Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "code_generator_arm64.h"
     18 
     19 #include "arch/arm64/asm_support_arm64.h"
     20 #include "arch/arm64/instruction_set_features_arm64.h"
     21 #include "art_method.h"
     22 #include "base/bit_utils.h"
     23 #include "base/bit_utils_iterator.h"
     24 #include "class_table.h"
     25 #include "code_generator_utils.h"
     26 #include "compiled_method.h"
     27 #include "entrypoints/quick/quick_entrypoints.h"
     28 #include "entrypoints/quick/quick_entrypoints_enum.h"
     29 #include "gc/accounting/card_table.h"
     30 #include "heap_poisoning.h"
     31 #include "intrinsics.h"
     32 #include "intrinsics_arm64.h"
     33 #include "linker/arm64/relative_patcher_arm64.h"
     34 #include "linker/linker_patch.h"
     35 #include "lock_word.h"
     36 #include "mirror/array-inl.h"
     37 #include "mirror/class-inl.h"
     38 #include "offsets.h"
     39 #include "thread.h"
     40 #include "utils/arm64/assembler_arm64.h"
     41 #include "utils/assembler.h"
     42 #include "utils/stack_checks.h"
     43 
     44 using namespace vixl::aarch64;  // NOLINT(build/namespaces)
     45 using vixl::ExactAssemblyScope;
     46 using vixl::CodeBufferCheckScope;
     47 using vixl::EmissionCheckScope;
     48 
     49 #ifdef __
     50 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
     51 #endif
     52 
     53 namespace art {
     54 
     55 template<class MirrorType>
     56 class GcRoot;
     57 
     58 namespace arm64 {
     59 
     60 using helpers::ARM64EncodableConstantOrRegister;
     61 using helpers::ArtVixlRegCodeCoherentForRegSet;
     62 using helpers::CPURegisterFrom;
     63 using helpers::DRegisterFrom;
     64 using helpers::FPRegisterFrom;
     65 using helpers::HeapOperand;
     66 using helpers::HeapOperandFrom;
     67 using helpers::InputCPURegisterAt;
     68 using helpers::InputCPURegisterOrZeroRegAt;
     69 using helpers::InputFPRegisterAt;
     70 using helpers::InputOperandAt;
     71 using helpers::InputRegisterAt;
     72 using helpers::Int64ConstantFrom;
     73 using helpers::IsConstantZeroBitPattern;
     74 using helpers::LocationFrom;
     75 using helpers::OperandFromMemOperand;
     76 using helpers::OutputCPURegister;
     77 using helpers::OutputFPRegister;
     78 using helpers::OutputRegister;
     79 using helpers::QRegisterFrom;
     80 using helpers::RegisterFrom;
     81 using helpers::StackOperandFrom;
     82 using helpers::VIXLRegCodeFromART;
     83 using helpers::WRegisterFrom;
     84 using helpers::XRegisterFrom;
     85 
     86 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
     87 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
     88 // generates less code/data with a small num_entries.
     89 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
     90 
     91 // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle
     92 // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions.
     93 // For the Baker read barrier implementation using link-generated thunks we need to split
     94 // the offset explicitly.
     95 constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB;
     96 
     97 // Flags controlling the use of link-time generated thunks for Baker read barriers.
     98 constexpr bool kBakerReadBarrierLinkTimeThunksEnableForFields = true;
     99 constexpr bool kBakerReadBarrierLinkTimeThunksEnableForArrays = true;
    100 constexpr bool kBakerReadBarrierLinkTimeThunksEnableForGcRoots = true;
    101 
    102 // Some instructions have special requirements for a temporary, for example
    103 // LoadClass/kBssEntry and LoadString/kBssEntry for Baker read barrier require
    104 // temp that's not an R0 (to avoid an extra move) and Baker read barrier field
    105 // loads with large offsets need a fixed register to limit the number of link-time
    106 // thunks we generate. For these and similar cases, we want to reserve a specific
    107 // register that's neither callee-save nor an argument register. We choose x15.
    108 inline Location FixedTempLocation() {
    109   return Location::RegisterLocation(x15.GetCode());
    110 }
    111 
    112 inline Condition ARM64Condition(IfCondition cond) {
    113   switch (cond) {
    114     case kCondEQ: return eq;
    115     case kCondNE: return ne;
    116     case kCondLT: return lt;
    117     case kCondLE: return le;
    118     case kCondGT: return gt;
    119     case kCondGE: return ge;
    120     case kCondB:  return lo;
    121     case kCondBE: return ls;
    122     case kCondA:  return hi;
    123     case kCondAE: return hs;
    124   }
    125   LOG(FATAL) << "Unreachable";
    126   UNREACHABLE();
    127 }
    128 
    129 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
    130   // The ARM64 condition codes can express all the necessary branches, see the
    131   // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
    132   // There is no dex instruction or HIR that would need the missing conditions
    133   // "equal or unordered" or "not equal".
    134   switch (cond) {
    135     case kCondEQ: return eq;
    136     case kCondNE: return ne /* unordered */;
    137     case kCondLT: return gt_bias ? cc : lt /* unordered */;
    138     case kCondLE: return gt_bias ? ls : le /* unordered */;
    139     case kCondGT: return gt_bias ? hi /* unordered */ : gt;
    140     case kCondGE: return gt_bias ? cs /* unordered */ : ge;
    141     default:
    142       LOG(FATAL) << "UNREACHABLE";
    143       UNREACHABLE();
    144   }
    145 }
    146 
    147 Location ARM64ReturnLocation(DataType::Type return_type) {
    148   // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
    149   // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
    150   // but we use the exact registers for clarity.
    151   if (return_type == DataType::Type::kFloat32) {
    152     return LocationFrom(s0);
    153   } else if (return_type == DataType::Type::kFloat64) {
    154     return LocationFrom(d0);
    155   } else if (return_type == DataType::Type::kInt64) {
    156     return LocationFrom(x0);
    157   } else if (return_type == DataType::Type::kVoid) {
    158     return Location::NoLocation();
    159   } else {
    160     return LocationFrom(w0);
    161   }
    162 }
    163 
    164 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
    165   return ARM64ReturnLocation(return_type);
    166 }
    167 
    168 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
    169 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->  // NOLINT
    170 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
    171 
    172 // Calculate memory accessing operand for save/restore live registers.
    173 static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
    174                                            LocationSummary* locations,
    175                                            int64_t spill_offset,
    176                                            bool is_save) {
    177   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
    178   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
    179   DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spills,
    180                                          codegen->GetNumberOfCoreRegisters(),
    181                                          fp_spills,
    182                                          codegen->GetNumberOfFloatingPointRegisters()));
    183 
    184   CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize, core_spills);
    185   unsigned v_reg_size = codegen->GetGraph()->HasSIMD() ? kQRegSize : kDRegSize;
    186   CPURegList fp_list = CPURegList(CPURegister::kVRegister, v_reg_size, fp_spills);
    187 
    188   MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
    189   UseScratchRegisterScope temps(masm);
    190 
    191   Register base = masm->StackPointer();
    192   int64_t core_spill_size = core_list.GetTotalSizeInBytes();
    193   int64_t fp_spill_size = fp_list.GetTotalSizeInBytes();
    194   int64_t reg_size = kXRegSizeInBytes;
    195   int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
    196   uint32_t ls_access_size = WhichPowerOf2(reg_size);
    197   if (((core_list.GetCount() > 1) || (fp_list.GetCount() > 1)) &&
    198       !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
    199     // If the offset does not fit in the instruction's immediate field, use an alternate register
    200     // to compute the base address(float point registers spill base address).
    201     Register new_base = temps.AcquireSameSizeAs(base);
    202     __ Add(new_base, base, Operand(spill_offset + core_spill_size));
    203     base = new_base;
    204     spill_offset = -core_spill_size;
    205     int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
    206     DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
    207     DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
    208   }
    209 
    210   if (is_save) {
    211     __ StoreCPURegList(core_list, MemOperand(base, spill_offset));
    212     __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
    213   } else {
    214     __ LoadCPURegList(core_list, MemOperand(base, spill_offset));
    215     __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
    216   }
    217 }
    218 
    219 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
    220   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
    221   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
    222   for (uint32_t i : LowToHighBits(core_spills)) {
    223     // If the register holds an object, update the stack mask.
    224     if (locations->RegisterContainsObject(i)) {
    225       locations->SetStackBit(stack_offset / kVRegSize);
    226     }
    227     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    228     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    229     saved_core_stack_offsets_[i] = stack_offset;
    230     stack_offset += kXRegSizeInBytes;
    231   }
    232 
    233   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
    234   for (uint32_t i : LowToHighBits(fp_spills)) {
    235     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    236     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    237     saved_fpu_stack_offsets_[i] = stack_offset;
    238     stack_offset += kDRegSizeInBytes;
    239   }
    240 
    241   SaveRestoreLiveRegistersHelper(codegen,
    242                                  locations,
    243                                  codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */);
    244 }
    245 
    246 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
    247   SaveRestoreLiveRegistersHelper(codegen,
    248                                  locations,
    249                                  codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */);
    250 }
    251 
    252 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
    253  public:
    254   explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
    255 
    256   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    257     LocationSummary* locations = instruction_->GetLocations();
    258     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    259 
    260     __ Bind(GetEntryLabel());
    261     if (instruction_->CanThrowIntoCatchBlock()) {
    262       // Live registers will be restored in the catch block if caught.
    263       SaveLiveRegisters(codegen, instruction_->GetLocations());
    264     }
    265     // We're moving two locations to locations that could overlap, so we need a parallel
    266     // move resolver.
    267     InvokeRuntimeCallingConvention calling_convention;
    268     codegen->EmitParallelMoves(locations->InAt(0),
    269                                LocationFrom(calling_convention.GetRegisterAt(0)),
    270                                DataType::Type::kInt32,
    271                                locations->InAt(1),
    272                                LocationFrom(calling_convention.GetRegisterAt(1)),
    273                                DataType::Type::kInt32);
    274     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
    275         ? kQuickThrowStringBounds
    276         : kQuickThrowArrayBounds;
    277     arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
    278     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
    279     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
    280   }
    281 
    282   bool IsFatal() const OVERRIDE { return true; }
    283 
    284   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; }
    285 
    286  private:
    287   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
    288 };
    289 
    290 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
    291  public:
    292   explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
    293 
    294   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    295     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    296     __ Bind(GetEntryLabel());
    297     arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
    298     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
    299   }
    300 
    301   bool IsFatal() const OVERRIDE { return true; }
    302 
    303   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; }
    304 
    305  private:
    306   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
    307 };
    308 
    309 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
    310  public:
    311   LoadClassSlowPathARM64(HLoadClass* cls,
    312                          HInstruction* at,
    313                          uint32_t dex_pc,
    314                          bool do_clinit)
    315       : SlowPathCodeARM64(at),
    316         cls_(cls),
    317         dex_pc_(dex_pc),
    318         do_clinit_(do_clinit) {
    319     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
    320   }
    321 
    322   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    323     LocationSummary* locations = instruction_->GetLocations();
    324     Location out = locations->Out();
    325     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    326 
    327     __ Bind(GetEntryLabel());
    328     SaveLiveRegisters(codegen, locations);
    329 
    330     InvokeRuntimeCallingConvention calling_convention;
    331     dex::TypeIndex type_index = cls_->GetTypeIndex();
    332     __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
    333     QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
    334                                                 : kQuickInitializeType;
    335     arm64_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this);
    336     if (do_clinit_) {
    337       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
    338     } else {
    339       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
    340     }
    341 
    342     // Move the class to the desired location.
    343     if (out.IsValid()) {
    344       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
    345       DataType::Type type = instruction_->GetType();
    346       arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
    347     }
    348     RestoreLiveRegisters(codegen, locations);
    349     __ B(GetExitLabel());
    350   }
    351 
    352   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; }
    353 
    354  private:
    355   // The class this slow path will load.
    356   HLoadClass* const cls_;
    357 
    358   // The dex PC of `at_`.
    359   const uint32_t dex_pc_;
    360 
    361   // Whether to initialize the class.
    362   const bool do_clinit_;
    363 
    364   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
    365 };
    366 
    367 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
    368  public:
    369   explicit LoadStringSlowPathARM64(HLoadString* instruction)
    370       : SlowPathCodeARM64(instruction) {}
    371 
    372   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    373     LocationSummary* locations = instruction_->GetLocations();
    374     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    375     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    376 
    377     __ Bind(GetEntryLabel());
    378     SaveLiveRegisters(codegen, locations);
    379 
    380     InvokeRuntimeCallingConvention calling_convention;
    381     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
    382     __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
    383     arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
    384     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
    385     DataType::Type type = instruction_->GetType();
    386     arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
    387 
    388     RestoreLiveRegisters(codegen, locations);
    389 
    390     __ B(GetExitLabel());
    391   }
    392 
    393   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; }
    394 
    395  private:
    396   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
    397 };
    398 
    399 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
    400  public:
    401   explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
    402 
    403   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    404     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    405     __ Bind(GetEntryLabel());
    406     if (instruction_->CanThrowIntoCatchBlock()) {
    407       // Live registers will be restored in the catch block if caught.
    408       SaveLiveRegisters(codegen, instruction_->GetLocations());
    409     }
    410     arm64_codegen->InvokeRuntime(kQuickThrowNullPointer,
    411                                  instruction_,
    412                                  instruction_->GetDexPc(),
    413                                  this);
    414     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
    415   }
    416 
    417   bool IsFatal() const OVERRIDE { return true; }
    418 
    419   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; }
    420 
    421  private:
    422   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
    423 };
    424 
    425 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
    426  public:
    427   SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
    428       : SlowPathCodeARM64(instruction), successor_(successor) {}
    429 
    430   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    431     LocationSummary* locations = instruction_->GetLocations();
    432     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    433     __ Bind(GetEntryLabel());
    434     SaveLiveRegisters(codegen, locations);  // Only saves live 128-bit regs for SIMD.
    435     arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
    436     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
    437     RestoreLiveRegisters(codegen, locations);  // Only restores live 128-bit regs for SIMD.
    438     if (successor_ == nullptr) {
    439       __ B(GetReturnLabel());
    440     } else {
    441       __ B(arm64_codegen->GetLabelOf(successor_));
    442     }
    443   }
    444 
    445   vixl::aarch64::Label* GetReturnLabel() {
    446     DCHECK(successor_ == nullptr);
    447     return &return_label_;
    448   }
    449 
    450   HBasicBlock* GetSuccessor() const {
    451     return successor_;
    452   }
    453 
    454   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; }
    455 
    456  private:
    457   // If not null, the block to branch to after the suspend check.
    458   HBasicBlock* const successor_;
    459 
    460   // If `successor_` is null, the label to branch to after the suspend check.
    461   vixl::aarch64::Label return_label_;
    462 
    463   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
    464 };
    465 
    466 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
    467  public:
    468   TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
    469       : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
    470 
    471   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    472     LocationSummary* locations = instruction_->GetLocations();
    473 
    474     DCHECK(instruction_->IsCheckCast()
    475            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
    476     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    477     uint32_t dex_pc = instruction_->GetDexPc();
    478 
    479     __ Bind(GetEntryLabel());
    480 
    481     if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
    482       SaveLiveRegisters(codegen, locations);
    483     }
    484 
    485     // We're moving two locations to locations that could overlap, so we need a parallel
    486     // move resolver.
    487     InvokeRuntimeCallingConvention calling_convention;
    488     codegen->EmitParallelMoves(locations->InAt(0),
    489                                LocationFrom(calling_convention.GetRegisterAt(0)),
    490                                DataType::Type::kReference,
    491                                locations->InAt(1),
    492                                LocationFrom(calling_convention.GetRegisterAt(1)),
    493                                DataType::Type::kReference);
    494     if (instruction_->IsInstanceOf()) {
    495       arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
    496       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
    497       DataType::Type ret_type = instruction_->GetType();
    498       Location ret_loc = calling_convention.GetReturnLocation(ret_type);
    499       arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
    500     } else {
    501       DCHECK(instruction_->IsCheckCast());
    502       arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
    503       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
    504     }
    505 
    506     if (!is_fatal_) {
    507       RestoreLiveRegisters(codegen, locations);
    508       __ B(GetExitLabel());
    509     }
    510   }
    511 
    512   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; }
    513   bool IsFatal() const OVERRIDE { return is_fatal_; }
    514 
    515  private:
    516   const bool is_fatal_;
    517 
    518   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
    519 };
    520 
    521 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
    522  public:
    523   explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
    524       : SlowPathCodeARM64(instruction) {}
    525 
    526   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    527     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    528     __ Bind(GetEntryLabel());
    529     LocationSummary* locations = instruction_->GetLocations();
    530     SaveLiveRegisters(codegen, locations);
    531     InvokeRuntimeCallingConvention calling_convention;
    532     __ Mov(calling_convention.GetRegisterAt(0),
    533            static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
    534     arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
    535     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
    536   }
    537 
    538   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; }
    539 
    540  private:
    541   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
    542 };
    543 
    544 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
    545  public:
    546   explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
    547 
    548   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    549     LocationSummary* locations = instruction_->GetLocations();
    550     __ Bind(GetEntryLabel());
    551     SaveLiveRegisters(codegen, locations);
    552 
    553     InvokeRuntimeCallingConvention calling_convention;
    554     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
    555     parallel_move.AddMove(
    556         locations->InAt(0),
    557         LocationFrom(calling_convention.GetRegisterAt(0)),
    558         DataType::Type::kReference,
    559         nullptr);
    560     parallel_move.AddMove(
    561         locations->InAt(1),
    562         LocationFrom(calling_convention.GetRegisterAt(1)),
    563         DataType::Type::kInt32,
    564         nullptr);
    565     parallel_move.AddMove(
    566         locations->InAt(2),
    567         LocationFrom(calling_convention.GetRegisterAt(2)),
    568         DataType::Type::kReference,
    569         nullptr);
    570     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    571 
    572     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    573     arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
    574     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
    575     RestoreLiveRegisters(codegen, locations);
    576     __ B(GetExitLabel());
    577   }
    578 
    579   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; }
    580 
    581  private:
    582   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
    583 };
    584 
    585 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
    586   uint32_t num_entries = switch_instr_->GetNumEntries();
    587   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
    588 
    589   // We are about to use the assembler to place literals directly. Make sure we have enough
    590   // underlying code buffer and we have generated the jump table with right size.
    591   EmissionCheckScope scope(codegen->GetVIXLAssembler(),
    592                            num_entries * sizeof(int32_t),
    593                            CodeBufferCheckScope::kExactSize);
    594 
    595   __ Bind(&table_start_);
    596   const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
    597   for (uint32_t i = 0; i < num_entries; i++) {
    598     vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
    599     DCHECK(target_label->IsBound());
    600     ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
    601     DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
    602     DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
    603     Literal<int32_t> literal(jump_offset);
    604     __ place(&literal);
    605   }
    606 }
    607 
    608 // Abstract base class for read barrier slow paths marking a reference
    609 // `ref`.
    610 //
    611 // Argument `entrypoint` must be a register location holding the read
    612 // barrier marking runtime entry point to be invoked or an empty
    613 // location; in the latter case, the read barrier marking runtime
    614 // entry point will be loaded by the slow path code itself.
    615 class ReadBarrierMarkSlowPathBaseARM64 : public SlowPathCodeARM64 {
    616  protected:
    617   ReadBarrierMarkSlowPathBaseARM64(HInstruction* instruction, Location ref, Location entrypoint)
    618       : SlowPathCodeARM64(instruction), ref_(ref), entrypoint_(entrypoint) {
    619     DCHECK(kEmitCompilerReadBarrier);
    620   }
    621 
    622   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathBaseARM64"; }
    623 
    624   // Generate assembly code calling the read barrier marking runtime
    625   // entry point (ReadBarrierMarkRegX).
    626   void GenerateReadBarrierMarkRuntimeCall(CodeGenerator* codegen) {
    627     // No need to save live registers; it's taken care of by the
    628     // entrypoint. Also, there is no need to update the stack mask,
    629     // as this runtime call will not trigger a garbage collection.
    630     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    631     DCHECK_NE(ref_.reg(), LR);
    632     DCHECK_NE(ref_.reg(), WSP);
    633     DCHECK_NE(ref_.reg(), WZR);
    634     // IP0 is used internally by the ReadBarrierMarkRegX entry point
    635     // as a temporary, it cannot be the entry point's input/output.
    636     DCHECK_NE(ref_.reg(), IP0);
    637     DCHECK(0 <= ref_.reg() && ref_.reg() < kNumberOfWRegisters) << ref_.reg();
    638     // "Compact" slow path, saving two moves.
    639     //
    640     // Instead of using the standard runtime calling convention (input
    641     // and output in W0):
    642     //
    643     //   W0 <- ref
    644     //   W0 <- ReadBarrierMark(W0)
    645     //   ref <- W0
    646     //
    647     // we just use rX (the register containing `ref`) as input and output
    648     // of a dedicated entrypoint:
    649     //
    650     //   rX <- ReadBarrierMarkRegX(rX)
    651     //
    652     if (entrypoint_.IsValid()) {
    653       arm64_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
    654       __ Blr(XRegisterFrom(entrypoint_));
    655     } else {
    656       // Entrypoint is not already loaded, load from the thread.
    657       int32_t entry_point_offset =
    658           Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ref_.reg());
    659       // This runtime call does not require a stack map.
    660       arm64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
    661     }
    662   }
    663 
    664   // The location (register) of the marked object reference.
    665   const Location ref_;
    666 
    667   // The location of the entrypoint if it is already loaded.
    668   const Location entrypoint_;
    669 
    670  private:
    671   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathBaseARM64);
    672 };
    673 
    674 // Slow path marking an object reference `ref` during a read
    675 // barrier. The field `obj.field` in the object `obj` holding this
    676 // reference does not get updated by this slow path after marking.
    677 //
    678 // This means that after the execution of this slow path, `ref` will
    679 // always be up-to-date, but `obj.field` may not; i.e., after the
    680 // flip, `ref` will be a to-space reference, but `obj.field` will
    681 // probably still be a from-space reference (unless it gets updated by
    682 // another thread, or if another thread installed another object
    683 // reference (different from `ref`) in `obj.field`).
    684 //
    685 // Argument `entrypoint` must be a register location holding the read
    686 // barrier marking runtime entry point to be invoked or an empty
    687 // location; in the latter case, the read barrier marking runtime
    688 // entry point will be loaded by the slow path code itself.
    689 class ReadBarrierMarkSlowPathARM64 : public ReadBarrierMarkSlowPathBaseARM64 {
    690  public:
    691   ReadBarrierMarkSlowPathARM64(HInstruction* instruction,
    692                                Location ref,
    693                                Location entrypoint = Location::NoLocation())
    694       : ReadBarrierMarkSlowPathBaseARM64(instruction, ref, entrypoint) {
    695     DCHECK(kEmitCompilerReadBarrier);
    696   }
    697 
    698   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; }
    699 
    700   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    701     LocationSummary* locations = instruction_->GetLocations();
    702     DCHECK(locations->CanCall());
    703     DCHECK(ref_.IsRegister()) << ref_;
    704     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg();
    705     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
    706         << "Unexpected instruction in read barrier marking slow path: "
    707         << instruction_->DebugName();
    708 
    709     __ Bind(GetEntryLabel());
    710     GenerateReadBarrierMarkRuntimeCall(codegen);
    711     __ B(GetExitLabel());
    712   }
    713 
    714  private:
    715   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64);
    716 };
    717 
    718 // Slow path loading `obj`'s lock word, loading a reference from
    719 // object `*(obj + offset + (index << scale_factor))` into `ref`, and
    720 // marking `ref` if `obj` is gray according to the lock word (Baker
    721 // read barrier). The field `obj.field` in the object `obj` holding
    722 // this reference does not get updated by this slow path after marking
    723 // (see LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64
    724 // below for that).
    725 //
    726 // This means that after the execution of this slow path, `ref` will
    727 // always be up-to-date, but `obj.field` may not; i.e., after the
    728 // flip, `ref` will be a to-space reference, but `obj.field` will
    729 // probably still be a from-space reference (unless it gets updated by
    730 // another thread, or if another thread installed another object
    731 // reference (different from `ref`) in `obj.field`).
    732 //
    733 // Argument `entrypoint` must be a register location holding the read
    734 // barrier marking runtime entry point to be invoked or an empty
    735 // location; in the latter case, the read barrier marking runtime
    736 // entry point will be loaded by the slow path code itself.
    737 class LoadReferenceWithBakerReadBarrierSlowPathARM64 : public ReadBarrierMarkSlowPathBaseARM64 {
    738  public:
    739   LoadReferenceWithBakerReadBarrierSlowPathARM64(HInstruction* instruction,
    740                                                  Location ref,
    741                                                  Register obj,
    742                                                  uint32_t offset,
    743                                                  Location index,
    744                                                  size_t scale_factor,
    745                                                  bool needs_null_check,
    746                                                  bool use_load_acquire,
    747                                                  Register temp,
    748                                                  Location entrypoint = Location::NoLocation())
    749       : ReadBarrierMarkSlowPathBaseARM64(instruction, ref, entrypoint),
    750         obj_(obj),
    751         offset_(offset),
    752         index_(index),
    753         scale_factor_(scale_factor),
    754         needs_null_check_(needs_null_check),
    755         use_load_acquire_(use_load_acquire),
    756         temp_(temp) {
    757     DCHECK(kEmitCompilerReadBarrier);
    758     DCHECK(kUseBakerReadBarrier);
    759   }
    760 
    761   const char* GetDescription() const OVERRIDE {
    762     return "LoadReferenceWithBakerReadBarrierSlowPathARM64";
    763   }
    764 
    765   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    766     LocationSummary* locations = instruction_->GetLocations();
    767     DCHECK(locations->CanCall());
    768     DCHECK(ref_.IsRegister()) << ref_;
    769     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg();
    770     DCHECK(obj_.IsW());
    771     DCHECK_NE(ref_.reg(), LocationFrom(temp_).reg());
    772     DCHECK(instruction_->IsInstanceFieldGet() ||
    773            instruction_->IsStaticFieldGet() ||
    774            instruction_->IsArrayGet() ||
    775            instruction_->IsArraySet() ||
    776            instruction_->IsInstanceOf() ||
    777            instruction_->IsCheckCast() ||
    778            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
    779            (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
    780         << "Unexpected instruction in read barrier marking slow path: "
    781         << instruction_->DebugName();
    782     // The read barrier instrumentation of object ArrayGet
    783     // instructions does not support the HIntermediateAddress
    784     // instruction.
    785     DCHECK(!(instruction_->IsArrayGet() &&
    786              instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
    787 
    788     // Temporary register `temp_`, used to store the lock word, must
    789     // not be IP0 nor IP1, as we may use them to emit the reference
    790     // load (in the call to GenerateRawReferenceLoad below), and we
    791     // need the lock word to still be in `temp_` after the reference
    792     // load.
    793     DCHECK_NE(LocationFrom(temp_).reg(), IP0);
    794     DCHECK_NE(LocationFrom(temp_).reg(), IP1);
    795 
    796     __ Bind(GetEntryLabel());
    797 
    798     // When using MaybeGenerateReadBarrierSlow, the read barrier call is
    799     // inserted after the original load. However, in fast path based
    800     // Baker's read barriers, we need to perform the load of
    801     // mirror::Object::monitor_ *before* the original reference load.
    802     // This load-load ordering is required by the read barrier.
    803     // The slow path (for Baker's algorithm) should look like:
    804     //
    805     //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
    806     //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
    807     //   HeapReference<mirror::Object> ref = *src;  // Original reference load.
    808     //   bool is_gray = (rb_state == ReadBarrier::GrayState());
    809     //   if (is_gray) {
    810     //     ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
    811     //   }
    812     //
    813     // Note: the original implementation in ReadBarrier::Barrier is
    814     // slightly more complex as it performs additional checks that we do
    815     // not do here for performance reasons.
    816 
    817     // /* int32_t */ monitor = obj->monitor_
    818     uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
    819     __ Ldr(temp_, HeapOperand(obj_, monitor_offset));
    820     if (needs_null_check_) {
    821       codegen->MaybeRecordImplicitNullCheck(instruction_);
    822     }
    823     // /* LockWord */ lock_word = LockWord(monitor)
    824     static_assert(sizeof(LockWord) == sizeof(int32_t),
    825                   "art::LockWord and int32_t have different sizes.");
    826 
    827     // Introduce a dependency on the lock_word including rb_state,
    828     // to prevent load-load reordering, and without using
    829     // a memory barrier (which would be more expensive).
    830     // `obj` is unchanged by this operation, but its value now depends
    831     // on `temp`.
    832     __ Add(obj_.X(), obj_.X(), Operand(temp_.X(), LSR, 32));
    833 
    834     // The actual reference load.
    835     // A possible implicit null check has already been handled above.
    836     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    837     arm64_codegen->GenerateRawReferenceLoad(instruction_,
    838                                             ref_,
    839                                             obj_,
    840                                             offset_,
    841                                             index_,
    842                                             scale_factor_,
    843                                             /* needs_null_check */ false,
    844                                             use_load_acquire_);
    845 
    846     // Mark the object `ref` when `obj` is gray.
    847     //
    848     //   if (rb_state == ReadBarrier::GrayState())
    849     //     ref = ReadBarrier::Mark(ref);
    850     //
    851     // Given the numeric representation, it's enough to check the low bit of the rb_state.
    852     static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
    853     static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
    854     __ Tbz(temp_, LockWord::kReadBarrierStateShift, GetExitLabel());
    855     GenerateReadBarrierMarkRuntimeCall(codegen);
    856 
    857     __ B(GetExitLabel());
    858   }
    859 
    860  private:
    861   // The register containing the object holding the marked object reference field.
    862   Register obj_;
    863   // The offset, index and scale factor to access the reference in `obj_`.
    864   uint32_t offset_;
    865   Location index_;
    866   size_t scale_factor_;
    867   // Is a null check required?
    868   bool needs_null_check_;
    869   // Should this reference load use Load-Acquire semantics?
    870   bool use_load_acquire_;
    871   // A temporary register used to hold the lock word of `obj_`.
    872   Register temp_;
    873 
    874   DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierSlowPathARM64);
    875 };
    876 
    877 // Slow path loading `obj`'s lock word, loading a reference from
    878 // object `*(obj + offset + (index << scale_factor))` into `ref`, and
    879 // marking `ref` if `obj` is gray according to the lock word (Baker
    880 // read barrier). If needed, this slow path also atomically updates
    881 // the field `obj.field` in the object `obj` holding this reference
    882 // after marking (contrary to
    883 // LoadReferenceWithBakerReadBarrierSlowPathARM64 above, which never
    884 // tries to update `obj.field`).
    885 //
    886 // This means that after the execution of this slow path, both `ref`
    887 // and `obj.field` will be up-to-date; i.e., after the flip, both will
    888 // hold the same to-space reference (unless another thread installed
    889 // another object reference (different from `ref`) in `obj.field`).
    890 //
    891 // Argument `entrypoint` must be a register location holding the read
    892 // barrier marking runtime entry point to be invoked or an empty
    893 // location; in the latter case, the read barrier marking runtime
    894 // entry point will be loaded by the slow path code itself.
    895 class LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64
    896     : public ReadBarrierMarkSlowPathBaseARM64 {
    897  public:
    898   LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64(
    899       HInstruction* instruction,
    900       Location ref,
    901       Register obj,
    902       uint32_t offset,
    903       Location index,
    904       size_t scale_factor,
    905       bool needs_null_check,
    906       bool use_load_acquire,
    907       Register temp,
    908       Location entrypoint = Location::NoLocation())
    909       : ReadBarrierMarkSlowPathBaseARM64(instruction, ref, entrypoint),
    910         obj_(obj),
    911         offset_(offset),
    912         index_(index),
    913         scale_factor_(scale_factor),
    914         needs_null_check_(needs_null_check),
    915         use_load_acquire_(use_load_acquire),
    916         temp_(temp) {
    917     DCHECK(kEmitCompilerReadBarrier);
    918     DCHECK(kUseBakerReadBarrier);
    919   }
    920 
    921   const char* GetDescription() const OVERRIDE {
    922     return "LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64";
    923   }
    924 
    925   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    926     LocationSummary* locations = instruction_->GetLocations();
    927     Register ref_reg = WRegisterFrom(ref_);
    928     DCHECK(locations->CanCall());
    929     DCHECK(ref_.IsRegister()) << ref_;
    930     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg();
    931     DCHECK(obj_.IsW());
    932     DCHECK_NE(ref_.reg(), LocationFrom(temp_).reg());
    933 
    934     // This slow path is only used by the UnsafeCASObject intrinsic at the moment.
    935     DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
    936         << "Unexpected instruction in read barrier marking and field updating slow path: "
    937         << instruction_->DebugName();
    938     DCHECK(instruction_->GetLocations()->Intrinsified());
    939     DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
    940     DCHECK_EQ(offset_, 0u);
    941     DCHECK_EQ(scale_factor_, 0u);
    942     DCHECK_EQ(use_load_acquire_, false);
    943     // The location of the offset of the marked reference field within `obj_`.
    944     Location field_offset = index_;
    945     DCHECK(field_offset.IsRegister()) << field_offset;
    946 
    947     // Temporary register `temp_`, used to store the lock word, must
    948     // not be IP0 nor IP1, as we may use them to emit the reference
    949     // load (in the call to GenerateRawReferenceLoad below), and we
    950     // need the lock word to still be in `temp_` after the reference
    951     // load.
    952     DCHECK_NE(LocationFrom(temp_).reg(), IP0);
    953     DCHECK_NE(LocationFrom(temp_).reg(), IP1);
    954 
    955     __ Bind(GetEntryLabel());
    956 
    957     // The implementation is similar to LoadReferenceWithBakerReadBarrierSlowPathARM64's:
    958     //
    959     //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
    960     //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
    961     //   HeapReference<mirror::Object> ref = *src;  // Original reference load.
    962     //   bool is_gray = (rb_state == ReadBarrier::GrayState());
    963     //   if (is_gray) {
    964     //     old_ref = ref;
    965     //     ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
    966     //     compareAndSwapObject(obj, field_offset, old_ref, ref);
    967     //   }
    968 
    969     // /* int32_t */ monitor = obj->monitor_
    970     uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
    971     __ Ldr(temp_, HeapOperand(obj_, monitor_offset));
    972     if (needs_null_check_) {
    973       codegen->MaybeRecordImplicitNullCheck(instruction_);
    974     }
    975     // /* LockWord */ lock_word = LockWord(monitor)
    976     static_assert(sizeof(LockWord) == sizeof(int32_t),
    977                   "art::LockWord and int32_t have different sizes.");
    978 
    979     // Introduce a dependency on the lock_word including rb_state,
    980     // to prevent load-load reordering, and without using
    981     // a memory barrier (which would be more expensive).
    982     // `obj` is unchanged by this operation, but its value now depends
    983     // on `temp`.
    984     __ Add(obj_.X(), obj_.X(), Operand(temp_.X(), LSR, 32));
    985 
    986     // The actual reference load.
    987     // A possible implicit null check has already been handled above.
    988     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
    989     arm64_codegen->GenerateRawReferenceLoad(instruction_,
    990                                             ref_,
    991                                             obj_,
    992                                             offset_,
    993                                             index_,
    994                                             scale_factor_,
    995                                             /* needs_null_check */ false,
    996                                             use_load_acquire_);
    997 
    998     // Mark the object `ref` when `obj` is gray.
    999     //
   1000     //   if (rb_state == ReadBarrier::GrayState())
   1001     //     ref = ReadBarrier::Mark(ref);
   1002     //
   1003     // Given the numeric representation, it's enough to check the low bit of the rb_state.
   1004     static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
   1005     static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
   1006     __ Tbz(temp_, LockWord::kReadBarrierStateShift, GetExitLabel());
   1007 
   1008     // Save the old value of the reference before marking it.
   1009     // Note that we cannot use IP to save the old reference, as IP is
   1010     // used internally by the ReadBarrierMarkRegX entry point, and we
   1011     // need the old reference after the call to that entry point.
   1012     DCHECK_NE(LocationFrom(temp_).reg(), IP0);
   1013     __ Mov(temp_.W(), ref_reg);
   1014 
   1015     GenerateReadBarrierMarkRuntimeCall(codegen);
   1016 
   1017     // If the new reference is different from the old reference,
   1018     // update the field in the holder (`*(obj_ + field_offset)`).
   1019     //
   1020     // Note that this field could also hold a different object, if
   1021     // another thread had concurrently changed it. In that case, the
   1022     // LDXR/CMP/BNE sequence of instructions in the compare-and-set
   1023     // (CAS) operation below would abort the CAS, leaving the field
   1024     // as-is.
   1025     __ Cmp(temp_.W(), ref_reg);
   1026     __ B(eq, GetExitLabel());
   1027 
   1028     // Update the the holder's field atomically.  This may fail if
   1029     // mutator updates before us, but it's OK.  This is achieved
   1030     // using a strong compare-and-set (CAS) operation with relaxed
   1031     // memory synchronization ordering, where the expected value is
   1032     // the old reference and the desired value is the new reference.
   1033 
   1034     MacroAssembler* masm = arm64_codegen->GetVIXLAssembler();
   1035     UseScratchRegisterScope temps(masm);
   1036 
   1037     // Convenience aliases.
   1038     Register base = obj_.W();
   1039     Register offset = XRegisterFrom(field_offset);
   1040     Register expected = temp_.W();
   1041     Register value = ref_reg;
   1042     Register tmp_ptr = temps.AcquireX();    // Pointer to actual memory.
   1043     Register tmp_value = temps.AcquireW();  // Value in memory.
   1044 
   1045     __ Add(tmp_ptr, base.X(), Operand(offset));
   1046 
   1047     if (kPoisonHeapReferences) {
   1048       arm64_codegen->GetAssembler()->PoisonHeapReference(expected);
   1049       if (value.Is(expected)) {
   1050         // Do not poison `value`, as it is the same register as
   1051         // `expected`, which has just been poisoned.
   1052       } else {
   1053         arm64_codegen->GetAssembler()->PoisonHeapReference(value);
   1054       }
   1055     }
   1056 
   1057     // do {
   1058     //   tmp_value = [tmp_ptr] - expected;
   1059     // } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
   1060 
   1061     vixl::aarch64::Label loop_head, comparison_failed, exit_loop;
   1062     __ Bind(&loop_head);
   1063     __ Ldxr(tmp_value, MemOperand(tmp_ptr));
   1064     __ Cmp(tmp_value, expected);
   1065     __ B(&comparison_failed, ne);
   1066     __ Stxr(tmp_value, value, MemOperand(tmp_ptr));
   1067     __ Cbnz(tmp_value, &loop_head);
   1068     __ B(&exit_loop);
   1069     __ Bind(&comparison_failed);
   1070     __ Clrex();
   1071     __ Bind(&exit_loop);
   1072 
   1073     if (kPoisonHeapReferences) {
   1074       arm64_codegen->GetAssembler()->UnpoisonHeapReference(expected);
   1075       if (value.Is(expected)) {
   1076         // Do not unpoison `value`, as it is the same register as
   1077         // `expected`, which has just been unpoisoned.
   1078       } else {
   1079         arm64_codegen->GetAssembler()->UnpoisonHeapReference(value);
   1080       }
   1081     }
   1082 
   1083     __ B(GetExitLabel());
   1084   }
   1085 
   1086  private:
   1087   // The register containing the object holding the marked object reference field.
   1088   const Register obj_;
   1089   // The offset, index and scale factor to access the reference in `obj_`.
   1090   uint32_t offset_;
   1091   Location index_;
   1092   size_t scale_factor_;
   1093   // Is a null check required?
   1094   bool needs_null_check_;
   1095   // Should this reference load use Load-Acquire semantics?
   1096   bool use_load_acquire_;
   1097   // A temporary register used to hold the lock word of `obj_`; and
   1098   // also to hold the original reference value, when the reference is
   1099   // marked.
   1100   const Register temp_;
   1101 
   1102   DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64);
   1103 };
   1104 
   1105 // Slow path generating a read barrier for a heap reference.
   1106 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
   1107  public:
   1108   ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
   1109                                            Location out,
   1110                                            Location ref,
   1111                                            Location obj,
   1112                                            uint32_t offset,
   1113                                            Location index)
   1114       : SlowPathCodeARM64(instruction),
   1115         out_(out),
   1116         ref_(ref),
   1117         obj_(obj),
   1118         offset_(offset),
   1119         index_(index) {
   1120     DCHECK(kEmitCompilerReadBarrier);
   1121     // If `obj` is equal to `out` or `ref`, it means the initial object
   1122     // has been overwritten by (or after) the heap object reference load
   1123     // to be instrumented, e.g.:
   1124     //
   1125     //   __ Ldr(out, HeapOperand(out, class_offset);
   1126     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
   1127     //
   1128     // In that case, we have lost the information about the original
   1129     // object, and the emitted read barrier cannot work properly.
   1130     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
   1131     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
   1132   }
   1133 
   1134   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
   1135     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
   1136     LocationSummary* locations = instruction_->GetLocations();
   1137     DataType::Type type = DataType::Type::kReference;
   1138     DCHECK(locations->CanCall());
   1139     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
   1140     DCHECK(instruction_->IsInstanceFieldGet() ||
   1141            instruction_->IsStaticFieldGet() ||
   1142            instruction_->IsArrayGet() ||
   1143            instruction_->IsInstanceOf() ||
   1144            instruction_->IsCheckCast() ||
   1145            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
   1146         << "Unexpected instruction in read barrier for heap reference slow path: "
   1147         << instruction_->DebugName();
   1148     // The read barrier instrumentation of object ArrayGet
   1149     // instructions does not support the HIntermediateAddress
   1150     // instruction.
   1151     DCHECK(!(instruction_->IsArrayGet() &&
   1152              instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
   1153 
   1154     __ Bind(GetEntryLabel());
   1155 
   1156     SaveLiveRegisters(codegen, locations);
   1157 
   1158     // We may have to change the index's value, but as `index_` is a
   1159     // constant member (like other "inputs" of this slow path),
   1160     // introduce a copy of it, `index`.
   1161     Location index = index_;
   1162     if (index_.IsValid()) {
   1163       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
   1164       if (instruction_->IsArrayGet()) {
   1165         // Compute the actual memory offset and store it in `index`.
   1166         Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
   1167         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
   1168         if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
   1169           // We are about to change the value of `index_reg` (see the
   1170           // calls to vixl::MacroAssembler::Lsl and
   1171           // vixl::MacroAssembler::Mov below), but it has
   1172           // not been saved by the previous call to
   1173           // art::SlowPathCode::SaveLiveRegisters, as it is a
   1174           // callee-save register --
   1175           // art::SlowPathCode::SaveLiveRegisters does not consider
   1176           // callee-save registers, as it has been designed with the
   1177           // assumption that callee-save registers are supposed to be
   1178           // handled by the called function.  So, as a callee-save
   1179           // register, `index_reg` _would_ eventually be saved onto
   1180           // the stack, but it would be too late: we would have
   1181           // changed its value earlier.  Therefore, we manually save
   1182           // it here into another freely available register,
   1183           // `free_reg`, chosen of course among the caller-save
   1184           // registers (as a callee-save `free_reg` register would
   1185           // exhibit the same problem).
   1186           //
   1187           // Note we could have requested a temporary register from
   1188           // the register allocator instead; but we prefer not to, as
   1189           // this is a slow path, and we know we can find a
   1190           // caller-save register that is available.
   1191           Register free_reg = FindAvailableCallerSaveRegister(codegen);
   1192           __ Mov(free_reg.W(), index_reg);
   1193           index_reg = free_reg;
   1194           index = LocationFrom(index_reg);
   1195         } else {
   1196           // The initial register stored in `index_` has already been
   1197           // saved in the call to art::SlowPathCode::SaveLiveRegisters
   1198           // (as it is not a callee-save register), so we can freely
   1199           // use it.
   1200         }
   1201         // Shifting the index value contained in `index_reg` by the scale
   1202         // factor (2) cannot overflow in practice, as the runtime is
   1203         // unable to allocate object arrays with a size larger than
   1204         // 2^26 - 1 (that is, 2^28 - 4 bytes).
   1205         __ Lsl(index_reg, index_reg, DataType::SizeShift(type));
   1206         static_assert(
   1207             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   1208             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   1209         __ Add(index_reg, index_reg, Operand(offset_));
   1210       } else {
   1211         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
   1212         // intrinsics, `index_` is not shifted by a scale factor of 2
   1213         // (as in the case of ArrayGet), as it is actually an offset
   1214         // to an object field within an object.
   1215         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
   1216         DCHECK(instruction_->GetLocations()->Intrinsified());
   1217         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
   1218                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
   1219             << instruction_->AsInvoke()->GetIntrinsic();
   1220         DCHECK_EQ(offset_, 0u);
   1221         DCHECK(index_.IsRegister());
   1222       }
   1223     }
   1224 
   1225     // We're moving two or three locations to locations that could
   1226     // overlap, so we need a parallel move resolver.
   1227     InvokeRuntimeCallingConvention calling_convention;
   1228     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
   1229     parallel_move.AddMove(ref_,
   1230                           LocationFrom(calling_convention.GetRegisterAt(0)),
   1231                           type,
   1232                           nullptr);
   1233     parallel_move.AddMove(obj_,
   1234                           LocationFrom(calling_convention.GetRegisterAt(1)),
   1235                           type,
   1236                           nullptr);
   1237     if (index.IsValid()) {
   1238       parallel_move.AddMove(index,
   1239                             LocationFrom(calling_convention.GetRegisterAt(2)),
   1240                             DataType::Type::kInt32,
   1241                             nullptr);
   1242       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
   1243     } else {
   1244       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
   1245       arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
   1246     }
   1247     arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow,
   1248                                  instruction_,
   1249                                  instruction_->GetDexPc(),
   1250                                  this);
   1251     CheckEntrypointTypes<
   1252         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
   1253     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
   1254 
   1255     RestoreLiveRegisters(codegen, locations);
   1256 
   1257     __ B(GetExitLabel());
   1258   }
   1259 
   1260   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
   1261 
   1262  private:
   1263   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
   1264     size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
   1265     size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
   1266     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
   1267       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
   1268         return Register(VIXLRegCodeFromART(i), kXRegSize);
   1269       }
   1270     }
   1271     // We shall never fail to find a free caller-save register, as
   1272     // there are more than two core caller-save registers on ARM64
   1273     // (meaning it is possible to find one which is different from
   1274     // `ref` and `obj`).
   1275     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
   1276     LOG(FATAL) << "Could not find a free register";
   1277     UNREACHABLE();
   1278   }
   1279 
   1280   const Location out_;
   1281   const Location ref_;
   1282   const Location obj_;
   1283   const uint32_t offset_;
   1284   // An additional location containing an index to an array.
   1285   // Only used for HArrayGet and the UnsafeGetObject &
   1286   // UnsafeGetObjectVolatile intrinsics.
   1287   const Location index_;
   1288 
   1289   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
   1290 };
   1291 
   1292 // Slow path generating a read barrier for a GC root.
   1293 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
   1294  public:
   1295   ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
   1296       : SlowPathCodeARM64(instruction), out_(out), root_(root) {
   1297     DCHECK(kEmitCompilerReadBarrier);
   1298   }
   1299 
   1300   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
   1301     LocationSummary* locations = instruction_->GetLocations();
   1302     DataType::Type type = DataType::Type::kReference;
   1303     DCHECK(locations->CanCall());
   1304     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
   1305     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
   1306         << "Unexpected instruction in read barrier for GC root slow path: "
   1307         << instruction_->DebugName();
   1308 
   1309     __ Bind(GetEntryLabel());
   1310     SaveLiveRegisters(codegen, locations);
   1311 
   1312     InvokeRuntimeCallingConvention calling_convention;
   1313     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
   1314     // The argument of the ReadBarrierForRootSlow is not a managed
   1315     // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
   1316     // thus we need a 64-bit move here, and we cannot use
   1317     //
   1318     //   arm64_codegen->MoveLocation(
   1319     //       LocationFrom(calling_convention.GetRegisterAt(0)),
   1320     //       root_,
   1321     //       type);
   1322     //
   1323     // which would emit a 32-bit move, as `type` is a (32-bit wide)
   1324     // reference type (`DataType::Type::kReference`).
   1325     __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
   1326     arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
   1327                                  instruction_,
   1328                                  instruction_->GetDexPc(),
   1329                                  this);
   1330     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
   1331     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
   1332 
   1333     RestoreLiveRegisters(codegen, locations);
   1334     __ B(GetExitLabel());
   1335   }
   1336 
   1337   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; }
   1338 
   1339  private:
   1340   const Location out_;
   1341   const Location root_;
   1342 
   1343   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
   1344 };
   1345 
   1346 #undef __
   1347 
   1348 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
   1349   Location next_location;
   1350   if (type == DataType::Type::kVoid) {
   1351     LOG(FATAL) << "Unreachable type " << type;
   1352   }
   1353 
   1354   if (DataType::IsFloatingPointType(type) &&
   1355       (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
   1356     next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
   1357   } else if (!DataType::IsFloatingPointType(type) &&
   1358              (gp_index_ < calling_convention.GetNumberOfRegisters())) {
   1359     next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
   1360   } else {
   1361     size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
   1362     next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
   1363                                                 : Location::StackSlot(stack_offset);
   1364   }
   1365 
   1366   // Space on the stack is reserved for all arguments.
   1367   stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
   1368   return next_location;
   1369 }
   1370 
   1371 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
   1372   return LocationFrom(kArtMethodRegister);
   1373 }
   1374 
   1375 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
   1376                                        const Arm64InstructionSetFeatures& isa_features,
   1377                                        const CompilerOptions& compiler_options,
   1378                                        OptimizingCompilerStats* stats)
   1379     : CodeGenerator(graph,
   1380                     kNumberOfAllocatableRegisters,
   1381                     kNumberOfAllocatableFPRegisters,
   1382                     kNumberOfAllocatableRegisterPairs,
   1383                     callee_saved_core_registers.GetList(),
   1384                     callee_saved_fp_registers.GetList(),
   1385                     compiler_options,
   1386                     stats),
   1387       block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1388       jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1389       location_builder_(graph, this),
   1390       instruction_visitor_(graph, this),
   1391       move_resolver_(graph->GetAllocator(), this),
   1392       assembler_(graph->GetAllocator()),
   1393       isa_features_(isa_features),
   1394       uint32_literals_(std::less<uint32_t>(),
   1395                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1396       uint64_literals_(std::less<uint64_t>(),
   1397                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1398       boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1399       method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1400       boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1401       type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1402       boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1403       string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1404       baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1405       jit_string_patches_(StringReferenceValueComparator(),
   1406                           graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
   1407       jit_class_patches_(TypeReferenceValueComparator(),
   1408                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
   1409   // Save the link register (containing the return address) to mimic Quick.
   1410   AddAllocatedRegister(LocationFrom(lr));
   1411 }
   1412 
   1413 #define __ GetVIXLAssembler()->
   1414 
   1415 void CodeGeneratorARM64::EmitJumpTables() {
   1416   for (auto&& jump_table : jump_tables_) {
   1417     jump_table->EmitTable(this);
   1418   }
   1419 }
   1420 
   1421 void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
   1422   EmitJumpTables();
   1423   // Ensure we emit the literal pool.
   1424   __ FinalizeCode();
   1425 
   1426   CodeGenerator::Finalize(allocator);
   1427 }
   1428 
   1429 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
   1430   // Note: There are 6 kinds of moves:
   1431   // 1. constant -> GPR/FPR (non-cycle)
   1432   // 2. constant -> stack (non-cycle)
   1433   // 3. GPR/FPR -> GPR/FPR
   1434   // 4. GPR/FPR -> stack
   1435   // 5. stack -> GPR/FPR
   1436   // 6. stack -> stack (non-cycle)
   1437   // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
   1438   // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
   1439   // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
   1440   // dependency.
   1441   vixl_temps_.Open(GetVIXLAssembler());
   1442 }
   1443 
   1444 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
   1445   vixl_temps_.Close();
   1446 }
   1447 
   1448 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
   1449   DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
   1450          || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
   1451          || kind == Location::kSIMDStackSlot);
   1452   kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
   1453       ? Location::kFpuRegister
   1454       : Location::kRegister;
   1455   Location scratch = GetScratchLocation(kind);
   1456   if (!scratch.Equals(Location::NoLocation())) {
   1457     return scratch;
   1458   }
   1459   // Allocate from VIXL temp registers.
   1460   if (kind == Location::kRegister) {
   1461     scratch = LocationFrom(vixl_temps_.AcquireX());
   1462   } else {
   1463     DCHECK_EQ(kind, Location::kFpuRegister);
   1464     scratch = LocationFrom(codegen_->GetGraph()->HasSIMD()
   1465         ? vixl_temps_.AcquireVRegisterOfSize(kQRegSize)
   1466         : vixl_temps_.AcquireD());
   1467   }
   1468   AddScratchLocation(scratch);
   1469   return scratch;
   1470 }
   1471 
   1472 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
   1473   if (loc.IsRegister()) {
   1474     vixl_temps_.Release(XRegisterFrom(loc));
   1475   } else {
   1476     DCHECK(loc.IsFpuRegister());
   1477     vixl_temps_.Release(codegen_->GetGraph()->HasSIMD() ? QRegisterFrom(loc) : DRegisterFrom(loc));
   1478   }
   1479   RemoveScratchLocation(loc);
   1480 }
   1481 
   1482 void ParallelMoveResolverARM64::EmitMove(size_t index) {
   1483   MoveOperands* move = moves_[index];
   1484   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
   1485 }
   1486 
   1487 void CodeGeneratorARM64::GenerateFrameEntry() {
   1488   MacroAssembler* masm = GetVIXLAssembler();
   1489   __ Bind(&frame_entry_label_);
   1490 
   1491   if (GetCompilerOptions().CountHotnessInCompiledCode()) {
   1492     UseScratchRegisterScope temps(masm);
   1493     Register temp = temps.AcquireX();
   1494     __ Ldrh(temp, MemOperand(kArtMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
   1495     __ Add(temp, temp, 1);
   1496     __ Strh(temp, MemOperand(kArtMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
   1497   }
   1498 
   1499   bool do_overflow_check =
   1500       FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
   1501   if (do_overflow_check) {
   1502     UseScratchRegisterScope temps(masm);
   1503     Register temp = temps.AcquireX();
   1504     DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
   1505     __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
   1506     {
   1507       // Ensure that between load and RecordPcInfo there are no pools emitted.
   1508       ExactAssemblyScope eas(GetVIXLAssembler(),
   1509                              kInstructionSize,
   1510                              CodeBufferCheckScope::kExactSize);
   1511       __ ldr(wzr, MemOperand(temp, 0));
   1512       RecordPcInfo(nullptr, 0);
   1513     }
   1514   }
   1515 
   1516   if (!HasEmptyFrame()) {
   1517     int frame_size = GetFrameSize();
   1518     // Stack layout:
   1519     //      sp[frame_size - 8]        : lr.
   1520     //      ...                       : other preserved core registers.
   1521     //      ...                       : other preserved fp registers.
   1522     //      ...                       : reserved frame space.
   1523     //      sp[0]                     : current method.
   1524 
   1525     // Save the current method if we need it. Note that we do not
   1526     // do this in HCurrentMethod, as the instruction might have been removed
   1527     // in the SSA graph.
   1528     if (RequiresCurrentMethod()) {
   1529       __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
   1530     } else {
   1531       __ Claim(frame_size);
   1532     }
   1533     GetAssembler()->cfi().AdjustCFAOffset(frame_size);
   1534     GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(),
   1535         frame_size - GetCoreSpillSize());
   1536     GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(),
   1537         frame_size - FrameEntrySpillSize());
   1538 
   1539     if (GetGraph()->HasShouldDeoptimizeFlag()) {
   1540       // Initialize should_deoptimize flag to 0.
   1541       Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
   1542       __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
   1543     }
   1544   }
   1545 
   1546   MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   1547 }
   1548 
   1549 void CodeGeneratorARM64::GenerateFrameExit() {
   1550   GetAssembler()->cfi().RememberState();
   1551   if (!HasEmptyFrame()) {
   1552     int frame_size = GetFrameSize();
   1553     GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(),
   1554         frame_size - FrameEntrySpillSize());
   1555     GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(),
   1556         frame_size - GetCoreSpillSize());
   1557     __ Drop(frame_size);
   1558     GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
   1559   }
   1560   __ Ret();
   1561   GetAssembler()->cfi().RestoreState();
   1562   GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
   1563 }
   1564 
   1565 CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
   1566   DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
   1567   return CPURegList(CPURegister::kRegister, kXRegSize,
   1568                     core_spill_mask_);
   1569 }
   1570 
   1571 CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
   1572   DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
   1573                                          GetNumberOfFloatingPointRegisters()));
   1574   return CPURegList(CPURegister::kFPRegister, kDRegSize,
   1575                     fpu_spill_mask_);
   1576 }
   1577 
   1578 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
   1579   __ Bind(GetLabelOf(block));
   1580 }
   1581 
   1582 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
   1583   DCHECK(location.IsRegister());
   1584   __ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
   1585 }
   1586 
   1587 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
   1588   if (location.IsRegister()) {
   1589     locations->AddTemp(location);
   1590   } else {
   1591     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
   1592   }
   1593 }
   1594 
   1595 void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
   1596   UseScratchRegisterScope temps(GetVIXLAssembler());
   1597   Register card = temps.AcquireX();
   1598   Register temp = temps.AcquireW();   // Index within the CardTable - 32bit.
   1599   vixl::aarch64::Label done;
   1600   if (value_can_be_null) {
   1601     __ Cbz(value, &done);
   1602   }
   1603   __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
   1604   __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
   1605   __ Strb(card, MemOperand(card, temp.X()));
   1606   if (value_can_be_null) {
   1607     __ Bind(&done);
   1608   }
   1609 }
   1610 
   1611 void CodeGeneratorARM64::SetupBlockedRegisters() const {
   1612   // Blocked core registers:
   1613   //      lr        : Runtime reserved.
   1614   //      tr        : Runtime reserved.
   1615   //      mr        : Runtime reserved.
   1616   //      ip1       : VIXL core temp.
   1617   //      ip0       : VIXL core temp.
   1618   //
   1619   // Blocked fp registers:
   1620   //      d31       : VIXL fp temp.
   1621   CPURegList reserved_core_registers = vixl_reserved_core_registers;
   1622   reserved_core_registers.Combine(runtime_reserved_core_registers);
   1623   while (!reserved_core_registers.IsEmpty()) {
   1624     blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
   1625   }
   1626 
   1627   CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
   1628   while (!reserved_fp_registers.IsEmpty()) {
   1629     blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
   1630   }
   1631 
   1632   if (GetGraph()->IsDebuggable()) {
   1633     // Stubs do not save callee-save floating point registers. If the graph
   1634     // is debuggable, we need to deal with these registers differently. For
   1635     // now, just block them.
   1636     CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
   1637     while (!reserved_fp_registers_debuggable.IsEmpty()) {
   1638       blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
   1639     }
   1640   }
   1641 }
   1642 
   1643 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
   1644   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
   1645   __ Str(reg, MemOperand(sp, stack_index));
   1646   return kArm64WordSize;
   1647 }
   1648 
   1649 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
   1650   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
   1651   __ Ldr(reg, MemOperand(sp, stack_index));
   1652   return kArm64WordSize;
   1653 }
   1654 
   1655 size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1656   FPRegister reg = FPRegister(reg_id, kDRegSize);
   1657   __ Str(reg, MemOperand(sp, stack_index));
   1658   return kArm64WordSize;
   1659 }
   1660 
   1661 size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
   1662   FPRegister reg = FPRegister(reg_id, kDRegSize);
   1663   __ Ldr(reg, MemOperand(sp, stack_index));
   1664   return kArm64WordSize;
   1665 }
   1666 
   1667 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
   1668   stream << XRegister(reg);
   1669 }
   1670 
   1671 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
   1672   stream << DRegister(reg);
   1673 }
   1674 
   1675 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
   1676   if (constant->IsIntConstant()) {
   1677     __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
   1678   } else if (constant->IsLongConstant()) {
   1679     __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
   1680   } else if (constant->IsNullConstant()) {
   1681     __ Mov(Register(destination), 0);
   1682   } else if (constant->IsFloatConstant()) {
   1683     __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue());
   1684   } else {
   1685     DCHECK(constant->IsDoubleConstant());
   1686     __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue());
   1687   }
   1688 }
   1689 
   1690 
   1691 static bool CoherentConstantAndType(Location constant, DataType::Type type) {
   1692   DCHECK(constant.IsConstant());
   1693   HConstant* cst = constant.GetConstant();
   1694   return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
   1695          // Null is mapped to a core W register, which we associate with kPrimInt.
   1696          (cst->IsNullConstant() && type == DataType::Type::kInt32) ||
   1697          (cst->IsLongConstant() && type == DataType::Type::kInt64) ||
   1698          (cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
   1699          (cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
   1700 }
   1701 
   1702 // Allocate a scratch register from the VIXL pool, querying first
   1703 // the floating-point register pool, and then the core register
   1704 // pool. This is essentially a reimplementation of
   1705 // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
   1706 // using a different allocation strategy.
   1707 static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
   1708                                                     vixl::aarch64::UseScratchRegisterScope* temps,
   1709                                                     int size_in_bits) {
   1710   return masm->GetScratchFPRegisterList()->IsEmpty()
   1711       ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
   1712       : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
   1713 }
   1714 
   1715 void CodeGeneratorARM64::MoveLocation(Location destination,
   1716                                       Location source,
   1717                                       DataType::Type dst_type) {
   1718   if (source.Equals(destination)) {
   1719     return;
   1720   }
   1721 
   1722   // A valid move can always be inferred from the destination and source
   1723   // locations. When moving from and to a register, the argument type can be
   1724   // used to generate 32bit instead of 64bit moves. In debug mode we also
   1725   // checks the coherency of the locations and the type.
   1726   bool unspecified_type = (dst_type == DataType::Type::kVoid);
   1727 
   1728   if (destination.IsRegister() || destination.IsFpuRegister()) {
   1729     if (unspecified_type) {
   1730       HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
   1731       if (source.IsStackSlot() ||
   1732           (src_cst != nullptr && (src_cst->IsIntConstant()
   1733                                   || src_cst->IsFloatConstant()
   1734                                   || src_cst->IsNullConstant()))) {
   1735         // For stack slots and 32bit constants, a 64bit type is appropriate.
   1736         dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
   1737       } else {
   1738         // If the source is a double stack slot or a 64bit constant, a 64bit
   1739         // type is appropriate. Else the source is a register, and since the
   1740         // type has not been specified, we chose a 64bit type to force a 64bit
   1741         // move.
   1742         dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
   1743       }
   1744     }
   1745     DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
   1746            (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
   1747     CPURegister dst = CPURegisterFrom(destination, dst_type);
   1748     if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
   1749       DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
   1750       __ Ldr(dst, StackOperandFrom(source));
   1751     } else if (source.IsSIMDStackSlot()) {
   1752       __ Ldr(QRegisterFrom(destination), StackOperandFrom(source));
   1753     } else if (source.IsConstant()) {
   1754       DCHECK(CoherentConstantAndType(source, dst_type));
   1755       MoveConstant(dst, source.GetConstant());
   1756     } else if (source.IsRegister()) {
   1757       if (destination.IsRegister()) {
   1758         __ Mov(Register(dst), RegisterFrom(source, dst_type));
   1759       } else {
   1760         DCHECK(destination.IsFpuRegister());
   1761         DataType::Type source_type = DataType::Is64BitType(dst_type)
   1762             ? DataType::Type::kInt64
   1763             : DataType::Type::kInt32;
   1764         __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
   1765       }
   1766     } else {
   1767       DCHECK(source.IsFpuRegister());
   1768       if (destination.IsRegister()) {
   1769         DataType::Type source_type = DataType::Is64BitType(dst_type)
   1770             ? DataType::Type::kFloat64
   1771             : DataType::Type::kFloat32;
   1772         __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
   1773       } else {
   1774         DCHECK(destination.IsFpuRegister());
   1775         if (GetGraph()->HasSIMD()) {
   1776           __ Mov(QRegisterFrom(destination), QRegisterFrom(source));
   1777         } else {
   1778           __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type));
   1779         }
   1780       }
   1781     }
   1782   } else if (destination.IsSIMDStackSlot()) {
   1783     if (source.IsFpuRegister()) {
   1784       __ Str(QRegisterFrom(source), StackOperandFrom(destination));
   1785     } else {
   1786       DCHECK(source.IsSIMDStackSlot());
   1787       UseScratchRegisterScope temps(GetVIXLAssembler());
   1788       if (GetVIXLAssembler()->GetScratchFPRegisterList()->IsEmpty()) {
   1789         Register temp = temps.AcquireX();
   1790         __ Ldr(temp, MemOperand(sp, source.GetStackIndex()));
   1791         __ Str(temp, MemOperand(sp, destination.GetStackIndex()));
   1792         __ Ldr(temp, MemOperand(sp, source.GetStackIndex() + kArm64WordSize));
   1793         __ Str(temp, MemOperand(sp, destination.GetStackIndex() + kArm64WordSize));
   1794       } else {
   1795         FPRegister temp = temps.AcquireVRegisterOfSize(kQRegSize);
   1796         __ Ldr(temp, StackOperandFrom(source));
   1797         __ Str(temp, StackOperandFrom(destination));
   1798       }
   1799     }
   1800   } else {  // The destination is not a register. It must be a stack slot.
   1801     DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
   1802     if (source.IsRegister() || source.IsFpuRegister()) {
   1803       if (unspecified_type) {
   1804         if (source.IsRegister()) {
   1805           dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
   1806         } else {
   1807           dst_type =
   1808               destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
   1809         }
   1810       }
   1811       DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
   1812              (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
   1813       __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
   1814     } else if (source.IsConstant()) {
   1815       DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
   1816           << source << " " << dst_type;
   1817       UseScratchRegisterScope temps(GetVIXLAssembler());
   1818       HConstant* src_cst = source.GetConstant();
   1819       CPURegister temp;
   1820       if (src_cst->IsZeroBitPattern()) {
   1821         temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
   1822             ? Register(xzr)
   1823             : Register(wzr);
   1824       } else {
   1825         if (src_cst->IsIntConstant()) {
   1826           temp = temps.AcquireW();
   1827         } else if (src_cst->IsLongConstant()) {
   1828           temp = temps.AcquireX();
   1829         } else if (src_cst->IsFloatConstant()) {
   1830           temp = temps.AcquireS();
   1831         } else {
   1832           DCHECK(src_cst->IsDoubleConstant());
   1833           temp = temps.AcquireD();
   1834         }
   1835         MoveConstant(temp, src_cst);
   1836       }
   1837       __ Str(temp, StackOperandFrom(destination));
   1838     } else {
   1839       DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
   1840       DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
   1841       UseScratchRegisterScope temps(GetVIXLAssembler());
   1842       // Use any scratch register (a core or a floating-point one)
   1843       // from VIXL scratch register pools as a temporary.
   1844       //
   1845       // We used to only use the FP scratch register pool, but in some
   1846       // rare cases the only register from this pool (D31) would
   1847       // already be used (e.g. within a ParallelMove instruction, when
   1848       // a move is blocked by a another move requiring a scratch FP
   1849       // register, which would reserve D31). To prevent this issue, we
   1850       // ask for a scratch register of any type (core or FP).
   1851       //
   1852       // Also, we start by asking for a FP scratch register first, as the
   1853       // demand of scratch core registers is higher. This is why we
   1854       // use AcquireFPOrCoreCPURegisterOfSize instead of
   1855       // UseScratchRegisterScope::AcquireCPURegisterOfSize, which
   1856       // allocates core scratch registers first.
   1857       CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
   1858           GetVIXLAssembler(),
   1859           &temps,
   1860           (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
   1861       __ Ldr(temp, StackOperandFrom(source));
   1862       __ Str(temp, StackOperandFrom(destination));
   1863     }
   1864   }
   1865 }
   1866 
   1867 void CodeGeneratorARM64::Load(DataType::Type type,
   1868                               CPURegister dst,
   1869                               const MemOperand& src) {
   1870   switch (type) {
   1871     case DataType::Type::kBool:
   1872     case DataType::Type::kUint8:
   1873       __ Ldrb(Register(dst), src);
   1874       break;
   1875     case DataType::Type::kInt8:
   1876       __ Ldrsb(Register(dst), src);
   1877       break;
   1878     case DataType::Type::kUint16:
   1879       __ Ldrh(Register(dst), src);
   1880       break;
   1881     case DataType::Type::kInt16:
   1882       __ Ldrsh(Register(dst), src);
   1883       break;
   1884     case DataType::Type::kInt32:
   1885     case DataType::Type::kReference:
   1886     case DataType::Type::kInt64:
   1887     case DataType::Type::kFloat32:
   1888     case DataType::Type::kFloat64:
   1889       DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
   1890       __ Ldr(dst, src);
   1891       break;
   1892     case DataType::Type::kUint32:
   1893     case DataType::Type::kUint64:
   1894     case DataType::Type::kVoid:
   1895       LOG(FATAL) << "Unreachable type " << type;
   1896   }
   1897 }
   1898 
   1899 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
   1900                                      CPURegister dst,
   1901                                      const MemOperand& src,
   1902                                      bool needs_null_check) {
   1903   MacroAssembler* masm = GetVIXLAssembler();
   1904   UseScratchRegisterScope temps(masm);
   1905   Register temp_base = temps.AcquireX();
   1906   DataType::Type type = instruction->GetType();
   1907 
   1908   DCHECK(!src.IsPreIndex());
   1909   DCHECK(!src.IsPostIndex());
   1910 
   1911   // TODO(vixl): Let the MacroAssembler handle MemOperand.
   1912   __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
   1913   {
   1914     // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   1915     MemOperand base = MemOperand(temp_base);
   1916     switch (type) {
   1917       case DataType::Type::kBool:
   1918       case DataType::Type::kUint8:
   1919       case DataType::Type::kInt8:
   1920         {
   1921           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   1922           __ ldarb(Register(dst), base);
   1923           if (needs_null_check) {
   1924             MaybeRecordImplicitNullCheck(instruction);
   1925           }
   1926         }
   1927         if (type == DataType::Type::kInt8) {
   1928           __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
   1929         }
   1930         break;
   1931       case DataType::Type::kUint16:
   1932       case DataType::Type::kInt16:
   1933         {
   1934           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   1935           __ ldarh(Register(dst), base);
   1936           if (needs_null_check) {
   1937             MaybeRecordImplicitNullCheck(instruction);
   1938           }
   1939         }
   1940         if (type == DataType::Type::kInt16) {
   1941           __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
   1942         }
   1943         break;
   1944       case DataType::Type::kInt32:
   1945       case DataType::Type::kReference:
   1946       case DataType::Type::kInt64:
   1947         DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
   1948         {
   1949           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   1950           __ ldar(Register(dst), base);
   1951           if (needs_null_check) {
   1952             MaybeRecordImplicitNullCheck(instruction);
   1953           }
   1954         }
   1955         break;
   1956       case DataType::Type::kFloat32:
   1957       case DataType::Type::kFloat64: {
   1958         DCHECK(dst.IsFPRegister());
   1959         DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
   1960 
   1961         Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
   1962         {
   1963           ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   1964           __ ldar(temp, base);
   1965           if (needs_null_check) {
   1966             MaybeRecordImplicitNullCheck(instruction);
   1967           }
   1968         }
   1969         __ Fmov(FPRegister(dst), temp);
   1970         break;
   1971       }
   1972       case DataType::Type::kUint32:
   1973       case DataType::Type::kUint64:
   1974       case DataType::Type::kVoid:
   1975         LOG(FATAL) << "Unreachable type " << type;
   1976     }
   1977   }
   1978 }
   1979 
   1980 void CodeGeneratorARM64::Store(DataType::Type type,
   1981                                CPURegister src,
   1982                                const MemOperand& dst) {
   1983   switch (type) {
   1984     case DataType::Type::kBool:
   1985     case DataType::Type::kUint8:
   1986     case DataType::Type::kInt8:
   1987       __ Strb(Register(src), dst);
   1988       break;
   1989     case DataType::Type::kUint16:
   1990     case DataType::Type::kInt16:
   1991       __ Strh(Register(src), dst);
   1992       break;
   1993     case DataType::Type::kInt32:
   1994     case DataType::Type::kReference:
   1995     case DataType::Type::kInt64:
   1996     case DataType::Type::kFloat32:
   1997     case DataType::Type::kFloat64:
   1998       DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
   1999       __ Str(src, dst);
   2000       break;
   2001     case DataType::Type::kUint32:
   2002     case DataType::Type::kUint64:
   2003     case DataType::Type::kVoid:
   2004       LOG(FATAL) << "Unreachable type " << type;
   2005   }
   2006 }
   2007 
   2008 void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
   2009                                       DataType::Type type,
   2010                                       CPURegister src,
   2011                                       const MemOperand& dst,
   2012                                       bool needs_null_check) {
   2013   MacroAssembler* masm = GetVIXLAssembler();
   2014   UseScratchRegisterScope temps(GetVIXLAssembler());
   2015   Register temp_base = temps.AcquireX();
   2016 
   2017   DCHECK(!dst.IsPreIndex());
   2018   DCHECK(!dst.IsPostIndex());
   2019 
   2020   // TODO(vixl): Let the MacroAssembler handle this.
   2021   Operand op = OperandFromMemOperand(dst);
   2022   __ Add(temp_base, dst.GetBaseRegister(), op);
   2023   MemOperand base = MemOperand(temp_base);
   2024   // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
   2025   switch (type) {
   2026     case DataType::Type::kBool:
   2027     case DataType::Type::kUint8:
   2028     case DataType::Type::kInt8:
   2029       {
   2030         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   2031         __ stlrb(Register(src), base);
   2032         if (needs_null_check) {
   2033           MaybeRecordImplicitNullCheck(instruction);
   2034         }
   2035       }
   2036       break;
   2037     case DataType::Type::kUint16:
   2038     case DataType::Type::kInt16:
   2039       {
   2040         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   2041         __ stlrh(Register(src), base);
   2042         if (needs_null_check) {
   2043           MaybeRecordImplicitNullCheck(instruction);
   2044         }
   2045       }
   2046       break;
   2047     case DataType::Type::kInt32:
   2048     case DataType::Type::kReference:
   2049     case DataType::Type::kInt64:
   2050       DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
   2051       {
   2052         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   2053         __ stlr(Register(src), base);
   2054         if (needs_null_check) {
   2055           MaybeRecordImplicitNullCheck(instruction);
   2056         }
   2057       }
   2058       break;
   2059     case DataType::Type::kFloat32:
   2060     case DataType::Type::kFloat64: {
   2061       DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
   2062       Register temp_src;
   2063       if (src.IsZero()) {
   2064         // The zero register is used to avoid synthesizing zero constants.
   2065         temp_src = Register(src);
   2066       } else {
   2067         DCHECK(src.IsFPRegister());
   2068         temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
   2069         __ Fmov(temp_src, FPRegister(src));
   2070       }
   2071       {
   2072         ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   2073         __ stlr(temp_src, base);
   2074         if (needs_null_check) {
   2075           MaybeRecordImplicitNullCheck(instruction);
   2076         }
   2077       }
   2078       break;
   2079     }
   2080     case DataType::Type::kUint32:
   2081     case DataType::Type::kUint64:
   2082     case DataType::Type::kVoid:
   2083       LOG(FATAL) << "Unreachable type " << type;
   2084   }
   2085 }
   2086 
   2087 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
   2088                                        HInstruction* instruction,
   2089                                        uint32_t dex_pc,
   2090                                        SlowPathCode* slow_path) {
   2091   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
   2092 
   2093   __ Ldr(lr, MemOperand(tr, GetThreadOffset<kArm64PointerSize>(entrypoint).Int32Value()));
   2094   {
   2095     // Ensure the pc position is recorded immediately after the `blr` instruction.
   2096     ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
   2097     __ blr(lr);
   2098     if (EntrypointRequiresStackMap(entrypoint)) {
   2099       RecordPcInfo(instruction, dex_pc, slow_path);
   2100     }
   2101   }
   2102 }
   2103 
   2104 void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
   2105                                                              HInstruction* instruction,
   2106                                                              SlowPathCode* slow_path) {
   2107   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
   2108   __ Ldr(lr, MemOperand(tr, entry_point_offset));
   2109   __ Blr(lr);
   2110 }
   2111 
   2112 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
   2113                                                                      Register class_reg) {
   2114   UseScratchRegisterScope temps(GetVIXLAssembler());
   2115   Register temp = temps.AcquireW();
   2116   constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
   2117   const size_t status_byte_offset =
   2118       mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte);
   2119   constexpr uint32_t shifted_initialized_value =
   2120       enum_cast<uint32_t>(ClassStatus::kInitialized) << (status_lsb_position % kBitsPerByte);
   2121 
   2122   // Even if the initialized flag is set, we need to ensure consistent memory ordering.
   2123   // TODO(vixl): Let the MacroAssembler handle MemOperand.
   2124   __ Add(temp, class_reg, status_byte_offset);
   2125   __ Ldarb(temp, HeapOperand(temp));
   2126   __ Cmp(temp, shifted_initialized_value);
   2127   __ B(lo, slow_path->GetEntryLabel());
   2128   __ Bind(slow_path->GetExitLabel());
   2129 }
   2130 
   2131 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
   2132   BarrierType type = BarrierAll;
   2133 
   2134   switch (kind) {
   2135     case MemBarrierKind::kAnyAny:
   2136     case MemBarrierKind::kAnyStore: {
   2137       type = BarrierAll;
   2138       break;
   2139     }
   2140     case MemBarrierKind::kLoadAny: {
   2141       type = BarrierReads;
   2142       break;
   2143     }
   2144     case MemBarrierKind::kStoreStore: {
   2145       type = BarrierWrites;
   2146       break;
   2147     }
   2148     default:
   2149       LOG(FATAL) << "Unexpected memory barrier " << kind;
   2150   }
   2151   __ Dmb(InnerShareable, type);
   2152 }
   2153 
   2154 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
   2155                                                          HBasicBlock* successor) {
   2156   SuspendCheckSlowPathARM64* slow_path =
   2157       down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
   2158   if (slow_path == nullptr) {
   2159     slow_path =
   2160         new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
   2161     instruction->SetSlowPath(slow_path);
   2162     codegen_->AddSlowPath(slow_path);
   2163     if (successor != nullptr) {
   2164       DCHECK(successor->IsLoopHeader());
   2165     }
   2166   } else {
   2167     DCHECK_EQ(slow_path->GetSuccessor(), successor);
   2168   }
   2169 
   2170   UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
   2171   Register temp = temps.AcquireW();
   2172 
   2173   __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
   2174   if (successor == nullptr) {
   2175     __ Cbnz(temp, slow_path->GetEntryLabel());
   2176     __ Bind(slow_path->GetReturnLabel());
   2177   } else {
   2178     __ Cbz(temp, codegen_->GetLabelOf(successor));
   2179     __ B(slow_path->GetEntryLabel());
   2180     // slow_path will return to GetLabelOf(successor).
   2181   }
   2182 }
   2183 
   2184 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
   2185                                                              CodeGeneratorARM64* codegen)
   2186       : InstructionCodeGenerator(graph, codegen),
   2187         assembler_(codegen->GetAssembler()),
   2188         codegen_(codegen) {}
   2189 
   2190 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
   2191   DCHECK_EQ(instr->InputCount(), 2U);
   2192   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
   2193   DataType::Type type = instr->GetResultType();
   2194   switch (type) {
   2195     case DataType::Type::kInt32:
   2196     case DataType::Type::kInt64:
   2197       locations->SetInAt(0, Location::RequiresRegister());
   2198       locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
   2199       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2200       break;
   2201 
   2202     case DataType::Type::kFloat32:
   2203     case DataType::Type::kFloat64:
   2204       locations->SetInAt(0, Location::RequiresFpuRegister());
   2205       locations->SetInAt(1, Location::RequiresFpuRegister());
   2206       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   2207       break;
   2208 
   2209     default:
   2210       LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
   2211   }
   2212 }
   2213 
   2214 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
   2215                                            const FieldInfo& field_info) {
   2216   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
   2217 
   2218   bool object_field_get_with_read_barrier =
   2219       kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
   2220   LocationSummary* locations =
   2221       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
   2222                                                        object_field_get_with_read_barrier
   2223                                                            ? LocationSummary::kCallOnSlowPath
   2224                                                            : LocationSummary::kNoCall);
   2225   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
   2226     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   2227     // We need a temporary register for the read barrier marking slow
   2228     // path in CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier.
   2229     if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
   2230         !Runtime::Current()->UseJitCompilation() &&
   2231         !field_info.IsVolatile()) {
   2232       // If link-time thunks for the Baker read barrier are enabled, for AOT
   2233       // non-volatile loads we need a temporary only if the offset is too big.
   2234       if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
   2235         locations->AddTemp(FixedTempLocation());
   2236       }
   2237     } else {
   2238       locations->AddTemp(Location::RequiresRegister());
   2239     }
   2240   }
   2241   locations->SetInAt(0, Location::RequiresRegister());
   2242   if (DataType::IsFloatingPointType(instruction->GetType())) {
   2243     locations->SetOut(Location::RequiresFpuRegister());
   2244   } else {
   2245     // The output overlaps for an object field get when read barriers
   2246     // are enabled: we do not want the load to overwrite the object's
   2247     // location, as we need it to emit the read barrier.
   2248     locations->SetOut(
   2249         Location::RequiresRegister(),
   2250         object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
   2251   }
   2252 }
   2253 
   2254 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
   2255                                                    const FieldInfo& field_info) {
   2256   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
   2257   LocationSummary* locations = instruction->GetLocations();
   2258   Location base_loc = locations->InAt(0);
   2259   Location out = locations->Out();
   2260   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
   2261   DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
   2262   DataType::Type load_type = instruction->GetType();
   2263   MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
   2264 
   2265   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier &&
   2266       load_type == DataType::Type::kReference) {
   2267     // Object FieldGet with Baker's read barrier case.
   2268     // /* HeapReference<Object> */ out = *(base + offset)
   2269     Register base = RegisterFrom(base_loc, DataType::Type::kReference);
   2270     Location maybe_temp =
   2271         (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
   2272     // Note that potential implicit null checks are handled in this
   2273     // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
   2274     codegen_->GenerateFieldLoadWithBakerReadBarrier(
   2275         instruction,
   2276         out,
   2277         base,
   2278         offset,
   2279         maybe_temp,
   2280         /* needs_null_check */ true,
   2281         field_info.IsVolatile());
   2282   } else {
   2283     // General case.
   2284     if (field_info.IsVolatile()) {
   2285       // Note that a potential implicit null check is handled in this
   2286       // CodeGeneratorARM64::LoadAcquire call.
   2287       // NB: LoadAcquire will record the pc info if needed.
   2288       codegen_->LoadAcquire(
   2289           instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true);
   2290     } else {
   2291       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   2292       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   2293       codegen_->Load(load_type, OutputCPURegister(instruction), field);
   2294       codegen_->MaybeRecordImplicitNullCheck(instruction);
   2295     }
   2296     if (load_type == DataType::Type::kReference) {
   2297       // If read barriers are enabled, emit read barriers other than
   2298       // Baker's using a slow path (and also unpoison the loaded
   2299       // reference, if heap poisoning is enabled).
   2300       codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
   2301     }
   2302   }
   2303 }
   2304 
   2305 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
   2306   LocationSummary* locations =
   2307       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
   2308   locations->SetInAt(0, Location::RequiresRegister());
   2309   if (IsConstantZeroBitPattern(instruction->InputAt(1))) {
   2310     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
   2311   } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
   2312     locations->SetInAt(1, Location::RequiresFpuRegister());
   2313   } else {
   2314     locations->SetInAt(1, Location::RequiresRegister());
   2315   }
   2316 }
   2317 
   2318 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
   2319                                                    const FieldInfo& field_info,
   2320                                                    bool value_can_be_null) {
   2321   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
   2322 
   2323   Register obj = InputRegisterAt(instruction, 0);
   2324   CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
   2325   CPURegister source = value;
   2326   Offset offset = field_info.GetFieldOffset();
   2327   DataType::Type field_type = field_info.GetFieldType();
   2328 
   2329   {
   2330     // We use a block to end the scratch scope before the write barrier, thus
   2331     // freeing the temporary registers so they can be used in `MarkGCCard`.
   2332     UseScratchRegisterScope temps(GetVIXLAssembler());
   2333 
   2334     if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
   2335       DCHECK(value.IsW());
   2336       Register temp = temps.AcquireW();
   2337       __ Mov(temp, value.W());
   2338       GetAssembler()->PoisonHeapReference(temp.W());
   2339       source = temp;
   2340     }
   2341 
   2342     if (field_info.IsVolatile()) {
   2343       codegen_->StoreRelease(
   2344           instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check */ true);
   2345     } else {
   2346       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
   2347       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   2348       codegen_->Store(field_type, source, HeapOperand(obj, offset));
   2349       codegen_->MaybeRecordImplicitNullCheck(instruction);
   2350     }
   2351   }
   2352 
   2353   if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
   2354     codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
   2355   }
   2356 }
   2357 
   2358 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
   2359   DataType::Type type = instr->GetType();
   2360 
   2361   switch (type) {
   2362     case DataType::Type::kInt32:
   2363     case DataType::Type::kInt64: {
   2364       Register dst = OutputRegister(instr);
   2365       Register lhs = InputRegisterAt(instr, 0);
   2366       Operand rhs = InputOperandAt(instr, 1);
   2367       if (instr->IsAdd()) {
   2368         __ Add(dst, lhs, rhs);
   2369       } else if (instr->IsAnd()) {
   2370         __ And(dst, lhs, rhs);
   2371       } else if (instr->IsOr()) {
   2372         __ Orr(dst, lhs, rhs);
   2373       } else if (instr->IsSub()) {
   2374         __ Sub(dst, lhs, rhs);
   2375       } else if (instr->IsRor()) {
   2376         if (rhs.IsImmediate()) {
   2377           uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
   2378           __ Ror(dst, lhs, shift);
   2379         } else {
   2380           // Ensure shift distance is in the same size register as the result. If
   2381           // we are rotating a long and the shift comes in a w register originally,
   2382           // we don't need to sxtw for use as an x since the shift distances are
   2383           // all & reg_bits - 1.
   2384           __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
   2385         }
   2386       } else {
   2387         DCHECK(instr->IsXor());
   2388         __ Eor(dst, lhs, rhs);
   2389       }
   2390       break;
   2391     }
   2392     case DataType::Type::kFloat32:
   2393     case DataType::Type::kFloat64: {
   2394       FPRegister dst = OutputFPRegister(instr);
   2395       FPRegister lhs = InputFPRegisterAt(instr, 0);
   2396       FPRegister rhs = InputFPRegisterAt(instr, 1);
   2397       if (instr->IsAdd()) {
   2398         __ Fadd(dst, lhs, rhs);
   2399       } else if (instr->IsSub()) {
   2400         __ Fsub(dst, lhs, rhs);
   2401       } else {
   2402         LOG(FATAL) << "Unexpected floating-point binary operation";
   2403       }
   2404       break;
   2405     }
   2406     default:
   2407       LOG(FATAL) << "Unexpected binary operation type " << type;
   2408   }
   2409 }
   2410 
   2411 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
   2412   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
   2413 
   2414   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
   2415   DataType::Type type = instr->GetResultType();
   2416   switch (type) {
   2417     case DataType::Type::kInt32:
   2418     case DataType::Type::kInt64: {
   2419       locations->SetInAt(0, Location::RequiresRegister());
   2420       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
   2421       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2422       break;
   2423     }
   2424     default:
   2425       LOG(FATAL) << "Unexpected shift type " << type;
   2426   }
   2427 }
   2428 
   2429 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
   2430   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
   2431 
   2432   DataType::Type type = instr->GetType();
   2433   switch (type) {
   2434     case DataType::Type::kInt32:
   2435     case DataType::Type::kInt64: {
   2436       Register dst = OutputRegister(instr);
   2437       Register lhs = InputRegisterAt(instr, 0);
   2438       Operand rhs = InputOperandAt(instr, 1);
   2439       if (rhs.IsImmediate()) {
   2440         uint32_t shift_value = rhs.GetImmediate() &
   2441             (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
   2442         if (instr->IsShl()) {
   2443           __ Lsl(dst, lhs, shift_value);
   2444         } else if (instr->IsShr()) {
   2445           __ Asr(dst, lhs, shift_value);
   2446         } else {
   2447           __ Lsr(dst, lhs, shift_value);
   2448         }
   2449       } else {
   2450         Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
   2451 
   2452         if (instr->IsShl()) {
   2453           __ Lsl(dst, lhs, rhs_reg);
   2454         } else if (instr->IsShr()) {
   2455           __ Asr(dst, lhs, rhs_reg);
   2456         } else {
   2457           __ Lsr(dst, lhs, rhs_reg);
   2458         }
   2459       }
   2460       break;
   2461     }
   2462     default:
   2463       LOG(FATAL) << "Unexpected shift operation type " << type;
   2464   }
   2465 }
   2466 
   2467 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
   2468   HandleBinaryOp(instruction);
   2469 }
   2470 
   2471 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
   2472   HandleBinaryOp(instruction);
   2473 }
   2474 
   2475 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
   2476   HandleBinaryOp(instruction);
   2477 }
   2478 
   2479 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
   2480   HandleBinaryOp(instruction);
   2481 }
   2482 
   2483 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
   2484   DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
   2485   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
   2486   locations->SetInAt(0, Location::RequiresRegister());
   2487   // There is no immediate variant of negated bitwise instructions in AArch64.
   2488   locations->SetInAt(1, Location::RequiresRegister());
   2489   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2490 }
   2491 
   2492 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
   2493   Register dst = OutputRegister(instr);
   2494   Register lhs = InputRegisterAt(instr, 0);
   2495   Register rhs = InputRegisterAt(instr, 1);
   2496 
   2497   switch (instr->GetOpKind()) {
   2498     case HInstruction::kAnd:
   2499       __ Bic(dst, lhs, rhs);
   2500       break;
   2501     case HInstruction::kOr:
   2502       __ Orn(dst, lhs, rhs);
   2503       break;
   2504     case HInstruction::kXor:
   2505       __ Eon(dst, lhs, rhs);
   2506       break;
   2507     default:
   2508       LOG(FATAL) << "Unreachable";
   2509   }
   2510 }
   2511 
   2512 void LocationsBuilderARM64::VisitDataProcWithShifterOp(
   2513     HDataProcWithShifterOp* instruction) {
   2514   DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
   2515          instruction->GetType() == DataType::Type::kInt64);
   2516   LocationSummary* locations =
   2517       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
   2518   if (instruction->GetInstrKind() == HInstruction::kNeg) {
   2519     locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
   2520   } else {
   2521     locations->SetInAt(0, Location::RequiresRegister());
   2522   }
   2523   locations->SetInAt(1, Location::RequiresRegister());
   2524   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2525 }
   2526 
   2527 void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
   2528     HDataProcWithShifterOp* instruction) {
   2529   DataType::Type type = instruction->GetType();
   2530   HInstruction::InstructionKind kind = instruction->GetInstrKind();
   2531   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
   2532   Register out = OutputRegister(instruction);
   2533   Register left;
   2534   if (kind != HInstruction::kNeg) {
   2535     left = InputRegisterAt(instruction, 0);
   2536   }
   2537   // If this `HDataProcWithShifterOp` was created by merging a type conversion as the
   2538   // shifter operand operation, the IR generating `right_reg` (input to the type
   2539   // conversion) can have a different type from the current instruction's type,
   2540   // so we manually indicate the type.
   2541   Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
   2542   Operand right_operand(0);
   2543 
   2544   HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
   2545   if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
   2546     right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
   2547   } else {
   2548     right_operand = Operand(right_reg,
   2549                             helpers::ShiftFromOpKind(op_kind),
   2550                             instruction->GetShiftAmount());
   2551   }
   2552 
   2553   // Logical binary operations do not support extension operations in the
   2554   // operand. Note that VIXL would still manage if it was passed by generating
   2555   // the extension as a separate instruction.
   2556   // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
   2557   DCHECK(!right_operand.IsExtendedRegister() ||
   2558          (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
   2559           kind != HInstruction::kNeg));
   2560   switch (kind) {
   2561     case HInstruction::kAdd:
   2562       __ Add(out, left, right_operand);
   2563       break;
   2564     case HInstruction::kAnd:
   2565       __ And(out, left, right_operand);
   2566       break;
   2567     case HInstruction::kNeg:
   2568       DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
   2569       __ Neg(out, right_operand);
   2570       break;
   2571     case HInstruction::kOr:
   2572       __ Orr(out, left, right_operand);
   2573       break;
   2574     case HInstruction::kSub:
   2575       __ Sub(out, left, right_operand);
   2576       break;
   2577     case HInstruction::kXor:
   2578       __ Eor(out, left, right_operand);
   2579       break;
   2580     default:
   2581       LOG(FATAL) << "Unexpected operation kind: " << kind;
   2582       UNREACHABLE();
   2583   }
   2584 }
   2585 
   2586 void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
   2587   LocationSummary* locations =
   2588       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
   2589   locations->SetInAt(0, Location::RequiresRegister());
   2590   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
   2591   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2592 }
   2593 
   2594 void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
   2595   __ Add(OutputRegister(instruction),
   2596          InputRegisterAt(instruction, 0),
   2597          Operand(InputOperandAt(instruction, 1)));
   2598 }
   2599 
   2600 void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
   2601   LocationSummary* locations =
   2602       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
   2603 
   2604   HIntConstant* shift = instruction->GetShift()->AsIntConstant();
   2605 
   2606   locations->SetInAt(0, Location::RequiresRegister());
   2607   // For byte case we don't need to shift the index variable so we can encode the data offset into
   2608   // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
   2609   // data offset constant generation out of the loop and reduce the critical path length in the
   2610   // loop.
   2611   locations->SetInAt(1, shift->GetValue() == 0
   2612                         ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant())
   2613                         : Location::RequiresRegister());
   2614   locations->SetInAt(2, Location::ConstantLocation(shift));
   2615   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2616 }
   2617 
   2618 void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
   2619     HIntermediateAddressIndex* instruction) {
   2620   Register index_reg = InputRegisterAt(instruction, 0);
   2621   uint32_t shift = Int64ConstantFrom(instruction->GetLocations()->InAt(2));
   2622   uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
   2623 
   2624   if (shift == 0) {
   2625     __ Add(OutputRegister(instruction), index_reg, offset);
   2626   } else {
   2627     Register offset_reg = InputRegisterAt(instruction, 1);
   2628     __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
   2629   }
   2630 }
   2631 
   2632 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
   2633   LocationSummary* locations =
   2634       new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
   2635   HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
   2636   if (instr->GetOpKind() == HInstruction::kSub &&
   2637       accumulator->IsConstant() &&
   2638       accumulator->AsConstant()->IsArithmeticZero()) {
   2639     // Don't allocate register for Mneg instruction.
   2640   } else {
   2641     locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
   2642                        Location::RequiresRegister());
   2643   }
   2644   locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
   2645   locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
   2646   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2647 }
   2648 
   2649 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
   2650   Register res = OutputRegister(instr);
   2651   Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
   2652   Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
   2653 
   2654   // Avoid emitting code that could trigger Cortex A53's erratum 835769.
   2655   // This fixup should be carried out for all multiply-accumulate instructions:
   2656   // madd, msub, smaddl, smsubl, umaddl and umsubl.
   2657   if (instr->GetType() == DataType::Type::kInt64 &&
   2658       codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
   2659     MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
   2660     vixl::aarch64::Instruction* prev =
   2661         masm->GetCursorAddress<vixl::aarch64::Instruction*>() - kInstructionSize;
   2662     if (prev->IsLoadOrStore()) {
   2663       // Make sure we emit only exactly one nop.
   2664       ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
   2665       __ nop();
   2666     }
   2667   }
   2668 
   2669   if (instr->GetOpKind() == HInstruction::kAdd) {
   2670     Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
   2671     __ Madd(res, mul_left, mul_right, accumulator);
   2672   } else {
   2673     DCHECK(instr->GetOpKind() == HInstruction::kSub);
   2674     HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
   2675     if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
   2676       __ Mneg(res, mul_left, mul_right);
   2677     } else {
   2678       Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
   2679       __ Msub(res, mul_left, mul_right, accumulator);
   2680     }
   2681   }
   2682 }
   2683 
   2684 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
   2685   bool object_array_get_with_read_barrier =
   2686       kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
   2687   LocationSummary* locations =
   2688       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
   2689                                                        object_array_get_with_read_barrier
   2690                                                            ? LocationSummary::kCallOnSlowPath
   2691                                                            : LocationSummary::kNoCall);
   2692   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
   2693     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   2694     // We need a temporary register for the read barrier marking slow
   2695     // path in CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier.
   2696     if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
   2697         !Runtime::Current()->UseJitCompilation() &&
   2698         instruction->GetIndex()->IsConstant()) {
   2699       // Array loads with constant index are treated as field loads.
   2700       // If link-time thunks for the Baker read barrier are enabled, for AOT
   2701       // constant index loads we need a temporary only if the offset is too big.
   2702       uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
   2703       uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
   2704       offset += index << DataType::SizeShift(DataType::Type::kReference);
   2705       if (offset >= kReferenceLoadMinFarOffset) {
   2706         locations->AddTemp(FixedTempLocation());
   2707       }
   2708     } else {
   2709       locations->AddTemp(Location::RequiresRegister());
   2710     }
   2711   }
   2712   locations->SetInAt(0, Location::RequiresRegister());
   2713   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   2714   if (DataType::IsFloatingPointType(instruction->GetType())) {
   2715     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   2716   } else {
   2717     // The output overlaps in the case of an object array get with
   2718     // read barriers enabled: we do not want the move to overwrite the
   2719     // array's location, as we need it to emit the read barrier.
   2720     locations->SetOut(
   2721         Location::RequiresRegister(),
   2722         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
   2723   }
   2724 }
   2725 
   2726 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
   2727   DataType::Type type = instruction->GetType();
   2728   Register obj = InputRegisterAt(instruction, 0);
   2729   LocationSummary* locations = instruction->GetLocations();
   2730   Location index = locations->InAt(1);
   2731   Location out = locations->Out();
   2732   uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
   2733   const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
   2734                                         instruction->IsStringCharAt();
   2735   MacroAssembler* masm = GetVIXLAssembler();
   2736   UseScratchRegisterScope temps(masm);
   2737 
   2738   // The read barrier instrumentation of object ArrayGet instructions
   2739   // does not support the HIntermediateAddress instruction.
   2740   DCHECK(!((type == DataType::Type::kReference) &&
   2741            instruction->GetArray()->IsIntermediateAddress() &&
   2742            kEmitCompilerReadBarrier));
   2743 
   2744   if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   2745     // Object ArrayGet with Baker's read barrier case.
   2746     // Note that a potential implicit null check is handled in the
   2747     // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
   2748     DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
   2749     if (index.IsConstant()) {
   2750       // Array load with a constant index can be treated as a field load.
   2751       offset += Int64ConstantFrom(index) << DataType::SizeShift(type);
   2752       Location maybe_temp =
   2753           (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
   2754       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   2755                                                       out,
   2756                                                       obj.W(),
   2757                                                       offset,
   2758                                                       maybe_temp,
   2759                                                       /* needs_null_check */ false,
   2760                                                       /* use_load_acquire */ false);
   2761     } else {
   2762       Register temp = WRegisterFrom(locations->GetTemp(0));
   2763       codegen_->GenerateArrayLoadWithBakerReadBarrier(
   2764           instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ false);
   2765     }
   2766   } else {
   2767     // General case.
   2768     MemOperand source = HeapOperand(obj);
   2769     Register length;
   2770     if (maybe_compressed_char_at) {
   2771       uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
   2772       length = temps.AcquireW();
   2773       {
   2774         // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   2775         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   2776 
   2777         if (instruction->GetArray()->IsIntermediateAddress()) {
   2778           DCHECK_LT(count_offset, offset);
   2779           int64_t adjusted_offset =
   2780               static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
   2781           // Note that `adjusted_offset` is negative, so this will be a LDUR.
   2782           __ Ldr(length, MemOperand(obj.X(), adjusted_offset));
   2783         } else {
   2784           __ Ldr(length, HeapOperand(obj, count_offset));
   2785         }
   2786         codegen_->MaybeRecordImplicitNullCheck(instruction);
   2787       }
   2788     }
   2789     if (index.IsConstant()) {
   2790       if (maybe_compressed_char_at) {
   2791         vixl::aarch64::Label uncompressed_load, done;
   2792         static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
   2793                       "Expecting 0=compressed, 1=uncompressed");
   2794         __ Tbnz(length.W(), 0, &uncompressed_load);
   2795         __ Ldrb(Register(OutputCPURegister(instruction)),
   2796                 HeapOperand(obj, offset + Int64ConstantFrom(index)));
   2797         __ B(&done);
   2798         __ Bind(&uncompressed_load);
   2799         __ Ldrh(Register(OutputCPURegister(instruction)),
   2800                 HeapOperand(obj, offset + (Int64ConstantFrom(index) << 1)));
   2801         __ Bind(&done);
   2802       } else {
   2803         offset += Int64ConstantFrom(index) << DataType::SizeShift(type);
   2804         source = HeapOperand(obj, offset);
   2805       }
   2806     } else {
   2807       Register temp = temps.AcquireSameSizeAs(obj);
   2808       if (instruction->GetArray()->IsIntermediateAddress()) {
   2809         // We do not need to compute the intermediate address from the array: the
   2810         // input instruction has done it already. See the comment in
   2811         // `TryExtractArrayAccessAddress()`.
   2812         if (kIsDebugBuild) {
   2813           HIntermediateAddress* tmp = instruction->GetArray()->AsIntermediateAddress();
   2814           DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
   2815         }
   2816         temp = obj;
   2817       } else {
   2818         __ Add(temp, obj, offset);
   2819       }
   2820       if (maybe_compressed_char_at) {
   2821         vixl::aarch64::Label uncompressed_load, done;
   2822         static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
   2823                       "Expecting 0=compressed, 1=uncompressed");
   2824         __ Tbnz(length.W(), 0, &uncompressed_load);
   2825         __ Ldrb(Register(OutputCPURegister(instruction)),
   2826                 HeapOperand(temp, XRegisterFrom(index), LSL, 0));
   2827         __ B(&done);
   2828         __ Bind(&uncompressed_load);
   2829         __ Ldrh(Register(OutputCPURegister(instruction)),
   2830                 HeapOperand(temp, XRegisterFrom(index), LSL, 1));
   2831         __ Bind(&done);
   2832       } else {
   2833         source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
   2834       }
   2835     }
   2836     if (!maybe_compressed_char_at) {
   2837       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   2838       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   2839       codegen_->Load(type, OutputCPURegister(instruction), source);
   2840       codegen_->MaybeRecordImplicitNullCheck(instruction);
   2841     }
   2842 
   2843     if (type == DataType::Type::kReference) {
   2844       static_assert(
   2845           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   2846           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   2847       Location obj_loc = locations->InAt(0);
   2848       if (index.IsConstant()) {
   2849         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
   2850       } else {
   2851         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
   2852       }
   2853     }
   2854   }
   2855 }
   2856 
   2857 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
   2858   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
   2859   locations->SetInAt(0, Location::RequiresRegister());
   2860   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   2861 }
   2862 
   2863 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
   2864   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
   2865   vixl::aarch64::Register out = OutputRegister(instruction);
   2866   {
   2867     // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   2868     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   2869     __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
   2870     codegen_->MaybeRecordImplicitNullCheck(instruction);
   2871   }
   2872   // Mask out compression flag from String's array length.
   2873   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
   2874     __ Lsr(out.W(), out.W(), 1u);
   2875   }
   2876 }
   2877 
   2878 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
   2879   DataType::Type value_type = instruction->GetComponentType();
   2880 
   2881   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   2882   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
   2883       instruction,
   2884       may_need_runtime_call_for_type_check ?
   2885           LocationSummary::kCallOnSlowPath :
   2886           LocationSummary::kNoCall);
   2887   locations->SetInAt(0, Location::RequiresRegister());
   2888   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
   2889   if (IsConstantZeroBitPattern(instruction->InputAt(2))) {
   2890     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
   2891   } else if (DataType::IsFloatingPointType(value_type)) {
   2892     locations->SetInAt(2, Location::RequiresFpuRegister());
   2893   } else {
   2894     locations->SetInAt(2, Location::RequiresRegister());
   2895   }
   2896 }
   2897 
   2898 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
   2899   DataType::Type value_type = instruction->GetComponentType();
   2900   LocationSummary* locations = instruction->GetLocations();
   2901   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
   2902   bool needs_write_barrier =
   2903       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
   2904 
   2905   Register array = InputRegisterAt(instruction, 0);
   2906   CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
   2907   CPURegister source = value;
   2908   Location index = locations->InAt(1);
   2909   size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
   2910   MemOperand destination = HeapOperand(array);
   2911   MacroAssembler* masm = GetVIXLAssembler();
   2912 
   2913   if (!needs_write_barrier) {
   2914     DCHECK(!may_need_runtime_call_for_type_check);
   2915     if (index.IsConstant()) {
   2916       offset += Int64ConstantFrom(index) << DataType::SizeShift(value_type);
   2917       destination = HeapOperand(array, offset);
   2918     } else {
   2919       UseScratchRegisterScope temps(masm);
   2920       Register temp = temps.AcquireSameSizeAs(array);
   2921       if (instruction->GetArray()->IsIntermediateAddress()) {
   2922         // We do not need to compute the intermediate address from the array: the
   2923         // input instruction has done it already. See the comment in
   2924         // `TryExtractArrayAccessAddress()`.
   2925         if (kIsDebugBuild) {
   2926           HIntermediateAddress* tmp = instruction->GetArray()->AsIntermediateAddress();
   2927           DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
   2928         }
   2929         temp = array;
   2930       } else {
   2931         __ Add(temp, array, offset);
   2932       }
   2933       destination = HeapOperand(temp,
   2934                                 XRegisterFrom(index),
   2935                                 LSL,
   2936                                 DataType::SizeShift(value_type));
   2937     }
   2938     {
   2939       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
   2940       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   2941       codegen_->Store(value_type, value, destination);
   2942       codegen_->MaybeRecordImplicitNullCheck(instruction);
   2943     }
   2944   } else {
   2945     DCHECK(!instruction->GetArray()->IsIntermediateAddress());
   2946     vixl::aarch64::Label done;
   2947     SlowPathCodeARM64* slow_path = nullptr;
   2948     {
   2949       // We use a block to end the scratch scope before the write barrier, thus
   2950       // freeing the temporary registers so they can be used in `MarkGCCard`.
   2951       UseScratchRegisterScope temps(masm);
   2952       Register temp = temps.AcquireSameSizeAs(array);
   2953       if (index.IsConstant()) {
   2954         offset += Int64ConstantFrom(index) << DataType::SizeShift(value_type);
   2955         destination = HeapOperand(array, offset);
   2956       } else {
   2957         destination = HeapOperand(temp,
   2958                                   XRegisterFrom(index),
   2959                                   LSL,
   2960                                   DataType::SizeShift(value_type));
   2961       }
   2962 
   2963       uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   2964       uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   2965       uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   2966 
   2967       if (may_need_runtime_call_for_type_check) {
   2968         slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
   2969         codegen_->AddSlowPath(slow_path);
   2970         if (instruction->GetValueCanBeNull()) {
   2971           vixl::aarch64::Label non_zero;
   2972           __ Cbnz(Register(value), &non_zero);
   2973           if (!index.IsConstant()) {
   2974             __ Add(temp, array, offset);
   2975           }
   2976           {
   2977             // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools
   2978             // emitted.
   2979             EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   2980             __ Str(wzr, destination);
   2981             codegen_->MaybeRecordImplicitNullCheck(instruction);
   2982           }
   2983           __ B(&done);
   2984           __ Bind(&non_zero);
   2985         }
   2986 
   2987         // Note that when Baker read barriers are enabled, the type
   2988         // checks are performed without read barriers.  This is fine,
   2989         // even in the case where a class object is in the from-space
   2990         // after the flip, as a comparison involving such a type would
   2991         // not produce a false positive; it may of course produce a
   2992         // false negative, in which case we would take the ArraySet
   2993         // slow path.
   2994 
   2995         Register temp2 = temps.AcquireSameSizeAs(array);
   2996         // /* HeapReference<Class> */ temp = array->klass_
   2997         {
   2998           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   2999           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   3000           __ Ldr(temp, HeapOperand(array, class_offset));
   3001           codegen_->MaybeRecordImplicitNullCheck(instruction);
   3002         }
   3003         GetAssembler()->MaybeUnpoisonHeapReference(temp);
   3004 
   3005         // /* HeapReference<Class> */ temp = temp->component_type_
   3006         __ Ldr(temp, HeapOperand(temp, component_offset));
   3007         // /* HeapReference<Class> */ temp2 = value->klass_
   3008         __ Ldr(temp2, HeapOperand(Register(value), class_offset));
   3009         // If heap poisoning is enabled, no need to unpoison `temp`
   3010         // nor `temp2`, as we are comparing two poisoned references.
   3011         __ Cmp(temp, temp2);
   3012         temps.Release(temp2);
   3013 
   3014         if (instruction->StaticTypeOfArrayIsObjectArray()) {
   3015           vixl::aarch64::Label do_put;
   3016           __ B(eq, &do_put);
   3017           // If heap poisoning is enabled, the `temp` reference has
   3018           // not been unpoisoned yet; unpoison it now.
   3019           GetAssembler()->MaybeUnpoisonHeapReference(temp);
   3020 
   3021           // /* HeapReference<Class> */ temp = temp->super_class_
   3022           __ Ldr(temp, HeapOperand(temp, super_offset));
   3023           // If heap poisoning is enabled, no need to unpoison
   3024           // `temp`, as we are comparing against null below.
   3025           __ Cbnz(temp, slow_path->GetEntryLabel());
   3026           __ Bind(&do_put);
   3027         } else {
   3028           __ B(ne, slow_path->GetEntryLabel());
   3029         }
   3030       }
   3031 
   3032       if (kPoisonHeapReferences) {
   3033         Register temp2 = temps.AcquireSameSizeAs(array);
   3034           DCHECK(value.IsW());
   3035         __ Mov(temp2, value.W());
   3036         GetAssembler()->PoisonHeapReference(temp2);
   3037         source = temp2;
   3038       }
   3039 
   3040       if (!index.IsConstant()) {
   3041         __ Add(temp, array, offset);
   3042       } else {
   3043         // We no longer need the `temp` here so release it as the store below may
   3044         // need a scratch register (if the constant index makes the offset too large)
   3045         // and the poisoned `source` could be using the other scratch register.
   3046         temps.Release(temp);
   3047       }
   3048       {
   3049         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
   3050         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   3051         __ Str(source, destination);
   3052 
   3053         if (!may_need_runtime_call_for_type_check) {
   3054           codegen_->MaybeRecordImplicitNullCheck(instruction);
   3055         }
   3056       }
   3057     }
   3058 
   3059     codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull());
   3060 
   3061     if (done.IsLinked()) {
   3062       __ Bind(&done);
   3063     }
   3064 
   3065     if (slow_path != nullptr) {
   3066       __ Bind(slow_path->GetExitLabel());
   3067     }
   3068   }
   3069 }
   3070 
   3071 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
   3072   RegisterSet caller_saves = RegisterSet::Empty();
   3073   InvokeRuntimeCallingConvention calling_convention;
   3074   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
   3075   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
   3076   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
   3077   locations->SetInAt(0, Location::RequiresRegister());
   3078   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
   3079 }
   3080 
   3081 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
   3082   BoundsCheckSlowPathARM64* slow_path =
   3083       new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
   3084   codegen_->AddSlowPath(slow_path);
   3085   __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1));
   3086   __ B(slow_path->GetEntryLabel(), hs);
   3087 }
   3088 
   3089 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
   3090   LocationSummary* locations =
   3091       new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
   3092   locations->SetInAt(0, Location::RequiresRegister());
   3093   if (check->HasUses()) {
   3094     locations->SetOut(Location::SameAsFirstInput());
   3095   }
   3096 }
   3097 
   3098 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
   3099   // We assume the class is not null.
   3100   SlowPathCodeARM64* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(
   3101       check->GetLoadClass(), check, check->GetDexPc(), true);
   3102   codegen_->AddSlowPath(slow_path);
   3103   GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
   3104 }
   3105 
   3106 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
   3107   return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
   3108       || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
   3109 }
   3110 
   3111 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
   3112   FPRegister lhs_reg = InputFPRegisterAt(instruction, 0);
   3113   Location rhs_loc = instruction->GetLocations()->InAt(1);
   3114   if (rhs_loc.IsConstant()) {
   3115     // 0.0 is the only immediate that can be encoded directly in
   3116     // an FCMP instruction.
   3117     //
   3118     // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
   3119     // specify that in a floating-point comparison, positive zero
   3120     // and negative zero are considered equal, so we can use the
   3121     // literal 0.0 for both cases here.
   3122     //
   3123     // Note however that some methods (Float.equal, Float.compare,
   3124     // Float.compareTo, Double.equal, Double.compare,
   3125     // Double.compareTo, Math.max, Math.min, StrictMath.max,
   3126     // StrictMath.min) consider 0.0 to be (strictly) greater than
   3127     // -0.0. So if we ever translate calls to these methods into a
   3128     // HCompare instruction, we must handle the -0.0 case with
   3129     // care here.
   3130     DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
   3131     __ Fcmp(lhs_reg, 0.0);
   3132   } else {
   3133     __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
   3134   }
   3135 }
   3136 
   3137 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
   3138   LocationSummary* locations =
   3139       new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
   3140   DataType::Type in_type = compare->InputAt(0)->GetType();
   3141   switch (in_type) {
   3142     case DataType::Type::kBool:
   3143     case DataType::Type::kUint8:
   3144     case DataType::Type::kInt8:
   3145     case DataType::Type::kUint16:
   3146     case DataType::Type::kInt16:
   3147     case DataType::Type::kInt32:
   3148     case DataType::Type::kInt64: {
   3149       locations->SetInAt(0, Location::RequiresRegister());
   3150       locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
   3151       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3152       break;
   3153     }
   3154     case DataType::Type::kFloat32:
   3155     case DataType::Type::kFloat64: {
   3156       locations->SetInAt(0, Location::RequiresFpuRegister());
   3157       locations->SetInAt(1,
   3158                          IsFloatingPointZeroConstant(compare->InputAt(1))
   3159                              ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
   3160                              : Location::RequiresFpuRegister());
   3161       locations->SetOut(Location::RequiresRegister());
   3162       break;
   3163     }
   3164     default:
   3165       LOG(FATAL) << "Unexpected type for compare operation " << in_type;
   3166   }
   3167 }
   3168 
   3169 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
   3170   DataType::Type in_type = compare->InputAt(0)->GetType();
   3171 
   3172   //  0 if: left == right
   3173   //  1 if: left  > right
   3174   // -1 if: left  < right
   3175   switch (in_type) {
   3176     case DataType::Type::kBool:
   3177     case DataType::Type::kUint8:
   3178     case DataType::Type::kInt8:
   3179     case DataType::Type::kUint16:
   3180     case DataType::Type::kInt16:
   3181     case DataType::Type::kInt32:
   3182     case DataType::Type::kInt64: {
   3183       Register result = OutputRegister(compare);
   3184       Register left = InputRegisterAt(compare, 0);
   3185       Operand right = InputOperandAt(compare, 1);
   3186       __ Cmp(left, right);
   3187       __ Cset(result, ne);          // result == +1 if NE or 0 otherwise
   3188       __ Cneg(result, result, lt);  // result == -1 if LT or unchanged otherwise
   3189       break;
   3190     }
   3191     case DataType::Type::kFloat32:
   3192     case DataType::Type::kFloat64: {
   3193       Register result = OutputRegister(compare);
   3194       GenerateFcmp(compare);
   3195       __ Cset(result, ne);
   3196       __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
   3197       break;
   3198     }
   3199     default:
   3200       LOG(FATAL) << "Unimplemented compare type " << in_type;
   3201   }
   3202 }
   3203 
   3204 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
   3205   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
   3206 
   3207   if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
   3208     locations->SetInAt(0, Location::RequiresFpuRegister());
   3209     locations->SetInAt(1,
   3210                        IsFloatingPointZeroConstant(instruction->InputAt(1))
   3211                            ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
   3212                            : Location::RequiresFpuRegister());
   3213   } else {
   3214     // Integer cases.
   3215     locations->SetInAt(0, Location::RequiresRegister());
   3216     locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
   3217   }
   3218 
   3219   if (!instruction->IsEmittedAtUseSite()) {
   3220     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3221   }
   3222 }
   3223 
   3224 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
   3225   if (instruction->IsEmittedAtUseSite()) {
   3226     return;
   3227   }
   3228 
   3229   LocationSummary* locations = instruction->GetLocations();
   3230   Register res = RegisterFrom(locations->Out(), instruction->GetType());
   3231   IfCondition if_cond = instruction->GetCondition();
   3232 
   3233   if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
   3234     GenerateFcmp(instruction);
   3235     __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
   3236   } else {
   3237     // Integer cases.
   3238     Register lhs = InputRegisterAt(instruction, 0);
   3239     Operand rhs = InputOperandAt(instruction, 1);
   3240     __ Cmp(lhs, rhs);
   3241     __ Cset(res, ARM64Condition(if_cond));
   3242   }
   3243 }
   3244 
   3245 #define FOR_EACH_CONDITION_INSTRUCTION(M)                                                \
   3246   M(Equal)                                                                               \
   3247   M(NotEqual)                                                                            \
   3248   M(LessThan)                                                                            \
   3249   M(LessThanOrEqual)                                                                     \
   3250   M(GreaterThan)                                                                         \
   3251   M(GreaterThanOrEqual)                                                                  \
   3252   M(Below)                                                                               \
   3253   M(BelowOrEqual)                                                                        \
   3254   M(Above)                                                                               \
   3255   M(AboveOrEqual)
   3256 #define DEFINE_CONDITION_VISITORS(Name)                                                  \
   3257 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }         \
   3258 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
   3259 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
   3260 #undef DEFINE_CONDITION_VISITORS
   3261 #undef FOR_EACH_CONDITION_INSTRUCTION
   3262 
   3263 void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
   3264   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3265 
   3266   LocationSummary* locations = instruction->GetLocations();
   3267   Location second = locations->InAt(1);
   3268   DCHECK(second.IsConstant());
   3269 
   3270   Register out = OutputRegister(instruction);
   3271   Register dividend = InputRegisterAt(instruction, 0);
   3272   int64_t imm = Int64FromConstant(second.GetConstant());
   3273   DCHECK(imm == 1 || imm == -1);
   3274 
   3275   if (instruction->IsRem()) {
   3276     __ Mov(out, 0);
   3277   } else {
   3278     if (imm == 1) {
   3279       __ Mov(out, dividend);
   3280     } else {
   3281       __ Neg(out, dividend);
   3282     }
   3283   }
   3284 }
   3285 
   3286 void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
   3287   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3288 
   3289   LocationSummary* locations = instruction->GetLocations();
   3290   Location second = locations->InAt(1);
   3291   DCHECK(second.IsConstant());
   3292 
   3293   Register out = OutputRegister(instruction);
   3294   Register dividend = InputRegisterAt(instruction, 0);
   3295   int64_t imm = Int64FromConstant(second.GetConstant());
   3296   uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
   3297   int ctz_imm = CTZ(abs_imm);
   3298 
   3299   UseScratchRegisterScope temps(GetVIXLAssembler());
   3300   Register temp = temps.AcquireSameSizeAs(out);
   3301 
   3302   if (instruction->IsDiv()) {
   3303     __ Add(temp, dividend, abs_imm - 1);
   3304     __ Cmp(dividend, 0);
   3305     __ Csel(out, temp, dividend, lt);
   3306     if (imm > 0) {
   3307       __ Asr(out, out, ctz_imm);
   3308     } else {
   3309       __ Neg(out, Operand(out, ASR, ctz_imm));
   3310     }
   3311   } else {
   3312     int bits = instruction->GetResultType() == DataType::Type::kInt32 ? 32 : 64;
   3313     __ Asr(temp, dividend, bits - 1);
   3314     __ Lsr(temp, temp, bits - ctz_imm);
   3315     __ Add(out, dividend, temp);
   3316     __ And(out, out, abs_imm - 1);
   3317     __ Sub(out, out, temp);
   3318   }
   3319 }
   3320 
   3321 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
   3322   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3323 
   3324   LocationSummary* locations = instruction->GetLocations();
   3325   Location second = locations->InAt(1);
   3326   DCHECK(second.IsConstant());
   3327 
   3328   Register out = OutputRegister(instruction);
   3329   Register dividend = InputRegisterAt(instruction, 0);
   3330   int64_t imm = Int64FromConstant(second.GetConstant());
   3331 
   3332   DataType::Type type = instruction->GetResultType();
   3333   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
   3334 
   3335   int64_t magic;
   3336   int shift;
   3337   CalculateMagicAndShiftForDivRem(
   3338       imm, type == DataType::Type::kInt64 /* is_long */, &magic, &shift);
   3339 
   3340   UseScratchRegisterScope temps(GetVIXLAssembler());
   3341   Register temp = temps.AcquireSameSizeAs(out);
   3342 
   3343   // temp = get_high(dividend * magic)
   3344   __ Mov(temp, magic);
   3345   if (type == DataType::Type::kInt64) {
   3346     __ Smulh(temp, dividend, temp);
   3347   } else {
   3348     __ Smull(temp.X(), dividend, temp);
   3349     __ Lsr(temp.X(), temp.X(), 32);
   3350   }
   3351 
   3352   if (imm > 0 && magic < 0) {
   3353     __ Add(temp, temp, dividend);
   3354   } else if (imm < 0 && magic > 0) {
   3355     __ Sub(temp, temp, dividend);
   3356   }
   3357 
   3358   if (shift != 0) {
   3359     __ Asr(temp, temp, shift);
   3360   }
   3361 
   3362   if (instruction->IsDiv()) {
   3363     __ Sub(out, temp, Operand(temp, ASR, type == DataType::Type::kInt64 ? 63 : 31));
   3364   } else {
   3365     __ Sub(temp, temp, Operand(temp, ASR, type == DataType::Type::kInt64 ? 63 : 31));
   3366     // TODO: Strength reduction for msub.
   3367     Register temp_imm = temps.AcquireSameSizeAs(out);
   3368     __ Mov(temp_imm, imm);
   3369     __ Msub(out, temp, temp_imm, dividend);
   3370   }
   3371 }
   3372 
   3373 void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
   3374   DCHECK(instruction->IsDiv() || instruction->IsRem());
   3375   DataType::Type type = instruction->GetResultType();
   3376   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
   3377 
   3378   LocationSummary* locations = instruction->GetLocations();
   3379   Register out = OutputRegister(instruction);
   3380   Location second = locations->InAt(1);
   3381 
   3382   if (second.IsConstant()) {
   3383     int64_t imm = Int64FromConstant(second.GetConstant());
   3384 
   3385     if (imm == 0) {
   3386       // Do not generate anything. DivZeroCheck would prevent any code to be executed.
   3387     } else if (imm == 1 || imm == -1) {
   3388       DivRemOneOrMinusOne(instruction);
   3389     } else if (IsPowerOfTwo(AbsOrMin(imm))) {
   3390       DivRemByPowerOfTwo(instruction);
   3391     } else {
   3392       DCHECK(imm <= -2 || imm >= 2);
   3393       GenerateDivRemWithAnyConstant(instruction);
   3394     }
   3395   } else {
   3396     Register dividend = InputRegisterAt(instruction, 0);
   3397     Register divisor = InputRegisterAt(instruction, 1);
   3398     if (instruction->IsDiv()) {
   3399       __ Sdiv(out, dividend, divisor);
   3400     } else {
   3401       UseScratchRegisterScope temps(GetVIXLAssembler());
   3402       Register temp = temps.AcquireSameSizeAs(out);
   3403       __ Sdiv(temp, dividend, divisor);
   3404       __ Msub(out, temp, divisor, dividend);
   3405     }
   3406   }
   3407 }
   3408 
   3409 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
   3410   LocationSummary* locations =
   3411       new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
   3412   switch (div->GetResultType()) {
   3413     case DataType::Type::kInt32:
   3414     case DataType::Type::kInt64:
   3415       locations->SetInAt(0, Location::RequiresRegister());
   3416       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
   3417       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3418       break;
   3419 
   3420     case DataType::Type::kFloat32:
   3421     case DataType::Type::kFloat64:
   3422       locations->SetInAt(0, Location::RequiresFpuRegister());
   3423       locations->SetInAt(1, Location::RequiresFpuRegister());
   3424       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   3425       break;
   3426 
   3427     default:
   3428       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
   3429   }
   3430 }
   3431 
   3432 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
   3433   DataType::Type type = div->GetResultType();
   3434   switch (type) {
   3435     case DataType::Type::kInt32:
   3436     case DataType::Type::kInt64:
   3437       GenerateDivRemIntegral(div);
   3438       break;
   3439 
   3440     case DataType::Type::kFloat32:
   3441     case DataType::Type::kFloat64:
   3442       __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
   3443       break;
   3444 
   3445     default:
   3446       LOG(FATAL) << "Unexpected div type " << type;
   3447   }
   3448 }
   3449 
   3450 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   3451   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
   3452   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
   3453 }
   3454 
   3455 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
   3456   SlowPathCodeARM64* slow_path =
   3457       new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
   3458   codegen_->AddSlowPath(slow_path);
   3459   Location value = instruction->GetLocations()->InAt(0);
   3460 
   3461   DataType::Type type = instruction->GetType();
   3462 
   3463   if (!DataType::IsIntegralType(type)) {
   3464     LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
   3465     return;
   3466   }
   3467 
   3468   if (value.IsConstant()) {
   3469     int64_t divisor = Int64ConstantFrom(value);
   3470     if (divisor == 0) {
   3471       __ B(slow_path->GetEntryLabel());
   3472     } else {
   3473       // A division by a non-null constant is valid. We don't need to perform
   3474       // any check, so simply fall through.
   3475     }
   3476   } else {
   3477     __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
   3478   }
   3479 }
   3480 
   3481 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
   3482   LocationSummary* locations =
   3483       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
   3484   locations->SetOut(Location::ConstantLocation(constant));
   3485 }
   3486 
   3487 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
   3488     HDoubleConstant* constant ATTRIBUTE_UNUSED) {
   3489   // Will be generated at use site.
   3490 }
   3491 
   3492 void LocationsBuilderARM64::VisitExit(HExit* exit) {
   3493   exit->SetLocations(nullptr);
   3494 }
   3495 
   3496 void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
   3497 }
   3498 
   3499 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
   3500   LocationSummary* locations =
   3501       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
   3502   locations->SetOut(Location::ConstantLocation(constant));
   3503 }
   3504 
   3505 void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
   3506   // Will be generated at use site.
   3507 }
   3508 
   3509 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
   3510   if (successor->IsExitBlock()) {
   3511     DCHECK(got->GetPrevious()->AlwaysThrows());
   3512     return;  // no code needed
   3513   }
   3514 
   3515   HBasicBlock* block = got->GetBlock();
   3516   HInstruction* previous = got->GetPrevious();
   3517   HLoopInformation* info = block->GetLoopInformation();
   3518 
   3519   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
   3520     if (codegen_->GetCompilerOptions().CountHotnessInCompiledCode()) {
   3521       UseScratchRegisterScope temps(GetVIXLAssembler());
   3522       Register temp1 = temps.AcquireX();
   3523       Register temp2 = temps.AcquireX();
   3524       __ Ldr(temp1, MemOperand(sp, 0));
   3525       __ Ldrh(temp2, MemOperand(temp1, ArtMethod::HotnessCountOffset().Int32Value()));
   3526       __ Add(temp2, temp2, 1);
   3527       __ Strh(temp2, MemOperand(temp1, ArtMethod::HotnessCountOffset().Int32Value()));
   3528     }
   3529     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
   3530     return;
   3531   }
   3532   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
   3533     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
   3534     codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   3535   }
   3536   if (!codegen_->GoesToNextBlock(block, successor)) {
   3537     __ B(codegen_->GetLabelOf(successor));
   3538   }
   3539 }
   3540 
   3541 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
   3542   got->SetLocations(nullptr);
   3543 }
   3544 
   3545 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
   3546   HandleGoto(got, got->GetSuccessor());
   3547 }
   3548 
   3549 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
   3550   try_boundary->SetLocations(nullptr);
   3551 }
   3552 
   3553 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
   3554   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
   3555   if (!successor->IsExitBlock()) {
   3556     HandleGoto(try_boundary, successor);
   3557   }
   3558 }
   3559 
   3560 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
   3561                                                           size_t condition_input_index,
   3562                                                           vixl::aarch64::Label* true_target,
   3563                                                           vixl::aarch64::Label* false_target) {
   3564   HInstruction* cond = instruction->InputAt(condition_input_index);
   3565 
   3566   if (true_target == nullptr && false_target == nullptr) {
   3567     // Nothing to do. The code always falls through.
   3568     return;
   3569   } else if (cond->IsIntConstant()) {
   3570     // Constant condition, statically compared against "true" (integer value 1).
   3571     if (cond->AsIntConstant()->IsTrue()) {
   3572       if (true_target != nullptr) {
   3573         __ B(true_target);
   3574       }
   3575     } else {
   3576       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
   3577       if (false_target != nullptr) {
   3578         __ B(false_target);
   3579       }
   3580     }
   3581     return;
   3582   }
   3583 
   3584   // The following code generates these patterns:
   3585   //  (1) true_target == nullptr && false_target != nullptr
   3586   //        - opposite condition true => branch to false_target
   3587   //  (2) true_target != nullptr && false_target == nullptr
   3588   //        - condition true => branch to true_target
   3589   //  (3) true_target != nullptr && false_target != nullptr
   3590   //        - condition true => branch to true_target
   3591   //        - branch to false_target
   3592   if (IsBooleanValueOrMaterializedCondition(cond)) {
   3593     // The condition instruction has been materialized, compare the output to 0.
   3594     Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
   3595     DCHECK(cond_val.IsRegister());
   3596       if (true_target == nullptr) {
   3597       __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
   3598     } else {
   3599       __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
   3600     }
   3601   } else {
   3602     // The condition instruction has not been materialized, use its inputs as
   3603     // the comparison and its condition as the branch condition.
   3604     HCondition* condition = cond->AsCondition();
   3605 
   3606     DataType::Type type = condition->InputAt(0)->GetType();
   3607     if (DataType::IsFloatingPointType(type)) {
   3608       GenerateFcmp(condition);
   3609       if (true_target == nullptr) {
   3610         IfCondition opposite_condition = condition->GetOppositeCondition();
   3611         __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
   3612       } else {
   3613         __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
   3614       }
   3615     } else {
   3616       // Integer cases.
   3617       Register lhs = InputRegisterAt(condition, 0);
   3618       Operand rhs = InputOperandAt(condition, 1);
   3619 
   3620       Condition arm64_cond;
   3621       vixl::aarch64::Label* non_fallthrough_target;
   3622       if (true_target == nullptr) {
   3623         arm64_cond = ARM64Condition(condition->GetOppositeCondition());
   3624         non_fallthrough_target = false_target;
   3625       } else {
   3626         arm64_cond = ARM64Condition(condition->GetCondition());
   3627         non_fallthrough_target = true_target;
   3628       }
   3629 
   3630       if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
   3631           rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
   3632         switch (arm64_cond) {
   3633           case eq:
   3634             __ Cbz(lhs, non_fallthrough_target);
   3635             break;
   3636           case ne:
   3637             __ Cbnz(lhs, non_fallthrough_target);
   3638             break;
   3639           case lt:
   3640             // Test the sign bit and branch accordingly.
   3641             __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
   3642             break;
   3643           case ge:
   3644             // Test the sign bit and branch accordingly.
   3645             __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
   3646             break;
   3647           default:
   3648             // Without the `static_cast` the compiler throws an error for
   3649             // `-Werror=sign-promo`.
   3650             LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
   3651         }
   3652       } else {
   3653         __ Cmp(lhs, rhs);
   3654         __ B(arm64_cond, non_fallthrough_target);
   3655       }
   3656     }
   3657   }
   3658 
   3659   // If neither branch falls through (case 3), the conditional branch to `true_target`
   3660   // was already emitted (case 2) and we need to emit a jump to `false_target`.
   3661   if (true_target != nullptr && false_target != nullptr) {
   3662     __ B(false_target);
   3663   }
   3664 }
   3665 
   3666 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
   3667   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
   3668   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
   3669     locations->SetInAt(0, Location::RequiresRegister());
   3670   }
   3671 }
   3672 
   3673 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
   3674   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
   3675   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
   3676   vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
   3677   if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
   3678     true_target = nullptr;
   3679   }
   3680   vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
   3681   if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
   3682     false_target = nullptr;
   3683   }
   3684   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
   3685 }
   3686 
   3687 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
   3688   LocationSummary* locations = new (GetGraph()->GetAllocator())
   3689       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
   3690   InvokeRuntimeCallingConvention calling_convention;
   3691   RegisterSet caller_saves = RegisterSet::Empty();
   3692   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
   3693   locations->SetCustomSlowPathCallerSaves(caller_saves);
   3694   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
   3695     locations->SetInAt(0, Location::RequiresRegister());
   3696   }
   3697 }
   3698 
   3699 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
   3700   SlowPathCodeARM64* slow_path =
   3701       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
   3702   GenerateTestAndBranch(deoptimize,
   3703                         /* condition_input_index */ 0,
   3704                         slow_path->GetEntryLabel(),
   3705                         /* false_target */ nullptr);
   3706 }
   3707 
   3708 void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
   3709   LocationSummary* locations = new (GetGraph()->GetAllocator())
   3710       LocationSummary(flag, LocationSummary::kNoCall);
   3711   locations->SetOut(Location::RequiresRegister());
   3712 }
   3713 
   3714 void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
   3715   __ Ldr(OutputRegister(flag),
   3716          MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
   3717 }
   3718 
   3719 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
   3720   return condition->IsCondition() &&
   3721          DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
   3722 }
   3723 
   3724 static inline Condition GetConditionForSelect(HCondition* condition) {
   3725   IfCondition cond = condition->AsCondition()->GetCondition();
   3726   return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
   3727                                                      : ARM64Condition(cond);
   3728 }
   3729 
   3730 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
   3731   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
   3732   if (DataType::IsFloatingPointType(select->GetType())) {
   3733     locations->SetInAt(0, Location::RequiresFpuRegister());
   3734     locations->SetInAt(1, Location::RequiresFpuRegister());
   3735     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   3736   } else {
   3737     HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
   3738     HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
   3739     bool is_true_value_constant = cst_true_value != nullptr;
   3740     bool is_false_value_constant = cst_false_value != nullptr;
   3741     // Ask VIXL whether we should synthesize constants in registers.
   3742     // We give an arbitrary register to VIXL when dealing with non-constant inputs.
   3743     Operand true_op = is_true_value_constant ?
   3744         Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
   3745     Operand false_op = is_false_value_constant ?
   3746         Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
   3747     bool true_value_in_register = false;
   3748     bool false_value_in_register = false;
   3749     MacroAssembler::GetCselSynthesisInformation(
   3750         x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
   3751     true_value_in_register |= !is_true_value_constant;
   3752     false_value_in_register |= !is_false_value_constant;
   3753 
   3754     locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
   3755                                                  : Location::ConstantLocation(cst_true_value));
   3756     locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
   3757                                                   : Location::ConstantLocation(cst_false_value));
   3758     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   3759   }
   3760 
   3761   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
   3762     locations->SetInAt(2, Location::RequiresRegister());
   3763   }
   3764 }
   3765 
   3766 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
   3767   HInstruction* cond = select->GetCondition();
   3768   Condition csel_cond;
   3769 
   3770   if (IsBooleanValueOrMaterializedCondition(cond)) {
   3771     if (cond->IsCondition() && cond->GetNext() == select) {
   3772       // Use the condition flags set by the previous instruction.
   3773       csel_cond = GetConditionForSelect(cond->AsCondition());
   3774     } else {
   3775       __ Cmp(InputRegisterAt(select, 2), 0);
   3776       csel_cond = ne;
   3777     }
   3778   } else if (IsConditionOnFloatingPointValues(cond)) {
   3779     GenerateFcmp(cond);
   3780     csel_cond = GetConditionForSelect(cond->AsCondition());
   3781   } else {
   3782     __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
   3783     csel_cond = GetConditionForSelect(cond->AsCondition());
   3784   }
   3785 
   3786   if (DataType::IsFloatingPointType(select->GetType())) {
   3787     __ Fcsel(OutputFPRegister(select),
   3788              InputFPRegisterAt(select, 1),
   3789              InputFPRegisterAt(select, 0),
   3790              csel_cond);
   3791   } else {
   3792     __ Csel(OutputRegister(select),
   3793             InputOperandAt(select, 1),
   3794             InputOperandAt(select, 0),
   3795             csel_cond);
   3796   }
   3797 }
   3798 
   3799 void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
   3800   new (GetGraph()->GetAllocator()) LocationSummary(info);
   3801 }
   3802 
   3803 void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) {
   3804   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
   3805 }
   3806 
   3807 void CodeGeneratorARM64::GenerateNop() {
   3808   __ Nop();
   3809 }
   3810 
   3811 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   3812   HandleFieldGet(instruction, instruction->GetFieldInfo());
   3813 }
   3814 
   3815 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
   3816   HandleFieldGet(instruction, instruction->GetFieldInfo());
   3817 }
   3818 
   3819 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   3820   HandleFieldSet(instruction);
   3821 }
   3822 
   3823 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
   3824   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
   3825 }
   3826 
   3827 // Temp is used for read barrier.
   3828 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
   3829   if (kEmitCompilerReadBarrier &&
   3830       (kUseBakerReadBarrier ||
   3831           type_check_kind == TypeCheckKind::kAbstractClassCheck ||
   3832           type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
   3833           type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
   3834     return 1;
   3835   }
   3836   return 0;
   3837 }
   3838 
   3839 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
   3840 // interface pointer, one for loading the current interface.
   3841 // The other checks have one temp for loading the object's class.
   3842 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
   3843   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
   3844     return 3;
   3845   }
   3846   return 1 + NumberOfInstanceOfTemps(type_check_kind);
   3847 }
   3848 
   3849 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
   3850   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
   3851   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3852   bool baker_read_barrier_slow_path = false;
   3853   switch (type_check_kind) {
   3854     case TypeCheckKind::kExactCheck:
   3855     case TypeCheckKind::kAbstractClassCheck:
   3856     case TypeCheckKind::kClassHierarchyCheck:
   3857     case TypeCheckKind::kArrayObjectCheck: {
   3858       bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
   3859       call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
   3860       baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
   3861       break;
   3862     }
   3863     case TypeCheckKind::kArrayCheck:
   3864     case TypeCheckKind::kUnresolvedCheck:
   3865     case TypeCheckKind::kInterfaceCheck:
   3866       call_kind = LocationSummary::kCallOnSlowPath;
   3867       break;
   3868   }
   3869 
   3870   LocationSummary* locations =
   3871       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
   3872   if (baker_read_barrier_slow_path) {
   3873     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   3874   }
   3875   locations->SetInAt(0, Location::RequiresRegister());
   3876   locations->SetInAt(1, Location::RequiresRegister());
   3877   // The "out" register is used as a temporary, so it overlaps with the inputs.
   3878   // Note that TypeCheckSlowPathARM64 uses this register too.
   3879   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   3880   // Add temps if necessary for read barriers.
   3881   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
   3882 }
   3883 
   3884 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
   3885   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   3886   LocationSummary* locations = instruction->GetLocations();
   3887   Location obj_loc = locations->InAt(0);
   3888   Register obj = InputRegisterAt(instruction, 0);
   3889   Register cls = InputRegisterAt(instruction, 1);
   3890   Location out_loc = locations->Out();
   3891   Register out = OutputRegister(instruction);
   3892   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
   3893   DCHECK_LE(num_temps, 1u);
   3894   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
   3895   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   3896   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   3897   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   3898   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   3899 
   3900   vixl::aarch64::Label done, zero;
   3901   SlowPathCodeARM64* slow_path = nullptr;
   3902 
   3903   // Return 0 if `obj` is null.
   3904   // Avoid null check if we know `obj` is not null.
   3905   if (instruction->MustDoNullCheck()) {
   3906     __ Cbz(obj, &zero);
   3907   }
   3908 
   3909   switch (type_check_kind) {
   3910     case TypeCheckKind::kExactCheck: {
   3911       ReadBarrierOption read_barrier_option =
   3912           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
   3913       // /* HeapReference<Class> */ out = obj->klass_
   3914       GenerateReferenceLoadTwoRegisters(instruction,
   3915                                         out_loc,
   3916                                         obj_loc,
   3917                                         class_offset,
   3918                                         maybe_temp_loc,
   3919                                         read_barrier_option);
   3920       __ Cmp(out, cls);
   3921       __ Cset(out, eq);
   3922       if (zero.IsLinked()) {
   3923         __ B(&done);
   3924       }
   3925       break;
   3926     }
   3927 
   3928     case TypeCheckKind::kAbstractClassCheck: {
   3929       ReadBarrierOption read_barrier_option =
   3930           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
   3931       // /* HeapReference<Class> */ out = obj->klass_
   3932       GenerateReferenceLoadTwoRegisters(instruction,
   3933                                         out_loc,
   3934                                         obj_loc,
   3935                                         class_offset,
   3936                                         maybe_temp_loc,
   3937                                         read_barrier_option);
   3938       // If the class is abstract, we eagerly fetch the super class of the
   3939       // object to avoid doing a comparison we know will fail.
   3940       vixl::aarch64::Label loop, success;
   3941       __ Bind(&loop);
   3942       // /* HeapReference<Class> */ out = out->super_class_
   3943       GenerateReferenceLoadOneRegister(instruction,
   3944                                        out_loc,
   3945                                        super_offset,
   3946                                        maybe_temp_loc,
   3947                                        read_barrier_option);
   3948       // If `out` is null, we use it for the result, and jump to `done`.
   3949       __ Cbz(out, &done);
   3950       __ Cmp(out, cls);
   3951       __ B(ne, &loop);
   3952       __ Mov(out, 1);
   3953       if (zero.IsLinked()) {
   3954         __ B(&done);
   3955       }
   3956       break;
   3957     }
   3958 
   3959     case TypeCheckKind::kClassHierarchyCheck: {
   3960       ReadBarrierOption read_barrier_option =
   3961           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
   3962       // /* HeapReference<Class> */ out = obj->klass_
   3963       GenerateReferenceLoadTwoRegisters(instruction,
   3964                                         out_loc,
   3965                                         obj_loc,
   3966                                         class_offset,
   3967                                         maybe_temp_loc,
   3968                                         read_barrier_option);
   3969       // Walk over the class hierarchy to find a match.
   3970       vixl::aarch64::Label loop, success;
   3971       __ Bind(&loop);
   3972       __ Cmp(out, cls);
   3973       __ B(eq, &success);
   3974       // /* HeapReference<Class> */ out = out->super_class_
   3975       GenerateReferenceLoadOneRegister(instruction,
   3976                                        out_loc,
   3977                                        super_offset,
   3978                                        maybe_temp_loc,
   3979                                        read_barrier_option);
   3980       __ Cbnz(out, &loop);
   3981       // If `out` is null, we use it for the result, and jump to `done`.
   3982       __ B(&done);
   3983       __ Bind(&success);
   3984       __ Mov(out, 1);
   3985       if (zero.IsLinked()) {
   3986         __ B(&done);
   3987       }
   3988       break;
   3989     }
   3990 
   3991     case TypeCheckKind::kArrayObjectCheck: {
   3992       ReadBarrierOption read_barrier_option =
   3993           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
   3994       // /* HeapReference<Class> */ out = obj->klass_
   3995       GenerateReferenceLoadTwoRegisters(instruction,
   3996                                         out_loc,
   3997                                         obj_loc,
   3998                                         class_offset,
   3999                                         maybe_temp_loc,
   4000                                         read_barrier_option);
   4001       // Do an exact check.
   4002       vixl::aarch64::Label exact_check;
   4003       __ Cmp(out, cls);
   4004       __ B(eq, &exact_check);
   4005       // Otherwise, we need to check that the object's class is a non-primitive array.
   4006       // /* HeapReference<Class> */ out = out->component_type_
   4007       GenerateReferenceLoadOneRegister(instruction,
   4008                                        out_loc,
   4009                                        component_offset,
   4010                                        maybe_temp_loc,
   4011                                        read_barrier_option);
   4012       // If `out` is null, we use it for the result, and jump to `done`.
   4013       __ Cbz(out, &done);
   4014       __ Ldrh(out, HeapOperand(out, primitive_offset));
   4015       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
   4016       __ Cbnz(out, &zero);
   4017       __ Bind(&exact_check);
   4018       __ Mov(out, 1);
   4019       __ B(&done);
   4020       break;
   4021     }
   4022 
   4023     case TypeCheckKind::kArrayCheck: {
   4024       // No read barrier since the slow path will retry upon failure.
   4025       // /* HeapReference<Class> */ out = obj->klass_
   4026       GenerateReferenceLoadTwoRegisters(instruction,
   4027                                         out_loc,
   4028                                         obj_loc,
   4029                                         class_offset,
   4030                                         maybe_temp_loc,
   4031                                         kWithoutReadBarrier);
   4032       __ Cmp(out, cls);
   4033       DCHECK(locations->OnlyCallsOnSlowPath());
   4034       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
   4035           instruction, /* is_fatal */ false);
   4036       codegen_->AddSlowPath(slow_path);
   4037       __ B(ne, slow_path->GetEntryLabel());
   4038       __ Mov(out, 1);
   4039       if (zero.IsLinked()) {
   4040         __ B(&done);
   4041       }
   4042       break;
   4043     }
   4044 
   4045     case TypeCheckKind::kUnresolvedCheck:
   4046     case TypeCheckKind::kInterfaceCheck: {
   4047       // Note that we indeed only call on slow path, but we always go
   4048       // into the slow path for the unresolved and interface check
   4049       // cases.
   4050       //
   4051       // We cannot directly call the InstanceofNonTrivial runtime
   4052       // entry point without resorting to a type checking slow path
   4053       // here (i.e. by calling InvokeRuntime directly), as it would
   4054       // require to assign fixed registers for the inputs of this
   4055       // HInstanceOf instruction (following the runtime calling
   4056       // convention), which might be cluttered by the potential first
   4057       // read barrier emission at the beginning of this method.
   4058       //
   4059       // TODO: Introduce a new runtime entry point taking the object
   4060       // to test (instead of its class) as argument, and let it deal
   4061       // with the read barrier issues. This will let us refactor this
   4062       // case of the `switch` code as it was previously (with a direct
   4063       // call to the runtime not using a type checking slow path).
   4064       // This should also be beneficial for the other cases above.
   4065       DCHECK(locations->OnlyCallsOnSlowPath());
   4066       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
   4067           instruction, /* is_fatal */ false);
   4068       codegen_->AddSlowPath(slow_path);
   4069       __ B(slow_path->GetEntryLabel());
   4070       if (zero.IsLinked()) {
   4071         __ B(&done);
   4072       }
   4073       break;
   4074     }
   4075   }
   4076 
   4077   if (zero.IsLinked()) {
   4078     __ Bind(&zero);
   4079     __ Mov(out, 0);
   4080   }
   4081 
   4082   if (done.IsLinked()) {
   4083     __ Bind(&done);
   4084   }
   4085 
   4086   if (slow_path != nullptr) {
   4087     __ Bind(slow_path->GetExitLabel());
   4088   }
   4089 }
   4090 
   4091 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
   4092   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   4093   LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
   4094   LocationSummary* locations =
   4095       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
   4096   locations->SetInAt(0, Location::RequiresRegister());
   4097   locations->SetInAt(1, Location::RequiresRegister());
   4098   // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64.
   4099   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
   4100 }
   4101 
   4102 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
   4103   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
   4104   LocationSummary* locations = instruction->GetLocations();
   4105   Location obj_loc = locations->InAt(0);
   4106   Register obj = InputRegisterAt(instruction, 0);
   4107   Register cls = InputRegisterAt(instruction, 1);
   4108   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
   4109   DCHECK_GE(num_temps, 1u);
   4110   DCHECK_LE(num_temps, 3u);
   4111   Location temp_loc = locations->GetTemp(0);
   4112   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
   4113   Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
   4114   Register temp = WRegisterFrom(temp_loc);
   4115   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
   4116   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
   4117   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
   4118   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
   4119   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
   4120   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
   4121   const uint32_t object_array_data_offset =
   4122       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
   4123 
   4124   bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
   4125   SlowPathCodeARM64* type_check_slow_path =
   4126       new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
   4127           instruction, is_type_check_slow_path_fatal);
   4128   codegen_->AddSlowPath(type_check_slow_path);
   4129 
   4130   vixl::aarch64::Label done;
   4131   // Avoid null check if we know obj is not null.
   4132   if (instruction->MustDoNullCheck()) {
   4133     __ Cbz(obj, &done);
   4134   }
   4135 
   4136   switch (type_check_kind) {
   4137     case TypeCheckKind::kExactCheck:
   4138     case TypeCheckKind::kArrayCheck: {
   4139       // /* HeapReference<Class> */ temp = obj->klass_
   4140       GenerateReferenceLoadTwoRegisters(instruction,
   4141                                         temp_loc,
   4142                                         obj_loc,
   4143                                         class_offset,
   4144                                         maybe_temp2_loc,
   4145                                         kWithoutReadBarrier);
   4146 
   4147       __ Cmp(temp, cls);
   4148       // Jump to slow path for throwing the exception or doing a
   4149       // more involved array check.
   4150       __ B(ne, type_check_slow_path->GetEntryLabel());
   4151       break;
   4152     }
   4153 
   4154     case TypeCheckKind::kAbstractClassCheck: {
   4155       // /* HeapReference<Class> */ temp = obj->klass_
   4156       GenerateReferenceLoadTwoRegisters(instruction,
   4157                                         temp_loc,
   4158                                         obj_loc,
   4159                                         class_offset,
   4160                                         maybe_temp2_loc,
   4161                                         kWithoutReadBarrier);
   4162 
   4163       // If the class is abstract, we eagerly fetch the super class of the
   4164       // object to avoid doing a comparison we know will fail.
   4165       vixl::aarch64::Label loop;
   4166       __ Bind(&loop);
   4167       // /* HeapReference<Class> */ temp = temp->super_class_
   4168       GenerateReferenceLoadOneRegister(instruction,
   4169                                        temp_loc,
   4170                                        super_offset,
   4171                                        maybe_temp2_loc,
   4172                                        kWithoutReadBarrier);
   4173 
   4174       // If the class reference currently in `temp` is null, jump to the slow path to throw the
   4175       // exception.
   4176       __ Cbz(temp, type_check_slow_path->GetEntryLabel());
   4177       // Otherwise, compare classes.
   4178       __ Cmp(temp, cls);
   4179       __ B(ne, &loop);
   4180       break;
   4181     }
   4182 
   4183     case TypeCheckKind::kClassHierarchyCheck: {
   4184       // /* HeapReference<Class> */ temp = obj->klass_
   4185       GenerateReferenceLoadTwoRegisters(instruction,
   4186                                         temp_loc,
   4187                                         obj_loc,
   4188                                         class_offset,
   4189                                         maybe_temp2_loc,
   4190                                         kWithoutReadBarrier);
   4191 
   4192       // Walk over the class hierarchy to find a match.
   4193       vixl::aarch64::Label loop;
   4194       __ Bind(&loop);
   4195       __ Cmp(temp, cls);
   4196       __ B(eq, &done);
   4197 
   4198       // /* HeapReference<Class> */ temp = temp->super_class_
   4199       GenerateReferenceLoadOneRegister(instruction,
   4200                                        temp_loc,
   4201                                        super_offset,
   4202                                        maybe_temp2_loc,
   4203                                        kWithoutReadBarrier);
   4204 
   4205       // If the class reference currently in `temp` is not null, jump
   4206       // back at the beginning of the loop.
   4207       __ Cbnz(temp, &loop);
   4208       // Otherwise, jump to the slow path to throw the exception.
   4209       __ B(type_check_slow_path->GetEntryLabel());
   4210       break;
   4211     }
   4212 
   4213     case TypeCheckKind::kArrayObjectCheck: {
   4214       // /* HeapReference<Class> */ temp = obj->klass_
   4215       GenerateReferenceLoadTwoRegisters(instruction,
   4216                                         temp_loc,
   4217                                         obj_loc,
   4218                                         class_offset,
   4219                                         maybe_temp2_loc,
   4220                                         kWithoutReadBarrier);
   4221 
   4222       // Do an exact check.
   4223       __ Cmp(temp, cls);
   4224       __ B(eq, &done);
   4225 
   4226       // Otherwise, we need to check that the object's class is a non-primitive array.
   4227       // /* HeapReference<Class> */ temp = temp->component_type_
   4228       GenerateReferenceLoadOneRegister(instruction,
   4229                                        temp_loc,
   4230                                        component_offset,
   4231                                        maybe_temp2_loc,
   4232                                        kWithoutReadBarrier);
   4233 
   4234       // If the component type is null, jump to the slow path to throw the exception.
   4235       __ Cbz(temp, type_check_slow_path->GetEntryLabel());
   4236       // Otherwise, the object is indeed an array. Further check that this component type is not a
   4237       // primitive type.
   4238       __ Ldrh(temp, HeapOperand(temp, primitive_offset));
   4239       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
   4240       __ Cbnz(temp, type_check_slow_path->GetEntryLabel());
   4241       break;
   4242     }
   4243 
   4244     case TypeCheckKind::kUnresolvedCheck:
   4245       // We always go into the type check slow path for the unresolved check cases.
   4246       //
   4247       // We cannot directly call the CheckCast runtime entry point
   4248       // without resorting to a type checking slow path here (i.e. by
   4249       // calling InvokeRuntime directly), as it would require to
   4250       // assign fixed registers for the inputs of this HInstanceOf
   4251       // instruction (following the runtime calling convention), which
   4252       // might be cluttered by the potential first read barrier
   4253       // emission at the beginning of this method.
   4254       __ B(type_check_slow_path->GetEntryLabel());
   4255       break;
   4256     case TypeCheckKind::kInterfaceCheck: {
   4257       // /* HeapReference<Class> */ temp = obj->klass_
   4258       GenerateReferenceLoadTwoRegisters(instruction,
   4259                                         temp_loc,
   4260                                         obj_loc,
   4261                                         class_offset,
   4262                                         maybe_temp2_loc,
   4263                                         kWithoutReadBarrier);
   4264 
   4265       // /* HeapReference<Class> */ temp = temp->iftable_
   4266       GenerateReferenceLoadTwoRegisters(instruction,
   4267                                         temp_loc,
   4268                                         temp_loc,
   4269                                         iftable_offset,
   4270                                         maybe_temp2_loc,
   4271                                         kWithoutReadBarrier);
   4272       // Iftable is never null.
   4273       __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
   4274       // Loop through the iftable and check if any class matches.
   4275       vixl::aarch64::Label start_loop;
   4276       __ Bind(&start_loop);
   4277       __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
   4278       __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
   4279       GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
   4280       // Go to next interface.
   4281       __ Add(temp, temp, 2 * kHeapReferenceSize);
   4282       __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
   4283       // Compare the classes and continue the loop if they do not match.
   4284       __ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
   4285       __ B(ne, &start_loop);
   4286       break;
   4287     }
   4288   }
   4289   __ Bind(&done);
   4290 
   4291   __ Bind(type_check_slow_path->GetExitLabel());
   4292 }
   4293 
   4294 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
   4295   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
   4296   locations->SetOut(Location::ConstantLocation(constant));
   4297 }
   4298 
   4299 void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
   4300   // Will be generated at use site.
   4301 }
   4302 
   4303 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
   4304   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
   4305   locations->SetOut(Location::ConstantLocation(constant));
   4306 }
   4307 
   4308 void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
   4309   // Will be generated at use site.
   4310 }
   4311 
   4312 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   4313   // The trampoline uses the same calling convention as dex calling conventions,
   4314   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
   4315   // the method_idx.
   4316   HandleInvoke(invoke);
   4317 }
   4318 
   4319 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
   4320   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
   4321   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4322 }
   4323 
   4324 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
   4325   InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
   4326   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
   4327 }
   4328 
   4329 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
   4330   HandleInvoke(invoke);
   4331 }
   4332 
   4333 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
   4334   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
   4335   LocationSummary* locations = invoke->GetLocations();
   4336   Register temp = XRegisterFrom(locations->GetTemp(0));
   4337   Location receiver = locations->InAt(0);
   4338   Offset class_offset = mirror::Object::ClassOffset();
   4339   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
   4340 
   4341   // The register ip1 is required to be used for the hidden argument in
   4342   // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
   4343   MacroAssembler* masm = GetVIXLAssembler();
   4344   UseScratchRegisterScope scratch_scope(masm);
   4345   scratch_scope.Exclude(ip1);
   4346   __ Mov(ip1, invoke->GetDexMethodIndex());
   4347 
   4348   // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   4349   if (receiver.IsStackSlot()) {
   4350     __ Ldr(temp.W(), StackOperandFrom(receiver));
   4351     {
   4352       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   4353       // /* HeapReference<Class> */ temp = temp->klass_
   4354       __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
   4355       codegen_->MaybeRecordImplicitNullCheck(invoke);
   4356     }
   4357   } else {
   4358     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   4359     // /* HeapReference<Class> */ temp = receiver->klass_
   4360     __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
   4361     codegen_->MaybeRecordImplicitNullCheck(invoke);
   4362   }
   4363 
   4364   // Instead of simply (possibly) unpoisoning `temp` here, we should
   4365   // emit a read barrier for the previous class reference load.
   4366   // However this is not required in practice, as this is an
   4367   // intermediate/temporary reference and because the current
   4368   // concurrent copying collector keeps the from-space memory
   4369   // intact/accessible until the end of the marking phase (the
   4370   // concurrent copying collector may not in the future).
   4371   GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
   4372   __ Ldr(temp,
   4373       MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
   4374   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   4375       invoke->GetImtIndex(), kArm64PointerSize));
   4376   // temp = temp->GetImtEntryAt(method_offset);
   4377   __ Ldr(temp, MemOperand(temp, method_offset));
   4378   // lr = temp->GetEntryPoint();
   4379   __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
   4380 
   4381   {
   4382     // Ensure the pc position is recorded immediately after the `blr` instruction.
   4383     ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
   4384 
   4385     // lr();
   4386     __ blr(lr);
   4387     DCHECK(!codegen_->IsLeafMethod());
   4388     codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   4389   }
   4390 
   4391   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4392 }
   4393 
   4394 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   4395   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
   4396   if (intrinsic.TryDispatch(invoke)) {
   4397     return;
   4398   }
   4399 
   4400   HandleInvoke(invoke);
   4401 }
   4402 
   4403 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   4404   // Explicit clinit checks triggered by static invokes must have been pruned by
   4405   // art::PrepareForRegisterAllocation.
   4406   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   4407 
   4408   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
   4409   if (intrinsic.TryDispatch(invoke)) {
   4410     return;
   4411   }
   4412 
   4413   HandleInvoke(invoke);
   4414 }
   4415 
   4416 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
   4417   if (invoke->GetLocations()->Intrinsified()) {
   4418     IntrinsicCodeGeneratorARM64 intrinsic(codegen);
   4419     intrinsic.Dispatch(invoke);
   4420     return true;
   4421   }
   4422   return false;
   4423 }
   4424 
   4425 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
   4426       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
   4427       HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
   4428   // On ARM64 we support all dispatch types.
   4429   return desired_dispatch_info;
   4430 }
   4431 
   4432 void CodeGeneratorARM64::GenerateStaticOrDirectCall(
   4433     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
   4434   // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
   4435   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
   4436   switch (invoke->GetMethodLoadKind()) {
   4437     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
   4438       uint32_t offset =
   4439           GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
   4440       // temp = thread->string_init_entrypoint
   4441       __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
   4442       break;
   4443     }
   4444     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
   4445       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
   4446       break;
   4447     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
   4448       DCHECK(GetCompilerOptions().IsBootImage());
   4449       // Add ADRP with its PC-relative method patch.
   4450       vixl::aarch64::Label* adrp_label = NewBootImageMethodPatch(invoke->GetTargetMethod());
   4451       EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
   4452       // Add ADD with its PC-relative method patch.
   4453       vixl::aarch64::Label* add_label =
   4454           NewBootImageMethodPatch(invoke->GetTargetMethod(), adrp_label);
   4455       EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
   4456       break;
   4457     }
   4458     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
   4459       // Load method address from literal pool.
   4460       __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
   4461       break;
   4462     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
   4463       // Add ADRP with its PC-relative DexCache access patch.
   4464       MethodReference target_method(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex());
   4465       vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(target_method);
   4466       EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
   4467       // Add LDR with its PC-relative DexCache access patch.
   4468       vixl::aarch64::Label* ldr_label =
   4469           NewMethodBssEntryPatch(target_method, adrp_label);
   4470       EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
   4471       break;
   4472     }
   4473     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
   4474       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
   4475       return;  // No code pointer retrieval; the runtime performs the call directly.
   4476     }
   4477   }
   4478 
   4479   switch (invoke->GetCodePtrLocation()) {
   4480     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
   4481       {
   4482         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
   4483         ExactAssemblyScope eas(GetVIXLAssembler(),
   4484                                kInstructionSize,
   4485                                CodeBufferCheckScope::kExactSize);
   4486         __ bl(&frame_entry_label_);
   4487         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
   4488       }
   4489       break;
   4490     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
   4491       // LR = callee_method->entry_point_from_quick_compiled_code_;
   4492       __ Ldr(lr, MemOperand(
   4493           XRegisterFrom(callee_method),
   4494           ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize).Int32Value()));
   4495       {
   4496         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
   4497         ExactAssemblyScope eas(GetVIXLAssembler(),
   4498                                kInstructionSize,
   4499                                CodeBufferCheckScope::kExactSize);
   4500         // lr()
   4501         __ blr(lr);
   4502         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
   4503       }
   4504       break;
   4505   }
   4506 
   4507   DCHECK(!IsLeafMethod());
   4508 }
   4509 
   4510 void CodeGeneratorARM64::GenerateVirtualCall(
   4511     HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
   4512   // Use the calling convention instead of the location of the receiver, as
   4513   // intrinsics may have put the receiver in a different register. In the intrinsics
   4514   // slow path, the arguments have been moved to the right place, so here we are
   4515   // guaranteed that the receiver is the first register of the calling convention.
   4516   InvokeDexCallingConvention calling_convention;
   4517   Register receiver = calling_convention.GetRegisterAt(0);
   4518   Register temp = XRegisterFrom(temp_in);
   4519   size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   4520       invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
   4521   Offset class_offset = mirror::Object::ClassOffset();
   4522   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
   4523 
   4524   DCHECK(receiver.IsRegister());
   4525 
   4526   {
   4527     // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   4528     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   4529     // /* HeapReference<Class> */ temp = receiver->klass_
   4530     __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
   4531     MaybeRecordImplicitNullCheck(invoke);
   4532   }
   4533   // Instead of simply (possibly) unpoisoning `temp` here, we should
   4534   // emit a read barrier for the previous class reference load.
   4535   // intermediate/temporary reference and because the current
   4536   // concurrent copying collector keeps the from-space memory
   4537   // intact/accessible until the end of the marking phase (the
   4538   // concurrent copying collector may not in the future).
   4539   GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
   4540   // temp = temp->GetMethodAt(method_offset);
   4541   __ Ldr(temp, MemOperand(temp, method_offset));
   4542   // lr = temp->GetEntryPoint();
   4543   __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
   4544   {
   4545     // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
   4546     ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
   4547     // lr();
   4548     __ blr(lr);
   4549     RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
   4550   }
   4551 }
   4552 
   4553 void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
   4554   HandleInvoke(invoke);
   4555 }
   4556 
   4557 void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
   4558   codegen_->GenerateInvokePolymorphicCall(invoke);
   4559   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4560 }
   4561 
   4562 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
   4563     MethodReference target_method,
   4564     vixl::aarch64::Label* adrp_label) {
   4565   return NewPcRelativePatch(
   4566       target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
   4567 }
   4568 
   4569 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
   4570     MethodReference target_method,
   4571     vixl::aarch64::Label* adrp_label) {
   4572   return NewPcRelativePatch(
   4573       target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
   4574 }
   4575 
   4576 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
   4577     const DexFile& dex_file,
   4578     dex::TypeIndex type_index,
   4579     vixl::aarch64::Label* adrp_label) {
   4580   return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
   4581 }
   4582 
   4583 vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
   4584     const DexFile& dex_file,
   4585     dex::TypeIndex type_index,
   4586     vixl::aarch64::Label* adrp_label) {
   4587   return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &type_bss_entry_patches_);
   4588 }
   4589 
   4590 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
   4591     const DexFile& dex_file,
   4592     dex::StringIndex string_index,
   4593     vixl::aarch64::Label* adrp_label) {
   4594   return NewPcRelativePatch(
   4595       &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
   4596 }
   4597 
   4598 vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
   4599     const DexFile& dex_file,
   4600     dex::StringIndex string_index,
   4601     vixl::aarch64::Label* adrp_label) {
   4602   return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
   4603 }
   4604 
   4605 vixl::aarch64::Label* CodeGeneratorARM64::NewBakerReadBarrierPatch(uint32_t custom_data) {
   4606   baker_read_barrier_patches_.emplace_back(custom_data);
   4607   return &baker_read_barrier_patches_.back().label;
   4608 }
   4609 
   4610 vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
   4611     const DexFile* dex_file,
   4612     uint32_t offset_or_index,
   4613     vixl::aarch64::Label* adrp_label,
   4614     ArenaDeque<PcRelativePatchInfo>* patches) {
   4615   // Add a patch entry and return the label.
   4616   patches->emplace_back(dex_file, offset_or_index);
   4617   PcRelativePatchInfo* info = &patches->back();
   4618   vixl::aarch64::Label* label = &info->label;
   4619   // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
   4620   info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
   4621   return label;
   4622 }
   4623 
   4624 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(
   4625     uint64_t address) {
   4626   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address));
   4627 }
   4628 
   4629 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral(
   4630     const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) {
   4631   ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
   4632   return jit_string_patches_.GetOrCreate(
   4633       StringReference(&dex_file, string_index),
   4634       [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); });
   4635 }
   4636 
   4637 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral(
   4638     const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) {
   4639   ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
   4640   return jit_class_patches_.GetOrCreate(
   4641       TypeReference(&dex_file, type_index),
   4642       [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); });
   4643 }
   4644 
   4645 void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
   4646                                              vixl::aarch64::Register reg) {
   4647   DCHECK(reg.IsX());
   4648   SingleEmissionCheckScope guard(GetVIXLAssembler());
   4649   __ Bind(fixup_label);
   4650   __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
   4651 }
   4652 
   4653 void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
   4654                                             vixl::aarch64::Register out,
   4655                                             vixl::aarch64::Register base) {
   4656   DCHECK(out.IsX());
   4657   DCHECK(base.IsX());
   4658   SingleEmissionCheckScope guard(GetVIXLAssembler());
   4659   __ Bind(fixup_label);
   4660   __ add(out, base, Operand(/* offset placeholder */ 0));
   4661 }
   4662 
   4663 void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
   4664                                                   vixl::aarch64::Register out,
   4665                                                   vixl::aarch64::Register base) {
   4666   DCHECK(base.IsX());
   4667   SingleEmissionCheckScope guard(GetVIXLAssembler());
   4668   __ Bind(fixup_label);
   4669   __ ldr(out, MemOperand(base, /* offset placeholder */ 0));
   4670 }
   4671 
   4672 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
   4673 inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
   4674     const ArenaDeque<PcRelativePatchInfo>& infos,
   4675     ArenaVector<linker::LinkerPatch>* linker_patches) {
   4676   for (const PcRelativePatchInfo& info : infos) {
   4677     linker_patches->push_back(Factory(info.label.GetLocation(),
   4678                                       info.target_dex_file,
   4679                                       info.pc_insn_label->GetLocation(),
   4680                                       info.offset_or_index));
   4681   }
   4682 }
   4683 
   4684 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
   4685   DCHECK(linker_patches->empty());
   4686   size_t size =
   4687       boot_image_method_patches_.size() +
   4688       method_bss_entry_patches_.size() +
   4689       boot_image_type_patches_.size() +
   4690       type_bss_entry_patches_.size() +
   4691       boot_image_string_patches_.size() +
   4692       string_bss_entry_patches_.size() +
   4693       baker_read_barrier_patches_.size();
   4694   linker_patches->reserve(size);
   4695   if (GetCompilerOptions().IsBootImage()) {
   4696     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
   4697         boot_image_method_patches_, linker_patches);
   4698     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
   4699         boot_image_type_patches_, linker_patches);
   4700     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
   4701         boot_image_string_patches_, linker_patches);
   4702   } else {
   4703     DCHECK(boot_image_method_patches_.empty());
   4704     EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeClassTablePatch>(
   4705         boot_image_type_patches_, linker_patches);
   4706     EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringInternTablePatch>(
   4707         boot_image_string_patches_, linker_patches);
   4708   }
   4709   EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
   4710       method_bss_entry_patches_, linker_patches);
   4711   EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
   4712       type_bss_entry_patches_, linker_patches);
   4713   EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
   4714       string_bss_entry_patches_, linker_patches);
   4715   for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
   4716     linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
   4717         info.label.GetLocation(), info.custom_data));
   4718   }
   4719   DCHECK_EQ(size, linker_patches->size());
   4720 }
   4721 
   4722 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) {
   4723   return uint32_literals_.GetOrCreate(
   4724       value,
   4725       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
   4726 }
   4727 
   4728 vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
   4729   return uint64_literals_.GetOrCreate(
   4730       value,
   4731       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
   4732 }
   4733 
   4734 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
   4735   // Explicit clinit checks triggered by static invokes must have been pruned by
   4736   // art::PrepareForRegisterAllocation.
   4737   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
   4738 
   4739   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   4740     codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4741     return;
   4742   }
   4743 
   4744   {
   4745     // Ensure that between the BLR (emitted by GenerateStaticOrDirectCall) and RecordPcInfo there
   4746     // are no pools emitted.
   4747     EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
   4748     LocationSummary* locations = invoke->GetLocations();
   4749     codegen_->GenerateStaticOrDirectCall(
   4750         invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
   4751   }
   4752 
   4753   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4754 }
   4755 
   4756 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
   4757   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
   4758     codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4759     return;
   4760   }
   4761 
   4762   {
   4763     // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there
   4764     // are no pools emitted.
   4765     EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
   4766     codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
   4767     DCHECK(!codegen_->IsLeafMethod());
   4768   }
   4769 
   4770   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4771 }
   4772 
   4773 HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
   4774     HLoadClass::LoadKind desired_class_load_kind) {
   4775   switch (desired_class_load_kind) {
   4776     case HLoadClass::LoadKind::kInvalid:
   4777       LOG(FATAL) << "UNREACHABLE";
   4778       UNREACHABLE();
   4779     case HLoadClass::LoadKind::kReferrersClass:
   4780       break;
   4781     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
   4782     case HLoadClass::LoadKind::kBootImageClassTable:
   4783     case HLoadClass::LoadKind::kBssEntry:
   4784       DCHECK(!Runtime::Current()->UseJitCompilation());
   4785       break;
   4786     case HLoadClass::LoadKind::kJitTableAddress:
   4787       DCHECK(Runtime::Current()->UseJitCompilation());
   4788       break;
   4789     case HLoadClass::LoadKind::kBootImageAddress:
   4790     case HLoadClass::LoadKind::kRuntimeCall:
   4791       break;
   4792   }
   4793   return desired_class_load_kind;
   4794 }
   4795 
   4796 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
   4797   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
   4798   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
   4799     InvokeRuntimeCallingConvention calling_convention;
   4800     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
   4801         cls,
   4802         LocationFrom(calling_convention.GetRegisterAt(0)),
   4803         LocationFrom(vixl::aarch64::x0));
   4804     DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
   4805     return;
   4806   }
   4807   DCHECK(!cls->NeedsAccessCheck());
   4808 
   4809   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
   4810   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
   4811       ? LocationSummary::kCallOnSlowPath
   4812       : LocationSummary::kNoCall;
   4813   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
   4814   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
   4815     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
   4816   }
   4817 
   4818   if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
   4819     locations->SetInAt(0, Location::RequiresRegister());
   4820   }
   4821   locations->SetOut(Location::RequiresRegister());
   4822   if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
   4823     if (!kUseReadBarrier || kUseBakerReadBarrier) {
   4824       // Rely on the type resolution or initialization and marking to save everything we need.
   4825       RegisterSet caller_saves = RegisterSet::Empty();
   4826       InvokeRuntimeCallingConvention calling_convention;
   4827       caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
   4828       DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
   4829                 RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
   4830                              DataType::Type::kReference).GetCode());
   4831       locations->SetCustomSlowPathCallerSaves(caller_saves);
   4832     } else {
   4833       // For non-Baker read barrier we have a temp-clobbering call.
   4834     }
   4835   }
   4836 }
   4837 
   4838 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
   4839 // move.
   4840 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
   4841   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
   4842   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
   4843     codegen_->GenerateLoadClassRuntimeCall(cls);
   4844     codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4845     return;
   4846   }
   4847   DCHECK(!cls->NeedsAccessCheck());
   4848 
   4849   Location out_loc = cls->GetLocations()->Out();
   4850   Register out = OutputRegister(cls);
   4851 
   4852   const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
   4853       ? kWithoutReadBarrier
   4854       : kCompilerReadBarrierOption;
   4855   bool generate_null_check = false;
   4856   switch (load_kind) {
   4857     case HLoadClass::LoadKind::kReferrersClass: {
   4858       DCHECK(!cls->CanCallRuntime());
   4859       DCHECK(!cls->MustGenerateClinitCheck());
   4860       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
   4861       Register current_method = InputRegisterAt(cls, 0);
   4862       GenerateGcRootFieldLoad(cls,
   4863                               out_loc,
   4864                               current_method,
   4865                               ArtMethod::DeclaringClassOffset().Int32Value(),
   4866                               /* fixup_label */ nullptr,
   4867                               read_barrier_option);
   4868       break;
   4869     }
   4870     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
   4871       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
   4872       // Add ADRP with its PC-relative type patch.
   4873       const DexFile& dex_file = cls->GetDexFile();
   4874       dex::TypeIndex type_index = cls->GetTypeIndex();
   4875       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
   4876       codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
   4877       // Add ADD with its PC-relative type patch.
   4878       vixl::aarch64::Label* add_label =
   4879           codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
   4880       codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
   4881       break;
   4882     }
   4883     case HLoadClass::LoadKind::kBootImageAddress: {
   4884       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
   4885       uint32_t address = dchecked_integral_cast<uint32_t>(
   4886           reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
   4887       DCHECK_NE(address, 0u);
   4888       __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
   4889       break;
   4890     }
   4891     case HLoadClass::LoadKind::kBootImageClassTable: {
   4892       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
   4893       // Add ADRP with its PC-relative type patch.
   4894       const DexFile& dex_file = cls->GetDexFile();
   4895       dex::TypeIndex type_index = cls->GetTypeIndex();
   4896       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
   4897       codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
   4898       // Add LDR with its PC-relative type patch.
   4899       vixl::aarch64::Label* ldr_label =
   4900           codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
   4901       codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
   4902       // Extract the reference from the slot data, i.e. clear the hash bits.
   4903       int32_t masked_hash = ClassTable::TableSlot::MaskHash(
   4904           ComputeModifiedUtf8Hash(dex_file.StringByTypeIdx(type_index)));
   4905       if (masked_hash != 0) {
   4906         __ Sub(out.W(), out.W(), Operand(masked_hash));
   4907       }
   4908       break;
   4909     }
   4910     case HLoadClass::LoadKind::kBssEntry: {
   4911       // Add ADRP with its PC-relative Class .bss entry patch.
   4912       const DexFile& dex_file = cls->GetDexFile();
   4913       dex::TypeIndex type_index = cls->GetTypeIndex();
   4914       vixl::aarch64::Register temp = XRegisterFrom(out_loc);
   4915       vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(dex_file, type_index);
   4916       codegen_->EmitAdrpPlaceholder(adrp_label, temp);
   4917       // Add LDR with its PC-relative Class patch.
   4918       vixl::aarch64::Label* ldr_label =
   4919           codegen_->NewBssEntryTypePatch(dex_file, type_index, adrp_label);
   4920       // /* GcRoot<mirror::Class> */ out = *(base_address + offset)  /* PC-relative */
   4921       GenerateGcRootFieldLoad(cls,
   4922                               out_loc,
   4923                               temp,
   4924                               /* offset placeholder */ 0u,
   4925                               ldr_label,
   4926                               read_barrier_option);
   4927       generate_null_check = true;
   4928       break;
   4929     }
   4930     case HLoadClass::LoadKind::kJitTableAddress: {
   4931       __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
   4932                                                        cls->GetTypeIndex(),
   4933                                                        cls->GetClass()));
   4934       GenerateGcRootFieldLoad(cls,
   4935                               out_loc,
   4936                               out.X(),
   4937                               /* offset */ 0,
   4938                               /* fixup_label */ nullptr,
   4939                               read_barrier_option);
   4940       break;
   4941     }
   4942     case HLoadClass::LoadKind::kRuntimeCall:
   4943     case HLoadClass::LoadKind::kInvalid:
   4944       LOG(FATAL) << "UNREACHABLE";
   4945       UNREACHABLE();
   4946   }
   4947 
   4948   bool do_clinit = cls->MustGenerateClinitCheck();
   4949   if (generate_null_check || do_clinit) {
   4950     DCHECK(cls->CanCallRuntime());
   4951     SlowPathCodeARM64* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(
   4952         cls, cls, cls->GetDexPc(), do_clinit);
   4953     codegen_->AddSlowPath(slow_path);
   4954     if (generate_null_check) {
   4955       __ Cbz(out, slow_path->GetEntryLabel());
   4956     }
   4957     if (cls->MustGenerateClinitCheck()) {
   4958       GenerateClassInitializationCheck(slow_path, out);
   4959     } else {
   4960       __ Bind(slow_path->GetExitLabel());
   4961     }
   4962     codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   4963   }
   4964 }
   4965 
   4966 static MemOperand GetExceptionTlsAddress() {
   4967   return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
   4968 }
   4969 
   4970 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
   4971   LocationSummary* locations =
   4972       new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
   4973   locations->SetOut(Location::RequiresRegister());
   4974 }
   4975 
   4976 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
   4977   __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
   4978 }
   4979 
   4980 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
   4981   new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
   4982 }
   4983 
   4984 void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
   4985   __ Str(wzr, GetExceptionTlsAddress());
   4986 }
   4987 
   4988 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
   4989     HLoadString::LoadKind desired_string_load_kind) {
   4990   switch (desired_string_load_kind) {
   4991     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
   4992     case HLoadString::LoadKind::kBootImageInternTable:
   4993     case HLoadString::LoadKind::kBssEntry:
   4994       DCHECK(!Runtime::Current()->UseJitCompilation());
   4995       break;
   4996     case HLoadString::LoadKind::kJitTableAddress:
   4997       DCHECK(Runtime::Current()->UseJitCompilation());
   4998       break;
   4999     case HLoadString::LoadKind::kBootImageAddress:
   5000     case HLoadString::LoadKind::kRuntimeCall:
   5001       break;
   5002   }
   5003   return desired_string_load_kind;
   5004 }
   5005 
   5006 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
   5007   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
   5008   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
   5009   if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
   5010     InvokeRuntimeCallingConvention calling_convention;
   5011     locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
   5012   } else {
   5013     locations->SetOut(Location::RequiresRegister());
   5014     if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
   5015       if (!kUseReadBarrier || kUseBakerReadBarrier) {
   5016         // Rely on the pResolveString and marking to save everything we need.
   5017         RegisterSet caller_saves = RegisterSet::Empty();
   5018         InvokeRuntimeCallingConvention calling_convention;
   5019         caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
   5020         DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
   5021                   RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
   5022                                DataType::Type::kReference).GetCode());
   5023         locations->SetCustomSlowPathCallerSaves(caller_saves);
   5024       } else {
   5025         // For non-Baker read barrier we have a temp-clobbering call.
   5026       }
   5027     }
   5028   }
   5029 }
   5030 
   5031 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
   5032 // move.
   5033 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
   5034   Register out = OutputRegister(load);
   5035   Location out_loc = load->GetLocations()->Out();
   5036 
   5037   switch (load->GetLoadKind()) {
   5038     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
   5039       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
   5040       // Add ADRP with its PC-relative String patch.
   5041       const DexFile& dex_file = load->GetDexFile();
   5042       const dex::StringIndex string_index = load->GetStringIndex();
   5043       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
   5044       codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
   5045       // Add ADD with its PC-relative String patch.
   5046       vixl::aarch64::Label* add_label =
   5047           codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
   5048       codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
   5049       return;
   5050     }
   5051     case HLoadString::LoadKind::kBootImageAddress: {
   5052       uint32_t address = dchecked_integral_cast<uint32_t>(
   5053           reinterpret_cast<uintptr_t>(load->GetString().Get()));
   5054       DCHECK_NE(address, 0u);
   5055       __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
   5056       return;
   5057     }
   5058     case HLoadString::LoadKind::kBootImageInternTable: {
   5059       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
   5060       // Add ADRP with its PC-relative String patch.
   5061       const DexFile& dex_file = load->GetDexFile();
   5062       const dex::StringIndex string_index = load->GetStringIndex();
   5063       vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
   5064       codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
   5065       // Add LDR with its PC-relative String patch.
   5066       vixl::aarch64::Label* ldr_label =
   5067           codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
   5068       codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
   5069       return;
   5070     }
   5071     case HLoadString::LoadKind::kBssEntry: {
   5072       // Add ADRP with its PC-relative String .bss entry patch.
   5073       const DexFile& dex_file = load->GetDexFile();
   5074       const dex::StringIndex string_index = load->GetStringIndex();
   5075       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
   5076       Register temp = XRegisterFrom(out_loc);
   5077       vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
   5078       codegen_->EmitAdrpPlaceholder(adrp_label, temp);
   5079       // Add LDR with its .bss entry String patch.
   5080       vixl::aarch64::Label* ldr_label =
   5081           codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
   5082       // /* GcRoot<mirror::String> */ out = *(base_address + offset)  /* PC-relative */
   5083       GenerateGcRootFieldLoad(load,
   5084                               out_loc,
   5085                               temp,
   5086                               /* offset placeholder */ 0u,
   5087                               ldr_label,
   5088                               kCompilerReadBarrierOption);
   5089       SlowPathCodeARM64* slow_path =
   5090           new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
   5091       codegen_->AddSlowPath(slow_path);
   5092       __ Cbz(out.X(), slow_path->GetEntryLabel());
   5093       __ Bind(slow_path->GetExitLabel());
   5094       codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   5095       return;
   5096     }
   5097     case HLoadString::LoadKind::kJitTableAddress: {
   5098       __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
   5099                                                         load->GetStringIndex(),
   5100                                                         load->GetString()));
   5101       GenerateGcRootFieldLoad(load,
   5102                               out_loc,
   5103                               out.X(),
   5104                               /* offset */ 0,
   5105                               /* fixup_label */ nullptr,
   5106                               kCompilerReadBarrierOption);
   5107       return;
   5108     }
   5109     default:
   5110       break;
   5111   }
   5112 
   5113   // TODO: Re-add the compiler code to do string dex cache lookup again.
   5114   InvokeRuntimeCallingConvention calling_convention;
   5115   DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
   5116   __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
   5117   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
   5118   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
   5119   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   5120 }
   5121 
   5122 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
   5123   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
   5124   locations->SetOut(Location::ConstantLocation(constant));
   5125 }
   5126 
   5127 void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
   5128   // Will be generated at use site.
   5129 }
   5130 
   5131 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
   5132   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
   5133       instruction, LocationSummary::kCallOnMainOnly);
   5134   InvokeRuntimeCallingConvention calling_convention;
   5135   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   5136 }
   5137 
   5138 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
   5139   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
   5140                           instruction,
   5141                           instruction->GetDexPc());
   5142   if (instruction->IsEnter()) {
   5143     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
   5144   } else {
   5145     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
   5146   }
   5147   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   5148 }
   5149 
   5150 void LocationsBuilderARM64::VisitMul(HMul* mul) {
   5151   LocationSummary* locations =
   5152       new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
   5153   switch (mul->GetResultType()) {
   5154     case DataType::Type::kInt32:
   5155     case DataType::Type::kInt64:
   5156       locations->SetInAt(0, Location::RequiresRegister());
   5157       locations->SetInAt(1, Location::RequiresRegister());
   5158       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5159       break;
   5160 
   5161     case DataType::Type::kFloat32:
   5162     case DataType::Type::kFloat64:
   5163       locations->SetInAt(0, Location::RequiresFpuRegister());
   5164       locations->SetInAt(1, Location::RequiresFpuRegister());
   5165       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   5166       break;
   5167 
   5168     default:
   5169       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   5170   }
   5171 }
   5172 
   5173 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
   5174   switch (mul->GetResultType()) {
   5175     case DataType::Type::kInt32:
   5176     case DataType::Type::kInt64:
   5177       __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
   5178       break;
   5179 
   5180     case DataType::Type::kFloat32:
   5181     case DataType::Type::kFloat64:
   5182       __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
   5183       break;
   5184 
   5185     default:
   5186       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
   5187   }
   5188 }
   5189 
   5190 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
   5191   LocationSummary* locations =
   5192       new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
   5193   switch (neg->GetResultType()) {
   5194     case DataType::Type::kInt32:
   5195     case DataType::Type::kInt64:
   5196       locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
   5197       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5198       break;
   5199 
   5200     case DataType::Type::kFloat32:
   5201     case DataType::Type::kFloat64:
   5202       locations->SetInAt(0, Location::RequiresFpuRegister());
   5203       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   5204       break;
   5205 
   5206     default:
   5207       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   5208   }
   5209 }
   5210 
   5211 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
   5212   switch (neg->GetResultType()) {
   5213     case DataType::Type::kInt32:
   5214     case DataType::Type::kInt64:
   5215       __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
   5216       break;
   5217 
   5218     case DataType::Type::kFloat32:
   5219     case DataType::Type::kFloat64:
   5220       __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
   5221       break;
   5222 
   5223     default:
   5224       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
   5225   }
   5226 }
   5227 
   5228 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
   5229   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
   5230       instruction, LocationSummary::kCallOnMainOnly);
   5231   InvokeRuntimeCallingConvention calling_convention;
   5232   locations->SetOut(LocationFrom(x0));
   5233   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   5234   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
   5235 }
   5236 
   5237 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
   5238   // Note: if heap poisoning is enabled, the entry point takes cares
   5239   // of poisoning the reference.
   5240   QuickEntrypointEnum entrypoint =
   5241       CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass());
   5242   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
   5243   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
   5244   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   5245 }
   5246 
   5247 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
   5248   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
   5249       instruction, LocationSummary::kCallOnMainOnly);
   5250   InvokeRuntimeCallingConvention calling_convention;
   5251   if (instruction->IsStringAlloc()) {
   5252     locations->AddTemp(LocationFrom(kArtMethodRegister));
   5253   } else {
   5254     locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   5255   }
   5256   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
   5257 }
   5258 
   5259 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
   5260   // Note: if heap poisoning is enabled, the entry point takes cares
   5261   // of poisoning the reference.
   5262   if (instruction->IsStringAlloc()) {
   5263     // String is allocated through StringFactory. Call NewEmptyString entry point.
   5264     Location temp = instruction->GetLocations()->GetTemp(0);
   5265     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
   5266     __ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString)));
   5267     __ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value()));
   5268 
   5269     {
   5270       // Ensure the pc position is recorded immediately after the `blr` instruction.
   5271       ExactAssemblyScope eas(GetVIXLAssembler(),
   5272                              kInstructionSize,
   5273                              CodeBufferCheckScope::kExactSize);
   5274       __ blr(lr);
   5275       codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
   5276     }
   5277   } else {
   5278     codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
   5279     CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
   5280   }
   5281   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   5282 }
   5283 
   5284 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
   5285   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
   5286   locations->SetInAt(0, Location::RequiresRegister());
   5287   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5288 }
   5289 
   5290 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
   5291   switch (instruction->GetResultType()) {
   5292     case DataType::Type::kInt32:
   5293     case DataType::Type::kInt64:
   5294       __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
   5295       break;
   5296 
   5297     default:
   5298       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
   5299   }
   5300 }
   5301 
   5302 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
   5303   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
   5304   locations->SetInAt(0, Location::RequiresRegister());
   5305   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5306 }
   5307 
   5308 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
   5309   __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
   5310 }
   5311 
   5312 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
   5313   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
   5314   locations->SetInAt(0, Location::RequiresRegister());
   5315 }
   5316 
   5317 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
   5318   if (CanMoveNullCheckToUser(instruction)) {
   5319     return;
   5320   }
   5321   {
   5322     // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
   5323     EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   5324     Location obj = instruction->GetLocations()->InAt(0);
   5325     __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
   5326     RecordPcInfo(instruction, instruction->GetDexPc());
   5327   }
   5328 }
   5329 
   5330 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
   5331   SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
   5332   AddSlowPath(slow_path);
   5333 
   5334   LocationSummary* locations = instruction->GetLocations();
   5335   Location obj = locations->InAt(0);
   5336 
   5337   __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
   5338 }
   5339 
   5340 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
   5341   codegen_->GenerateNullCheck(instruction);
   5342 }
   5343 
   5344 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
   5345   HandleBinaryOp(instruction);
   5346 }
   5347 
   5348 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
   5349   HandleBinaryOp(instruction);
   5350 }
   5351 
   5352 void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
   5353   LOG(FATAL) << "Unreachable";
   5354 }
   5355 
   5356 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
   5357   if (instruction->GetNext()->IsSuspendCheck() &&
   5358       instruction->GetBlock()->GetLoopInformation() != nullptr) {
   5359     HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
   5360     // The back edge will generate the suspend check.
   5361     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
   5362   }
   5363 
   5364   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
   5365 }
   5366 
   5367 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
   5368   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
   5369   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
   5370   if (location.IsStackSlot()) {
   5371     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   5372   } else if (location.IsDoubleStackSlot()) {
   5373     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
   5374   }
   5375   locations->SetOut(location);
   5376 }
   5377 
   5378 void InstructionCodeGeneratorARM64::VisitParameterValue(
   5379     HParameterValue* instruction ATTRIBUTE_UNUSED) {
   5380   // Nothing to do, the parameter is already at its location.
   5381 }
   5382 
   5383 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
   5384   LocationSummary* locations =
   5385       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
   5386   locations->SetOut(LocationFrom(kArtMethodRegister));
   5387 }
   5388 
   5389 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
   5390     HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
   5391   // Nothing to do, the method is already at its location.
   5392 }
   5393 
   5394 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
   5395   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
   5396   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
   5397     locations->SetInAt(i, Location::Any());
   5398   }
   5399   locations->SetOut(Location::Any());
   5400 }
   5401 
   5402 void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
   5403   LOG(FATAL) << "Unreachable";
   5404 }
   5405 
   5406 void LocationsBuilderARM64::VisitRem(HRem* rem) {
   5407   DataType::Type type = rem->GetResultType();
   5408   LocationSummary::CallKind call_kind =
   5409       DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
   5410                                            : LocationSummary::kNoCall;
   5411   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
   5412 
   5413   switch (type) {
   5414     case DataType::Type::kInt32:
   5415     case DataType::Type::kInt64:
   5416       locations->SetInAt(0, Location::RequiresRegister());
   5417       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
   5418       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5419       break;
   5420 
   5421     case DataType::Type::kFloat32:
   5422     case DataType::Type::kFloat64: {
   5423       InvokeRuntimeCallingConvention calling_convention;
   5424       locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
   5425       locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
   5426       locations->SetOut(calling_convention.GetReturnLocation(type));
   5427 
   5428       break;
   5429     }
   5430 
   5431     default:
   5432       LOG(FATAL) << "Unexpected rem type " << type;
   5433   }
   5434 }
   5435 
   5436 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
   5437   DataType::Type type = rem->GetResultType();
   5438 
   5439   switch (type) {
   5440     case DataType::Type::kInt32:
   5441     case DataType::Type::kInt64: {
   5442       GenerateDivRemIntegral(rem);
   5443       break;
   5444     }
   5445 
   5446     case DataType::Type::kFloat32:
   5447     case DataType::Type::kFloat64: {
   5448       QuickEntrypointEnum entrypoint =
   5449           (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
   5450       codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc());
   5451       if (type == DataType::Type::kFloat32) {
   5452         CheckEntrypointTypes<kQuickFmodf, float, float, float>();
   5453       } else {
   5454         CheckEntrypointTypes<kQuickFmod, double, double, double>();
   5455       }
   5456       break;
   5457     }
   5458 
   5459     default:
   5460       LOG(FATAL) << "Unexpected rem type " << type;
   5461       UNREACHABLE();
   5462   }
   5463 }
   5464 
   5465 void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
   5466   constructor_fence->SetLocations(nullptr);
   5467 }
   5468 
   5469 void InstructionCodeGeneratorARM64::VisitConstructorFence(
   5470     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
   5471   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
   5472 }
   5473 
   5474 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   5475   memory_barrier->SetLocations(nullptr);
   5476 }
   5477 
   5478 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
   5479   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
   5480 }
   5481 
   5482 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
   5483   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
   5484   DataType::Type return_type = instruction->InputAt(0)->GetType();
   5485   locations->SetInAt(0, ARM64ReturnLocation(return_type));
   5486 }
   5487 
   5488 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) {
   5489   codegen_->GenerateFrameExit();
   5490 }
   5491 
   5492 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
   5493   instruction->SetLocations(nullptr);
   5494 }
   5495 
   5496 void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
   5497   codegen_->GenerateFrameExit();
   5498 }
   5499 
   5500 void LocationsBuilderARM64::VisitRor(HRor* ror) {
   5501   HandleBinaryOp(ror);
   5502 }
   5503 
   5504 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
   5505   HandleBinaryOp(ror);
   5506 }
   5507 
   5508 void LocationsBuilderARM64::VisitShl(HShl* shl) {
   5509   HandleShift(shl);
   5510 }
   5511 
   5512 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
   5513   HandleShift(shl);
   5514 }
   5515 
   5516 void LocationsBuilderARM64::VisitShr(HShr* shr) {
   5517   HandleShift(shr);
   5518 }
   5519 
   5520 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
   5521   HandleShift(shr);
   5522 }
   5523 
   5524 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
   5525   HandleBinaryOp(instruction);
   5526 }
   5527 
   5528 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
   5529   HandleBinaryOp(instruction);
   5530 }
   5531 
   5532 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   5533   HandleFieldGet(instruction, instruction->GetFieldInfo());
   5534 }
   5535 
   5536 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
   5537   HandleFieldGet(instruction, instruction->GetFieldInfo());
   5538 }
   5539 
   5540 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   5541   HandleFieldSet(instruction);
   5542 }
   5543 
   5544 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
   5545   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
   5546 }
   5547 
   5548 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
   5549     HUnresolvedInstanceFieldGet* instruction) {
   5550   FieldAccessCallingConventionARM64 calling_convention;
   5551   codegen_->CreateUnresolvedFieldLocationSummary(
   5552       instruction, instruction->GetFieldType(), calling_convention);
   5553 }
   5554 
   5555 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
   5556     HUnresolvedInstanceFieldGet* instruction) {
   5557   FieldAccessCallingConventionARM64 calling_convention;
   5558   codegen_->GenerateUnresolvedFieldAccess(instruction,
   5559                                           instruction->GetFieldType(),
   5560                                           instruction->GetFieldIndex(),
   5561                                           instruction->GetDexPc(),
   5562                                           calling_convention);
   5563 }
   5564 
   5565 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
   5566     HUnresolvedInstanceFieldSet* instruction) {
   5567   FieldAccessCallingConventionARM64 calling_convention;
   5568   codegen_->CreateUnresolvedFieldLocationSummary(
   5569       instruction, instruction->GetFieldType(), calling_convention);
   5570 }
   5571 
   5572 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
   5573     HUnresolvedInstanceFieldSet* instruction) {
   5574   FieldAccessCallingConventionARM64 calling_convention;
   5575   codegen_->GenerateUnresolvedFieldAccess(instruction,
   5576                                           instruction->GetFieldType(),
   5577                                           instruction->GetFieldIndex(),
   5578                                           instruction->GetDexPc(),
   5579                                           calling_convention);
   5580 }
   5581 
   5582 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
   5583     HUnresolvedStaticFieldGet* instruction) {
   5584   FieldAccessCallingConventionARM64 calling_convention;
   5585   codegen_->CreateUnresolvedFieldLocationSummary(
   5586       instruction, instruction->GetFieldType(), calling_convention);
   5587 }
   5588 
   5589 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
   5590     HUnresolvedStaticFieldGet* instruction) {
   5591   FieldAccessCallingConventionARM64 calling_convention;
   5592   codegen_->GenerateUnresolvedFieldAccess(instruction,
   5593                                           instruction->GetFieldType(),
   5594                                           instruction->GetFieldIndex(),
   5595                                           instruction->GetDexPc(),
   5596                                           calling_convention);
   5597 }
   5598 
   5599 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
   5600     HUnresolvedStaticFieldSet* instruction) {
   5601   FieldAccessCallingConventionARM64 calling_convention;
   5602   codegen_->CreateUnresolvedFieldLocationSummary(
   5603       instruction, instruction->GetFieldType(), calling_convention);
   5604 }
   5605 
   5606 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
   5607     HUnresolvedStaticFieldSet* instruction) {
   5608   FieldAccessCallingConventionARM64 calling_convention;
   5609   codegen_->GenerateUnresolvedFieldAccess(instruction,
   5610                                           instruction->GetFieldType(),
   5611                                           instruction->GetFieldIndex(),
   5612                                           instruction->GetDexPc(),
   5613                                           calling_convention);
   5614 }
   5615 
   5616 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
   5617   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
   5618       instruction, LocationSummary::kCallOnSlowPath);
   5619   // In suspend check slow path, usually there are no caller-save registers at all.
   5620   // If SIMD instructions are present, however, we force spilling all live SIMD
   5621   // registers in full width (since the runtime only saves/restores lower part).
   5622   locations->SetCustomSlowPathCallerSaves(
   5623       GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
   5624 }
   5625 
   5626 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
   5627   HBasicBlock* block = instruction->GetBlock();
   5628   if (block->GetLoopInformation() != nullptr) {
   5629     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
   5630     // The back edge will generate the suspend check.
   5631     return;
   5632   }
   5633   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
   5634     // The goto will generate the suspend check.
   5635     return;
   5636   }
   5637   GenerateSuspendCheck(instruction, nullptr);
   5638   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   5639 }
   5640 
   5641 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
   5642   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
   5643       instruction, LocationSummary::kCallOnMainOnly);
   5644   InvokeRuntimeCallingConvention calling_convention;
   5645   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
   5646 }
   5647 
   5648 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
   5649   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
   5650   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
   5651 }
   5652 
   5653 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
   5654   LocationSummary* locations =
   5655       new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
   5656   DataType::Type input_type = conversion->GetInputType();
   5657   DataType::Type result_type = conversion->GetResultType();
   5658   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
   5659       << input_type << " -> " << result_type;
   5660   if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
   5661       (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
   5662     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
   5663   }
   5664 
   5665   if (DataType::IsFloatingPointType(input_type)) {
   5666     locations->SetInAt(0, Location::RequiresFpuRegister());
   5667   } else {
   5668     locations->SetInAt(0, Location::RequiresRegister());
   5669   }
   5670 
   5671   if (DataType::IsFloatingPointType(result_type)) {
   5672     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
   5673   } else {
   5674     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
   5675   }
   5676 }
   5677 
   5678 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
   5679   DataType::Type result_type = conversion->GetResultType();
   5680   DataType::Type input_type = conversion->GetInputType();
   5681 
   5682   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
   5683       << input_type << " -> " << result_type;
   5684 
   5685   if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
   5686     int result_size = DataType::Size(result_type);
   5687     int input_size = DataType::Size(input_type);
   5688     int min_size = std::min(result_size, input_size);
   5689     Register output = OutputRegister(conversion);
   5690     Register source = InputRegisterAt(conversion, 0);
   5691     if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
   5692       // 'int' values are used directly as W registers, discarding the top
   5693       // bits, so we don't need to sign-extend and can just perform a move.
   5694       // We do not pass the `kDiscardForSameWReg` argument to force clearing the
   5695       // top 32 bits of the target register. We theoretically could leave those
   5696       // bits unchanged, but we would have to make sure that no code uses a
   5697       // 32bit input value as a 64bit value assuming that the top 32 bits are
   5698       // zero.
   5699       __ Mov(output.W(), source.W());
   5700     } else if (DataType::IsUnsignedType(result_type) ||
   5701                (DataType::IsUnsignedType(input_type) && input_size < result_size)) {
   5702       __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
   5703     } else {
   5704       __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
   5705     }
   5706   } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
   5707     __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
   5708   } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
   5709     CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
   5710     __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
   5711   } else if (DataType::IsFloatingPointType(result_type) &&
   5712              DataType::IsFloatingPointType(input_type)) {
   5713     __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
   5714   } else {
   5715     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
   5716                 << " to " << result_type;
   5717   }
   5718 }
   5719 
   5720 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
   5721   HandleShift(ushr);
   5722 }
   5723 
   5724 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
   5725   HandleShift(ushr);
   5726 }
   5727 
   5728 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
   5729   HandleBinaryOp(instruction);
   5730 }
   5731 
   5732 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
   5733   HandleBinaryOp(instruction);
   5734 }
   5735 
   5736 void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   5737   // Nothing to do, this should be removed during prepare for register allocator.
   5738   LOG(FATAL) << "Unreachable";
   5739 }
   5740 
   5741 void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
   5742   // Nothing to do, this should be removed during prepare for register allocator.
   5743   LOG(FATAL) << "Unreachable";
   5744 }
   5745 
   5746 // Simple implementation of packed switch - generate cascaded compare/jumps.
   5747 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   5748   LocationSummary* locations =
   5749       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
   5750   locations->SetInAt(0, Location::RequiresRegister());
   5751 }
   5752 
   5753 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
   5754   int32_t lower_bound = switch_instr->GetStartValue();
   5755   uint32_t num_entries = switch_instr->GetNumEntries();
   5756   Register value_reg = InputRegisterAt(switch_instr, 0);
   5757   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
   5758 
   5759   // Roughly set 16 as max average assemblies generated per HIR in a graph.
   5760   static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize;
   5761   // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
   5762   // make sure we don't emit it if the target may run out of range.
   5763   // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
   5764   // ranges and emit the tables only as required.
   5765   static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
   5766 
   5767   if (num_entries <= kPackedSwitchCompareJumpThreshold ||
   5768       // Current instruction id is an upper bound of the number of HIRs in the graph.
   5769       GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
   5770     // Create a series of compare/jumps.
   5771     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
   5772     Register temp = temps.AcquireW();
   5773     __ Subs(temp, value_reg, Operand(lower_bound));
   5774 
   5775     const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
   5776     // Jump to successors[0] if value == lower_bound.
   5777     __ B(eq, codegen_->GetLabelOf(successors[0]));
   5778     int32_t last_index = 0;
   5779     for (; num_entries - last_index > 2; last_index += 2) {
   5780       __ Subs(temp, temp, Operand(2));
   5781       // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
   5782       __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
   5783       // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
   5784       __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
   5785     }
   5786     if (num_entries - last_index == 2) {
   5787       // The last missing case_value.
   5788       __ Cmp(temp, Operand(1));
   5789       __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
   5790     }
   5791 
   5792     // And the default for any other value.
   5793     if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
   5794       __ B(codegen_->GetLabelOf(default_block));
   5795     }
   5796   } else {
   5797     JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
   5798 
   5799     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
   5800 
   5801     // Below instructions should use at most one blocked register. Since there are two blocked
   5802     // registers, we are free to block one.
   5803     Register temp_w = temps.AcquireW();
   5804     Register index;
   5805     // Remove the bias.
   5806     if (lower_bound != 0) {
   5807       index = temp_w;
   5808       __ Sub(index, value_reg, Operand(lower_bound));
   5809     } else {
   5810       index = value_reg;
   5811     }
   5812 
   5813     // Jump to default block if index is out of the range.
   5814     __ Cmp(index, Operand(num_entries));
   5815     __ B(hs, codegen_->GetLabelOf(default_block));
   5816 
   5817     // In current VIXL implementation, it won't require any blocked registers to encode the
   5818     // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
   5819     // register pressure.
   5820     Register table_base = temps.AcquireX();
   5821     // Load jump offset from the table.
   5822     __ Adr(table_base, jump_table->GetTableStartLabel());
   5823     Register jump_offset = temp_w;
   5824     __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
   5825 
   5826     // Jump to target block by branching to table_base(pc related) + offset.
   5827     Register target_address = table_base;
   5828     __ Add(target_address, table_base, Operand(jump_offset, SXTW));
   5829     __ Br(target_address);
   5830   }
   5831 }
   5832 
   5833 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
   5834     HInstruction* instruction,
   5835     Location out,
   5836     uint32_t offset,
   5837     Location maybe_temp,
   5838     ReadBarrierOption read_barrier_option) {
   5839   DataType::Type type = DataType::Type::kReference;
   5840   Register out_reg = RegisterFrom(out, type);
   5841   if (read_barrier_option == kWithReadBarrier) {
   5842     CHECK(kEmitCompilerReadBarrier);
   5843     if (kUseBakerReadBarrier) {
   5844       // Load with fast path based Baker's read barrier.
   5845       // /* HeapReference<Object> */ out = *(out + offset)
   5846       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   5847                                                       out,
   5848                                                       out_reg,
   5849                                                       offset,
   5850                                                       maybe_temp,
   5851                                                       /* needs_null_check */ false,
   5852                                                       /* use_load_acquire */ false);
   5853     } else {
   5854       // Load with slow path based read barrier.
   5855       // Save the value of `out` into `maybe_temp` before overwriting it
   5856       // in the following move operation, as we will need it for the
   5857       // read barrier below.
   5858       Register temp_reg = RegisterFrom(maybe_temp, type);
   5859       __ Mov(temp_reg, out_reg);
   5860       // /* HeapReference<Object> */ out = *(out + offset)
   5861       __ Ldr(out_reg, HeapOperand(out_reg, offset));
   5862       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
   5863     }
   5864   } else {
   5865     // Plain load with no read barrier.
   5866     // /* HeapReference<Object> */ out = *(out + offset)
   5867     __ Ldr(out_reg, HeapOperand(out_reg, offset));
   5868     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
   5869   }
   5870 }
   5871 
   5872 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
   5873     HInstruction* instruction,
   5874     Location out,
   5875     Location obj,
   5876     uint32_t offset,
   5877     Location maybe_temp,
   5878     ReadBarrierOption read_barrier_option) {
   5879   DataType::Type type = DataType::Type::kReference;
   5880   Register out_reg = RegisterFrom(out, type);
   5881   Register obj_reg = RegisterFrom(obj, type);
   5882   if (read_barrier_option == kWithReadBarrier) {
   5883     CHECK(kEmitCompilerReadBarrier);
   5884     if (kUseBakerReadBarrier) {
   5885       // Load with fast path based Baker's read barrier.
   5886       // /* HeapReference<Object> */ out = *(obj + offset)
   5887       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
   5888                                                       out,
   5889                                                       obj_reg,
   5890                                                       offset,
   5891                                                       maybe_temp,
   5892                                                       /* needs_null_check */ false,
   5893                                                       /* use_load_acquire */ false);
   5894     } else {
   5895       // Load with slow path based read barrier.
   5896       // /* HeapReference<Object> */ out = *(obj + offset)
   5897       __ Ldr(out_reg, HeapOperand(obj_reg, offset));
   5898       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
   5899     }
   5900   } else {
   5901     // Plain load with no read barrier.
   5902     // /* HeapReference<Object> */ out = *(obj + offset)
   5903     __ Ldr(out_reg, HeapOperand(obj_reg, offset));
   5904     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
   5905   }
   5906 }
   5907 
   5908 void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad(
   5909     HInstruction* instruction,
   5910     Location root,
   5911     Register obj,
   5912     uint32_t offset,
   5913     vixl::aarch64::Label* fixup_label,
   5914     ReadBarrierOption read_barrier_option) {
   5915   DCHECK(fixup_label == nullptr || offset == 0u);
   5916   Register root_reg = RegisterFrom(root, DataType::Type::kReference);
   5917   if (read_barrier_option == kWithReadBarrier) {
   5918     DCHECK(kEmitCompilerReadBarrier);
   5919     if (kUseBakerReadBarrier) {
   5920       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
   5921       // Baker's read barrier are used.
   5922       if (kBakerReadBarrierLinkTimeThunksEnableForGcRoots &&
   5923           !Runtime::Current()->UseJitCompilation()) {
   5924         // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
   5925         // the Marking Register) to decide whether we need to enter
   5926         // the slow path to mark the GC root.
   5927         //
   5928         // We use link-time generated thunks for the slow path. That thunk
   5929         // checks the reference and jumps to the entrypoint if needed.
   5930         //
   5931         //     lr = &return_address;
   5932         //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load.
   5933         //     if (mr) {  // Thread::Current()->GetIsGcMarking()
   5934         //       goto gc_root_thunk<root_reg>(lr)
   5935         //     }
   5936         //   return_address:
   5937 
   5938         UseScratchRegisterScope temps(GetVIXLAssembler());
   5939         DCHECK(temps.IsAvailable(ip0));
   5940         DCHECK(temps.IsAvailable(ip1));
   5941         temps.Exclude(ip0, ip1);
   5942         uint32_t custom_data =
   5943             linker::Arm64RelativePatcher::EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
   5944         vixl::aarch64::Label* cbnz_label = codegen_->NewBakerReadBarrierPatch(custom_data);
   5945 
   5946         EmissionCheckScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
   5947         vixl::aarch64::Label return_address;
   5948         __ adr(lr, &return_address);
   5949         if (fixup_label != nullptr) {
   5950           __ Bind(fixup_label);
   5951         }
   5952         static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
   5953                       "GC root LDR must be 2 instruction (8B) before the return address label.");
   5954         __ ldr(root_reg, MemOperand(obj.X(), offset));
   5955         __ Bind(cbnz_label);
   5956         __ cbnz(mr, static_cast<int64_t>(0));  // Placeholder, patched at link-time.
   5957         __ Bind(&return_address);
   5958       } else {
   5959         // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
   5960         // the Marking Register) to decide whether we need to enter
   5961         // the slow path to mark the GC root.
   5962         //
   5963         //   GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load.
   5964         //   if (mr) {  // Thread::Current()->GetIsGcMarking()
   5965         //     // Slow path.
   5966         //     entrypoint = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   5967         //     root = entrypoint(root);  // root = ReadBarrier::Mark(root);  // Entry point call.
   5968         //   }
   5969 
   5970         // Slow path marking the GC root `root`. The entrypoint will
   5971         // be loaded by the slow path code.
   5972         SlowPathCodeARM64* slow_path =
   5973             new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathARM64(instruction, root);
   5974         codegen_->AddSlowPath(slow_path);
   5975 
   5976         // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   5977         if (fixup_label == nullptr) {
   5978           __ Ldr(root_reg, MemOperand(obj, offset));
   5979         } else {
   5980           codegen_->EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj);
   5981         }
   5982         static_assert(
   5983             sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
   5984             "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
   5985             "have different sizes.");
   5986         static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
   5987                       "art::mirror::CompressedReference<mirror::Object> and int32_t "
   5988                       "have different sizes.");
   5989 
   5990         __ Cbnz(mr, slow_path->GetEntryLabel());
   5991         __ Bind(slow_path->GetExitLabel());
   5992       }
   5993     } else {
   5994       // GC root loaded through a slow path for read barriers other
   5995       // than Baker's.
   5996       // /* GcRoot<mirror::Object>* */ root = obj + offset
   5997       if (fixup_label == nullptr) {
   5998         __ Add(root_reg.X(), obj.X(), offset);
   5999       } else {
   6000         codegen_->EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
   6001       }
   6002       // /* mirror::Object* */ root = root->Read()
   6003       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
   6004     }
   6005   } else {
   6006     // Plain GC root load with no read barrier.
   6007     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
   6008     if (fixup_label == nullptr) {
   6009       __ Ldr(root_reg, MemOperand(obj, offset));
   6010     } else {
   6011       codegen_->EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
   6012     }
   6013     // Note that GC roots are not affected by heap poisoning, thus we
   6014     // do not have to unpoison `root_reg` here.
   6015   }
   6016   codegen_->MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   6017 }
   6018 
   6019 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
   6020                                                                Location ref,
   6021                                                                Register obj,
   6022                                                                uint32_t offset,
   6023                                                                Location maybe_temp,
   6024                                                                bool needs_null_check,
   6025                                                                bool use_load_acquire) {
   6026   DCHECK(kEmitCompilerReadBarrier);
   6027   DCHECK(kUseBakerReadBarrier);
   6028 
   6029   if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
   6030       !use_load_acquire &&
   6031       !Runtime::Current()->UseJitCompilation()) {
   6032     // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   6033     // Marking Register) to decide whether we need to enter the slow
   6034     // path to mark the reference. Then, in the slow path, check the
   6035     // gray bit in the lock word of the reference's holder (`obj`) to
   6036     // decide whether to mark `ref` or not.
   6037     //
   6038     // We use link-time generated thunks for the slow path. That thunk checks
   6039     // the holder and jumps to the entrypoint if needed. If the holder is not
   6040     // gray, it creates a fake dependency and returns to the LDR instruction.
   6041     //
   6042     //     lr = &gray_return_address;
   6043     //     if (mr) {  // Thread::Current()->GetIsGcMarking()
   6044     //       goto field_thunk<holder_reg, base_reg>(lr)
   6045     //     }
   6046     //   not_gray_return_address:
   6047     //     // Original reference load. If the offset is too large to fit
   6048     //     // into LDR, we use an adjusted base register here.
   6049     //     HeapReference<mirror::Object> reference = *(obj+offset);
   6050     //   gray_return_address:
   6051 
   6052     DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
   6053     Register base = obj;
   6054     if (offset >= kReferenceLoadMinFarOffset) {
   6055       DCHECK(maybe_temp.IsRegister());
   6056       base = WRegisterFrom(maybe_temp);
   6057       static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
   6058       __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
   6059       offset &= (kReferenceLoadMinFarOffset - 1u);
   6060     }
   6061     UseScratchRegisterScope temps(GetVIXLAssembler());
   6062     DCHECK(temps.IsAvailable(ip0));
   6063     DCHECK(temps.IsAvailable(ip1));
   6064     temps.Exclude(ip0, ip1);
   6065     uint32_t custom_data = linker::Arm64RelativePatcher::EncodeBakerReadBarrierFieldData(
   6066         base.GetCode(),
   6067         obj.GetCode());
   6068     vixl::aarch64::Label* cbnz_label = NewBakerReadBarrierPatch(custom_data);
   6069 
   6070     {
   6071       EmissionCheckScope guard(GetVIXLAssembler(),
   6072                                (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
   6073       vixl::aarch64::Label return_address;
   6074       __ adr(lr, &return_address);
   6075       __ Bind(cbnz_label);
   6076       __ cbnz(mr, static_cast<int64_t>(0));  // Placeholder, patched at link-time.
   6077       static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
   6078                     "Field LDR must be 1 instruction (4B) before the return address label; "
   6079                     " 2 instructions (8B) for heap poisoning.");
   6080       Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
   6081       __ ldr(ref_reg, MemOperand(base.X(), offset));
   6082       if (needs_null_check) {
   6083         MaybeRecordImplicitNullCheck(instruction);
   6084       }
   6085       GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
   6086       __ Bind(&return_address);
   6087     }
   6088     MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__, /* temp_loc */ LocationFrom(ip1));
   6089     return;
   6090   }
   6091 
   6092   // /* HeapReference<Object> */ ref = *(obj + offset)
   6093   Register temp = WRegisterFrom(maybe_temp);
   6094   Location no_index = Location::NoLocation();
   6095   size_t no_scale_factor = 0u;
   6096   GenerateReferenceLoadWithBakerReadBarrier(instruction,
   6097                                             ref,
   6098                                             obj,
   6099                                             offset,
   6100                                             no_index,
   6101                                             no_scale_factor,
   6102                                             temp,
   6103                                             needs_null_check,
   6104                                             use_load_acquire);
   6105 }
   6106 
   6107 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
   6108                                                                Location ref,
   6109                                                                Register obj,
   6110                                                                uint32_t data_offset,
   6111                                                                Location index,
   6112                                                                Register temp,
   6113                                                                bool needs_null_check) {
   6114   DCHECK(kEmitCompilerReadBarrier);
   6115   DCHECK(kUseBakerReadBarrier);
   6116 
   6117   static_assert(
   6118       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
   6119       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
   6120   size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
   6121 
   6122   if (kBakerReadBarrierLinkTimeThunksEnableForArrays &&
   6123       !Runtime::Current()->UseJitCompilation()) {
   6124     // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   6125     // Marking Register) to decide whether we need to enter the slow
   6126     // path to mark the reference. Then, in the slow path, check the
   6127     // gray bit in the lock word of the reference's holder (`obj`) to
   6128     // decide whether to mark `ref` or not.
   6129     //
   6130     // We use link-time generated thunks for the slow path. That thunk checks
   6131     // the holder and jumps to the entrypoint if needed. If the holder is not
   6132     // gray, it creates a fake dependency and returns to the LDR instruction.
   6133     //
   6134     //     lr = &gray_return_address;
   6135     //     if (mr) {  // Thread::Current()->GetIsGcMarking()
   6136     //       goto array_thunk<base_reg>(lr)
   6137     //     }
   6138     //   not_gray_return_address:
   6139     //     // Original reference load. If the offset is too large to fit
   6140     //     // into LDR, we use an adjusted base register here.
   6141     //     HeapReference<mirror::Object> reference = data[index];
   6142     //   gray_return_address:
   6143 
   6144     DCHECK(index.IsValid());
   6145     Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
   6146     Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
   6147 
   6148     UseScratchRegisterScope temps(GetVIXLAssembler());
   6149     DCHECK(temps.IsAvailable(ip0));
   6150     DCHECK(temps.IsAvailable(ip1));
   6151     temps.Exclude(ip0, ip1);
   6152     uint32_t custom_data =
   6153         linker::Arm64RelativePatcher::EncodeBakerReadBarrierArrayData(temp.GetCode());
   6154     vixl::aarch64::Label* cbnz_label = NewBakerReadBarrierPatch(custom_data);
   6155 
   6156     __ Add(temp.X(), obj.X(), Operand(data_offset));
   6157     {
   6158       EmissionCheckScope guard(GetVIXLAssembler(),
   6159                                (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
   6160       vixl::aarch64::Label return_address;
   6161       __ adr(lr, &return_address);
   6162       __ Bind(cbnz_label);
   6163       __ cbnz(mr, static_cast<int64_t>(0));  // Placeholder, patched at link-time.
   6164       static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
   6165                     "Array LDR must be 1 instruction (4B) before the return address label; "
   6166                     " 2 instructions (8B) for heap poisoning.");
   6167       __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
   6168       DCHECK(!needs_null_check);  // The thunk cannot handle the null check.
   6169       GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
   6170       __ Bind(&return_address);
   6171     }
   6172     MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__, /* temp_loc */ LocationFrom(ip1));
   6173     return;
   6174   }
   6175 
   6176   // Array cells are never volatile variables, therefore array loads
   6177   // never use Load-Acquire instructions on ARM64.
   6178   const bool use_load_acquire = false;
   6179 
   6180   // /* HeapReference<Object> */ ref =
   6181   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
   6182   GenerateReferenceLoadWithBakerReadBarrier(instruction,
   6183                                             ref,
   6184                                             obj,
   6185                                             data_offset,
   6186                                             index,
   6187                                             scale_factor,
   6188                                             temp,
   6189                                             needs_null_check,
   6190                                             use_load_acquire);
   6191 }
   6192 
   6193 void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
   6194                                                                    Location ref,
   6195                                                                    Register obj,
   6196                                                                    uint32_t offset,
   6197                                                                    Location index,
   6198                                                                    size_t scale_factor,
   6199                                                                    Register temp,
   6200                                                                    bool needs_null_check,
   6201                                                                    bool use_load_acquire) {
   6202   DCHECK(kEmitCompilerReadBarrier);
   6203   DCHECK(kUseBakerReadBarrier);
   6204   // If we are emitting an array load, we should not be using a
   6205   // Load Acquire instruction.  In other words:
   6206   // `instruction->IsArrayGet()` => `!use_load_acquire`.
   6207   DCHECK(!instruction->IsArrayGet() || !use_load_acquire);
   6208 
   6209   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   6210   // Marking Register) to decide whether we need to enter the slow
   6211   // path to mark the reference. Then, in the slow path, check the
   6212   // gray bit in the lock word of the reference's holder (`obj`) to
   6213   // decide whether to mark `ref` or not.
   6214   //
   6215   //   if (mr) {  // Thread::Current()->GetIsGcMarking()
   6216   //     // Slow path.
   6217   //     uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
   6218   //     lfence;  // Load fence or artificial data dependency to prevent load-load reordering
   6219   //     HeapReference<mirror::Object> ref = *src;  // Original reference load.
   6220   //     bool is_gray = (rb_state == ReadBarrier::GrayState());
   6221   //     if (is_gray) {
   6222   //       entrypoint = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   6223   //       ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
   6224   //     }
   6225   //   } else {
   6226   //     HeapReference<mirror::Object> ref = *src;  // Original reference load.
   6227   //   }
   6228 
   6229   // Slow path marking the object `ref` when the GC is marking. The
   6230   // entrypoint will be loaded by the slow path code.
   6231   SlowPathCodeARM64* slow_path =
   6232       new (GetScopedAllocator()) LoadReferenceWithBakerReadBarrierSlowPathARM64(
   6233           instruction,
   6234           ref,
   6235           obj,
   6236           offset,
   6237           index,
   6238           scale_factor,
   6239           needs_null_check,
   6240           use_load_acquire,
   6241           temp);
   6242   AddSlowPath(slow_path);
   6243 
   6244   __ Cbnz(mr, slow_path->GetEntryLabel());
   6245   // Fast path: the GC is not marking: just load the reference.
   6246   GenerateRawReferenceLoad(
   6247       instruction, ref, obj, offset, index, scale_factor, needs_null_check, use_load_acquire);
   6248   __ Bind(slow_path->GetExitLabel());
   6249   MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   6250 }
   6251 
   6252 void CodeGeneratorARM64::UpdateReferenceFieldWithBakerReadBarrier(HInstruction* instruction,
   6253                                                                   Location ref,
   6254                                                                   Register obj,
   6255                                                                   Location field_offset,
   6256                                                                   Register temp,
   6257                                                                   bool needs_null_check,
   6258                                                                   bool use_load_acquire) {
   6259   DCHECK(kEmitCompilerReadBarrier);
   6260   DCHECK(kUseBakerReadBarrier);
   6261   // If we are emitting an array load, we should not be using a
   6262   // Load Acquire instruction.  In other words:
   6263   // `instruction->IsArrayGet()` => `!use_load_acquire`.
   6264   DCHECK(!instruction->IsArrayGet() || !use_load_acquire);
   6265 
   6266   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
   6267   // Marking Register) to decide whether we need to enter the slow
   6268   // path to update the reference field within `obj`. Then, in the
   6269   // slow path, check the gray bit in the lock word of the reference's
   6270   // holder (`obj`) to decide whether to mark `ref` and update the
   6271   // field or not.
   6272   //
   6273   //   if (mr) {  // Thread::Current()->GetIsGcMarking()
   6274   //     // Slow path.
   6275   //     uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
   6276   //     lfence;  // Load fence or artificial data dependency to prevent load-load reordering
   6277   //     HeapReference<mirror::Object> ref = *(obj + field_offset);  // Reference load.
   6278   //     bool is_gray = (rb_state == ReadBarrier::GrayState());
   6279   //     if (is_gray) {
   6280   //       old_ref = ref;
   6281   //       entrypoint = Thread::Current()->pReadBarrierMarkReg ## root.reg()
   6282   //       ref = entrypoint(ref);  // ref = ReadBarrier::Mark(ref);  // Runtime entry point call.
   6283   //       compareAndSwapObject(obj, field_offset, old_ref, ref);
   6284   //     }
   6285   //   }
   6286 
   6287   // Slow path updating the object reference at address `obj + field_offset`
   6288   // when the GC is marking. The entrypoint will be loaded by the slow path code.
   6289   SlowPathCodeARM64* slow_path =
   6290       new (GetScopedAllocator()) LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM64(
   6291           instruction,
   6292           ref,
   6293           obj,
   6294           /* offset */ 0u,
   6295           /* index */ field_offset,
   6296           /* scale_factor */ 0u /* "times 1" */,
   6297           needs_null_check,
   6298           use_load_acquire,
   6299           temp);
   6300   AddSlowPath(slow_path);
   6301 
   6302   __ Cbnz(mr, slow_path->GetEntryLabel());
   6303   // Fast path: the GC is not marking: nothing to do (the field is
   6304   // up-to-date, and we don't need to load the reference).
   6305   __ Bind(slow_path->GetExitLabel());
   6306   MaybeGenerateMarkingRegisterCheck(/* code */ __LINE__);
   6307 }
   6308 
   6309 void CodeGeneratorARM64::GenerateRawReferenceLoad(HInstruction* instruction,
   6310                                                   Location ref,
   6311                                                   Register obj,
   6312                                                   uint32_t offset,
   6313                                                   Location index,
   6314                                                   size_t scale_factor,
   6315                                                   bool needs_null_check,
   6316                                                   bool use_load_acquire) {
   6317   DCHECK(obj.IsW());
   6318   DataType::Type type = DataType::Type::kReference;
   6319   Register ref_reg = RegisterFrom(ref, type);
   6320 
   6321   // If needed, vixl::EmissionCheckScope guards are used to ensure
   6322   // that no pools are emitted between the load (macro) instruction
   6323   // and MaybeRecordImplicitNullCheck.
   6324 
   6325   if (index.IsValid()) {
   6326     // Load types involving an "index": ArrayGet,
   6327     // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
   6328     // intrinsics.
   6329     if (use_load_acquire) {
   6330       // UnsafeGetObjectVolatile intrinsic case.
   6331       // Register `index` is not an index in an object array, but an
   6332       // offset to an object reference field within object `obj`.
   6333       DCHECK(instruction->IsInvoke()) << instruction->DebugName();
   6334       DCHECK(instruction->GetLocations()->Intrinsified());
   6335       DCHECK(instruction->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)
   6336           << instruction->AsInvoke()->GetIntrinsic();
   6337       DCHECK_EQ(offset, 0u);
   6338       DCHECK_EQ(scale_factor, 0u);
   6339       DCHECK_EQ(needs_null_check, false);
   6340       // /* HeapReference<mirror::Object> */ ref = *(obj + index)
   6341       MemOperand field = HeapOperand(obj, XRegisterFrom(index));
   6342       LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false);
   6343     } else {
   6344       // ArrayGet and UnsafeGetObject and UnsafeCASObject intrinsics cases.
   6345       // /* HeapReference<mirror::Object> */ ref = *(obj + offset + (index << scale_factor))
   6346       if (index.IsConstant()) {
   6347         uint32_t computed_offset = offset + (Int64ConstantFrom(index) << scale_factor);
   6348         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   6349         Load(type, ref_reg, HeapOperand(obj, computed_offset));
   6350         if (needs_null_check) {
   6351           MaybeRecordImplicitNullCheck(instruction);
   6352         }
   6353       } else {
   6354         UseScratchRegisterScope temps(GetVIXLAssembler());
   6355         Register temp = temps.AcquireW();
   6356         __ Add(temp, obj, offset);
   6357         {
   6358           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   6359           Load(type, ref_reg, HeapOperand(temp, XRegisterFrom(index), LSL, scale_factor));
   6360           if (needs_null_check) {
   6361             MaybeRecordImplicitNullCheck(instruction);
   6362           }
   6363         }
   6364       }
   6365     }
   6366   } else {
   6367     // /* HeapReference<mirror::Object> */ ref = *(obj + offset)
   6368     MemOperand field = HeapOperand(obj, offset);
   6369     if (use_load_acquire) {
   6370       // Implicit null checks are handled by CodeGeneratorARM64::LoadAcquire.
   6371       LoadAcquire(instruction, ref_reg, field, needs_null_check);
   6372     } else {
   6373       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
   6374       Load(type, ref_reg, field);
   6375       if (needs_null_check) {
   6376         MaybeRecordImplicitNullCheck(instruction);
   6377       }
   6378     }
   6379   }
   6380 
   6381   // Object* ref = ref_addr->AsMirrorPtr()
   6382   GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
   6383 }
   6384 
   6385 void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
   6386   // The following condition is a compile-time one, so it does not have a run-time cost.
   6387   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) {
   6388     // The following condition is a run-time one; it is executed after the
   6389     // previous compile-time test, to avoid penalizing non-debug builds.
   6390     if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
   6391       UseScratchRegisterScope temps(GetVIXLAssembler());
   6392       Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
   6393       GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
   6394     }
   6395   }
   6396 }
   6397 
   6398 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
   6399                                                  Location out,
   6400                                                  Location ref,
   6401                                                  Location obj,
   6402                                                  uint32_t offset,
   6403                                                  Location index) {
   6404   DCHECK(kEmitCompilerReadBarrier);
   6405 
   6406   // Insert a slow path based read barrier *after* the reference load.
   6407   //
   6408   // If heap poisoning is enabled, the unpoisoning of the loaded
   6409   // reference will be carried out by the runtime within the slow
   6410   // path.
   6411   //
   6412   // Note that `ref` currently does not get unpoisoned (when heap
   6413   // poisoning is enabled), which is alright as the `ref` argument is
   6414   // not used by the artReadBarrierSlow entry point.
   6415   //
   6416   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
   6417   SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
   6418       ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
   6419   AddSlowPath(slow_path);
   6420 
   6421   __ B(slow_path->GetEntryLabel());
   6422   __ Bind(slow_path->GetExitLabel());
   6423 }
   6424 
   6425 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
   6426                                                       Location out,
   6427                                                       Location ref,
   6428                                                       Location obj,
   6429                                                       uint32_t offset,
   6430                                                       Location index) {
   6431   if (kEmitCompilerReadBarrier) {
   6432     // Baker's read barriers shall be handled by the fast path
   6433     // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
   6434     DCHECK(!kUseBakerReadBarrier);
   6435     // If heap poisoning is enabled, unpoisoning will be taken care of
   6436     // by the runtime within the slow path.
   6437     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
   6438   } else if (kPoisonHeapReferences) {
   6439     GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
   6440   }
   6441 }
   6442 
   6443 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
   6444                                                         Location out,
   6445                                                         Location root) {
   6446   DCHECK(kEmitCompilerReadBarrier);
   6447 
   6448   // Insert a slow path based read barrier *after* the GC root load.
   6449   //
   6450   // Note that GC roots are not affected by heap poisoning, so we do
   6451   // not need to do anything special for this here.
   6452   SlowPathCodeARM64* slow_path =
   6453       new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
   6454   AddSlowPath(slow_path);
   6455 
   6456   __ B(slow_path->GetEntryLabel());
   6457   __ Bind(slow_path->GetExitLabel());
   6458 }
   6459 
   6460 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
   6461   LocationSummary* locations =
   6462       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
   6463   locations->SetInAt(0, Location::RequiresRegister());
   6464   locations->SetOut(Location::RequiresRegister());
   6465 }
   6466 
   6467 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
   6468   LocationSummary* locations = instruction->GetLocations();
   6469   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
   6470     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
   6471         instruction->GetIndex(), kArm64PointerSize).SizeValue();
   6472     __ Ldr(XRegisterFrom(locations->Out()),
   6473            MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
   6474   } else {
   6475     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
   6476         instruction->GetIndex(), kArm64PointerSize));
   6477     __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
   6478         mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
   6479     __ Ldr(XRegisterFrom(locations->Out()),
   6480            MemOperand(XRegisterFrom(locations->Out()), method_offset));
   6481   }
   6482 }
   6483 
   6484 static void PatchJitRootUse(uint8_t* code,
   6485                             const uint8_t* roots_data,
   6486                             vixl::aarch64::Literal<uint32_t>* literal,
   6487                             uint64_t index_in_table) {
   6488   uint32_t literal_offset = literal->GetOffset();
   6489   uintptr_t address =
   6490       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
   6491   uint8_t* data = code + literal_offset;
   6492   reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
   6493 }
   6494 
   6495 void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
   6496   for (const auto& entry : jit_string_patches_) {
   6497     const StringReference& string_reference = entry.first;
   6498     vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
   6499     uint64_t index_in_table = GetJitStringRootIndex(string_reference);
   6500     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
   6501   }
   6502   for (const auto& entry : jit_class_patches_) {
   6503     const TypeReference& type_reference = entry.first;
   6504     vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
   6505     uint64_t index_in_table = GetJitClassRootIndex(type_reference);
   6506     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
   6507   }
   6508 }
   6509 
   6510 #undef __
   6511 #undef QUICK_ENTRY_POINT
   6512 
   6513 }  // namespace arm64
   6514 }  // namespace art
   6515