Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonExpandCondsets.cpp ----------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // Replace mux instructions with the corresponding legal instructions.
     11 // It is meant to work post-SSA, but still on virtual registers. It was
     12 // originally placed between register coalescing and machine instruction
     13 // scheduler.
     14 // In this place in the optimization sequence, live interval analysis had
     15 // been performed, and the live intervals should be preserved. A large part
     16 // of the code deals with preserving the liveness information.
     17 //
     18 // Liveness tracking aside, the main functionality of this pass is divided
     19 // into two steps. The first step is to replace an instruction
     20 //   vreg0 = C2_mux vreg1, vreg2, vreg3
     21 // with a pair of conditional transfers
     22 //   vreg0 = A2_tfrt vreg1, vreg2
     23 //   vreg0 = A2_tfrf vreg1, vreg3
     24 // It is the intention that the execution of this pass could be terminated
     25 // after this step, and the code generated would be functionally correct.
     26 //
     27 // If the uses of the source values vreg1 and vreg2 are kills, and their
     28 // definitions are predicable, then in the second step, the conditional
     29 // transfers will then be rewritten as predicated instructions. E.g.
     30 //   vreg0 = A2_or vreg1, vreg2
     31 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
     32 // will be rewritten as
     33 //   vreg3 = A2_port vreg99, vreg1, vreg2
     34 //
     35 // This replacement has two variants: "up" and "down". Consider this case:
     36 //   vreg0 = A2_or vreg1, vreg2
     37 //   ... [intervening instructions] ...
     38 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
     39 // variant "up":
     40 //   vreg3 = A2_port vreg99, vreg1, vreg2
     41 //   ... [intervening instructions, vreg0->vreg3] ...
     42 //   [deleted]
     43 // variant "down":
     44 //   [deleted]
     45 //   ... [intervening instructions] ...
     46 //   vreg3 = A2_port vreg99, vreg1, vreg2
     47 //
     48 // Both, one or none of these variants may be valid, and checks are made
     49 // to rule out inapplicable variants.
     50 //
     51 // As an additional optimization, before either of the two steps above is
     52 // executed, the pass attempts to coalesce the target register with one of
     53 // the source registers, e.g. given an instruction
     54 //   vreg3 = C2_mux vreg0, vreg1, vreg2
     55 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
     56 // the instruction would then be (for example)
     57 //   vreg3 = C2_mux vreg0, vreg3, vreg2
     58 // and, under certain circumstances, this could result in only one predicated
     59 // instruction:
     60 //   vreg3 = A2_tfrf vreg0, vreg2
     61 //
     62 
     63 // Splitting a definition of a register into two predicated transfers
     64 // creates a complication in liveness tracking. Live interval computation
     65 // will see both instructions as actual definitions, and will mark the
     66 // first one as dead. The definition is not actually dead, and this
     67 // situation will need to be fixed. For example:
     68 //   vreg1<def,dead> = A2_tfrt ...  ; marked as dead
     69 //   vreg1<def> = A2_tfrf ...
     70 //
     71 // Since any of the individual predicated transfers may end up getting
     72 // removed (in case it is an identity copy), some pre-existing def may
     73 // be marked as dead after live interval recomputation:
     74 //   vreg1<def,dead> = ...          ; marked as dead
     75 //   ...
     76 //   vreg1<def> = A2_tfrf ...       ; if A2_tfrt is removed
     77 // This case happens if vreg1 was used as a source in A2_tfrt, which means
     78 // that is it actually live at the A2_tfrf, and so the now dead definition
     79 // of vreg1 will need to be updated to non-dead at some point.
     80 //
     81 // This issue could be remedied by adding implicit uses to the predicated
     82 // transfers, but this will create a problem with subsequent predication,
     83 // since the transfers will no longer be possible to reorder. To avoid
     84 // that, the initial splitting will not add any implicit uses. These
     85 // implicit uses will be added later, after predication. The extra price,
     86 // however, is that finding the locations where the implicit uses need
     87 // to be added, and updating the live ranges will be more involved.
     88 //
     89 // An additional problem appears when subregister liveness tracking is
     90 // enabled. In such a scenario, the live interval for the super-register
     91 // will have live ranges for each subregister (i.e. subranges). This sub-
     92 // range contains all liveness information about the subregister, except
     93 // for one case: a "read-undef" flag from another subregister will not
     94 // be reflected: given
     95 //   vreg1:subreg_hireg<def,read-undef> = ...  ; "undefines" subreg_loreg
     96 // the subrange for subreg_loreg will not have any indication that it is
     97 // undefined at this point. Calculating subregister liveness based only
     98 // on the information from the subrange may create a segment which spans
     99 // over such a "read-undef" flag. This would create inconsistencies in
    100 // the liveness data, resulting in assertions or incorrect code.
    101 // Example:
    102 //   vreg1:subreg_loreg<def> = ...
    103 //   vreg1:subreg_hireg<def, read-undef> = ... ; "undefines" subreg_loreg
    104 //   ...
    105 //   vreg1:subreg_loreg<def> = A2_tfrt ...     ; may end up with imp-use
    106 //                                             ; of subreg_loreg
    107 // The remedy takes advantage of the fact, that at this point we have
    108 // an unconditional definition of the subregister. What this means is
    109 // that any preceding value in this subregister will be overwritten,
    110 // or in other words, the last use before this def is a kill. This also
    111 // implies that the first of the predicated transfers at this location
    112 // should not have any implicit uses.
    113 // Assume for a moment that no part of the corresponding super-register
    114 // is used as a source. In such case, the entire super-register can be
    115 // considered undefined immediately before this instruction. Because of
    116 // that, we can insert an IMPLICIT_DEF of the super-register at this
    117 // location, which will cause it to be reflected in all the associated
    118 // subranges. What is important here is that if an IMPLICIT_DEF of
    119 // subreg_loreg was used, we would lose the indication that subreg_hireg
    120 // is also considered undefined. This could lead to having implicit uses
    121 // incorrectly added.
    122 //
    123 // What is left is the two cases when the super-register is used as a
    124 // source.
    125 // * Case 1: the used part is the same as the one that is defined:
    126 //   vreg1<def> = ...
    127 //   ...
    128 //   vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_loreg
    129 // In the end, the subreg_loreg should be marked as live at the point of
    130 // the splitting:
    131 //   vreg1:subreg_loreg<def,read-undef> = A2_tfrt ; should have imp-use
    132 //   vreg1:subreg_loreg<def,read-undef> = A2_tfrf ; should have imp-use
    133 // Hence, an IMPLICIT_DEF of only vreg1:subreg_hireg would be sufficient.
    134 // * Case 2: the used part does not overlap the part being defined:
    135 //   vreg1<def> = ...
    136 //   ...
    137 //   vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_hireg
    138 // For this case, we insert an IMPLICIT_DEF of vreg1:subreg_hireg after
    139 // the C2_mux.
    140 
    141 #define DEBUG_TYPE "expand-condsets"
    142 
    143 #include "HexagonTargetMachine.h"
    144 #include "llvm/ADT/SetVector.h"
    145 #include "llvm/CodeGen/Passes.h"
    146 #include "llvm/CodeGen/LiveInterval.h"
    147 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
    148 #include "llvm/CodeGen/MachineDominators.h"
    149 #include "llvm/CodeGen/MachineFunction.h"
    150 #include "llvm/CodeGen/MachineInstrBuilder.h"
    151 #include "llvm/CodeGen/MachineRegisterInfo.h"
    152 #include "llvm/Target/TargetInstrInfo.h"
    153 #include "llvm/Target/TargetMachine.h"
    154 #include "llvm/Target/TargetRegisterInfo.h"
    155 #include "llvm/Support/CommandLine.h"
    156 #include "llvm/Support/Debug.h"
    157 #include "llvm/Support/raw_ostream.h"
    158 
    159 #include <algorithm>
    160 #include <iterator>
    161 #include <set>
    162 #include <utility>
    163 
    164 using namespace llvm;
    165 
    166 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
    167   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
    168 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
    169   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
    170 
    171 namespace llvm {
    172   void initializeHexagonExpandCondsetsPass(PassRegistry&);
    173   FunctionPass *createHexagonExpandCondsets();
    174 }
    175 
    176 namespace {
    177   class HexagonExpandCondsets : public MachineFunctionPass {
    178   public:
    179     static char ID;
    180     HexagonExpandCondsets() :
    181         MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
    182         LIS(0), CoaLimitActive(false),
    183         TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
    184       if (OptCoaLimit.getPosition())
    185         CoaLimitActive = true, CoaLimit = OptCoaLimit;
    186       if (OptTfrLimit.getPosition())
    187         TfrLimitActive = true, TfrLimit = OptTfrLimit;
    188       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
    189     }
    190 
    191     const char *getPassName() const override {
    192       return "Hexagon Expand Condsets";
    193     }
    194     void getAnalysisUsage(AnalysisUsage &AU) const override {
    195       AU.addRequired<LiveIntervals>();
    196       AU.addPreserved<LiveIntervals>();
    197       AU.addPreserved<SlotIndexes>();
    198       AU.addRequired<MachineDominatorTree>();
    199       AU.addPreserved<MachineDominatorTree>();
    200       MachineFunctionPass::getAnalysisUsage(AU);
    201     }
    202     bool runOnMachineFunction(MachineFunction &MF) override;
    203 
    204   private:
    205     const HexagonInstrInfo *HII;
    206     const TargetRegisterInfo *TRI;
    207     MachineDominatorTree *MDT;
    208     MachineRegisterInfo *MRI;
    209     LiveIntervals *LIS;
    210     std::set<MachineInstr*> LocalImpDefs;
    211 
    212     bool CoaLimitActive, TfrLimitActive;
    213     unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
    214 
    215     struct RegisterRef {
    216       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
    217           Sub(Op.getSubReg()) {}
    218       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
    219       bool operator== (RegisterRef RR) const {
    220         return Reg == RR.Reg && Sub == RR.Sub;
    221       }
    222       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
    223       bool operator< (RegisterRef RR) const {
    224         return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
    225       }
    226       unsigned Reg, Sub;
    227     };
    228 
    229     typedef DenseMap<unsigned,unsigned> ReferenceMap;
    230     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
    231     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
    232     unsigned getMaskForSub(unsigned Sub);
    233     bool isCondset(const MachineInstr &MI);
    234     LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
    235 
    236     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
    237     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
    238 
    239     void removeImpDefSegments(LiveRange &Range);
    240     void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
    241     void updateKillFlags(unsigned Reg);
    242     void updateDeadFlags(unsigned Reg);
    243     void recalculateLiveInterval(unsigned Reg);
    244     void removeInstr(MachineInstr &MI);
    245     void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
    246         bool UpdateKills, bool UpdateDeads);
    247 
    248     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
    249     MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
    250         MachineBasicBlock::iterator At, unsigned DstR,
    251         unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
    252         bool ReadUndef, bool ImpUse);
    253     bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
    254     bool splitInBlock(MachineBasicBlock &B, std::set<unsigned> &UpdRegs);
    255 
    256     bool isPredicable(MachineInstr *MI);
    257     MachineInstr *getReachingDefForPred(RegisterRef RD,
    258         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
    259     bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
    260     bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
    261     void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
    262                      MachineBasicBlock::iterator Where,
    263                      const MachineOperand &PredOp, bool Cond,
    264                      std::set<unsigned> &UpdRegs);
    265     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
    266         bool Cond, MachineBasicBlock::iterator First,
    267         MachineBasicBlock::iterator Last);
    268     bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
    269     bool predicateInBlock(MachineBasicBlock &B,
    270         std::set<unsigned> &UpdRegs);
    271 
    272     bool isIntReg(RegisterRef RR, unsigned &BW);
    273     bool isIntraBlocks(LiveInterval &LI);
    274     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
    275     bool coalesceSegments(MachineFunction &MF);
    276   };
    277 }
    278 
    279 char HexagonExpandCondsets::ID = 0;
    280 
    281 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
    282   "Hexagon Expand Condsets", false, false)
    283 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    284 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    285 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    286 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
    287   "Hexagon Expand Condsets", false, false)
    288 
    289 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
    290   switch (Sub) {
    291     case Hexagon::subreg_loreg:
    292       return Sub_Low;
    293     case Hexagon::subreg_hireg:
    294       return Sub_High;
    295     case Hexagon::NoSubRegister:
    296       return Sub_None;
    297   }
    298   llvm_unreachable("Invalid subregister");
    299 }
    300 
    301 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
    302   unsigned Opc = MI.getOpcode();
    303   switch (Opc) {
    304     case Hexagon::C2_mux:
    305     case Hexagon::C2_muxii:
    306     case Hexagon::C2_muxir:
    307     case Hexagon::C2_muxri:
    308     case Hexagon::MUX64_rr:
    309         return true;
    310       break;
    311   }
    312   return false;
    313 }
    314 
    315 
    316 LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
    317   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    318   return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
    319                   : MRI->getMaxLaneMaskForVReg(Reg);
    320 }
    321 
    322 
    323 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
    324       unsigned Exec) {
    325   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
    326   ReferenceMap::iterator F = Map.find(RR.Reg);
    327   if (F == Map.end())
    328     Map.insert(std::make_pair(RR.Reg, Mask));
    329   else
    330     F->second |= Mask;
    331 }
    332 
    333 
    334 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
    335       unsigned Exec) {
    336   ReferenceMap::iterator F = Map.find(RR.Reg);
    337   if (F == Map.end())
    338     return false;
    339   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
    340   if (Mask & F->second)
    341     return true;
    342   return false;
    343 }
    344 
    345 
    346 void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
    347   auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
    348     // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
    349     MachineInstr *MI = LIS->getInstructionFromIndex(K);
    350     for (auto &Op : MI->operands()) {
    351       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
    352         continue;
    353       LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
    354       if ((SLM & LM) == SLM) {
    355         // Only set the kill flag on the first encountered use of Reg in this
    356         // instruction.
    357         Op.setIsKill(true);
    358         break;
    359       }
    360     }
    361   };
    362 
    363   LiveInterval &LI = LIS->getInterval(Reg);
    364   for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
    365     if (!I->end.isRegister())
    366       continue;
    367     // Do not mark the end of the segment as <kill>, if the next segment
    368     // starts with a predicated instruction.
    369     auto NextI = std::next(I);
    370     if (NextI != E && NextI->start.isRegister()) {
    371       MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
    372       if (HII->isPredicated(*DefI))
    373         continue;
    374     }
    375     bool WholeReg = true;
    376     if (LI.hasSubRanges()) {
    377       auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
    378         LiveRange::iterator F = S.find(I->end);
    379         return F != S.end() && I->end == F->end;
    380       };
    381       // Check if all subranges end at I->end. If so, make sure to kill
    382       // the whole register.
    383       for (LiveInterval::SubRange &S : LI.subranges()) {
    384         if (EndsAtI(S))
    385           KillAt(I->end, S.LaneMask);
    386         else
    387           WholeReg = false;
    388       }
    389     }
    390     if (WholeReg)
    391       KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
    392   }
    393 }
    394 
    395 
    396 void HexagonExpandCondsets::removeImpDefSegments(LiveRange &Range) {
    397   auto StartImpDef = [this] (LiveRange::Segment &S) -> bool {
    398     return S.start.isRegister() &&
    399            LocalImpDefs.count(LIS->getInstructionFromIndex(S.start));
    400   };
    401   Range.segments.erase(std::remove_if(Range.begin(), Range.end(), StartImpDef),
    402                        Range.end());
    403 }
    404 
    405 void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
    406       LiveRange &Range) {
    407   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    408   if (Range.empty())
    409     return;
    410 
    411   auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> bool {
    412     if (!Op.isReg() || !Op.isDef())
    413       return false;
    414     unsigned DR = Op.getReg(), DSR = Op.getSubReg();
    415     if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
    416       return false;
    417     LaneBitmask SLM = getLaneMask(DR, DSR);
    418     return (SLM & LM) != 0;
    419   };
    420 
    421   // The splitting step will create pairs of predicated definitions without
    422   // any implicit uses (since implicit uses would interfere with predication).
    423   // This can cause the reaching defs to become dead after live range
    424   // recomputation, even though they are not really dead.
    425   // We need to identify predicated defs that need implicit uses, and
    426   // dead defs that are not really dead, and correct both problems.
    427 
    428   SetVector<MachineBasicBlock*> Defs;
    429   auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
    430                           MachineBasicBlock *Dest) -> bool {
    431     for (MachineBasicBlock *D : Defs)
    432       if (D != Dest && MDT->dominates(D, Dest))
    433         return true;
    434 
    435     MachineBasicBlock *Entry = &Dest->getParent()->front();
    436     SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
    437     for (unsigned i = 0; i < Work.size(); ++i) {
    438       MachineBasicBlock *B = Work[i];
    439       if (Defs.count(B))
    440         continue;
    441       if (B == Entry)
    442         return false;
    443       for (auto *P : B->predecessors())
    444         Work.insert(P);
    445     }
    446     return true;
    447   };
    448 
    449   // First, try to extend live range within individual basic blocks. This
    450   // will leave us only with dead defs that do not reach any predicated
    451   // defs in the same block.
    452   SmallVector<SlotIndex,4> PredDefs;
    453   for (auto &Seg : Range) {
    454     if (!Seg.start.isRegister())
    455       continue;
    456     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    457     if (LocalImpDefs.count(DefI))
    458       continue;
    459     Defs.insert(DefI->getParent());
    460     if (HII->isPredicated(*DefI))
    461       PredDefs.push_back(Seg.start);
    462   }
    463   for (auto &SI : PredDefs) {
    464     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    465     if (Range.extendInBlock(LIS->getMBBStartIdx(BB), SI))
    466       SI = SlotIndex();
    467   }
    468 
    469   // Calculate reachability for those predicated defs that were not handled
    470   // by the in-block extension.
    471   SmallVector<SlotIndex,4> ExtTo;
    472   for (auto &SI : PredDefs) {
    473     if (!SI.isValid())
    474       continue;
    475     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    476     if (BB->pred_empty())
    477       continue;
    478     // If the defs from this range reach SI via all predecessors, it is live.
    479     if (Dominate(Defs, BB))
    480       ExtTo.push_back(SI);
    481   }
    482   LIS->extendToIndices(Range, ExtTo);
    483 
    484   // Remove <dead> flags from all defs that are not dead after live range
    485   // extension, and collect all def operands. They will be used to generate
    486   // the necessary implicit uses.
    487   std::set<RegisterRef> DefRegs;
    488   for (auto &Seg : Range) {
    489     if (!Seg.start.isRegister())
    490       continue;
    491     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    492     if (LocalImpDefs.count(DefI))
    493       continue;
    494     for (auto &Op : DefI->operands()) {
    495       if (Seg.start.isDead() || !IsRegDef(Op))
    496         continue;
    497       DefRegs.insert(Op);
    498       Op.setIsDead(false);
    499     }
    500   }
    501 
    502 
    503   // Finally, add implicit uses to each predicated def that is reached
    504   // by other defs. Remove segments started by implicit-defs first, since
    505   // they do not define registers.
    506   removeImpDefSegments(Range);
    507 
    508   for (auto &Seg : Range) {
    509     if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
    510       continue;
    511     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    512     if (!HII->isPredicated(*DefI))
    513       continue;
    514     MachineFunction &MF = *DefI->getParent()->getParent();
    515     // Construct the set of all necessary implicit uses, based on the def
    516     // operands in the instruction.
    517     std::set<RegisterRef> ImpUses;
    518     for (auto &Op : DefI->operands())
    519       if (Op.isReg() && Op.isDef() && DefRegs.count(Op))
    520         ImpUses.insert(Op);
    521     for (RegisterRef R : ImpUses)
    522       MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
    523   }
    524 }
    525 
    526 
    527 void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
    528   LiveInterval &LI = LIS->getInterval(Reg);
    529   if (LI.hasSubRanges()) {
    530     for (LiveInterval::SubRange &S : LI.subranges()) {
    531       updateDeadsInRange(Reg, S.LaneMask, S);
    532       LIS->shrinkToUses(S, Reg);
    533       // LI::shrinkToUses will add segments started by implicit-defs.
    534       // Remove them again.
    535       removeImpDefSegments(S);
    536     }
    537     LI.clear();
    538     LIS->constructMainRangeFromSubranges(LI);
    539   } else {
    540     updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
    541   }
    542 }
    543 
    544 
    545 void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
    546   LIS->removeInterval(Reg);
    547   LIS->createAndComputeVirtRegInterval(Reg);
    548 }
    549 
    550 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
    551   LIS->RemoveMachineInstrFromMaps(MI);
    552   MI.eraseFromParent();
    553 }
    554 
    555 
    556 void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
    557       bool Recalc, bool UpdateKills, bool UpdateDeads) {
    558   UpdateKills |= UpdateDeads;
    559   for (auto R : RegSet) {
    560     if (Recalc)
    561       recalculateLiveInterval(R);
    562     if (UpdateKills)
    563       MRI->clearKillFlags(R);
    564     if (UpdateDeads)
    565       updateDeadFlags(R);
    566     // Fixing <dead> flags may extend live ranges, so reset <kill> flags
    567     // after that.
    568     if (UpdateKills)
    569       updateKillFlags(R);
    570     LIS->getInterval(R).verify();
    571   }
    572 }
    573 
    574 
    575 /// Get the opcode for a conditional transfer of the value in SO (source
    576 /// operand). The condition (true/false) is given in Cond.
    577 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
    578       bool IfTrue) {
    579   using namespace Hexagon;
    580   if (SO.isReg()) {
    581     unsigned PhysR;
    582     RegisterRef RS = SO;
    583     if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
    584       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
    585       assert(VC->begin() != VC->end() && "Empty register class");
    586       PhysR = *VC->begin();
    587     } else {
    588       assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
    589       PhysR = RS.Reg;
    590     }
    591     unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
    592     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
    593     switch (RC->getSize()) {
    594       case 4:
    595         return IfTrue ? A2_tfrt : A2_tfrf;
    596       case 8:
    597         return IfTrue ? A2_tfrpt : A2_tfrpf;
    598     }
    599     llvm_unreachable("Invalid register operand");
    600   }
    601   if (SO.isImm() || SO.isFPImm())
    602     return IfTrue ? C2_cmoveit : C2_cmoveif;
    603   llvm_unreachable("Unexpected source operand");
    604 }
    605 
    606 
    607 /// Generate a conditional transfer, copying the value SrcOp to the
    608 /// destination register DstR:DstSR, and using the predicate register from
    609 /// PredOp. The Cond argument specifies whether the predicate is to be
    610 /// if(PredOp), or if(!PredOp).
    611 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
    612       MachineBasicBlock::iterator At,
    613       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
    614       bool PredSense, bool ReadUndef, bool ImpUse) {
    615   MachineInstr *MI = SrcOp.getParent();
    616   MachineBasicBlock &B = *At->getParent();
    617   const DebugLoc &DL = MI->getDebugLoc();
    618 
    619   // Don't avoid identity copies here (i.e. if the source and the destination
    620   // are the same registers). It is actually better to generate them here,
    621   // since this would cause the copy to potentially be predicated in the next
    622   // step. The predication will remove such a copy if it is unable to
    623   /// predicate.
    624 
    625   unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
    626   unsigned State = RegState::Define | (ReadUndef ? RegState::Undef : 0);
    627   MachineInstrBuilder MIB = BuildMI(B, At, DL, HII->get(Opc))
    628         .addReg(DstR, State, DstSR)
    629         .addOperand(PredOp)
    630         .addOperand(SrcOp);
    631 
    632   // We don't want any kills yet.
    633   MIB->clearKillInfo();
    634   DEBUG(dbgs() << "created an initial copy: " << *MIB);
    635   return &*MIB;
    636 }
    637 
    638 
    639 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
    640 /// performs all necessary changes to complete the replacement.
    641 bool HexagonExpandCondsets::split(MachineInstr &MI,
    642                                   std::set<unsigned> &UpdRegs) {
    643   if (TfrLimitActive) {
    644     if (TfrCounter >= TfrLimit)
    645       return false;
    646     TfrCounter++;
    647   }
    648   DEBUG(dbgs() << "\nsplitting BB#" << MI.getParent()->getNumber() << ": "
    649                << MI);
    650   MachineOperand &MD = MI.getOperand(0);  // Definition
    651   MachineOperand &MP = MI.getOperand(1);  // Predicate register
    652   MachineOperand &MS1 = MI.getOperand(2); // Source value #1
    653   MachineOperand &MS2 = MI.getOperand(3); // Source value #2
    654   assert(MD.isDef());
    655   unsigned DR = MD.getReg(), DSR = MD.getSubReg();
    656   bool ReadUndef = MD.isUndef();
    657   MachineBasicBlock::iterator At = MI;
    658 
    659   if (ReadUndef && DSR != 0 && MRI->shouldTrackSubRegLiveness(DR)) {
    660     unsigned NewSR = 0;
    661     MachineBasicBlock::iterator DefAt = At;
    662     bool SameReg = (MS1.isReg() && DR == MS1.getReg()) ||
    663                    (MS2.isReg() && DR == MS2.getReg());
    664     if (SameReg) {
    665       NewSR = (DSR == Hexagon::subreg_loreg) ? Hexagon::subreg_hireg
    666                                              : Hexagon::subreg_loreg;
    667       // Advance the insertion point if the subregisters differ between
    668       // the source and the target (with the same super-register).
    669       // Note: this case has never occured during tests.
    670       if ((MS1.isReg() && NewSR == MS1.getSubReg()) ||
    671           (MS2.isReg() && NewSR == MS2.getSubReg()))
    672         ++DefAt;
    673     }
    674     // Use "At", since "DefAt" may be end().
    675     MachineBasicBlock &B = *At->getParent();
    676     DebugLoc DL = At->getDebugLoc();
    677     auto ImpD = BuildMI(B, DefAt, DL, HII->get(TargetOpcode::IMPLICIT_DEF))
    678                   .addReg(DR, RegState::Define, NewSR);
    679     LIS->InsertMachineInstrInMaps(*ImpD);
    680     LocalImpDefs.insert(&*ImpD);
    681   }
    682 
    683   // First, create the two invididual conditional transfers, and add each
    684   // of them to the live intervals information. Do that first and then remove
    685   // the old instruction from live intervals.
    686   MachineInstr *TfrT =
    687       genCondTfrFor(MI.getOperand(2), At, DR, DSR, MP, true, ReadUndef, false);
    688   MachineInstr *TfrF =
    689       genCondTfrFor(MI.getOperand(3), At, DR, DSR, MP, false, ReadUndef, true);
    690   LIS->InsertMachineInstrInMaps(*TfrT);
    691   LIS->InsertMachineInstrInMaps(*TfrF);
    692 
    693   // Will need to recalculate live intervals for all registers in MI.
    694   for (auto &Op : MI.operands())
    695     if (Op.isReg())
    696       UpdRegs.insert(Op.getReg());
    697 
    698   removeInstr(MI);
    699   return true;
    700 }
    701 
    702 
    703 /// Split all MUX instructions in the given block into pairs of conditional
    704 /// transfers.
    705 bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B,
    706       std::set<unsigned> &UpdRegs) {
    707   bool Changed = false;
    708   MachineBasicBlock::iterator I, E, NextI;
    709   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
    710     NextI = std::next(I);
    711     if (isCondset(*I))
    712       Changed |= split(*I, UpdRegs);
    713   }
    714   return Changed;
    715 }
    716 
    717 
    718 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
    719   if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
    720     return false;
    721   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
    722     return false;
    723   // Reject instructions with multiple defs (e.g. post-increment loads).
    724   bool HasDef = false;
    725   for (auto &Op : MI->operands()) {
    726     if (!Op.isReg() || !Op.isDef())
    727       continue;
    728     if (HasDef)
    729       return false;
    730     HasDef = true;
    731   }
    732   for (auto &Mo : MI->memoperands())
    733     if (Mo->isVolatile())
    734       return false;
    735   return true;
    736 }
    737 
    738 
    739 /// Find the reaching definition for a predicated use of RD. The RD is used
    740 /// under the conditions given by PredR and Cond, and this function will ignore
    741 /// definitions that set RD under the opposite conditions.
    742 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
    743       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
    744   MachineBasicBlock &B = *UseIt->getParent();
    745   MachineBasicBlock::iterator I = UseIt, S = B.begin();
    746   if (I == S)
    747     return 0;
    748 
    749   bool PredValid = true;
    750   do {
    751     --I;
    752     MachineInstr *MI = &*I;
    753     // Check if this instruction can be ignored, i.e. if it is predicated
    754     // on the complementary condition.
    755     if (PredValid && HII->isPredicated(*MI)) {
    756       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
    757         continue;
    758     }
    759 
    760     // Check the defs. If the PredR is defined, invalidate it. If RD is
    761     // defined, return the instruction or 0, depending on the circumstances.
    762     for (auto &Op : MI->operands()) {
    763       if (!Op.isReg() || !Op.isDef())
    764         continue;
    765       RegisterRef RR = Op;
    766       if (RR.Reg == PredR) {
    767         PredValid = false;
    768         continue;
    769       }
    770       if (RR.Reg != RD.Reg)
    771         continue;
    772       // If the "Reg" part agrees, there is still the subregister to check.
    773       // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
    774       // not vreg1 (w/o subregisters).
    775       if (RR.Sub == RD.Sub)
    776         return MI;
    777       if (RR.Sub == 0 || RD.Sub == 0)
    778         return 0;
    779       // We have different subregisters, so we can continue looking.
    780     }
    781   } while (I != S);
    782 
    783   return 0;
    784 }
    785 
    786 
    787 /// Check if the instruction MI can be safely moved over a set of instructions
    788 /// whose side-effects (in terms of register defs and uses) are expressed in
    789 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
    790 /// that depend on the same predicate register to allow moving instructions
    791 /// over instructions predicated on the opposite condition.
    792 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
    793                                         ReferenceMap &Uses) {
    794   // In order to be able to safely move MI over instructions that define
    795   // "Defs" and use "Uses", no def operand from MI can be defined or used
    796   // and no use operand can be defined.
    797   for (auto &Op : MI.operands()) {
    798     if (!Op.isReg())
    799       continue;
    800     RegisterRef RR = Op;
    801     // For physical register we would need to check register aliases, etc.
    802     // and we don't want to bother with that. It would be of little value
    803     // before the actual register rewriting (from virtual to physical).
    804     if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
    805       return false;
    806     // No redefs for any operand.
    807     if (isRefInMap(RR, Defs, Exec_Then))
    808       return false;
    809     // For defs, there cannot be uses.
    810     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
    811       return false;
    812   }
    813   return true;
    814 }
    815 
    816 
    817 /// Check if the instruction accessing memory (TheI) can be moved to the
    818 /// location ToI.
    819 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
    820                                          bool IsDown) {
    821   bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
    822   if (!IsLoad && !IsStore)
    823     return true;
    824   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
    825     return true;
    826   if (TheI.hasUnmodeledSideEffects())
    827     return false;
    828 
    829   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
    830   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
    831   bool Ordered = TheI.hasOrderedMemoryRef();
    832 
    833   // Search for aliased memory reference in (StartI, EndI).
    834   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
    835     MachineInstr *MI = &*I;
    836     if (MI->hasUnmodeledSideEffects())
    837       return false;
    838     bool L = MI->mayLoad(), S = MI->mayStore();
    839     if (!L && !S)
    840       continue;
    841     if (Ordered && MI->hasOrderedMemoryRef())
    842       return false;
    843 
    844     bool Conflict = (L && IsStore) || S;
    845     if (Conflict)
    846       return false;
    847   }
    848   return true;
    849 }
    850 
    851 
    852 /// Generate a predicated version of MI (where the condition is given via
    853 /// PredR and Cond) at the point indicated by Where.
    854 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
    855                                         MachineInstr &MI,
    856                                         MachineBasicBlock::iterator Where,
    857                                         const MachineOperand &PredOp, bool Cond,
    858                                         std::set<unsigned> &UpdRegs) {
    859   // The problem with updating live intervals is that we can move one def
    860   // past another def. In particular, this can happen when moving an A2_tfrt
    861   // over an A2_tfrf defining the same register. From the point of view of
    862   // live intervals, these two instructions are two separate definitions,
    863   // and each one starts another live segment. LiveIntervals's "handleMove"
    864   // does not allow such moves, so we need to handle it ourselves. To avoid
    865   // invalidating liveness data while we are using it, the move will be
    866   // implemented in 4 steps: (1) add a clone of the instruction MI at the
    867   // target location, (2) update liveness, (3) delete the old instruction,
    868   // and (4) update liveness again.
    869 
    870   MachineBasicBlock &B = *MI.getParent();
    871   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
    872   unsigned Opc = MI.getOpcode();
    873   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
    874   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
    875   unsigned Ox = 0, NP = MI.getNumOperands();
    876   // Skip all defs from MI first.
    877   while (Ox < NP) {
    878     MachineOperand &MO = MI.getOperand(Ox);
    879     if (!MO.isReg() || !MO.isDef())
    880       break;
    881     Ox++;
    882   }
    883   // Add the new def, then the predicate register, then the rest of the
    884   // operands.
    885   MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
    886   MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
    887             PredOp.getSubReg());
    888   while (Ox < NP) {
    889     MachineOperand &MO = MI.getOperand(Ox);
    890     if (!MO.isReg() || !MO.isImplicit())
    891       MB.addOperand(MO);
    892     Ox++;
    893   }
    894 
    895   MachineFunction &MF = *B.getParent();
    896   MachineInstr::mmo_iterator I = MI.memoperands_begin();
    897   unsigned NR = std::distance(I, MI.memoperands_end());
    898   MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
    899   for (unsigned i = 0; i < NR; ++i)
    900     MemRefs[i] = *I++;
    901   MB.setMemRefs(MemRefs, MemRefs+NR);
    902 
    903   MachineInstr *NewI = MB;
    904   NewI->clearKillInfo();
    905   LIS->InsertMachineInstrInMaps(*NewI);
    906 
    907   for (auto &Op : NewI->operands())
    908     if (Op.isReg())
    909       UpdRegs.insert(Op.getReg());
    910 }
    911 
    912 
    913 /// In the range [First, Last], rename all references to the "old" register RO
    914 /// to the "new" register RN, but only in instructions predicated on the given
    915 /// condition.
    916 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
    917       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
    918       MachineBasicBlock::iterator Last) {
    919   MachineBasicBlock::iterator End = std::next(Last);
    920   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
    921     MachineInstr *MI = &*I;
    922     // Do not touch instructions that are not predicated, or are predicated
    923     // on the opposite condition.
    924     if (!HII->isPredicated(*MI))
    925       continue;
    926     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
    927       continue;
    928 
    929     for (auto &Op : MI->operands()) {
    930       if (!Op.isReg() || RO != RegisterRef(Op))
    931         continue;
    932       Op.setReg(RN.Reg);
    933       Op.setSubReg(RN.Sub);
    934       // In practice, this isn't supposed to see any defs.
    935       assert(!Op.isDef() && "Not expecting a def");
    936     }
    937   }
    938 }
    939 
    940 
    941 /// For a given conditional copy, predicate the definition of the source of
    942 /// the copy under the given condition (using the same predicate register as
    943 /// the copy).
    944 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
    945                                       std::set<unsigned> &UpdRegs) {
    946   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
    947   unsigned Opc = TfrI.getOpcode();
    948   (void)Opc;
    949   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
    950   DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
    951                << ": " << TfrI);
    952 
    953   MachineOperand &MD = TfrI.getOperand(0);
    954   MachineOperand &MP = TfrI.getOperand(1);
    955   MachineOperand &MS = TfrI.getOperand(2);
    956   // The source operand should be a <kill>. This is not strictly necessary,
    957   // but it makes things a lot simpler. Otherwise, we would need to rename
    958   // some registers, which would complicate the transformation considerably.
    959   if (!MS.isKill())
    960     return false;
    961   // Avoid predicating instructions that define a subregister if subregister
    962   // liveness tracking is not enabled.
    963   if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
    964     return false;
    965 
    966   RegisterRef RT(MS);
    967   unsigned PredR = MP.getReg();
    968   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
    969   if (!DefI || !isPredicable(DefI))
    970     return false;
    971 
    972   DEBUG(dbgs() << "Source def: " << *DefI);
    973 
    974   // Collect the information about registers defined and used between the
    975   // DefI and the TfrI.
    976   // Map: reg -> bitmask of subregs
    977   ReferenceMap Uses, Defs;
    978   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
    979 
    980   // Check if the predicate register is valid between DefI and TfrI.
    981   // If it is, we can then ignore instructions predicated on the negated
    982   // conditions when collecting def and use information.
    983   bool PredValid = true;
    984   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
    985     if (!I->modifiesRegister(PredR, 0))
    986       continue;
    987     PredValid = false;
    988     break;
    989   }
    990 
    991   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
    992     MachineInstr *MI = &*I;
    993     // If this instruction is predicated on the same register, it could
    994     // potentially be ignored.
    995     // By default assume that the instruction executes on the same condition
    996     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
    997     unsigned Exec = Exec_Then | Exec_Else;
    998     if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
    999       Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
   1000 
   1001     for (auto &Op : MI->operands()) {
   1002       if (!Op.isReg())
   1003         continue;
   1004       // We don't want to deal with physical registers. The reason is that
   1005       // they can be aliased with other physical registers. Aliased virtual
   1006       // registers must share the same register number, and can only differ
   1007       // in the subregisters, which we are keeping track of. Physical
   1008       // registers ters no longer have subregisters---their super- and
   1009       // subregisters are other physical registers, and we are not checking
   1010       // that.
   1011       RegisterRef RR = Op;
   1012       if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
   1013         return false;
   1014 
   1015       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
   1016       addRefToMap(RR, Map, Exec);
   1017     }
   1018   }
   1019 
   1020   // The situation:
   1021   //   RT = DefI
   1022   //   ...
   1023   //   RD = TfrI ..., RT
   1024 
   1025   // If the register-in-the-middle (RT) is used or redefined between
   1026   // DefI and TfrI, we may not be able proceed with this transformation.
   1027   // We can ignore a def that will not execute together with TfrI, and a
   1028   // use that will. If there is such a use (that does execute together with
   1029   // TfrI), we will not be able to move DefI down. If there is a use that
   1030   // executed if TfrI's condition is false, then RT must be available
   1031   // unconditionally (cannot be predicated).
   1032   // Essentially, we need to be able to rename RT to RD in this segment.
   1033   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
   1034     return false;
   1035   RegisterRef RD = MD;
   1036   // If the predicate register is defined between DefI and TfrI, the only
   1037   // potential thing to do would be to move the DefI down to TfrI, and then
   1038   // predicate. The reaching def (DefI) must be movable down to the location
   1039   // of the TfrI.
   1040   // If the target register of the TfrI (RD) is not used or defined between
   1041   // DefI and TfrI, consider moving TfrI up to DefI.
   1042   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
   1043   bool CanDown = canMoveOver(*DefI, Defs, Uses);
   1044   // The TfrI does not access memory, but DefI could. Check if it's safe
   1045   // to move DefI down to TfrI.
   1046   if (DefI->mayLoad() || DefI->mayStore())
   1047     if (!canMoveMemTo(*DefI, TfrI, true))
   1048       CanDown = false;
   1049 
   1050   DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
   1051                << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
   1052   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
   1053   if (CanUp)
   1054     predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
   1055   else if (CanDown)
   1056     predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
   1057   else
   1058     return false;
   1059 
   1060   if (RT != RD) {
   1061     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
   1062     UpdRegs.insert(RT.Reg);
   1063   }
   1064 
   1065   removeInstr(TfrI);
   1066   removeInstr(*DefI);
   1067   return true;
   1068 }
   1069 
   1070 
   1071 /// Predicate all cases of conditional copies in the specified block.
   1072 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
   1073       std::set<unsigned> &UpdRegs) {
   1074   bool Changed = false;
   1075   MachineBasicBlock::iterator I, E, NextI;
   1076   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
   1077     NextI = std::next(I);
   1078     unsigned Opc = I->getOpcode();
   1079     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
   1080       bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
   1081       if (!Done) {
   1082         // If we didn't predicate I, we may need to remove it in case it is
   1083         // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
   1084         if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
   1085           for (auto &Op : I->operands())
   1086             if (Op.isReg())
   1087               UpdRegs.insert(Op.getReg());
   1088           removeInstr(*I);
   1089         }
   1090       }
   1091       Changed |= Done;
   1092     }
   1093   }
   1094   return Changed;
   1095 }
   1096 
   1097 
   1098 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
   1099   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
   1100     return false;
   1101   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
   1102   if (RC == &Hexagon::IntRegsRegClass) {
   1103     BW = 32;
   1104     return true;
   1105   }
   1106   if (RC == &Hexagon::DoubleRegsRegClass) {
   1107     BW = (RR.Sub != 0) ? 32 : 64;
   1108     return true;
   1109   }
   1110   return false;
   1111 }
   1112 
   1113 
   1114 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
   1115   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
   1116     LiveRange::Segment &LR = *I;
   1117     // Range must start at a register...
   1118     if (!LR.start.isRegister())
   1119       return false;
   1120     // ...and end in a register or in a dead slot.
   1121     if (!LR.end.isRegister() && !LR.end.isDead())
   1122       return false;
   1123   }
   1124   return true;
   1125 }
   1126 
   1127 
   1128 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
   1129   if (CoaLimitActive) {
   1130     if (CoaCounter >= CoaLimit)
   1131       return false;
   1132     CoaCounter++;
   1133   }
   1134   unsigned BW1, BW2;
   1135   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
   1136     return false;
   1137   if (MRI->isLiveIn(R1.Reg))
   1138     return false;
   1139   if (MRI->isLiveIn(R2.Reg))
   1140     return false;
   1141 
   1142   LiveInterval &L1 = LIS->getInterval(R1.Reg);
   1143   LiveInterval &L2 = LIS->getInterval(R2.Reg);
   1144   bool Overlap = L1.overlaps(L2);
   1145 
   1146   DEBUG(dbgs() << "compatible registers: ("
   1147                << (Overlap ? "overlap" : "disjoint") << ")\n  "
   1148                << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
   1149                << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
   1150   if (R1.Sub || R2.Sub)
   1151     return false;
   1152   if (Overlap)
   1153     return false;
   1154 
   1155   // Coalescing could have a negative impact on scheduling, so try to limit
   1156   // to some reasonable extent. Only consider coalescing segments, when one
   1157   // of them does not cross basic block boundaries.
   1158   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
   1159     return false;
   1160 
   1161   MRI->replaceRegWith(R2.Reg, R1.Reg);
   1162 
   1163   // Move all live segments from L2 to L1.
   1164   typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
   1165   ValueInfoMap VM;
   1166   for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
   1167     VNInfo *NewVN, *OldVN = I->valno;
   1168     ValueInfoMap::iterator F = VM.find(OldVN);
   1169     if (F == VM.end()) {
   1170       NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
   1171       VM.insert(std::make_pair(OldVN, NewVN));
   1172     } else {
   1173       NewVN = F->second;
   1174     }
   1175     L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
   1176   }
   1177   while (L2.begin() != L2.end())
   1178     L2.removeSegment(*L2.begin());
   1179 
   1180   updateKillFlags(R1.Reg);
   1181   DEBUG(dbgs() << "coalesced: " << L1 << "\n");
   1182   L1.verify();
   1183 
   1184   return true;
   1185 }
   1186 
   1187 
   1188 /// Attempt to coalesce one of the source registers to a MUX intruction with
   1189 /// the destination register. This could lead to having only one predicated
   1190 /// instruction in the end instead of two.
   1191 bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
   1192   SmallVector<MachineInstr*,16> Condsets;
   1193   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
   1194     MachineBasicBlock &B = *I;
   1195     for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
   1196       MachineInstr *MI = &*J;
   1197       if (!isCondset(*MI))
   1198         continue;
   1199       MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
   1200       if (!S1.isReg() && !S2.isReg())
   1201         continue;
   1202       Condsets.push_back(MI);
   1203     }
   1204   }
   1205 
   1206   bool Changed = false;
   1207   for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
   1208     MachineInstr *CI = Condsets[i];
   1209     RegisterRef RD = CI->getOperand(0);
   1210     RegisterRef RP = CI->getOperand(1);
   1211     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
   1212     bool Done = false;
   1213     // Consider this case:
   1214     //   vreg1 = instr1 ...
   1215     //   vreg2 = instr2 ...
   1216     //   vreg0 = C2_mux ..., vreg1, vreg2
   1217     // If vreg0 was coalesced with vreg1, we could end up with the following
   1218     // code:
   1219     //   vreg0 = instr1 ...
   1220     //   vreg2 = instr2 ...
   1221     //   vreg0 = A2_tfrf ..., vreg2
   1222     // which will later become:
   1223     //   vreg0 = instr1 ...
   1224     //   vreg0 = instr2_cNotPt ...
   1225     // i.e. there will be an unconditional definition (instr1) of vreg0
   1226     // followed by a conditional one. The output dependency was there before
   1227     // and it unavoidable, but if instr1 is predicable, we will no longer be
   1228     // able to predicate it here.
   1229     // To avoid this scenario, don't coalesce the destination register with
   1230     // a source register that is defined by a predicable instruction.
   1231     if (S1.isReg()) {
   1232       RegisterRef RS = S1;
   1233       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
   1234       if (!RDef || !HII->isPredicable(*RDef))
   1235         Done = coalesceRegisters(RD, RegisterRef(S1));
   1236     }
   1237     if (!Done && S2.isReg()) {
   1238       RegisterRef RS = S2;
   1239       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
   1240       if (!RDef || !HII->isPredicable(*RDef))
   1241         Done = coalesceRegisters(RD, RegisterRef(S2));
   1242     }
   1243     Changed |= Done;
   1244   }
   1245   return Changed;
   1246 }
   1247 
   1248 
   1249 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
   1250   if (skipFunction(*MF.getFunction()))
   1251     return false;
   1252 
   1253   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
   1254   TRI = MF.getSubtarget().getRegisterInfo();
   1255   MDT = &getAnalysis<MachineDominatorTree>();
   1256   LIS = &getAnalysis<LiveIntervals>();
   1257   MRI = &MF.getRegInfo();
   1258   LocalImpDefs.clear();
   1259 
   1260   DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
   1261                    MF.getFunction()->getParent()));
   1262 
   1263   bool Changed = false;
   1264   std::set<unsigned> SplitUpd, PredUpd;
   1265 
   1266   // Try to coalesce the target of a mux with one of its sources.
   1267   // This could eliminate a register copy in some circumstances.
   1268   Changed |= coalesceSegments(MF);
   1269 
   1270   // First, simply split all muxes into a pair of conditional transfers
   1271   // and update the live intervals to reflect the new arrangement. The
   1272   // goal is to update the kill flags, since predication will rely on
   1273   // them.
   1274   for (auto &B : MF)
   1275     Changed |= splitInBlock(B, SplitUpd);
   1276   updateLiveness(SplitUpd, true, true, false);
   1277 
   1278   // Traverse all blocks and collapse predicable instructions feeding
   1279   // conditional transfers into predicated instructions.
   1280   // Walk over all the instructions again, so we may catch pre-existing
   1281   // cases that were not created in the previous step.
   1282   for (auto &B : MF)
   1283     Changed |= predicateInBlock(B, PredUpd);
   1284 
   1285   updateLiveness(PredUpd, true, true, true);
   1286   // Remove from SplitUpd all registers contained in PredUpd to avoid
   1287   // unnecessary liveness recalculation.
   1288   std::set<unsigned> Diff;
   1289   std::set_difference(SplitUpd.begin(), SplitUpd.end(),
   1290                       PredUpd.begin(), PredUpd.end(),
   1291                       std::inserter(Diff, Diff.begin()));
   1292   updateLiveness(Diff, false, false, true);
   1293 
   1294   for (auto *ImpD : LocalImpDefs)
   1295     removeInstr(*ImpD);
   1296 
   1297   DEBUG({
   1298     if (Changed)
   1299       LIS->print(dbgs() << "After expand-condsets\n",
   1300                  MF.getFunction()->getParent());
   1301   });
   1302 
   1303   return Changed;
   1304 }
   1305 
   1306 
   1307 //===----------------------------------------------------------------------===//
   1308 //                         Public Constructor Functions
   1309 //===----------------------------------------------------------------------===//
   1310 
   1311 FunctionPass *llvm::createHexagonExpandCondsets() {
   1312   return new HexagonExpandCondsets();
   1313 }
   1314