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
    695     // FIXME: Use different diagnostics for overflow  in conversion to promoted
    696     // type versus "switch expression cannot have this value". Use proper
    697     // IntRange checking rather than just looking at the unpromoted type here.
    698     if (ConvVal != Val)
    699       S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
    700                                                   << ConvVal.toString(10);
    701   }
    702 }
    703 
    704 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
    705 
    706 /// Returns true if we should emit a diagnostic about this case expression not
    707 /// being a part of the enum used in the switch controlling expression.
    708 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
    709                                               const EnumDecl *ED,
    710                                               const Expr *CaseExpr,
    711                                               EnumValsTy::iterator &EI,
    712                                               EnumValsTy::iterator &EIEnd,
    713                                               const llvm::APSInt &Val) {
    714   if (const DeclRefExpr *DRE =
    715           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
    716     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
    717       QualType VarType = VD->getType();
    718       QualType EnumType = S.Context.getTypeDeclType(ED);
    719       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
    720           S.Context.hasSameUnqualifiedType(EnumType, VarType))
    721         return false;
    722     }
    723   }
    724 
    725   if (ED->hasAttr<FlagEnumAttr>()) {
    726     return !S.IsValueInFlagEnum(ED, Val, false);
    727   } else {
    728     while (EI != EIEnd && EI->first < Val)
    729       EI++;
    730 
    731     if (EI != EIEnd && EI->first == Val)
    732       return false;
    733   }
    734 
    735   return true;
    736 }
    737 
    738 StmtResult
    739 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
    740                             Stmt *BodyStmt) {
    741   SwitchStmt *SS = cast<SwitchStmt>(Switch);
    742   assert(SS == getCurFunction()->SwitchStack.back() &&
    743          "switch stack missing push/pop!");
    744 
    745   getCurFunction()->SwitchStack.pop_back();
    746 
    747   if (!BodyStmt) return StmtError();
    748   SS->setBody(BodyStmt, SwitchLoc);
    749 
    750   Expr *CondExpr = SS->getCond();
    751   if (!CondExpr) return StmtError();
    752 
    753   QualType CondType = CondExpr->getType();
    754 
    755   Expr *CondExprBeforePromotion = CondExpr;
    756   QualType CondTypeBeforePromotion =
    757       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
    758 
    759   // C++ 6.4.2.p2:
    760   // Integral promotions are performed (on the switch condition).
    761   //
    762   // A case value unrepresentable by the original switch condition
    763   // type (before the promotion) doesn't make sense, even when it can
    764   // be represented by the promoted type.  Therefore we need to find
    765   // the pre-promotion type of the switch condition.
    766   if (!CondExpr->isTypeDependent()) {
    767     // We have already converted the expression to an integral or enumeration
    768     // type, when we started the switch statement. If we don't have an
    769     // appropriate type now, just return an error.
    770     if (!CondType->isIntegralOrEnumerationType())
    771       return StmtError();
    772 
    773     if (CondExpr->isKnownToHaveBooleanValue()) {
    774       // switch(bool_expr) {...} is often a programmer error, e.g.
    775       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
    776       // One can always use an if statement instead of switch(bool_expr).
    777       Diag(SwitchLoc, diag::warn_bool_switch_condition)
    778           << CondExpr->getSourceRange();
    779     }
    780   }
    781 
    782   // Get the bitwidth of the switched-on value after promotions. We must
    783   // convert the integer case values to this width before comparison.
    784   bool HasDependentValue
    785     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
    786   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
    787   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
    788 
    789   // Get the width and signedness that the condition might actually have, for
    790   // warning purposes.
    791   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
    792   // type.
    793   unsigned CondWidthBeforePromotion
    794     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
    795   bool CondIsSignedBeforePromotion
    796     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
    797 
    798   // Accumulate all of the case values in a vector so that we can sort them
    799   // and detect duplicates.  This vector contains the APInt for the case after
    800   // it has been converted to the condition type.
    801   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
    802   CaseValsTy CaseVals;
    803 
    804   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
    805   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
    806   CaseRangesTy CaseRanges;
    807 
    808   DefaultStmt *TheDefaultStmt = nullptr;
    809 
    810   bool CaseListIsErroneous = false;
    811 
    812   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
    813        SC = SC->getNextSwitchCase()) {
    814 
    815     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
    816       if (TheDefaultStmt) {
    817         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
    818         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
    819 
    820         // FIXME: Remove the default statement from the switch block so that
    821         // we'll return a valid AST.  This requires recursing down the AST and
    822         // finding it, not something we are set up to do right now.  For now,
    823         // just lop the entire switch stmt out of the AST.
    824         CaseListIsErroneous = true;
    825       }
    826       TheDefaultStmt = DS;
    827 
    828     } else {
    829       CaseStmt *CS = cast<CaseStmt>(SC);
    830 
    831       Expr *Lo = CS->getLHS();
    832 
    833       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
    834         HasDependentValue = true;
    835         break;
    836       }
    837 
    838       llvm::APSInt LoVal;
    839 
    840       if (getLangOpts().CPlusPlus11) {
    841         // C++11 [stmt.switch]p2: the constant-expression shall be a converted
    842         // constant expression of the promoted type of the switch condition.
    843         ExprResult ConvLo =
    844           CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
    845         if (ConvLo.isInvalid()) {
    846           CaseListIsErroneous = true;
    847           continue;
    848         }
    849         Lo = ConvLo.get();
    850       } else {
    851         // We already verified that the expression has a i-c-e value (C99
    852         // 6.8.4.2p3) - get that value now.
    853         LoVal = Lo->EvaluateKnownConstInt(Context);
    854 
    855         // If the LHS is not the same type as the condition, insert an implicit
    856         // cast.
    857         Lo = DefaultLvalueConversion(Lo).get();
    858         Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
    859       }
    860 
    861       // Check the unconverted value is within the range of possible values of
    862       // the switch expression.
    863       checkCaseValue(*this, Lo->getLocStart(), LoVal,
    864                      CondWidthBeforePromotion, CondIsSignedBeforePromotion);
    865 
    866       // Convert the value to the same width/sign as the condition.
    867       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
    868 
    869       CS->setLHS(Lo);
    870 
    871       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
    872       if (CS->getRHS()) {
    873         if (CS->getRHS()->isTypeDependent() ||
    874             CS->getRHS()->isValueDependent()) {
    875           HasDependentValue = true;
    876           break;
    877         }
    878         CaseRanges.push_back(std::make_pair(LoVal, CS));
    879       } else
    880         CaseVals.push_back(std::make_pair(LoVal, CS));
    881     }
    882   }
    883 
    884   if (!HasDependentValue) {
    885     // If we don't have a default statement, check whether the
    886     // condition is constant.
    887     llvm::APSInt ConstantCondValue;
    888     bool HasConstantCond = false;
    889     if (!HasDependentValue && !TheDefaultStmt) {
    890       HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
    891                                                 Expr::SE_AllowSideEffects);
    892       assert(!HasConstantCond ||
    893              (ConstantCondValue.getBitWidth() == CondWidth &&
    894               ConstantCondValue.isSigned() == CondIsSigned));
    895     }
    896     bool ShouldCheckConstantCond = HasConstantCond;
    897 
    898     // Sort all the scalar case values so we can easily detect duplicates.
    899     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
    900 
    901     if (!CaseVals.empty()) {
    902       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
    903         if (ShouldCheckConstantCond &&
    904             CaseVals[i].first == ConstantCondValue)
    905           ShouldCheckConstantCond = false;
    906 
    907         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
    908           // If we have a duplicate, report it.
    909           // First, determine if either case value has a name
    910           StringRef PrevString, CurrString;
    911           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
    912           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
    913           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
    914             PrevString = DeclRef->getDecl()->getName();
    915           }
    916           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
    917             CurrString = DeclRef->getDecl()->getName();
    918           }
    919           SmallString<16> CaseValStr;
    920           CaseVals[i-1].first.toString(CaseValStr);
    921 
    922           if (PrevString == CurrString)
    923             Diag(CaseVals[i].second->getLHS()->getLocStart(),
    924                  diag::err_duplicate_case) <<
    925                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
    926           else
    927             Diag(CaseVals[i].second->getLHS()->getLocStart(),
    928                  diag::err_duplicate_case_differing_expr) <<
    929                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
    930                  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
    931                  CaseValStr;
    932 
    933           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
    934                diag::note_duplicate_case_prev);
    935           // FIXME: We really want to remove the bogus case stmt from the
    936           // substmt, but we have no way to do this right now.
    937           CaseListIsErroneous = true;
    938         }
    939       }
    940     }
    941 
    942     // Detect duplicate case ranges, which usually don't exist at all in
    943     // the first place.
    944     if (!CaseRanges.empty()) {
    945       // Sort all the case ranges by their low value so we can easily detect
    946       // overlaps between ranges.
    947       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
    948 
    949       // Scan the ranges, computing the high values and removing empty ranges.
    950       std::vector<llvm::APSInt> HiVals;
    951       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
    952         llvm::APSInt &LoVal = CaseRanges[i].first;
    953         CaseStmt *CR = CaseRanges[i].second;
    954         Expr *Hi = CR->getRHS();
    955         llvm::APSInt HiVal;
    956 
    957         if (getLangOpts().CPlusPlus11) {
    958           // C++11 [stmt.switch]p2: the constant-expression shall be a converted
    959           // constant expression of the promoted type of the switch condition.
    960           ExprResult ConvHi =
    961             CheckConvertedConstantExpression(Hi, CondType, HiVal,
    962                                              CCEK_CaseValue);
    963           if (ConvHi.isInvalid()) {
    964             CaseListIsErroneous = true;
    965             continue;
    966           }
    967           Hi = ConvHi.get();
    968         } else {
    969           HiVal = Hi->EvaluateKnownConstInt(Context);
    970 
    971           // If the RHS is not the same type as the condition, insert an
    972           // implicit cast.
    973           Hi = DefaultLvalueConversion(Hi).get();
    974           Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
    975         }
    976 
    977         // Check the unconverted value is within the range of possible values of
    978         // the switch expression.
    979         checkCaseValue(*this, Hi->getLocStart(), HiVal,
    980                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
    981 
    982         // Convert the value to the same width/sign as the condition.
    983         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
    984 
    985         CR->setRHS(Hi);
    986 
    987         // If the low value is bigger than the high value, the case is empty.
    988         if (LoVal > HiVal) {
    989           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
    990             << SourceRange(CR->getLHS()->getLocStart(),
    991                            Hi->getLocEnd());
    992           CaseRanges.erase(CaseRanges.begin()+i);
    993           --i;
    994           --e;
    995           continue;
    996         }
    997 
    998         if (ShouldCheckConstantCond &&
    999             LoVal <= ConstantCondValue &&
   1000             ConstantCondValue <= HiVal)
   1001           ShouldCheckConstantCond = false;
   1002 
   1003         HiVals.push_back(HiVal);
   1004       }
   1005 
   1006       // Rescan the ranges, looking for overlap with singleton values and other
   1007       // ranges.  Since the range list is sorted, we only need to compare case
   1008       // ranges with their neighbors.
   1009       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
   1010         llvm::APSInt &CRLo = CaseRanges[i].first;
   1011         llvm::APSInt &CRHi = HiVals[i];
   1012         CaseStmt *CR = CaseRanges[i].second;
   1013 
   1014         // Check to see whether the case range overlaps with any
   1015         // singleton cases.
   1016         CaseStmt *OverlapStmt = nullptr;
   1017         llvm::APSInt OverlapVal(32);
   1018 
   1019         // Find the smallest value >= the lower bound.  If I is in the
   1020         // case range, then we have overlap.
   1021         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
   1022                                                   CaseVals.end(), CRLo,
   1023                                                   CaseCompareFunctor());
   1024         if (I != CaseVals.end() && I->first < CRHi) {
   1025           OverlapVal  = I->first;   // Found overlap with scalar.
   1026           OverlapStmt = I->second;
   1027         }
   1028 
   1029         // Find the smallest value bigger than the upper bound.
   1030         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
   1031         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
   1032           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
   1033           OverlapStmt = (I-1)->second;
   1034         }
   1035 
   1036         // Check to see if this case stmt overlaps with the subsequent
   1037         // case range.
   1038         if (i && CRLo <= HiVals[i-1]) {
   1039           OverlapVal  = HiVals[i-1];       // Found overlap with range.
   1040           OverlapStmt = CaseRanges[i-1].second;
   1041         }
   1042 
   1043         if (OverlapStmt) {
   1044           // If we have a duplicate, report it.
   1045           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
   1046             << OverlapVal.toString(10);
   1047           Diag(OverlapStmt->getLHS()->getLocStart(),
   1048                diag::note_duplicate_case_prev);
   1049           // FIXME: We really want to remove the bogus case stmt from the
   1050           // substmt, but we have no way to do this right now.
   1051           CaseListIsErroneous = true;
   1052         }
   1053       }
   1054     }
   1055 
   1056     // Complain if we have a constant condition and we didn't find a match.
   1057     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
   1058       // TODO: it would be nice if we printed enums as enums, chars as
   1059       // chars, etc.
   1060       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
   1061         << ConstantCondValue.toString(10)
   1062         << CondExpr->getSourceRange();
   1063     }
   1064 
   1065     // Check to see if switch is over an Enum and handles all of its
   1066     // values.  We only issue a warning if there is not 'default:', but
   1067     // we still do the analysis to preserve this information in the AST
   1068     // (which can be used by flow-based analyes).
   1069     //
   1070     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
   1071 
   1072     // If switch has default case, then ignore it.
   1073     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
   1074       const EnumDecl *ED = ET->getDecl();
   1075       EnumValsTy EnumVals;
   1076 
   1077       // Gather all enum values, set their type and sort them,
   1078       // allowing easier comparison with CaseVals.
   1079       for (auto *EDI : ED->enumerators()) {
   1080         llvm::APSInt Val = EDI->getInitVal();
   1081         AdjustAPSInt(Val, CondWidth, CondIsSigned);
   1082         EnumVals.push_back(std::make_pair(Val, EDI));
   1083       }
   1084       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
   1085       auto EI = EnumVals.begin(), EIEnd =
   1086         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
   1087 
   1088       // See which case values aren't in enum.
   1089       for (CaseValsTy::const_iterator CI = CaseVals.begin();
   1090           CI != CaseVals.end(); CI++) {
   1091         Expr *CaseExpr = CI->second->getLHS();
   1092         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1093                                               CI->first))
   1094           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1095             << CondTypeBeforePromotion;
   1096       }
   1097 
   1098       // See which of case ranges aren't in enum
   1099       EI = EnumVals.begin();
   1100       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
   1101           RI != CaseRanges.end(); RI++) {
   1102         Expr *CaseExpr = RI->second->getLHS();
   1103         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1104                                               RI->first))
   1105           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1106             << CondTypeBeforePromotion;
   1107 
   1108         llvm::APSInt Hi =
   1109           RI->second->getRHS()->EvaluateKnownConstInt(Context);
   1110         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
   1111 
   1112         CaseExpr = RI->second->getRHS();
   1113         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1114                                               Hi))
   1115           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1116             << CondTypeBeforePromotion;
   1117       }
   1118 
   1119       // Check which enum vals aren't in switch
   1120       auto CI = CaseVals.begin();
   1121       auto RI = CaseRanges.begin();
   1122       bool hasCasesNotInSwitch = false;
   1123 
   1124       SmallVector<DeclarationName,8> UnhandledNames;
   1125 
   1126       for (EI = EnumVals.begin(); EI != EIEnd; EI++){
   1127         // Drop unneeded case values
   1128         while (CI != CaseVals.end() && CI->first < EI->first)
   1129           CI++;
   1130 
   1131         if (CI != CaseVals.end() && CI->first == EI->first)
   1132           continue;
   1133 
   1134         // Drop unneeded case ranges
   1135         for (; RI != CaseRanges.end(); RI++) {
   1136           llvm::APSInt Hi =
   1137             RI->second->getRHS()->EvaluateKnownConstInt(Context);
   1138           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
   1139           if (EI->first <= Hi)
   1140             break;
   1141         }
   1142 
   1143         if (RI == CaseRanges.end() || EI->first < RI->first) {
   1144           hasCasesNotInSwitch = true;
   1145           UnhandledNames.push_back(EI->second->getDeclName());
   1146         }
   1147       }
   1148 
   1149       if (TheDefaultStmt && UnhandledNames.empty())
   1150         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
   1151 
   1152       // Produce a nice diagnostic if multiple values aren't handled.
   1153       if (!UnhandledNames.empty()) {
   1154         DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
   1155                                     TheDefaultStmt ? diag::warn_def_missing_case
   1156                                                    : diag::warn_missing_case)
   1157                                << (int)UnhandledNames.size();
   1158 
   1159         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
   1160              I != E; ++I)
   1161           DB << UnhandledNames[I];
   1162       }
   1163 
   1164       if (!hasCasesNotInSwitch)
   1165         SS->setAllEnumCasesCovered();
   1166     }
   1167   }
   1168 
   1169   if (BodyStmt)
   1170     DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
   1171                           diag::warn_empty_switch_body);
   1172 
   1173   // FIXME: If the case list was broken is some way, we don't have a good system
   1174   // to patch it up.  Instead, just return the whole substmt as broken.
   1175   if (CaseListIsErroneous)
   1176     return StmtError();
   1177 
   1178   return SS;
   1179 }
   1180 
   1181 void
   1182 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
   1183                              Expr *SrcExpr) {
   1184   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
   1185     return;
   1186 
   1187   if (const EnumType *ET = DstType->getAs<EnumType>())
   1188     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
   1189         SrcType->isIntegerType()) {
   1190       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
   1191           SrcExpr->isIntegerConstantExpr(Context)) {
   1192         // Get the bitwidth of the enum value before promotions.
   1193         unsigned DstWidth = Context.getIntWidth(DstType);
   1194         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
   1195 
   1196         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
   1197         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
   1198         const EnumDecl *ED = ET->getDecl();
   1199 
   1200         if (ED->hasAttr<FlagEnumAttr>()) {
   1201           if (!IsValueInFlagEnum(ED, RhsVal, true))
   1202             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
   1203               << DstType.getUnqualifiedType();
   1204         } else {
   1205           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
   1206               EnumValsTy;
   1207           EnumValsTy EnumVals;
   1208 
   1209           // Gather all enum values, set their type and sort them,
   1210           // allowing easier comparison with rhs constant.
   1211           for (auto *EDI : ED->enumerators()) {
   1212             llvm::APSInt Val = EDI->getInitVal();
   1213             AdjustAPSInt(Val, DstWidth, DstIsSigned);
   1214             EnumVals.push_back(std::make_pair(Val, EDI));
   1215           }
   1216           if (EnumVals.empty())
   1217             return;
   1218           std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
   1219           EnumValsTy::iterator EIend =
   1220               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
   1221 
   1222           // See which values aren't in the enum.
   1223           EnumValsTy::const_iterator EI = EnumVals.begin();
   1224           while (EI != EIend && EI->first < RhsVal)
   1225             EI++;
   1226           if (EI == EIend || EI->first != RhsVal) {
   1227             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
   1228                 << DstType.getUnqualifiedType();
   1229           }
   1230         }
   1231       }
   1232     }
   1233 }
   1234 
   1235 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond,
   1236                                 Stmt *Body) {
   1237   if (Cond.isInvalid())
   1238     return StmtError();
   1239 
   1240   auto CondVal = Cond.get();
   1241   CheckBreakContinueBinding(CondVal.second);
   1242 
   1243   if (CondVal.second &&
   1244       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
   1245     CommaVisitor(*this).Visit(CondVal.second);
   1246 
   1247   DiagnoseUnusedExprResult(Body);
   1248 
   1249   if (isa<NullStmt>(Body))
   1250     getCurCompoundScope().setHasEmptyLoopBodies();
   1251 
   1252   return new (Context)
   1253       WhileStmt(Context, CondVal.first, CondVal.second, Body, WhileLoc);
   1254 }
   1255 
   1256 StmtResult
   1257 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
   1258                   SourceLocation WhileLoc, SourceLocation CondLParen,
   1259                   Expr *Cond, SourceLocation CondRParen) {
   1260   assert(Cond && "ActOnDoStmt(): missing expression");
   1261 
   1262   CheckBreakContinueBinding(Cond);
   1263   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
   1264   if (CondResult.isInvalid())
   1265     return StmtError();
   1266   Cond = CondResult.get();
   1267 
   1268   CondResult = ActOnFinishFullExpr(Cond, DoLoc);
   1269   if (CondResult.isInvalid())
   1270     return StmtError();
   1271   Cond = CondResult.get();
   1272 
   1273   DiagnoseUnusedExprResult(Body);
   1274 
   1275   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
   1276 }
   1277 
   1278 namespace {
   1279   // This visitor will traverse a conditional statement and store all
   1280   // the evaluated decls into a vector.  Simple is set to true if none
   1281   // of the excluded constructs are used.
   1282   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
   1283     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
   1284     SmallVectorImpl<SourceRange> &Ranges;
   1285     bool Simple;
   1286   public:
   1287     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
   1288 
   1289     DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
   1290                   SmallVectorImpl<SourceRange> &Ranges) :
   1291         Inherited(S.Context),
   1292         Decls(Decls),
   1293         Ranges(Ranges),
   1294         Simple(true) {}
   1295 
   1296     bool isSimple() { return Simple; }
   1297 
   1298     // Replaces the method in EvaluatedExprVisitor.
   1299     void VisitMemberExpr(MemberExpr* E) {
   1300       Simple = false;
   1301     }
   1302 
   1303     // Any Stmt not whitelisted will cause the condition to be marked complex.
   1304     void VisitStmt(Stmt *S) {
   1305       Simple = false;
   1306     }
   1307 
   1308     void VisitBinaryOperator(BinaryOperator *E) {
   1309       Visit(E->getLHS());
   1310       Visit(E->getRHS());
   1311     }
   1312 
   1313     void VisitCastExpr(CastExpr *E) {
   1314       Visit(E->getSubExpr());
   1315     }
   1316 
   1317     void VisitUnaryOperator(UnaryOperator *E) {
   1318       // Skip checking conditionals with derefernces.
   1319       if (E->getOpcode() == UO_Deref)
   1320         Simple = false;
   1321       else
   1322         Visit(E->getSubExpr());
   1323     }
   1324 
   1325     void VisitConditionalOperator(ConditionalOperator *E) {
   1326       Visit(E->getCond());
   1327       Visit(E->getTrueExpr());
   1328       Visit(E->getFalseExpr());
   1329     }
   1330 
   1331     void VisitParenExpr(ParenExpr *E) {
   1332       Visit(E->getSubExpr());
   1333     }
   1334 
   1335     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
   1336       Visit(E->getOpaqueValue()->getSourceExpr());
   1337       Visit(E->getFalseExpr());
   1338     }
   1339 
   1340     void VisitIntegerLiteral(IntegerLiteral *E) { }
   1341     void VisitFloatingLiteral(FloatingLiteral *E) { }
   1342     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
   1343     void VisitCharacterLiteral(CharacterLiteral *E) { }
   1344     void VisitGNUNullExpr(GNUNullExpr *E) { }
   1345     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
   1346 
   1347     void VisitDeclRefExpr(DeclRefExpr *E) {
   1348       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
   1349       if (!VD) return;
   1350 
   1351       Ranges.push_back(E->getSourceRange());
   1352 
   1353       Decls.insert(VD);
   1354     }
   1355 
   1356   }; // end class DeclExtractor
   1357 
   1358   // DeclMatcher checks to see if the decls are used in a non-evaluated
   1359   // context.
   1360   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
   1361     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
   1362     bool FoundDecl;
   1363 
   1364   public:
   1365     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
   1366 
   1367     DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
   1368                 Stmt *Statement) :
   1369         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
   1370       if (!Statement) return;
   1371 
   1372       Visit(Statement);
   1373     }
   1374 
   1375     void VisitReturnStmt(ReturnStmt *S) {
   1376       FoundDecl = true;
   1377     }
   1378 
   1379     void VisitBreakStmt(BreakStmt *S) {
   1380       FoundDecl = true;
   1381     }
   1382 
   1383     void VisitGotoStmt(GotoStmt *S) {
   1384       FoundDecl = true;
   1385     }
   1386 
   1387     void VisitCastExpr(CastExpr *E) {
   1388       if (E->getCastKind() == CK_LValueToRValue)
   1389         CheckLValueToRValueCast(E->getSubExpr());
   1390       else
   1391         Visit(E->getSubExpr());
   1392     }
   1393 
   1394     void CheckLValueToRValueCast(Expr *E) {
   1395       E = E->IgnoreParenImpCasts();
   1396 
   1397       if (isa<DeclRefExpr>(E)) {
   1398         return;
   1399       }
   1400 
   1401       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   1402         Visit(CO->getCond());
   1403         CheckLValueToRValueCast(CO->getTrueExpr());
   1404         CheckLValueToRValueCast(CO->getFalseExpr());
   1405         return;
   1406       }
   1407 
   1408       if (BinaryConditionalOperator *BCO =
   1409               dyn_cast<BinaryConditionalOperator>(E)) {
   1410         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
   1411         CheckLValueToRValueCast(BCO->getFalseExpr());
   1412         return;
   1413       }
   1414 
   1415       Visit(E);
   1416     }
   1417 
   1418     void VisitDeclRefExpr(DeclRefExpr *E) {
   1419       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   1420         if (Decls.count(VD))
   1421           FoundDecl = true;
   1422     }
   1423 
   1424     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
   1425       // Only need to visit the semantics for POE.
   1426       // SyntaticForm doesn't really use the Decal.
   1427       for (auto *S : POE->semantics()) {
   1428         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
   1429           // Look past the OVE into the expression it binds.
   1430           Visit(OVE->getSourceExpr());
   1431         else
   1432           Visit(S);
   1433       }
   1434     }
   1435 
   1436     bool FoundDeclInUse() { return FoundDecl; }
   1437 
   1438   };  // end class DeclMatcher
   1439 
   1440   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
   1441                                         Expr *Third, Stmt *Body) {
   1442     // Condition is empty
   1443     if (!Second) return;
   1444 
   1445     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
   1446                           Second->getLocStart()))
   1447       return;
   1448 
   1449     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
   1450     llvm::SmallPtrSet<VarDecl*, 8> Decls;
   1451     SmallVector<SourceRange, 10> Ranges;
   1452     DeclExtractor DE(S, Decls, Ranges);
   1453     DE.Visit(Second);
   1454 
   1455     // Don't analyze complex conditionals.
   1456     if (!DE.isSimple()) return;
   1457 
   1458     // No decls found.
   1459     if (Decls.size() == 0) return;
   1460 
   1461     // Don't warn on volatile, static, or global variables.
   1462     for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
   1463                                                    E = Decls.end();
   1464          I != E; ++I)
   1465       if ((*I)->getType().isVolatileQualified() ||
   1466           (*I)->hasGlobalStorage()) return;
   1467 
   1468     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
   1469         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
   1470         DeclMatcher(S, Decls, Body).FoundDeclInUse())
   1471       return;
   1472 
   1473     // Load decl names into diagnostic.
   1474     if (Decls.size() > 4)
   1475       PDiag << 0;
   1476     else {
   1477       PDiag << Decls.size();
   1478       for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
   1479                                                      E = Decls.end();
   1480            I != E; ++I)
   1481         PDiag << (*I)->getDeclName();
   1482     }
   1483 
   1484     // Load SourceRanges into diagnostic if there is room.
   1485     // Otherwise, load the SourceRange of the conditional expression.
   1486     if (Ranges.size() <= PartialDiagnostic::MaxArguments)
   1487       for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
   1488                                                   E = Ranges.end();
   1489            I != E; ++I)
   1490         PDiag << *I;
   1491     else
   1492       PDiag << Second->getSourceRange();
   1493 
   1494     S.Diag(Ranges.begin()->getBegin(), PDiag);
   1495   }
   1496 
   1497   // If Statement is an incemement or decrement, return true and sets the
   1498   // variables Increment and DRE.
   1499   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
   1500                             DeclRefExpr *&DRE) {
   1501     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
   1502       if (!Cleanups->cleanupsHaveSideEffects())
   1503         Statement = Cleanups->getSubExpr();
   1504 
   1505     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
   1506       switch (UO->getOpcode()) {
   1507         default: return false;
   1508         case UO_PostInc:
   1509         case UO_PreInc:
   1510           Increment = true;
   1511           break;
   1512         case UO_PostDec:
   1513         case UO_PreDec:
   1514           Increment = false;
   1515           break;
   1516       }
   1517       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
   1518       return DRE;
   1519     }
   1520 
   1521     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
   1522       FunctionDecl *FD = Call->getDirectCallee();
   1523       if (!FD || !FD->isOverloadedOperator()) return false;
   1524       switch (FD->getOverloadedOperator()) {
   1525         default: return false;
   1526         case OO_PlusPlus:
   1527           Increment = true;
   1528           break;
   1529         case OO_MinusMinus:
   1530           Increment = false;
   1531           break;
   1532       }
   1533       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
   1534       return DRE;
   1535     }
   1536 
   1537     return false;
   1538   }
   1539 
   1540   // A visitor to determine if a continue or break statement is a
   1541   // subexpression.
   1542   class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
   1543     SourceLocation BreakLoc;
   1544     SourceLocation ContinueLoc;
   1545   public:
   1546     BreakContinueFinder(Sema &S, Stmt* Body) :
   1547         Inherited(S.Context) {
   1548       Visit(Body);
   1549     }
   1550 
   1551     typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
   1552 
   1553     void VisitContinueStmt(ContinueStmt* E) {
   1554       ContinueLoc = E->getContinueLoc();
   1555     }
   1556 
   1557     void VisitBreakStmt(BreakStmt* E) {
   1558       BreakLoc = E->getBreakLoc();
   1559     }
   1560 
   1561     bool ContinueFound() { return ContinueLoc.isValid(); }
   1562     bool BreakFound() { return BreakLoc.isValid(); }
   1563     SourceLocation GetContinueLoc() { return ContinueLoc; }
   1564     SourceLocation GetBreakLoc() { return BreakLoc; }
   1565 
   1566   };  // end class BreakContinueFinder
   1567 
   1568   // Emit a warning when a loop increment/decrement appears twice per loop
   1569   // iteration.  The conditions which trigger this warning are:
   1570   // 1) The last statement in the loop body and the third expression in the
   1571   //    for loop are both increment or both decrement of the same variable
   1572   // 2) No continue statements in the loop body.
   1573   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
   1574     // Return when there is nothing to check.
   1575     if (!Body || !Third) return;
   1576 
   1577     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
   1578                           Third->getLocStart()))
   1579       return;
   1580 
   1581     // Get the last statement from the loop body.
   1582     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
   1583     if (!CS || CS->body_empty()) return;
   1584     Stmt *LastStmt = CS->body_back();
   1585     if (!LastStmt) return;
   1586 
   1587     bool LoopIncrement, LastIncrement;
   1588     DeclRefExpr *LoopDRE, *LastDRE;
   1589 
   1590     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
   1591     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
   1592 
   1593     // Check that the two statements are both increments or both decrements
   1594     // on the same variable.
   1595     if (LoopIncrement != LastIncrement ||
   1596         LoopDRE->getDecl() != LastDRE->getDecl()) return;
   1597 
   1598     if (BreakContinueFinder(S, Body).ContinueFound()) return;
   1599 
   1600     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
   1601          << LastDRE->getDecl() << LastIncrement;
   1602     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
   1603          << LoopIncrement;
   1604   }
   1605 
   1606 } // end namespace
   1607 
   1608 
   1609 void Sema::CheckBreakContinueBinding(Expr *E) {
   1610   if (!E || getLangOpts().CPlusPlus)
   1611     return;
   1612   BreakContinueFinder BCFinder(*this, E);
   1613   Scope *BreakParent = CurScope->getBreakParent();
   1614   if (BCFinder.BreakFound() && BreakParent) {
   1615     if (BreakParent->getFlags() & Scope::SwitchScope) {
   1616       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
   1617     } else {
   1618       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
   1619           << "break";
   1620     }
   1621   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
   1622     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
   1623         << "continue";
   1624   }
   1625 }
   1626 
   1627 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
   1628                               Stmt *First, ConditionResult Second,
   1629                               FullExprArg third, SourceLocation RParenLoc,
   1630                               Stmt *Body) {
   1631   if (Second.isInvalid())
   1632     return StmtError();
   1633 
   1634   if (!getLangOpts().CPlusPlus) {
   1635     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
   1636       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
   1637       // declare identifiers for objects having storage class 'auto' or
   1638       // 'register'.
   1639       for (auto *DI : DS->decls()) {
   1640         VarDecl *VD = dyn_cast<VarDecl>(DI);
   1641         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
   1642           VD = nullptr;
   1643         if (!VD) {
   1644           Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
   1645           DI->setInvalidDecl();
   1646         }
   1647       }
   1648     }
   1649   }
   1650 
   1651   CheckBreakContinueBinding(Second.get().second);
   1652   CheckBreakContinueBinding(third.get());
   1653 
   1654   if (!Second.get().first)
   1655     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
   1656                                      Body);
   1657   CheckForRedundantIteration(*this, third.get(), Body);
   1658 
   1659   if (Second.get().second &&
   1660       !Diags.isIgnored(diag::warn_comma_operator,
   1661                        Second.get().second->getExprLoc()))
   1662     CommaVisitor(*this).Visit(Second.get().second);
   1663 
   1664   Expr *Third  = third.release().getAs<Expr>();
   1665 
   1666   DiagnoseUnusedExprResult(First);
   1667   DiagnoseUnusedExprResult(Third);
   1668   DiagnoseUnusedExprResult(Body);
   1669 
   1670   if (isa<NullStmt>(Body))
   1671     getCurCompoundScope().setHasEmptyLoopBodies();
   1672 
   1673   return new (Context)
   1674       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
   1675               Body, ForLoc, LParenLoc, RParenLoc);
   1676 }
   1677 
   1678 /// In an Objective C collection iteration statement:
   1679 ///   for (x in y)
   1680 /// x can be an arbitrary l-value expression.  Bind it up as a
   1681 /// full-expression.
   1682 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
   1683   // Reduce placeholder expressions here.  Note that this rejects the
   1684   // use of pseudo-object l-values in this position.
   1685   ExprResult result = CheckPlaceholderExpr(E);
   1686   if (result.isInvalid()) return StmtError();
   1687   E = result.get();
   1688 
   1689   ExprResult FullExpr = ActOnFinishFullExpr(E);
   1690   if (FullExpr.isInvalid())
   1691     return StmtError();
   1692   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
   1693 }
   1694 
   1695 ExprResult
   1696 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
   1697   if (!collection)
   1698     return ExprError();
   1699 
   1700   ExprResult result = CorrectDelayedTyposInExpr(collection);
   1701   if (!result.isUsable())
   1702     return ExprError();
   1703   collection = result.get();
   1704 
   1705   // Bail out early if we've got a type-dependent expression.
   1706   if (collection->isTypeDependent()) return collection;
   1707 
   1708   // Perform normal l-value conversion.
   1709   result = DefaultFunctionArrayLvalueConversion(collection);
   1710   if (result.isInvalid())
   1711     return ExprError();
   1712   collection = result.get();
   1713 
   1714   // The operand needs to have object-pointer type.
   1715   // TODO: should we do a contextual conversion?
   1716   const ObjCObjectPointerType *pointerType =
   1717     collection->getType()->getAs<ObjCObjectPointerType>();
   1718   if (!pointerType)
   1719     return Diag(forLoc, diag::err_collection_expr_type)
   1720              << collection->getType() << collection->getSourceRange();
   1721 
   1722   // Check that the operand provides
   1723   //   - countByEnumeratingWithState:objects:count:
   1724   const ObjCObjectType *objectType = pointerType->getObjectType();
   1725   ObjCInterfaceDecl *iface = objectType->getInterface();
   1726 
   1727   // If we have a forward-declared type, we can't do this check.
   1728   // Under ARC, it is an error not to have a forward-declared class.
   1729   if (iface &&
   1730       (getLangOpts().ObjCAutoRefCount
   1731            ? RequireCompleteType(forLoc, QualType(objectType, 0),
   1732                                  diag::err_arc_collection_forward, collection)
   1733            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
   1734     // Otherwise, if we have any useful type information, check that
   1735     // the type declares the appropriate method.
   1736   } else if (iface || !objectType->qual_empty()) {
   1737     IdentifierInfo *selectorIdents[] = {
   1738       &Context.Idents.get("countByEnumeratingWithState"),
   1739       &Context.Idents.get("objects"),
   1740       &Context.Idents.get("count")
   1741     };
   1742     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
   1743 
   1744     ObjCMethodDecl *method = nullptr;
   1745 
   1746     // If there's an interface, look in both the public and private APIs.
   1747     if (iface) {
   1748       method = iface->lookupInstanceMethod(selector);
   1749       if (!method) method = iface->lookupPrivateMethod(selector);
   1750     }
   1751 
   1752     // Also check protocol qualifiers.
   1753     if (!method)
   1754       method = LookupMethodInQualifiedType(selector, pointerType,
   1755                                            /*instance*/ true);
   1756 
   1757     // If we didn't find it anywhere, give up.
   1758     if (!method) {
   1759       Diag(forLoc, diag::warn_collection_expr_type)
   1760         << collection->getType() << selector << collection->getSourceRange();
   1761     }
   1762 
   1763     // TODO: check for an incompatible signature?
   1764   }
   1765 
   1766   // Wrap up any cleanups in the expression.
   1767   return collection;
   1768 }
   1769 
   1770 StmtResult
   1771 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
   1772                                  Stmt *First, Expr *collection,
   1773                                  SourceLocation RParenLoc) {
   1774 
   1775   ExprResult CollectionExprResult =
   1776     CheckObjCForCollectionOperand(ForLoc, collection);
   1777 
   1778   if (First) {
   1779     QualType FirstType;
   1780     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
   1781       if (!DS->isSingleDecl())
   1782         return StmtError(Diag((*DS->decl_begin())->getLocation(),
   1783                          diag::err_toomany_element_decls));
   1784 
   1785       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
   1786       if (!D || D->isInvalidDecl())
   1787         return StmtError();
   1788 
   1789       FirstType = D->getType();
   1790       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
   1791       // declare identifiers for objects having storage class 'auto' or
   1792       // 'register'.
   1793       if (!D->hasLocalStorage())
   1794         return StmtError(Diag(D->getLocation(),
   1795                               diag::err_non_local_variable_decl_in_for));
   1796 
   1797       // If the type contained 'auto', deduce the 'auto' to 'id'.
   1798       if (FirstType->getContainedAutoType()) {
   1799         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
   1800                                  VK_RValue);
   1801         Expr *DeducedInit = &OpaqueId;
   1802         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
   1803                 DAR_Failed)
   1804           DiagnoseAutoDeductionFailure(D, DeducedInit);
   1805         if (FirstType.isNull()) {
   1806           D->setInvalidDecl();
   1807           return StmtError();
   1808         }
   1809 
   1810         D->setType(FirstType);
   1811 
   1812         if (ActiveTemplateInstantiations.empty()) {
   1813           SourceLocation Loc =
   1814               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
   1815           Diag(Loc, diag::warn_auto_var_is_id)
   1816             << D->getDeclName();
   1817         }
   1818       }
   1819 
   1820     } else {
   1821       Expr *FirstE = cast<Expr>(First);
   1822       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
   1823         return StmtError(Diag(First->getLocStart(),
   1824                    diag::err_selector_element_not_lvalue)
   1825           << First->getSourceRange());
   1826 
   1827       FirstType = static_cast<Expr*>(First)->getType();
   1828       if (FirstType.isConstQualified())
   1829         Diag(ForLoc, diag::err_selector_element_const_type)
   1830           << FirstType << First->getSourceRange();
   1831     }
   1832     if (!FirstType->isDependentType() &&
   1833         !FirstType->isObjCObjectPointerType() &&
   1834         !FirstType->isBlockPointerType())
   1835         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
   1836                            << FirstType << First->getSourceRange());
   1837   }
   1838 
   1839   if (CollectionExprResult.isInvalid())
   1840     return StmtError();
   1841 
   1842   CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
   1843   if (CollectionExprResult.isInvalid())
   1844     return StmtError();
   1845 
   1846   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
   1847                                              nullptr, ForLoc, RParenLoc);
   1848 }
   1849 
   1850 /// Finish building a variable declaration for a for-range statement.
   1851 /// \return true if an error occurs.
   1852 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
   1853                                   SourceLocation Loc, int DiagID) {
   1854   if (Decl->getType()->isUndeducedType()) {
   1855     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
   1856     if (!Res.isUsable()) {
   1857       Decl->setInvalidDecl();
   1858       return true;
   1859     }
   1860     Init = Res.get();
   1861   }
   1862 
   1863   // Deduce the type for the iterator variable now rather than leaving it to
   1864   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
   1865   QualType InitType;
   1866   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
   1867       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
   1868           Sema::DAR_Failed)
   1869     SemaRef.Diag(Loc, DiagID) << Init->getType();
   1870   if (InitType.isNull()) {
   1871     Decl->setInvalidDecl();
   1872     return true;
   1873   }
   1874   Decl->setType(InitType);
   1875 
   1876   // In ARC, infer lifetime.
   1877   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
   1878   // we're doing the equivalent of fast iteration.
   1879   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
   1880       SemaRef.inferObjCARCLifetime(Decl))
   1881     Decl->setInvalidDecl();
   1882 
   1883   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
   1884                                /*TypeMayContainAuto=*/false);
   1885   SemaRef.FinalizeDeclaration(Decl);
   1886   SemaRef.CurContext->addHiddenDecl(Decl);
   1887   return false;
   1888 }
   1889 
   1890 namespace {
   1891 // An enum to represent whether something is dealing with a call to begin()
   1892 // or a call to end() in a range-based for loop.
   1893 enum BeginEndFunction {
   1894   BEF_begin,
   1895   BEF_end
   1896 };
   1897 
   1898 /// Produce a note indicating which begin/end function was implicitly called
   1899 /// by a C++11 for-range statement. This is often not obvious from the code,
   1900 /// nor from the diagnostics produced when analysing the implicit expressions
   1901 /// required in a for-range statement.
   1902 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
   1903                                   BeginEndFunction BEF) {
   1904   CallExpr *CE = dyn_cast<CallExpr>(E);
   1905   if (!CE)
   1906     return;
   1907   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1908   if (!D)
   1909     return;
   1910   SourceLocation Loc = D->getLocation();
   1911 
   1912   std::string Description;
   1913   bool IsTemplate = false;
   1914   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
   1915     Description = SemaRef.getTemplateArgumentBindingsText(
   1916       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
   1917     IsTemplate = true;
   1918   }
   1919 
   1920   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
   1921     << BEF << IsTemplate << Description << E->getType();
   1922 }
   1923 
   1924 /// Build a variable declaration for a for-range statement.
   1925 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
   1926                               QualType Type, const char *Name) {
   1927   DeclContext *DC = SemaRef.CurContext;
   1928   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
   1929   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
   1930   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
   1931                                   TInfo, SC_None);
   1932   Decl->setImplicit();
   1933   return Decl;
   1934 }
   1935 
   1936 }
   1937 
   1938 static bool ObjCEnumerationCollection(Expr *Collection) {
   1939   return !Collection->isTypeDependent()
   1940           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
   1941 }
   1942 
   1943 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
   1944 ///
   1945 /// C++11 [stmt.ranged]:
   1946 ///   A range-based for statement is equivalent to
   1947 ///
   1948 ///   {
   1949 ///     auto && __range = range-init;
   1950 ///     for ( auto __begin = begin-expr,
   1951 ///           __end = end-expr;
   1952 ///           __begin != __end;
   1953 ///           ++__begin ) {
   1954 ///       for-range-declaration = *__begin;
   1955 ///       statement
   1956 ///     }
   1957 ///   }
   1958 ///
   1959 /// The body of the loop is not available yet, since it cannot be analysed until
   1960 /// we have determined the type of the for-range-declaration.
   1961 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
   1962                                       SourceLocation CoawaitLoc, Stmt *First,
   1963                                       SourceLocation ColonLoc, Expr *Range,
   1964                                       SourceLocation RParenLoc,
   1965                                       BuildForRangeKind Kind) {
   1966   if (!First)
   1967     return StmtError();
   1968 
   1969   if (Range && ObjCEnumerationCollection(Range))
   1970     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
   1971 
   1972   DeclStmt *DS = dyn_cast<DeclStmt>(First);
   1973   assert(DS && "first part of for range not a decl stmt");
   1974 
   1975   if (!DS->isSingleDecl()) {
   1976     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
   1977     return StmtError();
   1978   }
   1979 
   1980   Decl *LoopVar = DS->getSingleDecl();
   1981   if (LoopVar->isInvalidDecl() || !Range ||
   1982       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
   1983     LoopVar->setInvalidDecl();
   1984     return StmtError();
   1985   }
   1986 
   1987   // Coroutines: 'for co_await' implicitly co_awaits its range.
   1988   if (CoawaitLoc.isValid()) {
   1989     ExprResult Coawait = ActOnCoawaitExpr(S, CoawaitLoc, Range);
   1990     if (Coawait.isInvalid()) return StmtError();
   1991     Range = Coawait.get();
   1992   }
   1993 
   1994   // Build  auto && __range = range-init
   1995   SourceLocation RangeLoc = Range->getLocStart();
   1996   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
   1997                                            Context.getAutoRRefDeductType(),
   1998                                            "__range");
   1999   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
   2000                             diag::err_for_range_deduction_failure)) {
   2001     LoopVar->setInvalidDecl();
   2002     return StmtError();
   2003   }
   2004 
   2005   // Claim the type doesn't contain auto: we've already done the checking.
   2006   DeclGroupPtrTy RangeGroup =
   2007       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
   2008                            /*TypeMayContainAuto=*/ false);
   2009   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
   2010   if (RangeDecl.isInvalid()) {
   2011     LoopVar->setInvalidDecl();
   2012     return StmtError();
   2013   }
   2014 
   2015   return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(),
   2016                               /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
   2017                               /*Cond=*/nullptr, /*Inc=*/nullptr,
   2018                               DS, RParenLoc, Kind);
   2019 }
   2020 
   2021 /// \brief Create the initialization, compare, and increment steps for
   2022 /// the range-based for loop expression.
   2023 /// This function does not handle array-based for loops,
   2024 /// which are created in Sema::BuildCXXForRangeStmt.
   2025 ///
   2026 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
   2027 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
   2028 /// CandidateSet and BEF are set and some non-success value is returned on
   2029 /// failure.
   2030 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef,
   2031                                             Expr *BeginRange, Expr *EndRange,
   2032                                             QualType RangeType,
   2033                                             VarDecl *BeginVar,
   2034                                             VarDecl *EndVar,
   2035                                             SourceLocation ColonLoc,
   2036                                             OverloadCandidateSet *CandidateSet,
   2037                                             ExprResult *BeginExpr,
   2038                                             ExprResult *EndExpr,
   2039                                             BeginEndFunction *BEF) {
   2040   DeclarationNameInfo BeginNameInfo(
   2041       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
   2042   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
   2043                                   ColonLoc);
   2044 
   2045   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
   2046                                  Sema::LookupMemberName);
   2047   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
   2048 
   2049   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
   2050     // - if _RangeT is a class type, the unqualified-ids begin and end are
   2051     //   looked up in the scope of class _RangeT as if by class member access
   2052     //   lookup (3.4.5), and if either (or both) finds at least one
   2053     //   declaration, begin-expr and end-expr are __range.begin() and
   2054     //   __range.end(), respectively;
   2055     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
   2056     SemaRef.LookupQualifiedName(EndMemberLookup, D);
   2057 
   2058     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
   2059       SourceLocation RangeLoc = BeginVar->getLocation();
   2060       *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin;
   2061 
   2062       SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
   2063           << RangeLoc << BeginRange->getType() << *BEF;
   2064       return Sema::FRS_DiagnosticIssued;
   2065     }
   2066   } else {
   2067     // - otherwise, begin-expr and end-expr are begin(__range) and
   2068     //   end(__range), respectively, where begin and end are looked up with
   2069     //   argument-dependent lookup (3.4.2). For the purposes of this name
   2070     //   lookup, namespace std is an associated namespace.
   2071 
   2072   }
   2073 
   2074   *BEF = BEF_begin;
   2075   Sema::ForRangeStatus RangeStatus =
   2076       SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
   2077                                         BeginMemberLookup, CandidateSet,
   2078                                         BeginRange, BeginExpr);
   2079 
   2080   if (RangeStatus != Sema::FRS_Success) {
   2081     if (RangeStatus == Sema::FRS_DiagnosticIssued)
   2082       SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range)
   2083           << ColonLoc << BEF_begin << BeginRange->getType();
   2084     return RangeStatus;
   2085   }
   2086   if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
   2087                             diag::err_for_range_iter_deduction_failure)) {
   2088     NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
   2089     return Sema::FRS_DiagnosticIssued;
   2090   }
   2091 
   2092   *BEF = BEF_end;
   2093   RangeStatus =
   2094       SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
   2095                                         EndMemberLookup, CandidateSet,
   2096                                         EndRange, EndExpr);
   2097   if (RangeStatus != Sema::FRS_Success) {
   2098     if (RangeStatus == Sema::FRS_DiagnosticIssued)
   2099       SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range)
   2100           << ColonLoc << BEF_end << EndRange->getType();
   2101     return RangeStatus;
   2102   }
   2103   if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
   2104                             diag::err_for_range_iter_deduction_failure)) {
   2105     NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
   2106     return Sema::FRS_DiagnosticIssued;
   2107   }
   2108   return Sema::FRS_Success;
   2109 }
   2110 
   2111 /// Speculatively attempt to dereference an invalid range expression.
   2112 /// If the attempt fails, this function will return a valid, null StmtResult
   2113 /// and emit no diagnostics.
   2114 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
   2115                                                  SourceLocation ForLoc,
   2116                                                  SourceLocation CoawaitLoc,
   2117                                                  Stmt *LoopVarDecl,
   2118                                                  SourceLocation ColonLoc,
   2119                                                  Expr *Range,
   2120                                                  SourceLocation RangeLoc,
   2121                                                  SourceLocation RParenLoc) {
   2122   // Determine whether we can rebuild the for-range statement with a
   2123   // dereferenced range expression.
   2124   ExprResult AdjustedRange;
   2125   {
   2126     Sema::SFINAETrap Trap(SemaRef);
   2127 
   2128     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
   2129     if (AdjustedRange.isInvalid())
   2130       return StmtResult();
   2131 
   2132     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
   2133         S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(),
   2134         RParenLoc, Sema::BFRK_Check);
   2135     if (SR.isInvalid())
   2136       return StmtResult();
   2137   }
   2138 
   2139   // The attempt to dereference worked well enough that it could produce a valid
   2140   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
   2141   // case there are any other (non-fatal) problems with it.
   2142   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
   2143     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
   2144   return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl,
   2145                                       ColonLoc, AdjustedRange.get(), RParenLoc,
   2146                                       Sema::BFRK_Rebuild);
   2147 }
   2148 
   2149 namespace {
   2150 /// RAII object to automatically invalidate a declaration if an error occurs.
   2151 struct InvalidateOnErrorScope {
   2152   InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
   2153       : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
   2154   ~InvalidateOnErrorScope() {
   2155     if (Enabled && Trap.hasErrorOccurred())
   2156       D->setInvalidDecl();
   2157   }
   2158 
   2159   DiagnosticErrorTrap Trap;
   2160   Decl *D;
   2161   bool Enabled;
   2162 };
   2163 }
   2164 
   2165 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
   2166 StmtResult
   2167 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc,
   2168                            SourceLocation ColonLoc, Stmt *RangeDecl,
   2169                            Stmt *Begin, Stmt *End, Expr *Cond,
   2170                            Expr *Inc, Stmt *LoopVarDecl,
   2171                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
   2172   // FIXME: This should not be used during template instantiation. We should
   2173   // pick up the set of unqualified lookup results for the != and + operators
   2174   // in the initial parse.
   2175   //
   2176   // Testcase (accepts-invalid):
   2177   //   template<typename T> void f() { for (auto x : T()) {} }
   2178   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
   2179   //   bool operator!=(N::X, N::X); void operator++(N::X);
   2180   //   void g() { f<N::X>(); }
   2181   Scope *S = getCurScope();
   2182 
   2183   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
   2184   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
   2185   QualType RangeVarType = RangeVar->getType();
   2186 
   2187   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
   2188   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
   2189 
   2190   // If we hit any errors, mark the loop variable as invalid if its type
   2191   // contains 'auto'.
   2192   InvalidateOnErrorScope Invalidate(*this, LoopVar,
   2193                                     LoopVar->getType()->isUndeducedType());
   2194 
   2195   StmtResult BeginDeclStmt = Begin;
   2196   StmtResult EndDeclStmt = End;
   2197   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
   2198 
   2199   if (RangeVarType->isDependentType()) {
   2200     // The range is implicitly used as a placeholder when it is dependent.
   2201     RangeVar->markUsed(Context);
   2202 
   2203     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
   2204     // them in properly when we instantiate the loop.
   2205     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
   2206       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
   2207   } else if (!BeginDeclStmt.get()) {
   2208     SourceLocation RangeLoc = RangeVar->getLocation();
   2209 
   2210     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
   2211 
   2212     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   2213                                                 VK_LValue, ColonLoc);
   2214     if (BeginRangeRef.isInvalid())
   2215       return StmtError();
   2216 
   2217     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   2218                                               VK_LValue, ColonLoc);
   2219     if (EndRangeRef.isInvalid())
   2220       return StmtError();
   2221 
   2222     QualType AutoType = Context.getAutoDeductType();
   2223     Expr *Range = RangeVar->getInit();
   2224     if (!Range)
   2225       return StmtError();
   2226     QualType RangeType = Range->getType();
   2227 
   2228     if (RequireCompleteType(RangeLoc, RangeType,
   2229                             diag::err_for_range_incomplete_type))
   2230       return StmtError();
   2231 
   2232     // Build auto __begin = begin-expr, __end = end-expr.
   2233     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   2234                                              "__begin");
   2235     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   2236                                            "__end");
   2237 
   2238     // Build begin-expr and end-expr and attach to __begin and __end variables.
   2239     ExprResult BeginExpr, EndExpr;
   2240     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
   2241       // - if _RangeT is an array type, begin-expr and end-expr are __range and
   2242       //   __range + __bound, respectively, where __bound is the array bound. If
   2243       //   _RangeT is an array of unknown size or an array of incomplete type,
   2244       //   the program is ill-formed;
   2245 
   2246       // begin-expr is __range.
   2247       BeginExpr = BeginRangeRef;
   2248       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
   2249                                 diag::err_for_range_iter_deduction_failure)) {
   2250         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2251         return StmtError();
   2252       }
   2253 
   2254       // Find the array bound.
   2255       ExprResult BoundExpr;
   2256       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
   2257         BoundExpr = IntegerLiteral::Create(
   2258             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
   2259       else if (const VariableArrayType *VAT =
   2260                dyn_cast<VariableArrayType>(UnqAT))
   2261         BoundExpr = VAT->getSizeExpr();
   2262       else {
   2263         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
   2264         // UnqAT is not incomplete and Range is not type-dependent.
   2265         llvm_unreachable("Unexpected array type in for-range");
   2266       }
   2267 
   2268       // end-expr is __range + __bound.
   2269       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
   2270                            BoundExpr.get());
   2271       if (EndExpr.isInvalid())
   2272         return StmtError();
   2273       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
   2274                                 diag::err_for_range_iter_deduction_failure)) {
   2275         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2276         return StmtError();
   2277       }
   2278     } else {
   2279       OverloadCandidateSet CandidateSet(RangeLoc,
   2280                                         OverloadCandidateSet::CSK_Normal);
   2281       BeginEndFunction BEFFailure;
   2282       ForRangeStatus RangeStatus =
   2283           BuildNonArrayForRange(*this, BeginRangeRef.get(),
   2284                                 EndRangeRef.get(), RangeType,
   2285                                 BeginVar, EndVar, ColonLoc, &CandidateSet,
   2286                                 &BeginExpr, &EndExpr, &BEFFailure);
   2287 
   2288       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
   2289           BEFFailure == BEF_begin) {
   2290         // If the range is being built from an array parameter, emit a
   2291         // a diagnostic that it is being treated as a pointer.
   2292         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
   2293           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
   2294             QualType ArrayTy = PVD->getOriginalType();
   2295             QualType PointerTy = PVD->getType();
   2296             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
   2297               Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
   2298                 << RangeLoc << PVD << ArrayTy << PointerTy;
   2299               Diag(PVD->getLocation(), diag::note_declared_at);
   2300               return StmtError();
   2301             }
   2302           }
   2303         }
   2304 
   2305         // If building the range failed, try dereferencing the range expression
   2306         // unless a diagnostic was issued or the end function is problematic.
   2307         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
   2308                                                        CoawaitLoc,
   2309                                                        LoopVarDecl, ColonLoc,
   2310                                                        Range, RangeLoc,
   2311                                                        RParenLoc);
   2312         if (SR.isInvalid() || SR.isUsable())
   2313           return SR;
   2314       }
   2315 
   2316       // Otherwise, emit diagnostics if we haven't already.
   2317       if (RangeStatus == FRS_NoViableFunction) {
   2318         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
   2319         Diag(Range->getLocStart(), diag::err_for_range_invalid)
   2320             << RangeLoc << Range->getType() << BEFFailure;
   2321         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
   2322       }
   2323       // Return an error if no fix was discovered.
   2324       if (RangeStatus != FRS_Success)
   2325         return StmtError();
   2326     }
   2327 
   2328     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
   2329            "invalid range expression in for loop");
   2330 
   2331     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
   2332     // C++1z removes this restriction.
   2333     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
   2334     if (!Context.hasSameType(BeginType, EndType)) {
   2335       Diag(RangeLoc, getLangOpts().CPlusPlus1z
   2336                          ? diag::warn_for_range_begin_end_types_differ
   2337                          : diag::ext_for_range_begin_end_types_differ)
   2338           << BeginType << EndType;
   2339       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2340       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2341     }
   2342 
   2343     BeginDeclStmt =
   2344         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
   2345     EndDeclStmt =
   2346         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
   2347 
   2348     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
   2349     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2350                                            VK_LValue, ColonLoc);
   2351     if (BeginRef.isInvalid())
   2352       return StmtError();
   2353 
   2354     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
   2355                                          VK_LValue, ColonLoc);
   2356     if (EndRef.isInvalid())
   2357       return StmtError();
   2358 
   2359     // Build and check __begin != __end expression.
   2360     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
   2361                            BeginRef.get(), EndRef.get());
   2362     if (!NotEqExpr.isInvalid())
   2363       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
   2364     if (!NotEqExpr.isInvalid())
   2365       NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
   2366     if (NotEqExpr.isInvalid()) {
   2367       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2368         << RangeLoc << 0 << BeginRangeRef.get()->getType();
   2369       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2370       if (!Context.hasSameType(BeginType, EndType))
   2371         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2372       return StmtError();
   2373     }
   2374 
   2375     // Build and check ++__begin expression.
   2376     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2377                                 VK_LValue, ColonLoc);
   2378     if (BeginRef.isInvalid())
   2379       return StmtError();
   2380 
   2381     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
   2382     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
   2383       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
   2384     if (!IncrExpr.isInvalid())
   2385       IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
   2386     if (IncrExpr.isInvalid()) {
   2387       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2388         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
   2389       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2390       return StmtError();
   2391     }
   2392 
   2393     // Build and check *__begin  expression.
   2394     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2395                                 VK_LValue, ColonLoc);
   2396     if (BeginRef.isInvalid())
   2397       return StmtError();
   2398 
   2399     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
   2400     if (DerefExpr.isInvalid()) {
   2401       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2402         << RangeLoc << 1 << BeginRangeRef.get()->getType();
   2403       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2404       return StmtError();
   2405     }
   2406 
   2407     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
   2408     // trying to determine whether this would be a valid range.
   2409     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
   2410       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
   2411                            /*TypeMayContainAuto=*/true);
   2412       if (LoopVar->isInvalidDecl())
   2413         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2414     }
   2415   }
   2416 
   2417   // Don't bother to actually allocate the result if we're just trying to
   2418   // determine whether it would be valid.
   2419   if (Kind == BFRK_Check)
   2420     return StmtResult();
   2421 
   2422   return new (Context) CXXForRangeStmt(
   2423       RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
   2424       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
   2425       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
   2426       ColonLoc, RParenLoc);
   2427 }
   2428 
   2429 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
   2430 /// statement.
   2431 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
   2432   if (!S || !B)
   2433     return StmtError();
   2434   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
   2435 
   2436   ForStmt->setBody(B);
   2437   return S;
   2438 }
   2439 
   2440 // Warn when the loop variable is a const reference that creates a copy.
   2441 // Suggest using the non-reference type for copies.  If a copy can be prevented
   2442 // suggest the const reference type that would do so.
   2443 // For instance, given "for (const &Foo : Range)", suggest
   2444 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
   2445 // possible, also suggest "for (const &Bar : Range)" if this type prevents
   2446 // the copy altogether.
   2447 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
   2448                                                     const VarDecl *VD,
   2449                                                     QualType RangeInitType) {
   2450   const Expr *InitExpr = VD->getInit();
   2451   if (!InitExpr)
   2452     return;
   2453 
   2454   QualType VariableType = VD->getType();
   2455 
   2456   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
   2457     if (!Cleanups->cleanupsHaveSideEffects())
   2458       InitExpr = Cleanups->getSubExpr();
   2459 
   2460   const MaterializeTemporaryExpr *MTE =
   2461       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
   2462 
   2463   // No copy made.
   2464   if (!MTE)
   2465     return;
   2466 
   2467   const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
   2468 
   2469   // Searching for either UnaryOperator for dereference of a pointer or
   2470   // CXXOperatorCallExpr for handling iterators.
   2471   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
   2472     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
   2473       E = CCE->getArg(0);
   2474     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
   2475       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
   2476       E = ME->getBase();
   2477     } else {
   2478       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
   2479       E = MTE->GetTemporaryExpr();
   2480     }
   2481     E = E->IgnoreImpCasts();
   2482   }
   2483 
   2484   bool ReturnsReference = false;
   2485   if (isa<UnaryOperator>(E)) {
   2486     ReturnsReference = true;
   2487   } else {
   2488     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
   2489     const FunctionDecl *FD = Call->getDirectCallee();
   2490     QualType ReturnType = FD->getReturnType();
   2491     ReturnsReference = ReturnType->isReferenceType();
   2492   }
   2493 
   2494   if (ReturnsReference) {
   2495     // Loop variable creates a temporary.  Suggest either to go with
   2496     // non-reference loop variable to indiciate a copy is made, or
   2497     // the correct time to bind a const reference.
   2498     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
   2499         << VD << VariableType << E->getType();
   2500     QualType NonReferenceType = VariableType.getNonReferenceType();
   2501     NonReferenceType.removeLocalConst();
   2502     QualType NewReferenceType =
   2503         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
   2504     SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
   2505         << NonReferenceType << NewReferenceType << VD->getSourceRange();
   2506   } else {
   2507     // The range always returns a copy, so a temporary is always created.
   2508     // Suggest removing the reference from the loop variable.
   2509     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
   2510         << VD << RangeInitType;
   2511     QualType NonReferenceType = VariableType.getNonReferenceType();
   2512     NonReferenceType.removeLocalConst();
   2513     SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
   2514         << NonReferenceType << VD->getSourceRange();
   2515   }
   2516 }
   2517 
   2518 // Warns when the loop variable can be changed to a reference type to
   2519 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
   2520 // "for (const Foo &x : Range)" if this form does not make a copy.
   2521 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
   2522                                                 const VarDecl *VD) {
   2523   const Expr *InitExpr = VD->getInit();
   2524   if (!InitExpr)
   2525     return;
   2526 
   2527   QualType VariableType = VD->getType();
   2528 
   2529   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
   2530     if (!CE->getConstructor()->isCopyConstructor())
   2531       return;
   2532   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
   2533     if (CE->getCastKind() != CK_LValueToRValue)
   2534       return;
   2535   } else {
   2536     return;
   2537   }
   2538 
   2539   // TODO: Determine a maximum size that a POD type can be before a diagnostic
   2540   // should be emitted.  Also, only ignore POD types with trivial copy
   2541   // constructors.
   2542   if (VariableType.isPODType(SemaRef.Context))
   2543     return;
   2544 
   2545   // Suggest changing from a const variable to a const reference variable
   2546   // if doing so will prevent a copy.
   2547   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
   2548       << VD << VariableType << InitExpr->getType();
   2549   SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
   2550       << SemaRef.Context.getLValueReferenceType(VariableType)
   2551       << VD->getSourceRange();
   2552 }
   2553 
   2554 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
   2555 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
   2556 ///    using "const foo x" to show that a copy is made
   2557 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
   2558 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
   2559 ///    prevent the copy.
   2560 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
   2561 ///    Suggest "const foo &x" to prevent the copy.
   2562 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
   2563                                            const CXXForRangeStmt *ForStmt) {
   2564   if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
   2565                               ForStmt->getLocStart()) &&
   2566       SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
   2567                               ForStmt->getLocStart()) &&
   2568       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
   2569                               ForStmt->getLocStart())) {
   2570     return;
   2571   }
   2572 
   2573   const VarDecl *VD = ForStmt->getLoopVariable();
   2574   if (!VD)
   2575     return;
   2576 
   2577   QualType VariableType = VD->getType();
   2578 
   2579   if (VariableType->isIncompleteType())
   2580     return;
   2581 
   2582   const Expr *InitExpr = VD->getInit();
   2583   if (!InitExpr)
   2584     return;
   2585 
   2586   if (VariableType->isReferenceType()) {
   2587     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
   2588                                             ForStmt->getRangeInit()->getType());
   2589   } else if (VariableType.isConstQualified()) {
   2590     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
   2591   }
   2592 }
   2593 
   2594 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
   2595 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
   2596 /// body cannot be performed until after the type of the range variable is
   2597 /// determined.
   2598 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
   2599   if (!S || !B)
   2600     return StmtError();
   2601 
   2602   if (isa<ObjCForCollectionStmt>(S))
   2603     return FinishObjCForCollectionStmt(S, B);
   2604 
   2605   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
   2606   ForStmt->setBody(B);
   2607 
   2608   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
   2609                         diag::warn_empty_range_based_for_body);
   2610 
   2611   DiagnoseForRangeVariableCopies(*this, ForStmt);
   2612 
   2613   return S;
   2614 }
   2615 
   2616 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
   2617                                SourceLocation LabelLoc,
   2618                                LabelDecl *TheDecl) {
   2619   getCurFunction()->setHasBranchIntoScope();
   2620   TheDecl->markUsed(Context);
   2621   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
   2622 }
   2623 
   2624 StmtResult
   2625 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
   2626                             Expr *E) {
   2627   // Convert operand to void*
   2628   if (!E->isTypeDependent()) {
   2629     QualType ETy = E->getType();
   2630     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
   2631     ExprResult ExprRes = E;
   2632     AssignConvertType ConvTy =
   2633       CheckSingleAssignmentConstraints(DestTy, ExprRes);
   2634     if (ExprRes.isInvalid())
   2635       return StmtError();
   2636     E = ExprRes.get();
   2637     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
   2638       return StmtError();
   2639   }
   2640 
   2641   ExprResult ExprRes = ActOnFinishFullExpr(E);
   2642   if (ExprRes.isInvalid())
   2643     return StmtError();
   2644   E = ExprRes.get();
   2645 
   2646   getCurFunction()->setHasIndirectGoto();
   2647 
   2648   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
   2649 }
   2650 
   2651 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
   2652                                      const Scope &DestScope) {
   2653   if (!S.CurrentSEHFinally.empty() &&
   2654       DestScope.Contains(*S.CurrentSEHFinally.back())) {
   2655     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
   2656   }
   2657 }
   2658 
   2659 StmtResult
   2660 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
   2661   Scope *S = CurScope->getContinueParent();
   2662   if (!S) {
   2663     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
   2664     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
   2665   }
   2666   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
   2667 
   2668   return new (Context) ContinueStmt(ContinueLoc);
   2669 }
   2670 
   2671 StmtResult
   2672 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
   2673   Scope *S = CurScope->getBreakParent();
   2674   if (!S) {
   2675     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
   2676     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
   2677   }
   2678   if (S->isOpenMPLoopScope())
   2679     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
   2680                      << "break");
   2681   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
   2682 
   2683   return new (Context) BreakStmt(BreakLoc);
   2684 }
   2685 
   2686 /// \brief Determine whether the given expression is a candidate for
   2687 /// copy elision in either a return statement or a throw expression.
   2688 ///
   2689 /// \param ReturnType If we're determining the copy elision candidate for
   2690 /// a return statement, this is the return type of the function. If we're
   2691 /// determining the copy elision candidate for a throw expression, this will
   2692 /// be a NULL type.
   2693 ///
   2694 /// \param E The expression being returned from the function or block, or
   2695 /// being thrown.
   2696 ///
   2697 /// \param AllowParamOrMoveConstructible Whether we allow function parameters or
   2698 /// id-expressions that could be moved out of the function to be considered NRVO
   2699 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
   2700 /// determine whether we should try to move as part of a return or throw (which
   2701 /// does allow function parameters).
   2702 ///
   2703 /// \returns The NRVO candidate variable, if the return statement may use the
   2704 /// NRVO, or NULL if there is no such candidate.
   2705 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E,
   2706                                        bool AllowParamOrMoveConstructible) {
   2707   if (!getLangOpts().CPlusPlus)
   2708     return nullptr;
   2709 
   2710   // - in a return statement in a function [where] ...
   2711   // ... the expression is the name of a non-volatile automatic object ...
   2712   DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
   2713   if (!DR || DR->refersToEnclosingVariableOrCapture())
   2714     return nullptr;
   2715   VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
   2716   if (!VD)
   2717     return nullptr;
   2718 
   2719   if (isCopyElisionCandidate(ReturnType, VD, AllowParamOrMoveConstructible))
   2720     return VD;
   2721   return nullptr;
   2722 }
   2723 
   2724 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
   2725                                   bool AllowParamOrMoveConstructible) {
   2726   QualType VDType = VD->getType();
   2727   // - in a return statement in a function with ...
   2728   // ... a class return type ...
   2729   if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
   2730     if (!ReturnType->isRecordType())
   2731       return false;
   2732     // ... the same cv-unqualified type as the function return type ...
   2733     // When considering moving this expression out, allow dissimilar types.
   2734     if (!AllowParamOrMoveConstructible && !VDType->isDependentType() &&
   2735         !Context.hasSameUnqualifiedType(ReturnType, VDType))
   2736       return false;
   2737   }
   2738 
   2739   // ...object (other than a function or catch-clause parameter)...
   2740   if (VD->getKind() != Decl::Var &&
   2741       !(AllowParamOrMoveConstructible && VD->getKind() == Decl::ParmVar))
   2742     return false;
   2743   if (VD->isExceptionVariable()) return false;
   2744 
   2745   // ...automatic...
   2746   if (!VD->hasLocalStorage()) return false;
   2747 
   2748   if (AllowParamOrMoveConstructible)
   2749     return true;
   2750 
   2751   // ...non-volatile...
   2752   if (VD->getType().isVolatileQualified()) return false;
   2753 
   2754   // __block variables can't be allocated in a way that permits NRVO.
   2755   if (VD->hasAttr<BlocksAttr>()) return false;
   2756 
   2757   // Variables with higher required alignment than their type's ABI
   2758   // alignment cannot use NRVO.
   2759   if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
   2760       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
   2761     return false;
   2762 
   2763   return true;
   2764 }
   2765 
   2766 /// \brief Perform the initialization of a potentially-movable value, which
   2767 /// is the result of return value.
   2768 ///
   2769 /// This routine implements C++14 [class.copy]p32, which attempts to treat
   2770 /// returned lvalues as rvalues in certain cases (to prefer move construction),
   2771 /// then falls back to treating them as lvalues if that failed.
   2772 ExprResult
   2773 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
   2774                                       const VarDecl *NRVOCandidate,
   2775                                       QualType ResultType,
   2776                                       Expr *Value,
   2777                                       bool AllowNRVO) {
   2778   // C++14 [class.copy]p32:
   2779   // When the criteria for elision of a copy/move operation are met, but not for
   2780   // an exception-declaration, and the object to be copied is designated by an
   2781   // lvalue, or when the expression in a return statement is a (possibly
   2782   // parenthesized) id-expression that names an object with automatic storage
   2783   // duration declared in the body or parameter-declaration-clause of the
   2784   // innermost enclosing function or lambda-expression, overload resolution to
   2785   // select the constructor for the copy is first performed as if the object
   2786   // were designated by an rvalue.
   2787   ExprResult Res = ExprError();
   2788 
   2789   if (AllowNRVO && !NRVOCandidate)
   2790     NRVOCandidate = getCopyElisionCandidate(ResultType, Value, true);
   2791 
   2792   if (AllowNRVO && NRVOCandidate) {
   2793     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
   2794                               CK_NoOp, Value, VK_XValue);
   2795 
   2796     Expr *InitExpr = &AsRvalue;
   2797 
   2798     InitializationKind Kind = InitializationKind::CreateCopy(
   2799         Value->getLocStart(), Value->getLocStart());
   2800 
   2801     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
   2802     if (Seq) {
   2803       for (const InitializationSequence::Step &Step : Seq.steps()) {
   2804         if (!(Step.Kind ==
   2805                   InitializationSequence::SK_ConstructorInitialization ||
   2806               (Step.Kind == InitializationSequence::SK_UserConversion &&
   2807                isa<CXXConstructorDecl>(Step.Function.Function))))
   2808           continue;
   2809 
   2810         CXXConstructorDecl *Constructor =
   2811             cast<CXXConstructorDecl>(Step.Function.Function);
   2812 
   2813         const RValueReferenceType *RRefType
   2814           = Constructor->getParamDecl(0)->getType()
   2815                                                  ->getAs<RValueReferenceType>();
   2816 
   2817         // [...] If the first overload resolution fails or was not performed, or
   2818         // if the type of the first parameter of the selected constructor is not
   2819         // an rvalue reference to the objects type (possibly cv-qualified),
   2820         // overload resolution is performed again, considering the object as an
   2821         // lvalue.
   2822         if (!RRefType ||
   2823             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
   2824                                             NRVOCandidate->getType()))
   2825           break;
   2826 
   2827         // Promote "AsRvalue" to the heap, since we now need this
   2828         // expression node to persist.
   2829         Value = ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp,
   2830                                          Value, nullptr, VK_XValue);
   2831 
   2832         // Complete type-checking the initialization of the return type
   2833         // using the constructor we found.
   2834         Res = Seq.Perform(*this, Entity, Kind, Value);
   2835       }
   2836     }
   2837   }
   2838 
   2839   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
   2840   // above, or overload resolution failed. Either way, we need to try
   2841   // (again) now with the return value expression as written.
   2842   if (Res.isInvalid())
   2843     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
   2844 
   2845   return Res;
   2846 }
   2847 
   2848 /// \brief Determine whether the declared return type of the specified function
   2849 /// contains 'auto'.
   2850 static bool hasDeducedReturnType(FunctionDecl *FD) {
   2851   const FunctionProtoType *FPT =
   2852       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
   2853   return FPT->getReturnType()->isUndeducedType();
   2854 }
   2855 
   2856 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
   2857 /// for capturing scopes.
   2858 ///
   2859 StmtResult
   2860 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   2861   // If this is the first return we've seen, infer the return type.
   2862   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
   2863   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
   2864   QualType FnRetType = CurCap->ReturnType;
   2865   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
   2866   bool HasDeducedReturnType =
   2867       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
   2868 
   2869   if (ExprEvalContexts.back().Context == DiscardedStatement &&
   2870       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
   2871     if (RetValExp) {
   2872       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   2873       if (ER.isInvalid())
   2874         return StmtError();
   2875       RetValExp = ER.get();
   2876     }
   2877     return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
   2878   }
   2879 
   2880   if (HasDeducedReturnType) {
   2881     // In C++1y, the return type may involve 'auto'.
   2882     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
   2883     FunctionDecl *FD = CurLambda->CallOperator;
   2884     if (CurCap->ReturnType.isNull())
   2885       CurCap->ReturnType = FD->getReturnType();
   2886 
   2887     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
   2888     assert(AT && "lost auto type from lambda return type");
   2889     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
   2890       FD->setInvalidDecl();
   2891       return StmtError();
   2892     }
   2893     CurCap->ReturnType = FnRetType = FD->getReturnType();
   2894   } else if (CurCap->HasImplicitReturnType) {
   2895     // For blocks/lambdas with implicit return types, we check each return
   2896     // statement individually, and deduce the common return type when the block
   2897     // or lambda is completed.
   2898     // FIXME: Fold this into the 'auto' codepath above.
   2899     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
   2900       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
   2901       if (Result.isInvalid())
   2902         return StmtError();
   2903       RetValExp = Result.get();
   2904 
   2905       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
   2906       // when deducing a return type for a lambda-expression (or by extension
   2907       // for a block). These rules differ from the stated C++11 rules only in
   2908       // that they remove top-level cv-qualifiers.
   2909       if (!CurContext->isDependentContext())
   2910         FnRetType = RetValExp->getType().getUnqualifiedType();
   2911       else
   2912         FnRetType = CurCap->ReturnType = Context.DependentTy;
   2913     } else {
   2914       if (RetValExp) {
   2915         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
   2916         // initializer list, because it is not an expression (even
   2917         // though we represent it as one). We still deduce 'void'.
   2918         Diag(ReturnLoc, diag::err_lambda_return_init_list)
   2919           << RetValExp->getSourceRange();
   2920       }
   2921 
   2922       FnRetType = Context.VoidTy;
   2923     }
   2924 
   2925     // Although we'll properly infer the type of the block once it's completed,
   2926     // make sure we provide a return type now for better error recovery.
   2927     if (CurCap->ReturnType.isNull())
   2928       CurCap->ReturnType = FnRetType;
   2929   }
   2930   assert(!FnRetType.isNull());
   2931 
   2932   if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
   2933     if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
   2934       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
   2935       return StmtError();
   2936     }
   2937   } else if (CapturedRegionScopeInfo *CurRegion =
   2938                  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
   2939     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
   2940     return StmtError();
   2941   } else {
   2942     assert(CurLambda && "unknown kind of captured scope");
   2943     if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
   2944             ->getNoReturnAttr()) {
   2945       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
   2946       return StmtError();
   2947     }
   2948   }
   2949 
   2950   // Otherwise, verify that this result type matches the previous one.  We are
   2951   // pickier with blocks than for normal functions because we don't have GCC
   2952   // compatibility to worry about here.
   2953   const VarDecl *NRVOCandidate = nullptr;
   2954   if (FnRetType->isDependentType()) {
   2955     // Delay processing for now.  TODO: there are lots of dependent
   2956     // types we can conclusively prove aren't void.
   2957   } else if (FnRetType->isVoidType()) {
   2958     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
   2959         !(getLangOpts().CPlusPlus &&
   2960           (RetValExp->isTypeDependent() ||
   2961            RetValExp->getType()->isVoidType()))) {
   2962       if (!getLangOpts().CPlusPlus &&
   2963           RetValExp->getType()->isVoidType())
   2964         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
   2965       else {
   2966         Diag(ReturnLoc, diag::err_return_block_has_expr);
   2967         RetValExp = nullptr;
   2968       }
   2969     }
   2970   } else if (!RetValExp) {
   2971     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
   2972   } else if (!RetValExp->isTypeDependent()) {
   2973     // we have a non-void block with an expression, continue checking
   2974 
   2975     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   2976     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   2977     // function return.
   2978 
   2979     // In C++ the return statement is handled via a copy initialization.
   2980     // the C version of which boils down to CheckSingleAssignmentConstraints.
   2981     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   2982     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   2983                                                                    FnRetType,
   2984                                                       NRVOCandidate != nullptr);
   2985     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   2986                                                      FnRetType, RetValExp);
   2987     if (Res.isInvalid()) {
   2988       // FIXME: Cleanup temporaries here, anyway?
   2989       return StmtError();
   2990     }
   2991     RetValExp = Res.get();
   2992     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
   2993   } else {
   2994     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   2995   }
   2996 
   2997   if (RetValExp) {
   2998     ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   2999     if (ER.isInvalid())
   3000       return StmtError();
   3001     RetValExp = ER.get();
   3002   }
   3003   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
   3004                                                 NRVOCandidate);
   3005 
   3006   // If we need to check for the named return value optimization,
   3007   // or if we need to infer the return type,
   3008   // save the return statement in our scope for later processing.
   3009   if (CurCap->HasImplicitReturnType || NRVOCandidate)
   3010     FunctionScopes.back()->Returns.push_back(Result);
   3011 
   3012   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
   3013     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
   3014 
   3015   return Result;
   3016 }
   3017 
   3018 namespace {
   3019 /// \brief Marks all typedefs in all local classes in a type referenced.
   3020 ///
   3021 /// In a function like
   3022 /// auto f() {
   3023 ///   struct S { typedef int a; };
   3024 ///   return S();
   3025 /// }
   3026 ///
   3027 /// the local type escapes and could be referenced in some TUs but not in
   3028 /// others. Pretend that all local typedefs are always referenced, to not warn
   3029 /// on this. This isn't necessary if f has internal linkage, or the typedef
   3030 /// is private.
   3031 class LocalTypedefNameReferencer
   3032     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
   3033 public:
   3034   LocalTypedefNameReferencer(Sema &S) : S(S) {}
   3035   bool VisitRecordType(const RecordType *RT);
   3036 private:
   3037   Sema &S;
   3038 };
   3039 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
   3040   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
   3041   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
   3042       R->isDependentType())
   3043     return true;
   3044   for (auto *TmpD : R->decls())
   3045     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
   3046       if (T->getAccess() != AS_private || R->hasFriends())
   3047         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
   3048   return true;
   3049 }
   3050 }
   3051 
   3052 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
   3053   TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
   3054   while (auto ATL = TL.getAs<AttributedTypeLoc>())
   3055     TL = ATL.getModifiedLoc().IgnoreParens();
   3056   return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
   3057 }
   3058 
   3059 /// Deduce the return type for a function from a returned expression, per
   3060 /// C++1y [dcl.spec.auto]p6.
   3061 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
   3062                                             SourceLocation ReturnLoc,
   3063                                             Expr *&RetExpr,
   3064                                             AutoType *AT) {
   3065   TypeLoc OrigResultType = getReturnTypeLoc(FD);
   3066   QualType Deduced;
   3067 
   3068   if (RetExpr && isa<InitListExpr>(RetExpr)) {
   3069     //  If the deduction is for a return statement and the initializer is
   3070     //  a braced-init-list, the program is ill-formed.
   3071     Diag(RetExpr->getExprLoc(),
   3072          getCurLambda() ? diag::err_lambda_return_init_list
   3073                         : diag::err_auto_fn_return_init_list)
   3074         << RetExpr->getSourceRange();
   3075     return true;
   3076   }
   3077 
   3078   if (FD->isDependentContext()) {
   3079     // C++1y [dcl.spec.auto]p12:
   3080     //   Return type deduction [...] occurs when the definition is
   3081     //   instantiated even if the function body contains a return
   3082     //   statement with a non-type-dependent operand.
   3083     assert(AT->isDeduced() && "should have deduced to dependent type");
   3084     return false;
   3085   }
   3086 
   3087   if (RetExpr) {
   3088     //  Otherwise, [...] deduce a value for U using the rules of template
   3089     //  argument deduction.
   3090     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
   3091 
   3092     if (DAR == DAR_Failed && !FD->isInvalidDecl())
   3093       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
   3094         << OrigResultType.getType() << RetExpr->getType();
   3095 
   3096     if (DAR != DAR_Succeeded)
   3097       return true;
   3098 
   3099     // If a local type is part of the returned type, mark its fields as
   3100     // referenced.
   3101     LocalTypedefNameReferencer Referencer(*this);
   3102     Referencer.TraverseType(RetExpr->getType());
   3103   } else {
   3104     //  In the case of a return with no operand, the initializer is considered
   3105     //  to be void().
   3106     //
   3107     // Deduction here can only succeed if the return type is exactly 'cv auto'
   3108     // or 'decltype(auto)', so just check for that case directly.
   3109     if (!OrigResultType.getType()->getAs<AutoType>()) {
   3110       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
   3111         << OrigResultType.getType();
   3112       return true;
   3113     }
   3114     // We always deduce U = void in this case.
   3115     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
   3116     if (Deduced.isNull())
   3117       return true;
   3118   }
   3119 
   3120   //  If a function with a declared return type that contains a placeholder type
   3121   //  has multiple return statements, the return type is deduced for each return
   3122   //  statement. [...] if the type deduced is not the same in each deduction,
   3123   //  the program is ill-formed.
   3124   QualType DeducedT = AT->getDeducedType();
   3125   if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
   3126     AutoType *NewAT = Deduced->getContainedAutoType();
   3127     // It is possible that NewAT->getDeducedType() is null. When that happens,
   3128     // we should not crash, instead we ignore this deduction.
   3129     if (NewAT->getDeducedType().isNull())
   3130       return false;
   3131 
   3132     CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
   3133                                    DeducedT);
   3134     CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
   3135                                    NewAT->getDeducedType());
   3136     if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
   3137       const LambdaScopeInfo *LambdaSI = getCurLambda();
   3138       if (LambdaSI && LambdaSI->HasImplicitReturnType) {
   3139         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
   3140           << NewAT->getDeducedType() << DeducedT
   3141           << true /*IsLambda*/;
   3142       } else {
   3143         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
   3144           << (AT->isDecltypeAuto() ? 1 : 0)
   3145           << NewAT->getDeducedType() << DeducedT;
   3146       }
   3147       return true;
   3148     }
   3149   } else if (!FD->isInvalidDecl()) {
   3150     // Update all declarations of the function to have the deduced return type.
   3151     Context.adjustDeducedFunctionResultType(FD, Deduced);
   3152   }
   3153 
   3154   return false;
   3155 }
   3156 
   3157 StmtResult
   3158 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
   3159                       Scope *CurScope) {
   3160   StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
   3161   if (R.isInvalid() || ExprEvalContexts.back().Context == DiscardedStatement)
   3162     return R;
   3163 
   3164   if (VarDecl *VD =
   3165       const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
   3166     CurScope->addNRVOCandidate(VD);
   3167   } else {
   3168     CurScope->setNoNRVO();
   3169   }
   3170 
   3171   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
   3172 
   3173   return R;
   3174 }
   3175 
   3176 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   3177   // Check for unexpanded parameter packs.
   3178   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
   3179     return StmtError();
   3180 
   3181   if (isa<CapturingScopeInfo>(getCurFunction()))
   3182     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
   3183 
   3184   QualType FnRetType;
   3185   QualType RelatedRetType;
   3186   const AttrVec *Attrs = nullptr;
   3187   bool isObjCMethod = false;
   3188 
   3189   if (const FunctionDecl *FD = getCurFunctionDecl()) {
   3190     FnRetType = FD->getReturnType();
   3191     if (FD->hasAttrs())
   3192       Attrs = &FD->getAttrs();
   3193     if (FD->isNoReturn())
   3194       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
   3195         << FD->getDeclName();
   3196   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
   3197     FnRetType = MD->getReturnType();
   3198     isObjCMethod = true;
   3199     if (MD->hasAttrs())
   3200       Attrs = &MD->getAttrs();
   3201     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
   3202       // In the implementation of a method with a related return type, the
   3203       // type used to type-check the validity of return statements within the
   3204       // method body is a pointer to the type of the class being implemented.
   3205       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
   3206       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
   3207     }
   3208   } else // If we don't have a function/method context, bail.
   3209     return StmtError();
   3210 
   3211   // C++1z: discarded return statements are not considered when deducing a
   3212   // return type.
   3213   if (ExprEvalContexts.back().Context == DiscardedStatement &&
   3214       FnRetType->getContainedAutoType()) {
   3215     if (RetValExp) {
   3216       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   3217       if (ER.isInvalid())
   3218         return StmtError();
   3219       RetValExp = ER.get();
   3220     }
   3221     return new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
   3222   }
   3223 
   3224   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
   3225   // deduction.
   3226   if (getLangOpts().CPlusPlus14) {
   3227     if (AutoType *AT = FnRetType->getContainedAutoType()) {
   3228       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
   3229       if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
   3230         FD->setInvalidDecl();
   3231         return StmtError();
   3232       } else {
   3233         FnRetType = FD->getReturnType();
   3234       }
   3235     }
   3236   }
   3237 
   3238   bool HasDependentReturnType = FnRetType->isDependentType();
   3239 
   3240   ReturnStmt *Result = nullptr;
   3241   if (FnRetType->isVoidType()) {
   3242     if (RetValExp) {
   3243       if (isa<InitListExpr>(RetValExp)) {
   3244         // We simply never allow init lists as the return value of void
   3245         // functions. This is compatible because this was never allowed before,
   3246         // so there's no legacy code to deal with.
   3247         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3248         int FunctionKind = 0;
   3249         if (isa<ObjCMethodDecl>(CurDecl))
   3250           FunctionKind = 1;
   3251         else if (isa<CXXConstructorDecl>(CurDecl))
   3252           FunctionKind = 2;
   3253         else if (isa<CXXDestructorDecl>(CurDecl))
   3254           FunctionKind = 3;
   3255 
   3256         Diag(ReturnLoc, diag::err_return_init_list)
   3257           << CurDecl->getDeclName() << FunctionKind
   3258           << RetValExp->getSourceRange();
   3259 
   3260         // Drop the expression.
   3261         RetValExp = nullptr;
   3262       } else if (!RetValExp->isTypeDependent()) {
   3263         // C99 6.8.6.4p1 (ext_ since GCC warns)
   3264         unsigned D = diag::ext_return_has_expr;
   3265         if (RetValExp->getType()->isVoidType()) {
   3266           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3267           if (isa<CXXConstructorDecl>(CurDecl) ||
   3268               isa<CXXDestructorDecl>(CurDecl))
   3269             D = diag::err_ctor_dtor_returns_void;
   3270           else
   3271             D = diag::ext_return_has_void_expr;
   3272         }
   3273         else {
   3274           ExprResult Result = RetValExp;
   3275           Result = IgnoredValueConversions(Result.get());
   3276           if (Result.isInvalid())
   3277             return StmtError();
   3278           RetValExp = Result.get();
   3279           RetValExp = ImpCastExprToType(RetValExp,
   3280                                         Context.VoidTy, CK_ToVoid).get();
   3281         }
   3282         // return of void in constructor/destructor is illegal in C++.
   3283         if (D == diag::err_ctor_dtor_returns_void) {
   3284           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3285           Diag(ReturnLoc, D)
   3286             << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
   3287             << RetValExp->getSourceRange();
   3288         }
   3289         // return (some void expression); is legal in C++.
   3290         else if (D != diag::ext_return_has_void_expr ||
   3291                  !getLangOpts().CPlusPlus) {
   3292           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3293 
   3294           int FunctionKind = 0;
   3295           if (isa<ObjCMethodDecl>(CurDecl))
   3296             FunctionKind = 1;
   3297           else if (isa<CXXConstructorDecl>(CurDecl))
   3298             FunctionKind = 2;
   3299           else if (isa<CXXDestructorDecl>(CurDecl))
   3300             FunctionKind = 3;
   3301 
   3302           Diag(ReturnLoc, D)
   3303             << CurDecl->getDeclName() << FunctionKind
   3304             << RetValExp->getSourceRange();
   3305         }
   3306       }
   3307 
   3308       if (RetValExp) {
   3309         ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   3310         if (ER.isInvalid())
   3311           return StmtError();
   3312         RetValExp = ER.get();
   3313       }
   3314     }
   3315 
   3316     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
   3317   } else if (!RetValExp && !HasDependentReturnType) {
   3318     FunctionDecl *FD = getCurFunctionDecl();
   3319 
   3320     unsigned DiagID;
   3321     if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
   3322       // C++11 [stmt.return]p2
   3323       DiagID = diag::err_constexpr_return_missing_expr;
   3324       FD->setInvalidDecl();
   3325     } else if (getLangOpts().C99) {
   3326       // C99 6.8.6.4p1 (ext_ since GCC warns)
   3327       DiagID = diag::ext_return_missing_expr;
   3328     } else {
   3329       // C90 6.6.6.4p4
   3330       DiagID = diag::warn_return_missing_expr;
   3331     }
   3332 
   3333     if (FD)
   3334       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
   3335     else
   3336       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
   3337 
   3338     Result = new (Context) ReturnStmt(ReturnLoc);
   3339   } else {
   3340     assert(RetValExp || HasDependentReturnType);
   3341     const VarDecl *NRVOCandidate = nullptr;
   3342 
   3343     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
   3344 
   3345     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   3346     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   3347     // function return.
   3348 
   3349     // In C++ the return statement is handled via a copy initialization,
   3350     // the C version of which boils down to CheckSingleAssignmentConstraints.
   3351     if (RetValExp)
   3352       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   3353     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
   3354       // we have a non-void function with an expression, continue checking
   3355       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   3356                                                                      RetType,
   3357                                                       NRVOCandidate != nullptr);
   3358       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   3359                                                        RetType, RetValExp);
   3360       if (Res.isInvalid()) {
   3361         // FIXME: Clean up temporaries here anyway?
   3362         return StmtError();
   3363       }
   3364       RetValExp = Res.getAs<Expr>();
   3365 
   3366       // If we have a related result type, we need to implicitly
   3367       // convert back to the formal result type.  We can't pretend to
   3368       // initialize the result again --- we might end double-retaining
   3369       // --- so instead we initialize a notional temporary.
   3370       if (!RelatedRetType.isNull()) {
   3371         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
   3372                                                             FnRetType);
   3373         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
   3374         if (Res.isInvalid()) {
   3375           // FIXME: Clean up temporaries here anyway?
   3376           return StmtError();
   3377         }
   3378         RetValExp = Res.getAs<Expr>();
   3379       }
   3380 
   3381       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
   3382                          getCurFunctionDecl());
   3383     }
   3384 
   3385     if (RetValExp) {
   3386       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   3387       if (ER.isInvalid())
   3388         return StmtError();
   3389       RetValExp = ER.get();
   3390     }
   3391     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
   3392   }
   3393 
   3394   // If we need to check for the named return value optimization, save the
   3395   // return statement in our scope for later processing.
   3396   if (Result->getNRVOCandidate())
   3397     FunctionScopes.back()->Returns.push_back(Result);
   3398 
   3399   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
   3400     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
   3401 
   3402   return Result;
   3403 }
   3404 
   3405 StmtResult
   3406 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
   3407                            SourceLocation RParen, Decl *Parm,
   3408                            Stmt *Body) {
   3409   VarDecl *Var = cast_or_null<VarDecl>(Parm);
   3410   if (Var && Var->isInvalidDecl())
   3411     return StmtError();
   3412 
   3413   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
   3414 }
   3415 
   3416 StmtResult
   3417 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
   3418   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
   3419 }
   3420 
   3421 StmtResult
   3422 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
   3423                          MultiStmtArg CatchStmts, Stmt *Finally) {
   3424   if (!getLangOpts().ObjCExceptions)
   3425     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
   3426 
   3427   getCurFunction()->setHasBranchProtectedScope();
   3428   unsigned NumCatchStmts = CatchStmts.size();
   3429   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
   3430                                NumCatchStmts, Finally);
   3431 }
   3432 
   3433 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
   3434   if (Throw) {
   3435     ExprResult Result = DefaultLvalueConversion(Throw);
   3436     if (Result.isInvalid())
   3437       return StmtError();
   3438 
   3439     Result = ActOnFinishFullExpr(Result.get());
   3440     if (Result.isInvalid())
   3441       return StmtError();
   3442     Throw = Result.get();
   3443 
   3444     QualType ThrowType = Throw->getType();
   3445     // Make sure the expression type is an ObjC pointer or "void *".
   3446     if (!ThrowType->isDependentType() &&
   3447         !ThrowType->isObjCObjectPointerType()) {
   3448       const PointerType *PT = ThrowType->getAs<PointerType>();
   3449       if (!PT || !PT->getPointeeType()->isVoidType())
   3450         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
   3451                          << Throw->getType() << Throw->getSourceRange());
   3452     }
   3453   }
   3454 
   3455   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
   3456 }
   3457 
   3458 StmtResult
   3459 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
   3460                            Scope *CurScope) {
   3461   if (!getLangOpts().ObjCExceptions)
   3462     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
   3463 
   3464   if (!Throw) {
   3465     // @throw without an expression designates a rethrow (which must occur
   3466     // in the context of an @catch clause).
   3467     Scope *AtCatchParent = CurScope;
   3468     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
   3469       AtCatchParent = AtCatchParent->getParent();
   3470     if (!AtCatchParent)
   3471       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
   3472   }
   3473   return BuildObjCAtThrowStmt(AtLoc, Throw);
   3474 }
   3475 
   3476 ExprResult
   3477 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
   3478   ExprResult result = DefaultLvalueConversion(operand);
   3479   if (result.isInvalid())
   3480     return ExprError();
   3481   operand = result.get();
   3482 
   3483   // Make sure the expression type is an ObjC pointer or "void *".
   3484   QualType type = operand->getType();
   3485   if (!type->isDependentType() &&
   3486       !type->isObjCObjectPointerType()) {
   3487     const PointerType *pointerType = type->getAs<PointerType>();
   3488     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
   3489       if (getLangOpts().CPlusPlus) {
   3490         if (RequireCompleteType(atLoc, type,
   3491                                 diag::err_incomplete_receiver_type))
   3492           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3493                    << type << operand->getSourceRange();
   3494 
   3495         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
   3496         if (!result.isUsable())
   3497           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3498                    << type << operand->getSourceRange();
   3499 
   3500         operand = result.get();
   3501       } else {
   3502           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3503                    << type << operand->getSourceRange();
   3504       }
   3505     }
   3506   }
   3507 
   3508   // The operand to @synchronized is a full-expression.
   3509   return ActOnFinishFullExpr(operand);
   3510 }
   3511 
   3512 StmtResult
   3513 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
   3514                                   Stmt *SyncBody) {
   3515   // We can't jump into or indirect-jump out of a @synchronized block.
   3516   getCurFunction()->setHasBranchProtectedScope();
   3517   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
   3518 }
   3519 
   3520 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
   3521 /// and creates a proper catch handler from them.
   3522 StmtResult
   3523 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
   3524                          Stmt *HandlerBlock) {
   3525   // There's nothing to test that ActOnExceptionDecl didn't already test.
   3526   return new (Context)
   3527       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
   3528 }
   3529 
   3530 StmtResult
   3531 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
   3532   getCurFunction()->setHasBranchProtectedScope();
   3533   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
   3534 }
   3535 
   3536 namespace {
   3537 class CatchHandlerType {
   3538   QualType QT;
   3539   unsigned IsPointer : 1;
   3540 
   3541   // This is a special constructor to be used only with DenseMapInfo's
   3542   // getEmptyKey() and getTombstoneKey() functions.
   3543   friend struct llvm::DenseMapInfo<CatchHandlerType>;
   3544   enum Unique { ForDenseMap };
   3545   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
   3546 
   3547 public:
   3548   /// Used when creating a CatchHandlerType from a handler type; will determine
   3549   /// whether the type is a pointer or reference and will strip off the top
   3550   /// level pointer and cv-qualifiers.
   3551   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
   3552     if (QT->isPointerType())
   3553       IsPointer = true;
   3554 
   3555     if (IsPointer || QT->isReferenceType())
   3556       QT = QT->getPointeeType();
   3557     QT = QT.getUnqualifiedType();
   3558   }
   3559 
   3560   /// Used when creating a CatchHandlerType from a base class type; pretends the
   3561   /// type passed in had the pointer qualifier, does not need to get an
   3562   /// unqualified type.
   3563   CatchHandlerType(QualType QT, bool IsPointer)
   3564       : QT(QT), IsPointer(IsPointer) {}
   3565 
   3566   QualType underlying() const { return QT; }
   3567   bool isPointer() const { return IsPointer; }
   3568 
   3569   friend bool operator==(const CatchHandlerType &LHS,
   3570                          const CatchHandlerType &RHS) {
   3571     // If the pointer qualification does not match, we can return early.
   3572     if (LHS.IsPointer != RHS.IsPointer)
   3573       return false;
   3574     // Otherwise, check the underlying type without cv-qualifiers.
   3575     return LHS.QT == RHS.QT;
   3576   }
   3577 };
   3578 } // namespace
   3579 
   3580 namespace llvm {
   3581 template <> struct DenseMapInfo<CatchHandlerType> {
   3582   static CatchHandlerType getEmptyKey() {
   3583     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
   3584                        CatchHandlerType::ForDenseMap);
   3585   }
   3586 
   3587   static CatchHandlerType getTombstoneKey() {
   3588     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
   3589                        CatchHandlerType::ForDenseMap);
   3590   }
   3591 
   3592   static unsigned getHashValue(const CatchHandlerType &Base) {
   3593     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
   3594   }
   3595 
   3596   static bool isEqual(const CatchHandlerType &LHS,
   3597                       const CatchHandlerType &RHS) {
   3598     return LHS == RHS;
   3599   }
   3600 };
   3601 }
   3602 
   3603 namespace {
   3604 class CatchTypePublicBases {
   3605   ASTContext &Ctx;
   3606   const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
   3607   const bool CheckAgainstPointer;
   3608 
   3609   CXXCatchStmt *FoundHandler;
   3610   CanQualType FoundHandlerType;
   3611 
   3612 public:
   3613   CatchTypePublicBases(
   3614       ASTContext &Ctx,
   3615       const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
   3616       : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
   3617         FoundHandler(nullptr) {}
   3618 
   3619   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
   3620   CanQualType getFoundHandlerType() const { return FoundHandlerType; }
   3621 
   3622   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
   3623     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
   3624       CatchHandlerType Check(S->getType(), CheckAgainstPointer);
   3625       const auto &M = TypesToCheck;
   3626       auto I = M.find(Check);
   3627       if (I != M.end()) {
   3628         FoundHandler = I->second;
   3629         FoundHandlerType = Ctx.getCanonicalType(S->getType());
   3630         return true;
   3631       }
   3632     }
   3633     return false;
   3634   }
   3635 };
   3636 }
   3637 
   3638 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
   3639 /// handlers and creates a try statement from them.
   3640 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
   3641                                   ArrayRef<Stmt *> Handlers) {
   3642   // Don't report an error if 'try' is used in system headers.
   3643   if (!getLangOpts().CXXExceptions &&
   3644       !getSourceManager().isInSystemHeader(TryLoc))
   3645     Diag(TryLoc, diag::err_exceptions_disabled) << "try";
   3646 
   3647   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
   3648     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
   3649 
   3650   sema::FunctionScopeInfo *FSI = getCurFunction();
   3651 
   3652   // C++ try is incompatible with SEH __try.
   3653   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
   3654     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
   3655     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
   3656   }
   3657 
   3658   const unsigned NumHandlers = Handlers.size();
   3659   assert(!Handlers.empty() &&
   3660          "The parser shouldn't call this if there are no handlers.");
   3661 
   3662   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
   3663   for (unsigned i = 0; i < NumHandlers; ++i) {
   3664     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
   3665 
   3666     // Diagnose when the handler is a catch-all handler, but it isn't the last
   3667     // handler for the try block. [except.handle]p5. Also, skip exception
   3668     // declarations that are invalid, since we can't usefully report on them.
   3669     if (!H->getExceptionDecl()) {
   3670       if (i < NumHandlers - 1)
   3671         return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
   3672       continue;
   3673     } else if (H->getExceptionDecl()->isInvalidDecl())
   3674       continue;
   3675 
   3676     // Walk the type hierarchy to diagnose when this type has already been
   3677     // handled (duplication), or cannot be handled (derivation inversion). We
   3678     // ignore top-level cv-qualifiers, per [except.handle]p3
   3679     CatchHandlerType HandlerCHT =
   3680         (QualType)Context.getCanonicalType(H->getCaughtType());
   3681 
   3682     // We can ignore whether the type is a reference or a pointer; we need the
   3683     // underlying declaration type in order to get at the underlying record
   3684     // decl, if there is one.
   3685     QualType Underlying = HandlerCHT.underlying();
   3686     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
   3687       if (!RD->hasDefinition())
   3688         continue;
   3689       // Check that none of the public, unambiguous base classes are in the
   3690       // map ([except.handle]p1). Give the base classes the same pointer
   3691       // qualification as the original type we are basing off of. This allows
   3692       // comparison against the handler type using the same top-level pointer
   3693       // as the original type.
   3694       CXXBasePaths Paths;
   3695       Paths.setOrigin(RD);
   3696       CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
   3697       if (RD->lookupInBases(CTPB, Paths)) {
   3698         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
   3699         if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
   3700           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
   3701                diag::warn_exception_caught_by_earlier_handler)
   3702               << H->getCaughtType();
   3703           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
   3704                 diag::note_previous_exception_handler)
   3705               << Problem->getCaughtType();
   3706         }
   3707       }
   3708     }
   3709 
   3710     // Add the type the list of ones we have handled; diagnose if we've already
   3711     // handled it.
   3712     auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
   3713     if (!R.second) {
   3714       const CXXCatchStmt *Problem = R.first->second;
   3715       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
   3716            diag::warn_exception_caught_by_earlier_handler)
   3717           << H->getCaughtType();
   3718       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
   3719            diag::note_previous_exception_handler)
   3720           << Problem->getCaughtType();
   3721     }
   3722   }
   3723 
   3724   FSI->setHasCXXTry(TryLoc);
   3725 
   3726   return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
   3727 }
   3728 
   3729 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
   3730                                   Stmt *TryBlock, Stmt *Handler) {
   3731   assert(TryBlock && Handler);
   3732 
   3733   sema::FunctionScopeInfo *FSI = getCurFunction();
   3734 
   3735   // SEH __try is incompatible with C++ try. Borland appears to support this,
   3736   // however.
   3737   if (!getLangOpts().Borland) {
   3738     if (FSI->FirstCXXTryLoc.isValid()) {
   3739       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
   3740       Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
   3741     }
   3742   }
   3743 
   3744   FSI->setHasSEHTry(TryLoc);
   3745 
   3746   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
   3747   // track if they use SEH.
   3748   DeclContext *DC = CurContext;
   3749   while (DC && !DC->isFunctionOrMethod())
   3750     DC = DC->getParent();
   3751   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
   3752   if (FD)
   3753     FD->setUsesSEHTry(true);
   3754   else
   3755     Diag(TryLoc, diag::err_seh_try_outside_functions);
   3756 
   3757   // Reject __try on unsupported targets.
   3758   if (!Context.getTargetInfo().isSEHTrySupported())
   3759     Diag(TryLoc, diag::err_seh_try_unsupported);
   3760 
   3761   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
   3762 }
   3763 
   3764 StmtResult
   3765 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
   3766                           Expr *FilterExpr,
   3767                           Stmt *Block) {
   3768   assert(FilterExpr && Block);
   3769 
   3770   if(!FilterExpr->getType()->isIntegerType()) {
   3771     return StmtError(Diag(FilterExpr->getExprLoc(),
   3772                      diag::err_filter_expression_integral)
   3773                      << FilterExpr->getType());
   3774   }
   3775 
   3776   return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
   3777 }
   3778 
   3779 void Sema::ActOnStartSEHFinallyBlock() {
   3780   CurrentSEHFinally.push_back(CurScope);
   3781 }
   3782 
   3783 void Sema::ActOnAbortSEHFinallyBlock() {
   3784   CurrentSEHFinally.pop_back();
   3785 }
   3786 
   3787 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
   3788   assert(Block);
   3789   CurrentSEHFinally.pop_back();
   3790   return SEHFinallyStmt::Create(Context, Loc, Block);
   3791 }
   3792 
   3793 StmtResult
   3794 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
   3795   Scope *SEHTryParent = CurScope;
   3796   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
   3797     SEHTryParent = SEHTryParent->getParent();
   3798   if (!SEHTryParent)
   3799     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
   3800   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
   3801 
   3802   return new (Context) SEHLeaveStmt(Loc);
   3803 }
   3804 
   3805 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
   3806                                             bool IsIfExists,
   3807                                             NestedNameSpecifierLoc QualifierLoc,
   3808                                             DeclarationNameInfo NameInfo,
   3809                                             Stmt *Nested)
   3810 {
   3811   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
   3812                                              QualifierLoc, NameInfo,
   3813                                              cast<CompoundStmt>(Nested));
   3814 }
   3815 
   3816 
   3817 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
   3818                                             bool IsIfExists,
   3819                                             CXXScopeSpec &SS,
   3820                                             UnqualifiedId &Name,
   3821                                             Stmt *Nested) {
   3822   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
   3823                                     SS.getWithLocInContext(Context),
   3824                                     GetNameFromUnqualifiedId(Name),
   3825                                     Nested);
   3826 }
   3827 
   3828 RecordDecl*
   3829 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
   3830                                    unsigned NumParams) {
   3831   DeclContext *DC = CurContext;
   3832   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
   3833     DC = DC->getParent();
   3834 
   3835   RecordDecl *RD = nullptr;
   3836   if (getLangOpts().CPlusPlus)
   3837     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
   3838                                /*Id=*/nullptr);
   3839   else
   3840     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
   3841 
   3842   RD->setCapturedRecord();
   3843   DC->addDecl(RD);
   3844   RD->setImplicit();
   3845   RD->startDefinition();
   3846 
   3847   assert(NumParams > 0 && "CapturedStmt requires context parameter");
   3848   CD = CapturedDecl::Create(Context, CurContext, NumParams);
   3849   DC->addDecl(CD);
   3850   return RD;
   3851 }
   3852 
   3853 static void buildCapturedStmtCaptureList(
   3854     SmallVectorImpl<CapturedStmt::Capture> &Captures,
   3855     SmallVectorImpl<Expr *> &CaptureInits,
   3856     ArrayRef<CapturingScopeInfo::Capture> Candidates) {
   3857 
   3858   typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
   3859   for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
   3860 
   3861     if (Cap->isThisCapture()) {
   3862       Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
   3863                                                CapturedStmt::VCK_This));
   3864       CaptureInits.push_back(Cap->getInitExpr());
   3865       continue;
   3866     } else if (Cap->isVLATypeCapture()) {
   3867       Captures.push_back(
   3868           CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
   3869       CaptureInits.push_back(nullptr);
   3870       continue;
   3871     }
   3872 
   3873     Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
   3874                                              Cap->isReferenceCapture()
   3875                                                  ? CapturedStmt::VCK_ByRef
   3876                                                  : CapturedStmt::VCK_ByCopy,
   3877                                              Cap->getVariable()));
   3878     CaptureInits.push_back(Cap->getInitExpr());
   3879   }
   3880 }
   3881 
   3882 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
   3883                                     CapturedRegionKind Kind,
   3884                                     unsigned NumParams) {
   3885   CapturedDecl *CD = nullptr;
   3886   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
   3887 
   3888   // Build the context parameter
   3889   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
   3890   IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3891   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3892   ImplicitParamDecl *Param
   3893     = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3894   DC->addDecl(Param);
   3895 
   3896   CD->setContextParam(0, Param);
   3897 
   3898   // Enter the capturing scope for this captured region.
   3899   PushCapturedRegionScope(CurScope, CD, RD, Kind);
   3900 
   3901   if (CurScope)
   3902     PushDeclContext(CurScope, CD);
   3903   else
   3904     CurContext = CD;
   3905 
   3906   PushExpressionEvaluationContext(PotentiallyEvaluated);
   3907 }
   3908 
   3909 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
   3910                                     CapturedRegionKind Kind,
   3911                                     ArrayRef<CapturedParamNameType> Params) {
   3912   CapturedDecl *CD = nullptr;
   3913   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
   3914 
   3915   // Build the context parameter
   3916   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
   3917   bool ContextIsFound = false;
   3918   unsigned ParamNum = 0;
   3919   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
   3920                                                  E = Params.end();
   3921        I != E; ++I, ++ParamNum) {
   3922     if (I->second.isNull()) {
   3923       assert(!ContextIsFound &&
   3924              "null type has been found already for '__context' parameter");
   3925       IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3926       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3927       ImplicitParamDecl *Param
   3928         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3929       DC->addDecl(Param);
   3930       CD->setContextParam(ParamNum, Param);
   3931       ContextIsFound = true;
   3932     } else {
   3933       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
   3934       ImplicitParamDecl *Param
   3935         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
   3936       DC->addDecl(Param);
   3937       CD->setParam(ParamNum, Param);
   3938     }
   3939   }
   3940   assert(ContextIsFound && "no null type for '__context' parameter");
   3941   if (!ContextIsFound) {
   3942     // Add __context implicitly if it is not specified.
   3943     IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3944     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3945     ImplicitParamDecl *Param =
   3946         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3947     DC->addDecl(Param);
   3948     CD->setContextParam(ParamNum, Param);
   3949   }
   3950   // Enter the capturing scope for this captured region.
   3951   PushCapturedRegionScope(CurScope, CD, RD, Kind);
   3952 
   3953   if (CurScope)
   3954     PushDeclContext(CurScope, CD);
   3955   else
   3956     CurContext = CD;
   3957 
   3958   PushExpressionEvaluationContext(PotentiallyEvaluated);
   3959 }
   3960 
   3961 void Sema::ActOnCapturedRegionError() {
   3962   DiscardCleanupsInEvaluationContext();
   3963   PopExpressionEvaluationContext();
   3964 
   3965   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
   3966   RecordDecl *Record = RSI->TheRecordDecl;
   3967   Record->setInvalidDecl();
   3968 
   3969   SmallVector<Decl*, 4> Fields(Record->fields());
   3970   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
   3971               SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
   3972 
   3973   PopDeclContext();
   3974   PopFunctionScopeInfo();
   3975 }
   3976 
   3977 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
   3978   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
   3979 
   3980   SmallVector<CapturedStmt::Capture, 4> Captures;
   3981   SmallVector<Expr *, 4> CaptureInits;
   3982   buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
   3983 
   3984   CapturedDecl *CD = RSI->TheCapturedDecl;
   3985   RecordDecl *RD = RSI->TheRecordDecl;
   3986 
   3987   CapturedStmt *Res = CapturedStmt::Create(
   3988       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
   3989       Captures, CaptureInits, CD, RD);
   3990 
   3991   CD->setBody(Res->getCapturedStmt());
   3992   RD->completeDefinition();
   3993 
   3994   DiscardCleanupsInEvaluationContext();
   3995   PopExpressionEvaluationContext();
   3996 
   3997   PopDeclContext();
   3998   PopFunctionScopeInfo();
   3999 
   4000   return Res;
   4001 }
   4002