Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_ANGLEAXIS_H
     11 #define EIGEN_ANGLEAXIS_H
     12 
     13 namespace Eigen {
     14 
     15 /** \geometry_module \ingroup Geometry_Module
     16   *
     17   * \class AngleAxis
     18   *
     19   * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
     20   *
     21   * \param _Scalar the scalar type, i.e., the type of the coefficients.
     22   *
     23   * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
     24   *
     25   * The following two typedefs are provided for convenience:
     26   * \li \c AngleAxisf for \c float
     27   * \li \c AngleAxisd for \c double
     28   *
     29   * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
     30   * mimic Euler-angles. Here is an example:
     31   * \include AngleAxis_mimic_euler.cpp
     32   * Output: \verbinclude AngleAxis_mimic_euler.out
     33   *
     34   * \note This class is not aimed to be used to store a rotation transformation,
     35   * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
     36   * and transformation objects.
     37   *
     38   * \sa class Quaternion, class Transform, MatrixBase::UnitX()
     39   */
     40 
     41 namespace internal {
     42 template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
     43 {
     44   typedef _Scalar Scalar;
     45 };
     46 }
     47 
     48 template<typename _Scalar>
     49 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
     50 {
     51   typedef RotationBase<AngleAxis<_Scalar>,3> Base;
     52 
     53 public:
     54 
     55   using Base::operator*;
     56 
     57   enum { Dim = 3 };
     58   /** the scalar type of the coefficients */
     59   typedef _Scalar Scalar;
     60   typedef Matrix<Scalar,3,3> Matrix3;
     61   typedef Matrix<Scalar,3,1> Vector3;
     62   typedef Quaternion<Scalar> QuaternionType;
     63 
     64 protected:
     65 
     66   Vector3 m_axis;
     67   Scalar m_angle;
     68 
     69 public:
     70 
     71   /** Default constructor without initialization. */
     72   EIGEN_DEVICE_FUNC AngleAxis() {}
     73   /** Constructs and initialize the angle-axis rotation from an \a angle in radian
     74     * and an \a axis which \b must \b be \b normalized.
     75     *
     76     * \warning If the \a axis vector is not normalized, then the angle-axis object
     77     *          represents an invalid rotation. */
     78   template<typename Derived>
     79   EIGEN_DEVICE_FUNC
     80   inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
     81   /** Constructs and initialize the angle-axis rotation from a quaternion \a q.
     82     * This function implicitly normalizes the quaternion \a q.
     83     */
     84   template<typename QuatDerived>
     85   EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
     86   /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
     87   template<typename Derived>
     88   EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
     89 
     90   /** \returns the value of the rotation angle in radian */
     91   EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; }
     92   /** \returns a read-write reference to the stored angle in radian */
     93   EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; }
     94 
     95   /** \returns the rotation axis */
     96   EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; }
     97   /** \returns a read-write reference to the stored rotation axis.
     98     *
     99     * \warning The rotation axis must remain a \b unit vector.
    100     */
    101   EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; }
    102 
    103   /** Concatenates two rotations */
    104   EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const
    105   { return QuaternionType(*this) * QuaternionType(other); }
    106 
    107   /** Concatenates two rotations */
    108   EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const
    109   { return QuaternionType(*this) * other; }
    110 
    111   /** Concatenates two rotations */
    112   friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
    113   { return a * QuaternionType(b); }
    114 
    115   /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
    116   EIGEN_DEVICE_FUNC AngleAxis inverse() const
    117   { return AngleAxis(-m_angle, m_axis); }
    118 
    119   template<class QuatDerived>
    120   EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
    121   template<typename Derived>
    122   EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m);
    123 
    124   template<typename Derived>
    125   EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
    126   EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const;
    127 
    128   /** \returns \c *this with scalar type casted to \a NewScalarType
    129     *
    130     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    131     * then this function smartly returns a const reference to \c *this.
    132     */
    133   template<typename NewScalarType>
    134   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
    135   { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
    136 
    137   /** Copy constructor with scalar type conversion */
    138   template<typename OtherScalarType>
    139   EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
    140   {
    141     m_axis = other.axis().template cast<Scalar>();
    142     m_angle = Scalar(other.angle());
    143   }
    144 
    145   EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
    146 
    147   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    148     * determined by \a prec.
    149     *
    150     * \sa MatrixBase::isApprox() */
    151   EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
    152   { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
    153 };
    154 
    155 /** \ingroup Geometry_Module
    156   * single precision angle-axis type */
    157 typedef AngleAxis<float> AngleAxisf;
    158 /** \ingroup Geometry_Module
    159   * double precision angle-axis type */
    160 typedef AngleAxis<double> AngleAxisd;
    161 
    162 /** Set \c *this from a \b unit quaternion.
    163   *
    164   * The resulting axis is normalized, and the computed angle is in the [0,pi] range.
    165   *
    166   * This function implicitly normalizes the quaternion \a q.
    167   */
    168 template<typename Scalar>
    169 template<typename QuatDerived>
    170 EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
    171 {
    172   EIGEN_USING_STD_MATH(atan2)
    173   EIGEN_USING_STD_MATH(abs)
    174   Scalar n = q.vec().norm();
    175   if(n<NumTraits<Scalar>::epsilon())
    176     n = q.vec().stableNorm();
    177 
    178   if (n != Scalar(0))
    179   {
    180     m_angle = Scalar(2)*atan2(n, abs(q.w()));
    181     if(q.w() < 0)
    182       n = -n;
    183     m_axis  = q.vec() / n;
    184   }
    185   else
    186   {
    187     m_angle = Scalar(0);
    188     m_axis << Scalar(1), Scalar(0), Scalar(0);
    189   }
    190   return *this;
    191 }
    192 
    193 /** Set \c *this from a 3x3 rotation matrix \a mat.
    194   */
    195 template<typename Scalar>
    196 template<typename Derived>
    197 EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
    198 {
    199   // Since a direct conversion would not be really faster,
    200   // let's use the robust Quaternion implementation:
    201   return *this = QuaternionType(mat);
    202 }
    203 
    204 /**
    205 * \brief Sets \c *this from a 3x3 rotation matrix.
    206 **/
    207 template<typename Scalar>
    208 template<typename Derived>
    209 EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
    210 {
    211   return *this = QuaternionType(mat);
    212 }
    213 
    214 /** Constructs and \returns an equivalent 3x3 rotation matrix.
    215   */
    216 template<typename Scalar>
    217 typename AngleAxis<Scalar>::Matrix3
    218 EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const
    219 {
    220   EIGEN_USING_STD_MATH(sin)
    221   EIGEN_USING_STD_MATH(cos)
    222   Matrix3 res;
    223   Vector3 sin_axis  = sin(m_angle) * m_axis;
    224   Scalar c = cos(m_angle);
    225   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
    226 
    227   Scalar tmp;
    228   tmp = cos1_axis.x() * m_axis.y();
    229   res.coeffRef(0,1) = tmp - sin_axis.z();
    230   res.coeffRef(1,0) = tmp + sin_axis.z();
    231 
    232   tmp = cos1_axis.x() * m_axis.z();
    233   res.coeffRef(0,2) = tmp + sin_axis.y();
    234   res.coeffRef(2,0) = tmp - sin_axis.y();
    235 
    236   tmp = cos1_axis.y() * m_axis.z();
    237   res.coeffRef(1,2) = tmp - sin_axis.x();
    238   res.coeffRef(2,1) = tmp + sin_axis.x();
    239 
    240   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
    241 
    242   return res;
    243 }
    244 
    245 } // end namespace Eigen
    246 
    247 #endif // EIGEN_ANGLEAXIS_H
    248