Home | History | Annotate | Download | only in Utils
      1 //===-- Local.cpp - Functions to perform local transformations ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/DenseSet.h"
     18 #include "llvm/ADT/Hashing.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/ADT/SmallPtrSet.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/EHPersonalities.h"
     24 #include "llvm/Analysis/InstructionSimplify.h"
     25 #include "llvm/Analysis/MemoryBuiltins.h"
     26 #include "llvm/Analysis/LazyValueInfo.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/IR/CFG.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DIBuilder.h"
     31 #include "llvm/IR/DataLayout.h"
     32 #include "llvm/IR/DebugInfo.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/GetElementPtrTypeIterator.h"
     36 #include "llvm/IR/GlobalAlias.h"
     37 #include "llvm/IR/GlobalVariable.h"
     38 #include "llvm/IR/IRBuilder.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/IntrinsicInst.h"
     41 #include "llvm/IR/Intrinsics.h"
     42 #include "llvm/IR/MDBuilder.h"
     43 #include "llvm/IR/Metadata.h"
     44 #include "llvm/IR/Operator.h"
     45 #include "llvm/IR/PatternMatch.h"
     46 #include "llvm/IR/ValueHandle.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/MathExtras.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 using namespace llvm;
     51 using namespace llvm::PatternMatch;
     52 
     53 #define DEBUG_TYPE "local"
     54 
     55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
     56 
     57 //===----------------------------------------------------------------------===//
     58 //  Local constant propagation.
     59 //
     60 
     61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     62 /// constant value, convert it into an unconditional branch to the constant
     63 /// destination.  This is a nontrivial operation because the successors of this
     64 /// basic block must have their PHI nodes updated.
     65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     66 /// conditions and indirectbr addresses this might make dead if
     67 /// DeleteDeadConditions is true.
     68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
     69                                   const TargetLibraryInfo *TLI) {
     70   TerminatorInst *T = BB->getTerminator();
     71   IRBuilder<> Builder(T);
     72 
     73   // Branch - See if we are conditional jumping on constant
     74   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
     75     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
     76     BasicBlock *Dest1 = BI->getSuccessor(0);
     77     BasicBlock *Dest2 = BI->getSuccessor(1);
     78 
     79     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
     80       // Are we branching on constant?
     81       // YES.  Change to unconditional branch...
     82       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
     83       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
     84 
     85       //cerr << "Function: " << T->getParent()->getParent()
     86       //     << "\nRemoving branch from " << T->getParent()
     87       //     << "\n\nTo: " << OldDest << endl;
     88 
     89       // Let the basic block know that we are letting go of it.  Based on this,
     90       // it will adjust it's PHI nodes.
     91       OldDest->removePredecessor(BB);
     92 
     93       // Replace the conditional branch with an unconditional one.
     94       Builder.CreateBr(Destination);
     95       BI->eraseFromParent();
     96       return true;
     97     }
     98 
     99     if (Dest2 == Dest1) {       // Conditional branch to same location?
    100       // This branch matches something like this:
    101       //     br bool %cond, label %Dest, label %Dest
    102       // and changes it into:  br label %Dest
    103 
    104       // Let the basic block know that we are letting go of one copy of it.
    105       assert(BI->getParent() && "Terminator not inserted in block!");
    106       Dest1->removePredecessor(BI->getParent());
    107 
    108       // Replace the conditional branch with an unconditional one.
    109       Builder.CreateBr(Dest1);
    110       Value *Cond = BI->getCondition();
    111       BI->eraseFromParent();
    112       if (DeleteDeadConditions)
    113         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    114       return true;
    115     }
    116     return false;
    117   }
    118 
    119   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    120     // If we are switching on a constant, we can convert the switch to an
    121     // unconditional branch.
    122     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    123     BasicBlock *DefaultDest = SI->getDefaultDest();
    124     BasicBlock *TheOnlyDest = DefaultDest;
    125 
    126     // If the default is unreachable, ignore it when searching for TheOnlyDest.
    127     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
    128         SI->getNumCases() > 0) {
    129       TheOnlyDest = SI->case_begin().getCaseSuccessor();
    130     }
    131 
    132     // Figure out which case it goes to.
    133     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    134          i != e; ++i) {
    135       // Found case matching a constant operand?
    136       if (i.getCaseValue() == CI) {
    137         TheOnlyDest = i.getCaseSuccessor();
    138         break;
    139       }
    140 
    141       // Check to see if this branch is going to the same place as the default
    142       // dest.  If so, eliminate it as an explicit compare.
    143       if (i.getCaseSuccessor() == DefaultDest) {
    144         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    145         unsigned NCases = SI->getNumCases();
    146         // Fold the case metadata into the default if there will be any branches
    147         // left, unless the metadata doesn't match the switch.
    148         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
    149           // Collect branch weights into a vector.
    150           SmallVector<uint32_t, 8> Weights;
    151           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    152                ++MD_i) {
    153             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
    154             Weights.push_back(CI->getValue().getZExtValue());
    155           }
    156           // Merge weight of this case to the default weight.
    157           unsigned idx = i.getCaseIndex();
    158           Weights[0] += Weights[idx+1];
    159           // Remove weight for this case.
    160           std::swap(Weights[idx+1], Weights.back());
    161           Weights.pop_back();
    162           SI->setMetadata(LLVMContext::MD_prof,
    163                           MDBuilder(BB->getContext()).
    164                           createBranchWeights(Weights));
    165         }
    166         // Remove this entry.
    167         DefaultDest->removePredecessor(SI->getParent());
    168         SI->removeCase(i);
    169         --i; --e;
    170         continue;
    171       }
    172 
    173       // Otherwise, check to see if the switch only branches to one destination.
    174       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
    175       // destinations.
    176       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
    177     }
    178 
    179     if (CI && !TheOnlyDest) {
    180       // Branching on a constant, but not any of the cases, go to the default
    181       // successor.
    182       TheOnlyDest = SI->getDefaultDest();
    183     }
    184 
    185     // If we found a single destination that we can fold the switch into, do so
    186     // now.
    187     if (TheOnlyDest) {
    188       // Insert the new branch.
    189       Builder.CreateBr(TheOnlyDest);
    190       BasicBlock *BB = SI->getParent();
    191 
    192       // Remove entries from PHI nodes which we no longer branch to...
    193       for (BasicBlock *Succ : SI->successors()) {
    194         // Found case matching a constant operand?
    195         if (Succ == TheOnlyDest)
    196           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
    197         else
    198           Succ->removePredecessor(BB);
    199       }
    200 
    201       // Delete the old switch.
    202       Value *Cond = SI->getCondition();
    203       SI->eraseFromParent();
    204       if (DeleteDeadConditions)
    205         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    206       return true;
    207     }
    208 
    209     if (SI->getNumCases() == 1) {
    210       // Otherwise, we can fold this switch into a conditional branch
    211       // instruction if it has only one non-default destination.
    212       SwitchInst::CaseIt FirstCase = SI->case_begin();
    213       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
    214           FirstCase.getCaseValue(), "cond");
    215 
    216       // Insert the new branch.
    217       BranchInst *NewBr = Builder.CreateCondBr(Cond,
    218                                                FirstCase.getCaseSuccessor(),
    219                                                SI->getDefaultDest());
    220       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    221       if (MD && MD->getNumOperands() == 3) {
    222         ConstantInt *SICase =
    223             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
    224         ConstantInt *SIDef =
    225             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
    226         assert(SICase && SIDef);
    227         // The TrueWeight should be the weight for the single case of SI.
    228         NewBr->setMetadata(LLVMContext::MD_prof,
    229                         MDBuilder(BB->getContext()).
    230                         createBranchWeights(SICase->getValue().getZExtValue(),
    231                                             SIDef->getValue().getZExtValue()));
    232       }
    233 
    234       // Update make.implicit metadata to the newly-created conditional branch.
    235       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
    236       if (MakeImplicitMD)
    237         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
    238 
    239       // Delete the old switch.
    240       SI->eraseFromParent();
    241       return true;
    242     }
    243     return false;
    244   }
    245 
    246   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    247     // indirectbr blockaddress(@F, @BB) -> br label @BB
    248     if (BlockAddress *BA =
    249           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
    250       BasicBlock *TheOnlyDest = BA->getBasicBlock();
    251       // Insert the new branch.
    252       Builder.CreateBr(TheOnlyDest);
    253 
    254       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    255         if (IBI->getDestination(i) == TheOnlyDest)
    256           TheOnlyDest = nullptr;
    257         else
    258           IBI->getDestination(i)->removePredecessor(IBI->getParent());
    259       }
    260       Value *Address = IBI->getAddress();
    261       IBI->eraseFromParent();
    262       if (DeleteDeadConditions)
    263         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
    264 
    265       // If we didn't find our destination in the IBI successor list, then we
    266       // have undefined behavior.  Replace the unconditional branch with an
    267       // 'unreachable' instruction.
    268       if (TheOnlyDest) {
    269         BB->getTerminator()->eraseFromParent();
    270         new UnreachableInst(BB->getContext(), BB);
    271       }
    272 
    273       return true;
    274     }
    275   }
    276 
    277   return false;
    278 }
    279 
    280 
    281 //===----------------------------------------------------------------------===//
    282 //  Local dead code elimination.
    283 //
    284 
    285 /// isInstructionTriviallyDead - Return true if the result produced by the
    286 /// instruction is not used, and the instruction has no side effects.
    287 ///
    288 bool llvm::isInstructionTriviallyDead(Instruction *I,
    289                                       const TargetLibraryInfo *TLI) {
    290   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
    291 
    292   // We don't want the landingpad-like instructions removed by anything this
    293   // general.
    294   if (I->isEHPad())
    295     return false;
    296 
    297   // We don't want debug info removed by anything this general, unless
    298   // debug info is empty.
    299   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
    300     if (DDI->getAddress())
    301       return false;
    302     return true;
    303   }
    304   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
    305     if (DVI->getValue())
    306       return false;
    307     return true;
    308   }
    309 
    310   if (!I->mayHaveSideEffects()) return true;
    311 
    312   // Special case intrinsics that "may have side effects" but can be deleted
    313   // when dead.
    314   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    315     // Safe to delete llvm.stacksave if dead.
    316     if (II->getIntrinsicID() == Intrinsic::stacksave)
    317       return true;
    318 
    319     // Lifetime intrinsics are dead when their right-hand is undef.
    320     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    321         II->getIntrinsicID() == Intrinsic::lifetime_end)
    322       return isa<UndefValue>(II->getArgOperand(1));
    323 
    324     // Assumptions are dead if their condition is trivially true.  Guards on
    325     // true are operationally no-ops.  In the future we can consider more
    326     // sophisticated tradeoffs for guards considering potential for check
    327     // widening, but for now we keep things simple.
    328     if (II->getIntrinsicID() == Intrinsic::assume ||
    329         II->getIntrinsicID() == Intrinsic::experimental_guard) {
    330       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
    331         return !Cond->isZero();
    332 
    333       return false;
    334     }
    335   }
    336 
    337   if (isAllocLikeFn(I, TLI)) return true;
    338 
    339   if (CallInst *CI = isFreeCall(I, TLI))
    340     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
    341       return C->isNullValue() || isa<UndefValue>(C);
    342 
    343   return false;
    344 }
    345 
    346 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
    347 /// trivially dead instruction, delete it.  If that makes any of its operands
    348 /// trivially dead, delete them too, recursively.  Return true if any
    349 /// instructions were deleted.
    350 bool
    351 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
    352                                                  const TargetLibraryInfo *TLI) {
    353   Instruction *I = dyn_cast<Instruction>(V);
    354   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
    355     return false;
    356 
    357   SmallVector<Instruction*, 16> DeadInsts;
    358   DeadInsts.push_back(I);
    359 
    360   do {
    361     I = DeadInsts.pop_back_val();
    362 
    363     // Null out all of the instruction's operands to see if any operand becomes
    364     // dead as we go.
    365     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    366       Value *OpV = I->getOperand(i);
    367       I->setOperand(i, nullptr);
    368 
    369       if (!OpV->use_empty()) continue;
    370 
    371       // If the operand is an instruction that became dead as we nulled out the
    372       // operand, and if it is 'trivially' dead, delete it in a future loop
    373       // iteration.
    374       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
    375         if (isInstructionTriviallyDead(OpI, TLI))
    376           DeadInsts.push_back(OpI);
    377     }
    378 
    379     I->eraseFromParent();
    380   } while (!DeadInsts.empty());
    381 
    382   return true;
    383 }
    384 
    385 /// areAllUsesEqual - Check whether the uses of a value are all the same.
    386 /// This is similar to Instruction::hasOneUse() except this will also return
    387 /// true when there are no uses or multiple uses that all refer to the same
    388 /// value.
    389 static bool areAllUsesEqual(Instruction *I) {
    390   Value::user_iterator UI = I->user_begin();
    391   Value::user_iterator UE = I->user_end();
    392   if (UI == UE)
    393     return true;
    394 
    395   User *TheUse = *UI;
    396   for (++UI; UI != UE; ++UI) {
    397     if (*UI != TheUse)
    398       return false;
    399   }
    400   return true;
    401 }
    402 
    403 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
    404 /// dead PHI node, due to being a def-use chain of single-use nodes that
    405 /// either forms a cycle or is terminated by a trivially dead instruction,
    406 /// delete it.  If that makes any of its operands trivially dead, delete them
    407 /// too, recursively.  Return true if a change was made.
    408 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
    409                                         const TargetLibraryInfo *TLI) {
    410   SmallPtrSet<Instruction*, 4> Visited;
    411   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
    412        I = cast<Instruction>(*I->user_begin())) {
    413     if (I->use_empty())
    414       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    415 
    416     // If we find an instruction more than once, we're on a cycle that
    417     // won't prove fruitful.
    418     if (!Visited.insert(I).second) {
    419       // Break the cycle and delete the instruction and its operands.
    420       I->replaceAllUsesWith(UndefValue::get(I->getType()));
    421       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    422       return true;
    423     }
    424   }
    425   return false;
    426 }
    427 
    428 static bool
    429 simplifyAndDCEInstruction(Instruction *I,
    430                           SmallSetVector<Instruction *, 16> &WorkList,
    431                           const DataLayout &DL,
    432                           const TargetLibraryInfo *TLI) {
    433   if (isInstructionTriviallyDead(I, TLI)) {
    434     // Null out all of the instruction's operands to see if any operand becomes
    435     // dead as we go.
    436     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    437       Value *OpV = I->getOperand(i);
    438       I->setOperand(i, nullptr);
    439 
    440       if (!OpV->use_empty() || I == OpV)
    441         continue;
    442 
    443       // If the operand is an instruction that became dead as we nulled out the
    444       // operand, and if it is 'trivially' dead, delete it in a future loop
    445       // iteration.
    446       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
    447         if (isInstructionTriviallyDead(OpI, TLI))
    448           WorkList.insert(OpI);
    449     }
    450 
    451     I->eraseFromParent();
    452 
    453     return true;
    454   }
    455 
    456   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
    457     // Add the users to the worklist. CAREFUL: an instruction can use itself,
    458     // in the case of a phi node.
    459     for (User *U : I->users()) {
    460       if (U != I) {
    461         WorkList.insert(cast<Instruction>(U));
    462       }
    463     }
    464 
    465     // Replace the instruction with its simplified value.
    466     bool Changed = false;
    467     if (!I->use_empty()) {
    468       I->replaceAllUsesWith(SimpleV);
    469       Changed = true;
    470     }
    471     if (isInstructionTriviallyDead(I, TLI)) {
    472       I->eraseFromParent();
    473       Changed = true;
    474     }
    475     return Changed;
    476   }
    477   return false;
    478 }
    479 
    480 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
    481 /// simplify any instructions in it and recursively delete dead instructions.
    482 ///
    483 /// This returns true if it changed the code, note that it can delete
    484 /// instructions in other blocks as well in this block.
    485 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
    486                                        const TargetLibraryInfo *TLI) {
    487   bool MadeChange = false;
    488   const DataLayout &DL = BB->getModule()->getDataLayout();
    489 
    490 #ifndef NDEBUG
    491   // In debug builds, ensure that the terminator of the block is never replaced
    492   // or deleted by these simplifications. The idea of simplification is that it
    493   // cannot introduce new instructions, and there is no way to replace the
    494   // terminator of a block without introducing a new instruction.
    495   AssertingVH<Instruction> TerminatorVH(&BB->back());
    496 #endif
    497 
    498   SmallSetVector<Instruction *, 16> WorkList;
    499   // Iterate over the original function, only adding insts to the worklist
    500   // if they actually need to be revisited. This avoids having to pre-init
    501   // the worklist with the entire function's worth of instructions.
    502   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
    503        BI != E;) {
    504     assert(!BI->isTerminator());
    505     Instruction *I = &*BI;
    506     ++BI;
    507 
    508     // We're visiting this instruction now, so make sure it's not in the
    509     // worklist from an earlier visit.
    510     if (!WorkList.count(I))
    511       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
    512   }
    513 
    514   while (!WorkList.empty()) {
    515     Instruction *I = WorkList.pop_back_val();
    516     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
    517   }
    518   return MadeChange;
    519 }
    520 
    521 //===----------------------------------------------------------------------===//
    522 //  Control Flow Graph Restructuring.
    523 //
    524 
    525 
    526 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
    527 /// method is called when we're about to delete Pred as a predecessor of BB.  If
    528 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
    529 ///
    530 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    531 /// nodes that collapse into identity values.  For example, if we have:
    532 ///   x = phi(1, 0, 0, 0)
    533 ///   y = and x, z
    534 ///
    535 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    536 /// recursively fold the and to 0.
    537 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
    538   // This only adjusts blocks with PHI nodes.
    539   if (!isa<PHINode>(BB->begin()))
    540     return;
    541 
    542   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
    543   // them down.  This will leave us with single entry phi nodes and other phis
    544   // that can be removed.
    545   BB->removePredecessor(Pred, true);
    546 
    547   WeakVH PhiIt = &BB->front();
    548   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    549     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    550     Value *OldPhiIt = PhiIt;
    551 
    552     if (!recursivelySimplifyInstruction(PN))
    553       continue;
    554 
    555     // If recursive simplification ended up deleting the next PHI node we would
    556     // iterate to, then our iterator is invalid, restart scanning from the top
    557     // of the block.
    558     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
    559   }
    560 }
    561 
    562 
    563 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
    564 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
    565 /// between them, moving the instructions in the predecessor into DestBB and
    566 /// deleting the predecessor block.
    567 ///
    568 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
    569   // If BB has single-entry PHI nodes, fold them.
    570   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    571     Value *NewVal = PN->getIncomingValue(0);
    572     // Replace self referencing PHI with undef, it must be dead.
    573     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    574     PN->replaceAllUsesWith(NewVal);
    575     PN->eraseFromParent();
    576   }
    577 
    578   BasicBlock *PredBB = DestBB->getSinglePredecessor();
    579   assert(PredBB && "Block doesn't have a single predecessor!");
    580 
    581   // Zap anything that took the address of DestBB.  Not doing this will give the
    582   // address an invalid value.
    583   if (DestBB->hasAddressTaken()) {
    584     BlockAddress *BA = BlockAddress::get(DestBB);
    585     Constant *Replacement =
    586       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
    587     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
    588                                                      BA->getType()));
    589     BA->destroyConstant();
    590   }
    591 
    592   // Anything that branched to PredBB now branches to DestBB.
    593   PredBB->replaceAllUsesWith(DestBB);
    594 
    595   // Splice all the instructions from PredBB to DestBB.
    596   PredBB->getTerminator()->eraseFromParent();
    597   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
    598 
    599   // If the PredBB is the entry block of the function, move DestBB up to
    600   // become the entry block after we erase PredBB.
    601   if (PredBB == &DestBB->getParent()->getEntryBlock())
    602     DestBB->moveAfter(PredBB);
    603 
    604   if (DT) {
    605     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
    606     DT->changeImmediateDominator(DestBB, PredBBIDom);
    607     DT->eraseNode(PredBB);
    608   }
    609   // Nuke BB.
    610   PredBB->eraseFromParent();
    611 }
    612 
    613 /// CanMergeValues - Return true if we can choose one of these values to use
    614 /// in place of the other. Note that we will always choose the non-undef
    615 /// value to keep.
    616 static bool CanMergeValues(Value *First, Value *Second) {
    617   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
    618 }
    619 
    620 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
    621 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
    622 ///
    623 /// Assumption: Succ is the single successor for BB.
    624 ///
    625 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
    626   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
    627 
    628   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
    629         << Succ->getName() << "\n");
    630   // Shortcut, if there is only a single predecessor it must be BB and merging
    631   // is always safe
    632   if (Succ->getSinglePredecessor()) return true;
    633 
    634   // Make a list of the predecessors of BB
    635   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    636 
    637   // Look at all the phi nodes in Succ, to see if they present a conflict when
    638   // merging these blocks
    639   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    640     PHINode *PN = cast<PHINode>(I);
    641 
    642     // If the incoming value from BB is again a PHINode in
    643     // BB which has the same incoming value for *PI as PN does, we can
    644     // merge the phi nodes and then the blocks can still be merged
    645     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    646     if (BBPN && BBPN->getParent() == BB) {
    647       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    648         BasicBlock *IBB = PN->getIncomingBlock(PI);
    649         if (BBPreds.count(IBB) &&
    650             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
    651                             PN->getIncomingValue(PI))) {
    652           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    653                 << Succ->getName() << " is conflicting with "
    654                 << BBPN->getName() << " with regard to common predecessor "
    655                 << IBB->getName() << "\n");
    656           return false;
    657         }
    658       }
    659     } else {
    660       Value* Val = PN->getIncomingValueForBlock(BB);
    661       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    662         // See if the incoming value for the common predecessor is equal to the
    663         // one for BB, in which case this phi node will not prevent the merging
    664         // of the block.
    665         BasicBlock *IBB = PN->getIncomingBlock(PI);
    666         if (BBPreds.count(IBB) &&
    667             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
    668           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    669                 << Succ->getName() << " is conflicting with regard to common "
    670                 << "predecessor " << IBB->getName() << "\n");
    671           return false;
    672         }
    673       }
    674     }
    675   }
    676 
    677   return true;
    678 }
    679 
    680 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
    681 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
    682 
    683 /// \brief Determines the value to use as the phi node input for a block.
    684 ///
    685 /// Select between \p OldVal any value that we know flows from \p BB
    686 /// to a particular phi on the basis of which one (if either) is not
    687 /// undef. Update IncomingValues based on the selected value.
    688 ///
    689 /// \param OldVal The value we are considering selecting.
    690 /// \param BB The block that the value flows in from.
    691 /// \param IncomingValues A map from block-to-value for other phi inputs
    692 /// that we have examined.
    693 ///
    694 /// \returns the selected value.
    695 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
    696                                           IncomingValueMap &IncomingValues) {
    697   if (!isa<UndefValue>(OldVal)) {
    698     assert((!IncomingValues.count(BB) ||
    699             IncomingValues.find(BB)->second == OldVal) &&
    700            "Expected OldVal to match incoming value from BB!");
    701 
    702     IncomingValues.insert(std::make_pair(BB, OldVal));
    703     return OldVal;
    704   }
    705 
    706   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    707   if (It != IncomingValues.end()) return It->second;
    708 
    709   return OldVal;
    710 }
    711 
    712 /// \brief Create a map from block to value for the operands of a
    713 /// given phi.
    714 ///
    715 /// Create a map from block to value for each non-undef value flowing
    716 /// into \p PN.
    717 ///
    718 /// \param PN The phi we are collecting the map for.
    719 /// \param IncomingValues [out] The map from block to value for this phi.
    720 static void gatherIncomingValuesToPhi(PHINode *PN,
    721                                       IncomingValueMap &IncomingValues) {
    722   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    723     BasicBlock *BB = PN->getIncomingBlock(i);
    724     Value *V = PN->getIncomingValue(i);
    725 
    726     if (!isa<UndefValue>(V))
    727       IncomingValues.insert(std::make_pair(BB, V));
    728   }
    729 }
    730 
    731 /// \brief Replace the incoming undef values to a phi with the values
    732 /// from a block-to-value map.
    733 ///
    734 /// \param PN The phi we are replacing the undefs in.
    735 /// \param IncomingValues A map from block to value.
    736 static void replaceUndefValuesInPhi(PHINode *PN,
    737                                     const IncomingValueMap &IncomingValues) {
    738   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    739     Value *V = PN->getIncomingValue(i);
    740 
    741     if (!isa<UndefValue>(V)) continue;
    742 
    743     BasicBlock *BB = PN->getIncomingBlock(i);
    744     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    745     if (It == IncomingValues.end()) continue;
    746 
    747     PN->setIncomingValue(i, It->second);
    748   }
    749 }
    750 
    751 /// \brief Replace a value flowing from a block to a phi with
    752 /// potentially multiple instances of that value flowing from the
    753 /// block's predecessors to the phi.
    754 ///
    755 /// \param BB The block with the value flowing into the phi.
    756 /// \param BBPreds The predecessors of BB.
    757 /// \param PN The phi that we are updating.
    758 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
    759                                                 const PredBlockVector &BBPreds,
    760                                                 PHINode *PN) {
    761   Value *OldVal = PN->removeIncomingValue(BB, false);
    762   assert(OldVal && "No entry in PHI for Pred BB!");
    763 
    764   IncomingValueMap IncomingValues;
    765 
    766   // We are merging two blocks - BB, and the block containing PN - and
    767   // as a result we need to redirect edges from the predecessors of BB
    768   // to go to the block containing PN, and update PN
    769   // accordingly. Since we allow merging blocks in the case where the
    770   // predecessor and successor blocks both share some predecessors,
    771   // and where some of those common predecessors might have undef
    772   // values flowing into PN, we want to rewrite those values to be
    773   // consistent with the non-undef values.
    774 
    775   gatherIncomingValuesToPhi(PN, IncomingValues);
    776 
    777   // If this incoming value is one of the PHI nodes in BB, the new entries
    778   // in the PHI node are the entries from the old PHI.
    779   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
    780     PHINode *OldValPN = cast<PHINode>(OldVal);
    781     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
    782       // Note that, since we are merging phi nodes and BB and Succ might
    783       // have common predecessors, we could end up with a phi node with
    784       // identical incoming branches. This will be cleaned up later (and
    785       // will trigger asserts if we try to clean it up now, without also
    786       // simplifying the corresponding conditional branch).
    787       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
    788       Value *PredVal = OldValPN->getIncomingValue(i);
    789       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
    790                                                     IncomingValues);
    791 
    792       // And add a new incoming value for this predecessor for the
    793       // newly retargeted branch.
    794       PN->addIncoming(Selected, PredBB);
    795     }
    796   } else {
    797     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
    798       // Update existing incoming values in PN for this
    799       // predecessor of BB.
    800       BasicBlock *PredBB = BBPreds[i];
    801       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
    802                                                     IncomingValues);
    803 
    804       // And add a new incoming value for this predecessor for the
    805       // newly retargeted branch.
    806       PN->addIncoming(Selected, PredBB);
    807     }
    808   }
    809 
    810   replaceUndefValuesInPhi(PN, IncomingValues);
    811 }
    812 
    813 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    814 /// unconditional branch, and contains no instructions other than PHI nodes,
    815 /// potential side-effect free intrinsics and the branch.  If possible,
    816 /// eliminate BB by rewriting all the predecessors to branch to the successor
    817 /// block and return true.  If we can't transform, return false.
    818 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
    819   assert(BB != &BB->getParent()->getEntryBlock() &&
    820          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
    821 
    822   // We can't eliminate infinite loops.
    823   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
    824   if (BB == Succ) return false;
    825 
    826   // Check to see if merging these blocks would cause conflicts for any of the
    827   // phi nodes in BB or Succ. If not, we can safely merge.
    828   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
    829 
    830   // Check for cases where Succ has multiple predecessors and a PHI node in BB
    831   // has uses which will not disappear when the PHI nodes are merged.  It is
    832   // possible to handle such cases, but difficult: it requires checking whether
    833   // BB dominates Succ, which is non-trivial to calculate in the case where
    834   // Succ has multiple predecessors.  Also, it requires checking whether
    835   // constructing the necessary self-referential PHI node doesn't introduce any
    836   // conflicts; this isn't too difficult, but the previous code for doing this
    837   // was incorrect.
    838   //
    839   // Note that if this check finds a live use, BB dominates Succ, so BB is
    840   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
    841   // folding the branch isn't profitable in that case anyway.
    842   if (!Succ->getSinglePredecessor()) {
    843     BasicBlock::iterator BBI = BB->begin();
    844     while (isa<PHINode>(*BBI)) {
    845       for (Use &U : BBI->uses()) {
    846         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
    847           if (PN->getIncomingBlock(U) != BB)
    848             return false;
    849         } else {
    850           return false;
    851         }
    852       }
    853       ++BBI;
    854     }
    855   }
    856 
    857   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
    858 
    859   if (isa<PHINode>(Succ->begin())) {
    860     // If there is more than one pred of succ, and there are PHI nodes in
    861     // the successor, then we need to add incoming edges for the PHI nodes
    862     //
    863     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
    864 
    865     // Loop over all of the PHI nodes in the successor of BB.
    866     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    867       PHINode *PN = cast<PHINode>(I);
    868 
    869       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
    870     }
    871   }
    872 
    873   if (Succ->getSinglePredecessor()) {
    874     // BB is the only predecessor of Succ, so Succ will end up with exactly
    875     // the same predecessors BB had.
    876 
    877     // Copy over any phi, debug or lifetime instruction.
    878     BB->getTerminator()->eraseFromParent();
    879     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
    880                                BB->getInstList());
    881   } else {
    882     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    883       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
    884       assert(PN->use_empty() && "There shouldn't be any uses here!");
    885       PN->eraseFromParent();
    886     }
    887   }
    888 
    889   // Everything that jumped to BB now goes to Succ.
    890   BB->replaceAllUsesWith(Succ);
    891   if (!Succ->hasName()) Succ->takeName(BB);
    892   BB->eraseFromParent();              // Delete the old basic block.
    893   return true;
    894 }
    895 
    896 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    897 /// nodes in this block. This doesn't try to be clever about PHI nodes
    898 /// which differ only in the order of the incoming values, but instcombine
    899 /// orders them so it usually won't matter.
    900 ///
    901 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
    902   // This implementation doesn't currently consider undef operands
    903   // specially. Theoretically, two phis which are identical except for
    904   // one having an undef where the other doesn't could be collapsed.
    905 
    906   struct PHIDenseMapInfo {
    907     static PHINode *getEmptyKey() {
    908       return DenseMapInfo<PHINode *>::getEmptyKey();
    909     }
    910     static PHINode *getTombstoneKey() {
    911       return DenseMapInfo<PHINode *>::getTombstoneKey();
    912     }
    913     static unsigned getHashValue(PHINode *PN) {
    914       // Compute a hash value on the operands. Instcombine will likely have
    915       // sorted them, which helps expose duplicates, but we have to check all
    916       // the operands to be safe in case instcombine hasn't run.
    917       return static_cast<unsigned>(hash_combine(
    918           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
    919           hash_combine_range(PN->block_begin(), PN->block_end())));
    920     }
    921     static bool isEqual(PHINode *LHS, PHINode *RHS) {
    922       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
    923           RHS == getEmptyKey() || RHS == getTombstoneKey())
    924         return LHS == RHS;
    925       return LHS->isIdenticalTo(RHS);
    926     }
    927   };
    928 
    929   // Set of unique PHINodes.
    930   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
    931 
    932   // Examine each PHI.
    933   bool Changed = false;
    934   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
    935     auto Inserted = PHISet.insert(PN);
    936     if (!Inserted.second) {
    937       // A duplicate. Replace this PHI with its duplicate.
    938       PN->replaceAllUsesWith(*Inserted.first);
    939       PN->eraseFromParent();
    940       Changed = true;
    941 
    942       // The RAUW can change PHIs that we already visited. Start over from the
    943       // beginning.
    944       PHISet.clear();
    945       I = BB->begin();
    946     }
    947   }
    948 
    949   return Changed;
    950 }
    951 
    952 /// enforceKnownAlignment - If the specified pointer points to an object that
    953 /// we control, modify the object's alignment to PrefAlign. This isn't
    954 /// often possible though. If alignment is important, a more reliable approach
    955 /// is to simply align all global variables and allocation instructions to
    956 /// their preferred alignment from the beginning.
    957 ///
    958 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
    959                                       unsigned PrefAlign,
    960                                       const DataLayout &DL) {
    961   assert(PrefAlign > Align);
    962 
    963   V = V->stripPointerCasts();
    964 
    965   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    966     // TODO: ideally, computeKnownBits ought to have used
    967     // AllocaInst::getAlignment() in its computation already, making
    968     // the below max redundant. But, as it turns out,
    969     // stripPointerCasts recurses through infinite layers of bitcasts,
    970     // while computeKnownBits is not allowed to traverse more than 6
    971     // levels.
    972     Align = std::max(AI->getAlignment(), Align);
    973     if (PrefAlign <= Align)
    974       return Align;
    975 
    976     // If the preferred alignment is greater than the natural stack alignment
    977     // then don't round up. This avoids dynamic stack realignment.
    978     if (DL.exceedsNaturalStackAlignment(PrefAlign))
    979       return Align;
    980     AI->setAlignment(PrefAlign);
    981     return PrefAlign;
    982   }
    983 
    984   if (auto *GO = dyn_cast<GlobalObject>(V)) {
    985     // TODO: as above, this shouldn't be necessary.
    986     Align = std::max(GO->getAlignment(), Align);
    987     if (PrefAlign <= Align)
    988       return Align;
    989 
    990     // If there is a large requested alignment and we can, bump up the alignment
    991     // of the global.  If the memory we set aside for the global may not be the
    992     // memory used by the final program then it is impossible for us to reliably
    993     // enforce the preferred alignment.
    994     if (!GO->canIncreaseAlignment())
    995       return Align;
    996 
    997     GO->setAlignment(PrefAlign);
    998     return PrefAlign;
    999   }
   1000 
   1001   return Align;
   1002 }
   1003 
   1004 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
   1005 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
   1006 /// and it is more than the alignment of the ultimate object, see if we can
   1007 /// increase the alignment of the ultimate object, making this check succeed.
   1008 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
   1009                                           const DataLayout &DL,
   1010                                           const Instruction *CxtI,
   1011                                           AssumptionCache *AC,
   1012                                           const DominatorTree *DT) {
   1013   assert(V->getType()->isPointerTy() &&
   1014          "getOrEnforceKnownAlignment expects a pointer!");
   1015   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
   1016 
   1017   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   1018   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
   1019   unsigned TrailZ = KnownZero.countTrailingOnes();
   1020 
   1021   // Avoid trouble with ridiculously large TrailZ values, such as
   1022   // those computed from a null pointer.
   1023   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
   1024 
   1025   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
   1026 
   1027   // LLVM doesn't support alignments larger than this currently.
   1028   Align = std::min(Align, +Value::MaximumAlignment);
   1029 
   1030   if (PrefAlign > Align)
   1031     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
   1032 
   1033   // We don't need to make any adjustment.
   1034   return Align;
   1035 }
   1036 
   1037 ///===---------------------------------------------------------------------===//
   1038 ///  Dbg Intrinsic utilities
   1039 ///
   1040 
   1041 /// See if there is a dbg.value intrinsic for DIVar before I.
   1042 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
   1043                               Instruction *I) {
   1044   // Since we can't guarantee that the original dbg.declare instrinsic
   1045   // is removed by LowerDbgDeclare(), we need to make sure that we are
   1046   // not inserting the same dbg.value intrinsic over and over.
   1047   llvm::BasicBlock::InstListType::iterator PrevI(I);
   1048   if (PrevI != I->getParent()->getInstList().begin()) {
   1049     --PrevI;
   1050     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
   1051       if (DVI->getValue() == I->getOperand(0) &&
   1052           DVI->getOffset() == 0 &&
   1053           DVI->getVariable() == DIVar &&
   1054           DVI->getExpression() == DIExpr)
   1055         return true;
   1056   }
   1057   return false;
   1058 }
   1059 
   1060 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
   1061 /// that has an associated llvm.dbg.decl intrinsic.
   1062 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
   1063                                            StoreInst *SI, DIBuilder &Builder) {
   1064   auto *DIVar = DDI->getVariable();
   1065   auto *DIExpr = DDI->getExpression();
   1066   assert(DIVar && "Missing variable");
   1067 
   1068   // If an argument is zero extended then use argument directly. The ZExt
   1069   // may be zapped by an optimization pass in future.
   1070   Argument *ExtendedArg = nullptr;
   1071   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
   1072     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
   1073   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
   1074     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
   1075   if (ExtendedArg) {
   1076     // We're now only describing a subset of the variable. The piece we're
   1077     // describing will always be smaller than the variable size, because
   1078     // VariableSize == Size of Alloca described by DDI. Since SI stores
   1079     // to the alloca described by DDI, if it's first operand is an extend,
   1080     // we're guaranteed that before extension, the value was narrower than
   1081     // the size of the alloca, hence the size of the described variable.
   1082     SmallVector<uint64_t, 3> Ops;
   1083     unsigned PieceOffset = 0;
   1084     // If this already is a bit piece, we drop the bit piece from the expression
   1085     // and record the offset.
   1086     if (DIExpr->isBitPiece()) {
   1087       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
   1088       PieceOffset = DIExpr->getBitPieceOffset();
   1089     } else {
   1090       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
   1091     }
   1092     Ops.push_back(dwarf::DW_OP_bit_piece);
   1093     Ops.push_back(PieceOffset); // Offset
   1094     const DataLayout &DL = DDI->getModule()->getDataLayout();
   1095     Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size
   1096     auto NewDIExpr = Builder.createExpression(Ops);
   1097     if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
   1098       Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
   1099                                       DDI->getDebugLoc(), SI);
   1100   } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
   1101     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
   1102                                     DDI->getDebugLoc(), SI);
   1103   return true;
   1104 }
   1105 
   1106 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
   1107 /// that has an associated llvm.dbg.decl intrinsic.
   1108 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
   1109                                            LoadInst *LI, DIBuilder &Builder) {
   1110   auto *DIVar = DDI->getVariable();
   1111   auto *DIExpr = DDI->getExpression();
   1112   assert(DIVar && "Missing variable");
   1113 
   1114   if (LdStHasDebugValue(DIVar, DIExpr, LI))
   1115     return true;
   1116 
   1117   // We are now tracking the loaded value instead of the address. In the
   1118   // future if multi-location support is added to the IR, it might be
   1119   // preferable to keep tracking both the loaded value and the original
   1120   // address in case the alloca can not be elided.
   1121   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
   1122       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
   1123   DbgValue->insertAfter(LI);
   1124   return true;
   1125 }
   1126 
   1127 /// Determine whether this alloca is either a VLA or an array.
   1128 static bool isArray(AllocaInst *AI) {
   1129   return AI->isArrayAllocation() ||
   1130     AI->getType()->getElementType()->isArrayTy();
   1131 }
   1132 
   1133 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
   1134 /// of llvm.dbg.value intrinsics.
   1135 bool llvm::LowerDbgDeclare(Function &F) {
   1136   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
   1137   SmallVector<DbgDeclareInst *, 4> Dbgs;
   1138   for (auto &FI : F)
   1139     for (Instruction &BI : FI)
   1140       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
   1141         Dbgs.push_back(DDI);
   1142 
   1143   if (Dbgs.empty())
   1144     return false;
   1145 
   1146   for (auto &I : Dbgs) {
   1147     DbgDeclareInst *DDI = I;
   1148     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
   1149     // If this is an alloca for a scalar variable, insert a dbg.value
   1150     // at each load and store to the alloca and erase the dbg.declare.
   1151     // The dbg.values allow tracking a variable even if it is not
   1152     // stored on the stack, while the dbg.declare can only describe
   1153     // the stack slot (and at a lexical-scope granularity). Later
   1154     // passes will attempt to elide the stack slot.
   1155     if (AI && !isArray(AI)) {
   1156       for (auto &AIUse : AI->uses()) {
   1157         User *U = AIUse.getUser();
   1158         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1159           if (AIUse.getOperandNo() == 1)
   1160             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
   1161         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1162           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
   1163         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
   1164           // This is a call by-value or some other instruction that
   1165           // takes a pointer to the variable. Insert a *value*
   1166           // intrinsic that describes the alloca.
   1167           SmallVector<uint64_t, 1> NewDIExpr;
   1168           auto *DIExpr = DDI->getExpression();
   1169           NewDIExpr.push_back(dwarf::DW_OP_deref);
   1170           NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
   1171           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
   1172                                       DIB.createExpression(NewDIExpr),
   1173                                       DDI->getDebugLoc(), CI);
   1174         }
   1175       }
   1176       DDI->eraseFromParent();
   1177     }
   1178   }
   1179   return true;
   1180 }
   1181 
   1182 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
   1183 /// alloca 'V', if any.
   1184 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
   1185   if (auto *L = LocalAsMetadata::getIfExists(V))
   1186     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
   1187       for (User *U : MDV->users())
   1188         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
   1189           return DDI;
   1190 
   1191   return nullptr;
   1192 }
   1193 
   1194 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) {
   1195   Expr.push_back(dwarf::DW_OP_deref);
   1196 }
   1197 
   1198 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) {
   1199   if (Offset > 0) {
   1200     Expr.push_back(dwarf::DW_OP_plus);
   1201     Expr.push_back(Offset);
   1202   } else if (Offset < 0) {
   1203     Expr.push_back(dwarf::DW_OP_minus);
   1204     Expr.push_back(-Offset);
   1205   }
   1206 }
   1207 
   1208 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder,
   1209                                             DIExpression *DIExpr, bool Deref,
   1210                                             int Offset) {
   1211   if (!Deref && !Offset)
   1212     return DIExpr;
   1213   // Create a copy of the original DIDescriptor for user variable, prepending
   1214   // "deref" operation to a list of address elements, as new llvm.dbg.declare
   1215   // will take a value storing address of the memory for variable, not
   1216   // alloca itself.
   1217   SmallVector<uint64_t, 4> NewDIExpr;
   1218   if (Deref)
   1219     DIExprAddDeref(NewDIExpr);
   1220   DIExprAddOffset(NewDIExpr, Offset);
   1221   if (DIExpr)
   1222     NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
   1223   return Builder.createExpression(NewDIExpr);
   1224 }
   1225 
   1226 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
   1227                              Instruction *InsertBefore, DIBuilder &Builder,
   1228                              bool Deref, int Offset) {
   1229   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
   1230   if (!DDI)
   1231     return false;
   1232   DebugLoc Loc = DDI->getDebugLoc();
   1233   auto *DIVar = DDI->getVariable();
   1234   auto *DIExpr = DDI->getExpression();
   1235   assert(DIVar && "Missing variable");
   1236 
   1237   DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset);
   1238 
   1239   // Insert llvm.dbg.declare immediately after the original alloca, and remove
   1240   // old llvm.dbg.declare.
   1241   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
   1242   DDI->eraseFromParent();
   1243   return true;
   1244 }
   1245 
   1246 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
   1247                                       DIBuilder &Builder, bool Deref, int Offset) {
   1248   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
   1249                            Deref, Offset);
   1250 }
   1251 
   1252 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
   1253                                         DIBuilder &Builder, int Offset) {
   1254   DebugLoc Loc = DVI->getDebugLoc();
   1255   auto *DIVar = DVI->getVariable();
   1256   auto *DIExpr = DVI->getExpression();
   1257   assert(DIVar && "Missing variable");
   1258 
   1259   // This is an alloca-based llvm.dbg.value. The first thing it should do with
   1260   // the alloca pointer is dereference it. Otherwise we don't know how to handle
   1261   // it and give up.
   1262   if (!DIExpr || DIExpr->getNumElements() < 1 ||
   1263       DIExpr->getElement(0) != dwarf::DW_OP_deref)
   1264     return;
   1265 
   1266   // Insert the offset immediately after the first deref.
   1267   // We could just change the offset argument of dbg.value, but it's unsigned...
   1268   if (Offset) {
   1269     SmallVector<uint64_t, 4> NewDIExpr;
   1270     DIExprAddDeref(NewDIExpr);
   1271     DIExprAddOffset(NewDIExpr, Offset);
   1272     NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
   1273     DIExpr = Builder.createExpression(NewDIExpr);
   1274   }
   1275 
   1276   Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
   1277                                   Loc, DVI);
   1278   DVI->eraseFromParent();
   1279 }
   1280 
   1281 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
   1282                                     DIBuilder &Builder, int Offset) {
   1283   if (auto *L = LocalAsMetadata::getIfExists(AI))
   1284     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
   1285       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
   1286         Use &U = *UI++;
   1287         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
   1288           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
   1289       }
   1290 }
   1291 
   1292 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
   1293   unsigned NumDeadInst = 0;
   1294   // Delete the instructions backwards, as it has a reduced likelihood of
   1295   // having to update as many def-use and use-def chains.
   1296   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1297   while (EndInst != &BB->front()) {
   1298     // Delete the next to last instruction.
   1299     Instruction *Inst = &*--EndInst->getIterator();
   1300     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
   1301       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1302     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
   1303       EndInst = Inst;
   1304       continue;
   1305     }
   1306     if (!isa<DbgInfoIntrinsic>(Inst))
   1307       ++NumDeadInst;
   1308     Inst->eraseFromParent();
   1309   }
   1310   return NumDeadInst;
   1311 }
   1312 
   1313 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
   1314   BasicBlock *BB = I->getParent();
   1315   // Loop over all of the successors, removing BB's entry from any PHI
   1316   // nodes.
   1317   for (BasicBlock *Successor : successors(BB))
   1318     Successor->removePredecessor(BB);
   1319 
   1320   // Insert a call to llvm.trap right before this.  This turns the undefined
   1321   // behavior into a hard fail instead of falling through into random code.
   1322   if (UseLLVMTrap) {
   1323     Function *TrapFn =
   1324       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
   1325     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
   1326     CallTrap->setDebugLoc(I->getDebugLoc());
   1327   }
   1328   new UnreachableInst(I->getContext(), I);
   1329 
   1330   // All instructions after this are dead.
   1331   unsigned NumInstrsRemoved = 0;
   1332   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
   1333   while (BBI != BBE) {
   1334     if (!BBI->use_empty())
   1335       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   1336     BB->getInstList().erase(BBI++);
   1337     ++NumInstrsRemoved;
   1338   }
   1339   return NumInstrsRemoved;
   1340 }
   1341 
   1342 /// changeToCall - Convert the specified invoke into a normal call.
   1343 static void changeToCall(InvokeInst *II) {
   1344   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
   1345   SmallVector<OperandBundleDef, 1> OpBundles;
   1346   II->getOperandBundlesAsDefs(OpBundles);
   1347   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
   1348                                        "", II);
   1349   NewCall->takeName(II);
   1350   NewCall->setCallingConv(II->getCallingConv());
   1351   NewCall->setAttributes(II->getAttributes());
   1352   NewCall->setDebugLoc(II->getDebugLoc());
   1353   II->replaceAllUsesWith(NewCall);
   1354 
   1355   // Follow the call by a branch to the normal destination.
   1356   BranchInst::Create(II->getNormalDest(), II);
   1357 
   1358   // Update PHI nodes in the unwind destination
   1359   II->getUnwindDest()->removePredecessor(II->getParent());
   1360   II->eraseFromParent();
   1361 }
   1362 
   1363 static bool markAliveBlocks(Function &F,
   1364                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
   1365 
   1366   SmallVector<BasicBlock*, 128> Worklist;
   1367   BasicBlock *BB = &F.front();
   1368   Worklist.push_back(BB);
   1369   Reachable.insert(BB);
   1370   bool Changed = false;
   1371   do {
   1372     BB = Worklist.pop_back_val();
   1373 
   1374     // Do a quick scan of the basic block, turning any obviously unreachable
   1375     // instructions into LLVM unreachable insts.  The instruction combining pass
   1376     // canonicalizes unreachable insts into stores to null or undef.
   1377     for (Instruction &I : *BB) {
   1378       // Assumptions that are known to be false are equivalent to unreachable.
   1379       // Also, if the condition is undefined, then we make the choice most
   1380       // beneficial to the optimizer, and choose that to also be unreachable.
   1381       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
   1382         if (II->getIntrinsicID() == Intrinsic::assume) {
   1383           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
   1384             // Don't insert a call to llvm.trap right before the unreachable.
   1385             changeToUnreachable(II, false);
   1386             Changed = true;
   1387             break;
   1388           }
   1389         }
   1390 
   1391         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
   1392           // A call to the guard intrinsic bails out of the current compilation
   1393           // unit if the predicate passed to it is false.  If the predicate is a
   1394           // constant false, then we know the guard will bail out of the current
   1395           // compile unconditionally, so all code following it is dead.
   1396           //
   1397           // Note: unlike in llvm.assume, it is not "obviously profitable" for
   1398           // guards to treat `undef` as `false` since a guard on `undef` can
   1399           // still be useful for widening.
   1400           if (match(II->getArgOperand(0), m_Zero()))
   1401             if (!isa<UnreachableInst>(II->getNextNode())) {
   1402               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
   1403               Changed = true;
   1404               break;
   1405             }
   1406         }
   1407       }
   1408 
   1409       if (auto *CI = dyn_cast<CallInst>(&I)) {
   1410         Value *Callee = CI->getCalledValue();
   1411         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
   1412           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
   1413           Changed = true;
   1414           break;
   1415         }
   1416         if (CI->doesNotReturn()) {
   1417           // If we found a call to a no-return function, insert an unreachable
   1418           // instruction after it.  Make sure there isn't *already* one there
   1419           // though.
   1420           if (!isa<UnreachableInst>(CI->getNextNode())) {
   1421             // Don't insert a call to llvm.trap right before the unreachable.
   1422             changeToUnreachable(CI->getNextNode(), false);
   1423             Changed = true;
   1424           }
   1425           break;
   1426         }
   1427       }
   1428 
   1429       // Store to undef and store to null are undefined and used to signal that
   1430       // they should be changed to unreachable by passes that can't modify the
   1431       // CFG.
   1432       if (auto *SI = dyn_cast<StoreInst>(&I)) {
   1433         // Don't touch volatile stores.
   1434         if (SI->isVolatile()) continue;
   1435 
   1436         Value *Ptr = SI->getOperand(1);
   1437 
   1438         if (isa<UndefValue>(Ptr) ||
   1439             (isa<ConstantPointerNull>(Ptr) &&
   1440              SI->getPointerAddressSpace() == 0)) {
   1441           changeToUnreachable(SI, true);
   1442           Changed = true;
   1443           break;
   1444         }
   1445       }
   1446     }
   1447 
   1448     TerminatorInst *Terminator = BB->getTerminator();
   1449     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
   1450       // Turn invokes that call 'nounwind' functions into ordinary calls.
   1451       Value *Callee = II->getCalledValue();
   1452       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
   1453         changeToUnreachable(II, true);
   1454         Changed = true;
   1455       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
   1456         if (II->use_empty() && II->onlyReadsMemory()) {
   1457           // jump to the normal destination branch.
   1458           BranchInst::Create(II->getNormalDest(), II);
   1459           II->getUnwindDest()->removePredecessor(II->getParent());
   1460           II->eraseFromParent();
   1461         } else
   1462           changeToCall(II);
   1463         Changed = true;
   1464       }
   1465     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
   1466       // Remove catchpads which cannot be reached.
   1467       struct CatchPadDenseMapInfo {
   1468         static CatchPadInst *getEmptyKey() {
   1469           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
   1470         }
   1471         static CatchPadInst *getTombstoneKey() {
   1472           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
   1473         }
   1474         static unsigned getHashValue(CatchPadInst *CatchPad) {
   1475           return static_cast<unsigned>(hash_combine_range(
   1476               CatchPad->value_op_begin(), CatchPad->value_op_end()));
   1477         }
   1478         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
   1479           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
   1480               RHS == getEmptyKey() || RHS == getTombstoneKey())
   1481             return LHS == RHS;
   1482           return LHS->isIdenticalTo(RHS);
   1483         }
   1484       };
   1485 
   1486       // Set of unique CatchPads.
   1487       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
   1488                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
   1489           HandlerSet;
   1490       detail::DenseSetEmpty Empty;
   1491       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
   1492                                              E = CatchSwitch->handler_end();
   1493            I != E; ++I) {
   1494         BasicBlock *HandlerBB = *I;
   1495         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
   1496         if (!HandlerSet.insert({CatchPad, Empty}).second) {
   1497           CatchSwitch->removeHandler(I);
   1498           --I;
   1499           --E;
   1500           Changed = true;
   1501         }
   1502       }
   1503     }
   1504 
   1505     Changed |= ConstantFoldTerminator(BB, true);
   1506     for (BasicBlock *Successor : successors(BB))
   1507       if (Reachable.insert(Successor).second)
   1508         Worklist.push_back(Successor);
   1509   } while (!Worklist.empty());
   1510   return Changed;
   1511 }
   1512 
   1513 void llvm::removeUnwindEdge(BasicBlock *BB) {
   1514   TerminatorInst *TI = BB->getTerminator();
   1515 
   1516   if (auto *II = dyn_cast<InvokeInst>(TI)) {
   1517     changeToCall(II);
   1518     return;
   1519   }
   1520 
   1521   TerminatorInst *NewTI;
   1522   BasicBlock *UnwindDest;
   1523 
   1524   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
   1525     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
   1526     UnwindDest = CRI->getUnwindDest();
   1527   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
   1528     auto *NewCatchSwitch = CatchSwitchInst::Create(
   1529         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
   1530         CatchSwitch->getName(), CatchSwitch);
   1531     for (BasicBlock *PadBB : CatchSwitch->handlers())
   1532       NewCatchSwitch->addHandler(PadBB);
   1533 
   1534     NewTI = NewCatchSwitch;
   1535     UnwindDest = CatchSwitch->getUnwindDest();
   1536   } else {
   1537     llvm_unreachable("Could not find unwind successor");
   1538   }
   1539 
   1540   NewTI->takeName(TI);
   1541   NewTI->setDebugLoc(TI->getDebugLoc());
   1542   UnwindDest->removePredecessor(BB);
   1543   TI->replaceAllUsesWith(NewTI);
   1544   TI->eraseFromParent();
   1545 }
   1546 
   1547 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
   1548 /// if they are in a dead cycle.  Return true if a change was made, false
   1549 /// otherwise.
   1550 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
   1551   SmallPtrSet<BasicBlock*, 16> Reachable;
   1552   bool Changed = markAliveBlocks(F, Reachable);
   1553 
   1554   // If there are unreachable blocks in the CFG...
   1555   if (Reachable.size() == F.size())
   1556     return Changed;
   1557 
   1558   assert(Reachable.size() < F.size());
   1559   NumRemoved += F.size()-Reachable.size();
   1560 
   1561   // Loop over all of the basic blocks that are not reachable, dropping all of
   1562   // their internal references...
   1563   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
   1564     if (Reachable.count(&*BB))
   1565       continue;
   1566 
   1567     for (BasicBlock *Successor : successors(&*BB))
   1568       if (Reachable.count(Successor))
   1569         Successor->removePredecessor(&*BB);
   1570     if (LVI)
   1571       LVI->eraseBlock(&*BB);
   1572     BB->dropAllReferences();
   1573   }
   1574 
   1575   for (Function::iterator I = ++F.begin(); I != F.end();)
   1576     if (!Reachable.count(&*I))
   1577       I = F.getBasicBlockList().erase(I);
   1578     else
   1579       ++I;
   1580 
   1581   return true;
   1582 }
   1583 
   1584 void llvm::combineMetadata(Instruction *K, const Instruction *J,
   1585                            ArrayRef<unsigned> KnownIDs) {
   1586   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
   1587   K->dropUnknownNonDebugMetadata(KnownIDs);
   1588   K->getAllMetadataOtherThanDebugLoc(Metadata);
   1589   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
   1590     unsigned Kind = Metadata[i].first;
   1591     MDNode *JMD = J->getMetadata(Kind);
   1592     MDNode *KMD = Metadata[i].second;
   1593 
   1594     switch (Kind) {
   1595       default:
   1596         K->setMetadata(Kind, nullptr); // Remove unknown metadata
   1597         break;
   1598       case LLVMContext::MD_dbg:
   1599         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
   1600       case LLVMContext::MD_tbaa:
   1601         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
   1602         break;
   1603       case LLVMContext::MD_alias_scope:
   1604         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
   1605         break;
   1606       case LLVMContext::MD_noalias:
   1607       case LLVMContext::MD_mem_parallel_loop_access:
   1608         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
   1609         break;
   1610       case LLVMContext::MD_range:
   1611         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
   1612         break;
   1613       case LLVMContext::MD_fpmath:
   1614         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
   1615         break;
   1616       case LLVMContext::MD_invariant_load:
   1617         // Only set the !invariant.load if it is present in both instructions.
   1618         K->setMetadata(Kind, JMD);
   1619         break;
   1620       case LLVMContext::MD_nonnull:
   1621         // Only set the !nonnull if it is present in both instructions.
   1622         K->setMetadata(Kind, JMD);
   1623         break;
   1624       case LLVMContext::MD_invariant_group:
   1625         // Preserve !invariant.group in K.
   1626         break;
   1627       case LLVMContext::MD_align:
   1628         K->setMetadata(Kind,
   1629           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
   1630         break;
   1631       case LLVMContext::MD_dereferenceable:
   1632       case LLVMContext::MD_dereferenceable_or_null:
   1633         K->setMetadata(Kind,
   1634           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
   1635         break;
   1636     }
   1637   }
   1638   // Set !invariant.group from J if J has it. If both instructions have it
   1639   // then we will just pick it from J - even when they are different.
   1640   // Also make sure that K is load or store - f.e. combining bitcast with load
   1641   // could produce bitcast with invariant.group metadata, which is invalid.
   1642   // FIXME: we should try to preserve both invariant.group md if they are
   1643   // different, but right now instruction can only have one invariant.group.
   1644   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
   1645     if (isa<LoadInst>(K) || isa<StoreInst>(K))
   1646       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
   1647 }
   1648 
   1649 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
   1650                                         DominatorTree &DT,
   1651                                         const BasicBlockEdge &Root) {
   1652   assert(From->getType() == To->getType());
   1653 
   1654   unsigned Count = 0;
   1655   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
   1656        UI != UE; ) {
   1657     Use &U = *UI++;
   1658     if (DT.dominates(Root, U)) {
   1659       U.set(To);
   1660       DEBUG(dbgs() << "Replace dominated use of '"
   1661             << From->getName() << "' as "
   1662             << *To << " in " << *U << "\n");
   1663       ++Count;
   1664     }
   1665   }
   1666   return Count;
   1667 }
   1668 
   1669 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
   1670                                         DominatorTree &DT,
   1671                                         const BasicBlock *BB) {
   1672   assert(From->getType() == To->getType());
   1673 
   1674   unsigned Count = 0;
   1675   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
   1676        UI != UE;) {
   1677     Use &U = *UI++;
   1678     auto *I = cast<Instruction>(U.getUser());
   1679     if (DT.properlyDominates(BB, I->getParent())) {
   1680       U.set(To);
   1681       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
   1682                    << *To << " in " << *U << "\n");
   1683       ++Count;
   1684     }
   1685   }
   1686   return Count;
   1687 }
   1688 
   1689 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
   1690   // Check if the function is specifically marked as a gc leaf function.
   1691   if (CS.hasFnAttr("gc-leaf-function"))
   1692     return true;
   1693   if (const Function *F = CS.getCalledFunction()) {
   1694     if (F->hasFnAttribute("gc-leaf-function"))
   1695       return true;
   1696 
   1697     if (auto IID = F->getIntrinsicID())
   1698       // Most LLVM intrinsics do not take safepoints.
   1699       return IID != Intrinsic::experimental_gc_statepoint &&
   1700              IID != Intrinsic::experimental_deoptimize;
   1701   }
   1702 
   1703   return false;
   1704 }
   1705 
   1706 /// A potential constituent of a bitreverse or bswap expression. See
   1707 /// collectBitParts for a fuller explanation.
   1708 struct BitPart {
   1709   BitPart(Value *P, unsigned BW) : Provider(P) {
   1710     Provenance.resize(BW);
   1711   }
   1712 
   1713   /// The Value that this is a bitreverse/bswap of.
   1714   Value *Provider;
   1715   /// The "provenance" of each bit. Provenance[A] = B means that bit A
   1716   /// in Provider becomes bit B in the result of this expression.
   1717   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
   1718 
   1719   enum { Unset = -1 };
   1720 };
   1721 
   1722 /// Analyze the specified subexpression and see if it is capable of providing
   1723 /// pieces of a bswap or bitreverse. The subexpression provides a potential
   1724 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
   1725 /// the output of the expression came from a corresponding bit in some other
   1726 /// value. This function is recursive, and the end result is a mapping of
   1727 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
   1728 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
   1729 ///
   1730 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
   1731 /// that the expression deposits the low byte of %X into the high byte of the
   1732 /// result and that all other bits are zero. This expression is accepted and a
   1733 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
   1734 /// [0-7].
   1735 ///
   1736 /// To avoid revisiting values, the BitPart results are memoized into the
   1737 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
   1738 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
   1739 /// store BitParts objects, not pointers. As we need the concept of a nullptr
   1740 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
   1741 /// type instead to provide the same functionality.
   1742 ///
   1743 /// Because we pass around references into \c BPS, we must use a container that
   1744 /// does not invalidate internal references (std::map instead of DenseMap).
   1745 ///
   1746 static const Optional<BitPart> &
   1747 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
   1748                 std::map<Value *, Optional<BitPart>> &BPS) {
   1749   auto I = BPS.find(V);
   1750   if (I != BPS.end())
   1751     return I->second;
   1752 
   1753   auto &Result = BPS[V] = None;
   1754   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
   1755 
   1756   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1757     // If this is an or instruction, it may be an inner node of the bswap.
   1758     if (I->getOpcode() == Instruction::Or) {
   1759       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
   1760                                 MatchBitReversals, BPS);
   1761       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
   1762                                 MatchBitReversals, BPS);
   1763       if (!A || !B)
   1764         return Result;
   1765 
   1766       // Try and merge the two together.
   1767       if (!A->Provider || A->Provider != B->Provider)
   1768         return Result;
   1769 
   1770       Result = BitPart(A->Provider, BitWidth);
   1771       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
   1772         if (A->Provenance[i] != BitPart::Unset &&
   1773             B->Provenance[i] != BitPart::Unset &&
   1774             A->Provenance[i] != B->Provenance[i])
   1775           return Result = None;
   1776 
   1777         if (A->Provenance[i] == BitPart::Unset)
   1778           Result->Provenance[i] = B->Provenance[i];
   1779         else
   1780           Result->Provenance[i] = A->Provenance[i];
   1781       }
   1782 
   1783       return Result;
   1784     }
   1785 
   1786     // If this is a logical shift by a constant, recurse then shift the result.
   1787     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1788       unsigned BitShift =
   1789           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1790       // Ensure the shift amount is defined.
   1791       if (BitShift > BitWidth)
   1792         return Result;
   1793 
   1794       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
   1795                                   MatchBitReversals, BPS);
   1796       if (!Res)
   1797         return Result;
   1798       Result = Res;
   1799 
   1800       // Perform the "shift" on BitProvenance.
   1801       auto &P = Result->Provenance;
   1802       if (I->getOpcode() == Instruction::Shl) {
   1803         P.erase(std::prev(P.end(), BitShift), P.end());
   1804         P.insert(P.begin(), BitShift, BitPart::Unset);
   1805       } else {
   1806         P.erase(P.begin(), std::next(P.begin(), BitShift));
   1807         P.insert(P.end(), BitShift, BitPart::Unset);
   1808       }
   1809 
   1810       return Result;
   1811     }
   1812 
   1813     // If this is a logical 'and' with a mask that clears bits, recurse then
   1814     // unset the appropriate bits.
   1815     if (I->getOpcode() == Instruction::And &&
   1816         isa<ConstantInt>(I->getOperand(1))) {
   1817       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
   1818       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1819 
   1820       // Check that the mask allows a multiple of 8 bits for a bswap, for an
   1821       // early exit.
   1822       unsigned NumMaskedBits = AndMask.countPopulation();
   1823       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
   1824         return Result;
   1825 
   1826       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
   1827                                   MatchBitReversals, BPS);
   1828       if (!Res)
   1829         return Result;
   1830       Result = Res;
   1831 
   1832       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
   1833         // If the AndMask is zero for this bit, clear the bit.
   1834         if ((AndMask & Bit) == 0)
   1835           Result->Provenance[i] = BitPart::Unset;
   1836       return Result;
   1837     }
   1838 
   1839     // If this is a zext instruction zero extend the result.
   1840     if (I->getOpcode() == Instruction::ZExt) {
   1841       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
   1842                                   MatchBitReversals, BPS);
   1843       if (!Res)
   1844         return Result;
   1845 
   1846       Result = BitPart(Res->Provider, BitWidth);
   1847       auto NarrowBitWidth =
   1848           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
   1849       for (unsigned i = 0; i < NarrowBitWidth; ++i)
   1850         Result->Provenance[i] = Res->Provenance[i];
   1851       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
   1852         Result->Provenance[i] = BitPart::Unset;
   1853       return Result;
   1854     }
   1855   }
   1856 
   1857   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1858   // the input value to the bswap/bitreverse.
   1859   Result = BitPart(V, BitWidth);
   1860   for (unsigned i = 0; i < BitWidth; ++i)
   1861     Result->Provenance[i] = i;
   1862   return Result;
   1863 }
   1864 
   1865 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
   1866                                           unsigned BitWidth) {
   1867   if (From % 8 != To % 8)
   1868     return false;
   1869   // Convert from bit indices to byte indices and check for a byte reversal.
   1870   From >>= 3;
   1871   To >>= 3;
   1872   BitWidth >>= 3;
   1873   return From == BitWidth - To - 1;
   1874 }
   1875 
   1876 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
   1877                                                unsigned BitWidth) {
   1878   return From == BitWidth - To - 1;
   1879 }
   1880 
   1881 /// Given an OR instruction, check to see if this is a bitreverse
   1882 /// idiom. If so, insert the new intrinsic and return true.
   1883 bool llvm::recognizeBSwapOrBitReverseIdiom(
   1884     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
   1885     SmallVectorImpl<Instruction *> &InsertedInsts) {
   1886   if (Operator::getOpcode(I) != Instruction::Or)
   1887     return false;
   1888   if (!MatchBSwaps && !MatchBitReversals)
   1889     return false;
   1890   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
   1891   if (!ITy || ITy->getBitWidth() > 128)
   1892     return false;   // Can't do vectors or integers > 128 bits.
   1893   unsigned BW = ITy->getBitWidth();
   1894 
   1895   unsigned DemandedBW = BW;
   1896   IntegerType *DemandedTy = ITy;
   1897   if (I->hasOneUse()) {
   1898     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
   1899       DemandedTy = cast<IntegerType>(Trunc->getType());
   1900       DemandedBW = DemandedTy->getBitWidth();
   1901     }
   1902   }
   1903 
   1904   // Try to find all the pieces corresponding to the bswap.
   1905   std::map<Value *, Optional<BitPart>> BPS;
   1906   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
   1907   if (!Res)
   1908     return false;
   1909   auto &BitProvenance = Res->Provenance;
   1910 
   1911   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
   1912   // only byteswap values with an even number of bytes.
   1913   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
   1914   for (unsigned i = 0; i < DemandedBW; ++i) {
   1915     OKForBSwap &=
   1916         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
   1917     OKForBitReverse &=
   1918         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
   1919   }
   1920 
   1921   Intrinsic::ID Intrin;
   1922   if (OKForBSwap && MatchBSwaps)
   1923     Intrin = Intrinsic::bswap;
   1924   else if (OKForBitReverse && MatchBitReversals)
   1925     Intrin = Intrinsic::bitreverse;
   1926   else
   1927     return false;
   1928 
   1929   if (ITy != DemandedTy) {
   1930     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
   1931     Value *Provider = Res->Provider;
   1932     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
   1933     // We may need to truncate the provider.
   1934     if (DemandedTy != ProviderTy) {
   1935       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
   1936                                      "trunc", I);
   1937       InsertedInsts.push_back(Trunc);
   1938       Provider = Trunc;
   1939     }
   1940     auto *CI = CallInst::Create(F, Provider, "rev", I);
   1941     InsertedInsts.push_back(CI);
   1942     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
   1943     InsertedInsts.push_back(ExtInst);
   1944     return true;
   1945   }
   1946 
   1947   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
   1948   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
   1949   return true;
   1950 }
   1951 
   1952 // CodeGen has special handling for some string functions that may replace
   1953 // them with target-specific intrinsics.  Since that'd skip our interceptors
   1954 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
   1955 // we mark affected calls as NoBuiltin, which will disable optimization
   1956 // in CodeGen.
   1957 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
   1958                                           const TargetLibraryInfo *TLI) {
   1959   Function *F = CI->getCalledFunction();
   1960   LibFunc::Func Func;
   1961   if (!F || F->hasLocalLinkage() || !F->hasName() ||
   1962       !TLI->getLibFunc(F->getName(), Func))
   1963     return;
   1964   switch (Func) {
   1965     default: break;
   1966     case LibFunc::memcmp:
   1967     case LibFunc::memchr:
   1968     case LibFunc::strcpy:
   1969     case LibFunc::stpcpy:
   1970     case LibFunc::strcmp:
   1971     case LibFunc::strlen:
   1972     case LibFunc::strnlen:
   1973       CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin);
   1974       break;
   1975   }
   1976 }
   1977