Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_interceptors.cc ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 // FIXME: move as many interceptors as possible into
     13 // sanitizer_common/sanitizer_common_interceptors.inc
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "sanitizer_common/sanitizer_atomic.h"
     17 #include "sanitizer_common/sanitizer_libc.h"
     18 #include "sanitizer_common/sanitizer_linux.h"
     19 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
     20 #include "sanitizer_common/sanitizer_placement_new.h"
     21 #include "sanitizer_common/sanitizer_stacktrace.h"
     22 #include "sanitizer_common/sanitizer_tls_get_addr.h"
     23 #include "interception/interception.h"
     24 #include "tsan_interceptors.h"
     25 #include "tsan_interface.h"
     26 #include "tsan_platform.h"
     27 #include "tsan_suppressions.h"
     28 #include "tsan_rtl.h"
     29 #include "tsan_mman.h"
     30 #include "tsan_fd.h"
     31 
     32 #if SANITIZER_POSIX
     33 #include "sanitizer_common/sanitizer_posix.h"
     34 #endif
     35 
     36 using namespace __tsan;  // NOLINT
     37 
     38 #if SANITIZER_FREEBSD || SANITIZER_MAC
     39 #define __errno_location __error
     40 #define stdout __stdoutp
     41 #define stderr __stderrp
     42 #endif
     43 
     44 #if SANITIZER_ANDROID
     45 #define __errno_location __errno
     46 #define mallopt(a, b)
     47 #endif
     48 
     49 #if SANITIZER_LINUX || SANITIZER_FREEBSD
     50 #define PTHREAD_CREATE_DETACHED 1
     51 #elif SANITIZER_MAC
     52 #define PTHREAD_CREATE_DETACHED 2
     53 #endif
     54 
     55 
     56 #ifdef __mips__
     57 const int kSigCount = 129;
     58 #else
     59 const int kSigCount = 65;
     60 #endif
     61 
     62 struct my_siginfo_t {
     63   // The size is determined by looking at sizeof of real siginfo_t on linux.
     64   u64 opaque[128 / sizeof(u64)];
     65 };
     66 
     67 #ifdef __mips__
     68 struct ucontext_t {
     69   u64 opaque[768 / sizeof(u64) + 1];
     70 };
     71 #else
     72 struct ucontext_t {
     73   // The size is determined by looking at sizeof of real ucontext_t on linux.
     74   u64 opaque[936 / sizeof(u64) + 1];
     75 };
     76 #endif
     77 
     78 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
     79 #define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
     80 #elif defined(__aarch64__) || SANITIZER_PPC64V2
     81 #define PTHREAD_ABI_BASE  "GLIBC_2.17"
     82 #endif
     83 
     84 extern "C" int pthread_attr_init(void *attr);
     85 extern "C" int pthread_attr_destroy(void *attr);
     86 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
     87 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
     88 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
     89 extern "C" int pthread_setspecific(unsigned key, const void *v);
     90 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
     91 extern "C" int pthread_sigmask(int how, const __sanitizer_sigset_t *set,
     92                                __sanitizer_sigset_t *oldset);
     93 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
     94 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
     95 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
     96 extern "C" void *pthread_self();
     97 extern "C" void _exit(int status);
     98 extern "C" int *__errno_location();
     99 extern "C" int fileno_unlocked(void *stream);
    100 extern "C" int dirfd(void *dirp);
    101 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID
    102 extern "C" int mallopt(int param, int value);
    103 #endif
    104 extern __sanitizer_FILE *stdout, *stderr;
    105 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
    106 const int PTHREAD_MUTEX_RECURSIVE = 1;
    107 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
    108 #else
    109 const int PTHREAD_MUTEX_RECURSIVE = 2;
    110 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
    111 #endif
    112 const int EINVAL = 22;
    113 const int EBUSY = 16;
    114 const int EOWNERDEAD = 130;
    115 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
    116 const int EPOLL_CTL_ADD = 1;
    117 #endif
    118 const int SIGILL = 4;
    119 const int SIGABRT = 6;
    120 const int SIGFPE = 8;
    121 const int SIGSEGV = 11;
    122 const int SIGPIPE = 13;
    123 const int SIGTERM = 15;
    124 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC
    125 const int SIGBUS = 10;
    126 const int SIGSYS = 12;
    127 #else
    128 const int SIGBUS = 7;
    129 const int SIGSYS = 31;
    130 #endif
    131 void *const MAP_FAILED = (void*)-1;
    132 #if !SANITIZER_MAC
    133 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
    134 #endif
    135 const int MAP_FIXED = 0x10;
    136 typedef long long_t;  // NOLINT
    137 
    138 // From /usr/include/unistd.h
    139 # define F_ULOCK 0      /* Unlock a previously locked region.  */
    140 # define F_LOCK  1      /* Lock a region for exclusive use.  */
    141 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
    142 # define F_TEST  3      /* Test a region for other processes locks.  */
    143 
    144 #define errno (*__errno_location())
    145 
    146 typedef void (*sighandler_t)(int sig);
    147 typedef void (*sigactionhandler_t)(int sig, my_siginfo_t *siginfo, void *uctx);
    148 
    149 #if SANITIZER_ANDROID
    150 struct sigaction_t {
    151   u32 sa_flags;
    152   union {
    153     sighandler_t sa_handler;
    154     sigactionhandler_t sa_sigaction;
    155   };
    156   __sanitizer_sigset_t sa_mask;
    157   void (*sa_restorer)();
    158 };
    159 #else
    160 struct sigaction_t {
    161 #ifdef __mips__
    162   u32 sa_flags;
    163 #endif
    164   union {
    165     sighandler_t sa_handler;
    166     sigactionhandler_t sa_sigaction;
    167   };
    168 #if SANITIZER_FREEBSD
    169   int sa_flags;
    170   __sanitizer_sigset_t sa_mask;
    171 #elif SANITIZER_MAC
    172   __sanitizer_sigset_t sa_mask;
    173   int sa_flags;
    174 #else
    175   __sanitizer_sigset_t sa_mask;
    176 #ifndef __mips__
    177   int sa_flags;
    178 #endif
    179   void (*sa_restorer)();
    180 #endif
    181 };
    182 #endif
    183 
    184 const sighandler_t SIG_DFL = (sighandler_t)0;
    185 const sighandler_t SIG_IGN = (sighandler_t)1;
    186 const sighandler_t SIG_ERR = (sighandler_t)-1;
    187 #if SANITIZER_FREEBSD || SANITIZER_MAC
    188 const int SA_SIGINFO = 0x40;
    189 const int SIG_SETMASK = 3;
    190 #elif defined(__mips__)
    191 const int SA_SIGINFO = 8;
    192 const int SIG_SETMASK = 3;
    193 #else
    194 const int SA_SIGINFO = 4;
    195 const int SIG_SETMASK = 2;
    196 #endif
    197 
    198 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
    199   (!cur_thread()->is_inited)
    200 
    201 static sigaction_t sigactions[kSigCount];
    202 
    203 namespace __tsan {
    204 struct SignalDesc {
    205   bool armed;
    206   bool sigaction;
    207   my_siginfo_t siginfo;
    208   ucontext_t ctx;
    209 };
    210 
    211 struct ThreadSignalContext {
    212   int int_signal_send;
    213   atomic_uintptr_t in_blocking_func;
    214   atomic_uintptr_t have_pending_signals;
    215   SignalDesc pending_signals[kSigCount];
    216   // emptyset and oldset are too big for stack.
    217   __sanitizer_sigset_t emptyset;
    218   __sanitizer_sigset_t oldset;
    219 };
    220 
    221 // The object is 64-byte aligned, because we want hot data to be located in
    222 // a single cache line if possible (it's accessed in every interceptor).
    223 static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
    224 static LibIgnore *libignore() {
    225   return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
    226 }
    227 
    228 void InitializeLibIgnore() {
    229   const SuppressionContext &supp = *Suppressions();
    230   const uptr n = supp.SuppressionCount();
    231   for (uptr i = 0; i < n; i++) {
    232     const Suppression *s = supp.SuppressionAt(i);
    233     if (0 == internal_strcmp(s->type, kSuppressionLib))
    234       libignore()->AddIgnoredLibrary(s->templ);
    235   }
    236   libignore()->OnLibraryLoaded(0);
    237 }
    238 
    239 }  // namespace __tsan
    240 
    241 static ThreadSignalContext *SigCtx(ThreadState *thr) {
    242   ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
    243   if (ctx == 0 && !thr->is_dead) {
    244     ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
    245     MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
    246     thr->signal_ctx = ctx;
    247   }
    248   return ctx;
    249 }
    250 
    251 #if !SANITIZER_MAC
    252 static unsigned g_thread_finalize_key;
    253 #endif
    254 
    255 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
    256                                      uptr pc)
    257     : thr_(thr)
    258     , pc_(pc)
    259     , in_ignored_lib_(false) {
    260   Initialize(thr);
    261   if (!thr_->is_inited)
    262     return;
    263   if (!thr_->ignore_interceptors)
    264     FuncEntry(thr, pc);
    265   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
    266   if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) {
    267     in_ignored_lib_ = true;
    268     thr_->in_ignored_lib = true;
    269     ThreadIgnoreBegin(thr_, pc_);
    270   }
    271   if (flags()->ignore_interceptors_accesses) ThreadIgnoreBegin(thr_, pc_);
    272 }
    273 
    274 ScopedInterceptor::~ScopedInterceptor() {
    275   if (!thr_->is_inited)
    276     return;
    277   if (flags()->ignore_interceptors_accesses) ThreadIgnoreEnd(thr_, pc_);
    278   if (in_ignored_lib_) {
    279     thr_->in_ignored_lib = false;
    280     ThreadIgnoreEnd(thr_, pc_);
    281   }
    282   if (!thr_->ignore_interceptors) {
    283     ProcessPendingSignals(thr_);
    284     FuncExit(thr_);
    285     CheckNoLocks(thr_);
    286   }
    287 }
    288 
    289 void ScopedInterceptor::UserCallbackStart() {
    290   if (flags()->ignore_interceptors_accesses) ThreadIgnoreEnd(thr_, pc_);
    291   if (in_ignored_lib_) {
    292     thr_->in_ignored_lib = false;
    293     ThreadIgnoreEnd(thr_, pc_);
    294   }
    295 }
    296 
    297 void ScopedInterceptor::UserCallbackEnd() {
    298   if (in_ignored_lib_) {
    299     thr_->in_ignored_lib = true;
    300     ThreadIgnoreBegin(thr_, pc_);
    301   }
    302   if (flags()->ignore_interceptors_accesses) ThreadIgnoreBegin(thr_, pc_);
    303 }
    304 
    305 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
    306 #if SANITIZER_FREEBSD
    307 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
    308 #else
    309 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
    310 #endif
    311 
    312 #define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
    313   MemoryAccessRange((thr), (pc), (uptr)(s),                         \
    314     common_flags()->strict_string_checks ? (len) + 1 : (n), false)
    315 
    316 #define READ_STRING(thr, pc, s, n)                             \
    317     READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
    318 
    319 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
    320 
    321 struct BlockingCall {
    322   explicit BlockingCall(ThreadState *thr)
    323       : thr(thr)
    324       , ctx(SigCtx(thr)) {
    325     for (;;) {
    326       atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
    327       if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
    328         break;
    329       atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
    330       ProcessPendingSignals(thr);
    331     }
    332     // When we are in a "blocking call", we process signals asynchronously
    333     // (right when they arrive). In this context we do not expect to be
    334     // executing any user/runtime code. The known interceptor sequence when
    335     // this is not true is: pthread_join -> munmap(stack). It's fine
    336     // to ignore munmap in this case -- we handle stack shadow separately.
    337     thr->ignore_interceptors++;
    338   }
    339 
    340   ~BlockingCall() {
    341     thr->ignore_interceptors--;
    342     atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
    343   }
    344 
    345   ThreadState *thr;
    346   ThreadSignalContext *ctx;
    347 };
    348 
    349 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
    350   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
    351   unsigned res = BLOCK_REAL(sleep)(sec);
    352   AfterSleep(thr, pc);
    353   return res;
    354 }
    355 
    356 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
    357   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
    358   int res = BLOCK_REAL(usleep)(usec);
    359   AfterSleep(thr, pc);
    360   return res;
    361 }
    362 
    363 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
    364   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
    365   int res = BLOCK_REAL(nanosleep)(req, rem);
    366   AfterSleep(thr, pc);
    367   return res;
    368 }
    369 
    370 // The sole reason tsan wraps atexit callbacks is to establish synchronization
    371 // between callback setup and callback execution.
    372 struct AtExitCtx {
    373   void (*f)();
    374   void *arg;
    375 };
    376 
    377 static void at_exit_wrapper(void *arg) {
    378   ThreadState *thr = cur_thread();
    379   uptr pc = 0;
    380   Acquire(thr, pc, (uptr)arg);
    381   AtExitCtx *ctx = (AtExitCtx*)arg;
    382   ((void(*)(void *arg))ctx->f)(ctx->arg);
    383   InternalFree(ctx);
    384 }
    385 
    386 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
    387       void *arg, void *dso);
    388 
    389 #if !SANITIZER_ANDROID
    390 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
    391   if (cur_thread()->in_symbolizer)
    392     return 0;
    393   // We want to setup the atexit callback even if we are in ignored lib
    394   // or after fork.
    395   SCOPED_INTERCEPTOR_RAW(atexit, f);
    396   return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
    397 }
    398 #endif
    399 
    400 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
    401   if (cur_thread()->in_symbolizer)
    402     return 0;
    403   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
    404   return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
    405 }
    406 
    407 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
    408       void *arg, void *dso) {
    409   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
    410   ctx->f = f;
    411   ctx->arg = arg;
    412   Release(thr, pc, (uptr)ctx);
    413   // Memory allocation in __cxa_atexit will race with free during exit,
    414   // because we do not see synchronization around atexit callback list.
    415   ThreadIgnoreBegin(thr, pc);
    416   int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
    417   ThreadIgnoreEnd(thr, pc);
    418   return res;
    419 }
    420 
    421 #if !SANITIZER_MAC
    422 static void on_exit_wrapper(int status, void *arg) {
    423   ThreadState *thr = cur_thread();
    424   uptr pc = 0;
    425   Acquire(thr, pc, (uptr)arg);
    426   AtExitCtx *ctx = (AtExitCtx*)arg;
    427   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
    428   InternalFree(ctx);
    429 }
    430 
    431 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
    432   if (cur_thread()->in_symbolizer)
    433     return 0;
    434   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
    435   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
    436   ctx->f = (void(*)())f;
    437   ctx->arg = arg;
    438   Release(thr, pc, (uptr)ctx);
    439   // Memory allocation in __cxa_atexit will race with free during exit,
    440   // because we do not see synchronization around atexit callback list.
    441   ThreadIgnoreBegin(thr, pc);
    442   int res = REAL(on_exit)(on_exit_wrapper, ctx);
    443   ThreadIgnoreEnd(thr, pc);
    444   return res;
    445 }
    446 #endif
    447 
    448 // Cleanup old bufs.
    449 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
    450   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    451     JmpBuf *buf = &thr->jmp_bufs[i];
    452     if (buf->sp <= sp) {
    453       uptr sz = thr->jmp_bufs.Size();
    454       internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
    455       thr->jmp_bufs.PopBack();
    456       i--;
    457     }
    458   }
    459 }
    460 
    461 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
    462   if (!thr->is_inited)  // called from libc guts during bootstrap
    463     return;
    464   // Cleanup old bufs.
    465   JmpBufGarbageCollect(thr, sp);
    466   // Remember the buf.
    467   JmpBuf *buf = thr->jmp_bufs.PushBack();
    468   buf->sp = sp;
    469   buf->mangled_sp = mangled_sp;
    470   buf->shadow_stack_pos = thr->shadow_stack_pos;
    471   ThreadSignalContext *sctx = SigCtx(thr);
    472   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
    473   buf->in_blocking_func = sctx ?
    474       atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
    475       false;
    476   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
    477       memory_order_relaxed);
    478 }
    479 
    480 static void LongJmp(ThreadState *thr, uptr *env) {
    481 #ifdef __powerpc__
    482   uptr mangled_sp = env[0];
    483 #elif SANITIZER_FREEBSD || SANITIZER_MAC
    484   uptr mangled_sp = env[2];
    485 #elif defined(SANITIZER_LINUX)
    486 # ifdef __aarch64__
    487   uptr mangled_sp = env[13];
    488 # else
    489   uptr mangled_sp = env[6];
    490 # endif
    491 #endif
    492   // Find the saved buf by mangled_sp.
    493   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    494     JmpBuf *buf = &thr->jmp_bufs[i];
    495     if (buf->mangled_sp == mangled_sp) {
    496       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
    497       // Unwind the stack.
    498       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
    499         FuncExit(thr);
    500       ThreadSignalContext *sctx = SigCtx(thr);
    501       if (sctx) {
    502         sctx->int_signal_send = buf->int_signal_send;
    503         atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
    504             memory_order_relaxed);
    505       }
    506       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
    507           memory_order_relaxed);
    508       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
    509       return;
    510     }
    511   }
    512   Printf("ThreadSanitizer: can't find longjmp buf\n");
    513   CHECK(0);
    514 }
    515 
    516 // FIXME: put everything below into a common extern "C" block?
    517 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
    518   SetJmp(cur_thread(), sp, mangled_sp);
    519 }
    520 
    521 #if SANITIZER_MAC
    522 TSAN_INTERCEPTOR(int, setjmp, void *env);
    523 TSAN_INTERCEPTOR(int, _setjmp, void *env);
    524 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
    525 #else  // SANITIZER_MAC
    526 // Not called.  Merely to satisfy TSAN_INTERCEPT().
    527 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    528 int __interceptor_setjmp(void *env);
    529 extern "C" int __interceptor_setjmp(void *env) {
    530   CHECK(0);
    531   return 0;
    532 }
    533 
    534 // FIXME: any reason to have a separate declaration?
    535 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    536 int __interceptor__setjmp(void *env);
    537 extern "C" int __interceptor__setjmp(void *env) {
    538   CHECK(0);
    539   return 0;
    540 }
    541 
    542 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    543 int __interceptor_sigsetjmp(void *env);
    544 extern "C" int __interceptor_sigsetjmp(void *env) {
    545   CHECK(0);
    546   return 0;
    547 }
    548 
    549 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    550 int __interceptor___sigsetjmp(void *env);
    551 extern "C" int __interceptor___sigsetjmp(void *env) {
    552   CHECK(0);
    553   return 0;
    554 }
    555 
    556 extern "C" int setjmp(void *env);
    557 extern "C" int _setjmp(void *env);
    558 extern "C" int sigsetjmp(void *env);
    559 extern "C" int __sigsetjmp(void *env);
    560 DEFINE_REAL(int, setjmp, void *env)
    561 DEFINE_REAL(int, _setjmp, void *env)
    562 DEFINE_REAL(int, sigsetjmp, void *env)
    563 DEFINE_REAL(int, __sigsetjmp, void *env)
    564 #endif  // SANITIZER_MAC
    565 
    566 TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
    567   // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
    568   // bad things will happen. We will jump over ScopedInterceptor dtor and can
    569   // leave thr->in_ignored_lib set.
    570   {
    571     SCOPED_INTERCEPTOR_RAW(longjmp, env, val);
    572   }
    573   LongJmp(cur_thread(), env);
    574   REAL(longjmp)(env, val);
    575 }
    576 
    577 TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
    578   {
    579     SCOPED_INTERCEPTOR_RAW(siglongjmp, env, val);
    580   }
    581   LongJmp(cur_thread(), env);
    582   REAL(siglongjmp)(env, val);
    583 }
    584 
    585 #if !SANITIZER_MAC
    586 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
    587   if (cur_thread()->in_symbolizer)
    588     return InternalAlloc(size);
    589   void *p = 0;
    590   {
    591     SCOPED_INTERCEPTOR_RAW(malloc, size);
    592     p = user_alloc(thr, pc, size);
    593   }
    594   invoke_malloc_hook(p, size);
    595   return p;
    596 }
    597 
    598 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
    599   SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
    600   return user_alloc(thr, pc, sz, align);
    601 }
    602 
    603 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
    604   if (cur_thread()->in_symbolizer)
    605     return InternalCalloc(size, n);
    606   void *p = 0;
    607   {
    608     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
    609     p = user_calloc(thr, pc, size, n);
    610   }
    611   invoke_malloc_hook(p, n * size);
    612   return p;
    613 }
    614 
    615 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
    616   if (cur_thread()->in_symbolizer)
    617     return InternalRealloc(p, size);
    618   if (p)
    619     invoke_free_hook(p);
    620   {
    621     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
    622     p = user_realloc(thr, pc, p, size);
    623   }
    624   invoke_malloc_hook(p, size);
    625   return p;
    626 }
    627 
    628 TSAN_INTERCEPTOR(void, free, void *p) {
    629   if (p == 0)
    630     return;
    631   if (cur_thread()->in_symbolizer)
    632     return InternalFree(p);
    633   invoke_free_hook(p);
    634   SCOPED_INTERCEPTOR_RAW(free, p);
    635   user_free(thr, pc, p);
    636 }
    637 
    638 TSAN_INTERCEPTOR(void, cfree, void *p) {
    639   if (p == 0)
    640     return;
    641   if (cur_thread()->in_symbolizer)
    642     return InternalFree(p);
    643   invoke_free_hook(p);
    644   SCOPED_INTERCEPTOR_RAW(cfree, p);
    645   user_free(thr, pc, p);
    646 }
    647 
    648 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
    649   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
    650   return user_alloc_usable_size(p);
    651 }
    652 #endif
    653 
    654 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) {  // NOLINT
    655   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);  // NOLINT
    656   uptr srclen = internal_strlen(src);
    657   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
    658   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
    659   return REAL(strcpy)(dst, src);  // NOLINT
    660 }
    661 
    662 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
    663   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
    664   uptr srclen = internal_strnlen(src, n);
    665   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
    666   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
    667   return REAL(strncpy)(dst, src, n);
    668 }
    669 
    670 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
    671   SCOPED_TSAN_INTERCEPTOR(strdup, str);
    672   // strdup will call malloc, so no instrumentation is required here.
    673   return REAL(strdup)(str);
    674 }
    675 
    676 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
    677   if (*addr) {
    678     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
    679       if (flags & MAP_FIXED) {
    680         errno = EINVAL;
    681         return false;
    682       } else {
    683         *addr = 0;
    684       }
    685     }
    686   }
    687   return true;
    688 }
    689 
    690 TSAN_INTERCEPTOR(void *, mmap, void *addr, SIZE_T sz, int prot, int flags,
    691                  int fd, OFF_T off) {
    692   SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
    693   if (!fix_mmap_addr(&addr, sz, flags))
    694     return MAP_FAILED;
    695   void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
    696   if (res != MAP_FAILED) {
    697     if (fd > 0)
    698       FdAccess(thr, pc, fd);
    699 
    700     if (thr->ignore_reads_and_writes == 0)
    701       MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
    702     else
    703       MemoryResetRange(thr, pc, (uptr)res, sz);
    704   }
    705   return res;
    706 }
    707 
    708 #if SANITIZER_LINUX
    709 TSAN_INTERCEPTOR(void *, mmap64, void *addr, SIZE_T sz, int prot, int flags,
    710                  int fd, OFF64_T off) {
    711   SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
    712   if (!fix_mmap_addr(&addr, sz, flags))
    713     return MAP_FAILED;
    714   void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
    715   if (res != MAP_FAILED) {
    716     if (fd > 0)
    717       FdAccess(thr, pc, fd);
    718 
    719     if (thr->ignore_reads_and_writes == 0)
    720       MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
    721     else
    722       MemoryResetRange(thr, pc, (uptr)res, sz);
    723   }
    724   return res;
    725 }
    726 #define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
    727 #else
    728 #define TSAN_MAYBE_INTERCEPT_MMAP64
    729 #endif
    730 
    731 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
    732   SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
    733   if (sz != 0) {
    734     // If sz == 0, munmap will return EINVAL and don't unmap any memory.
    735     DontNeedShadowFor((uptr)addr, sz);
    736     ScopedGlobalProcessor sgp;
    737     ctx->metamap.ResetRange(thr->proc(), (uptr)addr, (uptr)sz);
    738   }
    739   int res = REAL(munmap)(addr, sz);
    740   return res;
    741 }
    742 
    743 #if SANITIZER_LINUX
    744 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
    745   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
    746   return user_alloc(thr, pc, sz, align);
    747 }
    748 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
    749 #else
    750 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
    751 #endif
    752 
    753 #if !SANITIZER_MAC
    754 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
    755   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
    756   return user_alloc(thr, pc, sz, align);
    757 }
    758 
    759 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
    760   SCOPED_INTERCEPTOR_RAW(valloc, sz);
    761   return user_alloc(thr, pc, sz, GetPageSizeCached());
    762 }
    763 #endif
    764 
    765 #if SANITIZER_LINUX
    766 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
    767   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
    768   sz = RoundUp(sz, GetPageSizeCached());
    769   return user_alloc(thr, pc, sz, GetPageSizeCached());
    770 }
    771 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
    772 #else
    773 #define TSAN_MAYBE_INTERCEPT_PVALLOC
    774 #endif
    775 
    776 #if !SANITIZER_MAC
    777 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
    778   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
    779   *memptr = user_alloc(thr, pc, sz, align);
    780   return 0;
    781 }
    782 #endif
    783 
    784 // __cxa_guard_acquire and friends need to be intercepted in a special way -
    785 // regular interceptors will break statically-linked libstdc++. Linux
    786 // interceptors are especially defined as weak functions (so that they don't
    787 // cause link errors when user defines them as well). So they silently
    788 // auto-disable themselves when such symbol is already present in the binary. If
    789 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
    790 // will silently replace our interceptor.  That's why on Linux we simply export
    791 // these interceptors with INTERFACE_ATTRIBUTE.
    792 // On OS X, we don't support statically linking, so we just use a regular
    793 // interceptor.
    794 #if SANITIZER_MAC
    795 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
    796 #else
    797 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
    798   extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
    799 #endif
    800 
    801 // Used in thread-safe function static initialization.
    802 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
    803   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
    804   for (;;) {
    805     u32 cmp = atomic_load(g, memory_order_acquire);
    806     if (cmp == 0) {
    807       if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
    808         return 1;
    809     } else if (cmp == 1) {
    810       Acquire(thr, pc, (uptr)g);
    811       return 0;
    812     } else {
    813       internal_sched_yield();
    814     }
    815   }
    816 }
    817 
    818 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
    819   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
    820   Release(thr, pc, (uptr)g);
    821   atomic_store(g, 1, memory_order_release);
    822 }
    823 
    824 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
    825   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
    826   atomic_store(g, 0, memory_order_relaxed);
    827 }
    828 
    829 namespace __tsan {
    830 void DestroyThreadState() {
    831   ThreadState *thr = cur_thread();
    832   Processor *proc = thr->proc();
    833   ThreadFinish(thr);
    834   ProcUnwire(proc, thr);
    835   ProcDestroy(proc);
    836   ThreadSignalContext *sctx = thr->signal_ctx;
    837   if (sctx) {
    838     thr->signal_ctx = 0;
    839     UnmapOrDie(sctx, sizeof(*sctx));
    840   }
    841   DTLS_Destroy();
    842   cur_thread_finalize();
    843 }
    844 }  // namespace __tsan
    845 
    846 #if !SANITIZER_MAC
    847 static void thread_finalize(void *v) {
    848   uptr iter = (uptr)v;
    849   if (iter > 1) {
    850     if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
    851       Printf("ThreadSanitizer: failed to set thread key\n");
    852       Die();
    853     }
    854     return;
    855   }
    856   DestroyThreadState();
    857 }
    858 #endif
    859 
    860 
    861 struct ThreadParam {
    862   void* (*callback)(void *arg);
    863   void *param;
    864   atomic_uintptr_t tid;
    865 };
    866 
    867 extern "C" void *__tsan_thread_start_func(void *arg) {
    868   ThreadParam *p = (ThreadParam*)arg;
    869   void* (*callback)(void *arg) = p->callback;
    870   void *param = p->param;
    871   int tid = 0;
    872   {
    873     ThreadState *thr = cur_thread();
    874     // Thread-local state is not initialized yet.
    875     ScopedIgnoreInterceptors ignore;
    876 #if !SANITIZER_MAC
    877     ThreadIgnoreBegin(thr, 0);
    878     if (pthread_setspecific(g_thread_finalize_key,
    879                             (void *)GetPthreadDestructorIterations())) {
    880       Printf("ThreadSanitizer: failed to set thread key\n");
    881       Die();
    882     }
    883     ThreadIgnoreEnd(thr, 0);
    884 #endif
    885     while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
    886       internal_sched_yield();
    887     Processor *proc = ProcCreate();
    888     ProcWire(proc, thr);
    889     ThreadStart(thr, tid, GetTid());
    890     atomic_store(&p->tid, 0, memory_order_release);
    891   }
    892   void *res = callback(param);
    893   // Prevent the callback from being tail called,
    894   // it mixes up stack traces.
    895   volatile int foo = 42;
    896   foo++;
    897   return res;
    898 }
    899 
    900 TSAN_INTERCEPTOR(int, pthread_create,
    901     void *th, void *attr, void *(*callback)(void*), void * param) {
    902   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
    903   if (ctx->after_multithreaded_fork) {
    904     if (flags()->die_after_fork) {
    905       Report("ThreadSanitizer: starting new threads after multi-threaded "
    906           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
    907       Die();
    908     } else {
    909       VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
    910           "fork is not supported (pid %d). Continuing because of "
    911           "die_after_fork=0, but you are on your own\n", internal_getpid());
    912     }
    913   }
    914   __sanitizer_pthread_attr_t myattr;
    915   if (attr == 0) {
    916     pthread_attr_init(&myattr);
    917     attr = &myattr;
    918   }
    919   int detached = 0;
    920   REAL(pthread_attr_getdetachstate)(attr, &detached);
    921   AdjustStackSize(attr);
    922 
    923   ThreadParam p;
    924   p.callback = callback;
    925   p.param = param;
    926   atomic_store(&p.tid, 0, memory_order_relaxed);
    927   int res = -1;
    928   {
    929     // Otherwise we see false positives in pthread stack manipulation.
    930     ScopedIgnoreInterceptors ignore;
    931     ThreadIgnoreBegin(thr, pc);
    932     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
    933     ThreadIgnoreEnd(thr, pc);
    934   }
    935   if (res == 0) {
    936     int tid = ThreadCreate(thr, pc, *(uptr*)th,
    937                            detached == PTHREAD_CREATE_DETACHED);
    938     CHECK_NE(tid, 0);
    939     // Synchronization on p.tid serves two purposes:
    940     // 1. ThreadCreate must finish before the new thread starts.
    941     //    Otherwise the new thread can call pthread_detach, but the pthread_t
    942     //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
    943     // 2. ThreadStart must finish before this thread continues.
    944     //    Otherwise, this thread can call pthread_detach and reset thr->sync
    945     //    before the new thread got a chance to acquire from it in ThreadStart.
    946     atomic_store(&p.tid, tid, memory_order_release);
    947     while (atomic_load(&p.tid, memory_order_acquire) != 0)
    948       internal_sched_yield();
    949   }
    950   if (attr == &myattr)
    951     pthread_attr_destroy(&myattr);
    952   return res;
    953 }
    954 
    955 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
    956   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
    957   int tid = ThreadTid(thr, pc, (uptr)th);
    958   ThreadIgnoreBegin(thr, pc);
    959   int res = BLOCK_REAL(pthread_join)(th, ret);
    960   ThreadIgnoreEnd(thr, pc);
    961   if (res == 0) {
    962     ThreadJoin(thr, pc, tid);
    963   }
    964   return res;
    965 }
    966 
    967 DEFINE_REAL_PTHREAD_FUNCTIONS
    968 
    969 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
    970   SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
    971   int tid = ThreadTid(thr, pc, (uptr)th);
    972   int res = REAL(pthread_detach)(th);
    973   if (res == 0) {
    974     ThreadDetach(thr, pc, tid);
    975   }
    976   return res;
    977 }
    978 
    979 // Problem:
    980 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
    981 // pthread_cond_t has different size in the different versions.
    982 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
    983 // after pthread_cond_t (old cond is smaller).
    984 // If we call old REAL functions for new pthread_cond_t, we will lose  some
    985 // functionality (e.g. old functions do not support waiting against
    986 // CLOCK_REALTIME).
    987 // Proper handling would require to have 2 versions of interceptors as well.
    988 // But this is messy, in particular requires linker scripts when sanitizer
    989 // runtime is linked into a shared library.
    990 // Instead we assume we don't have dynamic libraries built against old
    991 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
    992 // that allows to work with old libraries (but this mode does not support
    993 // some features, e.g. pthread_condattr_getpshared).
    994 static void *init_cond(void *c, bool force = false) {
    995   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
    996   // So we allocate additional memory on the side large enough to hold
    997   // any pthread_cond_t object. Always call new REAL functions, but pass
    998   // the aux object to them.
    999   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
   1000   // first word of pthread_cond_t to zero.
   1001   // It's all relevant only for linux.
   1002   if (!common_flags()->legacy_pthread_cond)
   1003     return c;
   1004   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
   1005   uptr cond = atomic_load(p, memory_order_acquire);
   1006   if (!force && cond != 0)
   1007     return (void*)cond;
   1008   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
   1009   internal_memset(newcond, 0, pthread_cond_t_sz);
   1010   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
   1011       memory_order_acq_rel))
   1012     return newcond;
   1013   WRAP(free)(newcond);
   1014   return (void*)cond;
   1015 }
   1016 
   1017 struct CondMutexUnlockCtx {
   1018   ScopedInterceptor *si;
   1019   ThreadState *thr;
   1020   uptr pc;
   1021   void *m;
   1022 };
   1023 
   1024 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
   1025   // pthread_cond_wait interceptor has enabled async signal delivery
   1026   // (see BlockingCall below). Disable async signals since we are running
   1027   // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
   1028   // since the thread is cancelled, so we have to manually execute them
   1029   // (the thread still can run some user code due to pthread_cleanup_push).
   1030   ThreadSignalContext *ctx = SigCtx(arg->thr);
   1031   CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
   1032   atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
   1033   MutexLock(arg->thr, arg->pc, (uptr)arg->m);
   1034   // Undo BlockingCall ctor effects.
   1035   arg->thr->ignore_interceptors--;
   1036   arg->si->~ScopedInterceptor();
   1037 }
   1038 
   1039 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
   1040   void *cond = init_cond(c, true);
   1041   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
   1042   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
   1043   return REAL(pthread_cond_init)(cond, a);
   1044 }
   1045 
   1046 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
   1047                      int (*fn)(void *c, void *m, void *abstime), void *c,
   1048                      void *m, void *t) {
   1049   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1050   MutexUnlock(thr, pc, (uptr)m);
   1051   CondMutexUnlockCtx arg = {si, thr, pc, m};
   1052   int res = 0;
   1053   // This ensures that we handle mutex lock even in case of pthread_cancel.
   1054   // See test/tsan/cond_cancel.cc.
   1055   {
   1056     // Enable signal delivery while the thread is blocked.
   1057     BlockingCall bc(thr);
   1058     res = call_pthread_cancel_with_cleanup(
   1059         fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
   1060   }
   1061   if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
   1062   MutexLock(thr, pc, (uptr)m);
   1063   return res;
   1064 }
   1065 
   1066 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
   1067   void *cond = init_cond(c);
   1068   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
   1069   return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
   1070                                      pthread_cond_wait),
   1071                    cond, m, 0);
   1072 }
   1073 
   1074 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
   1075   void *cond = init_cond(c);
   1076   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
   1077   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
   1078                    abstime);
   1079 }
   1080 
   1081 #if SANITIZER_MAC
   1082 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
   1083             void *reltime) {
   1084   void *cond = init_cond(c);
   1085   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
   1086   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
   1087                    m, reltime);
   1088 }
   1089 #endif
   1090 
   1091 INTERCEPTOR(int, pthread_cond_signal, void *c) {
   1092   void *cond = init_cond(c);
   1093   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
   1094   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1095   return REAL(pthread_cond_signal)(cond);
   1096 }
   1097 
   1098 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
   1099   void *cond = init_cond(c);
   1100   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
   1101   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1102   return REAL(pthread_cond_broadcast)(cond);
   1103 }
   1104 
   1105 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
   1106   void *cond = init_cond(c);
   1107   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
   1108   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
   1109   int res = REAL(pthread_cond_destroy)(cond);
   1110   if (common_flags()->legacy_pthread_cond) {
   1111     // Free our aux cond and zero the pointer to not leave dangling pointers.
   1112     WRAP(free)(cond);
   1113     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
   1114   }
   1115   return res;
   1116 }
   1117 
   1118 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
   1119   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
   1120   int res = REAL(pthread_mutex_init)(m, a);
   1121   if (res == 0) {
   1122     bool recursive = false;
   1123     if (a) {
   1124       int type = 0;
   1125       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
   1126         recursive = (type == PTHREAD_MUTEX_RECURSIVE
   1127             || type == PTHREAD_MUTEX_RECURSIVE_NP);
   1128     }
   1129     MutexCreate(thr, pc, (uptr)m, false, recursive, false);
   1130   }
   1131   return res;
   1132 }
   1133 
   1134 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
   1135   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
   1136   int res = REAL(pthread_mutex_destroy)(m);
   1137   if (res == 0 || res == EBUSY) {
   1138     MutexDestroy(thr, pc, (uptr)m);
   1139   }
   1140   return res;
   1141 }
   1142 
   1143 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
   1144   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
   1145   int res = REAL(pthread_mutex_trylock)(m);
   1146   if (res == EOWNERDEAD)
   1147     MutexRepair(thr, pc, (uptr)m);
   1148   if (res == 0 || res == EOWNERDEAD)
   1149     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
   1150   return res;
   1151 }
   1152 
   1153 #if !SANITIZER_MAC
   1154 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
   1155   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
   1156   int res = REAL(pthread_mutex_timedlock)(m, abstime);
   1157   if (res == 0) {
   1158     MutexLock(thr, pc, (uptr)m);
   1159   }
   1160   return res;
   1161 }
   1162 #endif
   1163 
   1164 #if !SANITIZER_MAC
   1165 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
   1166   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
   1167   int res = REAL(pthread_spin_init)(m, pshared);
   1168   if (res == 0) {
   1169     MutexCreate(thr, pc, (uptr)m, false, false, false);
   1170   }
   1171   return res;
   1172 }
   1173 
   1174 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
   1175   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
   1176   int res = REAL(pthread_spin_destroy)(m);
   1177   if (res == 0) {
   1178     MutexDestroy(thr, pc, (uptr)m);
   1179   }
   1180   return res;
   1181 }
   1182 
   1183 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
   1184   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
   1185   int res = REAL(pthread_spin_lock)(m);
   1186   if (res == 0) {
   1187     MutexLock(thr, pc, (uptr)m);
   1188   }
   1189   return res;
   1190 }
   1191 
   1192 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
   1193   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
   1194   int res = REAL(pthread_spin_trylock)(m);
   1195   if (res == 0) {
   1196     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
   1197   }
   1198   return res;
   1199 }
   1200 
   1201 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
   1202   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
   1203   MutexUnlock(thr, pc, (uptr)m);
   1204   int res = REAL(pthread_spin_unlock)(m);
   1205   return res;
   1206 }
   1207 #endif
   1208 
   1209 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
   1210   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
   1211   int res = REAL(pthread_rwlock_init)(m, a);
   1212   if (res == 0) {
   1213     MutexCreate(thr, pc, (uptr)m, true, false, false);
   1214   }
   1215   return res;
   1216 }
   1217 
   1218 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
   1219   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
   1220   int res = REAL(pthread_rwlock_destroy)(m);
   1221   if (res == 0) {
   1222     MutexDestroy(thr, pc, (uptr)m);
   1223   }
   1224   return res;
   1225 }
   1226 
   1227 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
   1228   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
   1229   int res = REAL(pthread_rwlock_rdlock)(m);
   1230   if (res == 0) {
   1231     MutexReadLock(thr, pc, (uptr)m);
   1232   }
   1233   return res;
   1234 }
   1235 
   1236 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
   1237   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
   1238   int res = REAL(pthread_rwlock_tryrdlock)(m);
   1239   if (res == 0) {
   1240     MutexReadLock(thr, pc, (uptr)m, /*try_lock=*/true);
   1241   }
   1242   return res;
   1243 }
   1244 
   1245 #if !SANITIZER_MAC
   1246 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
   1247   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
   1248   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
   1249   if (res == 0) {
   1250     MutexReadLock(thr, pc, (uptr)m);
   1251   }
   1252   return res;
   1253 }
   1254 #endif
   1255 
   1256 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
   1257   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
   1258   int res = REAL(pthread_rwlock_wrlock)(m);
   1259   if (res == 0) {
   1260     MutexLock(thr, pc, (uptr)m);
   1261   }
   1262   return res;
   1263 }
   1264 
   1265 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
   1266   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
   1267   int res = REAL(pthread_rwlock_trywrlock)(m);
   1268   if (res == 0) {
   1269     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
   1270   }
   1271   return res;
   1272 }
   1273 
   1274 #if !SANITIZER_MAC
   1275 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
   1276   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
   1277   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
   1278   if (res == 0) {
   1279     MutexLock(thr, pc, (uptr)m);
   1280   }
   1281   return res;
   1282 }
   1283 #endif
   1284 
   1285 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
   1286   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
   1287   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
   1288   int res = REAL(pthread_rwlock_unlock)(m);
   1289   return res;
   1290 }
   1291 
   1292 #if !SANITIZER_MAC
   1293 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
   1294   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
   1295   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
   1296   int res = REAL(pthread_barrier_init)(b, a, count);
   1297   return res;
   1298 }
   1299 
   1300 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
   1301   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
   1302   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
   1303   int res = REAL(pthread_barrier_destroy)(b);
   1304   return res;
   1305 }
   1306 
   1307 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
   1308   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
   1309   Release(thr, pc, (uptr)b);
   1310   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
   1311   int res = REAL(pthread_barrier_wait)(b);
   1312   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
   1313   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
   1314     Acquire(thr, pc, (uptr)b);
   1315   }
   1316   return res;
   1317 }
   1318 #endif
   1319 
   1320 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
   1321   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
   1322   if (o == 0 || f == 0)
   1323     return EINVAL;
   1324   atomic_uint32_t *a;
   1325   if (!SANITIZER_MAC)
   1326     a = static_cast<atomic_uint32_t*>(o);
   1327   else  // On OS X, pthread_once_t has a header with a long-sized signature.
   1328     a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
   1329   u32 v = atomic_load(a, memory_order_acquire);
   1330   if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
   1331                                                memory_order_relaxed)) {
   1332     (*f)();
   1333     if (!thr->in_ignored_lib)
   1334       Release(thr, pc, (uptr)o);
   1335     atomic_store(a, 2, memory_order_release);
   1336   } else {
   1337     while (v != 2) {
   1338       internal_sched_yield();
   1339       v = atomic_load(a, memory_order_acquire);
   1340     }
   1341     if (!thr->in_ignored_lib)
   1342       Acquire(thr, pc, (uptr)o);
   1343   }
   1344   return 0;
   1345 }
   1346 
   1347 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1348 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
   1349   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
   1350   if (fd > 0)
   1351     FdAccess(thr, pc, fd);
   1352   return REAL(__fxstat)(version, fd, buf);
   1353 }
   1354 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
   1355 #else
   1356 #define TSAN_MAYBE_INTERCEPT___FXSTAT
   1357 #endif
   1358 
   1359 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
   1360 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
   1361   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
   1362   if (fd > 0)
   1363     FdAccess(thr, pc, fd);
   1364   return REAL(fstat)(fd, buf);
   1365 #else
   1366   SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
   1367   if (fd > 0)
   1368     FdAccess(thr, pc, fd);
   1369   return REAL(__fxstat)(0, fd, buf);
   1370 #endif
   1371 }
   1372 
   1373 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1374 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
   1375   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
   1376   if (fd > 0)
   1377     FdAccess(thr, pc, fd);
   1378   return REAL(__fxstat64)(version, fd, buf);
   1379 }
   1380 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
   1381 #else
   1382 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
   1383 #endif
   1384 
   1385 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1386 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
   1387   SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
   1388   if (fd > 0)
   1389     FdAccess(thr, pc, fd);
   1390   return REAL(__fxstat64)(0, fd, buf);
   1391 }
   1392 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
   1393 #else
   1394 #define TSAN_MAYBE_INTERCEPT_FSTAT64
   1395 #endif
   1396 
   1397 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
   1398   SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
   1399   READ_STRING(thr, pc, name, 0);
   1400   int fd = REAL(open)(name, flags, mode);
   1401   if (fd >= 0)
   1402     FdFileCreate(thr, pc, fd);
   1403   return fd;
   1404 }
   1405 
   1406 #if SANITIZER_LINUX
   1407 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
   1408   SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
   1409   READ_STRING(thr, pc, name, 0);
   1410   int fd = REAL(open64)(name, flags, mode);
   1411   if (fd >= 0)
   1412     FdFileCreate(thr, pc, fd);
   1413   return fd;
   1414 }
   1415 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
   1416 #else
   1417 #define TSAN_MAYBE_INTERCEPT_OPEN64
   1418 #endif
   1419 
   1420 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
   1421   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
   1422   READ_STRING(thr, pc, name, 0);
   1423   int fd = REAL(creat)(name, mode);
   1424   if (fd >= 0)
   1425     FdFileCreate(thr, pc, fd);
   1426   return fd;
   1427 }
   1428 
   1429 #if SANITIZER_LINUX
   1430 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
   1431   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
   1432   READ_STRING(thr, pc, name, 0);
   1433   int fd = REAL(creat64)(name, mode);
   1434   if (fd >= 0)
   1435     FdFileCreate(thr, pc, fd);
   1436   return fd;
   1437 }
   1438 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
   1439 #else
   1440 #define TSAN_MAYBE_INTERCEPT_CREAT64
   1441 #endif
   1442 
   1443 TSAN_INTERCEPTOR(int, dup, int oldfd) {
   1444   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
   1445   int newfd = REAL(dup)(oldfd);
   1446   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
   1447     FdDup(thr, pc, oldfd, newfd, true);
   1448   return newfd;
   1449 }
   1450 
   1451 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
   1452   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
   1453   int newfd2 = REAL(dup2)(oldfd, newfd);
   1454   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
   1455     FdDup(thr, pc, oldfd, newfd2, false);
   1456   return newfd2;
   1457 }
   1458 
   1459 #if !SANITIZER_MAC
   1460 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
   1461   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
   1462   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
   1463   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
   1464     FdDup(thr, pc, oldfd, newfd2, false);
   1465   return newfd2;
   1466 }
   1467 #endif
   1468 
   1469 #if SANITIZER_LINUX
   1470 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
   1471   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
   1472   int fd = REAL(eventfd)(initval, flags);
   1473   if (fd >= 0)
   1474     FdEventCreate(thr, pc, fd);
   1475   return fd;
   1476 }
   1477 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
   1478 #else
   1479 #define TSAN_MAYBE_INTERCEPT_EVENTFD
   1480 #endif
   1481 
   1482 #if SANITIZER_LINUX
   1483 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
   1484   SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
   1485   if (fd >= 0)
   1486     FdClose(thr, pc, fd);
   1487   fd = REAL(signalfd)(fd, mask, flags);
   1488   if (fd >= 0)
   1489     FdSignalCreate(thr, pc, fd);
   1490   return fd;
   1491 }
   1492 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
   1493 #else
   1494 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
   1495 #endif
   1496 
   1497 #if SANITIZER_LINUX
   1498 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
   1499   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
   1500   int fd = REAL(inotify_init)(fake);
   1501   if (fd >= 0)
   1502     FdInotifyCreate(thr, pc, fd);
   1503   return fd;
   1504 }
   1505 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
   1506 #else
   1507 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
   1508 #endif
   1509 
   1510 #if SANITIZER_LINUX
   1511 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
   1512   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
   1513   int fd = REAL(inotify_init1)(flags);
   1514   if (fd >= 0)
   1515     FdInotifyCreate(thr, pc, fd);
   1516   return fd;
   1517 }
   1518 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
   1519 #else
   1520 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
   1521 #endif
   1522 
   1523 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
   1524   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
   1525   int fd = REAL(socket)(domain, type, protocol);
   1526   if (fd >= 0)
   1527     FdSocketCreate(thr, pc, fd);
   1528   return fd;
   1529 }
   1530 
   1531 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
   1532   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
   1533   int res = REAL(socketpair)(domain, type, protocol, fd);
   1534   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
   1535     FdPipeCreate(thr, pc, fd[0], fd[1]);
   1536   return res;
   1537 }
   1538 
   1539 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
   1540   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
   1541   FdSocketConnecting(thr, pc, fd);
   1542   int res = REAL(connect)(fd, addr, addrlen);
   1543   if (res == 0 && fd >= 0)
   1544     FdSocketConnect(thr, pc, fd);
   1545   return res;
   1546 }
   1547 
   1548 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
   1549   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
   1550   int res = REAL(bind)(fd, addr, addrlen);
   1551   if (fd > 0 && res == 0)
   1552     FdAccess(thr, pc, fd);
   1553   return res;
   1554 }
   1555 
   1556 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
   1557   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
   1558   int res = REAL(listen)(fd, backlog);
   1559   if (fd > 0 && res == 0)
   1560     FdAccess(thr, pc, fd);
   1561   return res;
   1562 }
   1563 
   1564 TSAN_INTERCEPTOR(int, close, int fd) {
   1565   SCOPED_TSAN_INTERCEPTOR(close, fd);
   1566   if (fd >= 0)
   1567     FdClose(thr, pc, fd);
   1568   return REAL(close)(fd);
   1569 }
   1570 
   1571 #if SANITIZER_LINUX
   1572 TSAN_INTERCEPTOR(int, __close, int fd) {
   1573   SCOPED_TSAN_INTERCEPTOR(__close, fd);
   1574   if (fd >= 0)
   1575     FdClose(thr, pc, fd);
   1576   return REAL(__close)(fd);
   1577 }
   1578 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
   1579 #else
   1580 #define TSAN_MAYBE_INTERCEPT___CLOSE
   1581 #endif
   1582 
   1583 // glibc guts
   1584 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1585 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
   1586   SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
   1587   int fds[64];
   1588   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
   1589   for (int i = 0; i < cnt; i++) {
   1590     if (fds[i] > 0)
   1591       FdClose(thr, pc, fds[i]);
   1592   }
   1593   REAL(__res_iclose)(state, free_addr);
   1594 }
   1595 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
   1596 #else
   1597 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
   1598 #endif
   1599 
   1600 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
   1601   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
   1602   int res = REAL(pipe)(pipefd);
   1603   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
   1604     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
   1605   return res;
   1606 }
   1607 
   1608 #if !SANITIZER_MAC
   1609 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
   1610   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
   1611   int res = REAL(pipe2)(pipefd, flags);
   1612   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
   1613     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
   1614   return res;
   1615 }
   1616 #endif
   1617 
   1618 TSAN_INTERCEPTOR(int, unlink, char *path) {
   1619   SCOPED_TSAN_INTERCEPTOR(unlink, path);
   1620   Release(thr, pc, File2addr(path));
   1621   int res = REAL(unlink)(path);
   1622   return res;
   1623 }
   1624 
   1625 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
   1626   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
   1627   void *res = REAL(tmpfile)(fake);
   1628   if (res) {
   1629     int fd = fileno_unlocked(res);
   1630     if (fd >= 0)
   1631       FdFileCreate(thr, pc, fd);
   1632   }
   1633   return res;
   1634 }
   1635 
   1636 #if SANITIZER_LINUX
   1637 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
   1638   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
   1639   void *res = REAL(tmpfile64)(fake);
   1640   if (res) {
   1641     int fd = fileno_unlocked(res);
   1642     if (fd >= 0)
   1643       FdFileCreate(thr, pc, fd);
   1644   }
   1645   return res;
   1646 }
   1647 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
   1648 #else
   1649 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
   1650 #endif
   1651 
   1652 TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
   1653   // libc file streams can call user-supplied functions, see fopencookie.
   1654   {
   1655     SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
   1656     MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
   1657   }
   1658   return REAL(fread)(ptr, size, nmemb, f);
   1659 }
   1660 
   1661 TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
   1662   // libc file streams can call user-supplied functions, see fopencookie.
   1663   {
   1664     SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
   1665     MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
   1666   }
   1667   return REAL(fwrite)(p, size, nmemb, f);
   1668 }
   1669 
   1670 static void FlushStreams() {
   1671   // Flushing all the streams here may freeze the process if a child thread is
   1672   // performing file stream operations at the same time.
   1673   REAL(fflush)(stdout);
   1674   REAL(fflush)(stderr);
   1675 }
   1676 
   1677 TSAN_INTERCEPTOR(void, abort, int fake) {
   1678   SCOPED_TSAN_INTERCEPTOR(abort, fake);
   1679   FlushStreams();
   1680   REAL(abort)(fake);
   1681 }
   1682 
   1683 TSAN_INTERCEPTOR(int, puts, const char *s) {
   1684   SCOPED_TSAN_INTERCEPTOR(puts, s);
   1685   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
   1686   return REAL(puts)(s);
   1687 }
   1688 
   1689 TSAN_INTERCEPTOR(int, rmdir, char *path) {
   1690   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
   1691   Release(thr, pc, Dir2addr(path));
   1692   int res = REAL(rmdir)(path);
   1693   return res;
   1694 }
   1695 
   1696 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
   1697   SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
   1698   if (dirp) {
   1699     int fd = dirfd(dirp);
   1700     FdClose(thr, pc, fd);
   1701   }
   1702   return REAL(closedir)(dirp);
   1703 }
   1704 
   1705 #if SANITIZER_LINUX
   1706 TSAN_INTERCEPTOR(int, epoll_create, int size) {
   1707   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
   1708   int fd = REAL(epoll_create)(size);
   1709   if (fd >= 0)
   1710     FdPollCreate(thr, pc, fd);
   1711   return fd;
   1712 }
   1713 
   1714 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
   1715   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
   1716   int fd = REAL(epoll_create1)(flags);
   1717   if (fd >= 0)
   1718     FdPollCreate(thr, pc, fd);
   1719   return fd;
   1720 }
   1721 
   1722 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
   1723   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
   1724   if (epfd >= 0)
   1725     FdAccess(thr, pc, epfd);
   1726   if (epfd >= 0 && fd >= 0)
   1727     FdAccess(thr, pc, fd);
   1728   if (op == EPOLL_CTL_ADD && epfd >= 0)
   1729     FdRelease(thr, pc, epfd);
   1730   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
   1731   return res;
   1732 }
   1733 
   1734 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
   1735   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
   1736   if (epfd >= 0)
   1737     FdAccess(thr, pc, epfd);
   1738   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
   1739   if (res > 0 && epfd >= 0)
   1740     FdAcquire(thr, pc, epfd);
   1741   return res;
   1742 }
   1743 
   1744 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
   1745                  void *sigmask) {
   1746   SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
   1747   if (epfd >= 0)
   1748     FdAccess(thr, pc, epfd);
   1749   int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
   1750   if (res > 0 && epfd >= 0)
   1751     FdAcquire(thr, pc, epfd);
   1752   return res;
   1753 }
   1754 
   1755 #define TSAN_MAYBE_INTERCEPT_EPOLL \
   1756     TSAN_INTERCEPT(epoll_create); \
   1757     TSAN_INTERCEPT(epoll_create1); \
   1758     TSAN_INTERCEPT(epoll_ctl); \
   1759     TSAN_INTERCEPT(epoll_wait); \
   1760     TSAN_INTERCEPT(epoll_pwait)
   1761 #else
   1762 #define TSAN_MAYBE_INTERCEPT_EPOLL
   1763 #endif
   1764 
   1765 namespace __tsan {
   1766 
   1767 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
   1768     bool sigact, int sig, my_siginfo_t *info, void *uctx) {
   1769   if (acquire)
   1770     Acquire(thr, 0, (uptr)&sigactions[sig]);
   1771   // Signals are generally asynchronous, so if we receive a signals when
   1772   // ignores are enabled we should disable ignores. This is critical for sync
   1773   // and interceptors, because otherwise we can miss syncronization and report
   1774   // false races.
   1775   int ignore_reads_and_writes = thr->ignore_reads_and_writes;
   1776   int ignore_interceptors = thr->ignore_interceptors;
   1777   int ignore_sync = thr->ignore_sync;
   1778   if (!ctx->after_multithreaded_fork) {
   1779     thr->ignore_reads_and_writes = 0;
   1780     thr->fast_state.ClearIgnoreBit();
   1781     thr->ignore_interceptors = 0;
   1782     thr->ignore_sync = 0;
   1783   }
   1784   // Ensure that the handler does not spoil errno.
   1785   const int saved_errno = errno;
   1786   errno = 99;
   1787   // This code races with sigaction. Be careful to not read sa_sigaction twice.
   1788   // Also need to remember pc for reporting before the call,
   1789   // because the handler can reset it.
   1790   volatile uptr pc = sigact ?
   1791      (uptr)sigactions[sig].sa_sigaction :
   1792      (uptr)sigactions[sig].sa_handler;
   1793   if (pc != (uptr)SIG_DFL && pc != (uptr)SIG_IGN) {
   1794     if (sigact)
   1795       ((sigactionhandler_t)pc)(sig, info, uctx);
   1796     else
   1797       ((sighandler_t)pc)(sig);
   1798   }
   1799   if (!ctx->after_multithreaded_fork) {
   1800     thr->ignore_reads_and_writes = ignore_reads_and_writes;
   1801     if (ignore_reads_and_writes)
   1802       thr->fast_state.SetIgnoreBit();
   1803     thr->ignore_interceptors = ignore_interceptors;
   1804     thr->ignore_sync = ignore_sync;
   1805   }
   1806   // We do not detect errno spoiling for SIGTERM,
   1807   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
   1808   // tsan reports false positive in such case.
   1809   // It's difficult to properly detect this situation (reraise),
   1810   // because in async signal processing case (when handler is called directly
   1811   // from rtl_generic_sighandler) we have not yet received the reraised
   1812   // signal; and it looks too fragile to intercept all ways to reraise a signal.
   1813   if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
   1814     VarSizeStackTrace stack;
   1815     // StackTrace::GetNestInstructionPc(pc) is used because return address is
   1816     // expected, OutputReport() will undo this.
   1817     ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
   1818     ThreadRegistryLock l(ctx->thread_registry);
   1819     ScopedReport rep(ReportTypeErrnoInSignal);
   1820     if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
   1821       rep.AddStack(stack, true);
   1822       OutputReport(thr, rep);
   1823     }
   1824   }
   1825   errno = saved_errno;
   1826 }
   1827 
   1828 void ProcessPendingSignals(ThreadState *thr) {
   1829   ThreadSignalContext *sctx = SigCtx(thr);
   1830   if (sctx == 0 ||
   1831       atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
   1832     return;
   1833   atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
   1834   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
   1835   internal_sigfillset(&sctx->emptyset);
   1836   CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &sctx->emptyset, &sctx->oldset));
   1837   for (int sig = 0; sig < kSigCount; sig++) {
   1838     SignalDesc *signal = &sctx->pending_signals[sig];
   1839     if (signal->armed) {
   1840       signal->armed = false;
   1841       CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
   1842           &signal->siginfo, &signal->ctx);
   1843     }
   1844   }
   1845   CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &sctx->oldset, 0));
   1846   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
   1847 }
   1848 
   1849 }  // namespace __tsan
   1850 
   1851 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
   1852   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
   1853       sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
   1854       // If we are sending signal to ourselves, we must process it now.
   1855       (sctx && sig == sctx->int_signal_send);
   1856 }
   1857 
   1858 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
   1859     my_siginfo_t *info, void *ctx) {
   1860   ThreadState *thr = cur_thread();
   1861   ThreadSignalContext *sctx = SigCtx(thr);
   1862   if (sig < 0 || sig >= kSigCount) {
   1863     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
   1864     return;
   1865   }
   1866   // Don't mess with synchronous signals.
   1867   const bool sync = is_sync_signal(sctx, sig);
   1868   if (sync ||
   1869       // If we are in blocking function, we can safely process it now
   1870       // (but check if we are in a recursive interceptor,
   1871       // i.e. pthread_join()->munmap()).
   1872       (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
   1873     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
   1874     if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
   1875       atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
   1876       CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
   1877       atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
   1878     } else {
   1879       // Be very conservative with when we do acquire in this case.
   1880       // It's unsafe to do acquire in async handlers, because ThreadState
   1881       // can be in inconsistent state.
   1882       // SIGSYS looks relatively safe -- it's synchronous and can actually
   1883       // need some global state.
   1884       bool acq = (sig == SIGSYS);
   1885       CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
   1886     }
   1887     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
   1888     return;
   1889   }
   1890 
   1891   if (sctx == 0)
   1892     return;
   1893   SignalDesc *signal = &sctx->pending_signals[sig];
   1894   if (signal->armed == false) {
   1895     signal->armed = true;
   1896     signal->sigaction = sigact;
   1897     if (info)
   1898       internal_memcpy(&signal->siginfo, info, sizeof(*info));
   1899     if (ctx)
   1900       internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
   1901     atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
   1902   }
   1903 }
   1904 
   1905 static void rtl_sighandler(int sig) {
   1906   rtl_generic_sighandler(false, sig, 0, 0);
   1907 }
   1908 
   1909 static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
   1910   rtl_generic_sighandler(true, sig, info, ctx);
   1911 }
   1912 
   1913 TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
   1914   // Note: if we call REAL(sigaction) directly for any reason without proxying
   1915   // the signal handler through rtl_sigaction, very bad things will happen.
   1916   // The handler will run synchronously and corrupt tsan per-thread state.
   1917   SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
   1918   if (old)
   1919     internal_memcpy(old, &sigactions[sig], sizeof(*old));
   1920   if (act == 0)
   1921     return 0;
   1922   // Copy act into sigactions[sig].
   1923   // Can't use struct copy, because compiler can emit call to memcpy.
   1924   // Can't use internal_memcpy, because it copies byte-by-byte,
   1925   // and signal handler reads the sa_handler concurrently. It it can read
   1926   // some bytes from old value and some bytes from new value.
   1927   // Use volatile to prevent insertion of memcpy.
   1928   sigactions[sig].sa_handler = *(volatile sighandler_t*)&act->sa_handler;
   1929   sigactions[sig].sa_flags = *(volatile int*)&act->sa_flags;
   1930   internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
   1931       sizeof(sigactions[sig].sa_mask));
   1932 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
   1933   sigactions[sig].sa_restorer = act->sa_restorer;
   1934 #endif
   1935   sigaction_t newact;
   1936   internal_memcpy(&newact, act, sizeof(newact));
   1937   internal_sigfillset(&newact.sa_mask);
   1938   if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
   1939     if (newact.sa_flags & SA_SIGINFO)
   1940       newact.sa_sigaction = rtl_sigaction;
   1941     else
   1942       newact.sa_handler = rtl_sighandler;
   1943   }
   1944   ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
   1945   int res = REAL(sigaction)(sig, &newact, 0);
   1946   return res;
   1947 }
   1948 
   1949 TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
   1950   sigaction_t act;
   1951   act.sa_handler = h;
   1952   internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
   1953   act.sa_flags = 0;
   1954   sigaction_t old;
   1955   int res = sigaction(sig, &act, &old);
   1956   if (res)
   1957     return SIG_ERR;
   1958   return old.sa_handler;
   1959 }
   1960 
   1961 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
   1962   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
   1963   return REAL(sigsuspend)(mask);
   1964 }
   1965 
   1966 TSAN_INTERCEPTOR(int, raise, int sig) {
   1967   SCOPED_TSAN_INTERCEPTOR(raise, sig);
   1968   ThreadSignalContext *sctx = SigCtx(thr);
   1969   CHECK_NE(sctx, 0);
   1970   int prev = sctx->int_signal_send;
   1971   sctx->int_signal_send = sig;
   1972   int res = REAL(raise)(sig);
   1973   CHECK_EQ(sctx->int_signal_send, sig);
   1974   sctx->int_signal_send = prev;
   1975   return res;
   1976 }
   1977 
   1978 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
   1979   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
   1980   ThreadSignalContext *sctx = SigCtx(thr);
   1981   CHECK_NE(sctx, 0);
   1982   int prev = sctx->int_signal_send;
   1983   if (pid == (int)internal_getpid()) {
   1984     sctx->int_signal_send = sig;
   1985   }
   1986   int res = REAL(kill)(pid, sig);
   1987   if (pid == (int)internal_getpid()) {
   1988     CHECK_EQ(sctx->int_signal_send, sig);
   1989     sctx->int_signal_send = prev;
   1990   }
   1991   return res;
   1992 }
   1993 
   1994 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
   1995   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
   1996   ThreadSignalContext *sctx = SigCtx(thr);
   1997   CHECK_NE(sctx, 0);
   1998   int prev = sctx->int_signal_send;
   1999   if (tid == pthread_self()) {
   2000     sctx->int_signal_send = sig;
   2001   }
   2002   int res = REAL(pthread_kill)(tid, sig);
   2003   if (tid == pthread_self()) {
   2004     CHECK_EQ(sctx->int_signal_send, sig);
   2005     sctx->int_signal_send = prev;
   2006   }
   2007   return res;
   2008 }
   2009 
   2010 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
   2011   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
   2012   // It's intercepted merely to process pending signals.
   2013   return REAL(gettimeofday)(tv, tz);
   2014 }
   2015 
   2016 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
   2017     void *hints, void *rv) {
   2018   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
   2019   // We miss atomic synchronization in getaddrinfo,
   2020   // and can report false race between malloc and free
   2021   // inside of getaddrinfo. So ignore memory accesses.
   2022   ThreadIgnoreBegin(thr, pc);
   2023   int res = REAL(getaddrinfo)(node, service, hints, rv);
   2024   ThreadIgnoreEnd(thr, pc);
   2025   return res;
   2026 }
   2027 
   2028 TSAN_INTERCEPTOR(int, fork, int fake) {
   2029   if (cur_thread()->in_symbolizer)
   2030     return REAL(fork)(fake);
   2031   SCOPED_INTERCEPTOR_RAW(fork, fake);
   2032   ForkBefore(thr, pc);
   2033   int pid;
   2034   {
   2035     // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
   2036     // we'll assert in CheckNoLocks() unless we ignore interceptors.
   2037     ScopedIgnoreInterceptors ignore;
   2038     pid = REAL(fork)(fake);
   2039   }
   2040   if (pid == 0) {
   2041     // child
   2042     ForkChildAfter(thr, pc);
   2043     FdOnFork(thr, pc);
   2044   } else if (pid > 0) {
   2045     // parent
   2046     ForkParentAfter(thr, pc);
   2047   } else {
   2048     // error
   2049     ForkParentAfter(thr, pc);
   2050   }
   2051   return pid;
   2052 }
   2053 
   2054 TSAN_INTERCEPTOR(int, vfork, int fake) {
   2055   // Some programs (e.g. openjdk) call close for all file descriptors
   2056   // in the child process. Under tsan it leads to false positives, because
   2057   // address space is shared, so the parent process also thinks that
   2058   // the descriptors are closed (while they are actually not).
   2059   // This leads to false positives due to missed synchronization.
   2060   // Strictly saying this is undefined behavior, because vfork child is not
   2061   // allowed to call any functions other than exec/exit. But this is what
   2062   // openjdk does, so we want to handle it.
   2063   // We could disable interceptors in the child process. But it's not possible
   2064   // to simply intercept and wrap vfork, because vfork child is not allowed
   2065   // to return from the function that calls vfork, and that's exactly what
   2066   // we would do. So this would require some assembly trickery as well.
   2067   // Instead we simply turn vfork into fork.
   2068   return WRAP(fork)(fake);
   2069 }
   2070 
   2071 #if !SANITIZER_MAC && !SANITIZER_ANDROID
   2072 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
   2073                                     void *data);
   2074 struct dl_iterate_phdr_data {
   2075   ThreadState *thr;
   2076   uptr pc;
   2077   dl_iterate_phdr_cb_t cb;
   2078   void *data;
   2079 };
   2080 
   2081 static bool IsAppNotRodata(uptr addr) {
   2082   return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
   2083 }
   2084 
   2085 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
   2086                               void *data) {
   2087   dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
   2088   // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
   2089   // accessible in dl_iterate_phdr callback. But we don't see synchronization
   2090   // inside of dynamic linker, so we "unpoison" it here in order to not
   2091   // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
   2092   // because some libc functions call __libc_dlopen.
   2093   if (info && IsAppNotRodata((uptr)info->dlpi_name))
   2094     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
   2095                      internal_strlen(info->dlpi_name));
   2096   int res = cbdata->cb(info, size, cbdata->data);
   2097   // Perform the check one more time in case info->dlpi_name was overwritten
   2098   // by user callback.
   2099   if (info && IsAppNotRodata((uptr)info->dlpi_name))
   2100     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
   2101                      internal_strlen(info->dlpi_name));
   2102   return res;
   2103 }
   2104 
   2105 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
   2106   SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
   2107   dl_iterate_phdr_data cbdata;
   2108   cbdata.thr = thr;
   2109   cbdata.pc = pc;
   2110   cbdata.cb = cb;
   2111   cbdata.data = data;
   2112   int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
   2113   return res;
   2114 }
   2115 #endif
   2116 
   2117 static int OnExit(ThreadState *thr) {
   2118   int status = Finalize(thr);
   2119   FlushStreams();
   2120   return status;
   2121 }
   2122 
   2123 struct TsanInterceptorContext {
   2124   ThreadState *thr;
   2125   const uptr caller_pc;
   2126   const uptr pc;
   2127 };
   2128 
   2129 #if !SANITIZER_MAC
   2130 static void HandleRecvmsg(ThreadState *thr, uptr pc,
   2131     __sanitizer_msghdr *msg) {
   2132   int fds[64];
   2133   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
   2134   for (int i = 0; i < cnt; i++)
   2135     FdEventCreate(thr, pc, fds[i]);
   2136 }
   2137 #endif
   2138 
   2139 #include "sanitizer_common/sanitizer_platform_interceptors.h"
   2140 // Causes interceptor recursion (getaddrinfo() and fopen())
   2141 #undef SANITIZER_INTERCEPT_GETADDRINFO
   2142 // There interceptors do not seem to be strictly necessary for tsan.
   2143 // But we see cases where the interceptors consume 70% of execution time.
   2144 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
   2145 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
   2146 // function "writes to" the buffer. Then, the same memory is "written to"
   2147 // twice, first as buf and then as pwbufp (both of them refer to the same
   2148 // addresses).
   2149 #undef SANITIZER_INTERCEPT_GETPWENT
   2150 #undef SANITIZER_INTERCEPT_GETPWENT_R
   2151 #undef SANITIZER_INTERCEPT_FGETPWENT
   2152 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
   2153 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
   2154 // We define our own.
   2155 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
   2156 #define NEED_TLS_GET_ADDR
   2157 #endif
   2158 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
   2159 
   2160 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
   2161 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
   2162   INTERCEPT_FUNCTION_VER(name, ver)
   2163 
   2164 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
   2165   MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
   2166                     ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
   2167                     true)
   2168 
   2169 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
   2170   MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
   2171                     ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
   2172                     false)
   2173 
   2174 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
   2175   SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
   2176   TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
   2177   ctx = (void *)&_ctx;                                \
   2178   (void) ctx;
   2179 
   2180 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
   2181   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
   2182   TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
   2183   ctx = (void *)&_ctx;                                    \
   2184   (void) ctx;
   2185 
   2186 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
   2187   Acquire(thr, pc, File2addr(path));                  \
   2188   if (file) {                                         \
   2189     int fd = fileno_unlocked(file);                   \
   2190     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
   2191   }
   2192 
   2193 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
   2194   if (file) {                                    \
   2195     int fd = fileno_unlocked(file);              \
   2196     if (fd >= 0) FdClose(thr, pc, fd);           \
   2197   }
   2198 
   2199 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
   2200   libignore()->OnLibraryLoaded(filename)
   2201 
   2202 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
   2203   libignore()->OnLibraryUnloaded()
   2204 
   2205 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
   2206   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
   2207 
   2208 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
   2209   Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
   2210 
   2211 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
   2212   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
   2213 
   2214 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
   2215   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2216 
   2217 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
   2218   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2219 
   2220 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
   2221   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2222 
   2223 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
   2224   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
   2225 
   2226 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
   2227   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
   2228 
   2229 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
   2230   __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
   2231 
   2232 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
   2233 
   2234 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
   2235   OnExit(((TsanInterceptorContext *) ctx)->thr)
   2236 
   2237 #define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \
   2238   MutexLock(((TsanInterceptorContext *)ctx)->thr, \
   2239             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2240 
   2241 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
   2242   MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
   2243             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2244 
   2245 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
   2246   MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
   2247             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2248 
   2249 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
   2250   MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
   2251                      ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2252 
   2253 #if !SANITIZER_MAC
   2254 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
   2255   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
   2256       ((TsanInterceptorContext *)ctx)->pc, msg)
   2257 #endif
   2258 
   2259 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
   2260   if (TsanThread *t = GetCurrentThread()) {                                    \
   2261     *begin = t->tls_begin();                                                   \
   2262     *end = t->tls_end();                                                       \
   2263   } else {                                                                     \
   2264     *begin = *end = 0;                                                         \
   2265   }
   2266 
   2267 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
   2268   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
   2269 
   2270 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
   2271   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
   2272 
   2273 #include "sanitizer_common/sanitizer_common_interceptors.inc"
   2274 
   2275 #define TSAN_SYSCALL() \
   2276   ThreadState *thr = cur_thread(); \
   2277   if (thr->ignore_interceptors) \
   2278     return; \
   2279   ScopedSyscall scoped_syscall(thr) \
   2280 /**/
   2281 
   2282 struct ScopedSyscall {
   2283   ThreadState *thr;
   2284 
   2285   explicit ScopedSyscall(ThreadState *thr)
   2286       : thr(thr) {
   2287     Initialize(thr);
   2288   }
   2289 
   2290   ~ScopedSyscall() {
   2291     ProcessPendingSignals(thr);
   2292   }
   2293 };
   2294 
   2295 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
   2296 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
   2297   TSAN_SYSCALL();
   2298   MemoryAccessRange(thr, pc, p, s, write);
   2299 }
   2300 
   2301 static void syscall_acquire(uptr pc, uptr addr) {
   2302   TSAN_SYSCALL();
   2303   Acquire(thr, pc, addr);
   2304   DPrintf("syscall_acquire(%p)\n", addr);
   2305 }
   2306 
   2307 static void syscall_release(uptr pc, uptr addr) {
   2308   TSAN_SYSCALL();
   2309   DPrintf("syscall_release(%p)\n", addr);
   2310   Release(thr, pc, addr);
   2311 }
   2312 
   2313 static void syscall_fd_close(uptr pc, int fd) {
   2314   TSAN_SYSCALL();
   2315   FdClose(thr, pc, fd);
   2316 }
   2317 
   2318 static USED void syscall_fd_acquire(uptr pc, int fd) {
   2319   TSAN_SYSCALL();
   2320   FdAcquire(thr, pc, fd);
   2321   DPrintf("syscall_fd_acquire(%p)\n", fd);
   2322 }
   2323 
   2324 static USED void syscall_fd_release(uptr pc, int fd) {
   2325   TSAN_SYSCALL();
   2326   DPrintf("syscall_fd_release(%p)\n", fd);
   2327   FdRelease(thr, pc, fd);
   2328 }
   2329 
   2330 static void syscall_pre_fork(uptr pc) {
   2331   TSAN_SYSCALL();
   2332   ForkBefore(thr, pc);
   2333 }
   2334 
   2335 static void syscall_post_fork(uptr pc, int pid) {
   2336   TSAN_SYSCALL();
   2337   if (pid == 0) {
   2338     // child
   2339     ForkChildAfter(thr, pc);
   2340     FdOnFork(thr, pc);
   2341   } else if (pid > 0) {
   2342     // parent
   2343     ForkParentAfter(thr, pc);
   2344   } else {
   2345     // error
   2346     ForkParentAfter(thr, pc);
   2347   }
   2348 }
   2349 #endif
   2350 
   2351 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
   2352   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
   2353 
   2354 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
   2355   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
   2356 
   2357 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
   2358   do {                                       \
   2359     (void)(p);                               \
   2360     (void)(s);                               \
   2361   } while (false)
   2362 
   2363 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
   2364   do {                                        \
   2365     (void)(p);                                \
   2366     (void)(s);                                \
   2367   } while (false)
   2368 
   2369 #define COMMON_SYSCALL_ACQUIRE(addr) \
   2370     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
   2371 
   2372 #define COMMON_SYSCALL_RELEASE(addr) \
   2373     syscall_release(GET_CALLER_PC(), (uptr)(addr))
   2374 
   2375 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
   2376 
   2377 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
   2378 
   2379 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
   2380 
   2381 #define COMMON_SYSCALL_PRE_FORK() \
   2382   syscall_pre_fork(GET_CALLER_PC())
   2383 
   2384 #define COMMON_SYSCALL_POST_FORK(res) \
   2385   syscall_post_fork(GET_CALLER_PC(), res)
   2386 
   2387 #include "sanitizer_common/sanitizer_common_syscalls.inc"
   2388 
   2389 #ifdef NEED_TLS_GET_ADDR
   2390 // Define own interceptor instead of sanitizer_common's for three reasons:
   2391 // 1. It must not process pending signals.
   2392 //    Signal handlers may contain MOVDQA instruction (see below).
   2393 // 2. It must be as simple as possible to not contain MOVDQA.
   2394 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
   2395 //    is empty for tsan (meant only for msan).
   2396 // Note: __tls_get_addr can be called with mis-aligned stack due to:
   2397 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
   2398 // So the interceptor must work with mis-aligned stack, in particular, does not
   2399 // execute MOVDQA with stack addresses.
   2400 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
   2401   void *res = REAL(__tls_get_addr)(arg);
   2402   ThreadState *thr = cur_thread();
   2403   if (!thr)
   2404     return res;
   2405   DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr, thr->tls_size);
   2406   if (!dtv)
   2407     return res;
   2408   // New DTLS block has been allocated.
   2409   MemoryResetRange(thr, 0, dtv->beg, dtv->size);
   2410   return res;
   2411 }
   2412 #endif
   2413 
   2414 namespace __tsan {
   2415 
   2416 static void finalize(void *arg) {
   2417   ThreadState *thr = cur_thread();
   2418   int status = Finalize(thr);
   2419   // Make sure the output is not lost.
   2420   FlushStreams();
   2421   if (status)
   2422     Die();
   2423 }
   2424 
   2425 #if !SANITIZER_MAC && !SANITIZER_ANDROID
   2426 static void unreachable() {
   2427   Report("FATAL: ThreadSanitizer: unreachable called\n");
   2428   Die();
   2429 }
   2430 #endif
   2431 
   2432 void InitializeInterceptors() {
   2433 #if !SANITIZER_MAC
   2434   // We need to setup it early, because functions like dlsym() can call it.
   2435   REAL(memset) = internal_memset;
   2436   REAL(memcpy) = internal_memcpy;
   2437 #endif
   2438 
   2439   // Instruct libc malloc to consume less memory.
   2440 #if SANITIZER_LINUX
   2441   mallopt(1, 0);  // M_MXFAST
   2442   mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
   2443 #endif
   2444 
   2445   InitializeCommonInterceptors();
   2446 
   2447 #if !SANITIZER_MAC
   2448   // We can not use TSAN_INTERCEPT to get setjmp addr,
   2449   // because it does &setjmp and setjmp is not present in some versions of libc.
   2450   using __interception::GetRealFunctionAddress;
   2451   GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0);
   2452   GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
   2453   GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0);
   2454   GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
   2455 #endif
   2456 
   2457   TSAN_INTERCEPT(longjmp);
   2458   TSAN_INTERCEPT(siglongjmp);
   2459 
   2460   TSAN_INTERCEPT(malloc);
   2461   TSAN_INTERCEPT(__libc_memalign);
   2462   TSAN_INTERCEPT(calloc);
   2463   TSAN_INTERCEPT(realloc);
   2464   TSAN_INTERCEPT(free);
   2465   TSAN_INTERCEPT(cfree);
   2466   TSAN_INTERCEPT(mmap);
   2467   TSAN_MAYBE_INTERCEPT_MMAP64;
   2468   TSAN_INTERCEPT(munmap);
   2469   TSAN_MAYBE_INTERCEPT_MEMALIGN;
   2470   TSAN_INTERCEPT(valloc);
   2471   TSAN_MAYBE_INTERCEPT_PVALLOC;
   2472   TSAN_INTERCEPT(posix_memalign);
   2473 
   2474   TSAN_INTERCEPT(strcpy);  // NOLINT
   2475   TSAN_INTERCEPT(strncpy);
   2476   TSAN_INTERCEPT(strdup);
   2477 
   2478   TSAN_INTERCEPT(pthread_create);
   2479   TSAN_INTERCEPT(pthread_join);
   2480   TSAN_INTERCEPT(pthread_detach);
   2481 
   2482   TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
   2483   TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
   2484   TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
   2485   TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
   2486   TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
   2487   TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
   2488 
   2489   TSAN_INTERCEPT(pthread_mutex_init);
   2490   TSAN_INTERCEPT(pthread_mutex_destroy);
   2491   TSAN_INTERCEPT(pthread_mutex_trylock);
   2492   TSAN_INTERCEPT(pthread_mutex_timedlock);
   2493 
   2494   TSAN_INTERCEPT(pthread_spin_init);
   2495   TSAN_INTERCEPT(pthread_spin_destroy);
   2496   TSAN_INTERCEPT(pthread_spin_lock);
   2497   TSAN_INTERCEPT(pthread_spin_trylock);
   2498   TSAN_INTERCEPT(pthread_spin_unlock);
   2499 
   2500   TSAN_INTERCEPT(pthread_rwlock_init);
   2501   TSAN_INTERCEPT(pthread_rwlock_destroy);
   2502   TSAN_INTERCEPT(pthread_rwlock_rdlock);
   2503   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
   2504   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
   2505   TSAN_INTERCEPT(pthread_rwlock_wrlock);
   2506   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
   2507   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
   2508   TSAN_INTERCEPT(pthread_rwlock_unlock);
   2509 
   2510   TSAN_INTERCEPT(pthread_barrier_init);
   2511   TSAN_INTERCEPT(pthread_barrier_destroy);
   2512   TSAN_INTERCEPT(pthread_barrier_wait);
   2513 
   2514   TSAN_INTERCEPT(pthread_once);
   2515 
   2516   TSAN_INTERCEPT(fstat);
   2517   TSAN_MAYBE_INTERCEPT___FXSTAT;
   2518   TSAN_MAYBE_INTERCEPT_FSTAT64;
   2519   TSAN_MAYBE_INTERCEPT___FXSTAT64;
   2520   TSAN_INTERCEPT(open);
   2521   TSAN_MAYBE_INTERCEPT_OPEN64;
   2522   TSAN_INTERCEPT(creat);
   2523   TSAN_MAYBE_INTERCEPT_CREAT64;
   2524   TSAN_INTERCEPT(dup);
   2525   TSAN_INTERCEPT(dup2);
   2526   TSAN_INTERCEPT(dup3);
   2527   TSAN_MAYBE_INTERCEPT_EVENTFD;
   2528   TSAN_MAYBE_INTERCEPT_SIGNALFD;
   2529   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
   2530   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
   2531   TSAN_INTERCEPT(socket);
   2532   TSAN_INTERCEPT(socketpair);
   2533   TSAN_INTERCEPT(connect);
   2534   TSAN_INTERCEPT(bind);
   2535   TSAN_INTERCEPT(listen);
   2536   TSAN_MAYBE_INTERCEPT_EPOLL;
   2537   TSAN_INTERCEPT(close);
   2538   TSAN_MAYBE_INTERCEPT___CLOSE;
   2539   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
   2540   TSAN_INTERCEPT(pipe);
   2541   TSAN_INTERCEPT(pipe2);
   2542 
   2543   TSAN_INTERCEPT(unlink);
   2544   TSAN_INTERCEPT(tmpfile);
   2545   TSAN_MAYBE_INTERCEPT_TMPFILE64;
   2546   TSAN_INTERCEPT(fread);
   2547   TSAN_INTERCEPT(fwrite);
   2548   TSAN_INTERCEPT(abort);
   2549   TSAN_INTERCEPT(puts);
   2550   TSAN_INTERCEPT(rmdir);
   2551   TSAN_INTERCEPT(closedir);
   2552 
   2553   TSAN_INTERCEPT(sigaction);
   2554   TSAN_INTERCEPT(signal);
   2555   TSAN_INTERCEPT(sigsuspend);
   2556   TSAN_INTERCEPT(raise);
   2557   TSAN_INTERCEPT(kill);
   2558   TSAN_INTERCEPT(pthread_kill);
   2559   TSAN_INTERCEPT(sleep);
   2560   TSAN_INTERCEPT(usleep);
   2561   TSAN_INTERCEPT(nanosleep);
   2562   TSAN_INTERCEPT(gettimeofday);
   2563   TSAN_INTERCEPT(getaddrinfo);
   2564 
   2565   TSAN_INTERCEPT(fork);
   2566   TSAN_INTERCEPT(vfork);
   2567 #if !SANITIZER_ANDROID
   2568   TSAN_INTERCEPT(dl_iterate_phdr);
   2569 #endif
   2570   TSAN_INTERCEPT(on_exit);
   2571   TSAN_INTERCEPT(__cxa_atexit);
   2572   TSAN_INTERCEPT(_exit);
   2573 
   2574 #ifdef NEED_TLS_GET_ADDR
   2575   TSAN_INTERCEPT(__tls_get_addr);
   2576 #endif
   2577 
   2578 #if !SANITIZER_MAC && !SANITIZER_ANDROID
   2579   // Need to setup it, because interceptors check that the function is resolved.
   2580   // But atexit is emitted directly into the module, so can't be resolved.
   2581   REAL(atexit) = (int(*)(void(*)()))unreachable;
   2582 #endif
   2583 
   2584   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
   2585     Printf("ThreadSanitizer: failed to setup atexit callback\n");
   2586     Die();
   2587   }
   2588 
   2589 #if !SANITIZER_MAC
   2590   if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
   2591     Printf("ThreadSanitizer: failed to create thread key\n");
   2592     Die();
   2593   }
   2594 #endif
   2595 
   2596   FdInit();
   2597 }
   2598 
   2599 }  // namespace __tsan
   2600 
   2601 // Invisible barrier for tests.
   2602 // There were several unsuccessful iterations for this functionality:
   2603 // 1. Initially it was implemented in user code using
   2604 //    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
   2605 //    MacOS. Futexes are linux-specific for this matter.
   2606 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
   2607 //    "as-if synchronized via sleep" messages in reports which failed some
   2608 //    output tests.
   2609 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
   2610 //    visible events, which lead to "failed to restore stack trace" failures.
   2611 // Note that no_sanitize_thread attribute does not turn off atomic interception
   2612 // so attaching it to the function defined in user code does not help.
   2613 // That's why we now have what we have.
   2614 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
   2615 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
   2616   if (count >= (1 << 8)) {
   2617       Printf("barrier_init: count is too large (%d)\n", count);
   2618       Die();
   2619   }
   2620   // 8 lsb is thread count, the remaining are count of entered threads.
   2621   *barrier = count;
   2622 }
   2623 
   2624 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
   2625 void __tsan_testonly_barrier_wait(u64 *barrier) {
   2626   unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
   2627   unsigned old_epoch = (old >> 8) / (old & 0xff);
   2628   for (;;) {
   2629     unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
   2630     unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
   2631     if (cur_epoch != old_epoch)
   2632       return;
   2633     internal_sched_yield();
   2634   }
   2635 }
   2636